Sample records for extremely high concentrations

  1. Factors affecting the 7Be surface concentration and its extremely high occurrences over the Scandinavian Peninsula during autumn and winter.

    PubMed

    Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A

    2018-05-01

    Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Extremely high concentration of folates in premature newborns.

    PubMed

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  3. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe).

    PubMed

    Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia

    2017-01-01

    Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.

  4. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe)

    PubMed Central

    Boros, Emil; Katalin, V.-Balogh; Vörös, Lajos; Horváth, Zsófia

    2017-01-01

    Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L–1, max: 16 g L–1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L–1), and total phosphorus concentration was also extremely high (median: 2 mg L–1, max: 32 mg L–1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem. PMID:28572691

  5. Carbohydrate reserves in the facilitator cushion plant Laretia acaulis suggest carbon limitation at high elevation and no negative effects of beneficiary plants.

    PubMed

    García Lino, Mary Carolina; Cavieres, Lohengrin A; Zotz, Gerhard; Bader, Maaike Y

    2017-04-01

    The elevational range of the alpine cushion plant Laretia acaulis (Apiaceae) comprises a cold upper extreme and a dry lower extreme. For this species, we predict reduced growth and increased non-structural carbohydrate (NSC) concentrations (i.e. carbon sink limitation) at both elevational extremes. In a facilitative interaction, these cushions harbor other plant species (beneficiaries). Such interactions appear to reduce reproduction in other cushion species, but not in L. acaulis. However, vegetative effects may be more important in this long-lived species and may be stronger under marginal conditions. We studied growth and NSC concentrations in leaves and stems of L. acaulis collected from cushions along its full elevational range in the Andes of Central Chile. NSC concentrations were lowest and cushions were smaller and much less abundant at the highest elevation. At the lowest elevation, NSC concentrations and cushion sizes were similar to those of intermediate elevations but cushions were somewhat less abundant. NSC concentrations and growth did not change with beneficiary cover at any elevation. Lower NSC concentrations at the upper extreme contradict the sink-limitation hypothesis and may indicate that a lack of warmth is not limiting growth at high-elevation. At the lower extreme, carbon gain and growth do not appear more limiting than at intermediate elevations. The lower population density at both extremes suggests that the regeneration niche exerts important limitations to this species' distribution. The lack of an effect of beneficiaries on reproduction and vegetative performance suggests that the interaction between L. acaulis and its beneficiaries is probably commensalistic.

  6. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    PubMed

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  7. Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi

    NASA Astrophysics Data System (ADS)

    Chelani, Asha B.

    2012-05-01

    Persistence analysis of air pollutant concentration and corresponding exceedance time series is carried out to examine for temporal evolution. For this purpose, air pollutant concentrations, namely, CO, NO2 and O3 observed during 2000-2009 at a traffic site in Delhi are analyzed using detrended fluctuation analysis. Two types of extreme values are analyzed; exceeded concentrations to a threshold provided by national pollution controlling agency and time interval between two exceedances. The time series of three pollutants is observed to possess persistence property whereas the extreme value time series of only primary pollutant concentrations is found to be persistent. Two time scaling regions are observed to be significant in extreme time series of CO and NO2, mainly attributed to implementation of CNG in vehicles. The presence of persistence in three pollutant concentration time series is linked to the property of self-organized criticality. The observed persistence in the time interval between two exceeded levels is a matter of concern as persistent high concentrations can trigger health problems.

  8. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    PubMed

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  9. Polygenic determinants in extremes of high-density lipoprotein cholesterol[S

    PubMed Central

    Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude

    2017-01-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971

  10. Polygenic determinants in extremes of high-density lipoprotein cholesterol.

    PubMed

    Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A

    2017-11-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  11. An Extreme Degree of Difficulty: The Educational Demographics of Urban Neighborhood High Schools

    ERIC Educational Resources Information Center

    Neild, Ruth Curran; Balfanz, Robert

    2006-01-01

    Despite the growth of a variety of alternatives to the neighborhood high school, most students in big-city school systems still attend large comprehensive high schools that serve a particular residential area. The authors contend that the extreme concentration of educational need at these schools is often overlooked by policymakers, school reform…

  12. The effect of extremely high glucose concentrations on 21 routine chemistry and thyroid Abbott assays: interference study.

    PubMed

    Çuhadar, Serap; Köseoğlu, Mehmet; Çinpolat, Yasemin; Buğdaycı, Güler; Usta, Murat; Semerci, Tuna

    2016-01-01

    Extremely high glucose concentrations have been shown to interfere with creatinine assays especially with Jaffe method in peritoneal dialysate. Because diabetes is the fastest growing chronic disease in the world, laboratories study with varying glucose concentrations. We investigated whether different levels of glucose spiked in serum interfere with 21 routine chemistry and thyroid assays at glucose concentrations between 17-51 mmol/L. Baseline (group I) serum pool with glucose concentration of 5.55 (5.44-5.61) mmol/L was prepared from patient sera. Spiking with 20% dextrose solution, sample groups were obtained with glucose concentrations: 17.09, 34.52, and 50.95 mmol/L (group II, III, IV, respectively). Total of 21 biochemistry analytes and thyroid tests were studied on Abbott c8000 and i2000sr with commercial reagents. Bias from baseline value was checked statistically and clinically. Creatinine increased significantly by 8.74%, 31.66%, 55.31% at groups II, III, IV, respectively with P values of < 0.001. At the median glucose concentration of 50.95 mmol/L, calcium, albumin, chloride and FT4 biased significantly clinically (-0.85%, 1.63%, 0.65%, 7.4% with P values 0.138, 0.214, 0.004, < 0.001, respectively). Remaining assays were free of interference. Among the numerous biochemical parameters studied, only a few parameters are affected by dramatically increased glucose concentration. The creatinine measurements obtained in human sera with the Jaffe alkaline method at high glucose concentrations should be interpreted with caution. Other tests that were affected with extremely high glucose concentrations were calcium, albumin, chloride and FT4, hence results should be taken into consideration in patients with poor diabetic control.

  13. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans.

    PubMed

    Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki

    2017-03-01

    Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.

  14. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  15. A content analysis of tweets about high-potency marijuana.

    PubMed

    Cavazos-Rehg, Patricia A; Sowles, Shaina J; Krauss, Melissa J; Agbonavbare, Vivian; Grucza, Richard; Bierut, Laura

    2016-09-01

    "Dabbing" involves heating extremely concentrated forms of marijuana to high temperatures and inhaling the resulting vapor. We studied themes describing the consequences of using highly concentrated marijuana by examining the dabbing-related content on Twitter. Tweets containing dabbing-related keywords were collected from 1/1-1/31/2015 (n=206,854). A random sample of 5000 tweets was coded for content according to pre-determined categories about dabbing-related behaviors and effects experienced using a crowdsourcing service. An examination of tweets from the full sample about respiratory effects and passing out was then conducted by selecting tweets with relevant keywords. Among the 5000 randomly sampled tweets, 3540 (71%) were related to dabbing marijuana concentrates. The most common themes included mentioning current use of concentrates (n=849; 24%), the intense high and/or extreme effects from dabbing (n=763; 22%) and excessive/heavy dabbing (n=517; 15%). Extreme effects included both physiological (n=124/333; 37%) and psychological effects (n=55/333; 17%). The most common physiologic effects, passing out (n=46/333; 14%) and respiratory effects (n=30/333; 9%), were then further studied in the full sample of tweets. Coughing was the most common respiratory effect mentioned (n=807/1179; 68%), and tweeters commonly expressed dabbing with intentions to pass out (416/915; 45%). This study adds to the limited understanding of marijuana concentrates and highlights self-reported physical and psychological effects from this type of marijuana use. Future research should further examine these effects and the potential severity of health consequences associated with concentrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Extremely high myoglobin plasma concentrations producing hook effect in a critically ill patient.

    PubMed

    Kurt-Mangold, Michelle; Drees, Denny; Krasowski, Matthew D

    2012-12-24

    A 21-year old female suffered a cardiac arrest after a one week history of viral illness later shown to be caused by influenza B. The patient required extended cardiopulmonary resuscitation and had further complications including compartment syndrome. Plasma myoglobin concentration was measured using the Roche Diagnostics electrochemiluminescent myoglobin assay. The myoglobin concentration was 205,590 μg/l in an undiluted specimen, consistent with severe rhabdomyolysis. Subsequent myoglobin concentrations measured two days later showed dramatic decreases to approximately 1000 μg/l, raising suspicion of a hook effect. Dilution and re-analysis of the specimens revealed that the actual myoglobin concentrations were >395,000 μg/l, with one specimen possessing an estimated myoglobin concentration of >600,000 μg/l. Interestingly, three specimens from this patient did not show evidence of hook effect, with undiluted specimens producing myoglobin concentrations as high as 284,000 μg/l. Retrospective analysis of myoglobin results over an 8-year period did not reveal other cases with suspicion of hook effect. The case patient had the highest myoglobin concentrations out of 7301 specimens. This case illustrates that while the Roche myoglobin assay has a very wide dynamic range, hook effect can occur with extremely high concentrations of plasma myoglobin. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Public Health Monitoring of Privilege and Deprivation With the Index of Concentration at the Extremes

    PubMed Central

    Waterman, Pamela D.; Spasojevic, Jasmina; Li, Wenhui; Maduro, Gil; Van Wye, Gretchen

    2016-01-01

    Objectives. We evaluated use of the Index of Concentration at the Extremes (ICE) for public health monitoring. Methods. We used New York City data centered around 2010 to assess cross-sectional associations at the census tract and community district levels, for (1) diverse ICE measures plus the US poverty rate, with (2) infant mortality, premature mortality (before age 65 years), and diabetes mortality. Results. Point estimates for rate ratios were consistently greatest for the novel ICE that jointly measured extreme concentrations of income and race/ethnicity. For example, the census tract–level rate ratio for infant mortality comparing the bottom versus top quintile for an ICE contrasting low-income Black versus high-income White equaled 2.93 (95% confidence interval [CI] = 2.11, 4.09), but was 2.19 (95% CI = 1.59, 3.02) for low versus high income, 2.77 (95% CI = 2.02, 3.81) for Black versus White, and 1.56 (95% CI = 1.19, 2.04) for census tracts with greater than or equal to 30% versus less than 10% below poverty. Conclusions. The ICE may be a useful metric for public health monitoring, as it simultaneously captures extremes of privilege and deprivation and can jointly measure economic and racial/ethnic segregation. PMID:26691119

  19. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat.

    PubMed

    dC Rubin, Sergio S; Marín, Irma; Gómez, Manuel J; Morales, Eduardo A; Zekker, Ivar; San Martín-Uriz, Patxi; Rodríguez, Nuria; Amils, Ricardo

    2017-09-01

    Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL 2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg 2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations.

    PubMed

    Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria

    2014-08-14

    Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.

  1. Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry.

    PubMed

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori

    2017-09-01

    We demonstrate an extremely low-concentrated solar-pumped laser (SPL) using a fiber laser with transverse excitation geometry. A low concentration factor is highly desired in SPLs to eliminate the need for precise solar tracking and to considerably increase the practical applications of SPL technology. In this Letter, we have exploited the intrinsic low-loss property of silica fibers to compensate for the extremely low gain coefficient of the weakly pumped active medium. A 40 m long Nd 3+ -doped fiber coil is packed in a ring-shaped chamber filled with a sensitizer solution. We demonstrated a lasing threshold that is 15 times the concentration of natural sunlight and two orders of magnitude smaller than those of conventional SPLs.

  2. Signal and power roll ring testing update

    NASA Technical Reports Server (NTRS)

    Smith, Dennis W.

    1989-01-01

    The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.

  3. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China

    PubMed Central

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-01-01

    Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637

  4. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.

    PubMed

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-12-21

    Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.

  5. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  6. Organochlorine pesticides, PCBs, dibenzodioxin, and furan concentrations in common snapping turtle eggs (Chelydra serpentina serpentina) in Akwesasne, Mohawk Territory, Ontario, Canada.

    PubMed

    de Solla, S R; Bishop, C A; Lickers, H; Jock, K

    2001-04-01

    Subsamples of eight clutches of common snapping turtle eggs (Chelydra serpentina serpentina) were collected from four sites from the territory of the Mohawk Nation, Akwesasne, on the shore of the St. Lawrence River. Egg contents were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), dibenzodioxins, and furans. The sites were 2 to 13 km downstream from PCB-contaminated landfill sites. Maximum concentrations of total PCBs in snapping turtle clutches were extremely high, and ranged from 2 378.2 ng/g to 737 683 ng/g (wet weight) and are among the highest recorded in any tissue of a free-ranging animal. Similarly, in a pooled sample of eggs from all four sites, the summed concentrations of non-ortho PCBs (n = 6 congeners) was also very high at 54.54 ng/g and the summed dioxin and furan concentrations (n = 11 congeners) was 85.8 ng/g. Sum organochlorine pesticide levels varied from 28 to 2,264 ng/g among the four sites. The levels of PCBs found in turtle eggs exceed concentrations associated with developmental problems and reduced hatching success in snapping turtles and other species and also exceed the Canadian tissue residue guidelines for toxic equivalency concentrations. The extremely high levels of organochlorine contaminants demonstrate the high degree of contamination in the environment in the Akwesasne area.

  7. Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration

    NASA Astrophysics Data System (ADS)

    Yang, Wenchang; Magnusdottir, Gudrun

    2017-05-01

    Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.

  8. CYTOGENETIC AND MOLECULAR RESPONSES OF AMMONIUM SULPHATE APPLICATION FOR TOLERANCE TO EXTREME TEMPERATURES IN VICIA FABA L.

    PubMed

    Öney, S; Tabur, S; Tuna, M

    2015-01-01

    Effects of ammonium sulphate [(NH4)2SO4] on mitosis, cell cycle and chromosomes in Vicia faba L. seeds exposed to extreme temperatures were investigated using flowcytometric and cytogenetic analysis. Seeds germinated at high and low temperatures showed a signiicant decrease in mitotic index as compared to those of optimum temperature conditions. Application of 50 and 1000 µM (NH4)2SO4 were successful in alleviating the negative effects of low and high temperature on mitotic activity, respectively. 50 µM (NH4)2SO4 showed the most positive effect on cell cycle at the extreme temperatures. This concentration increased the cell division removing or decreasing the negative effects of temperature stress. Namely, the highest G2/M and S phase percentages under stress conditions were obtained with application of 50 µM (NH4)2SO4. Chromosomal aberrations were not observed in cells of seeds germinated in distilled water and also at any temperatures. However, the frequency of chromosomal aberrations increased significantly by increasing (NH4)2SO4 concentration. The highest aberration frequency in all temperature degree tested was found at 1000 µM (NH4)2SO4 concentration.

  9. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    NASA Astrophysics Data System (ADS)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  10. Characterization of extreme precipitation within atmospheric river events over California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, S.; Prabhat,; Byna, S.

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  11. Characterization of extreme precipitation within atmospheric river events over California

    DOE PAGES

    Jeon, S.; Prabhat,; Byna, S.; ...

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  12. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number of cold nights, cold days, ice days and consecutive frost days over the western part of Europe. In the opposite case of low sea ice concentration over the Barents/Kara Seas an increase of up to 8 days/winter of cold nights and days is observed over the whole Europe and an increase of up to 4 days/winter in the number of ID and CFD is observed over the same regions. The cold winters over Europe (low sea ice years) are associated with anomalous anticyclone and the downstream development of a mid-latitude trough, which in turn favours the advection of cold air from the north, providing favourable conditions for severe winters over Europe. We suggest that these results can help to improve the seasonal predictions of winter extreme events over Europe. Due to the non-linear response to high vs. low sea ice years, the skill of the predictions might depend on the sign and amplitude of the anomalies.

  13. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    PubMed

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-05

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature.

  14. Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond

    NASA Astrophysics Data System (ADS)

    Canganella, Francesco; Wiegel, Juergen

    2011-04-01

    The anthropocentric term "extremophile" was introduced more than 30 years ago to describe any organism capable of living and growing under extreme conditions—i.e., particularly hostile to human and to the majority of the known microorganisms as far as temperature, pH, and salinity parameters are concerned. With the further development of studies on microbial ecology and taxonomy, more "extreme" environments were found and more extremophiles were described. Today, many different extremophiles have been isolated from habitats characterized by hydrostatic pressure, aridity, radiations, elevated temperatures, extreme pH values, high salt concentrations, and high solvent/metal concentrations, and it is well documented that these microorganisms are capable of thriving under extreme conditions better than any other organism living on Earth. Extremophiles have also been investigated as far as the search for life in other planets is concerned and even to evaluate the hypothesis that life on Earth came originally from space. Extremophiles are interesting for basic and applied sciences. Particularly fascinating are their structural and physiological features allowing them to stand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA polymerase, thermostable enzymes), the search was successful and the final application was achieved, but certainly further exploitations are next to come.

  15. Draft Genome Sequence of the Polyextremophilic Halorubrum sp. Strain AJ67, Isolated from Hyperarsenic Lakes in the Argentinian Puna.

    PubMed

    Burguener, Germán F; Maldonado, Marcos J; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A; Turjanski, Adrián Gustavo

    2014-02-06

    Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations.

  16. Reactive gaseous mercury is generated from chloralkali factories resulting in extreme concentrations of mercury in hair of workers

    EPA Science Inventory

    Occupational exposure of chloralkali workers to highly concentrated mercury (Hg) vapour has been linked to an increased risk of renal dysfunction and behavioural changes. It is generally believed that these workers are exposed to elemental Hg, which is used in abundance during th...

  17. Extreme Unconditional Dependence Vs. Multivariate GARCH Effect in the Analysis of Dependence Between High Losses on Polish and German Stock Indexes

    NASA Astrophysics Data System (ADS)

    Rokita, Pawel

    Classical portfolio diversification methods do not take account of any dependence between extreme returns (losses). Many researchers provide, however, some empirical evidence for various assets that extreme-losses co-occur. If the co-occurrence is frequent enough to be statistically significant, it may seriously influence portfolio risk. Such effects may result from a few different properties of financial time series, like for instance: (1) extreme dependence in a (long-term) unconditional distribution, (2) extreme dependence in subsequent conditional distributions, (3) time-varying conditional covariance, (4) time-varying (long-term) unconditional covariance, (5) market contagion. Moreover, a mix of these properties may be present in return time series. Modeling each of them requires different approaches. It seams reasonable to investigate whether distinguishing between the properties is highly significant for portfolio risk measurement. If it is, identifying the effect responsible for high loss co-occurrence would be of a great importance. If it is not, the best solution would be selecting the easiest-to-apply model. This article concentrates on two of the aforementioned properties: extreme dependence (in a long-term unconditional distribution) and time-varying conditional covariance.

  18. The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed

    PubMed Central

    Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling

    2013-01-01

    A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898

  19. Projected regional changes in the characteristics of dry and moist heat waves in the United States derived from downscaled CMIP5 models

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.

    2017-12-01

    Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.

  20. Insertion sequences enrichment in extreme Red sea brine pool vent.

    PubMed

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2017-03-01

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  1. Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish

    NASA Astrophysics Data System (ADS)

    Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin

    2007-05-01

    Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.

  2. Draft Genome Sequence of the Polyextremophilic Halorubrum sp. Strain AJ67, Isolated from Hyperarsenic Lakes in the Argentinian Puna

    PubMed Central

    Burguener, Germán F.; Maldonado, Marcos J.; Revale, Santiago; Fernández Do Porto, Darío; Rascován, Nicolás; Vázquez, Martín; Farías, María Eugenia; Marti, Marcelo A.

    2014-01-01

    Halorubrum sp. strain AJ67, an extreme halophilic UV-resistant archaeon, was isolated from Laguna Antofalla in the Argentinian Puna. The draft genome sequence suggests the presence of potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high UV radiation, elevated salinity, and the presence of critical arsenic concentrations. PMID:24503991

  3. Model design for predicting extreme precipitation event impacts on water quality in a water supply reservoir

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.

    2016-12-01

    Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run-time for the reservoir model. This approach proved useful in probing a water supply's resilience to extreme events, and to inform management responses, particularly in a region such as the American Northeast where climate change is expected to bring such events with higher frequency and intensity than have occurred in the past.

  4. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  5. Environmental assessment of mining industry solid pollution in the mercurial district of Azzaba, northeast Algeria.

    PubMed

    Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter

    2016-11-01

    To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).

  6. Survival in an extreme habitat: the roles of behaviour and energy limitation

    NASA Astrophysics Data System (ADS)

    Plath, Martin; Tobler, Michael; Riesch, Rüdiger; García de León, Francisco J.; Giere, Olav; Schlupp, Ingo

    2007-12-01

    Extreme habitats challenge animals with highly adverse conditions, like extreme temperatures or toxic substances. In this paper, we report of a fish ( Poecilia mexicana) inhabiting a limestone cave in Mexico. Several springs inside the cave are rich in toxic H2S. We demonstrate that a behavioural adaptation, aquatic surface respiration (ASR), allows for the survival of P. mexicana in this extreme, sulphidic habitat. Without the possibility to perform ASR, the survival rate of P. mexicana was low even at comparatively low H2S concentrations. Furthermore, we show that food limitation affects the survival of P. mexicana pointing to energetically costly physiological adaptations to detoxify H2S.

  7. Preclinical study shows drug has extreme potency against multidrug-resistant HIV variants | Center for Cancer Research

    Cancer.gov

    CCR investigators and colleagues have developed an anti-HIV drug, GRL-142, which at low concentrations block the replication of various wild-type and multidrug-resistant HIV strains. The drug also reaches high concentrations in a rat’s brain, suggesting it may prevent HIV-associated neurocognitive disorders. Read more…

  8. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.

    Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.

  10. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.

    PubMed

    Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko

    2016-10-01

    2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Model methodology for estimating pesticide concentration extremes based on sparse monitoring data

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2018-03-22

    This report describes a new methodology for using sparse (weekly or less frequent observations) and potentially highly censored pesticide monitoring data to simulate daily pesticide concentrations and associated quantities used for acute and chronic exposure assessments, such as the annual maximum daily concentration. The new methodology is based on a statistical model that expresses log-transformed daily pesticide concentration in terms of a seasonal wave, flow-related variability, long-term trend, and serially correlated errors. Methods are described for estimating the model parameters, generating conditional simulations of daily pesticide concentration given sparse (weekly or less frequent) and potentially highly censored observations, and estimating concentration extremes based on the conditional simulations. The model can be applied to datasets with as few as 3 years of record, as few as 30 total observations, and as few as 10 uncensored observations. The model was applied to atrazine, carbaryl, chlorpyrifos, and fipronil data for U.S. Geological Survey pesticide sampling sites with sufficient data for applying the model. A total of 112 sites were analyzed for atrazine, 38 for carbaryl, 34 for chlorpyrifos, and 33 for fipronil. The results are summarized in this report; and, R functions, described in this report and provided in an accompanying model archive, can be used to fit the model parameters and generate conditional simulations of daily concentrations for use in investigations involving pesticide exposure risk and uncertainty.

  12. Will climate change increase the risk for critical infrastructure failures in Europe due to extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin; Ulbrich, Uwe

    2016-04-01

    An event based detection algorithm for extreme precipitation is applied to a multi-model ensemble of regional climate model simulations. The algorithm determines extent, location, duration and severity of extreme precipitation events. We assume that precipitation in excess of the local present-day 10-year return value will potentially exceed the capacity of the drainage systems that protect critical infrastructure elements. This assumption is based on legislation for the design of drainage systems which is in place in many European countries. Thus, events exceeding the local 10-year return value are detected. In this study we distinguish between sub-daily events (3 hourly) with high precipitation intensities and long-duration events (1-3 days) with high precipitation amounts. The climate change simulations investigated here were conducted within the EURO-CORDEX framework and exhibit a horizontal resolution of approximately 12.5 km. The period between 1971-2100 forced with observed and scenario (RCP 8.5 and RCP 4.5) greenhouse gas concentrations was analysed. Examined are changes in event frequency, event duration and size. The simulations show an increase in the number of extreme precipitation events for the future climate period over most of the area, which is strongest in Northern Europe. Strength and statistical significance of the signal increase with increasing greenhouse gas concentrations. This work has been conducted within the EU project RAIN (Risk Analysis of Infrastructure Networks in response to extreme weather).

  13. Chaophilic or chaotolerant fungi: a new category of extremophiles?

    PubMed Central

    Zajc, Janja; Džeroski, Sašo; Kocev, Dragi; Oren, Aharon; Sonjak, Silva; Tkavc, Rok; Gunde-Cimerman, Nina

    2014-01-01

    It is well known that few halophilic bacteria and archaea as well as certain fungi can grow at the highest concentrations of NaCl. However, data about possible life at extremely high concentrations of various others kosmotropic (stabilizing; like NaCl, KCl, and MgSO4) and chaotropic (destabilizing) salts (NaBr, MgCl2, and CaCl2) are scarce for prokaryotes and almost absent for the eukaryotic domain including fungi. Fungi from diverse (extreme) environments were tested for their ability to grow at the highest concentrations of kosmotropic and chaotropic salts ever recorded to support life. The majority of fungi showed preference for relatively high concentrations of kosmotropes. However, our study revealed the outstanding tolerance of several fungi to high concentrations of MgCl2 (up to 2.1 M) or CaCl2 (up to 2.0 M) without compensating kosmotropic salts. Few species, for instance Hortaea werneckii, Eurotium amstelodami, Eurotium chevalieri and Wallemia ichthyophaga, are able to thrive in media with the highest salinities of all salts (except for CaCl2 in the case of W. ichthyophaga). The upper concentration of MgCl2 to support fungal life in the absence of kosmotropes (2.1 M) is much higher than previously determined to be the upper limit for microbial growth (1.26 M). No fungal representatives showed exclusive preference for only chaotropic salts (being obligate chaophiles). Nevertheless, our study expands the knowledge of possible active life by a diverse set of fungi in biologically detrimental chaotropic environments. PMID:25566222

  14. Work-related burns.

    PubMed

    Pruitt, Valerie M

    2006-01-01

    Work-related upper extremity burns often occur. The cause directs the course of action. Thermal burns should be assessed for system alterations, and depth of burn should be determined. Deep partial-thickness burns and more severe burns require a specialist evaluation. Chemical burns must be irrigated and the agent identified. Some chemical burns, such as those that involve phenols and metal fragments, require specific topical applications before water lavage. Hydrofluoric acid burns can cause life-threatening electrolyte abnormalities with a small, highly concentrated acid burn. The goal with any extremity burn is to provide the patient with a multidisciplinary team approach to achieve a functional, usable extremity.

  15. Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan

    2018-03-01

    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.

  16. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    USGS Publications Warehouse

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  17. Neonatal systemic inflammation and the risk of low scores on measures of reading and mathematics achievement at age 10 years among children born extremely preterm.

    PubMed

    Leviton, Alan; Dammann, Olaf; Allred, Elizabeth N; Joseph, Robert M; Fichorova, Raina N; O'Shea, T Michael; Kuban, Karl C K

    2018-05-01

    Difficulties with reading and math occur more commonly among children born extremely preterm than among children born at term. Reasons for this are unclear. We measured the concentrations of 27 inflammatory-related and neurotrophic/angiogenic proteins (angio-neurotrophic proteins) in multiple blood specimens collected a week apart during the first postnatal month from 660 children born before the 28th week of gestation who at age 10 years had an IQ ≥ 70 and a Wechsler Individual Achievement Test 3rd edition (WIAT-III) assessment. We identified four groups of children, those who had a Z-score ≤ -1 on the Word Reading assessment only, on the Numerical Operations assessment only, on both of these assessments, and on neither, which served as the referent group. We then modeled the risk of each learning limitation associated with a top quartile concentration of each protein, and with high and lower concentrations of multiple proteins. The protein profile of low reading scores was confined to the third and fourth postnatal weeks when increased risks were associated with high concentrations of IL-8 and ICAM-1 in the presence of low concentrations of angio-neurotrophic proteins. The profile of low math scores was very similar, except it did not include ICAM-1. In contrast, the profile of low scores on both assessments was present in each of the first four postnatal weeks. The increased risks associated with high concentrations of TNF-α in the first two weeks and of IL-8 and ICAM-1 in the next two weeks were modulated down by high concentrations of angio-neurotrophic proteins. High concentrations of angio-neurotrophic proteins appear to reduce/moderate the risk of each learning limitation associated with systemic inflammation. The three categories of limitations have protein profiles with some similarities, and yet some differences, too. Copyright © 2018 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Quantifying spatiotemporal variability of fine particles in an urban environment using combined fixed and mobile measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Pryor, S. C.

    2014-06-01

    Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (

  19. Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

    NASA Astrophysics Data System (ADS)

    Angeles Aguilera, Angeles

    2013-07-01

    A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

  20. Which Environmental Factors Predict Seasonal Variation in the Coral Health of Acropora digitifera and Acropora spicifera at Ningaloo Reef?

    PubMed Central

    Hinrichs, Saskia; Patten, Nicole L.; Feng, Ming; Strickland, Daniel; Waite, Anya M.

    2013-01-01

    The impact of physico-chemical factors on percent coral cover and coral health was examined on a spatial basis for two dominant Acropora species, A. digitifera and A. spicifera, at Ningaloo Reef (north-western Australia) in the southeast Indian Ocean. Coral health was investigated by measuring metabolic indices (RNA/DNA ratio and protein concentration), energy levels (lipid ratio) and autotrophic indices (chlorophyll a (chl a) and zooxanthellae density) at six stations during typical seasons (austral autumn 2010 (March and April), austral winter 2010 (August)) and during an extreme La Niña event in summer 2011 (February). These indices were correlated with 15 physico-chemical factors (measured immediately following coral sampling) to identify predictors for health indices. Variations in metabolic indices (protein concentration and RNA/DNA ratio) for A. spicifera were mainly explained by nitrogen, temperature and zooplankton concentrations under typical conditions, while for A. digitifera, light as well as phytoplankton, in particular picoeukaryotes, were important, possibly due to higher energy requirement for lipid synthesis and storage in A. digitifera. Optimum metabolic values occurred for both Acropora species at 26–28°C when autotrophic indices (chl a and zooxanthellae density) were lowest. The extreme temperature during the La Niña event resulted in a shift of feeding modes, with an increased importance of water column plankton concentrations for metabolic rates of A. digitifera and light and plankton for A. spicifera. Our results suggest that impacts of high sea surface temperatures during extreme events such as La Niña may be mitigated via reduction on metabolic rates in coral host. The high water column plankton concentrations and associated low light levels resulted in a shift towards high symbiont densities, with lower metabolic rates and energy levels than the seasonal norm for the coral host. PMID:23637770

  1. Estimation of local extreme suspended sediment concentrations in California Rivers.

    PubMed

    Tramblay, Yves; Saint-Hilaire, André; Ouarda, Taha B M J; Moatar, Florentina; Hecht, Barry

    2010-09-01

    The total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40-60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in October 2014

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Fast, J. D.; Ban, J.

    2017-12-01

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous/aqueous reactions. As the parameterizations of those heterogeneous reactions are not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory were likely important factors contributing to those peak PM2.5 concentrations.

  3. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population.

    PubMed

    Li, Cong; Cai, Wentao; Zhou, Chenghao; Yin, Hongwei; Zhang, Ziqi; Loor, Juan J; Sun, Dongxiao; Zhang, Qin; Liu, Jianfeng; Zhang, Shengli

    2016-06-02

    Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis.

  4. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  5. Minute synthesis of extremely stable gold nanoparticles.

    PubMed

    Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar

    2009-12-16

    We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.

  6. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    PubMed

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.

  7. Solar-pumped fiber laser with transverse-excitation geometry

    NASA Astrophysics Data System (ADS)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori

    2018-02-01

    In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.

  8. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules

    PubMed Central

    Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara

    2017-01-01

    Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857

  9. Water-quality conditions in the New River, Imperial County, California

    USGS Publications Warehouse

    Setmire, James G.

    1979-01-01

    The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)

  10. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  11. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    PubMed

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.

  12. Mineral Losses During Extreme Environmental Conditions

    USDA-ARS?s Scientific Manuscript database

    Advisory groups that make recommendations for mineral intakes continue to identify accurate determinations of sweat mineral losses during physical activity as a critical void in their deliberations. Although estimates of sweat mineral concentrations are available, they are highly variable. Practica...

  13. Water resources of the Myakka River basin area, southwest Florida

    USGS Publications Warehouse

    Joyner, Boyd F.; Sutcliffe, Horace

    1976-01-01

    Ground water in the Myakka River basin area of southwest Floria is obtained from a water-table aquifer and from five zones in an artesian aquifer. Wells in the water-table aquifer yield generally less than 50 gpm and dissolved solids concentration is less than 500 mg/liter except in coastal areas and the peninsula southwest of the Myakka River estuary. Wells in the Venice area that tap zone 1 usually yield less than 30 gmp. The quality of water is good except in the peninsula area. Zone 2 is the most highly developed aquifer in the heavily populated coastal areas. Wells yield as much as 200 gpm. In most areas, water is of acceptable quality. Wells that tap zone 3 yield as much as 500 gmp. Fluoride concentration ranges from 1 to 3.5 mg/liter. Zone 4 yields as much as 1,500 gpm to large diameter wells. Except in the extreme northeastern part of the area water from zone 4 usually contains high concentrations of fluoride and sulfate. Zone 5 is the most productive aquifer in the area, but dissolved solids concentrations usually are too high for public supply except in the extreme northeast. Surface water derived from natural drainage is of good quality except for occasional high color in summer. Most of the streams in the Myakka River basin area have small drainage basins, are of short channel length, and do not yield high volumes of flow. During the dry season, streamflow is maintained by groundwater discharge, and, as a result, chloride, sulfate, and dissolved solids concentrations and the hardness of the water are above drinking water standards for some streams. (Woodard-USGS)

  14. Impact of zoo visitors on the fecal cortisol levels and behavior of an endangered species: Indian blackbuck (Antelope cervicapra L.).

    PubMed

    Rajagopal, Thangavel; Archunan, Govindaraju; Sekar, Mahadevan

    2011-01-01

    This study investigated behavioral activities (resting, moving, aggressive, social, and reproductive behavior) and fecal cortisol levels in 8 individually identified adult male blackbucks during periods of varying levels of zoo visitors (zero, low, high, and extremely high zoo visitor density). This study also elucidated whether zoo visitor density could disturb nonhuman animal welfare. This study analyzed fecal cortisol from the samples of blackbuck by radioimmunoassay and found significant differences (p < .05) for time the animals devoted to moving, resting, aggressive, reproductive, and social behavior on days with high and extremely high levels of zoo visitors. The ANOVA with Duncan's Multiple Range Test test showed that the fecal cortisol concentration was higher (p < .05) during the extremely high (137.30 ± 5.88 ng/g dry feces) and high (113.51 ± 3.70 ng/g dry feces) levels of zoo visitor density. The results of the study suggest that zoo visitor density affected behavior and adrenocortical secretion in Indian Blackbuck, and this may indicate an animal welfare problem.

  15. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dan; Liu, Zhiquan; Fast, Jerome D.

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over themore » North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous reactions. As the parameterizations of those reactions is not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory« less

  16. OVERVIEW OF THE OZARK ISOPRENE EXPERIMENT (OZIE)

    EPA Science Inventory

    Ozone modeling studies, such as those performed for the Ozone Transport Advisory Group (OTAG), have raised concerns about extremely high isoprene concentrations (. 50ppbv) that have been predicted over the Ozark Plateau in southern Missouri. In response to these concerns, a col...

  17. Anomalous bioaccumulation of lead in the earthworm Eisenoides lonnbergi (Michaelsen)

    USGS Publications Warehouse

    Beyer, W. Nelson; Codling, Eton E.; Rutzke, Michael A.

    2018-01-01

    Lead concentrations in soil organisms are usually well below those in the associated soil and tend to decrease with each higher trophic level in a food chain. Earthworms of the species Eisenoides lonnbergi provide an exception to this observation, accumulating very high concentrations of lead from acidic soils. Earthworms belonging to this species were collected from strongly to extremely acidic soils at 16 sites on a wildlife refuge in Maryland, USA. A lead concentration as high as 766 mg/kg, dry weight, was detected in depurated E. lonnbergi collected from soil containing only 17 mg/kg of lead. Concentration factors (ratio of lead concentration in earthworms to lead concentration in soil, dry wt) were highly variable at the sites, from 1.0 to 83. As suggested previously, lead absorption by earthworms is enhanced in low-calcium soils. The anomalously high concentrations of lead found in E. lonnbergi are more closely correlated with the uptake of calcium from acidic soils than with bioaccessibility of soil lead. 

  18. Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters.

    PubMed

    Tobler, Michael; Schlupp, Ingo; Heubel, Katja U; Riesch, Rüdiger; de León, Francisco J García; Giere, Olav; Plath, Martin

    2006-12-01

    Most eucaryotic organisms classified as living in an extreme habitat are invertebrates. Here we report of a fish living in a Mexican cave (Cueva del Azufre) that is rich in highly toxic H(2)S. We compared the water chemistry and fish communities of the cave and several nearby surface streams. Our study revealed high concentrations of H(2)S in the cave and its outflow (El Azufre). The concentrations of H(2)S reach more than 300 muM inside the cave, which are acutely toxic for most fishes. In both sulfidic habitats, the diversity of fishes was heavily reduced, and Poecilia mexicana was the dominant species indicating that the presence of H(2)S has an all-or-none effect, permitting only few species to survive in sulfidic habitats. Compared to habitats without H(2)S, P. mexicana from the cave and the outflow have a significantly lower body condition. Although there are microhabitats with varying concentrations of H(2)S within the cave, we could not find a higher fish density in areas with lower concentrations of H(2)S. We discuss that P. mexicana is one of the few extremophile vertebrates. Our study supports the idea that extreme habitats lead to an impoverished species diversity.

  19. The Effects of Statistical Multiplicity of Infection on Virus Quantification and Infectivity Assays.

    PubMed

    Mistry, Bhaven A; D'Orsogna, Maria R; Chou, Tom

    2018-06-19

    Many biological assays are employed in virology to quantify parameters of interest. Two such classes of assays, virus quantification assays (VQAs) and infectivity assays (IAs), aim to estimate the number of viruses present in a solution and the ability of a viral strain to successfully infect a host cell, respectively. VQAs operate at extremely dilute concentrations, and results can be subject to stochastic variability in virus-cell interactions. At the other extreme, high viral-particle concentrations are used in IAs, resulting in large numbers of viruses infecting each cell, enough for measurable change in total transcription activity. Furthermore, host cells can be infected at any concentration regime by multiple particles, resulting in a statistical multiplicity of infection and yielding potentially significant variability in the assay signal and parameter estimates. We develop probabilistic models for statistical multiplicity of infection at low and high viral-particle-concentration limits and apply them to the plaque (VQA), endpoint dilution (VQA), and luciferase reporter (IA) assays. A web-based tool implementing our models and analysis is also developed and presented. We test our proposed new methods for inferring experimental parameters from data using numerical simulations and show improvement on existing procedures in all limits. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    PubMed

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.

  1. Survey of Virginia aggregates for chloride contents : final report.

    DOT National Transportation Integrated Search

    1980-01-01

    A major cause of concrete bridge deck deterioration is the corrosion of the reinforcing steel which, in turn, is caused by the presence of extremely high concentrations of chloride ions in the concrete. It was believed that the chloride came almost e...

  2. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population

    PubMed Central

    Li, Cong; Cai, Wentao; Zhou, Chenghao; Yin, Hongwei; Zhang, Ziqi; Loor, Juan J.; Sun, Dongxiao; Zhang, Qin; Liu, Jianfeng; Zhang, Shengli

    2016-01-01

    Paired-end RNA sequencing (RNA-Seq) was used to explore the bovine transcriptome from the mammary tissue of 12 Chinese Holstein cows with 6 extremely high and 6 low phenotypic values for milk protein percentage. We defined the differentially expressed transcripts between the two comparison groups, extremely high and low milk protein percentage during the peak lactation (HP vs LP) and during the non-lactating period (HD vs LD), respectively. Within the differentially expressed genes (DEGs), we detected 157 at peak lactation and 497 in the non-lactating period with a highly significant correlation with milk protein concentration. Integrated interpretation of differential gene expression indicated that SERPINA1, CLU, CNTFR, ERBB2, NEDD4L, ANG, GALE, HSPA8, LPAR6 and CD14 are the most promising candidate genes affecting milk protein concentration. Similarly, LTF, FCGR3A, MEGF10, RRM2 and UBE2C are the most promising candidates that in the non-lactating period could help the mammary tissue prevent issues with inflammation and udder disorders. Putative genes will be valuable resources for designing better breeding strategies to optimize the content of milk protein and also to provide new insights into regulation of lactogenesis. PMID:27254118

  3. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  4. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    DOE PAGES

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; ...

    2017-11-20

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary con- ditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045–2054 and 2085–2094) are compared with a historical decade (1995–2004). Probabilitymore » density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Finally, using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5–10 times per year in most CONUS and ≥ 95°F days will increase by 1–2 months by the end of the century.« less

  5. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    NASA Astrophysics Data System (ADS)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  6. Effect of climate change on stormwater runoff characteristics and treatment efficiencies of stormwater retention ponds: a case study from Denmark using TSS and Cu as indicator pollutants.

    PubMed

    Sharma, Anitha Kumari; Vezzaro, Luca; Birch, Heidi; Arnbjerg-Nielsen, Karsten; Mikkelsen, Peter Steen

    2016-01-01

    This study investigated the potential effect of climate changes on stormwater pollution runoff characteristics and the treatment efficiency of a stormwater retention pond in a 95 ha catchment in Denmark. An integrated dynamic stormwater runoff quality and treatment model was used to simulate two scenarios: one representing the current climate and another representing a future climate scenario with increased intensity of extreme rainfall events and longer dry weather periods. 100-year long high-resolution rainfall time series downscaled from regional climate model projections were used as input. The collected data showed that total suspended solids (TSS) and total copper (Cu) concentrations in stormwater runoff were related to flow, rainfall intensity and antecedent dry period. Extreme peak intensities resulted in high particulate concentrations and high loads but did not affect dissolved Cu concentrations. The future climate simulations showed an increased frequency of higher flows and increased total concentrations discharged from the catchment. The effect on the outlet from the pond was an increase in the total concentrations (TSS and Cu), whereas no major effect was observed on dissolved Cu concentrations. Similar results are expected for other particle bound pollutants including metals and slowly biodegradable organic substances such as PAH. Acute toxicity impacts to downstream surface waters seem to be only slightly affected. A minor increase in yearly loads of sediments and particle-bound pollutants is expected, mainly caused by large events disrupting the settling process. This may be important to consider for the many stormwater retention ponds existing in Denmark and across the world.

  7. Modeling extreme PM10 concentration in Malaysia using generalized extreme value distribution

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Mansor, Nadiah; Salleh, Nur Hanim Mohd

    2015-05-01

    Extreme PM10 concentration from the Air Pollutant Index (API) at thirteen monitoring stations in Malaysia is modeled using the Generalized Extreme Value (GEV) distribution. The data is blocked into monthly selection period. The Mann-Kendall (MK) test suggests a non-stationary model so two models are considered for the stations with trend. The likelihood ratio test is used to determine the best fitted model and the result shows that only two stations favor the non-stationary model (Model 2) while the other eleven stations favor stationary model (Model 1). The return level of PM10 concentration that is expected to exceed the maximum once within a selected period is obtained.

  8. Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA

    USGS Publications Warehouse

    Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.

    2014-01-01

    Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  9. Extreme low temperature tolerance in woody plants

    PubMed Central

    Strimbeck, G. Richard; Schaberg, Paul G.; Fossdal, Carl G.; Schröder, Wolfgang P.; Kjellsen, Trygve D.

    2015-01-01

    Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane–membrane interactions. PMID:26539202

  10. Low Biotoxicity of Mars Analog Soils Suggests that the Surface of Mars May be Habitable for Terrestrial Microorganisms

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Ming, Douglas W.; Golden, D. C.

    2012-01-01

    Recent studies on the interactive effects of hypobaria, low temperatures, and CO2-enriched anoxic atmospheres on the growth of 37 species of mesophilic bacteria identified 14 potential biocidal agents that might affect microbial survival and growth on the martian surface. Biocidal or inhibitory factors include (not in priority): (1) solar UV irradiation, (2) low pressure, (3) extreme desiccating conditions, (4) extreme diurnal temperature fluctuations, (5) solar particle events, (6) galactic cosmic rays, (7) UV-glow discharge from blowing dust, (8) solar UV-induced volatile oxidants [e.g., O2(-), O(-), H2O2, O3], (9) globally distributed oxidizing soils, (10) extremely high salts levels [e.g., MgCl2, NaCl, FeSO4, and MgSO4] in surficial soils at some sites on Mars, (11) high concentrations of heavy metals in martian soils, (12) likely acidic conditions in martian fines, (13) high CO2 concentrations in the global atmosphere, and (14) perchlorate-rich soils. Despite these extreme conditions several studies have demonstrated that dormant spores or vegetative cells of terrestrial microorganisms can survive simulated martian conditions as long as they are protected from UV irradiation. What has not been explored in depth are the effects of potential biotoxic geochemical components of the martian regolith on the survival and growth of microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, salts, acidifying minerals, etc.; and (2) use the simulants to conduct biotoxicity assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the analog soils.

  11. DIFFERENTIAL RESPONSE TO BACTERIAL CHALLENGE IN POPULATIONS OF FUNDULUS HETERCLITUS FROM CLEAN AND POLLUTED SITES

    EPA Science Inventory

    Mummichogs (Fundulus heteroclitus) indigenous to an urban estuarine Superfund site in New Bedford Harbor (NBH, MA, USA) contain extremely high concentrations of the local contaminants, polychlorinated biphenyls (PCBs). These fish populations apparently persist due to an inherited...

  12. Resistance of bioparticles formed of phosphate-accumulating bacteria and zeolite to harsh environmental conditions.

    PubMed

    Ivankovic, Tomislav; Hrenovic, Jasna; Matonickin-Kepcija, Renata

    2013-01-01

    Extreme environmental conditions, such as pH fluctuations, high concentrations of toxicants or grazing of protozoa, can potentially be found in wastewater treatment systems. This study was carried out to provide specific evidence on how 'bioparticles' can resist these conditions. The term 'bioparticle' is used to describe a particle comprising natural zeolitized tuff with a developed biofilm of the phosphate-accumulating bacterial species, Acinetobacter junii, on the surface. The bacteria in the biofilm were protected from the negative influence of extremely low pH, high concentrations of benzalkonium-chloride and grazing by Paramecium caudatum and Euplotes affinis, even under conditions that caused complete eradication of planktonic bacteria. During an incubation of 24 h, the biofilms were maintained and bacteria detached from the bioparticles, thus bioaugmenting the wastewater. The bioparticles provided a safe environment for the survival of bacteria in harsh environmental conditions and could be used for successful bioaugmentation in wastewater treatment plants.

  13. Extremely high boron tolerance in Puccinellia distans (Jacq.) Parl. related to root boron exclusion and a well-regulated antioxidant system.

    PubMed

    Hamurcu, Mehmet; Hakki, Erdogan E; Demiral Sert, Tijen; Özdemir, Canan; Minareci, Ersin; Avsaroglu, Zuhal Z; Gezgin, Sait; Ali Kayis, Seyit; Bell, Richard W

    Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known. Puccinellia distans was exposed to B concentrations of up to 1000 mg B L-1 and root B uptake, growth parameters, B and N contents, H2O2 accumulation and ·OH-scavenging activity were measured. Antioxidant enzyme activities including superoxide dismutase (SOD), ascorbate peroxidase, catalase, peroxidase and glutathione reductase, and lipid peroxidation products were determined. B appears to be actively excluded from roots. Excess B supply caused structural deformations in roots and leaves, H2O2 accumulation and simultaneous up-regulation of the antioxidative system, which prevented lipid peroxidation even at the highest B concentrations. Thus, P. distans has an efficient root B-exclusion capability and, in addition, B tolerance in shoots is achieved by a well-regulated antioxidant defense system.

  14. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  15. Temporal development of extreme precipitation in Germany projected by EURO-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Brendel, Christoph; Deutschländer, Thomas

    2017-04-01

    A sustainable operation of transport infrastructure requires an enhanced resilience to the increasing impacts of climate change and related extreme meteorological events. To meet this challenge, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) commenced a comprehensive national research program on safe and sustainable transport in Germany. A network of departmental research institutes addresses the "Adaptation of the German transport infrastructure towards climate change and extreme events". Various studies already have identified an increase in the average global precipitation for the 20th century. There is some indication that these increases are most visible in a rising frequency of precipitation extremes. However, the changes are highly variable between regions and seasons. With a further increase of atmospheric greenhouse gas concentrations in the 21st century, the likelihood of occurrence of such extreme events will continue to rise. A kernel estimator has been used in order to obtain a robust estimate of the temporal development of extreme precipitation events projected by an ensemble of EURO-CORDEX simulations. The kernel estimator measures the intensity of the poisson point process indicating temporal changes in the frequency of extreme events. Extreme precipitation events were selected using the peaks over threshold (POT) method with the 90th, 95th and 99th quantile of daily precipitation sums as thresholds. Application of this non-parametric approach with relative thresholds renders the use of a bias correction non-mandatory. In addition, in comparison to fitting an extreme value theory (EVT) distribution, the method is completely unsusceptible to outliers. First results show an overall increase of extreme precipitation events for Germany until the end of the 21st century. However, major differences between seasons, quantiles and the three different Representative Concentration Pathways (RCP 2.6, 4.5, and 8.5) have been identified. For instance, the frequency of extreme precipitation events more than triples in the most extreme scenario. Regional differences are rather small with the largest increase in northern Germany, particularly in coastal regions and the weakest increase in the most southern parts of Germany.

  16. The synergistic effect of manure supply and extreme precipitation on surface water quality

    NASA Astrophysics Data System (ADS)

    Motew, Melissa; Booth, Eric G.; Carpenter, Stephen R.; Chen, Xi; Kucharik, Christopher J.

    2018-04-01

    Over-enrichment of phosphorus (P) in agroecosystems contributes to eutrophication of surface waters. In the Midwest US and elsewhere, climate change is increasing the frequency of high-intensity precipitation events, which can serve as a primary conduit of P transport within watersheds. Despite uncertainty in their estimates, process-based watershed models are important tools that help characterize watershed hydrology and biogeochemistry and scale up important mechanisms affecting water quality. Using one such model developed for an agricultural watershed in Wisconsin, we conducted a 2 × 2 factorial experiment to test the effects of (high/low) terrestrial P supply (PSUP) and (high/low) precipitation intensity (PREC) on surface water quality. Sixty-year simulations were conducted for each of the four runs, with annual results obtained for watershed average P yield and concentration at the field scale (220 × 220 m grid cells), P load and concentration at the stream scale, and summertime total P concentration (TP) in Lake Mendota. ANOVA results were generated for the 2 × 2 factorial design, with PSUP and PREC treated as categorical variables. The results showed a significant, positive interaction (p < 0.01) between the two drivers for dissolved P concentration at the field and stream scales, and total P concentration at the field, stream, and lake scales. The synergy in dissolved P was linked to nonlinear dependencies between P stored in manure and the daily runoff to rainfall ratio. The synergistic response of dissolved P loss may have important ecological consequences because dissolved P is highly bioavailable. Overall, the results suggest that high levels of terrestrial P supplied as manure can exacerbate water quality problems in the future as the frequency of high-intensity rainfall events increases with a changing climate. Conversely, lowering terrestrial manure P supply may help improve the resilience of surface water quality to extreme events.

  17. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms.

    PubMed

    Dopson, Mark; Ossandon, Francisco J; Lövgren, Lars; Holmes, David S

    2014-01-01

    All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Extremely acidophilic microorganisms have an optimum growth of pH <3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  18. Toward High-Energy-Density, High-Efficiency, and Moderate-Temperature Chip-Scale Thermophotovoltaics

    DTIC Science & Technology

    2013-04-02

    this architecture include concentrated solar photovoltaics , thermoelectrics , and fuel cells. System Testing. Themicroreactorwas ignitedbyhydrogen...2, 3), thermoelectrics (4, 5), and thermophotovoltaics (TPVs) (6, 7). TPVs present an extremely appealing approach for small-scale power sources due...into spectrally confined thermal radiation, optically coupled to low-bandgap photovoltaic (PV) diodes that are electrically interfaced with a unique

  19. Characterization of Extreme Deposition of Air Pollutants in MT. Mitchell State Park: Potential for Forest Decline and Opportunity for Cloud Deacidification

    NASA Astrophysics Data System (ADS)

    Defelice, Thomas Peter

    The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how very low pH clouds might be deacidified. That is, base gases (eg. ammonia) locally introduced into such clouds at the proper time may render them harmless upon impact with the forest canopy, and beneficial to regional water supply users.

  20. Effects of ocean acidification driven by elevated CO2 on larval shell growth and abnormal rates of the venerid clam, Mactra veneriformis

    NASA Astrophysics Data System (ADS)

    Kim, Jee-Hoon; Yu, Ok Hwan; Yang, Eun Jin; Kang, Sung-Ho; Kim, Won; Choy, Eun Jung

    2016-11-01

    The venerid clam ( Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.

  1. Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Chen, Shuru; Zhao, Wengao

    Sodium (Na) metal is a promising anode for Na ion batteries. However, the high reactivity of Na metal with electrolytes and the low Na metal cycling efficiency have limited its practical application in rechargeable Na metal batteries. High concentration electrolytes (HCE, ≥4 M) consisting of sodium bis(fluorosulfonyl)imide (NaFSI) and ether solvent could ensure the stable cycling of Na metal with high coulombic efficiency, but suffer from high viscosity, poor wetting ability, and high salt cost. Here, we report that the salt concentration could be significantly reduced (≤ 1.5 M) by diluting with a hydrofluoroether (HFE) as ‘inert’ diluent, which maintainsmore » the solvation structures of HCE, thereby forming a localized high concentration electrolyte (LHCE). A LHCE (2.1 M NaFSI/DME-BTFE (solvent molar ratio 1:2)) has been demonstrated to enable the dendrite-free Na deposition with high coulombic efficiency of > 99%, fast-charging (20C) and stable cycling (90.8% retention after 40,000 cycles) of Na||Na3V2(PO4)3 batteries.« less

  2. Evaluation of alternative approaches for measuring n-octanol/water partition coefficients for methodologically challenging chemicals (MCCs)

    EPA Science Inventory

    Measurements of n-octanol/water partition coefficients (KOW) for highly hydrophobic chemicals, i.e., greater than 108, are extremely difficult and are rarely made, in part because the vanishingly small concentrations in the water phase require extraordinary analytical sensitivity...

  3. An Extremely Halophilic Proteobacterium Combines a Highly Acidic Proteome with a Low Cytoplasmic Potassium Content*

    PubMed Central

    Deole, Ratnakar; Challacombe, Jean; Raiford, Douglas W.; Hoff, Wouter D.

    2013-01-01

    Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface. PMID:23144460

  4. Trained humans can exercise safely in extreme dry heat when drinking water ad libitum.

    PubMed

    Nolte, Heinrich W; Noakes, Timothy D; Van Vuuren, Bernard

    2011-09-01

    Guidelines to establish safe environmental exercise conditions are partly based on thermal prescriptive zones. Yet there are reports of self-paced human athletic performances in extreme heat. Eighteen participants undertook a 25-km route march in a dry bulb temperature reaching 44.3°C. The mean (± s) age of the participants was 26.0 ± 3.7 years. Their mean ad libitum water intake was 1264 ± 229 mL · h(-1). Predicted sweat rate was 1789 ± 267 mL · h(-1). Despite an average body mass loss of 2.73 ± 0.98 kg, plasma osmolality and serum sodium concentration did not change significantly during exercise. Total body water fell 1.47 kg during exercise. However, change in body mass did not accurately predict changes in total body water as a 1:1 ratio. There was a significant relationship (negative slope) between post-exercise serum sodium concentration and changes in both body mass and percent total body water. There was no relationship between percent body mass loss and peak exercise core temperature (39 ± 0.9°C) or exercise time. We conclude that participants maintained plasma osmolality, serum sodium concentration, and safe core temperatures by (1) adopting a pacing strategy, (2) high rates of ad libitum water intake, and (3) by a small reduction in total body water to maintain serum sodium concentration. Our findings support the hypothesis that humans are the mammals with the greatest capacity for exercising in extreme heat.

  5. Drinking water contamination by chromium and lead in industrial lands of Karachi.

    PubMed

    Nadeem-ul-Haq; Arain, Mubashir Aslam; Haque, Zeba; Badar, Nasira; Mughal, Noman

    2009-05-01

    To identify and quantify chromium and lead as contaminant in water sources of Karachi. This water assessment survey was conducted from June 2007 to February 2008 in all the 18 towns of Karachi. In total 216 water samples were collected from ground (n=108) and surface water sources (n = 108). Water samples were collected in a liter polyethylene acid resistant bottle with extreme care to prevent contamination and concentrations of heavy metals (chromium and lead). Metallic ion contents were estimated by Atomic Absorption Spectrophotometer. Statistical analysis was done by applying T-test and chi-square for continuous and categorical variables respectively at 95% confidence level; Pearson correlation was also determined between chromium and lead concentrations. A total of 187 water samples had lead concentration higher than the maximum acceptable concentration (MAC) in drinking water, established by WHO (10 PPB) and lead contaminated sources were in significantly higher proportion than chromium contaminated water samples (n = 49) [chi2 = 128; P- < 0.001]. Mean chromium concentration in ground water was (micro = 49; SE = 3.8) was significantly higher than mean chromium concentration (micro = 33, SE = 3.5) in surface water (P = 0.003). There was a significant and positive correlation between chromium and lead concentrations in ground water (P = 0.04) however Pearson correlation was not significant for surface water (P = 0.6). Industrial towns (Korangi, Landhi and SITE) had significantly higher concentration of chromium (micro = 82.4; SE = 8.9) in their ground and tap water as compared to the mean chromium concentration (micro = 33; SE = 2.2) in the water samples of rest of the towns of Karachi (P < 0.001). Chromium and Lead levels are high in almost all ground water sources, however extremely high concentrations were found in industrial areas. Presence of any one of the heavy metal contamination necessitate the need for the estimation of other heavy metals as significant positive correlation was found between chromium and lead concentration, indicating the possibility of similar contamination sources in Karachi.

  6. [Difference in ionic specificity of ATP synthesis in extremely alkalophilic sulfate-reducing and acetogenic bacteria].

    PubMed

    Pitriuk, A V; Pusheva, M A

    2001-01-01

    Ionic specificity of oxidative phosphorylation was studied in Natroniella acetigena and Desulfonatronum lacustre, which are new alkaliphilic anaerobes that were isolated from soda lakes and have a pH growth optimum of 9.5-9.7. The ability of their cells to synthesize ATP in response to the imposition of artificial delta pH+ and delta pNa+ gradients was studied. As distinct from other marine and freshwater sulfate reducers and extremely alkaliphilic anaerobes, D. lacustre uses a Na(+)-translocating ATPase for ATP synthesis. The alkaliphilic acetogen N. acetigena, which develops at a much higher Na+ concentration in the medium, generated primary delta pH+ for ATP synthesis. Thus, the high Na+ concentrations and alkaline pH values typical of soda lakes do not predetermine the type of bioenergetics of their inhabitants.

  7. Extreme sea levels on the rise along Europe's coasts

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Mentaschi, Lorenzo; Voukouvalas, Evangelos; Verlaan, Martin; Feyen, Luc

    2017-03-01

    Future extreme sea levels (ESLs) and flood risk along European coasts will be strongly impacted by global warming. Yet, comprehensive projections of ESL that include mean sea level (MSL), tides, waves, and storm surges do not exist. Here, we show changes in all components of ESLs until 2100 in view of climate change. We find that by the end of this century, the 100-year ESL along Europe's coastlines is on average projected to increase by 57 cm for Representative Concentration Pathways (RCP)4.5 and 81 cm for RCP8.5. The North Sea region is projected to face the highest increase in ESLs, amounting to nearly 1 m under RCP8.5 by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Relative sea level rise (RSLR) is shown to be the main driver of the projected rise in ESL, with increasing dominance toward the end of the century and for the high-concentration pathway. Changes in storm surges and waves enhance the effects of RSLR along the majority of northern European coasts, locally with contributions up to 40%. In southern Europe, episodic extreme events tend to stay stable, except along the Portuguese coast and the Gulf of Cadiz where reductions in surge and wave extremes offset RSLR by 20-30%. By the end of this century, 5 million Europeans currently under threat of a 100-year ESL could be annually at risk from coastal flooding under high-end warming. The presented dataset is available through this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.

  8. Genetic and biochemical differences in populations bred for extremes in maize grain methionine content

    USDA-ARS?s Scientific Manuscript database

    Methionine is an important nutrient in animal feed and several approaches have been developed to increase methionine concentration in maize (Zea mays L.) grain. One approach is through traditional breeding using recurrent selection. Two populations selected were selected for high and low methionin...

  9. Foehn-induced effects on dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    NASA Astrophysics Data System (ADS)

    Kishcha, Pavel; Starobinets, Boris; Alpert, Pinhas; Kaplan, Michael

    2017-04-01

    The significant drying up of the Dead Sea over the past 40 years has led to an increase in an exposed area contributing to local dust pollution. Measurements show that, sometimes, in the Dead Sea valley, dust pollution can reach extreme concentrations up to several thousands of micrograms per cubic meters. Our analysis of a meteorological situation shows that a foehn phenomenon can be a causal factor for the aforementioned extreme local dust concentration. This foehn phenomenon creates strong warm and dry winds, which are accompanied by air turbulence and temperature inversion. In our study, foehn-induced effects on dust pollution, frontal clouds and solar radiation were analyzed over the Judean Mountains ( 1000 m) and over the Dead Sea valley (-420 m), using high-resolution numerical simulations and in-situ observations at meteorological stations located across the mountain ridge. An extreme dust episode occurring on March 22, 2013, was analyzed, which was characterized by measured surface dust concentrations of up to 7000 µg m-3 in the Dead Sea valley. We simulated this foehn phenomenon with the 3-km resolution COSMO-ART model. Our analysis has shown that the foehn phenomenon could be observed even over the relatively low Judean Mountains. This analysis was based on various meteorological, pyranometer, radar, and aerosol measurements together with high-resolution model data. In the Dead Sea valley, the maximum aerosol optical depth (AOD) did not coincide with the maximum surface dust concentration. This lack of coincidence indicates difficulties in using satellite-based AOD for initializing dust concentration within numerical forecast systems over this region with complex terrain. In the western Dead Sea valley, strong foehn winds of over 20 m/s were accompanied by maximal air turbulence leading to maximal local dust emissions. Thus, the model showed that, by creating significant turbulence, the foehn phenomenon intensified the saltation (bombardment) mechanism of local dust generation in the western Dead Sea valley. In addition, the foehn-induced pronounced temperature inversion trapped dust particles beneath this inversion. These two factors caused the measured extreme surface dust concentration in the Dead Sea valley on the specified day. Radar data on March 22 showed a passage of multi-layer frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The strong descending airflow over the downwind side of the Judean Mountains significantly influenced the frontal cloudiness leading to the formation of a cloud-free band over the Dead Sea valley.

  10. The effect of high concentrations of glufosinate ammonium on the yield components of transgenic spring wheat (Triticum aestivum L.) constitutively expressing the bar gene.

    PubMed

    Áy, Zoltán; Mihály, Róbert; Cserháti, Mátyás; Kótai, Éva; Pauk, János

    2012-01-01

    We present an experiment done on a bar(+) wheat line treated with 14 different concentrations of glufosinate ammonium-an effective component of nonselective herbicides-during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose was not enough to inhibit the germination of transgenic plants expressing the bar gene. Extremely high concentrations of glufosinate ammonium caused a bushy phenotype, significantly lower numbers of grains per spike, and thousand kernel weights. Concerning the productivity, we observed that concentrations of glufosinate ammonium 64 times the lethal dose did not lead to yield depression. Our results draw attention to the possibilities implied in the transgenic approaches.

  11. A facile and cost-effective TEM grid approach to design gold nano-structured substrates for high throughput plasmonic sensitive detection of biomolecules.

    PubMed

    Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena

    2013-02-21

    A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.

  12. Brazilian research on extremophiles in the context of astrobiology

    NASA Astrophysics Data System (ADS)

    Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.

    2012-10-01

    Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.

  13. Software for Dosage Individualization of Voriconazole for Immunocompromised Patients

    PubMed Central

    VanGuilder, Michael; Donnelly, J. Peter; Blijlevens, Nicole M. A.; Brüggemann, Roger J. M.; Jelliffe, Roger W.; Neely, Michael N.

    2013-01-01

    The efficacy of voriconazole is potentially compromised by considerable pharmacokinetic variability. There are increasing insights into voriconazole concentrations that are safe and effective for treatment of invasive fungal infections. Therapeutic drug monitoring is increasingly advocated. Software to aid in the individualization of dosing would be an extremely useful clinical tool. We developed software to enable the individualization of voriconazole dosing to attain predefined serum concentration targets. The process of individualized voriconazole therapy was based on concepts of Bayesian stochastic adaptive control. Multiple-model dosage design with feedback control was used to calculate dosages that achieved desired concentration targets with maximum precision. The performance of the software program was assessed using the data from 10 recipients of an allogeneic hematopoietic stem cell transplant (HSCT) receiving intravenous (i.v.) voriconazole. The program was able to model the plasma concentrations with a high level of precision, despite the wide range of concentration trajectories and interindividual pharmacokinetic variability. The voriconazole concentrations predicted after the last dosages were largely concordant with those actually measured. Simulations provided an illustration of the way in which the software can be used to adjust dosages of patients falling outside desired concentration targets. This software appears to be an extremely useful tool to further optimize voriconazole therapy and aid in therapeutic drug monitoring. Further prospective studies are now required to define the utility of the controller in daily clinical practice. PMID:23380734

  14. Boron content and sources in Tertiary aquifers in the Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Moraetis, Daniel; Lamki, Mohamed Al; Muhammad, Dawood; Yaroubi, Saif; Batashi, Hamad Al; Pracejus, Bernhard

    2017-04-01

    The boron (B) content of relatively shallow groundwaters in arid areas is high due to extreme evaporation which precipitates several salts with subsequent boron accumulation originating from rocks dissolution and/or rainwater. In deeper aquifers, where there is no groundwater-surface connection, other sources of boron may affect the water quality. The present study investigates the boron origin observed in 197 wells completed within the units of Umm Er Radhuma (UeR), Rus, Dammam and Fars (from older to younger geological units) which all belong to the Tertiary units of the interior of Oman. The acquired chemical data include major ions (cations and anions), Rare Earth Elements (REE) along with B isotopes (10 and 11) and Sr isotopes (86 and 87). In addition, leaching tests were performed in selected samples to validate the release of B in distilled water. The water samples were grouped based on B concentration of less than 5 mg/l, 5 to 15 mg/l and extreme values of higher than 15 mg/l. The Fars and UeR groundwater samples showed the most extreme boron content (higher than 15 mg/l) yet the former is the shallower and younger unit and the latter is the deeper and older unit. The Fars water of high boron content (higher than 15 mg/l) shows very high content of magnesium and calcium as well as low concentration of Sr. Furthermore, the magnesium and calcium are also high in UeR, while Sr concentration is much higher in UeR compared to Fars. The UeR water with extreme boron content appears in the field of diagenetic water in a diagram of δ11BNIST951 [‰] versus 1/B, along with Sr isotopes ratio and europium (Eu) positive anomaly, while Fars waters appear in a mixing zone of marine water with infiltrated rainwater. The regression analysis of sodium and chloride showed that concentrations of boron up to 10 mg/l can be correlated to halite dissolution in infiltrated rainwater in all units. The laboratory leaching tests verified the rocks capability to release boron up to 7 mg/l with a low water/solid ratio (low porosity rocks). Thus, the lowest boron content (up to 5 mg/l) is correlated to the dissolution of minerals within the Tertiary units. Whilst the samples containing 5 to 15 mg/l of B could correspond to lower water to solid ratio aquifer and/or mixing of low and high boron waters (rainwater and diagenetic or marine water). Finally, B isotopes along the REE analysis are considered as better indices of groundwater origin compared to Sr isotopes ratio especially in the case of diagenetic water identification.

  15. Flying high: a theoretical analysis of the factors limiting exercise performance in birds at altitude.

    PubMed

    Scott, Graham R; Milsom, William K

    2006-11-01

    The ability of some bird species to fly at extreme altitude has fascinated comparative respiratory physiologists for decades, yet there is still no consensus about what adaptations enable high altitude flight. Using a theoretical model of O(2) transport, we performed a sensitivity analysis of the factors that might limit exercise performance in birds. We found that the influence of individual physiological traits on oxygen consumption (Vo2) during exercise differed between sea level, moderate altitude, and extreme altitude. At extreme altitude, haemoglobin (Hb) O(2) affinity, total ventilation, and tissue diffusion capacity for O(2) (D(To2)) had the greatest influences on Vo2; increasing these variables should therefore have the greatest adaptive benefit for high altitude flight. There was a beneficial interaction between D(To2) and the P(50) of Hb, such that increasing D(To2) had a greater influence on Vo2 when P(50) was low. Increases in the temperature effect on P(50) could also be beneficial for high flying birds, provided that cold inspired air at extreme altitude causes a substantial difference in temperature between blood in the lungs and in the tissues. Changes in lung diffusion capacity for O(2), cardiac output, blood Hb concentration, the Bohr coefficient, or the Hill coefficient likely have less adaptive significance at high altitude. Our sensitivity analysis provides theoretical suggestions of the adaptations most likely to promote high altitude flight in birds and provides direction for future in vivo studies.

  16. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis.

    PubMed

    Masana, Luis; Girona, Josefa; Ibarretxe, Daiana; Rodríguez-Calvo, Ricardo; Rosales, Roser; Vallvé, Joan-Carles; Rodríguez-Borjabad, Cèlia; Guardiola, Montserrat; Rodríguez, Marina; Guaita-Esteruelas, Sandra; Oliva, Iris; Martínez-Micaelo, Neus; Heras, Mercedes; Ferré, Raimon; Ribalta, Josep; Plana, Núria

    While the impact of very low concentrations of low-density lipoprotein cholesterol (LDL-C) on cardiovascular prevention is very reassuring, it is intriguing to know what effect these extremely low LDL-C concentrations have on lipid homoeostasis. The evidence supporting the safety of extremely low LDL levels comes from genetic studies and clinical drug trials. Individuals with lifelong low LDL levels due to mutations in genes associated with increased LDL-LDL receptor (LDLR) activity reveal no safety issues. Patients achieving extremely low LDL levels in the IMPROVE-IT and FOURIER, and the PROFICIO and ODYSSEY programs seem not to have an increased prevalence of adverse effects. The main concern regarding extremely low LDL-C plasma concentrations is the adequacy of the supply of cholesterol, and other molecules, to peripheral tissues. However, LDL proteomic and kinetic studies reaffirm that LDL is the final product of endogenous lipoprotein metabolism. Four of 5 LDL particles are cleared through the LDL-LDLR pathway in the liver. Given that mammalian cells have no enzymatic systems to degrade cholesterol, the LDL-LDLR pathway is the main mechanism for removal of cholesterol from the body. Our focus, therefore, is to review, from a physiological perspective, why such extremely low LDL-C concentrations do not appear to be detrimental. We suggest that extremely low LDL-C levels due to increased LDLR activity may be a surrogate of adequate LDL-LDLR pathway function. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  17. The Total Ozone Series of Arosa: History, Homogenization and new results using statistical extreme value theory

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.

    2009-04-01

    Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).

  18. Adaptation to metals in widespread and endemic plants.

    PubMed Central

    Shaw, A J

    1994-01-01

    Bryophytes, including the mosses, liverworts, and hornworts, occur in a variety of habitats with high concentrations of metals and have other characteristics that are advantageous for studies of metal tolerance. Mosses may evolve genetically specialized, metal-tolerant races less frequently than flowering plants. Some species of mosses appear to have inherently high levels of metal tolerance even in individuals that have not been subjected to natural selection in contaminated environments. Scopelophila cataractae, one of the so-called copper mosses, not only tolerates extremely high concentrations of metals in its substrates, but requires these substrates for optimum growth. This species should be included in mechanistic studies of tolerance at the cellular and molecular levels. PMID:7713025

  19. Abnormally high phytoplankton biomass near the lagoon mouth in the Huangyan Atoll, South China Sea.

    PubMed

    Ke, Zhixin; Liu, Huajian; Wang, Junxing; Liu, Jiaxing; Tan, Yehui

    2016-11-15

    Nutrient concentration and phytoplankton biomass were investigated in Huangyan Atoll in May 2015. The concentrations of nutrients were very low, and dissolved inorganic nitrogen was composed mainly of ammonia. Nitrogen likely was the primary limiting factor for phytoplankton growth. The spatial variation of phytoplankton biomass was significant among the lagoon, reef flats, and outer reef slopes. Extremely high chlorophyll a concentration and micro-phytoplankton abundance were found in the region near the lagoon mouth. This high phytoplankton biomass might be due to nutrient input from fishing vessels and phytoplankton aggregation driven by the southwestern wind. Our results indicate that phytoplankton biomass could be a reliable indicator of habitat differences in this coral reef ecosystem, and micro-phytoplankton seems to be more sensitive to nutrient input than pico-phytoplankton. Copyright © 2016. Published by Elsevier Ltd.

  20. The risk of neurodevelopmental disorders at age 10 years associated with blood concentrations of interleukins 4 and 10 during the first postnatal month of children born extremely preterm.

    PubMed

    Leviton, Alan; Joseph, Robert M; Allred, Elizabeth N; Fichorova, Raina N; O'Shea, T Michael; Kuban, Karl K C; Dammann, Olaf

    2018-05-12

    Interleukin (IL)-4 and IL-10 are viewed mainly as anti-inflammatory cytokines. Yet, high concentrations have also been associated with inflammation-related diseases in newborns. We measured the concentrations of IL-4 and IL-10, as well as IL-8 and ICAM-1 in blood specimens collected on postnatal day 21 (N = 555), day 28 (N = 521), and both days 21 and 28 (N = 449) from children born extremely preterm (EP) (<28 weeks gestation) who at age 10 years had a DAS-II IQ Z-score > -2 (which approximates a score of >70) and the following assessments, CCC-2, and CSI-4, DAS-II, NEPSY-II, OWLS-II, SCQ, and WIAT-III. Selected children also were assessed with the ADI-R and the ADOS-2. We modeled the risk of low scores or dysfunctions associated with top quartile concentrations of IL-4 and IL-10 on each day and on both days. The risks of low scores on the Animal Sorting and Arrows components of the NEPSY-II, both components of the OWLS-II, and the PseudoWord and Spelling components of the WIAT-III were heightened among children who had top quartile concentrations of IL-4 on postnatal days 21 and 28. Children who had high concentrations of IL-10 on days 21 and 28, individually and collectively, were at increased risk of low scores on the WIAT-III Spelling component. High concentrations of IL-4 on day 28 were associated with autism spectrum disorder (ASD). High concentrations of IL-10 on day 28 were also associated with a doubling of ASD risk, but this did not achieve statistical significance. Top quartile concentrations of IL-4 and IL10 on both days were not associated with increased risk of social, language, or behavioral dysfunctions. Among children born EP, those who had top quartile concentrations of IL-4 and/or IL-10 on postnatal days 21 and/or 28 were more likely than their peers to have low scores on components of the NEPSY-II, OWLS-II, and WIAT-III assessments, as well as identification as having an ASD. What is known: What is not known: What this study adds. Copyright © 2018. Published by Elsevier Ltd.

  1. Changing risks of resonance in extreme weather events for higher atmospheric greenhouse gas concentrations

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Mitchell, Dann; Osprey, Scott

    2015-04-01

    A recent paper by Petoukhov et al (2013) demonstrates that many of the recent major extreme events in the NH may have been caused by resonant conditions driving very high meridional winds around slowly moving centres-of-action. Besides high amplitudes of planetary wave numbers 6,7 and 8, additional features are identified through 4 further conditions that trigger system resonance. These make the potential for high amplitude waves more likely as well as the possibility of more persistent events. A concern is that human-induced climate change could create conditions more conducive to tropospheric Rossby wave resonance, thereby forcing any periods of extreme weather to become more commonplace and longer lasting. Whilst the CMIP5 ensemble provides much information on expected changes, to fully address changing probabilities of extreme event occurrence - which by definition are relatively rare - is, though, best approached through a massive ensemble modeling framework. The climateprediction-dot-net citizen-science massive ensemble GCM modeling framework provides order 104 simulations for sea-surface temperature, sea-ice extent and atmospheric gas composition representative of both pre-industrial and contemporary conditions. Here we present what these families of simulations imply in terms of the changing likelihood of conditions for mid-latitude resonance, and implications for amplitudes of Rossby waves

  2. Direct determination of trace phthalate esters in alcoholic spirits by spray-inlet microwave plasma torch ionization tandem mass spectrometry.

    PubMed

    Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping

    2018-03-01

    A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Halobacterium denitrificans sp. nov. - An extremely halophilic denitrifying bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  4. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium

    NASA Technical Reports Server (NTRS)

    Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.

    1986-01-01

    Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.

  5. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  6. The Evaluation on the Cadmium Net Concentration for Soil Ecosystems.

    PubMed

    Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan

    2017-03-12

    Yixing, known as the "City of Ceramics", is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops-paddy and zizania aquatica-were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features' variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing.

  7. The Evaluation on the Cadmium Net Concentration for Soil Ecosystems

    PubMed Central

    Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan

    2017-01-01

    Yixing, known as the “City of Ceramics”, is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops—paddy and zizania aquatica—were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features’ variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing. PMID:28287500

  8. Trends in the extremes of sulfur concentration distributions.

    PubMed

    Iyer, H; Patterson, P; Malm, W C

    2000-05-01

    Understanding the response of air quality parameters such as visibility to the implementation of new air quality regulations, population growth and redistribution, and federal land managing practices is essential to the evaluation of air quality management plans on air quality in federal Class I areas. For instance, the reduction of SO2 emissions from large single point sources should result in the decrease of extreme sulfate concentrations, while population growth in geographic areas outside of urban centers could cause a slow widespread increase of sulfate and organic concentrations. The change in federal land managing practice of increased prescribed fire on a year-round basis in lieu of large naturally occurring wild fires could have the same effect; that is, the frequency of high sulfur days increase and low sulfur days decrease as the result of the management practice. Therefore, it is of interest to examine the trends associated with the proportion of days during which the concentration of some aerosol species is above or below a certain threshold and decide whether this proportion of days is increasing or decreasing or shows a lack of trend. This is a direct indication of whether the quality of the environment is improving or worsening, or neither.

  9. The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic.

    PubMed

    Krause, Jesse S; Pérez, Jonathan H; Chmura, Helen E; Sweet, Shannan K; Meddle, Simone L; Hunt, Kathleen E; Gough, Laura; Boelman, Natalie; Wingfield, John C

    2016-10-01

    Climate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska - the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) - in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4-5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The performance of five different dried blood spot cards for the analysis of six immunosuppressants.

    PubMed

    Koster, Remco A; Botma, Rixt; Greijdanus, Ben; Uges, Donald R A; Kosterink, Jos G W; Touw, Daan J; Alffenaar, Jan-Willem C

    2015-01-01

    The relation between hematocrit, substance concentration, extraction recovery and spot formation of tacrolimus, sirolimus, everolimus, ascomycin, temsirolimus and cyclosporin A was investigated for Whatman 31 ET CHR, Whatman FTA DMPK-C, Whatman 903, Perkin Elmer 226 and Agilent Bond Elut DMS DBS cards. We found that all DBS cards showed the same hematocrit and concentration-dependent recovery patterns for sirolimus, everolimus and temsirolimus. At high concentrations, the total hematocrit effects were much more pronounced than at low concentrations for tacrolimus, sirolimus, everolimus, ascomycin and temsirolimus. The tested card types showed differences in performance, especially at extreme concentrations and hematocrit values. It may be useful to investigate the performance of different types of DBS cards prior to analytical method validation.

  11. Heavy Metal Resistant, Alkalitolerant Bacteria Isolated From Serpentinizing Springs in the Zambales Ophiolite, Philippines

    NASA Astrophysics Data System (ADS)

    Vallalar, B.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.

    2016-12-01

    Serpentinization involves hydrologic alteration of ultramafic mantle rocks containing olivine and pyroxene to produce serpentine minerals. The fluids resulting from this reaction are reduced, extremely depleted in dissolved inorganic carbon, and are highly alkaline with pH values typically exceeding 10. Major byproducts of the serpentinizing reaction include iron oxides, hydrogen, methane, and small amounts of organic molecules that provide chemosynthetic energy for subsurface microbial communities. In addition, weathering of serpentine rocks often produces fluids and sediments that have elevated concentrations of various toxic heavy metals such as chromium, nickel, cobalt, copper, and zinc. Thus, microorganisms inhabiting these unique ecological niches must be adapted to a variety of physicochemical extremes. The purpose of this study is to isolate bacteria that are capable of withstanding extremely high concentrations of multiple heavy metals from serpentine fluid-associated sediments. Fluid and sediment samples for microbial culturing were collected from Manleluag Spring National Park located on the island of Luzon, Philippines. The area is part of the Zambales ophiolite range, and hosts several serpentinizing fluid seeps. Fluid emanating from the source pool of the spring, designated Manleluag 2 (ML2), has a pH of 10.83 and temperature of 34.4 °C. Luria-Bertani agar medium was supplemented with varying concentrations of five trace elements - Cu, Cr, Co, Ni, and Zn. Environmental samples were spread on each of these media and colony forming units were subsequently chosen for isolation. In all, over 20 isolates were obtained from media with concentrations ranging from 25 mg/L - 400 mg/L of each metal. Taxonomic identity of each isolate was determined using 16S rRNA gene sequences. The isolates were then tested for tolerance to alkaline conditions by altering LB medium to pH values of 8, 9, 10, 11, and 12. The majority of strains exhibit growth at the highest pH tested, demonstrating that alkalitolerant, highly metal resistant organisms are found in this serpentinizing system. These organisms are of great interest as they may be exploited for bioremediation, enzyme production, and other biotechnological applications.

  12. Riverine C, N, Si and P transport to the coastal ocean: An overview

    USGS Publications Warehouse

    Peterson, David H.; Hager, Stephen W.; Schemel, Laurence E.; Cayan, Daniel R.

    1988-01-01

    Terrestrial ecosystems cycle and recyle inorganic nutrients including a feedback to atmospheric dry deposition and precipitation (cf. Lewis et al., 1985). Each year, however, a small fraction per unit area of the atmosphere/plant/soil flux leaks from these land-based cycles via precipitation/runoff (Meybeck, 1982). These losses are, in general, unpreventable. Moreover, such nutrient “losses” have increased with increasing human population (Wollast, 1983); although to some extent this anthropogenic component can be controlled. Most rivers eventually flow into estuaries and the coastal ocean where their natural and anthropogenic nutrient loads continue to recycle, are lost to the atmosphere, or are buried in sediment. In one extreme, when riverine nutrient concentrations are exceedingly low, as in southwestern Canadian streams (Naiman and Sibert, 1978; Stockner and Shortreed, 1978, 1985), downstream plant biomass can be nutrient limited. In the other extreme, when these nutrient concentrations are very high such as in highly populated European river basins, downstream plant biomass can increase, perhaps intensifying natural anoxia cycles within the receiving estuarine/coastal ocean waters if these waters are stratified (Rosenberg, 1985).

  13. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.

    PubMed

    Milton, Margarita; Cheng, Qian; Yang, Yuan; Nuckolls, Colin; Hernández Sánchez, Raúl; Sisto, Thomas J

    2017-12-13

    This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (-20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries.

  14. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China.

    PubMed

    Ahmed, Selena; Stepp, John Richard; Orians, Colin; Griffin, Timothy; Matyas, Corene; Robbat, Albert; Cash, Sean; Xue, Dayuan; Long, Chunlin; Unachukwu, Uchenna; Buckley, Sarabeth; Small, David; Kennelly, Edward

    2014-01-01

    Climate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management practices to facilitate climate adaptation for sustainable crop production.

  15. What Is Life? What Was Life? What Will Life Be?

    NASA Astrophysics Data System (ADS)

    Deamer, D.

    Our laboratory is exploring self-assembly processes and polymerization reactions of organic compounds in natural geothermal environments and related laboratory simulations. Although the physical environment that fostered primitive cellular life is still largely unconstrained, we can be reasonably confident that liquid water was required, together with a source of organic compounds and energy to drive polymerization reactions. There must also have been a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. In earlier work we observed that macromolecules such as nucleic acids and proteins are readily encapsulated in membranous boundaries during wet-dry cycles such as those that would occur at the edges of geothermal springs or tide pools. The resulting structures are referred to as protocells, in that they exhibit certain properties of living cells and are models of the kinds of encapsulated macromolecular systems that would have led toward the first forms of cellular life. However, the assembly of protocells is markedly inhibited by conditions associated with extreme environments: High temperature, high salt concentrations, and low pH ranges. From a biophysical perspective, it follows that the most plausible planetary environment for the origin of cellular life would be an aqueous phase at moderate temperature ranges and low ionic strength, having a pH value near neutrality and divalent cations at submillimolar concentrations. This suggestion is in marked contrast to the view that life most likely began in a geothermal or marine environment, perhaps even the extreme environment of a hydrothermal vent. A more plausible site for the origin of cellular life would be fresh water pools maintained by rain falling on volcanic land masses resembling present-day Hawaii and Iceland. After the first cellular life was able to establish itself in a relatively benign environment, it would rapidly begin to adapt through Darwinian selection to more rigorous environments, including the extreme temperatures, salt concentrations and pH ranges that we now associate with the limits of life on the Earth.

  16. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China

    PubMed Central

    Ahmed, Selena; Stepp, John Richard; Orians, Colin; Griffin, Timothy; Matyas, Corene; Robbat, Albert; Cash, Sean; Xue, Dayuan; Long, Chunlin; Unachukwu, Uchenna; Buckley, Sarabeth; Small, David; Kennelly, Edward

    2014-01-01

    Climate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management practices to facilitate climate adaptation for sustainable crop production. PMID:25286362

  17. Extremely high sulfate reduction, sediment oxygen demand and benthic nutrient flux associated with a large-scale artificial dyke and its implication to benthic-pelagic coupling in the Yeongsan River estuary, Yellow Sea.

    PubMed

    Kim, Sung-Han; Lee, Jae Seong; Hyun, Jung-Ho

    2017-07-15

    We investigated environmental impact of large-scale dyke on the sediment geochemistry, sulfate reduction rates (SRRs), sediment oxygen demand (SOD) and potential contribution of benthic nutrient flux (BNF) to primary production in the Yeongsan River estuary, Yellow Sea. The sediment near the dyke (YE1) with high organic carbon (C org ) content (>4%, dry wt.) was characterized by extremely high SOD (327mmolm -2 d -1 ) and SRRs (91-140mmolm -2 d -1 ). The sulfate reduction accounted for 73% of C org oxidation, and was responsible for strikingly high concentrations of NH 4 + (7.7mM), PO 4 3- (67μM) and HS - (487μM) in pore water. The BNF at YE1 accounted for approximately 200% of N and P required for primary production in the water column. The results present one of the most extreme cases that the construction of an artificial dyke may have profound impacts on the biogeochemical and ecological processes in coastal ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for several months after the mixing event, together with anoxic stress conditions, additionally influence already stressed ecosystem, hence shifting the community structure and food/web interactions in this marine system.

  19. Correlation of seasonal variations in phosphorous and nitrogen species in upper Black Warrior River with duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabrielson, F.C. Jr.; Malatino, A.M.; Santa Cruz, G.J.

    1980-10-01

    Water samples taken throughout the year from a drainage system that had supported giant duckweed blooms were analyzed for nitrogen and phosphorus. Although seasonal separation of the data indicates possible differences within an imppoundment (Bayview Lake), extreme variations make meaningful conclusions difficult. Daily discharge from a large number of points may have masked seasonal differences. Extensive plant mats were present at minimal levels of nitrogen and phosphorus. The growth rate seemed to be governed more by climate than nutrient conditions. Laboratory investigations indicate that giant duckweed can grow under a wide range of nutrient conditions including high heavy metal concentrations.more » Growth rate data show that without a continual input of nutrients, maximum growth rates do not usually continue beyond 14 to 20 days regardless of the initial single element concentration. With a continuous nutrient input, growth would probably only be inhibited by extreme climate conditions.« less

  20. The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process

    NASA Astrophysics Data System (ADS)

    Bouleau, Nicolas; Chorro, Christophe

    2017-08-01

    In this paper we consider some elementary and fair zero-sum games of chance in order to study the impact of random effects on the wealth distribution of N interacting players. Even if an exhaustive analytical study of such games between many players may be tricky, numerical experiments highlight interesting asymptotic properties. In particular, we emphasize that randomness plays a key role in concentrating wealth in the extreme, in the hands of a single player. From a mathematical perspective, we interestingly adopt some diffusion limits for small and high-frequency transactions which are otherwise extensively used in population genetics. Finally, the impact of small tax rates on the preceding dynamics is discussed for several regulation mechanisms. We show that taxation of income is not sufficient to overcome this extreme concentration process in contrast to the uniform taxation of capital which stabilizes the economy and prevents agents from being ruined.

  1. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael J.; Gaidamakova, E; Matrosova, V

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  2. Complement inhibiting properties of dragon's blood from Croton draco.

    PubMed

    Tsacheva, Ivanka; Rostan, Joerg; Iossifova, Tania; Vogler, Bernhard; Odjakova, Mariela; Navas, Hernan; Kostova, Ivanka; Kojouharova, Michaela; Kraus, Wolfgang

    2004-01-01

    The latex of Croton draco, its extracts and several latex components have been investigated for their influence on both classical (CP) and alternative (AP) activation pathways of the complement system using a hemolytic assay. The best inhibition was found for the classical pathway. The latex, ethyl acetate and ethyl ether extracts exhibited extremely high inhibition on the CP (94, 90 and 77%, respectively) at a concentration of 1 mg/ml. The flavonoid myricitrin, the alkaloid taspine and the cyclopeptides P1 and P2 showed high inhibition on CP (83, 91, 78 and 63%, respectively) at a concentration of 0.9 mM.

  3. Bioaccumulation of HCH isomers in selected macroinvertebrates from the Elbe River: sources and environmental implications.

    PubMed

    Kolaříková, Kateřina; von Tümpling, Wolf; Bartels, Peter

    2013-05-01

    Sediments of the Elbe River have been extremely polluted by contaminants originating from previous large-scale hexachlorocyclohexane (HCH) production and the application of γ-HCH (lindane) in its catchment in the second half of the twentieth century. In order to gain knowledge on bioaccumulation processes at lower trophic levels, field investigations of HCHs in macroinvertebrates were carried out along the longitudinal profile of the Elbe and tributary. Among the sites studied, concentrations in macroinvertebrates ranged within five orders of magnitude (0.01-100 μg/kg). In general, lower values of HCH isomers were observed at all Czech sites (mostly <1 μg/kg) compared with those in Germany. At the most contaminated site, Spittelwasser brook (a tributary of the Mulde), extremely high concentrations were measured (up to 234 μg/kg α-HCH and 587 μg/kg β-HCH in Hydropsychidae). In contrast, the Obříství site, though also influenced by HCH production facilities, showed only negligibly elevated values (mostly <1 μg/kg). Results showed that fairly high levels of α-HCH and β-HCH compared to γ-HCH can still be detected in aquatic environments of the Elbe catchment, and these concentrations are decreasing over time to a lesser extent than γ-HCH. Higher HCH concentrations in sediments in the springtime are considered to be the result of erosion and transport processes during and after spring floods, and lower concentrations at sites downstream are thought to be caused by the time lapse involved in the transportation of contaminated particles from upstream. In addition, comparison with fish (bream) data from the literature revealed no increase in tissue concentrations between invertebrates and fish.

  4. Microbial communities and their predicted metabolic functions in a desiccating acid salt lake.

    PubMed

    Zaikova, Elena; Benison, Kathleen C; Mormile, Melanie R; Johnson, Sarah Stewart

    2018-05-01

    The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.

  5. Increasing extreme water level flood risk as a result of future sea-level rise: A case study on a coastal city in China

    NASA Astrophysics Data System (ADS)

    Feng, A.; Wu, S.

    2016-12-01

    Extreme water levels, caused by the joint occurrence of storm surges and high tides, always lead to super floods along coastlines. In the context of climate change, this study explored the impact of future sea-level rise on the flood risk of extreme water levels. Using Rongcheng City in Shandong Province, China as a case study, flooded area, expected direct damage losses, and affected population and GDP were assessed for 2050 and 2100 under three greenhouse gas concentration Representative Concentration Pathways (RCP) scenarios, 2.6, 4.5, and 8.5. Results indicate that, as a result of sea-level rise induced by climate change, the flooded areas of Rongcheng City would increase by 3.23% to 10.64% in 2050 and by as much as 4.98% to 19.87% in 2100, compared with current recurrence periods. Residential land and farmland are at greatest risk of flooding in terms of exposure and losses than other land-use types, and under a high degree RCP 8.5 scenario, expected damage losses would be between 59.84 billion and 86.45 billion in 2050. Results show that the increase in total direct damage losses would reach an average of 60% in 2100 as a result of a 0.82 m sea-level rise. Similarly, affected population and GDP would increase by between 4.95% and 13.87% and between 3.66% and 10.95% in 2050, and by as much as 7.69% to 29.01% and 5.30% to 20.50% in 2100. This study shows that sea-level rise significantly shortens recurrence periods of extreme water levels, makes extreme flood events more frequent, and exacerbates the risk of future flooding. Our results suggest that, if there is no adaptation, sea-level rise will greatly increase the risk of flooding and severely impact human habitability along coastlines.

  6. Methylisothiazolinone in selected consumer products in Belgium: Adding fuel to the fire?

    PubMed

    Aerts, Olivier; Meert, Hans; Goossens, An; Janssens, Sighile; Lambert, Julien; Apers, Sandra

    2015-09-01

    Methylisothiazolinone (MI) contact allergy is severely affecting consumers with allergic contact dermatitis, owing to its presence in cosmetics, household detergents, and water-based paints, in particular. Data on the true isothiazolinone concentrations in these products are scarce, and labelling may be incorrect. To report on the MI concentrations in such products marketed in Belgium, in order to verify the accuracy of labelling (when applicable) and compliance with EU regulations. Thirty cosmetics (18 leave-on and 12 rinse-off), eight detergents and four paints were analysed for MI by the use of high-performance liquid chromatography with ultraviolet detection. The analysed leave-on, and to a lesser extent the rinse-off, cosmetics, contained MI at concentrations far exceeding the permitted 100 ppm use concentration. Household detergents contained high concentrations of MI, and mislabelling occurred for both cosmetics and detergents. The (limited) data on paints are in line with the existing literature. Cosmetics and detergents may facilitate contact sensitization because of a (too) high MI concentration, and mislabelling may make its avoidance extremely difficult. Safer use concentrations and correct labelling should be ensured by adequate quality control. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    PubMed Central

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034

  9. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali

    Heat and drought stresses are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentration. Here we present a study that quantified the current and future yield responses of US rainfed maize and soybean to climate extremes, and for the first time characterized spatial shifts in the relative importance of temperature, heat and drought stress. Crop yields are simulated using the Agricultural Production Systems sIMulator (APSIM), driven by the high-resolution (12 km) Weather Research and Forecasting (WRF) Model downscaled futuremore » climate scenarios at two time slices (1995-2005 and 2085-2094). Our results show that climatic yield gaps and interannual variability are greater in the core production area than in the remaining US by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of change is highly dependent on the current climate sensitivity and vulnerability. Elevated CO2 partially offsets the climatic yield gaps and reduces interannual yield variability, and effect is more prominent in soybean than in maize. We demonstrate that drought will continue to be the largest threat to US rainfed maize and soybean production, although its dominant role gradually gives way to other impacts of heat extremes. We also reveal that shifts in the geographic distributions of dominant stressors are characterized by increases in the concurrent stress, especially for the US Midwest. These findings imply the importance of considering drought and extreme heat simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management.« less

  10. PPM mixtures of formaldehyde in gas cylinders: Stability and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.C.; Miller, S.B.; Patterson, L.M.

    1999-07-01

    Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has beenmore » developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.« less

  11. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki

    2011-04-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  12. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.

  13. Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.

    PubMed

    Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore

    2010-09-01

    The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.

  14. The enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth properties.

    PubMed

    Torgomyan, Heghine; Trchounian, Armen

    2015-01-01

    The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.

  15. Effect of solution concentration on the structured order and optical properties of short-chain polyene biomolecules

    NASA Astrophysics Data System (ADS)

    Ouyang, Shunli; Sun, Chenglin; Zhou, Mi; Li, Dongfei; Wang, Weiwei; Qu, Guannan; Li, Zuowei; Gao, Shuqin; Yang, Jiange

    2010-09-01

    We have measured the Raman spectra and UV-Vis absorption spectra of linear polyene biomolecules (β-carotene and lycopene) in CS2 at low concentrations (10-6-10-10 mol/L). With decreasing concentration, all the carbon-carbon vibrations form a coherent mode in ordered β-carotene and lycopene due to extended π-conjugation that gives strong electron-phonon coupling, which leads to an anomalous experimental phenomenon. We observed an extremely high Raman scattering cross section( RSCS) and the Raman activities in β-carotene and lycopene are characterized by intensive overtones and combinations. Further, the UV-Vis absorption bands become narrower.

  16. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns

    NASA Astrophysics Data System (ADS)

    Mentaschi, Lorenzo; Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Dosio, Alessandro; Feyen, Luc

    2017-03-01

    In this study we conducted a comprehensive modeling analysis to identify global trends in extreme wave energy flux (WEF) along coastlines in the 21st century under a high emission pathway (Representative Concentration Pathways 8.5). For the end of the century, results show a significant increase up to 30% in 100 year return level WEF for the majority of the coastal areas of the southern temperate zone, while in the Northern Hemisphere large coastal areas are characterized by a significant negative trend. We show that the most significant long-term trends of extreme WEF can be explained by intensification of teleconnection patterns such as the Antarctic Oscillation, El Niño-Southern Oscillation, and North Atlantic Oscillation. The projected changes will have broad implications for ocean engineering applications and disaster risk management. Especially low-lying coastal countries in the Southern Hemisphere will be particularly vulnerable due to the combined effects of projected relative sea level rise and more extreme wave activities.

  17. A hybrid model for predicting carbon monoxide from vehicular exhausts in urban environments

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad; Khare, Mukesh

    Several deterministic-based air quality models evaluate and predict the frequently occurring pollutant concentration well but, in general, are incapable of predicting the 'extreme' concentrations. In contrast, the statistical distribution models overcome the above limitation of the deterministic models and predict the 'extreme' concentrations. However, the environmental damages are caused by both extremes as well as by the sustained average concentration of pollutants. Hence, the model should predict not only 'extreme' ranges but also the 'middle' ranges of pollutant concentrations, i.e. the entire range. Hybrid modelling is one of the techniques that estimates/predicts the 'entire range' of the distribution of pollutant concentrations by combining the deterministic based models with suitable statistical distribution models ( Jakeman, et al., 1988). In the present paper, a hybrid model has been developed to predict the carbon monoxide (CO) concentration distributions at one of the traffic intersections, Income Tax Office (ITO), in the Delhi city, where the traffic is heterogeneous in nature and meteorology is 'tropical'. The model combines the general finite line source model (GFLSM) as its deterministic, and log logistic distribution (LLD) model, as its statistical components. The hybrid (GFLSM-LLD) model is then applied at the ITO intersection. The results show that the hybrid model predictions match with that of the observed CO concentration data within the 5-99 percentiles range. The model is further validated at different street location, i.e. Sirifort roadway. The validation results show that the model predicts CO concentrations fairly well ( d=0.91) in 10-95 percentiles range. The regulatory compliance is also developed to estimate the probability of exceedance of hourly CO concentration beyond the National Ambient Air Quality Standards (NAAQS) of India. It consists of light vehicles, heavy vehicles, three- wheelers (auto rickshaws) and two-wheelers (scooters, motorcycles, etc).

  18. Incorporating the Wind Erosion Prediction System (WEPS) Into a Regional Air Quality Modeling System for the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    In the Pacific Northwest, wind storms intermittently cause massive dust events that reduce visibility along roadways and jeopardize health as a result of extremely high concentrations of PM10 (particulate matter less than or equal to 10µm in diameter). An early warning dust forecast system is needed...

  19. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions

    DTIC Science & Technology

    2009-11-03

    uniform appearance, while PMMA- and SiO2-coated fabrics without PEG appeared streaky with a whitened or slightly chalky appearance. If placed in...coatings. One complicating factor in determining the role of STF rheology is that the extremely high surface area of the fabric could cause microscale

  20. Opioid modulation of ingestive behaviors in woodchucks and racoons.

    PubMed

    Nizielski, S E; Morley, J E; Gosnell, B A; Seal, U S; Levine, A S

    1985-02-01

    We have examined the effect on feeding of opioid blockade with naloxone in two species which demonstrate a marked seasonality in their feeding patterns, the racoon (Procyon lotor) and the woodchuck (Marmota monax). Naloxone suppressed food intake in the woodchuck which is a true hibernator. Naloxone failed to suppress food intake in the racoon and, in fact, enhanced intake of a preferred sucrose solution. In the racoon, ir-dynorphine concentrations were extremely high in the hypothalamus compared to the values obtained in rats and woodchucks. We suggest that possible explanations for the lack of responsiveness to opiates in racoons may be their extremely high daily food intake relatively to body mass when compared to woodchucks and rats and the high levels of ir-dynorphin may be sufficient to overcome the inhibitory effect of naloxone. These studies stress the occurrence of species diversity in the response to opioid antagonism.

  1. Extreme Halophiles and Carbon Monoxide: Looking Through Windows at Earth's Past and Towards a Future on Mars

    NASA Astrophysics Data System (ADS)

    King, G.

    2015-12-01

    Carbon monoxide, which is ubiquitous on Earth, is the 2nd most abundant molecule in the universe. Members of the domain Bacteria have long been known to oxidize it, and activities of CO oxidizers in soils have been known for several decades to contribute to tropospheric CO regulation. Nonetheless, the diversity of CO oxidizers and their evolutionary history remain largely unknown. A molybdenum-dependent dehydrogenase (Mo-CODH) couples CO oxidation by most terrestrial and marine bacteria to either O2 or nitrate. Molybdenum dependence, the requirement for O2 and previous phylogenetic inferences have all supported a relatively late evolution for "aerobic" CO oxidation, presumably after the Great Oxidation Event (GOE) about 2.3 Gya. Although conundrums remain, recent discoveries suggest that Mo-CODH might have evolved before the GOE, and prior to the Bacteria-Archaea split. New phylogenetic analyses incorporating sequences from extremely halophilic CO-oxidizing Euryarchaeota isolated from salterns in the Atacama Desert, brines on Hawai`i and from the Bonneville Salt Flat suggest that Mo-CODH was present in an ancestor shared by Bacteria and Archaea. This observation is consistent with results of phylogenetic histories of genes involved in Mo-cofactor synthesis, and findings by others that Mo-nitrogenase was likely active > 3 Gya. Thus, analyses of Mo-dependent CO oxidizers provide a window on the past by raising questions about the availability of Mo and non-O2 electron acceptors. Extremely halophilic CO oxidizers also provide insights relevant for understanding the potential for extraterrestrial life. CO likely occurred at high concentrations in Mars' early atmosphere, and it occurs presently at about 800 ppm. At such high concentrations, CO represents one of the most abundant energy sources available for near-surface regolith. However, use of CO by an extant or transplanted Mars microbiota would require tolerance of low water potentials and high salt concentrations. Assays with both novel isolates and a variety of saline brines, sediments and soils show that extreme halophiles use CO in solutions of saturated NaCl (5.4 M) and at water potentials as low as -118 MPa. The latter observations are consistent with metabolic activity for conditions inferred for the recurrent slope lineae on Mars.

  2. Climate-driven ground-level ozone extreme in the fall over the Southeast United States

    PubMed Central

    Wang, Yuhang

    2016-01-01

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980–2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management. PMID:27551089

  3. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    PubMed

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  4. Joint analysis of air pollution in street canyons in St. Petersburg and Copenhagen

    NASA Astrophysics Data System (ADS)

    Genikhovich, E. L.; Ziv, A. D.; Iakovleva, E. A.; Palmgren, F.; Berkowicz, R.

    The bi-annual data set of concentrations of several traffic-related air pollutants, measured continuously in street canyons in St. Petersburg and Copenhagen, is analysed jointly using different statistical techniques. Annual mean concentrations of NO 2, NO x and, especially, benzene are found systematically higher in St. Petersburg than in Copenhagen but for ozone the situation is opposite. In both cities probability distribution functions (PDFs) of concentrations and their daily or weekly extrema are fitted with the Weibull and double exponential distributions, respectively. Sample estimates of bi-variate distributions of concentrations, concentration roses, and probabilities of concentration of one pollutant being extreme given that another one reaches its extremum are presented in this paper as well as auto- and co-spectra. It is demonstrated that there is a reasonably high correlation between seasonally averaged concentrations of pollutants in St. Petersburg and Copenhagen.

  5. Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China.

    PubMed

    Sun, Weimin; Xiao, Enzong; Dong, Yiran; Tang, Song; Krumins, Valdis; Ning, Zengping; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Xiao, Tangfu

    2016-04-15

    Located in Southwest China, the Chahe watershed has been severely contaminated by upstream active antimony (Sb) mines. The extremely high concentrations of Sb make the Chahe watershed an excellent model to elucidate the response of indigenous microbial activities within a severe Sb-contaminated environment. In this study, water and surface sediments from six locations in the Chahe watershed with different levels of Sb contamination were analyzed. Illumina sequencing of 16S rRNA amplicons revealed more than 40 phyla from the domain Bacteria and 2 phyla from the domain Archaea. Sequences assigned to the genera Flavobacterium, Sulfuricurvum, Halomonas, Shewanella, Lactobacillus, Acinetobacter, and Geobacter demonstrated high relative abundances in all sequencing libraries. Spearman's rank correlations indicated that a number of microbial phylotypes were positively correlated with different speciation of Sb, suggesting potential roles of these phylotypes in microbial Sb cycling. Canonical correspondence analysis further demonstrated that geochemical parameters, including water temperature, pH, total Fe, sulfate, aqueous Sb, and Eh, significantly structured the overall microbial community in Chahe watershed samples. Our findings offer a direct and reliable reference to the diversity of microbial communities in the presence of extremely high Sb concentrations, and may have potential implications for in situ bioremediation strategies of Sb contaminated sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013.

    PubMed

    Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong

    2016-04-01

    Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.

  7. Leaf Area Index Drives Soil Water Availability and Extreme Drought-Related Mortality under Elevated CO2 in a Temperate Grassland Model System

    PubMed Central

    Manea, Anthony; Leishman, Michelle R.

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future. PMID:24632832

  8. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    PubMed

    Manea, Anthony; Leishman, Michelle R

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  9. Can Concentration - Discharge Relationships Diagnose Material Source During Extreme Events?

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Godsey, S.; Rose, L.

    2017-12-01

    Floods can carry >90% of the basin material exported in a given year as well as alter flow pathways and material sources. In turn, sediment and solute fluxes can increase flood damages and negatively impact water quality and integrate physical and chemical weathering of landscapes and channels. Concentration-discharge (C-Q) relationships are used to both describe export patterns as well as compute them. Metrics for describing C-Q patterns and inferring their controls are vulnerable to infrequent sampling that affects how C-Q relationships are interpolated and interpreted. C-Q relationships are typically evaluated from multiple samples, but because hydrological extremes are rare, data are often unavailable for extreme events. Because solute and sediment C-Q relationships likely respond to changes in hydrologic extremes in different ways, there is a pressing need to define their behavior under extreme conditions, including how to properly sample to capture these patterns. In the absence of such knowledge, improving load estimates in extreme floods will likely remain difficult. Here we explore the use of C-Q relationships to determine when an event alters a watershed system such that it enters a new material source/transport regime. We focus on watersheds with sediment and discharge time series include low-frequency and/or extreme events. For example, we compare solute and sediment patterns in White Clay Creek in southeastern Pennsylvania across a range of flows inclusive of multiple hurricanes for which we have ample ancillary hydrochemical data. TSS is consistently mobilized during high flow events, even during extreme floods associated with hurricanes, and sediment fingerprinting indicates different sediment sources, including in-channel remobilization and landscape erosion, are active at different times. In other words, TSS mobilization in C-Q space is not sensitive to the source of material being mobilized. Unlike sediments, weathering solutes in this watershed tend to exhibit a relatively chemostatic C-Q pattern, except during the runoff-dominated Hurricane Irene, when they exhibit a diluting C-Q pattern. Finally, we summarize the vulnerability of these observations to shifts in sampling effort to highlight the utility and limitations of C-Q-derived export patterns.

  10. First results from the Goddard High-Resolution spectrograph - High-resolution observations of the 1942 A resonance line of HG II in the chemically peculiar B star, Chi Lupi

    NASA Technical Reports Server (NTRS)

    Leckrone, David S.; Wahlgren, Glenn M.; Johansson, Sveneric G.

    1991-01-01

    The Goddard High-Resolution Spectrograph on the HST has been used to obtain high S/N observations of the sharp-lined, Hg- and Pt-rich B-type star, Chi Lupi, with a resolving power of 87,000. The observations reveal a level of spectroscopic detail never before observed at ultraviolet wavelengths for any star other than the sun. Concentrating on the region around the resonance line of Hg II at 1942 A, the profile and central position of this line confirm beyond doubt that the Hg isotope anomaly in Chi Lupi is real and extreme, with Hg being heavily concentrated in the form of Hg-204. The problems in atomic physics which impair the accurate analysis of spectra of this quality are emphasized.

  11. The impact of ambient particle pollution during extreme-temperature days in Guangzhou City, China.

    PubMed

    Li, Guoxing; Jiang, Lai; Zhang, Yajuan; Cai, Yue; Pan, Xiaochuan; Zhou, Maigeng

    2014-11-01

    The aim of this study is to explore whether the effect of PM10 (particulate matter with an aerodynamic diameter of <10 µm) on daily mortality was modified by extreme temperatures in Guangzhou from 2005 to 2009. The present study used time-series analysis to explore the modification effects of temperature on the association between PM10 and the cause-specific mortalities for cardiovascular, respiratory, cardiopulmonary, and nonaccidental mortality. The interactions between PM10 and temperature were statistically significant on respiratory mortality. The effect estimates per 10-µg/m(3) increase in PM10 concentrations at the moving average of lags of 0 and 1 day on high-temperature days were 2.34% (95% confidence interval = 0.55, 4.16) for nonaccidental, 1.35% (-1.69, 4.48) for cardiovascular, 6.09% (2.42, 9.89) for respiratory, and 3.36% (0.92, 5.86) for cardiopulmonary mortalities. The results suggest that it is important to control and reduce the emission of air particles in Guangzhou, particularly on extreme-high-temperature days. © 2014 APJPH.

  12. A preliminary design and analysis of an advanced heat-rejection system for an extreme altitude advanced variable cycle diesel engine installed in a high-altitude advanced research platform

    NASA Technical Reports Server (NTRS)

    Johnston, Richard P.

    1992-01-01

    Satellite surveillance in such areas as the Antarctic indicates that from time to time concentration of ozone grows and shrinks. An effort to obtain useful atmospheric data for determining the causes of ozone depletion would require a flight capable of reaching altitudes of at least 100,000 ft and flying subsonically during the sampling portion of the mission. A study of a heat rejection system for an advanced variable cycle diesel (AVCD) engine was conducted. The engine was installed in an extreme altitude, high altitude advanced research platform. Results indicate that the waste heat from an AVCD engine propulsion system can be rejected at the maximum cruise altitude of 120,000 ft. Fifteen performance points, reflecting the behavior of the engine as the vehicle proceeded through the mission, were used to characterize the heat exchanger operation. That portion of the study is described in a appendix titled, 'A Detailed Study of the Heat Rejection System for an Extreme Altitude Atmospheric Sampling Aircraft,' by a consultant, Mr. James Bourne, Lytron, Incorporated.

  13. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, Rebecca A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50°C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  14. A girl with headache, confusion and green urine.

    PubMed

    Hufschmidt, Andreas; Krisch, Alexandra; Peschen, I

    2009-07-01

    The case of a 17-year-old girl with a history of headache, blurred vision, confusion, ataxia and syncope is presented. On admission, she had already recovered except for a slurring of speech. Her urine was found to be green. Screening for illegal drugs was negative, but gas chromatography with subsequent mass spectroscopy (GC-MS) revealed an extremely high concentration of flupirtine.

  15. Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na2 VTi(PO4 )3 using Concentrated Electrolytes.

    PubMed

    Zhang, Huang; Jeong, Sangsik; Qin, Bingsheng; Vieira Carvalho, Diogo; Buchholz, Daniel; Passerini, Stefano

    2018-04-25

    Aqueous Na-ion batteries may offer a solution to the cost and safety issues of high-energy batteries. However, substantial challenges remain in the development of electrode materials and electrolytes enabling high performance and long cycle life. Herein, we report the characterization of a symmetric Na-ion battery with a NASICON-type Na 2 VTi(PO 4 ) 3 electrode material in conventional aqueous and "water-in-salt" electrolytes. Extremely stable cycling performance for 1000 cycles at a high rate (20 C) is found with the highly concentrated aqueous electrolytes owing to the formation of a resistive but protective interphase between the electrode and electrolyte. These results provide important insight for the development of aqueous Na-ion batteries with stable long-term cycling performance for large-scale energy storage. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on regional climate extremes as well. The scenarios generated with the high-resolution model simulation were compared with the coarse resolution CMIP5 model scenarios to identify region specific features that might be better resolved in the former simulation.

  17. Blood Lead Levels in Captive Giant Pandas.

    PubMed

    Wintle, Nathan J P; Martin-Wintle, Meghan S; Zhou, Xiaoping; Zhang, Hemin

    2018-01-01

    Fifteen giant pandas (Ailuropoda melanoleuca) from the Chinese Conservation and Research Center for the Giant Panda (CCRCGP) in Bifengxia, Sichuan, China were analyzed for blood lead concentrations (Pb-B) during the 2017 breeding season. Thirteen of the 15 bears showed Pb-B below the method detection limit (MDL) of 3.3 µg/dL. The two remaining bears, although above the MDL, contained very low concentrations of lead of 3.9 and 4.5 µg/dL. All 15 giant pandas in this analysis had Pb-B concentrations that were within normal background concentrations for mammals in uncontaminated environments. For a threatened species, whose native country is plagued by reports of extremely high air pollution, our findings suggest that giant pandas at the CCRCGP are not absorbing lead at concentrations that would adversely affect their health.

  18. Extremely Low Roll-Off and High Efficiency Achieved by Strategic Exciton Management in Organic Light-Emitting Diodes with Simple Ultrathin Emitting Layer Structure.

    PubMed

    Zhang, Tianmu; Shi, Changsheng; Zhao, Chenyang; Wu, Zhongbin; Chen, Jiangshan; Xie, Zhiyuan; Ma, Dongge

    2018-03-07

    Phosphorescent organic light-emitting diodes (OLEDs) possess the property of high efficiency but have serious efficiency roll-off at high luminance. Herein, we manufactured high-efficiency phosphorescent OLEDs with extremely low roll-off by effectively locating the ultrathin emitting layer (UEML) away from the high-concentration exciton formation region. The strategic exciton management in this simple UEML architecture greatly suppressed the exciton annihilation due to the expansion of the exciton diffusion region; thus, this efficiency roll-off at high luminance was significantly improved. The resulting green phosphorescent OLEDs exhibited the maximum external quantum efficiency of 25.5%, current efficiency of 98.0 cd A -1 , and power efficiency of 85.4 lm W -1 and still had 25.1%, 94.9 cd A -1 , and 55.5 lm W -1 at 5000 cd m -2 luminance, and retained 24.3%, 92.7 cd A -1 , and 49.3 lm W -1 at 10 000 cd m -2 luminance, respectively. Compared with the usual structures, the improvement demonstrated in this work displays potential value in applications.

  19. A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium

    NASA Technical Reports Server (NTRS)

    Witzke, Walter R; Prok, George M; Walsh, Thomas J

    1954-01-01

    Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.

  20. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.

    PubMed

    Ogino, Tetsuya; Maegawa, Shingo; Shigeno, Shuichi; Fujikura, Katsunori; Toyohara, Haruhiko

    2018-01-01

    The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida) are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP) channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.

  1. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    PubMed

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  2. Physical chemistry and evolution of salt tolerance in halobacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  3. [Inorganic fluoride concentrations and their sequential changes in the five layers of the kidney in rabbits after sevoflurane or methoxyflurane anesthesia].

    PubMed

    Kusume, Y

    1999-11-01

    In this study, intrarenal inorganic fluoride concentrations (IR-F) in rabbits were measured after sevoflurane or methoxyflurane anesthesia (SA or MA) to investigate the mechanism of methoxy-flurane nephrotoxicity and to confirm the safety of SA in fluoride nephrotoxicity. At the end of SA of MA, IR-F was 1.5 to 5 times greater in the cortex to papilla region than serum fluoride concentrations (S-F). When S-F were nearly equal, IR-F after MA was not greater than IR-F after SA. IR-F after SA declined rapidly. In contrast, IR-F after MA was maintained at high levels for a protracted period due to the greater solubility of methoxyflurane in fatty tissue. The present study suggests that the most important factor in methoxyflurane nephrotoxicity is the high IR-F of long duration established by urine formation, and that sevoflurane, although it is not associated with fluoride nephrotoxicity under normal conditions, may not be safe when it is used for an extremely long period and at high concentrations.

  4. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    NASA Technical Reports Server (NTRS)

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  5. Water resources of Clallam County, Washington; Phase I report

    USGS Publications Warehouse

    Drost, B.W.

    1983-01-01

    An inventory of the water resources of Clallam County, Washington, showed that sufficient water is available to supply all present demands. Domestic water supplies can be obtained from wells drilled 100 ft or less into glacial and alluvial deposits; in areas underlain by bedrock, wells more than 100 ft deep can generally supply one home per well. Surface water is abundant, and is the source for most public water systems. Extreme low flows were observed only in small drainage basins in bedrock in the mountainous interior and along parts of the coastline in the Strait of Juan de Fuca. The quality of ground and surface waters is generally excellent. In coastal areas, some wells may yield water with large concentrations of chloride and dissolved solids. A quarter of the wells tested had excessive concentrations of iron and (or) manganese. High values of turbidity, color, and coliform bacteria are widespread surface water problems, but standard filtering and chlorination treatment make the water suitable for public supplies. High concentrations of coliform bacteria apparently originate naturally in soils. High ammonia concentration observed at one site is probably caused by sewage disposal practices. (USGS)

  6. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    PubMed

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 μg/m 3 , whereas during LSI it varied from 14 to 67 μg/m 3 . This paper examines the occurrence and nature of extreme PM 10 pollution episodes (EEs) in Greece during a 3-yr period (2009-2011). Fourteen EEs were found of 49 days total duration, classified into two main categories: Local Source Impact (53%) and African Dust Impact (47%). All the above extreme PM 10 air pollution episodes were the result of specific synoptic prevailing conditions. Specific information on the linkages between the synoptic weather patterns and PM 10 concentrations could be used in the development of weather/health-warning system to alert the public that a synoptic episode is imminent.

  7. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-02-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23%, nitrate increasing by 58%, and sulfate decreasing by 46%.

  8. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    NASA Astrophysics Data System (ADS)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23 %, nitrate increasing by 58%, and sulfate decreasing by 46%.

  9. Seasonal variations of NO and O3 at altitudes of 18.3 and 21.3 km

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Savage, H. F.; Whitten, R. C.

    1975-01-01

    Nitric oxide and ozone concentrations have been measured in situ from a high-altitude research aircraft. Data which show the variations of NO and O3 with the time of year are presented for altitudes of 18.3 and 21.3 km. The extreme values of the observed NO concentrations at 21.3 km are 1.2 billion per cu cm in summer and 0.2 billion per cu cm in winter. At 18.3 km the extreme values are 1.6 billion per cu cm in summer and 0.1 billion per cu cm in winter. The smoothed NO seasonal data show a variation of about a factor of 2.5 at 21.3 km and a factor of 4 at 18.3 km. The ozone data show the generally expected magnitude and seasonal variation. We have used a photochemical model employing the measured ozone concentrations, the mean solar zenith angle, and seasonal HNO3 data reported by others to predict the seasonal NO variation at 20 km. The result is a summer-to-winter NO ratio of 2.5 which is in fair agreement with the observed ratios.

  10. Assessing the effects of Climate Change on Urban Pluvial Flooding to provide a Risk Management Framework

    NASA Astrophysics Data System (ADS)

    Rianna, G.; Mercogliano, P.

    2017-12-01

    Urbanization increases the flood risk because of heightened vulnerability, stemming from population concentration and hazard due to soil sealing affecting the largest part of urban settlements and reducing the concentration time of interested basins. Furthermore, current and future hazards are exacerbated by expected increases in extreme rainfall events due to Climate Changes (CC) making inadequate urban drainage infrastructures designed under the assumption of steady conditions. In this work, we present a modeling chain/algorithm to assess potential increase in pluvial flood hazard able to take into account CC forcing. The adopted simulation chain reckon on three main elements: Regional Climate Model, COSMO_CLM, dynamically downscaling GCM CMCC_CM (Scoccimarro et al., 2011) and optimized, at high resolution (about 8km), by Bucchignani et al. (2015) on Italy provide projections about precipitation up to 2100 under two concentration scenarios (RCP4.5 and RCP8.5). Such projections are used in Equidistance Quantile Mapping (EQM) approach, developed by Srivastav et al. (2014) to estimate expected variations in IDF (Intensity-Duration-Frequency) curves calculated through Generalized Extreme Value (GEV) approach on the basis of available rainfall data. To this aim, 1971-2000 observations are used as reference. Finally, a 1-D/2-D coupled urban drainage/flooding model forced by IDF (current and projected) is used to simulate storm-sewer surcharge and surface inundation to establish the variations in urban flooding risk. As test case is considered the city center of Naples (Southern Italy). In this respective, the sewage and urban drainage network is highly complex due to the historical and subsequent transformations of the city. Under such constraints, the reliability of the results maybe deeply conditioned by uncertainties not undermining the illustrative purposes of the work. Briefly, EQM returns a remarkable increase in extreme precipitations; such increase is driven by concentration scenarios (higher for RCP8.5) and investigated time horizon (more significant for 2071-2100 time span). Furthermore, results provided by hydraulic models clearly highlight the inadequacy of the actual drainage system especially under a RCP8.5-driven scenario showing large portions of the city center flooded.

  11. Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches.

    PubMed

    Karraker, Nancy E; Gibbs, James P

    2011-03-01

    It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.

    PubMed

    Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum

    2014-03-07

    Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.

  13. Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction.

    PubMed

    Gordon, J M; Rabl, A

    1992-12-01

    The properties of nonimaging compound parabolic concentrator (CPC)-type devices are examined in which the extreme direction is not constant but rather is a variable that can change along the reflector. One can then retain the maximal concentration or radiative efficiency of the CPC while the flux map on the absorber or target is modified, depending on whether the device is used for optical concentration or for lighting. Two general classes of reflector are derived, and all the nonimaging devices developed to date are shown to be special cases of the general solution. These two classes are the nonimaging analog of converging and diverging devices of imaging optics.

  14. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia.

    PubMed

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m(3)) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m(3). Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  15. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    NASA Astrophysics Data System (ADS)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  16. Decadal stream water quality trends under varying climate, land use, and hydrogeochemical setting in, Iowa, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  17. Rheology and fluid mechanics of a hyper-concentrated biomass suspension

    NASA Astrophysics Data System (ADS)

    Botto, Lorenzo; Xu, Xiao

    2013-11-01

    The production of bioethanol from biomass material originating from energy crops requires mixing of highly concentrated suspensions, which are composed of millimetre-sized lignocellulosic fibers. In these applications, the solid concentration is typically extremely high. Owing to the large particle porosity, for a solid mass concentration slightly larger than 10%, the dispersed solid phase can fill the available space almost completely. To extract input parameters for simulations, we have carried out rheological measurements of a lignocellulosic suspension of Miscanthus, a fast-growing plant, for particle concentrations close to maximum random packing. We find that in this regime the rheometric curves exhibit features similar to those observed in model ``gravitational suspensions,'' including viscoplastic behaviour, strong shear-banding, non-continuum effects, and a marked influence of the particle weight. In the talk, these aspects will be examined in some detail, and differences between Miscanthus and corn stover, currently the most industrially relevant biomass substrate, briefly discussed. We will also comment on values of the Reynolds and Oldroyd numbers found in biofuel applications, and the flow patterns expected for these parameter values.

  18. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano.

    PubMed

    Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D

    2016-04-01

    Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, <0.1-16.5 and <0.2-68.3 % day(-1) and were highly variable among compartments of the lake, but always higher during the dry season. Net Hg M indicates that the influence of urban and mining effluent (NS) promotes MMHg production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.

  19. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2.

    PubMed

    Jin, Zhenong; Zhuang, Qianlai; Wang, Jiali; Archontoulis, Sotirios V; Zobel, Zachary; Kotamarthi, Veerabhadra R

    2017-07-01

    Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO 2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high-resolution (12 km) dynamically downscaled climate projections for 1995-2004 and 2085-2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO 2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems. © 2017 John Wiley & Sons Ltd.

  20. The analyses of extreme climate events over China based on CMIP5 historical and future simulations

    NASA Astrophysics Data System (ADS)

    Yang, S.; Dong, W.; Feng, J.; Chou, J.

    2013-12-01

    The extreme climate events have a serious influence on human society. Based on observations and 12 simulations from Coupled Model Intercomparison Project Phase 5 (CMIP5), Climatic extremes and their changes over china in history and future scenarios of three Representative Concentration Pathways (RCPs) are analyzed. Because of the background of global warming, in observations, the frost days (FD) and low-temperature threshold days (TN10P) have decreasing trend, and summer days (SU), high-temperature threshold days (TX90P), the heavy precipitation days (R20) and contribution of heavy precipitation days (P95T) show an increasing trend. Most coupled models can basically simulate main characteristics of most extreme indexes. The models reproduce the mean FD and TX90P value best and can give basic trends of the FD, TN10P, SU and TX90P. High correlation coefficients between simulated results and observation are found in FD, SU and P95T. For FD and SU index, most of the models have good ability to capture the spatial differences between the mean state of the 1986-2005 and 1961-1980 periods, but for other indexes, most of models' simulation ability for spatial disparity are not so satisfactory and have to be promoted. Under the high emission scenario of RCP8.5, the century-scale linear changes of Multi-Model Ensembles (MME) for FD, SU, TN10P, TX90P, R20 and P95T are -46.9, 46.0, -27.1, 175.4, 2.9 days and 9.9%, respectively. Due to the complexities of physical process parameterizations and the limitation of forcing data, a large uncertainty still exists in the simulations of climatic extremes. Fig.1 Observed and modeled multi-year average for each index (Dotted line: observation) Table1. Extreme index definition

  1. Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments

    NASA Astrophysics Data System (ADS)

    Singh, Vishal; Goyal, Manish Kumar

    2016-01-01

    This paper draws attention to highlight the spatial and temporal variability in precipitation lapse rate (PLR) and precipitation extreme indices (PEIs) through the mesoscale characterization of Teesta river catchment, which corresponds to north Sikkim eastern Himalayas. A PLR rate is an important variable for the snowmelt runoff models. In a mountainous region, the PLR could be varied from lower elevation parts to high elevation parts. In this study, a PLR was computed by accounting elevation differences, which varies from around 1500 m to 7000 m. A precipitation variability and extremity were analysed using multiple mathematical functions viz. quantile regression, spatial mean, spatial standard deviation, Mann-Kendall test and Sen's estimation. For this reason, a daily precipitation, in the historical (years 1980-2005) as measured/observed gridded points and projected experiments for the 21st century (years 2006-2100) simulated by CMIP5 ESM-2 M model (Coupled Model Intercomparison Project Phase 5 Earth System Model 2) employing three different radiative forcing scenarios (Representative Concentration Pathways), utilized for the research work. The outcomes of this study suggest that a PLR is significantly varied from lower elevation to high elevation parts. The PEI based analysis showed that the extreme high intensity events have been increased significantly, especially after 2040s. The PEI based observations also showed that the numbers of wet days are increased for all the RCPs. The quantile regression plots showed significant increments in the upper and lower quantiles of the various extreme indices. The Mann-Kendall test and Sen's estimation tests clearly indicated significant changing patterns in the frequency and intensity of the precipitation indices across all the sub-basins and RCP scenario in an intra-decadal time series domain. The RCP8.5 showed extremity of the projected outcomes.

  2. Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland

    NASA Astrophysics Data System (ADS)

    Holwell, David A.; Keays, Reid R.; McDonald, Iain; Williams, Megan R.

    2015-12-01

    The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu-PGE-Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190-700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu-Ni-PGE sulfides which require very high R factors, and settling of sulfide liquids.

  3. Invertebrate and fish assemblage relations to dissolved Oxygen minima in lowland streams of southwestern Louisiana

    USGS Publications Warehouse

    Justus, B.G.; Mize, Scott V.; Kroes, Daniel; Wallace, James E.

    2012-01-01

    Dissolved oxygen (DO) concentrations in lowland streams are naturally lower than those in upland streams; however, in some regions where monitoring data are lacking, DO criteria originally established for upland streams have been applied to lowland streams. This study investigated the DO concentrations at which fish and invertebrate assemblages at 35 sites located on lowland streams in southwestern Louisiana began to demonstrate biological thresholds.Average threshold values for taxa richness, diversity and abundance metrics were 2.6 and 2.3 mg/L for the invertebrate and fish assemblages, respectively. These thresholds are approximately twice the DO concentration that some native fish species are capable of tolerating and are comparable with DO criteria that have been recently applied to some coastal streams in Louisiana and Texas. DO minima >2.5 mg/L were favoured for all but extremely tolerant taxa. Extremely tolerant taxa had respiratory adaptations that gave them a competitive advantage, and their success when DO minima were <2 mg/L could be related more to reductions in competition or predation than to DO concentration directly.DO generally had an inverse relation to the amount of agriculture in the buffer area; however, DO concentrations at sites with both low and high amounts of agriculture (including three least-disturbed sites) declined to <2.5 mg/L. Thus, although DO fell below a concentration that was identified as an approximate biological threshold, sources of this condition were sometimes natural (allochthonous material) and had little relation to anthropogenic activity.

  4. [Pulse-modulated Electromagnetic Radiation of Extremely High Frequencies Protects Cellular DNA against Damaging Effect of Physico-Chemical Factors in vitro].

    PubMed

    Gapeyev, A B; Lukyanova, N A

    2015-01-01

    Using a comet assay technique, we investigated protective effects of. extremely high frequency electromagnetic radiation in combination with the damaging effect of X-ray irradiation, the effect of damaging agents hydrogen peroxide and methyl methanesulfonate on DNA in mouse whole blood leukocytes. It was shown that the preliminary exposure of the cells to low intensity pulse-modulated electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20-min exposure, modulation frequencies of 1 and 16 Hz) caused protective effects decreasing the DNA damage by 20-45%. The efficacy of pulse-modulated electromagnetic radiation depended on the type of genotoxic agent and increased in a row methyl methanesulfonate--X-rays--hydrogen peroxide. Continuous electromagnetic radiation was ineffective. The mechanisms of protective effects may be connected with an induction of the adaptive response by nanomolar concentrations of reactive oxygen species formed by pulse-modulated electromagnetic radiation.

  5. Membrane bioreactors for treating waste streams.

    PubMed

    Howell, J A; Arnot, T C; Liu, W

    2003-03-01

    Membrane bioreactors (MBRs) have a number of advantages for treating wastewater containing large quantities of BOD. This paper reviews the inherent advantages of an MBR, which include high potential biomass loadings, lower sludge yields, and retention of specialized organisms that may not settle well in clarifiers. A major problem in effluent treatment occurs when mixed inorganic and organic wastes occur with high concentrations of pollutants. Inorganics that might cause extremes of pH and/or salinity will inhibit microbial growth and only specialized organisms can survive under these conditions. Refractory organics are only biodegraded with difficulty by specialized organisms, which usually do not resist the extreme inorganic environments. The use of membrane bioreactors to help separate the micro-organisms from the inorganic compounds, yet permit the organics to permeate, has been developed in two different designs that are outlined in this paper. The use of membrane contactors in a multimembrane stripping system to treat acidic chlorinated wastes is proposed and discussed.

  6. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity

    NASA Astrophysics Data System (ADS)

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-01

    A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  7. Extreme halophilic archaea derive from two distinct methanogen Class II lineages.

    PubMed

    Aouad, Monique; Taib, Najwa; Oudart, Anne; Lecocq, Michel; Gouy, Manolo; Brochier-Armanet, Céline

    2018-04-20

    Phylogenetic analyses of conserved core genes have disentangled most of the ancient relationships in Archaea. However, some groups remain debated, like the DPANN, a deep-branching super-phylum composed of nanosized archaea with reduced genomes. Among these, the Nanohaloarchaea require high-salt concentrations for growth. Their discovery in 2012 was significant because they represent, together with Halobacteria (a Class belonging to Euryarchaeota), the only two described lineages of extreme halophilic archaea. The phylogenetic position of Nanohaloarchaea is highly debated, being alternatively proposed as the sister-lineage of Halobacteria or a member of the DPANN super-phylum. Pinpointing the phylogenetic position of extreme halophilic archaea is important to improve our knowledge of the deep evolutionary history of Archaea and the molecular adaptive processes and evolutionary paths that allowed their emergence. Using comparative genomic approaches, we identified 258 markers carrying a reliable phylogenetic signal. By combining strategies limiting the impact of biases on phylogenetic inference, we showed that Nanohaloarchaea and Halobacteria represent two independent lines that derived from two distinct but related methanogens Class II lineages. This implies that adaptation to high salinity emerged twice independently in Archaea and indicates that their emergence within DPANN in previous studies is likely the consequence of a tree reconstruction artifact, challenging the existence of this super-phylum. Copyright © 2018. Published by Elsevier Inc.

  8. Significant mobility enhancement in extremely thin highly doped ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, David C., E-mail: david.look@wright.edu; Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431; Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H}more » vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.« less

  9. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  10. Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst

    PubMed Central

    Warden, Andrew C.; Williams, Michelle; Peat, Thomas S.; Seabrook, Shane A.; Newman, Janet; Dojchinov, Greg; Haritos, Victoria S.

    2015-01-01

    Enzymes expressed by highly salt-tolerant organisms show many modifications compared with salt-affected counterparts including biased amino acid and lower α-helix content, lower solvent accessibility and negative surface charge. Here, we show that halotolerance can be generated in an enzyme solely by modifying surface residues. Rational design of carbonic anhydrase II is undertaken in three stages replacing 18 residues in total, crystal structures confirm changes are confined to surface residues. Catalytic activities and thermal unfolding temperatures of the designed enzymes increase at high salt concentrations demonstrating their shift to halotolerance, whereas the opposite response is found in the wild-type enzyme. Molecular dynamics calculations reveal a key role for sodium ions in increasing halotolerant enzyme stability largely through interactions with the highly ordered first Na+ hydration shell. For the first time, an approach to generate extreme halotolerance, a trait with broad application in industrial biocatalysis, in a wild-type enzyme is demonstrated. PMID:26687908

  11. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  12. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions.

    PubMed

    Szabó, Attila; Korponai, Kristóf; Kerepesi, Csaba; Somogyi, Boglárka; Vörös, Lajos; Bartha, Dániel; Márialigeti, Károly; Felföldi, Tamás

    2017-05-01

    Soda pans of the Pannonian steppe are unique environments regarding their physical and chemical characteristics: shallowness, high turbidity, intermittent character, alkaline pH, polyhumic organic carbon concentration, hypertrophic condition, moderately high salinity, sodium and carbonate ion dominance. The pans are highly productive environments with picophytoplankton predominance. Little is known about the planktonic bacterial communities inhabiting these aquatic habitats; therefore, amplicon sequencing and shotgun metagenomics were applied to reveal their composition and functional properties. Results showed a taxonomically complex bacterial community which was distinct from other soda lakes regarding its composition, e.g. the dominance of class Alphaproteobacteria was observed within phylum Proteobacteria. The shotgun metagenomic analysis revealed several functional gene components related to the harsh and at the same time hypertrophic environmental conditions, e.g. proteins involved in stress response, transport and hydrolase systems targeting phytoplankton-derived organic matter. This is the first detailed report on the indigenous planktonic bacterial communities coping with the multiple extreme conditions present in the unique soda pans of the Pannonian steppe.

  13. Atmospheric concentrations of ammonia and nitrogen dioxide at a tropical coral cay with high seabird density.

    PubMed

    Schmidt, Susanne; Mackintosh, Katrina; Gillett, Rob; Pudmenzky, Alex; Allen, Diane E; Rennenberg, Heinz; Mueller, Jochen F

    2010-02-01

    Ecosystems with high seabird densities can receive extremely high inputs of nitrogen (N) from bird guano. Seabirds deposit up to 1000 kg N ha(-1) y(-1) on Heron Island, a tropical coral cay of the Great Barrier Reef. We quantified atmospheric concentrations of ammonia (NH(3)) and nitrogen dioxide (NO(2)) with passive air samplers at beach, woodland and forest along a gradient of low, intermediate and high bird densities, respectively. NO(2) concentrations at all studied sites were generally low (average 0.2-2.3 microg NO(2) m(-3)) and similar to other ecosystems. An exception was the main traffic zone of helicopter and barge traffic which had elevated concentrations (average 6.2, maximum 25 microg NO(2) m(-3)) comparable to traffic-intense urban areas elsewhere. Increasing average NH(3) concentrations from 0.7 to 17 microg NH(3) m(-3) was associated with greater seabird nesting density. In areas of intermediate and high bird density, NH(3) concentrations were substantially higher than those typically detected in natural and agricultural systems, supporting the notion that seabird guano is a major source of NH(3). The steep decline of NH(3) concentrations in areas with low bird density indicates that trans-island transport of NH(3) is low. NH(3) may not only be re-deposited in close vicinity of the source but is also transported vertically as concentrations above the tree canopy averaged 7.5 microg NH(3) m(-3). How much guano-derived NH(3) contributes to reefal waters via the possible transfer path water --> land --> water remains to be established. We discuss atmospheric concentrations of NH(3) and NO(2) in context of N-based gaseous pollutants and effects on vegetation.

  14. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.

    PubMed

    Gundlach, Jan; Herzberg, Christina; Hertel, Dietrich; Thürmer, Andrea; Daniel, Rolf; Link, Hannes; Stülke, Jörg

    2017-07-05

    Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow unless they acquire mutations that result in the accumulation of positively charged amino acids such as ornithine, citrulline, and arginine. Supplementation of the medium with these amino acids rescued growth even in the absence of externally added potassium. Moreover, these growth conditions, which the bacteria experience as an extreme potassium limitation, can be overcome by the acquisition of mutations that result in increased expression of the high-affinity potassium transporter KtrAB. Our results indicate that positively charged amino acids can partially take over the function of potassium. Copyright © 2017 Gundlach et al.

  15. Overview of possible optical adapters for EUSO

    NASA Astrophysics Data System (ADS)

    Mazzinghi, Piero; Bratina, Vojko; Gambicorti, Lisa

    2003-12-01

    The Extreme Universe Space Observatory-EUSO-is devoted to the exploration from space of the highest energy processes present and accessible in the Universe. The results will extend the knowledge of the extremes of the physical world and address unresolved issued in a number of fields such as fundamental physics, cosmology and astrophysics. Several kind of detectors have been so far proposed for EUSO, all of them requiring some sort of ancillary optics to collect the light from the image produced by the main optics on the focal surface, for an efficient coupling to the detectors. Optical adapters must be selected taking in account several inputs: feasibility, cost, mass budget. Two main options are here investigated: imaging optics (by means of small lenses) and non imaging optics (by means of compound parabolic concentrators). The first kind of focal plane optics is easy and feasible, but it does not guarantee a high concentration ratio. Non imaging optics present much higher efficiency with a concentration close to the theoretical limit, but it also pose new technological diffculties and challenges. This work aims to clarify how this focal plane optics can be made, their limits in terms of concentration of radiation according to the laws of geometrical and physical optics and finally to identify the possible solution to this problem, including available technologies to be used for the construction.

  16. Systemic Inflammation during the First Postnatal Month and the Risk of Attention Deficit Hyperactivity Disorder Characteristics among 10 year-old Children Born Extremely Preterm.

    PubMed

    Allred, Elizabeth N; Dammann, Olaf; Fichorova, Raina N; Hooper, Stephen R; Hunter, Scott J; Joseph, Robert M; Kuban, Karl; Leviton, Alan; O'Shea, Thomas Michael; Scott, Megan N

    2017-09-01

    Although multiple sources link inflammation with attention difficulties, the only human study that evaluated the relationship between systemic inflammation and attention problems assessed attention at age 2 years. Parent and/or teacher completion of the Childhood Symptom Inventory-4 (CSI-4) provided information about characteristics that screen for attention deficit hyperactive disorder (ADHD) among 793 10-year-old children born before the 28th week of gestation who had an IQ ≥ 70. The concentrations of 27 proteins in blood spots obtained during the first postnatal month were measured. 151 children with ADHD behaviors were identified by parent report, while 128 children were identified by teacher report. Top-quartile concentrations of IL-6R, TNF-α, IL-8, VEGF, VEFG-R1, and VEGF-R2 on multiple days were associated with increased risk of ADHD symptoms as assessed by a teacher. Some of this increased risk was modulated by top-quartile concentrations of IL-6R, RANTES, EPO, NT-4, BDNF, bFGF, IGF-1, PIGF, Ang-1, and Ang-2. Systemic inflammation during the first postnatal month among children born extremely preterm appears to increase the risk of teacher-identified ADHD characteristics, and high concentrations of proteins with neurotrophic properties appear capable of modulating this increased risk.

  17. Projected changes of extreme precipitation over Contiguous United States with Nested regional climate model (NRCM)

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have corrected the CO2 atmospheric concentration in the longwave/shortwave radiation schemes of the NRCM according to the recommended datasets by CMIP5 (Clarke et al. 2007; Riahi et al. 2007). We have also corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask of CLM 4.0 as mentioned by Gao et al. (2012). Acknowledgements: This work was supported under a military interdepartmental purchase request from the SERDP, RC-2242, through U.S. Department of Energy contract DE-AC02-06CH11357.

  18. Inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhao; Dang, Yan; Li, Caihua

    2015-09-15

    Highlights: • High NH{sub 4}{sup +}–N concentrations inhibit anaerobic treatment of leachate. • Inhibitory effect of NH{sub 4}{sup +}–N concentrations on anaerobic granular sludge is reversible. • High NH{sub 4}{sup +}–N concentrations inhibit bioactivities of microorganisms instead of survival. - Abstract: Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH{sub 4}{sup +}–N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH{sub 4}{sup +}–N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by bothmore » static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH{sub 4}{sup +}–N concentration increasing to 1000 mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH{sub 4}{sup +}–N concentration rising to 1000 mg/L, without any rebounding during 30 days of operation. Decreasing NH{sub 4}{sup +}–N concentration to 500 mg/L in influent, the COD removal efficiency recovered to about 85% after 26 days. 1000 mg/L of NH{sub 4}{sup +}–N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH{sub 4}{sup +}–N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency.« less

  19. Microbial Diversity-Based Novel Crop Protection Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser

    Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine,more » in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.« less

  20. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    NASA Astrophysics Data System (ADS)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  1. Apparatus for measuring a sorbate dispersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Updike, O. L. (Inventor)

    1977-01-01

    A sensitive, miniature apparatus was designed for measuring low concentrations of a sorbate dispersed in a fluid stream. The device consists of an elongated body having a surface capable of sorbing an amount of the sorbate proportional to the concentration in the fluid stream and propagating acoustic energy along its length. The acoustic energy is converted to an electrical output signal corresponding to the concentration of sorbate in the fluid stream. The device can be designed to exhibit high sensitivity to extremely small amounts of sorbate dispersed in a fluid stream and to exhibit low sensitivity to large amounts of sorbate. Another advantage is that the apparatus may be formed in a microminiature size and at a low cost using bath microfabrication technology.

  2. History Leaves Salts Behind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.

    A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  3. Radon emanation from giant landslides of Koefels (Tyrol, Austria) and Langtang Himal (Nepal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtscheller, F.; Pirchl, T.; Sieder, G.

    1995-07-01

    The identification of extremely high indoor radon concentrations in the village Umhausen (Tyrol, Austria) initiated a scientific program to get information about the source and distribution of this noble gas. The high concentrations can not be related to U anomalies or large-scale fault zones. The nearby giant landslide of Koefels, with its highly fractured and crushed orthogneisses, are the only possible source of radon, despite the fact that the U and Ra content of the rocks is by no means exceptional. The reasons for the high emanation rates from the landslide are discussed and compared to results gained from amore » similar examination of the giant landslide of Langtang Himal (Nepal). The exceptional geologic situation in both cases, as well as the spatial distribution of different concentration levels, indicate that both landslides must be considered as the production sites of radon. Independent of the U and Ra contents of the rocks, the most important factors producing high emanation rates are the production of a high active surface area in circulation pathways for Rn-enriched soil air by brittle deformation due to the impact of the landslidemass. 37 refs., 4 figs., 1 tab.« less

  4. Concentrations and Risks of p-Dichlorobenzene in Indoor and Outdoor Air

    PubMed Central

    Chin, Jo-Yu; Godwin, Christopher; Jia, Chunrong; Robins, Thomas; Lewis, Toby; Parker, Edith; Max, Paul; Batterman, Stuart

    2012-01-01

    p-Dichlorobenzene (PDCB) is a chlorinated volatile organic compound (VOC) that can be encountered at high concentrations in buildings due to its use as pest repellent and deodorant. This study characterizes PDCB concentrations in four communities in southeast Michigan. The median concentration outside 145 homes was 0.04 µg m−3, and the median concentration inside 287 homes was 0.36 µg m−3. The distribution of indoor concentrations was extremely skewed. For example, 30% of the homes exceeded 0.91 µg m−3, which corresponds to a cancer risk level of 10−5 based on the California unit risk estimate, and 4% of homes exceeded 91 µg m−3, equivalent to a 10−3 risk level. The single highest measurement was 4,100 µg m−3. Estimates of whole house emission rates were largely consistent with chamber test results in the literature. Indoor concentrations that exceed a few µg m−3 indicate use of PDCB products. PDCB concentrations differed among households and the four cities, suggesting the importance of locational, cultural and behavioral factors in the use patterns of this chemical. The high PDCB levels found suggest the need for policies and actions to lower exposures, e.g., sales or use restrictions, improved labeling, and consumer education. PMID:22725685

  5. Sources, Concentrations and Risks of Naphthalene in Indoor and Outdoor Air

    PubMed Central

    Batterman, Stuart; Chin, Jo-Yu; Jia, Chunrong; Godwin, Christopher; Parker, Edith; Robins, Thomas; Max, Paul; Lewis, Toby

    2011-01-01

    Naphthalene is a ubiquitous pollutant, and very high concentrations are sometimes encountered indoors when this chemical is used as a pest repellent or deodorant. This study describes the distribution and sources of vapor phase naphthalene concentrations in four communities in southeast Michigan, USA. Outdoors, naphthalene was measured in the communities and at a near-road site. Indoors, naphthalene levels were characterized in 288 suburban and urban homes. The median outdoor concentration was 0.15 µg m−3, and a modest contribution from rush-hour traffic was noted. The median indoor long-term concentration was 0.89 µg m−3, but concentrations were extremely skewed and 14% of homes exceeded 3 µg m−3, the chronic reference concentration for non-cancer effects, 8% exceeded 10 µg m−3, and levels reached 200 µg m−3. The typical individual lifetime cancer risk was about 10−4, and reached 10−2 in some homes. Important sources include naphthalene's use as a pest repellent and deodorant, migration from attached garages, and to lesser extents, cigarette smoke and vehicle emissions. Excessive use as a repellent caused the highest concentrations. Naphthalene presents high risks in a subset of homes, and policies and actions to reduce exposures, e.g., sales bans or restrictions, improved labeling and consumer education, should be considered. PMID:22145682

  6. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  7. Inhibitory effect of high calcium concentration on municipal solid waste leachate treatment by the activated sludge process.

    PubMed

    Xia, Yi; He, Pin Jing; Pu, Hong Xia; Lü, Fan; Shao, Li Ming; Zhang, Hua

    2017-05-01

    This research focused on the inhibitory effects of Ca on the aerobic biological treatment of landfill leachate containing extremely high Ca concentrations. When the Ca concentration in leachate to be treated was more than 4500 mg l -1 , the total organic carbon removal rate was significantly reduced and the processing time to achieve the same removal efficiency was 1.4 times that in the control treatment without added Ca. In contrast, the total nitrogen and ammonia nitrogen (NH 4 + -N) removal efficiencies were positively related to the Ca concentration, increasing from 65.2% to 81.2% and from 69.2% to 83.7%, respectively, when the dosage of added Ca increased from zero to 8000 mg l -1 . During aerobic treatment, the reductions of solution Ca concentration were in the range of 1003-2274 mg l -1 and were matched with increases in the Ca content in the residual sludge. The inhibition threshold of Ca in the leachate treated by the activated sludge process appeared to be 4500 mg l -1 , which could be realized by controlling the influent Ca concentration and using an appropriate sludge return ratio in the activated sludge process.

  8. Design and Fabrication of a Dielectric Total Internal Reflecting Solar Concentrator and Associated Flux Extractor for Extreme High Temperature (2500K) Applications

    NASA Technical Reports Server (NTRS)

    Soules, Jack A.; Buchele, Donald R.; Castle, Charles H.; Macosko, Robert P.

    1997-01-01

    The Analex Corporation, under contract to the NASA Lewis Research Center (LeRC), Cleveland, Ohio, recently evaluated the feasibility of utilizing refractive secondary concentrators for solar heat receivers operating at temperatures up to 2500K. The feasibility study pointed out a number of significant advantages provided by solid single crystal refractive devices over the more conventional hollow reflective compound parabolic concentrators (CPCs). In addition to the advantages of higher concentration ratio and efficiency, the refractive concentrator, when combined with a flux extractor rod, provides for flux tailoring within the heat receiver cavity. This is a highly desirable, almost mandatory, feature for solar thermal propulsion engine designs presently being considered for NASA and Air Force thermal applications. Following the feasibility evaluation, the NASA-LeRC, NASA-Marshall Space Flight Center (MSFC), and Analex Corporation teamed up to design, fabricate, and test a refractive secondary concentrator/flux extractor system for potential use in the NASA-MSFC "Shooting Star" flight experiment. This paper describes the advantages and technical challenges associated with the design methodologies developed and utilized and the material and fabrication limitations encountered.

  9. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro.

    PubMed

    Giusti, Ilaria; D'Ascenzo, Sandra; Mancò, Annalisa; Di Stefano, Gabriella; Di Francesco, Marianna; Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio; Dolo, Vincenza

    2014-01-01

    Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 10(6) plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 10(6), 1 × 10(6) plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing.

  10. The significance of low substrate concentration measurements for mechanistic interpretation in cholinesterases.

    PubMed

    Stojan, Jure

    2013-03-25

    Cholinesterases do not follow the Michaelis-Menten kinetics. In the past, many reaction schemes were suggested to explain their complex interactions during the substrate turnover. Covalent catalysis was recognized very early and therefore, double intermediate traditional reaction scheme for the hydrolysis of good substrates at low concentrations was postulated. However, at intermediate and high substrate concentrations homotropic pseudocooperative effects take place in all cholinesterases, due to the nature of their buried active center. In this study, the significance and usefulness of experimental data obtained at low substrate concentrations, where only one substrate molecule accesses the active site at a time, are to be specified for the overall mechanistic evaluations. Indeed, different interpretations are expected when data are processed with equations derived from different reaction schemes. Consequently, the scheme with two substrate binding sites which comprises the structurally evidenced fully occupied active site as ultimate cause for substantially decreased cholinesterase activity at extremely high substrate concentrations is considered here. A special emphasis is put on butyrylcholinesterase, the enzyme with the largest active site among cholinesterases, where the pseudocooperative effects appear at much higher concentrations than in acetylcholinesterases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Resonance shifting: A simple, all-optical method for circumventing the reabsorption problem in luminescent concentrators

    NASA Astrophysics Data System (ADS)

    Giebink, Noel; Wiederrecht, Gary; Wasielewski, Michael

    2011-03-01

    Luminescent concentrators (LSCs) were developed over three decades ago as a simple route to obtain high concentration ratio for photovoltaic cells without tracking the sun. In principle, high concentration ratios 100 are possible for commonly used chromophores. In practice, however, there is typically an overlap between the chromophore absorption and emission spectra that, although small, ultimately leads to unacceptable reabsorption losses, limiting the concentration ratio to ~ 10 and hence the utility of LSCs to date. We introduce a simple, all-optical means of avoiding reabsorption loss by ``resonance shifting'' from a bilayer cavity that consists of an absorber/emitter waveguide lying upon a low refractive index layer supported by a transparent substrate. Emission is evanescently coupled into the substrate at sharply defined angles and hence, by varying the cavity thickness over the device area, the original absorption resonance can be avoided at each bounce, allowing for extremely low propagation loss to the substrate edges and hence an increase in the optical concentration ratio. We validate this concept for absorber/emitter layers composed of both a typical luminescent polymer and inorganic semiconductor nanocrystals, demonstrating near-lossless propagation in each case.

  12. Platelet Concentration in Platelet-Rich Plasma Affects Tenocyte Behavior In Vitro

    PubMed Central

    Rughetti, Anna; Dal Mas, Antonella; Properzi, Gianfranco; Calvisi, Vittorio

    2014-01-01

    Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 106 plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 106, 1 × 106 plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing. PMID:25147809

  13. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    PubMed

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro.

    PubMed

    Gonzalez, R J; Wilson, R W; Wood, C M; Patrick, M L; Val, A L

    2002-01-01

    We measured unidirectional ion fluxes of fish collected directly from the Rio Negro, an extremely dilute, acidic blackwater tributary of the Amazon. Kinetic analysis of Na(+) uptake revealed that most species had fairly similar J(max) values, ranging from 1,150 to 1,750 nmol g(-1) h(-1), while K(m) values varied to a greater extent. Three species had K(m) values <33 micromol L(-1), while the rest had K(m) values >or=110 micromol L(-1). Because of the extremely low Na(+) concentration of Rio Negro water, the differences in K(m) values yield very different rates of Na(+) uptake. However, regardless of the rate of Na(+) uptake, measurements of Na(+) efflux show that Na(+) balance was maintained at very low Na(+) levels (<50 micromol L(-1)) by most species. Unlike other species with high K(m) values, the catfish Corydoras julii maintained high rates of Na(+) uptake in dilute waters by having a J(max) value at least 100% higher than the other species. Corydoras julii also demonstrated the ability to modulate kinetic parameters in response to changes in water chemistry. After 2 wk in 2 mmol L(-1) NaCl, J(max) fell >50%, and K(m) dropped about 70%. The unusual acclimatory drop in K(m) may represent a mechanism to ensure high rates of Na(+) uptake on return to dilute water. As well as being tolerant of extremely dilute waters, Rio Negro fish generally were fairly tolerant of low pH. Still, there were significant differences in sensitivity to pH among the species on the basis of degree of stimulation of Na(+) efflux at low pH. There were also differences in sensitivity to low pH of Na(+) uptake, and two species maintained significant rates of uptake even at pH 3.5. When fish were exposed to low pH in Rio Negro water instead of deionized water (with the same concentrations of major ions), the effects of low pH were reduced. This suggests that high concentrations of dissolved organic molecules in the water, which give it its dark tea color, may interact with the branchial epithelium in some protective manner.

  15. [Risk analysis of naphthalene pollution in soils of Tianjin].

    PubMed

    Yang, Yu; Shi, Xuan; Xu, Fu-liu; Tao, Shu

    2004-03-01

    Three approaches were applied and evaluated for probabilistic risk assessment of naphthalene in soils of Tianjin, China, based on the observed naphthalene concentration of 188 top soil samples from the area and LC50 of naphthalene to ten typical soil fauna species from the literature. It was found that the overlapping area of the two probability density functions of concentration and LC50 was 6.4%, the joint probability curve bend towards and very close to the bottom and left axis, and the calculated probability that exposure concentration exceeds LC50 of various species was as low as 1.67%, all indicating a very much acceptable risk of naphthalene to the soil fauna ecosystem and only some of very sensitive species or individual animals are threaten by localized extremely high concentration. The three approaches revealed similar results from different viewpoints.

  16. Positive anomalous concentrations of Pb in some gabbroic rocks of Afikpo basin southeastern Nigeria.

    PubMed

    Onwualu-John, J N

    2016-08-01

    Gabbroic rocks have intruded the sedimentary sequence at Ameta in Afikpo basin southeastern Nigeria. Petrographic and geochemical features of the rocks were studied in order to evaluate their genetic and geotectonic history. The petrographic results show that the rocks contain plagioclase, olivine, pyroxene, biotite, iron oxide, and traces of quartz in three samples. Major element characteristics show that the rocks are subalkaline. In addition, the rocks have geochemical characteristics similar to basaltic andesites. The trace elements results show inconsistent concentrations of high field strength elements (Zr, Nb, Th, Ta), moderate enrichment of large-ion lithophile elements (Rb, Sr, Ba) and low concentrations of Ni and Cr. Rare earth element results show that the rocks are characterized by enrichment of light rare earth elements, middle rare earth elements enrichment, and depletion of heavy rare earth elements with slight positive europium anomalies. Zinc concentrations are within the normal range in basaltic rocks. There are extremely high concentrations of Pb in three of the rock samples. The high Pb concentrations in some of these rocks could be as a result of last episodes of magmatic crystallization. The rocks intruded the Asu River Group; organic components in the sedimentary sequence probably contain Pb which has been assimilated into the magma at the evolutionary stage of the magma. Weathering of some rocks that contain galena could lead to an increase in the concentration of lead in the gabbroic rocks, especially when the migration and crystallization of magma take place in an aqueous environment. Nevertheless, high concentration of lead is hazardous to health and environment.

  17. Effect of salinity on locomotor performance and thermal extremes of metamorphic Andean Toads (Rhinella spinulosa) from Monte Desert, Argentina.

    PubMed

    Sanabria, Eduardo; Quiroga, Lorena; Vergara, Cristina; Banchig, Mariana; Rodriguez, Cesar; Ontivero, Emanuel

    2018-05-01

    Rhinella spinulosa is distributed from Peru to Argentina (from 1200 to 5000 m elevation), inhabiting arid mountain valleys of the Andes, characterized by salty soils. The variations in soil salinity, caused by high evapotranspiration of water, can create an osmotic constraint and high thermal oscillations for metamorphsed Andean toad (R. spinulosa), affecting their thermoregulation and extreme thermal tolerances. We investigated the changes in thermal tolerance parameters (critical thermal maximum and crystallization temperature) of a population of metamorphosed R. spinulosa from the Monte Desert of San Juan, Argentina, under different substrate salinity conditions. Our results suggest that the locomotor performance of metamorphs of R. spinulosa is affected by increasing salinity concentrations in the environment where they develop. On the other hand, the thermal extremes of metamorphs of R. spinulosa also showed changes associated with different salinity conditions. According to other studies on different organisms, the increase of the osmolarity of the internal medium may increase the thermal tolerance of this species. More studies are needed to understand the thermo-osmolar adjustments of the metamorphs of toads to environmental variability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A Study of Particulate Matter (PM2.5) Concentration Variance by Distance from Train Platform at a Major Bay Area Rapid Transit (BART) Railway Station

    NASA Astrophysics Data System (ADS)

    Solis, M.; Nguyen, H.; Adeyan, A.; Adeyan, E.; Taylor, S.; Hardaway, K.; Peterson, E.; Ortega, J.; Marshall, R.

    2017-12-01

    Over the past five years, the East Bay Academy for Young Scientists (EBAYS) has been investigating air quality at Bay Area Rapid Transit (BART) train stations. In particular, prior EBAYS research has revealed extremely high levels of particulate matter (PM 2.5) at the multi-leveled Embarcadero Station, which is underground and is one of the most frequently visited stations in the entire BART system. During the summer of 2017 data was collected to determine whether or not air quality differed on the three levels of this station. In conducting this study the research team was separated into pairs, each pair in possession of a Dustrak II or AirBeam PM analyzer and each pair assigned to a particular level. Within each measurement trial data was collected for 15 minutes. Measurements were also made on the eastern and western ends of the platforms to detect possible variations in PM concentration. Preliminary results obtained thus far indicate that dangerously high levels of PM 2.5 concentration occur on all three levels of the station. This is especially problematic because it suggests that individuals who spend extensive amounts of time at this station (e.g., station agents and other workers) are exposed to extremely high PM 2.5 concentration levels and as a result are working under conditions that are quite hazardous to their health. Based on observations made during testing, increased levels of PM 2.5 tend to correlate with the departure or arrival of BART trains that results in particulate matter being scattered about the train platform and other levels. Further studies should be conducted to verify this observation and to contribute to better understanding the sources and behavior of PM 2.5 at each level of the station.

  19. Packaging and delivery of chemical weapons: a defensive trojan horse stratagem in chromodorid nudibranchs.

    PubMed

    Carbone, Marianna; Gavagnin, Margherita; Haber, Markus; Guo, Yue-Wei; Fontana, Angelo; Manzo, Emiliano; Genta-Jouve, Gregory; Tsoukatou, Maria; Rudman, William B; Cimino, Guido; Ghiselin, Michael T; Mollo, Ernesto

    2013-01-01

    Storage of secondary metabolites with a putative defensive role occurs in the so-called mantle dermal formations (MDFs) that are located in the more exposed parts of the body of most and very likely all members of an entire family of marine mollusks, the chromodorid nudibranchs (Gastropoda: Opisthobranchia). Given that these structures usually lack a duct system, the mechanism for exudation of their contents remains unclear, as does their adaptive significance. One possible explanation could be that they are adapted so as to be preferentially attacked by predators. The nudibranchs might offer packages containing highly repugnant chemicals along with parts of their bodies to the predators, as a defensive variant of the strategic theme of the Trojan horse. We detected, by quantitative (1)H-NMR, extremely high local concentrations of secondary metabolites in the MDFs of six species belonging to five chromodorid genera. The compounds were purified by chromatographic methods and subsequently evaluated for their feeding deterrent properties, obtaining dose-response curves. We found that only distasteful compounds are accumulated in the reservoirs at concentrations that far exceed the values corresponding to maximum deterrent activity in the feeding assays. Other basic evidence, both field and experimental, has been acquired to elucidate the kind of damage that the predators can produce on both the nudibranchs' mantles and the MDFs. As a result of a long evolutionary process that has progressively led to the accumulation of defensive chemical weapons in localized anatomical structures, the extant chromodorid nudibranchs remain in place when molested, retracting respiratory and chemosensory organs, but offering readily accessible parts of their body to predators. When these parts are masticated or wounded by predators, breakage of the MDFs results in the release of distasteful compounds at extremely high concentration in a way that maximizes their repugnant impact.

  20. [Suicide and suicide prevention in Vienna from 1938 to 1945].

    PubMed

    Sonneck, Gernot; Hirnsperger, Hans; Mundschütz, Reinhard

    2012-01-01

    Beginning with the inception of suicide prevention in interwar Vienna, the paper illustrates how the high number of counselling centres contrasted with a discourse of selection. Despite the fact that suicide rates proved extremely high, suicide prevention declined in importance between 1934 and 1945. Suicide was increasingly attributed to the weak and the inferior. The massive threat to Vienna's Jewish population and the high suicide rates among Viennese Jews are also outlined. The paper concludes with a synopsis of V. E. Frankl's activities in the field of suicide prevention at the Rothschild Hospital as well as the concentration camp in Theresienstadt.

  1. Timing of floods in southeastern China: Seasonal properties and potential causes

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Luo, Ming

    2017-09-01

    Flood hazards and flood risks in southeastern China have been causing increasing concerns due to dense population and highly-developed economy. This study attempted to address changes of seasonality, timing of peak floods and variability of occurrence date of peak floods using circular statistical methods and the modified Mann-Kendall trend detection method. The causes of peak flood changes were also investigated. Results indicated that: (1) floods were subject to more seasonality and temporal clustering when compared to precipitation extremes. However, seasonality of floods and extreme precipitation was subject to spatial heterogeneity in northern Guangdong. Similar changing patterns of peak floods and extreme precipitation were found in coastal regions; (2) significant increasing/decreasing seasonality, but no confirmed spatial patterns, were observed for peak floods and extreme precipitation. Peak floods in northern Guangdong province had decreasing variability, but had larger variability in coastal regions; (3) tropical cyclones had remarkable impacts on extreme precipitation changes in coastal regions of southeastern China, and peak floods as well. The landfalling of tropical cyclones was decreasing and concentrated during June-September; this is the major reason for earlier but enhanced seasonality of peak floods in coastal regions. This study sheds new light on flood behavior in coastal regions in a changing environment.

  2. Draft Genome Sequence of the Polyextremophilic Exiguobacterium sp. Strain S17, Isolated from Hyperarsenic Lakes in the Argentinian Puna.

    PubMed

    Ordoñez, Omar F; Lanzarotti, Esteban; Kurth, Daniel; Gorriti, Marta F; Revale, Santiago; Cortez, Néstor; Vazquez, Martin P; Farías, María E; Turjanski, Adrian G

    2013-07-25

    Exiguobacterium sp. strain S17 is a moderately halotolerant, arsenic-resistant bacterium that was isolated from Laguna Socompa stromatolites in the Argentinian Puna. The draft genome sequence suggests potent enzyme candidates that are essential for survival under multiple environmental extreme conditions, such as high levels of UV radiation, elevated salinity, and the presence of critical arsenic concentrations.

  3. Status of black walnut (Juglans nigra L.) in the Eastern United States in light of the discovery of thousand cankers disease

    Treesearch

    KaDonna Randolph; Anita Rose; Christopher Oswalt; Mark Brown

    2013-01-01

    Juglans nigra (black walnut) is widely distributed throughout the US eastern forest, with high concentrations occurring in Missouri and the Ohio and Tennessee River basins. It is an extremely desirable tree for wildlife forage and timber production on forest land, and for shade, aesthetics, and wildlife forage in urban areas. Current (2009–2010)...

  4. Energy dissipation in Ni-containing concentrated solid solutions.

    NASA Astrophysics Data System (ADS)

    Samolyuk, German; Mu, Sai; Jin, Ke; Bei, Hongbin; Stocks, G. Malcolm

    Due to high disorder the diffusion processes are noticeably suppressed concentrated solid solution, so called high entropy alloys. It makes these alloys promising candidate for energy application under extreme conditions. Understanding of the energy dissipation in these alloys during the irradiation or interaction with laser bean is extremely important. In the metals and alloys the main channel of energy dissipation is provided by the electronic subsystem. The first principles approach was used to investigate the electronic structure properties of the alloys. The obtained results were used to calculate the electronic part of thermal resistivity caused by scattering of electrons on atomic disorder, magnetic and phonon excitations The contribution of last two excitations to the temperature dependence of thermal resistivity is discussed. The importance of magnetism in 3d transition metals based alloy was demonstrated. In particular, it was shown that antiferromagnetic ordering of chromium or manganese leads to significant increase of electron scattering in alloy containing these elements. It results in significant reduction of conductivity in chromium or manganese containing alloys. The comparison with the existing experimental data is discussed. This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  5. User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate.

    PubMed

    Chan, Gary C K; Hall, Wayne; Freeman, Tom P; Ferris, Jason; Kelly, Adrian B; Winstock, Adam

    2017-09-01

    Recent reports suggest an increase in use of extremely potent cannabis concentrates such as Butane Hash Oil (BHO) in some developed countries. The aims of this study were to examine the characteristics of BHO users and the effect profiles of BHO. Anonymous online survey in over 20 countries in 2014 and 2015. Participants aged 18 years or older were recruited through onward promotion and online social networks. The overall sample size was 181,870. In this sample, 46% (N=83,867) reported using some form of cannabis in the past year, and 3% reported BHO use (n=5922). Participants reported their use of 7 types of cannabis in the past 12 months, the source of their cannabis, reasons for use, use of other illegal substances, and lifetime diagnosis for depression, anxiety and psychosis. Participants were asked to rate subjective effects of BHO and high potency herbal cannabis. Participants who reported a lifetime diagnosis of depression (OR=1.15, p=0.003), anxiety (OR=1.72, p<0.001), and a larger number of substance use (OR=1.29, p<0.001) were more likely to use BHO than only using high potency herbal cannabis. BHO users also reported stronger negative effects and less positive effects when using BHO than high potency herbal cannabis (p<0.001) CONCLUSION: Mental health problems and other illicit drug use were associated with use of BHO. BHO was reported to have stronger negative and weaker positive effects than high potency herbal cannabis. Copyright © 2017. Published by Elsevier B.V.

  6. The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions.

    PubMed

    Gutiérrez-Preciado, Ana; Vargas-Chávez, Carlos; Reyes-Prieto, Mariana; Ordoñez, Omar F; Santos-García, Diego; Rosas-Pérez, Tania; Valdivia-Anistro, Jorge; Rebollar, Eria A; Saralegui, Andrés; Moya, Andrés; Merino, Enrique; Farías, María Eugenia; Latorre, Amparo; Souza, Valeria

    2017-01-01

    We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. 'Chiri qhucha' in Quechua means 'cold lake', which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.

  7. UV-Resistant Actinobacteria from High-Altitude Andean Lakes: Isolation, Characterization and Antagonistic Activities.

    PubMed

    Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena

    2017-05-01

    Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.

  8. Estimating the impact of extreme climatic events on riverine sediment transport: new tools and methods

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.

    2010-12-01

    A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).

  9. Physico-chemical quality and homogeneity of folic acid and iron in enriched flour using principal component analysis.

    PubMed

    Soeiro, Bruno T; Boen, Thaís R; Wagner, Roger; Lima-Pallone, Juliana A

    2009-01-01

    The aim of the present work was to determine parameters of the corn and wheat flour matrix, such as protein, lipid, moisture, ash and carbohydrates, folic acid and iron contents. Three principal components explained 91% of the total variance. Wheat flours were characterized by high protein and moisture content. On the other hand, the corn flours had the greater carbohydrates, lipids and folic acid levels. The concentrations of folic acid were lower than the issued value for wheat flours. Nevertheless, corn flours presented extremely high values. The iron concentration was higher than that recommended in Brazilian legislation. Poor homogenization of folic acid and iron was observed in enriched flours. This study could be useful to help the governmental authorities in the enriched food programs evaluation.

  10. Regional estimation of extreme suspended sediment concentrations using watershed characteristics

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Ouarda, Taha B. M. J.; St-Hilaire, André; Poulin, Jimmy

    2010-01-01

    SummaryThe number of stations monitoring daily suspended sediment concentration (SSC) has been decreasing since the 1980s in North America while suspended sediment is considered as a key variable for water quality. The objective of this study is to test the feasibility of regionalising extreme SSC, i.e. estimating SSC extremes values for ungauged basins. Annual maximum SSC for 72 rivers in Canada and USA were modelled with probability distributions in order to estimate quantiles corresponding to different return periods. Regionalisation techniques, originally developed for flood prediction in ungauged basins, were tested using the climatic, topographic, land cover and soils attributes of the watersheds. Two approaches were compared, using either physiographic characteristics or seasonality of extreme SSC to delineate the regions. Multiple regression models to estimate SSC quantiles as a function of watershed characteristics were built in each region, and compared to a global model including all sites. Regional estimates of SSC quantiles were compared with the local values. Results show that regional estimation of extreme SSC is more efficient than a global regression model including all sites. Groups/regions of stations have been identified, using either the watershed characteristics or the seasonality of occurrence for extreme SSC values providing a method to better describe the extreme events of SSC. The most important variables for predicting extreme SSC are the percentage of clay in the soils, precipitation intensity and forest cover.

  11. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    PubMed

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Habitat-based PCB environmental quality criteria for the protection of endangered killer whales (Orcinus orca).

    PubMed

    Alava, Juan José; Ross, Peter S; Lachmuth, Cara; Ford, John K B; Hickie, Brendan E; Gobas, Frank A P C

    2012-11-20

    The development of an area-based polychlorinated biphenyl (PCB) food-web bioaccumulation model enabled a critical evaluation of the efficacy of sediment quality criteria and prey tissue residue guidelines in protecting fish-eating resident killer whales of British Columbia and adjacent waters. Model-predicted and observed PCB concentrations in resident killer whales and Chinook salmon were in good agreement, supporting the model's application for risk assessment and criteria development. Model application shows that PCB concentrations in the sediments from the resident killer whale's Critical Habitats and entire foraging range leads to PCB concentrations in most killer whales that exceed PCB toxicity threshold concentrations reported for marine mammals. Results further indicate that current PCB sediment quality and prey tissue residue criteria for fish-eating wildlife are not protective of killer whales and are not appropriate for assessing risks of PCB-contaminated sediments to high trophic level biota. We present a novel methodology for deriving sediment quality criteria and tissue residue guidelines that protect biota of high trophic levels under various PCB management scenarios. PCB concentrations in sediments and in prey that are deemed protective of resident killer whale health are much lower than current criteria values, underscoring the extreme vulnerability of high trophic level marine mammals to persistent and bioaccumulative contaminants.

  13. Air ion mobility spectra and concentrations upwind and downwind of overhead AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Wright, Matthew D.; Buckley, Alison J.; Matthews, James C.; Shallcross, Dudley E.; Henshaw, Denis L.

    2014-10-01

    Corona ions produced by high-voltage power lines (HVPLs) can alter the nearby electrical environment, potentially increasing aerosol charge levels downwind. However, there is a lack of knowledge concerning the concentration and mobility of ions from AC HVPLs and their dispersion away from the line. We present ion concentration and mobility measurements made near AC HVPLs in South-West England. Examples of typical mobility spectra are shown highlighting features commonly observed. Corona was observed during 33 of 46 measurements, at 9 of 11 sites, with positive or ‘bipolar' (both polarities) ion production commonly seen. Ion production usually increases atmospheric concentrations by only a modest amount, but extreme cases can enhance concentration by an order of magnitude or more. A polarity imbalance is required to increase aerosol charge via ion attachment; this was observed on 15 of 24 days when positive corona was observed, but was not seen for negative ions. Ion mobility was higher downwind compared with upwind for both ion polarities, but the increase was not statistically significant. Future work should focus on identifying and characterising ‘heavy-producing' HVPLs, and obtaining results in conditions which may favour negative ion production e.g. high humidity, inclement weather or during nighttime.

  14. High-temperature catalyst for catalytic combustion and decomposition

    NASA Technical Reports Server (NTRS)

    Mays, Jeffrey A. (Inventor); Lohner, Kevin A. (Inventor); Sevener, Kathleen M. (Inventor); Jensen, Jeff J. (Inventor)

    2005-01-01

    A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.

  15. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources.

    PubMed

    Manolopoulos, Helen; Snyder, David C; Schauer, James J; Hill, Jason S; Turner, Jay R; Olson, Mark L; Krabbenhoft, David P

    2007-08-15

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m(-3) for elemental mercury (Hg0) and 38 300 pg m(-3) for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NO(x) were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NO(x) ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site.

  16. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources

    USGS Publications Warehouse

    Manolopoulos, H.; Snyder, D.C.; Schauer, J.J.; Hill, J.S.; Turner, J.R.; Olson, M.L.; Krabbenhoft, D.P.

    2007-01-01

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m-3 for elemental mercury (Hg 0) and 38 300 pg m-3 for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg 0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NOx were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NOx ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site. ?? 2007 American Chemical Society.

  17. Serum Vitamin E Concentrations and Recovery of Physical Function During the Year After Hip Fracture

    PubMed Central

    Miller, Ram R.; Hicks, Gregory E.; Orwig, Denise L.; Hochberg, Marc C.; Semba, Richard D.; Yu-Yahiro, Janet A.; Ferrucci, Luigi; Magaziner, Jay; Shardell, Michelle D.

    2011-01-01

    Background. Poor nutritional status after hip fracture is common and may contribute to physical function decline. Low serum concentrations of vitamin E have been associated with decline in physical function among older adults, but the role of vitamin E in physical recovery from hip fracture has never been explored. Methods. Serum concentrations of α- and γ-tocopherol, the two major forms of vitamin E, were measured in female hip fracture patients from the Baltimore Hip Studies cohort 4 at baseline and at 2-, 6-, and 12-month postfracture follow-up visits. Four physical function measures—Six-Minute Walk Distance, Lower Extremity Gain Scale, Short Form-36 Physical Functioning Domain, and Yale Physical Activity Survey—were assessed at 2, 6, and 12 months postfracture. Generalized estimating equations modeled the relationship between baseline and time-varying serum tocopherol concentrations and physical function after hip fracture. Results. A total of 148 women aged 65 years and older were studied. After adjusting for covariates, baseline vitamin E concentrations were positively associated with Six-Minute Walk Distance, Lower Extremity Gain Scale, and Yale Physical Activity Survey scores (p < .1) and faster improvement in Lower Extremity Gain Scale and Yale Physical Activity Survey scores (p < .008). Time-varying vitamin E was also positively associated with Six-Minute Walk Distance, Lower Extremity Gain Scale, Yale Physical Activity Survey, and Short Form-36 Physical Functioning Domain (p < .03) and faster improvement in Six-Minute Walk Distance and Short Form-36 Physical Functioning Domain (p < .07). Conclusions. Serum concentrations of both α- and γ-tocopherol were associated with better physical function after hip fracture. Vitamin E may represent a potentially modifiable factor related to recovery of postfracture physical function. PMID:21486921

  18. Lakewide monitoring of suspended solids using satellite data. [Lake Superior water reclamation

    NASA Technical Reports Server (NTRS)

    Sydor, M. (Principal Investigator)

    1981-01-01

    In anticipation of using LANDSAT and Nimbus 7 coastal zone color scanner data to observe the decrease in suspended solids in Lake Superior following cessation of the dumping of taconite tailings, a series of lakewide sampling cruises was conducted to make radiometric measurements at a lake level. A means for identifying particulates and measuring their concentration from LANDSAT data was developed. The initial distribution of chemical parameters in the extreme western arm of the lake, where the concentration gradients are high, is to be based on the LANDSAT data. Subsequent lakewide dispersal and distribution is to be based on the coastal zone color scanner data.

  19. Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments

    PubMed Central

    Chen, Yuning; Liu, Na; Cao, Yingze; Lin, Xin; Xu, Liangxin; Zhang, Weifeng; Wei, Yen; Feng, Lin

    2016-01-01

    A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficiency is observed after different kinds of oil-in-water emulsions separation, which provides it candidate for comprehensive applicability. PMID:27597570

  20. Intensification of hot extremes in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diffenbaugh, Noah; Ashfaq, Moetasim

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulationmore » during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.« less

  1. Sensitive strata in Bootlegger Cove Formation

    USGS Publications Warehouse

    Olsen, Harold W.

    1989-01-01

    Sensitivity magnitudes are interpreted from remolded strength values in recent subsurface geologic, geotechnical, and geochemical data from the Bootlegger Cove Formation adjacent to the Turnagain Heights Landslide. The results show that strata composed of highly sensitive clays occur in both the middle and lower zones of the formation, and that between these strata the clays are generally of low-to-medium sensitivity. The most sensitive stratum is in the middle zone between two sand layers, and its sensitivity increases from both clay-sand interfaces to a maximum at the center of the stratum. The pore fluid chemistry of the highly sensitive materials differs from that in the materials of low to medium sensitivity only in their concentrations of organic carbon, chloride, bicarbonate, and sulfate. The total dissolved solids concentration is low, and the ratio of monovalent to divalent cations is very high throughout the middle and lower zones of the formation. Of the known causes of high and extremely high sensitivities, only organic and/or anionic dispersants are consistent with these findings.

  2. Specific decrease in solution viscosity of antibodies by arginine for therapeutic formulations.

    PubMed

    Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2014-06-02

    Unacceptably high viscosity is observed in high protein concentration formulations due to extremely large therapeutic dose of antibodies and volume restriction of subcutaneous route of administration. Here, we show that a protein aggregation suppressor, arginine hydrochloride (ArgHCl), specifically decreases viscosity of antibody formulations. The viscosities of bovine gamma globulin (BGG) solution at 250 mg/mL and human gamma globulin (HGG) solution at 292 mg/mL at a physiological pH were too high for subcutaneous injections, but decreased to an acceptable level (below 50 cP) in the presence of 1,000 mM ArgHCl. ArgHCl also decreased the viscosity of BGG solution at acidic and alkaline pHs. Interestingly, ArgHCl decreased the viscosity of antibody solutions (BGG, HGG, and human immunoglobulin G) but not globular protein solutions (α-amylase and α-chymotrypsin). These results indicate not only high potency of ArgHCl as an excipient to decrease the solution viscosity of high concentration antibodies formulations but also specific interactions between ArgHCl and antibodies.

  3. Elevated protein concentrations in newborn blood and the risks of autism spectrum disorder, and of social impairment, at age 10 years among infants born before the 28th week of gestation.

    PubMed

    Korzeniewski, Steven J; Allred, Elizabeth N; O'Shea, T Michael; Leviton, Alan; Kuban, Karl C K

    2018-06-08

    Among the 1 of 10 children who are born preterm annually in the United States, 6% are born before the third trimester. Among children who survive birth before the 28th week of gestation, the risks of autism spectrum disorder (ASD) and non-autistic social impairment are severalfold higher than in the general population. We examined the relationship between top quartile inflammation-related protein concentrations among children born extremely preterm and ASD or, separately, a high score on the Social Responsiveness Scale (SRS total score ≥65) among those who did not meet ASD criteria, using information only from the subset of children whose DAS-II verbal or non-verbal IQ was ≥70, who were assessed for ASD, and who had proteins measured in blood collected on ≥2 days (N = 763). ASD (N = 36) assessed at age 10 years is associated with recurrent top quartile concentrations of inflammation-related proteins during the first post-natal month (e.g., SAA odds ratio (OR); 95% confidence interval (CI): 2.5; 1.2-5.3) and IL-6 (OR; 95% CI: 2.6; 1.03-6.4)). Top quartile concentrations of neurotrophic proteins appear to moderate the increased risk of ASD associated with repeated top quartile concentrations of inflammation-related proteins. High (top quartile) concentrations of SAA are associated with elevated risk of ASD (2.8; 1.2-6.7) when Ang-1 concentrations are below the top quartile, but not when Ang-1 concentrations are high (1.3; 0.3-5.8). Similarly, high concentrations of TNF-α are associated with heightened risk of SRS-defined social impairment (N = 130) (2.0; 1.1-3.8) when ANG-1 concentrations are not high, but not when ANG-1 concentrations are elevated (0.5; 0.1-4.2).

  4. Current trends in nanobiosensor technology

    PubMed Central

    Wu, Diana; Langer, Robert S

    2014-01-01

    The development of tools and processes used to fabricate, measure, and image nanoscale objects has lead to a wide range of work devoted to producing sensors that interact with extremely small numbers (or an extremely small concentration) of analyte molecules. These advances are particularly exciting in the context of biosensing, where the demands for low concentration detection and high specificity are great. Nanoscale biosensors, or nanobiosensors, provide researchers with an unprecedented level of sensitivity, often to the single molecule level. The use of biomolecule-functionalized surfaces can dramatically boost the specificity of the detection system, but can also yield reproducibility problems and increased complexity. Several nanobiosensor architectures based on mechanical devices, optical resonators, functionalized nanoparticles, nanowires, nanotubes, and nanofibers have been demonstrated in the lab. As nanobiosensor technology becomes more refined and reliable, it is likely it will eventually make its way from the lab to the clinic, where future lab-on-a-chip devices incorporating an array of nanobiosensors could be used for rapid screening of a wide variety of analytes at low cost using small samples of patient material. PMID:21391305

  5. Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xuejiang; Tang, Keqi

    Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers wouldmore » ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode, also known as multiple reaction monitoring (MRM), is capable of quantitatively measuring hundreds of candidate protein biomarkers from a relevant clinical sample in a single analysis. The specificity, reproducibility and sensitivity could be as good as ELISA. Furthermore, SRM MS can also quantify protein isoforms and post-translational modifications, for which traditional antibody-based immunoassays often don’t exist.« less

  6. Organobromine compound profiling in human adipose: Assessment of sources of bromophenol.

    PubMed

    Gao, Shixiong; Wan, Yi; Zheng, Guomao; Luo, Kai; Kannan, Kurunthachalam; Giesy, John P; Lam, Michael H W; Hu, Jianying

    2015-09-01

    Bromophenols (BRPs) have been widely detected in human tissues, however, relative proportions from natural products and/or anthropogenic flame retardants are not clear. 21 polybrominated diphenyl ethers (PBDEs), 15 MeO/OH-PBDEs, and 10 BRPs were simultaneously quantified in adipose collected from people from New York City, USA. An in vitro assay utilizing human liver microsomes was performed for detected predominant organobromine. High concentrations of 2,4,6-triBRP and PBDEs were observed, and extremely low concentrations of naturally occurring MeO/OH-PBDEs were detected. Similar biotransformatioin rates of BRPs and MeO/OH-PBDEs indicated that the relative high concentration of 2,4,6-triBRP in humans was not of natural origin. Significant correlation observed between concentrations of 2,4,6-triBRP and BDE-209 suggested that the two chemicals may share a common source. Both 2,4,6-triBRP and BDE-209 were detected in commercial ABS resins, suggesting that plastic products made from ABS resins could be potential sources of co-exposure of the two compounds for humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cyanobacterial bloom in the world largest freshwater lake Baikal

    NASA Astrophysics Data System (ADS)

    Namsaraev, Zorigto; Melnikova, Anna; Ivanov, Vasiliy; Komova, Anastasia; Teslyuk, Anton

    2018-02-01

    Lake Baikal is a UNESCO World Heritage Site and holds 20% of the world’s freshwater reserves. On July 26, 2016, a cyanobacterial bloom of a green colour a few kilometers in size with a bad odor was discovered by local people in the Barguzinsky Bay on the eastern shore of Lake Baikal. Our study showed very high concentration of chlorophyll a (41.7 g/m3) in the sample of bloom. We found that the bloom was dominated by a nitrogen-fixing heterocystous cyanobacteria of the genus Dolichospermum. The mass accumulation of cyanobacteria in the lake water with an extremely high chlorophyll a concentration can be explained by a combination of several factors: the discharge of biologicaly-available nutrients, including phosphorus, into the water of Lake Baikal; low wind speed and weak water mixing; buoyant cyanobacterial cells on the lake surface, which drifted towards the eastern coast, where the maximum concentration of chlorophyll a was recorded. In the center of the Barguzinsky Bay and in the open part of Lake Baikal, according to satellite data, the chlorophyll a concentration is several orders of magnitude lower than at the shoreline.

  8. Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria.

    PubMed

    Hojo, K; Watanabe, R; Mori, T; Taketomo, N

    2007-09-01

    Propionibacteria produce tetrahydromenaquinone-9 [MK-9 (4H)] as a major menaquinone (vitamin K2). This study aimed to determine the MK-9 (4H) concentration in commercial propionibacteria-fermented cheese. The MK-9 (4H) concentration was quantified using an HPLC instrument with a fluorescence detector after postcolumn reduction. Among the various cheese samples, the MK-9 (4H) concentration was highest in Norwegian Jarlsberg cheese, followed by Swiss Emmental cheese. In contrast, the MK-9 (4H) concentrations in Appenzeller or Gruyère cheeses were extremely low or undetected. Likewise, the concentrations in Comte and Raclette cheeses were lower than those in Jarlsberg and Emmental cheeses. In the present study, the MK- 9 (4H) concentration in cheese showed a correlation with the viable propionibacterial cell count and propionate concentration. This implies that the increase in propionibacteria contributed to the generation of MK-9 (4H) in cheese. We presumed, based on these results, that Swiss Emmental and Norwegian Jarlsberg cheeses contain a meaningful amount of vitamin K because of their high MK-9 (4H) concentrations (200 to 650 ng/g).

  9. Assessment of ultrafine particles and noise measurements using fuzzy logic and data mining techniques.

    PubMed

    Fernández-Camacho, R; Brito Cabeza, I; Aroba, J; Gómez-Bravo, F; Rodríguez, S; de la Rosa, J

    2015-04-15

    This study focuses on correlations between total number concentrations, road traffic emissions and noise levels in an urban area in the southwest of Spain during the winter and summer of 2009. The high temporal correlation between sound pressure levels, traffic intensity, particle number concentrations related to traffic, black carbon and NOx concentrations suggests that noise is linked to traffic emissions as a main source of pollution in urban areas. First, the association of these different variables was studied using PreFuRGe, a computational tool based on data mining and fuzzy logic. The results showed a clear association between noise levels and road-traffic intensity for non-extremely high wind speed levels. This behaviour points, therefore, to vehicular emissions being the main source of urban noise. An analysis for estimating the total number concentration from noise levels is also proposed in the study. The high linearity observed between particle number concentrations linked to traffic and noise levels with road traffic intensity can be used to calculate traffic related particle number concentrations experimentally. At low wind speeds, there are increases in noise levels of 1 dB for every 100 vehicles in circulation. This is equivalent to 2000 cm(-3) per vehicle in winter and 500 cm(-3) in summer. At high wind speeds, wind speed could be taken into account. This methodology allows low cost sensors to be used as a proxy for total number concentration monitoring in urban air quality networks. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Evaluation of various harvesting methods for high-density microalgae, Aurantiochytrium sp. KRS101.

    PubMed

    Kim, Kyochan; Shin, Heewon; Moon, Myounghoon; Ryu, Byung-Gon; Han, Jong-In; Yang, Ji-Won; Chang, Yong Keun

    2015-12-01

    Five technologies, coagulation, electro-flotation (EF), electro-coagulation-flotation (ECF), centrifugation, and membrane filtration, were systematically assessed for their adequacy of harvesting Aurantiochytrium sp. KRS101, a heterotrophic microalgal species that has much higher biomass concentration than photoautotrophic species. Coagulation, EF, and ECF were found to have limited efficiency. Centrifugation was overly powerful to susceptible cells like Aurantiochytrium sp. KRS101, inducing cell rupture and consequently biomass loss of over 13%. Membrane filtration, in particular equipped with an anti-fouling turbulence generator, turned out to be best suited: nearly 100% of harvesting efficiency and low water content in harvested biomass were achieved. With rotation rate increased, high permeate fluxes could be attained even with extremely concentrated biomass: e.g., 219.0 and 135.0 L/m(2)/h at 150.0 and 203.0 g/L, respectively. Dynamic filtration appears to be indeed a suitable means especially to obtain highly concentrated biomass that have no need of dewatering and can be directly processed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m-3) or high (50-100 pollen grains m-3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated ( r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m-3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  12. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia.

    PubMed

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m(-3)) or high (50-100 pollen grains m(-3)) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m(-3)) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated (r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m(-3)) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  13. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.

    PubMed

    Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon

    2013-02-28

    Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor strains with new Thermoanaerobacter strains underline the importance of using specific strain combinations for high ethanol yields. These co-cultures provide an efficient CBP pathway for ethanol production and represent an ideal starting point for development of a highly integrated commercial ethanol production process.

  14. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  15. Cyber PCE Compendium: Cyber 300 Professional Continuing Education. Volume 1 Issue 2, Winter 2013.

    DTIC Science & Technology

    2013-01-01

    2003, a Naval Communications element decided to interrupt extremely high frequency (EHF) satellite service for routine maintenance during the same...defense programs.12 RECOMMENDATION 1. As a nation we should concentrate our efforts into the successful launching of a cyber- equivalent to " Apollo 11 ...mindset.” 11 4. The former communications and information community didn’t have a strong requirement for intelligence nor a close relationship with

  16. Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site.

    PubMed

    Caldwell, Eric Frank; Duff, Martine C; Ferguson, Caitlin E; Coughlin, Daniel P

    2011-05-01

    The Savannah River Site was constructed in South Carolina to produce plutonium (Pu) in the 1950s. Discharges associated with these now-ceased operations have contaminated large areas within the site, particularly streams associated with reactor cooling basins. Evaluating the exposure risk of contamination to an ecosystem requires methodologies that can assess the bioavailability of contaminants. Plants, as primary producers, represent an important mode of transfer of contaminants from soils and sediments into the food chain. The objective of this study was to identify local area plants for their ability to act as bio-monitors of radionuclides. The concentrations of cesium-137 ((137)Cs), potassium-40 ((40)K), (238)Pu and (239,240)Pu in plants and their associated soils were determined using γ and α spectrometry. The ratio of contamination concentration found in the plant relative to the soil was calculated to assess a concentration ratio (CR). The highest CR for (137)Cs was found in Pinus palustris needles (CR of 2.18). The correlation of soil and plant (137)Cs concentration was strong (0.76) and the R(2) (0.58) from the regression was significant (p = 0.006). This suggests the ability to predict the degree of (137)Cs contamination of a soil through analysis of the pine needles. The (238)Pu and (239,240)Pu concentrations were most elevated within the plant roots. Extremely high CR values were found in Sparganium americanum (bur-reed) roots with a value of 5.86 for (238)Pu and 5.66 for (239,240)Pu. The concentration of (40)K was measured as a known congener of (137)C. Comparing (40)K and (137)C concentrations in each plant revealed an inverse relationship for these radioisotopes. Correlating (40)K and (137)Cs was most effective in identifying plants that have a high affinity for (137)Cs uptake. The P. palustris and S. americanum proved to be particularly strong accumulators of all K congeners from the soil. Some species that were measured, warrant further investigation, are the carnivorous plant Utricularia inflata (bladderwort) and the emergent macrophyte Juncus effusus. For U. inflata, the levels of (137)Cs, (238)Pu, and (239,240)Pu (which were 3922, 8399, and 803 Bq kg(-1), respectively) in the leaves were extremely high. The highest (137)Cs concentration from the study was measured in the J. effusus root (5721 Bq kg(-1)).

  17. An approach toward incorporation of global warming effects into Intensity-Duration-Frequency values

    NASA Astrophysics Data System (ADS)

    Kunkel, K.; Easterling, D. R.

    2017-12-01

    Rising global temperatures from increasing greenhouse gas concentrations will increase overall atmospheric water vapor concentrations. There is a high level of scientific confidence that this will increase the future intensity and frequency of extreme precipitation events, even in regions where overall precipitation may decrease. For control of runoff from extreme rainfall, infrastructure engineering utilizes design values of rainfall known as Intensity-Duration-Frequency (IDF) values. Use of the existing IDF values, which are based solely on historical climate records, is likely to lead to under-design of runoff control structures, and associated increased flood damages. However, future changes in IDF values are uncertain and probably regionally variable. Our paradigm is that changes in IDF values will result from changes in atmospheric capacity (water vapor concentrations) and opportunity (the number and intensity of heavy precipitation-producing storm systems). Relevant storm systems being investigated include extratropical cyclones and their associated fronts, tropical cyclones, and the North American Monsoon system. The overall approach involves developing IDF adjustment factors for changes in these components of the climate system. The adjustment factors have associated uncertainties, primarily from (1) uncertainties in the future pathway of greenhouse gas emissions and (2) variations among climate models in the sensitivity of the climate system to greenhouse gas concentration changes. In addition to meteorological considerations, the lifetime of projects designed using IDF values is an essential consideration because the IDF values may change substantially during that time. The initial results of this project will be discussed.

  18. Residues of chromium, nickel, cadmium and lead in Rook Corvus frugilegus eggshells from urban and rural areas of Poland.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-08-15

    We examined the concentrations of chromium (Cr), nickel (Ni), cadmium (Cd) and lead (Pb) in Rook Corvus frugilegus eggshells from 43 rookeries situated in rural and urban areas of western (=intensive agriculture) and eastern (=extensive agriculture) Poland. We found small ranges in the overall level of Cr (the difference between the extreme values was 1.8-fold; range of concentrations=5.21-9.40 Cr ppm), Ni (3.5-fold; 1.15-4.07 Ni ppm), and Cd (2.6-fold; 0.34-0.91 Cd ppm), whereas concentrations of Pb varied markedly, i.e. 6.7-fold between extreme values (1.71-11.53 Pb ppm). Eggshell levels of these four elements did not differ between rural rookeries from western and eastern Poland, but eggshells from rookeries in large/industrial cities had significantly higher concentrations of Cr, Ni and Pb than those from small towns and villages. Our study suggests that female Rooks exhibited an apparent variation in the intensity of trace metal bioaccumulation in their eggshells, that rapid site-dependent bioaccumulation of Cu, Cr, Ni and Pb occurs as a result of the pollution gradient (rural

  19. Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities.

    PubMed

    Wang, Guo-Hua; Xie, Jian-Ping; Li, Shou-Peng; Guo, Yu-Jie; Pan, Ying; Wu, Haiyan; Liu, Xin-Xing

    2016-11-28

    Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

  20. Effect of Oxygen Tension and Medium Components on Monomer Distribution of Alginate.

    PubMed

    Kıvılcımdan Moral, Çiğdem; Doğan, Özdemir; Sanin, Faika Dilek

    2015-06-01

    Alginate is a natural biopolymer composed of mannuronic and guluronic acid monomers. It is produced by algae and some species of Azotobacter and Pseudomonas. This study aims to investigate the effect of dissolved oxygen tension (DOT) and growth medium substrate and calcium concentrations on the monomeric composition of alginate produced by Azotobacter vinelandii ATCC® 9046 in a fermenter. Results showed that alginate production increased with increasing DOT from 1 to 5 %. The highest alginate production was obtained as 4.51 g/L under 20 g/L of sucrose and 50 mg/L of calcium at 5 % DOT. At these conditions, alginate was rich in mannuronic acid (up to 61 %) and it was particularly high at low calcium concentration. On the other hand, at extreme conditions such as high DOT level (10 % DOT) and low sucrose concentration (10 g/L), guluronic acid was dominant (ranging between 65 and 100 %).

  1. The Limits of Life in the Deep Subsurface - Implications for the Origin of Life

    NASA Astrophysics Data System (ADS)

    Baross, John

    2013-06-01

    There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.

  2. The response of Bacillus subtilis to simulated Martian conditions and to the space environment

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Rabbow, E.; Panitz, C.; Horneck, G.; Reitz, G.

    The early histories of Mars and Earth show similarities during the period when life emerged on Earth Thus a comparable early biological evolution might have taken place also on Mars Several ongoing international space missions are especially designed to search for past or present life on Mars In order to develop adequate instruments and methods for in situ life detection analysis and to avoid the contamination of Mars by terrestrial life forms introduced to it s surface unintentionally it is necessary to understand the potential and limits of life on Earth The determination of the survival of microorganisms under the physical and chemical extremes of Mars will provide detailed insights into the potential for contamination that will allow the development and improvement of planetary protection measures Our knowledge about the occurrence of life especially microbial life on Earth has increased enormously in the last decades Archaea bacteria and protista have been found living in many newly discovered extremely hostile habitats which were regarded up to now as too harsh to harbor life Whereas many newly discovered extremophile species are specialized to cope with one extreme environmental parameter like high or low temperature high or low pH high salt concentration desiccation high flux of ionizing or non-ionizing radiation there are also long-known dormant stages of certain bacteria such as the Bacillus endospores that are capable to withstand most of the environmental parameters on the surface of Mars like low

  3. Resist Parameter Extraction from Line-and-Space Patterns of Chemically Amplified Resist for Extreme Ultraviolet Lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi

    2010-11-01

    The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.

  4. A new approach for the description of discharge extremes in small catchments

    NASA Astrophysics Data System (ADS)

    Pavia Santolamazza, Daniela; Lebrenz, Henning; Bárdossy, András

    2017-04-01

    Small catchment basins in Northwestern Switzerland, characterized by small concentration times, are frequently targeted by floods. The peak and the volume of these floods are commonly estimated by a frequency analysis of occurrence and described by a random variable, assuming a uniform distributed probability and stationary input drivers (e.g. precipitation, temperature). For these small catchments, we attempt to describe and identify the underlying mechanisms and dynamics at the occurrence of extremes by means of available high temporal resolution (10 min) observations and to explore the possibilities to regionalize hydrological parameters for short intervals. Therefore, we investigate new concepts for the flood description such as entropy as a measure of disorder and dispersion of precipitation. First findings and conclusions of this ongoing research are presented.

  5. Estudios de resistencia al estrés de una bacteria poliextremófila relevante para estudios de habitabilidad en planetas solares y extrasolares

    NASA Astrophysics Data System (ADS)

    Maizel, D.; Alché, L.; Mauas, P. J. D.

    2017-10-01

    Recent astrobiology studies have focused in the search for life in Earth-like planets within the Habitable Zone. In an attempt to find possible extraterrestrial forms of life, it becomes fundamental to study extreme life in our own planet, known as ``extremophiles''. In the present work, a study was conducted regarding the capability of the poly-extremophilic bacterial strain Brevibacterium linens AE038-8 to resist different stress factors. Strain AE038-8 was able to grow in presence of high salt concentrations and different doses of UV radiation. In addition to the extreme resistance observed in previous research of this strain, we propose B. linens AE038-8 as a model microorganism for astrobiology studies.

  6. Future intensification of hydro-meteorological extremes: downscaling using the weather research and forecasting model

    NASA Astrophysics Data System (ADS)

    El-Samra, R.; Bou-Zeid, E.; Bangalath, H. K.; Stenchikov, G.; El-Fadel, M.

    2017-12-01

    A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model's ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.

  7. Percentage extremity fat, but not percentage trunk fat, is lower in adolescent boys with anorexia nervosa than in healthy adolescents123

    PubMed Central

    Misra, Madhusmita; Katzman, Debra K; Cord, Jennalee; Manning, Stephanie J; Mickley, Diane; Herzog, David B; Miller, Karen K; Klibanski, Anne

    2013-01-01

    Background Anorexia nervosa (AN) is a condition of severe undernutrition associated with altered regional fat distribution in females. Although primarily a disease of females, AN is increasingly being recognized in males and is associated with hypogonadism. Testosterone is a major regulator of body composition in males, and testosterone administration in adults decreases visceral fat. However, the effect of low testosterone and other hormonal alterations on body composition in boys with AN is not known. Objective We hypothesized that testosterone deficiency in boys with AN is associated with higher trunk fat, as opposed to extremity fat, compared with control subjects. Design We assessed body composition using dual-energy X-ray absorptiometry and measured fasting testosterone, estradiol, insulin-like growth factor-1, leptin, and active ghrelin concentrations in 15 boys with AN and in 15 control subjects of comparable maturity aged 12–19 y. Results Fat and lean mass in AN boys was 69% and 86% of that in control subjects. Percentage extremity fat and extremity lean mass were lower in boys with AN (P = 0.003 and 0.0008); however, percentage trunk fat and the trunk to extremity fat ratio were higher after weight was adjusted for (P = 0.005 and 0.003). Testosterone concentrations were lower in boys with AN, and, on regression modeling, positively predicted percentage extremity lean mass and inversely predicted percentage trunk fat and trunk to extremity fat ratio. Other independent predictors of regional body composition were bone age and weight. Conclusions In adolescent boys with AN, higher percentage trunk fat, higher trunk to extremity fat ratio, lower percentage extremity fat, and lower extremity lean mass (adjusted for weight) are related to the hypogonadal state. PMID:19064506

  8. Characteristics and potential sources of polychlorinated biphenyl pollution in a suburban area of Guangzhou, southern China

    NASA Astrophysics Data System (ADS)

    Li, Qilu; Wang, Yan; Luo, Chunling; Li, Jun; Zhang, Gan

    2017-05-01

    In this study, 52 paired gas and particle samples were collected from a suburban field in Guangzhou in 2012 using a high-volume active air sampler; they were then analysed for 30 polychlorinated biphenyl (PCB) congeners via gas chromatography with tandem mass spectrometry. Total PCB concentrations ranged from 97.4 to 853 pg m-3. This was a moderate level compared with other cities, undeveloped areas, and electronic waste disposal sites. Atmospheric concentrations of PCBs did not exhibit notable diurnal or seasonal variations, except for a few high measurement. Tetra- and tri-CBs were the predominant PCB compounds, with an average combined contribution of 81.9%. CB-77 was the dominant congener in the particle phase due to a few samples with extremely high mass fraction of CB-77 and relatively low concentrations of other PCBs. Based on measurements of pollution characteristics including diurnal and seasonal variations, we used correlation analysis, principal component analysis and back trajectory modeling to deduce that electronic manufacturing and recycling activities, pigment/paint production, and waste incineration plants are possible sources of PCBs in Guangzhou. Of these sources, the high observed contributions of CB-77 originated mainly from the pigment/paint industry.

  9. Extreme Magneto-transport of Bulk Carbon Nanotubes in Sorted Electronic Concentrations and Aligned High Performance Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, John S.; Lekawa-Raus, Agnieszka; Rickel, Dwight G.

    We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classicalmore » MR involving electronic mobility. Subtracting high-field fits from the aligned fiber’s MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber’s room temperature resistance, appears to lack MR field dependence.« less

  10. Extreme Magneto-transport of Bulk Carbon Nanotubes in Sorted Electronic Concentrations and Aligned High Performance Fiber.

    PubMed

    Bulmer, John S; Lekawa-Raus, Agnieszka; Rickel, Dwight G; Balakirev, Fedor F; Koziol, Krzysztof K

    2017-09-22

    We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classical MR involving electronic mobility. Subtracting high-field fits from the aligned fiber's MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber's room temperature resistance, appears to lack MR field dependence.

  11. Extreme Magneto-transport of Bulk Carbon Nanotubes in Sorted Electronic Concentrations and Aligned High Performance Fiber

    DOE PAGES

    Bulmer, John S.; Lekawa-Raus, Agnieszka; Rickel, Dwight G.; ...

    2017-09-22

    We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classicalmore » MR involving electronic mobility. Subtracting high-field fits from the aligned fiber’s MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber’s room temperature resistance, appears to lack MR field dependence.« less

  12. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events?

    PubMed

    Sorby, Kris L; Green, Mark P; Dempster, Tim D; Jessop, Tim S

    2018-05-29

    Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia , subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml -1 ), heat hardening plus methionine (0.79 mg ml -1 ), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events. © 2018. Published by The Company of Biologists Ltd.

  13. Future changes of precipitation characteristics in China

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wu, Y.; Wen, J.

    2017-12-01

    Global warming has the potential to alter the hydrological cycle, with significant impacts on the human society, the environment and ecosystems. This study provides a detailed assessment of potential changes in precipitation characteristics in China using a suite of 12 high-resolution CMIP5 climate models under a medium and a high Representative Concentration Pathways: RCP4.5 and RCP8.5. We examine future changes over the entire distribution of precipitation, and identify any shift in the shape and/or scale of the distribution. In addition, we use extreme-value theory to evaluate the change in probability and magnitude for extreme precipitation events. Overall, China is going to experience an increase in total precipitation (by 8% under RCP4.5 and 12% under RCP8.5). This increase is uneven spatially, with more increase in the west and less increase in the east. Precipitation frequency is projected to increase in the west and decrease in the east. Under RCP4.5, the overall precipitation frequency for the entire China remains largely unchanged (0.08%). However, RCP8.5 projects a more significant decrease in frequency for large part of China, resulting in an overall decrease of 2.08%. Precipitation intensity is likely increase more uniformly, with an overall increase of 11% for RCP4.5 and 19% for RCP8.5. Precipitation increases for all parts of the distribution, but the increase is more for higher quantiles, i.e. strong events. The relative contribution of small quantiles is likely to decrease, whereas contribution from heavy events is likely to increase. Extreme precipitation increase at much higher rates than average precipitation, and high rates of increase are expected for more extreme events. 1-year events are likely to increase by 15%, but 20-year events are going to increase by 21% under RCP4.5, 26% and 40% respectively under RCP8.5. The increase of extreme events is likely to be more spatially uniform.

  14. Probabilistic forecasting for extreme NO2 pollution episodes.

    PubMed

    Aznarte, José L

    2017-10-01

    In this study, we investigate the convenience of quantile regression to predict extreme concentrations of NO 2 . Contrarily to the usual point-forecasting, where a single value is forecast for each horizon, probabilistic forecasting through quantile regression allows for the prediction of the full probability distribution, which in turn allows to build models specifically fit for the tails of this distribution. Using data from the city of Madrid, including NO 2 concentrations as well as meteorological measures, we build models that predict extreme NO 2 concentrations, outperforming point-forecasting alternatives, and we prove that the predictions are accurate, reliable and sharp. Besides, we study the relative importance of the independent variables involved, and show how the important variables for the median quantile are different than those important for the upper quantiles. Furthermore, we present a method to compute the probability of exceedance of thresholds, which is a simple and comprehensible manner to present probabilistic forecasts maximizing their usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transport of free and particulate-associated bacteria in karst

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Personné, J.-C.; Lods, G. F.; Drogue, C.

    2000-12-01

    Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst.

  16. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica

    NASA Astrophysics Data System (ADS)

    Arenas, Felipe A.; Pugin, Benoit; Henríquez, Nicole A.; Arenas-Salinas, Mauricio A.; Díaz-Vásquez, Waldo A.; Pozo, María F.; Muñoz, Claudia M.; Chasteen, Thomas G.; Pérez-Donoso, José M.; Vásquez, Claudio C.

    2014-03-01

    The tellurium oxyanion, tellurite, is extremely noxious to most living organisms. Its toxicity has been mainly related to the generation of reactive oxygen species (ROS) as well as to an unbalancing of the thiol:redox buffering system. Nevertheless, a few bacteria are capable of thriving at high tellurite concentrations. One mechanism of resistance is the enzymatic and non-enzymatic reduction of tellurite to the less toxic elemental tellurium. This reduction generates nano- to micrometric tellurium crystals that display different shapes and sizes. To date, a very limited number of highly tellurite-resistant and tellurite-reducing bacterial species are available from international culture collections. In this work, we decided to look for tellurite-reducing bacteria from an extreme environment, Antarctica. This environment exhibits a combination of several extreme factors such as high UV-radiation and desiccation and freezing conditions that impact directly on the local biodiversity. Since, as does, all these factors induce ROS formation, we hypothesized that Antarctic bacteria could also exhibit tellurite-resistance. In this context, we isolated 123 tellurite-resistant bacteria, and characterized six new tellurite-resistant and tellurite-reducing bacterial strains from samples collected in Antarctica. These strains were identified according to their 16S rRNA gene sequence as Staphylococcus hameolyticus, Staphylococcus sciuri, Acinetobacter haemolyticus, Pseudomonas lini, and two strains of Psychrobacter immobilis. The isolates display tellurite-resistance about 35- to 500-fold higher than Escherichia coli (Te-sensitive organism), and a high level of tellurite reduction which might be interesting for an application in the field of bioremediation or nanoparticle biosynthesis.

  17. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed.

  18. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow

    NASA Astrophysics Data System (ADS)

    Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.

    2014-10-01

    Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO4 2 - and ammonium NH4+ was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of secondary inorganic species associated with wildfire gaseous emissions and their transformation in aged smoke. Accumulation of carbonyl compounds during extreme smoke event in Moscow resulted from photochemical aging and secondary organic aerosol (SOA) formation in the urban atmosphere. The mixture of carbonaceous particles and dust revealed multicomponent structure of Moscow smoke aerosols, pointing the difference with non-smoke ambient aerosols. The abundance of group containing soot and tar balls approached at least a half of total aerosol concentration during extreme event, relating to elevated OC, EC and SOA. Fly ash groups contained calcium sulfates and carbonates from soil entrainment by hot air convection. Small-scale open fire experiments support the identification of specific chemical features of regional biomass burning and demonstrate the strong impact of large-scale wildfires on aerosol chemistry and air quality in highly polluted megacity.

  19. Estimating Effects of Brazilian Forest Wildfires on the Carbon Monoxide Concentration

    NASA Astrophysics Data System (ADS)

    Bhoi, S.; Qu, J.; Dasgupta, S.

    2004-12-01

    Forest wildfires have dramatically increased in recent years due to global warming and extreme dry conditions. Forest wildfires spew out a significant amount of atmospheric pollutants, such as carbon monoxide, due to incomplete burning of the biomass. According to United State Environmental Protection Agency (EPA), a high increase of carbon monoxide leads to the formation of carboxyhemoglobin in blood which decreases the oxygen intake capacity of human body and at moderate concentration angina, impaired vision and reduced brain function may occur. As compared to Northern America where significant amount of carbon monoxide released is caused by combustion devices and furnace, the increase of carbon monoxide concentration in Brazilian regions is mainly attributed to the forest fires. In this study, carbon monoxide datasets from the Measurements of pollution in the troposphere (MOPITT) have been analyzed to see the amount of increase in the carbon monoxide concentration after forest wildfires, ire, particularly in summer of 2003. The study reveals that there is a significant increase in the carbon monoxide concentration after forest fires.

  20. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  1. [Multi-temporal scale analysis of impacts of extreme high temperature on net carbon uptake in subtropical coniferous plantation.

    PubMed

    Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui

    2018-02-01

    Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.

  2. Solution electrostatic levitator for measuring surface properties and bulk structures of an extremely supersaturated solution drop above metastable zone width limit.

    PubMed

    Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Lee, Geun Woo

    2017-05-01

    We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH 2 PO 4 ) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.

  3. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    PubMed Central

    Zhang, Z. W.; Yao, L.; Wang, X.-L.; Miller, M. K.

    2015-01-01

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. Here we report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using a combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters. PMID:26023747

  4. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection

    PubMed Central

    Kang, Dong-Ku; Ali, M. Monsur; Zhang, Kaixiang; Huang, Susan S.; Peterson, Ellena; Digman, Michelle A.; Gratton, Enrico; Zhao, Weian

    2014-01-01

    Blood stream infection or sepsis is a major health problem worldwide, with extremely high mortality, which is partly due to the inability to rapidly detect and identify bacteria in the early stages of infection. Here we present a new technology termed ‘Integrated Comprehensive Droplet Digital Detection’ (IC 3D) that can selectively detect bacteria directly from milliliters of diluted blood at single-cell sensitivity in a one-step, culture- and amplification-free process within 1.5–4 h. The IC 3D integrates real-time, DNAzyme-based sensors, droplet microencapsulation and a high-throughput 3D particle counter system. Using Escherichia coli as a target, we demonstrate that the IC 3D can provide absolute quantification of both stock and clinical isolates of E. coli in spiked blood within a broad range of extremely low concentration from 1 to 10,000 bacteria per ml with exceptional robustness and limit of detection in the single digit regime. PMID:25391809

  5. Vacancy-controlled ultrastable nanoclusters in nanostructured ferritic alloys

    DOE PAGES

    Zhang, Z. W.; Yao, L.; Wang, X. -L.; ...

    2015-05-29

    A new class of advanced structural materials, based on the Fe-O-vacancy system, has exceptional resistance to high-temperature creep and excellent tolerance to extremely high-dose radiation. Although these remarkable improvements in properties compared to steels are known to be associated with the Y-Ti-O-enriched nanoclusters, the roles of vacancies in facilitating the nucleation of nanoclusters are a long-standing puzzle, due to the experimental difficulties in characterizing vacancies, particularly in-situ while the nanoclusters are forming. We report an experiment study that provides the compelling evidence for the presence of significant concentrations of vacancies in Y-Ti-O-enriched nanoclusters in a nanostructured ferritic alloy using amore » combination of state-of-the-art atom-probe tomography and in situ small angle neutron scattering. The nucleation of nanoclusters starts from the O-enriched solute clustering with vacancy mediation. The nanoclusters grow with an extremely low growth rate through attraction of vacancies and O:vacancy pairs, leading to the unusual stability of the nanoclusters.« less

  6. ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.

    PubMed

    Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng

    2016-12-02

    A ZnO quantum dot  photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.

  7. Gravitational wave astronomy: needle in a haystack.

    PubMed

    Cornish, Neil J

    2013-02-13

    A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain.

  8. Impacts of future changes in weather condition on U.S. transportation

    NASA Astrophysics Data System (ADS)

    Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.

    2016-12-01

    High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.

  9. The limits for life under multiple extremes.

    PubMed

    Harrison, Jesse P; Gheeraert, Nicolas; Tsigelnitskiy, Dmitry; Cockell, Charles S

    2013-04-01

    Life on Earth is limited by physical and chemical extremes that define the 'habitable space' within which it operates. Aside from its requirement for liquid water, no definite limits have been established for life under any extreme. Here, we employ growth data published for 67 prokaryotic strains to explore the limitations for microbial life under combined extremes of temperature, pH, salt (NaCl) concentrations, and pressure. Our review reveals a fundamental lack of information on the tolerance of microorganisms to multiple extremes that impedes several areas of science, ranging from environmental and industrial microbiology to the search for extraterrestrial life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor

    PubMed Central

    Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; Zhao, Ping; Xia, Qingyou

    2014-01-01

    Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerous reported expression systems greatly hindered the exploration and application of silk gland bioreactors. Using customized zinc finger nucleases (ZFN), we successfully performed genome editing of Bmfib-H gene, which encodes the largest and most abundant silk protein, in B. mori with efficiency higher than any previously reported. The resulted Bmfib-H knocked-out B. mori showed a smaller and empty silk gland, abnormally developed posterior silk gland cells, an extremely thin cocoon that contain only sericin proteins, and a slightly heavier pupae. We also showed that removal of endogenous Bmfib-H protein could significantly increase the expression level of exogenous protein. Furthermore, we demonstrated that the bioreactor is suitable for large scale production of protein-based materials. PMID:25359576

  11. Analysis of antibody aggregate content at extremely high concentrations using sedimentation velocity with a novel interference optics.

    PubMed

    Schilling, Kristian; Krause, Frank

    2015-01-01

    Monoclonal antibodies represent the most important group of protein-based biopharmaceuticals. During formulation, manufacturing, or storage, antibodies may suffer post-translational modifications altering their physical and chemical properties. Such induced conformational changes may lead to the formation of aggregates, which can not only reduce their efficiency but also be immunogenic. Therefore, it is essential to monitor the amount of size variants to ensure consistency and quality of pharmaceutical antibodies. In many cases, antibodies are formulated at very high concentrations > 50 g/L, mostly along with high amounts of sugar-based excipients. As a consequence, all routine aggregation analysis methods, such as size-exclusion chromatography, cannot monitor the size distribution at those original conditions, but only after dilution and usually under completely different solvent conditions. In contrast, sedimentation velocity (SV) allows to analyze samples directly in the product formulation, both with limited sample-matrix interactions and minimal dilution. One prerequisite for the analysis of highly concentrated samples is the detection of steep concentration gradients with sufficient resolution: Commercially available ultracentrifuges are not able to resolve such steep interference profiles. With the development of our Advanced Interference Detection Array (AIDA), it has become possible to register interferograms of solutions as highly concentrated as 150 g/L. The other major difficulty encountered at high protein concentrations is the pronounced non-ideal sedimentation behavior resulting from repulsive intermolecular interactions, for which a comprehensive theoretical modelling has not yet been achieved. Here, we report the first SV analysis of highly concentrated antibodies up to 147 g/L employing the unique AIDA ultracentrifuge. By developing a consistent experimental design and data fit approach, we were able to provide a reliable estimation of the minimum content of soluble aggregates in the original formulations of two antibodies. Limitations of the procedure are discussed.

  12. PHOTOCHEMICAL AIR POLLUTION IN THE NORTH OF PORTUGAL: A HIGH TROPOSHERIC OZONE EPISODE

    NASA Astrophysics Data System (ADS)

    Monteiro, A.; Carvalho, A.; Tchepel, O.; Ferreira, J.; Martins, H.; Miranda, A.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J. A.

    2009-12-01

    Very high concentrations of ozone are continuously measured at the monitoring station at Lamas d’Olo, located at the North of Portugal,. A particular high photochemical episode occurred between 11 and 13 of July 2005, registering ozone hourly maximum values above 350 µg.m-3. This ozone-rich episode is investigated in this paper, in order to identify its origin and formation. Besides the analysis of both meteorological and air quality monitoring datasets, a numerical modelling approach, based on MM5-CAMx system, was used to simulate the dispersion and transport (horizontal and vertical) of the photochemical pollutants and its precursors. A cross spectrum analysis of the meteorological and air quality time series was performed, in the frequency domain, to establish the relationships between ozone data measured at Lamas d’Olo with air quality data from neighbourhood stations and meteorological parameters. Results point out different behaviour/contribution between the analysed sites. Moreover, different contributions of the u and v wind component on the ozone concentration fluctuations were found suggesting the presence a mountain breeze circulation and a north synoptic transport. The preliminary modelling results pointed out that the vertical transport of pollutants are responsible for the measured high concentrations, combined with particular meteorological conditions, related to the planetary boundary layer (PBL) development. The pollutants transported and existent at high vertical levels are captured/trapped when the PBL height reaches its daily maximum, and extremely high ozone ground level concentrations are consequently measured.

  13. High pH ammonia toxicity, and the search for life on the Jovian planets.

    PubMed

    Deal, P H; Souza, K A; Mack, H M

    1975-10-01

    Jovian plants have enviroments apparently suitable for the evolution of life, but nevertheless, present severe challenges to organisms. One such challenge arises from the presence of ammonia. Ammonia is an efficient biocide, its effect being dependent on pH as well as on concentration. The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural enviornments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, survival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is, nevertheless, two to three orders of magnitude longer than for E. coli. Our data support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  14. Long-term consumption of a raw food diet is associated with favorable serum LDL cholesterol and triglycerides but also with elevated plasma homocysteine and low serum HDL cholesterol in humans.

    PubMed

    Koebnick, Corinna; Garcia, Ada L; Dagnelie, Pieter C; Strassner, Carola; Lindemans, Jan; Katz, Norbert; Leitzmann, Claus; Hoffmann, Ingrid

    2005-10-01

    High consumption of vegetables and fruits is associated with reduced risk for cardiovascular disease. However, little information is available about diets based predominantly on consumption of fruits and their health consequences. We investigated the effects of an extremely high dietary intake of raw vegetables and fruits (70-100% raw food) on serum lipids and plasma vitamin B-12, folate, and total homocysteine (tHcy). In a cross-sectional study, the lipid, folate, vitamin B-12, and tHcy status of 201 adherents to a raw food diet (94 men and 107 women) were examined. The participants consumed approximately 1500-1800 g raw food of plant origin/d mainly as vegetables or fruits. Of the participants, 14% had high serum LDL cholesterol concentrations, 46% had low serum HDL cholesterol, and none had high triglycerides. Of raw food consumers, 38% were vitamin B-12 deficient, whereas 12% had an increased mean corpuscular volume (MCV). Plasma tHcy concentrations were correlated with plasma vitamin B-12 concentrations (r = -0.450, P < 0.001), but not with plasma folate. Plasma tHcy and MCV concentrations were higher in those in the lowest quintile of consumption of food of animal origin (P(trend) < 0.001). This study indicates that consumption of a strict raw food diet lowers plasma total cholesterol and triglyceride concentrations, but also lowers serum HDL cholesterol and increases tHcy concentrations due to vitamin B-12 deficiency.

  15. Microbial Ecology of an Extreme Acidic Environment, the Tinto River

    PubMed Central

    González-Toril, E.; Llobet-Brossa, E.; Casamayor, E. O.; Amann, R.; Amils, R.

    2003-01-01

    The Tinto River (Huelva, southwestern Spain) is an extreme environment with a rather constant acidic pH along the entire river and a high concentration of heavy metals. The extreme conditions of the Tinto ecosystem are generated by the metabolic activity of chemolithotrophic microorganisms thriving in the rich complex sulfides of the Iberian Pyrite Belt. Molecular ecology techniques were used to analyze the diversity of this microbial community. The community's composition was studied by denaturing gradient gel electrophoresis (DGGE) using 16S rRNA and by 16S rRNA gene amplification. A good correlation between the two approaches was found. Comparative sequence analysis of DGGE bands showed the presence of organisms related to Leptospirillum spp., Acidithiobacillus ferrooxidans, Acidiphilium spp., “Ferrimicrobium acidiphilum,” Ferroplasma acidiphilum, and Thermoplasma acidophilum. The different phylogenetic groups were quantified by fluorescent in situ hybridization with a set of rRNA-targeted oligonucleotide probes. More than 80% of the cells were affiliated with the domain Bacteria, with only a minor fraction corresponding to Archaea. Members of Leptospirillum ferrooxidans, Acidithiobacillus ferrooxidans, and Acidiphilium spp., all related to the iron cycle, accounted for most of the prokaryotic microorganisms detected. Different isolates of these microorganisms were obtained from the Tinto ecosystem, and their physiological properties were determined. Given the physicochemical characteristics of the habitat and the physiological properties and relative concentrations of the different prokaryotes found in the river, a model for the Tinto ecosystem based on the iron cycle is suggested. PMID:12902280

  16. Distribution and bioavailability of Cr in central Euboea, Greece

    NASA Astrophysics Data System (ADS)

    Megremi, Ifigeneia

    2010-06-01

    Plants and soils from central Euboea, were analyzed for Cr(totai), Cr(VI), Ni, Mn, Fe and Zn. The range of metal concentrations in soils is typical to those developed on Fe-Ni laterites and ultramafic rocks. Their bioavailability was expressed in terms of concentrations extractable with EDTA and 1 M HNO3, with EDTA having a limited effect on metal recovery. Cr(VI) concentrations in soils evaluated by alkaline digestion solution were lower than phytotoxic levels. Chromium and Ni — and occasionally Zn — in the majority of plants were near or above toxicity levels. Cr(VI) concentrations in plants were extremely low compared to total chromium concentrations. Cr(total) in ground waters ranged from <1 μg.L-1 to 130 μg.L-1, with almost all chromium present as Cr(VI). With the exception of Cr(total) and in some cases Zn, all elements were below regulatory limits for drinking water. On the basis of Ca, Mg, Cr(total) and Si ground waters were classified into three groups: Group(I) with Cr concentrations less than 1 μg.L-1 from a karstic aquifer; Group(II) with average concentrations of 24 μg.L-1 of Cr and relatively high Si associated with ophiolites; and Group(III) with Cr concentrations of up to 130 μg.L-1, likely due to anthropogenic activity. Group(III) is comparable to ground waters from Assopos basin, characterized by high Cr(VI) concentrations, probably due to industrial actrivities.

  17. The genomic sequence of Exiguobacterium chiriqhucha str. N139 reveals a species that thrives in cold waters and extreme environmental conditions

    PubMed Central

    Reyes-Prieto, Mariana; Ordoñez, Omar F.; Santos-García, Diego; Rosas-Pérez, Tania; Valdivia-Anistro, Jorge; Rebollar, Eria A.; Saralegui, Andrés; Moya, Andrés; Merino, Enrique; Farías, María Eugenia

    2017-01-01

    We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina. PMID:28439458

  18. The High Calcium, High Phosphorus Rescue Diet Is Not Suitable to Prevent Secondary Hyperparathyroidism in Vitamin D Receptor Deficient Mice.

    PubMed

    Grundmann, Sarah M; Brandsch, Corinna; Rottstädt, Daniela; Kühne, Hagen; Stangl, Gabriele I

    2017-01-01

    The vitamin D receptor (VDR) knockout (KO) mouse is a common model to unravel novel metabolic functions of vitamin D. It is recommended to feed these mice a high calcium (2%), high phosphorus (1.25%) diet, termed rescue diet (RD) to prevent hypocalcaemia and secondary hyperparathyroidism. First, we characterized the individual response of VDR KO mice to feeding a RD and found that the RD was not capable of normalizing the parathyroid hormone (PTH) concentrations in each VDR KO mouse. In a second study, we aimed to study whether RD with additional 1 and 2% calcium (in total 3 and 4% of the diet) is able to prevent secondary hyperparathyroidism in the VDR KO mice. Wild type (WT) mice and VDR KO mice that received a normal calcium and phosphorus diet (ND) served as controls. Data demonstrated that the RD was no more efficient than the ND in normalizing PTH levels. An excessive dietary calcium concentration of 4% was required to reduce serum PTH concentrations in the VDR KO mice to PTH levels measured in WT mice. This diet, however, resulted in higher concentrations of circulating intact fibroblast growth factor 23 (iFGF23). To conclude, the commonly used RD is not suitable to normalize the serum PTH in VDR KO mice. Extremely high dietary calcium concentrations are necessary to prevent secondary hyperthyroidism in these mice, with the consequence that iFGF23 concentrations are being raised. Considering that PTH and iFGF23 exert numerous VDR independent effects, data obtained from VDR KO mice cannot be attributed solely to vitamin D.

  19. Characterization of the scope and magnitude of biotin interference in susceptible Roche Elecsys competitive and sandwich immunoassays.

    PubMed

    Trambas, Christina; Lu, Zhong; Yen, Tina; Sikaris, Ken

    2018-03-01

    Background Biotin interference is a significant problem to which at-risk laboratories must now be attuned. We sought to systematically characterize the nature of this interference in Roche immunoassays. Methods Known concentrations of biotin were titrated into serum samples and the effects on competitive and sandwich immunoassays were analysed. The maximum and minimum concentrations examined reflect those likely to be achieved in individuals on 5 to 10 mg supplements at the lower end, and 100 to 300 mg biotin at the high end. Results A high variability in biotin tolerance was observed. Some assays, such as troponin T, TSH and antithyroid antibodies, were extremely sensitive to the lower concentrations of biotin (15.6 and 31.3 ng/mL), whereas the majority of assays were relatively resistant. At concentrations ≥500 ng/mL, all assays showed significant interference from biotin but, again, the magnitude of the interference was variable. The more sensitive assays showed profound analytical bias at biotin concentrations that occur with high-dose therapy. Conclusion Our data demonstrate high variability in biotin tolerance across Roche immunoassays. The shape of the dose-response curves provides more detailed information than the single manufacturer-quoted figure for biotin tolerance. Accordingly, these data may be used by laboratories for more accurate risk assessment in predicting the effects of biotin. Our data may also be extrapolated to guide timing of blood tests in patients on high-dose biotin therapy: it demonstrates the number of half-lives required to withhold biotin in order to decrease its concentration to below a given assay tolerance.

  20. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  1. A new method for geochemical characterization of atmospheric mineral dust from polar ice cores: preliminary results from Talos Dome ice core (East Antarctica, Pacific-Ross Sea sector)

    NASA Astrophysics Data System (ADS)

    Baccolo, Giovanni; Delmonte, Barbara; Clemenza, Massimiliano; Previtali, Ezio; Maggi, Valter

    2015-04-01

    Assessing the elemental composition of atmospheric dust entrapped in polar ice cores is important for the identification of the potential dust sources and thus for the reconstruction of past atmospheric circulation, at local, regional and global scale. Accurate determination of major and trace elements in the insoluble fraction of dust extracted from ice cores is also useful to better understand some geochemical and biogeochemical mechanisms which are linked with the climate system. The extremely reduced concentration of dust in polar ice (typical Antarctic concentrations during interglacials are in the range of 10 ppb), the limited availability of such samples and the high risk of contamination make these analyses a challenge. A new method based on low background Instrumental Neutron Activation Analysis (INAA) was specifically developed for this kind of samples. The method allows the determination of the concentration of up to 35 elements in extremely reduced dust samples (20-30 μg). These elements span from major to trace and ultra-trace elements. Preliminary results from TALDICE (TALos Dome Ice CorE, East Antarctica, Pacific-Ross Sea Sector) ice core are presented along with results from potential source areas in Victoria Land. A set of 5 samples from Talos Dome, corresponding to the last termination, MIS3, MIS4 and MIS6 were prepared and analyzed by INAA.

  2. Recent distribution of lead in the Indian Ocean reflects the impact of regional emissions.

    PubMed

    Echegoyen, Yolanda; Boyle, Edward A; Lee, Jong-Mi; Gamo, Toshitaka; Obata, Hajime; Norisuye, Kazuhiro

    2014-10-28

    Humans have injected lead (Pb) massively into the earth surface environment in a temporally and spatially evolving pattern. A significant fraction is transported by the atmosphere into the surface ocean where we can observe its transport by ocean currents and sinking particles. This study of the Indian Ocean documents high Pb concentrations in the northern and tropical surface waters and extremely low Pb levels in the deep water. North of 20°S, dissolved Pb concentrations decrease from 42 to 82 pmol/kg in surface waters to 1.5-3.3 pmol/kg in deep waters. South of 20°S, surface water Pb concentrations decrease from 21 pmol/kg at 31°S to 7 pmol/kg at 62°S. This surface Pb concentration gradient reflects a southward decrease in anthropogenic Pb emissions. The upper waters of the north and central Indian Ocean have high Pb concentrations resulting from recent regional rapid industrialization and a late phase-out of leaded gasoline, and these concentrations are now higher than currently seen in the central North Pacific and North Atlantic oceans. The Antarctic sector of the Indian Ocean shows very low concentrations due to limited regional anthropogenic Pb emissions, high scavenging rates, and rapid vertical mixing, but Pb still occurs at higher levels than would have existed centuries ago. Penetration of Pb into the northern and central Indian Ocean thermocline waters is minimized by limited ventilation. Pb concentrations in the deep Indian Ocean are comparable to the other oceans at the same latitude, and deep waters of the central Indian Ocean match the lowest observed oceanic Pb concentrations.

  3. Modulation of digestive physiology and biochemistry in Mytilus californianus in response to feeding level acclimation and microhabitat

    PubMed Central

    Sung, Aaron; Garcia, Nathan S.; Gracey, Andrew Y.; German, Donovan P.

    2016-01-01

    ABSTRACT The intertidal mussel Mytilus californianus is a critical foundation species that is exposed to fluctuations in the environment along tidal- and wave-exposure gradients. We investigated feeding and digestion in mussels under laboratory conditions and across environmental gradients in the field. We assessed whether mussels adopt a rate-maximization (higher ingestion and lower assimilation) or a yield-maximization acquisition (lower ingestion and higher assimilation) strategy under laboratory conditions by measuring feeding physiology and digestive enzyme activities. We used digestive enzyme activity to define resource acquisition strategies in laboratory studies, then measured digestive enzyme activities in three microhabitats at the extreme ends of the tidal- and wave-exposure gradients within a stretch of shore (<20 m) projected sea-ward. Our laboratory results indicated that mussels benefit from a high assimilation efficiency when food concentration is low and have a low assimilation efficiency when food concentration is high. Additionally, enzyme activities of carbohydrases amylase, laminarinase and cellulase were elevated when food concentration was high. The protease trypsin, however, did not increase with increasing food concentration. In field conditions, low-shore mussels surprisingly did not have high enzyme activities. Rather, high-shore mussels exhibited higher cellulase activities than low-shore mussels. Similarly, trypsin activity in the high-shore-wave-sheltered microhabitat was higher than that in high-shore-wave-exposed. As expected, mussels experienced increasing thermal stress as a function of reduced submergence from low to high shore and shelter from wave-splash. Our findings suggest that mussels compensate for limited feeding opportunities and thermal stress by modulating digestive enzyme activities. PMID:27402963

  4. Design and assembly of a catalyst bed gas generator for the catalytic decomposition of high concentration hydrogen peroxide propellants and the catalytic combustion of hydrocarbon/air mixtures

    NASA Technical Reports Server (NTRS)

    Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Sevener, Kathleen M. (Inventor)

    2004-01-01

    A method for designing and assembling a high performance catalyst bed gas generator for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The gas generator utilizes a sectioned catalyst bed system, and incorporates a robust, high temperature mixed metal oxide catalyst. The gas generator requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. The high performance catalyst bed gas generator system has consistently demonstrated high decomposition efficiency, extremely low decomposition roughness, and long operating life on multiple test articles.

  5. Resist image quality control via acid diffusion constant and/or photodecomposable quencher concentration in the fabrication of 11 nm half-pitch line-and-space patterns using extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-05-01

    Extreme-ultraviolet (EUV) lithography will be applied to the high-volume production of semiconductor devices with 16 nm half-pitch resolution and is expected to be extended to that of devices with 11 nm half-pitch resolution. With the reduction in the feature sizes, the control of acid diffusion becomes a significant concern. In this study, the dependence of resist image quality on T PEB D acid and photodecomposable quencher concentration was investigated by the Monte Carlo method on the basis of the sensitization and reaction mechanisms of chemically amplified EUV resists. Here, T PEB and D acid are the postexposure baking (PEB) time and the acid diffusion constant, respectively. The resist image quality of 11 nm line-and-space patterns is discussed in terms of line edge roughness (LER) and stochastic defect generation. For the minimization of LER, it is necessary to design and control not only the photodecomposable quencher concentration but also T PEB D acid. In this case, D acid should be adjusted to be 0.3–1.5 nm2 s‑1 for a PEB time of 60 s with optimization of the balance among LER and stochastic pinching and bridging. Even if it is difficult to decrease D acid to the range of 0.3–1.5 nm2 s‑1, the image quality can still be controlled via only the photodecomposable quencher concentration, although LER and stochastic pinching and bridging are slightly increased. In this case, accurate control of the photodecomposable quencher concentration and the reduction in the initial standard deviation of the number of protected units are required.

  6. Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt.

    PubMed

    Monaci, Fabrizio; Leidi, Eduardo O; Dolores, Mingorance Maria; Valdés, Benito Oliva; Rossini, Sabina Sabina; Bargagli, Roberto

    2011-01-01

    To assess the ecophysiological traits and the phytoremediation potential of the endemic heather Erica andevalensis, we determined the concentrations of major and trace elements in different plant parts and in rizosphere soils from Riotinto mining district (Huelva, Spain). The results showed that E. andevalensis may grow on substrates with very high As, Cu, Fe and Pb concentrations (up to 4114, 1050, 71900 and 15614 microg/g dry weight, respectively), very low availability of macro- and micronutrients and with pH values ranging from 3.3 to 4.9. In these harsh edaphic conditions E. andevalensis selectively absorbed and translocated essential nutrients and excludes potentially phytotoxic elements, which were accumulated in the root epidermis. The concentrations of major and trace elements in E. andevalensis aerial parts from the Riotinto mining district were in the normal range for plants; likewise other Erica species it accumulated Mn and only in a very polluted site we measured leaf concentrations of As and Pb within the excessive or toxic limits for plants. Differently from previous studies, which emphasized the soil pH and bioavailability of phytotoxic elements as the main stress factors, this study showed that in the Riotinto region, E. andevalensis can tolerate wide range of pH and toxic element concentrations; the harshest environments colonized by monospecific patches of this species were characterized above all by very low availability of nutrients. The extraordinary capability to adapt to these extreme habitats made E. andevalensis a priority species to promote the phytostabilization and the development of a self-sustaining vegetative cover on Riotinto mine tailings.

  7. Functional polymorphisms affecting the clinically important arginine-137 residue of AVPR2 do not influence serum sodium concentration at the population level

    PubMed Central

    Fu, Yi; Cheetham, Tim; Bourn, David; Orwoll, Eric

    2013-01-01

    The protein product of the AVPR2 gene, coding for the arginine vasopressin receptor type 2, is essential for vasopressin-dependent concentration of the urine. The arginine residue at position 137 in the protein product of this gene is uniquely pivotal for function. The R137H mutant inactivates the receptor conferring congenital nephrogenic diabetes insipidus, whereas activating mutations at this same residue (i.e., R137C and R137L) confer pathological water retention in the nephrogenic syndrome of inappropriate antidiuresis. These mutations were discovered in human subjects with conspicuous phenotypes in clinical water balance. Prevalence of these polymorphisms among asymptomatic individuals has not been assessed, nor has their contribution to broad interindividual variation in serum sodium concentration; no data addressing minor allele frequency are available. We genotyped two large cohorts using a validated high-throughput Pyrosequencing-based assay that we designed to capture the totality of pathological variation at this important residue. In the Osteoporotic Fractures in Men (MrOS) Study, all participants were male (i.e., hemizygous for AVPR2 gene on the X-chromosome), and participants were oversampled at the extremes of the population distribution for serum sodium concentration. In the Offspring Cohort of the Framingham Heart Study, male and female participants were genotyped. No pathological variants affecting R137 were detected among the 5,142 AVPR2 alleles successfully genotyped. Even at the population extremes of serum sodium distribution, we estimate minor allele frequency < 0.06%. We conclude that these disease-associated variants are exceedingly uncommon and do not contribute broadly to interindividual variability in serum sodium concentration or to its heritability. PMID:23362144

  8. Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels

    DOE PAGES

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...

    2015-12-22

    The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  9. Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments.

    PubMed

    Steefel, Carl I; Carroll, Susan; Zhao, Pihong; Roberts, Sarah

    2003-12-01

    Cs+ transport experiments carried out in columns packed with uncontaminated Hanford formation sediment from the SX tank farm provide strong support for the use of a multisite, multicomponent cation exchange model to describe Cs+ migration in the Hanford vadose zone. The experimental results indicate a strong dependence of the effective Cs+ Kd on the concentrations of other cations, including Na+ that is present at high to extremely high concentrations in fluids leaking from the Hanford SX tanks. A strong dependence of the Cs+ Kd on the aqueous Cs+ concentration is also apparent, with retardation of Cs+ increasing from a value of 41 at a Cs+ concentration of 10(-4) M in the feed solution to as much as 282 at a Cs+ concentration of 5x10(-7) M, all in a background of 1 M NaNO3. The total cation exchange capacity (CEC) of the Hanford sediment was determined using 22Na isotopic equilibrium exchange in a flow-through column experiment. The value for the CEC of 120 microeq/g determined with this method is compatible with a value of 121.9 microeq/g determined by multi-cation elution. While two distinct exchange sites were proposed by Zachara et al. [Geochim. Cosmochim. Acta 66 (2002) 193] based on binary batch exchange experiments, a third site is proposed in this study to improve the fit of the Cs+-Na+ and Cs+-Ca+ exchange data and to capture self-sharpened Cs+ breakthrough curves at low concentrations of Cs+. Two of the proposed exchange sites represent frayed edge sites (FES) on weathered micas and constitute 0.02% and 0.22% of the total CEC. Both of the FES show a very strong selectivity for Cs+ over Na+ (K(Na-Cs)=10(7.22) and 10(4.93), respectively). The third site, accounting for over 99% of the total CEC, is associated with planar sites on expansible clays and shows a smaller Na+-Cs+ selectivity coefficient of 10(1.99). Parameters derived from a fit of binary batch experiments alone tend to under predict Cs+ retardation in the column experiments. The transport experiments indicate 72-90% of the Cs+ sorbed in experiments targeting exchange on FES was desorbed over a 10- and 24-day period, respectively. At high Cs+ concentrations, where sorption is controlled primarily by exchange on planar sites, 95% of the Cs+ desorption was desorbed. Most of the difficulty in desorbing Cs+ from FES is a result of the extremely high selectivity of these sites for Cs+, although truly irreversible sorption as high as 23% was suggested in one experiment. The conclusion that Cs+ exchange is largely reversible in a thermodynamic sense is supported by the ability to match Cs+ desorption curves almost quantitatively with an equilibrium reactive transport simulation. The model for Cs+ retardation developed here qualitatively explains the behavior of Cs+ in the Hanford vadose zone underneath a variety of leaking tanks with differing salt concentrations. The high selectivity of FES for Cs+ implies that future desorption and migration is very unlikely to occur under natural recharge conditions.

  10. Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat.

    PubMed

    Mulec, Janez; Dietersdorfer, Elisabeth; Üstüntürk-Onan, Miray; Walochnik, Julia

    2016-04-01

    Several representatives of the so-called free-living amoebae (FLA) are of medical relevance, not only as facultative pathogens but also as vehicles for pathogenic bacteria. Some FLA can survive and even grow under extreme environmental conditions. Bat guano is an exceptional habitat, the conditions becoming gradually more extreme with aging. In the current study, samples of bat guano of different ages from five caves in Slovenia were screened for the presence of FLA. FLA were isolated from almost all guano samples, including guano with a pH of 3.5. Only the two samples that had been drawn from >20-year-old guano were negative for FLA. Generally, FLA diversity correlated to high concentrations of cultivable bacteria (∼10(8) CFU/g) and fungi (∼10(5) CFU/g). Interestingly, the absence of FLA in seasoned guanos was mirrored by the presence of dictyostelid slime moulds. The isolated amoebae were identified as belonging to the genera Acanthamoeba, Copromyxa, Naegleria, Sappinia, Tetramitus, Thecamoeba, Vahlkampfia, Vannella and Vermamoeba. To the best of our knowledge, this is the first study on the diversity of FLA in guano.

  11. Influence of extreme concentrations of hydrophilic pore-former on reinforced polyethersulfone ultrafiltration membranes for reduction of humic acid fouling.

    PubMed

    Son, Moon; Kim, Hayoung; Jung, Junhyeok; Jo, Sungsoo; Choi, Heechul

    2017-07-01

    To address the issue of membrane fouling by ubiquitous humic substances, a hydrophilic pore-former-blended polyethersulfone UF membrane was successfully synthesized via the phase inversion method. For the first time, extremely high concentrations of polyvinylpyrrolidone (PVP), up to 20 wt%, were tested as the hydrophilic pore-former in order to determine the optimum concentration for humic acid fouling. Intrinsic membrane parameters such as permeability and selectivity were evaluated using a cross-flow UF filtration setup. Interestingly, as little as 1 wt% added PVP can significantly improve membrane permeability. That tiny amount of added PVP increased membrane flux to 1107 L/m 2 h·bar from zero flux, with over 90% rejection of humic acid. In addition, pure water permeation increased to over 2400 L/m 2 h·bar without sacrificing humic acid rejection (around 90%) when 10 wt% PVP was added; pure water permeation decreased to around 1000 L/m 2 h·bar as added PVP was increased to 20 wt%. The order of water flux increased with the amount of added PVP up to 20 wt% during humic acid fouling while maintaining membrane selectivity. However, the membrane with 10 wt% added PVP showed the best fouling resistance in terms of flux recovery ratio (98%), total flux loss, reversible fouling ratio, and irreversible fouling ratio. Therefore, the addition of 10 wt% PVP is recommended considering cleaning efficiency and the moderately high flux during humic acid fouling for field operation in wastewater reclamation and water treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Extracting additional risk managers information from a risk assessment of Listeria monocytogenes in deli meats.

    PubMed

    Pérez-Rodríguez, F; van Asselt, E D; Garcia-Gimeno, R M; Zurera, G; Zwietering, M H

    2007-05-01

    The risk assessment study of Listeria monocytogenes in ready-to-eat foods conducted by the U.S. Food and Drug Administration is an example of an extensive quantitative microbiological risk assessment that could be used by risk analysts and other scientists to obtain information and by managers and stakeholders to make decisions on food safety management. The present study was conducted to investigate how detailed sensitivity analysis can be used by assessors to extract more information on risk factors and how results can be communicated to managers and stakeholders in an understandable way. The extended sensitivity analysis revealed that the extremes at the right side of the dose distribution (at consumption, 9 to 11.5 log CFU per serving) were responsible for most of the cases of listeriosis simulated. For concentration at retail, values below the detection limit of 0.04 CFU/g and the often used limit for L. monocytogenes of 100 CFU/g (also at retail) were associated with a high number of annual cases of listeriosis (about 29 and 82%, respectively). This association can be explained by growth of L. monocytogenes at both average and extreme values of temperature and time, indicating that a wide distribution can lead to high risk levels. Another finding is the importance of the maximal population density (i.e., the maximum concentration of L. monocytogenes assumed at a certain temperature) for accurately estimating the risk of infection by opportunistic pathogens such as L. monocytogenes. According to the obtained results, mainly concentrations corresponding to the highest maximal population densities caused risk in the simulation. However, sensitivity analysis applied to the uncertainty parameters revealed that prevalence at retail was the most important source of uncertainty in the model.

  13. Applying Incremental Sampling Methodology to Soils Containing Heterogeneously Distributed Metallic Residues to Improve Risk Analysis.

    PubMed

    Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A

    2018-01-01

    This study compares conventional grab sampling to incremental sampling methodology (ISM) to characterize metal contamination at a military small-arms-range. Grab sample results had large variances, positively skewed non-normal distributions, extreme outliers, and poor agreement between duplicate samples even when samples were co-located within tens of centimeters of each other. The extreme outliers strongly influenced the grab sample means for the primary contaminants lead (Pb) and antinomy (Sb). In contrast, median and mean metal concentrations were similar for the ISM samples. ISM significantly reduced measurement uncertainty of estimates of the mean, increasing data quality (e.g., for environmental risk assessments) with fewer samples (e.g., decreasing total project costs). Based on Monte Carlo resampling simulations, grab sampling resulted in highly variable means and upper confidence limits of the mean relative to ISM.

  14. Lipidic biosignatures in diagenetically stabilized ironstones terraces of Rio Tinto, an acidic environment with analogies to Mars

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Carrizo, D.; Fernández-Remolar, D.; Parro, V.

    2017-09-01

    The characterization of extreme environments with analogies to Mars is important for understanding if/how life may have thrived in the Red Planet. Río Tinto in SW Spain is an extreme environment with constant acidic waters (mean pH of 2.3) and high concentration of heavy metals, which are direct consequence of the active metabolism of chemolithotrophic microorganisms thriving in the rich polymetallic sulfides present in the massive Iberian Pyritic Belt. Abundant minerals rich in ferric iron and sulfates, which result from the pyrite metabolism (e.g. jarosite, goethite, hematites, etc.) are of special interest for their potential for organics preservation [1]. Here, we investigate the occurrence and preservation of biological signatures in diagenetically stabilized ironstone deposits in Río Tinto, by using geolipidic markers.

  15. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China.

    PubMed

    Hao, Chunbo; Wei, Pengfei; Pei, Lixin; Du, Zerui; Zhang, Yi; Lu, Yanchun; Dong, Hailiang

    2017-04-01

    Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43-280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, "Ferrovum", a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe 2+ was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic and Alpine suggested that the native Chlamydomonas species may have been both acidophilic and psychrophilic after a long acclimation time in this extreme environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  17. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  18. Characteristics of extreme dust events observed over two urban areas in Iran

    NASA Astrophysics Data System (ADS)

    Bidokhti, Abbas-Ali A.; Gharaylou, Maryam; Pegahfar, Nafiseh; Sabetghadam, Samaneh; Rezazadeh, Maryam

    2016-03-01

    Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity is low in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.

  19. Federal employees health program experiences lack of competition in some areas, raising cost concerns for exchange plans.

    PubMed

    McBride, Timothy D; Barker, Abigail R; Pollack, Lisa M; Kemper, Leah M; Mueller, Keith J

    2012-06-01

    The Affordable Care Act calls for creation of health insurance exchanges designed to provide private health insurance plan choices. The Federal Employees Health Benefits Program is a national model that to some extent resembles the planned exchanges. Both offer plans at the state level but are also overseen by the federal government. We examined the availability of plans and enrollment levels in the Federal Employees Health Benefits Program throughout the United States in 2010. We found that although plans were widely available, enrollment was concentrated in plans owned by just a few organizations, typically Blue Cross/Blue Shield plans. Enrollment was more concentrated in rural areas, which may reflect historical patterns of enrollment or lack of provider networks. Average biweekly premiums for an individual were lowest ($58.48) in counties where competition was extremely high, rising to $65.13 where competition was extremely low. To make certain that coverage sold through exchanges is affordable, policy makers may need to pay attention to areas where there is little plan competition and take steps through risk-adjustment policies or other measures to narrow differences in premiums and out-of-pocket expenses for consumers.

  20. Heavy metals and hydrocarbons contents in soils of urban areas of Yamal autonomous region (Russia)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny; Shamilishvili, George

    2016-04-01

    This investigation is devoted to evaluation of heavy metals and hydrocarbons contents in soils of different functional localities within the Yamalo-Nenets autonomous region (YaNAR, North-Western Siberia, Russia). Geo-accumulation indices Igeo (Müller 1988) were calculated in order to assess soil contamination levels with heavy metals (Cu, Pb, Cd, Zn, Ni, As, Hg) in the studied settlements: Harsaim, Aksarka, Labytnangy, Harp and Salekhard. The degree of soil pollution was assessed according to seven contamination classes (Förstner et al. 1990) in order of increasing numerical value of the index. Cd's regional soil background concentrations of the Yamal peninsula (Moskovchenko 2010), Hg's Earth crust clarke (Greenwood & Earnshaw 2008) and concentrations of the rest trace elements in natural sandy soil from the Beliy island, YaNAR (Tomashunas & Abakumov, 2014) were used in calculations. In general terms, obtained Igeo values in all samples were under or slightly above the 0 level, indicating low to moderate pollution of the studied soils. However, considerable Igeo values of Zn, Pb and Ni were revealed in several samples, suggesting different soil pollution levels, namely: Zn Igeo in Harsaim soil sample of 2.22 - moderate polluted to highly polluted soil; Pb Igeo in Aksarka soil sample of 4.04 - highly polluted to extremely polluted soil; Ni Igeo in Harp soil sample of 4.34 - highly polluted to extremely polluted soil. Soil contamination level was additionally evaluated, comparing with the maximal permissible concentrations (MPCs) of the trace elements in soil (SANPIN 4266-87), established by the national legislation. Almost all samples exceeded the MPC for As in soils (2 mg•kg-1). Concentrations of Ni in several soil samples taken in Harp were 19 times higher than recommended level (20 mg•kg-1). Moderate excess of Zn, Pb and Cu MPCs was also noted. Data obtained will be used in further environmental researches and environmental management purposes in this key oil and gas exploration region. This study was supported by Russian president's grant for Young Doctors of Science № MD 3615-2015-4.

  1. Temporal-spatial variation and partitioning of dissolved and particulate heavy metal(loid)s in a river affected by mining activities in Southern China.

    PubMed

    Wang, Juan; Liu, Guannan; Wu, Hao; Zhang, Tao; Liu, Xinhui; Li, Wuqing

    2018-04-01

    The physicochemical properties and heavy metal(loid) concentrations of the river water both fluctuate greatly along the river affected by mining activities, and the transportation of heavy metal(loid)s is therefore more complicated than unpolluted river. Dissolved and particulate heavy metal(loid)s in a river polluted by mining activities were measured to study their temporal-spatial variation and partitioning. The concentrations of dissolved arsenic (As), cadmium (Cd), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were considerably high at the sites near the mine area. Notably, dissolved As at most sites were higher than the Chinese quality criterion of class II for surface water indicating high environmental risk. Mn and Pb at most sites and Ni at a part of the sites mainly existed in the particulate phase. For other heavy metal(loid)s, i.e., As, Cd, chromium (Cr), and Zn, the particulate phase was extremely high at the sites near the mine area and responsible for heavy metal(loid) transport. Significant correlations between particulate heavy metal(loid)s and temperature and electrical conductivity (EC) were found. However, the partitioning of heavy metal(loid)s did not significantly relate to the river water properties, due to most heavy metal(loid)s in suspended particulate matter (SPM) are stable and affected less by water properties. Except for Cr and Ni, other heavy metal(loid)s showed high concentrations in sediments, and considerable Cd, Mn, and Zn existed in exchangeable and carbonate fraction indicating high environmental risk. The environmental assessment of SPM showed that Cd, Zn, and As, as the main pollutants in SPM, all reached extremely polluted level at the sites near the mine area, and the environmental risk of heavy metal(loid)s in SPM was higher during dry season than that during wet season. The results can contribute to understanding the partitioning and transportation of heavy metal(loid)s in the river affected by mining activities.

  2. Evaluation of exposure to lead from drinking water in large buildings.

    PubMed

    Deshommes, Elise; Andrews, Robert C; Gagnon, Graham; McCluskey, Tim; McIlwain, Brad; Doré, Evelyne; Nour, Shokoufeh; Prévost, Michèle

    2016-08-01

    Lead results from 78,971 water samples collected in four Canadian provinces from elementary schools, daycares, and other large buildings using regulatory and investigative sampling protocols were analyzed to provide lead concentration distributions. Maximum concentrations reached 13,200 and 3890 μg/L following long and short stagnation periods respectively. High lead levels were persistent in some large buildings, reflected by high median values considering all taps, or specific to a few taps in the building. Simulations using the Integrated Uptake Biokinetic (IEUBK) model and lead concentrations after 30 min of stagnation in the dataset showed that, for most buildings, exposure to lead at the tap does not increase children's blood lead levels (BLLs). However, buildings or taps with extreme concentrations represent a significant health risk to young children attending school or daycare, as the estimated BLL far exceeded the 5 μg/dL threshold. Ingestion of water from specific taps could lead to acute exposure. Finally, for a few taps, the total daily lead intake reached the former World Health Organization (WHO) tolerable level for adults, suggesting potential health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of season, food deprivation and re-feeding on leptin, ghrelin and growth hormone in arctic foxes (Alopex lagopus) on Svalbard, Norway.

    PubMed

    Fuglei, E; Mustonen, A-M; Nieminen, P

    2004-03-01

    The arctic fox (Alopex lagopus) is a medium-sized predator of the high Arctic experiencing extreme seasonal fluctuations in food availability, photoperiod and temperature. In this study, the plasma leptin, ghrelin and growth hormone (GH) concentrations of male arctic foxes were determined during a food deprivation period of 13 days and the subsequent recovery in November and May. Leptin, ghrelin and GH were present in arctic fox plasma in amounts comparable to other carnivores. The plasma leptin concentrations did not react to food deprivation unlike in humans and rodents. However, the leptin levels increased during re-feeding as an indicator of increasing energy reserves. The relatively high ghrelin-leptin ratio, decrease in the plasma ghrelin concentration, an increase in the circulating GH concentrations and the observed negative correlation between plasma ghrelin and free fatty acid levels during fasting suggest that these hormones take part in the weight-regulation and energy metabolism of this species by increasing fat utilisation during food deprivation. The results strengthen the hypothesis that the actions of these weight-regulatory hormones are species-specific and depend on seasonality and the life history of the animals.

  4. Dynamics of Model Hydraulic Fracturing Liquid Studied by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Daley, Kim; Kubarych, Kevin J.

    2014-06-01

    The technique of two-dimensional infrared (2DIR) spectroscopy is used to expose the chemical dynamics of various concentrations of polymers and their monomers in heterogeneous mixtures. An environmentally relevant heterogeneous mixture, which inspires this study, is hydraulic fracturing liquid (HFL). Hydraulic fracking is a technique used to extract natural gas from shale deposits. HFL consists of mostly water, proppant (sand), an emulsifier (guar), and other chemicals specific to the drilling site. Utilizing a metal carbonyl as a probe, we observe the spectral dynamics of the polymer, guar, and its monomer, mannose, and compare the results to see how hydration dynamics change with varying concentration. Another polymer, Ficoll, and its monomer, sucrose, are also compared to see how polymer size affects hydration dynamics. The two results are as follows: (1) Guar experiences collective hydration at high concentrations, where as mannose experiences independent hydration; (2) no collective hydration is observed for Ficoll in the same concentration range as guar, possibly due to polymer shape and size. HFL experiences extremely high pressure during natural gas removal, so future studies will focus on how increased pressure affects the hydration dynamics of polymers and monomers.

  5. [Pollutants produced in municipal refuse container during transfer process].

    PubMed

    Wang, Xiao-Yuan; Liu, Yin-Hua; Wang, Fei; Huang, Chang-Ying; Lu, Feng; Xie, Bing

    2014-05-01

    The generation and variation of the secondary pollutants in containers during seasons of a year were investigated in a municipal refuse transfer station of Shanghai. The results showed that the primary odors, the concentration of H2S was in a range of 0.3-10.3 mg.m-3, CH4 was in a range of 0.02% -2.97% and NH3 was in a range of 0.7-4.5 mg m-3, and their concentrations all reached the peak in the summer. The pH of the leachate was in a range of 5.4-6. 3, COD was 41 633-84 060 mgL- 1, and BOD, was 18 116-34 130 mg.L , the concentration of pollutants were all higher in winter than that in summer. The ammonia concentration of leachate was in a range of 537-1222 mg.L'', while the TP fluctuated acutely in a range of 17.98-296 mg L-1, exhibiting the relationship with seasonal variation. Extreme temperatures especially the high temperature in summer significantly affected air pollution producing, which indicated that containers should be kept against high temperature exposure and long residence time in order to prevent flammable gases and other pollutants generated largely.

  6. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    NASA Astrophysics Data System (ADS)

    Feng, Tai-Chen; Zhang, Ke-Quan; Su, Hai-Jing; Wang, Xiao-Juan; Gong, Zhi-Qiang; Zhang, Wen-Yu

    2015-10-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. Project supported by the National Natural Science Foundation of China (Grant No. 41305075), the National Basic Research Program of China (Grant Nos. 2012CB955203 and 2012CB955902), and the Special Scientific Research on Public Welfare Industry, China (Grant No. GYHY201306049).

  7. Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States

    NASA Astrophysics Data System (ADS)

    Naz, Bibi S.; Kao, Shih-Chieh; Ashfaq, Moetasim; Gao, Huilin; Rastogi, Deeksha; Gangrade, Sudershan

    2018-01-01

    The magnitude and frequency of hydrometeorological extremes are expected to increase in the conterminous United States (CONUS) over the rest of this century, and their increase will significantly impact water resource management. In this study, we evaluated the large-scale climate change effects on extreme hydrological events and their implications for reservoir inflows in 138 headwater subbasins located upstream of reservoirs across CONUS using the Variable Infiltration Capacity (VIC) hydrologic model. The VIC model was forced with a 10-member ensemble of global circulation models under the Representative Concentration Pathway 8.5 that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° grid cell resolution. Four commonly used indices, including mean annual flow, annual center timing, 100-year daily high streamflow, and 10-year 7-day average low streamflow were used for evaluation. The results projected an increase in the high streamflow by 44% for a majority of subbasins upstream of flood control reservoirs in the central United States (US) and a decrease in the low streamflow by 11% for subbasins upstream of hydropower reservoirs across the western US. In the eastern US, frequencies of both high and low streamflow were projected to increase in the majority of subbasins upstream of both hydropower and flood control reservoirs. Increased frequencies of both high and low streamflow events can potentially make reservoirs across CONUS more vulnerable to future climate conditions. This study estimates reservoir inflow changes over the next several decades, which can be used to optimize water supply management downstream.

  8. Measurement of volatile organic compounds inside automobiles.

    PubMed

    Fedoruk, Marion J; Kerger, Brent D

    2003-01-01

    The objective of the current study was to evaluate the types and concentrations of volatile organic compounds (VOCs) in the passenger cabin of selected sedan automobiles under static (parked, unventilated) and specified conditions of operation (i.e., driving the vehicle using air conditioning alone, vent mode alone, or driver's window half open). Data were collected on five different passenger sedan vehicles from three major automobile manufacturers. Airborne concentrations were assessed using 90-min time-weighted average (TWA) samples under U.S. Environmental Protection Agency (USEPA) Method IP-1B to assess individual VOC compounds and total VOCs (TVOCs) calibrated to toluene. Static vehicle testing demonstrated TVOC levels of approximately 400-800 microg/m(3) at warm interior vehicle temperatures (approximately 80 degrees F), whereas TVOCs at least fivefold higher were observed under extreme heat conditions (e.g., up to 145 degrees F). The profile of most prevalent individual VOC compounds varied considerably according to vehicle brand, age, and interior temperature tested, with predominant compounds including styrene, toluene, and 8- to 12-carbon VOCs. TVOC levels under varied operating conditions (and ventilation) were generally four- to eightfold lower (at approximately 50-160 microg/m(3)) than the static vehicle measurements under warm conditions, with the lowest measured levels generally observed in the trials with the driver's window half open. These data indicate that while relatively high concentrations of certain VOCs can be measured inside static vehicles under extreme heat conditions, normal modes of operation rapidly reduce the inside-vehicle VOC concentrations even when the air conditioning is set on recirculation mode.

  9. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  10. Relationships between Boron concentrations and trout in the firehole river, Wyoming: Historical information and preliminary results of a field study

    USGS Publications Warehouse

    Meyer, J.S.; Boelter, A.M.; Woodward, D.F.; Goldstein, J.N.; Farag, A.M.; Hubert, W.A.

    1998-01-01

    The Firehole River (FHR) in Yellowstone National Park (YNP) is a world- renowned recreational fishery that predominantly includes rainbow trout (RBT, Oncorhynchus mykiss) and brown trout (BNT, Salmo trutta). The trout populations apparently are closed to immigration and have been self- sustaining since 1955. Inputs from hot springs and geysers increase the temperature and mineral content of the water, including elevating the boron (B) concentrations to a maximum of ~1 mg B/L. Both RBT and BNT reside in warm-water reaches, except when the water is extremely warm (???~25??C) during midsummer. They spawn in late fall and early winter, with documented spawning of BNT in the cold-water reach upstream from the Upper Geyser Basin and of RBT in the Lower Geyser Basin reach, where water temperatures presumably are the warmest; however, successful recruitment of RBT in waters containing ~1 mg B/L has not been demonstrated conclusively. Thus, we began investigating the relationships among temperature, B concentrations, other water-quality parameters, and the distribution and reproduction of trout in the FHR in spring 1997. However, atypical high water flows and concomitant lower than historical temperatures and B concentrations during summer 1997 preclude conclusions about avoidance of high B concentrations.

  11. Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran

    NASA Astrophysics Data System (ADS)

    Mazhari, Seyed Ali; Sharifiyan Attar, Reza; Haghighi, Faezeh

    2017-10-01

    Soils developed in the Sabzevar ophiolitic area originate from different bedrocks. All samples display similar physico-chemical properties, but heavy metal concentrations vary extremely in different soil samples. Serpentine soils have the highest total concentration of Cr, Ni and Co; while soils derived from mafic rocks (olivine basalts and hornblende gabbros) show the highest Cu (85.29-109.11 ppm) and Zn (46.88-86.60 ppm). The DTPA-extraction of soil samples indicates that the order of metal bioavailability was Cr3% of total Cr; >12% of total Co and >17% of total Zn). Oxide minerals (such as chromite and magnetite) in Sabzevar soils play as resistant minerals and impede the heavy metal availability; while forsterite, pyroxene, serpentine and talc are more labile and show higher DTPA-extractable of heavy metals.

  12. Accurate high-throughput structure mapping and prediction with transition metal ion FRET

    PubMed Central

    Yu, Xiaozhen; Wu, Xiongwu; Bermejo, Guillermo A.; Brooks, Bernard R.; Taraska, Justin W.

    2013-01-01

    Mapping the landscape of a protein’s conformational space is essential to understanding its functions and regulation. The limitations of many structural methods have made this process challenging for most proteins. Here, we report that transition metal ion FRET (tmFRET) can be used in a rapid, highly parallel screen, to determine distances from multiple locations within a protein at extremely low concentrations. The distances generated through this screen for the protein Maltose Binding Protein (MBP) match distances from the crystal structure to within a few angstroms. Furthermore, energy transfer accurately detects structural changes during ligand binding. Finally, fluorescence-derived distances can be used to guide molecular simulations to find low energy states. Our results open the door to rapid, accurate mapping and prediction of protein structures at low concentrations, in large complex systems, and in living cells. PMID:23273426

  13. Methanogenic biodegradation of charcoal production wastes in groundwater at Kingsford, Michigan, USA

    USGS Publications Warehouse

    Michael, Godsy E.; Warren, E.; Westjohn, D.B.

    2001-01-01

    A house exploded in the City of Kingsford, Michigan USA. The explosion was caused by CH4 that leaked into the basement from the surrounding soil. Evidence suggests that biodegradation of products from the distillation and spillage at or near a former wood carbonization plant site was the major source of CH4 and CO2 in the groundwater system. The plant area is directly upgradient from deep groundwater, samples of which are green-yellow in colour, have a very strong odour of burnt wood, contain high concentrations of mononuclear aromatic and phenolic compounds, and extremely high concentrations of volatile fatty acids. The majority of the dissolved compounds in these groundwater samples have been shown, using laboratory microcosms, to be anaerobically biodegradable to CH4 and CO2. The biodegradable compounds, and the amounts of CH4 and CO2 produced in the microcosms, are consistent with observations from field samples.

  14. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea.

    PubMed

    Kim, Nam Sook; Hong, Sang Hee; An, Joon Geon; Shin, Kyung-Hoon; Shim, Won Joon

    2015-06-15

    The occurrence and distribution of tributyltin (TBT) and alternative biocides were investigated in sediment from semi-enclosed bays, fishing ports, and large commercial harbors in Korea. Extremely high concentration of TBT (55,264ngSn/g) was detected near a large shipyard, even after a total ban on its use in Korea. Diuron was the biocide with the highest detection frequency and concentration levels, followed by Irgarol 1051. Sea-Nine 211 was detected at 3 of 32 stations surveyed. Dichlofluanid, zinc and copper pyrithiones levels were below the detection limits at all the stations surveyed. The relatively high levels of Diuron (9-62.3ng/g) and Irgarol 1051 (1.5-11.5ng/g) were detected in harbor and shipyard areas. Diuron and Irgarol 1051 levels including TBT in sediments from hot spots in Korea exceeded global sediment quality guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Geochemistry of selenium.

    PubMed

    Kabata-Pendias, A

    1998-01-01

    Selenium (Se) is one of the most peculiar chemical elements in the geo- and biospheres. It partly resembles sulfur and tellurium; however, its behavior in the geosphere and its functions in the biosphere are very specific. Despite a relatively large database, its cycling in both the natural environment and in that modified by human activities requires further study. Selenium is rather concentrated in the geospheric cycle and is also bioconcentrated. The values of its accumulation ratios are: 5 for soil/sandstone, 2 for animal tissues/sandstone, and 5 for animal tissues/grain. For a specific plant/soil system, the bioconcentration factor for plants always has to be estimated because some plants can absorb extremely high concentrations of Se. Their ability to accumulate and tolerate high Se levels is related to different Se metabolisms. These plants play a significant role in geochemical prospecting and animal nutrition. This paper presents some geochemical observations toward a better understanding of the environmental properties of Se.

  16. Material Behavior At The Extreme Cutting Edge In Bandsawing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Mohammed; Haider, Julfikar; Persson, Martin

    2011-01-17

    In recent years, bandsawing has been widely accepted as a favourite option for metal cutting off operations where the accuracy of cut, good surface finish, low kerf loss, long tool life and high material removal rate are required. Material removal by multipoint cutting tools such as bandsaw is a complex mechanism owing to the geometry of the bandsaw tooth (e.g., limited gullet size, tooth setting etc.) and the layer of material removed or undeformed chip thickness or depth of cut (5 {mu}m-50 {mu}m) being smaller than or equal to the cutting edge radius (5 {mu}m-15 {mu}m). This situation can leadmore » to inefficient material removal in bandsawing. Most of the research work are concentrated on the mechanics of material removal by single point cutting tool such as lathe tool. However, such efforts are very limited in multipoint cutting tools such as in bandsaw. This paper presents the fundamental understanding of the material behaviour at the extreme cutting edge of bandsaw tooth, which would help in designing and manufacturing of blades with higher cutting performance and life. ''High Speed Photography'' has been carried out to analyse the material removal process at the extreme cutting edge of bandsaw tooth. Geometric model of chip formation mechanisms based on the evidences found during ''High Speed Photography'' and ''Quick Stop'' process is presented. Wear modes and mechanism in bimetal and carbide tipped bandsaw teeth are also presented.« less

  17. FAME: freeform active mirror experiment

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars

    2016-07-01

    FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.

  18. Overexpression of HO-1 assisted PM2.5-induced apoptosis failure and autophagy-related cell necrosis.

    PubMed

    Zhou, Wei; Yuan, Xiaoyan; Zhang, Li; Su, Baoting; Tian, Dongdong; Li, Yang; Zhao, Jun; Wang, Yimei; Peng, Shuangqing

    2017-11-01

    Severe smog/haze events accompanied by extremely high concentrations of airborne fine particulate matter (PM2.5) have emerged frequently in China and the potential health risks have attracted ever-growing attention. During these episodes, a surge in hospital visits for acute respiratory symptoms and respiratory diseases exacerbation has been reported to be associated with acute exposure to high-levels of particulate matters. To investigate cell fate determination and the underlying pathogenic mechanisms during severe haze episodes or smog events, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-400μg/mL) for 24h and found that high doses of PM2.5 caused cell necrosis and autophagy dysfunction, while co-treatment with the autophagy inhibitor 3-MA could partially reduce PM2.5-induced cell necrosis. Exposure to PM2.5 also increased the expression and mitochondrial transposition of heme oxygenase 1 (HO-1), which consequently reduced the release of cytochrome C from mitochondria to cytosol. Knockdown of HO-1 by siRNA attenuated the mitochondrial accumulation of HO-1, reversed HO-1-induced the reduction of cytochrome C release and promoted PM2.5-induced cell apoptosis. In contrast to necrosis, PM2.5-induced autophagy was independent of HO-1. In conclusion, our results demonstrate that acute exposure to high PM2.5 concentrations causes autophagy-related cell necrosis. The decrease in cytochrome C release and apoptosis by upregulation of HO-1 maybe assist PM2.5-induced autophagy-related cell necrosis. Further, this study reveals dual roles for HO-1 in PM2.5-induced cytotoxicity and presents a possible explanation for the onset of acute respiratory symptoms under extreme particulate air pollution. Copyright © 2017. Published by Elsevier Inc.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Miao; Mohammadi, Reza; Turner, Christopher L.

    In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Miao; Turner, Christopher L.; Mohammadi, Reza

    In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  1. Extreme ultraviolet and soft x-ray diagnostics of high-temperature plasmas. Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moos, H W; Armstrong, L Jr

    1980-01-01

    The work performed from mid-January 1979 through 1980 is described. EUV diagnostic studies have been performed at the Alcator A and C Tokamaks, and on TMX. A toroidal asymmetry has been found in the low density phase of Alcator A. The confinement time of impurities has been measured on Alcator A. Impurity concentrations in the center cell of TMX have been studied using EUV spectroscopic techniques. A time resolving spectrograph with 1024 detector elements is essentially complete.

  2. Utilization of the concentric circle model in clinical nursing: a review.

    PubMed

    Kazuma, K

    1999-12-01

    In this article, I review applications of the concentric circle model in clinical nursing. The concentric circle model is based on the cross-sectional shape of the body extremities at several points, and can be used in the areas of both kinesiology and nutritional science. This model makes it possible to calculate the cross-sectional area of muscles from measurement of the circumference of the extremities and the thickness of adipose (fatty) tissue. Then, changes in muscle strength or nutritional status can be inferred or assessed from these data. This model requires only simple and non-invasive measurements, and this is a significant and essential characteristic for its use by nurses, both in clinical and research applications.

  3. Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics

    PubMed Central

    2013-01-01

    Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1. PMID:23399075

  4. The Structure and Bonding State for Fullerene-Like Carbon Nitride Films with High Hardness Formed by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Kamata, Tomoyuki; Niwa, Osamu; Umemura, Shigeru; Hirono, Shigeru

    2012-12-01

    We studied pure carbon films and carbon nitride (CN) films by using electron cyclotron resonance (ECR) sputtering. The main feature of this method is high density ion irradiation during deposition, which enables the pure carbon films to have fullerene-like (FL) structures without nitrogen incorporation. Furthermore, without substrate heating, the ECR sputtered CN films exhibited an enhanced FL microstructure and hardness comparable to that of diamond at intermediate nitrogen concentration. This microstructure consisted of bent and cross-linked graphene sheets where layered areas remarkably decreased due to increased sp3 bonding. Under high nitrogen concentration conditions, the CN films demonstrated extremely low hardness because nitrile bonding not only decreased the covalent-bonded two-dimensional hexagonal network but also annihilated the bonding there. By evaluating lattice images obtained by transmission electron microscopy and the bonding state measured by X-ray photoelectron spectroscopy, we classified the ECR sputtered CN films and offered phase diagram and structure zone diagram.

  5. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  6. Assessing the impact of future climate extremes on the US corn and soybean production

    NASA Astrophysics Data System (ADS)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  7. Silicon insulator-based dielectrophoresis devices for minimized heating effects.

    PubMed

    Zellner, Phillip; Agah, Masoud

    2012-08-01

    Concentration of biological specimens that are extremely dilute in a solution is of paramount importance for their detection. Microfluidic chips based on insulator-based DEP (iDEP) have been used to selectively concentrate bacteria and viruses. iDEP biochips are currently fabricated with glass or polymer substrates to allow for high electric fields within the channels. Joule heating is a well-known problem in these substrates and can lead to decreased throughput and even device failure. In this work, we present, for the first time, highly efficient trapping and separation of particles in DC iDEP devices that are fabricated on silicon using a single-etch-step three-dimensional microfabrication process with greatly improved heat dissipation properties. Fabrication in silicon allows for greater heat dissipation for identical geometries and operating conditions. The 3D fabrication allows for higher performance at lower applied potentials. Thermal measurements were performed on both the presented silicon chips and previously published PDMS devices comprised of microposts. Trapping and separation of 1 and 2 μm polystyrene particles was demonstrated. These results demonstrate the feasibility of high-performance silicon iDEP devices for the next generation of sorting and concentration microsystems. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation.

    PubMed

    Myllys, Nanna; Ponkkonen, Tuomo; Passananti, Monica; Elm, Jonas; Vehkamäki, Hanna; Olenius, Tinja

    2018-05-24

    The role of a strong organobase, guanidine, in sulfuric acid-driven new-particle formation is studied using state-of-the-art quantum chemical methods and molecular cluster formation simulations. Cluster formation mechanisms at the molecular level are resolved, and theoretical results on cluster stability are confirmed with mass spectrometer measurements. New-particle formation from guanidine and sulfuric acid molecules occurs without thermodynamic barriers under studied conditions, and clusters are growing close to a 1:1 composition of acid and base. Evaporation rates of the most stable clusters are extremely low, which can be explained by the proton transfers and symmetrical cluster structures. We compare the ability of guanidine and dimethylamine to enhance sulfuric acid-driven particle formation and show that more than 2000-fold concentration of dimethylamine is needed to yield as efficient particle formation as in the case of guanidine. At similar conditions, guanidine yields 8 orders of magnitude higher particle formation rates compared to dimethylamine. Highly basic compounds such as guanidine may explain experimentally observed particle formation events at low precursor vapor concentrations, whereas less basic and more abundant bases such as ammonia and amines are likely to explain measurements at high concentrations.

  9. Study of pollutant distribution in the Guaxindiba Estuarine System--SE Brazil.

    PubMed

    Fonseca, E M; Baptista Neto, J A; Pereira, M P S; Silva, C G; Arantes, J D

    2014-05-15

    The Guaxindiba Estuarine System is located in the northeast portion of Guanabara Bay. Despite the location inside an environmental protection zone, the main affluent of the river runs through the extremely urbanized area of the cities of Niterói and São Gonçalo. In order to understand the contamination levels of the estuary, 35 surface sediment samples were collected along the river and estuarine area and analyzed for the presence of heavy metals, PAHs, organochlorated pesticides, polychlorinated biphenyl and other contaminants. The analyzed data revealed a greatly affected environment with respect to most of these substances. The results suggested propitious deposits of contaminants, with high concentrations of organic matter and fine sediment. The levels of heavy metal in the entire estuarine system were high compared with the local background. The total mean concentrations of As, Cd, Pb, Cu, Zn, Hg, Cr and Ni in the surface sediments were: 3.74; 0.03; 19.3; 15.0; 99.0; n.d.; 29.0; and 22.0mg/kg, respectively, confirming, in certain cases, the high capacity of the environment to concentrate pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Immunosuppressive Therapy in Treatment of Refractory Hypoglycemia in Type B Insulin Resistance: A Case Report

    PubMed Central

    Sirisena, Imali

    2017-01-01

    Type B insulin resistance is a rare syndrome characterized by fluctuating glucose levels (ranging from hyperglycemia with extreme insulin resistance to intractable hypoglycemia without exogenous insulin administration), high serum insulin levels, and insulin receptor autoantibodies. Most cases occur in the African American population in association with other underlying autoimmune systemic diseases. Treatments with high-dose steroids, immunosuppressants, and plasmapheresis have been used, with variable outcomes, in patients without spontaneous remission. We report the case of a 60-year-old African American woman with history of systemic lupus erythematosus presenting with extreme fluctuations in glucose levels, ranging from severe hyperglycemia to refractory hypoglycemia, with high serum concentration of insulin in both phases. Her presentation and phenotype were very similar to those seen in known cases of type B insulin resistance associated with insulin receptor antibodies. Treatment in other reported cases used a combination of high-dose steroids and immunosuppressants. We tried high-dose steroids, azathioprine, and intravenous immunoglobulins, which resulted in improvement and barely detectable insulin receptor antibody. We present a case of type B insulin resistance with abnormally low titers of insulin receptor antibodies despite a typical clinical course and response. Future research is needed to improve diagnosis and treatment in this rare disease. PMID:29264467

  11. High-fluorine rhyolite: An eruptive pegmatite magma at the Honeycomb Hills, Utah

    NASA Astrophysics Data System (ADS)

    Congdon, Roger D.; Nash, W. P.

    1988-11-01

    The Honeycomb Hills rhyolite dome in western Utah displays chemical and mineralogical features characteristic of a rare-element pegmatite magma. The lavas show extreme enrichments in such trace elements as Rb (≤1960 ppm), Cs (≤78), Li (≤344), Sn (≤33), Be (≤270), and Y (≤156). Phenocrysts (10%-50% by volume) include sanidine (Or66-70), plagioclase (Ab83-92), quartz, biotite approaching fluorsiderophyllite, and fluortopaz, as well as accessory phases common to highly differentiated granites and pegmatites, including zircon, thorite, fluocerite, columbite, fergusonite, and samarskite. Low temperatures (600 to 640 °C), coupled with high phenocryst and silica content, might normally preclude eruption due to the extremely high viscosity of the melt. However, high concentrations of fluorine (2%-3%) could domal lavas significantly reduce viscosity and allow eruption of domal lavas even after dewatering of the mama during the initial pyroclastic phase of the eruptive cycle. Fractionation of phenocrysts and accessory phases, for which partition coefficients have been measured, is sufficient to account for most compositional gradients inferred in the preeruptive magma body, although transport by a fluid phase formed a may have caused upward enrichments in Li, Be, and Cs. If the Honeycomb Hills magma had crystallized at depth, it would have formed a rare-element pegmatite.

  12. Packaging and Delivery of Chemical Weapons: A Defensive Trojan Horse Stratagem in Chromodorid Nudibranchs

    PubMed Central

    Carbone, Marianna; Gavagnin, Margherita; Haber, Markus; Guo, Yue-Wei; Fontana, Angelo; Manzo, Emiliano; Genta-Jouve, Gregory; Tsoukatou, Maria; Rudman, William B.; Cimino, Guido; Ghiselin, Michael T.; Mollo, Ernesto

    2013-01-01

    Background Storage of secondary metabolites with a putative defensive role occurs in the so-called mantle dermal formations (MDFs) that are located in the more exposed parts of the body of most and very likely all members of an entire family of marine mollusks, the chromodorid nudibranchs (Gastropoda: Opisthobranchia). Given that these structures usually lack a duct system, the mechanism for exudation of their contents remains unclear, as does their adaptive significance. One possible explanation could be that they are adapted so as to be preferentially attacked by predators. The nudibranchs might offer packages containing highly repugnant chemicals along with parts of their bodies to the predators, as a defensive variant of the strategic theme of the Trojan horse. Methodology and Principal Findings We detected, by quantitative 1H-NMR, extremely high local concentrations of secondary metabolites in the MDFs of six species belonging to five chromodorid genera. The compounds were purified by chromatographic methods and subsequently evaluated for their feeding deterrent properties, obtaining dose-response curves. We found that only distasteful compounds are accumulated in the reservoirs at concentrations that far exceed the values corresponding to maximum deterrent activity in the feeding assays. Other basic evidence, both field and experimental, has been acquired to elucidate the kind of damage that the predators can produce on both the nudibranchs' mantles and the MDFs. Significance As a result of a long evolutionary process that has progressively led to the accumulation of defensive chemical weapons in localized anatomical structures, the extant chromodorid nudibranchs remain in place when molested, retracting respiratory and chemosensory organs, but offering readily accessible parts of their body to predators. When these parts are masticated or wounded by predators, breakage of the MDFs results in the release of distasteful compounds at extremely high concentration in a way that maximizes their repugnant impact. PMID:23620804

  13. Achieving the Middle Ground in an Age of Concentrated Extremes: Mixed Middle-Income Neighborhoods and Emerging Adulthood

    PubMed Central

    SAMPSON, ROBERT J.; MARE, ROBERT D.; PERKINS, KRISTIN L.

    2015-01-01

    This article focuses on stability and change in “mixed middle-income” neighborhoods. We first analyze variation across nearly two decades for all neighborhoods in the United States and in the Chicago area, particularly. We then analyze a new longitudinal study of almost 700 Chicago adolescents over an 18-year span, including the extent to which they are exposed to different neighborhood income dynamics during the transition to young adulthood. The concentration of income extremes is persistent among neighborhoods, generally, but mixed middle-income neighborhoods are more fluid. Persistence also dominates among individuals, though Latino-Americans are much more likely than African Americans or whites to be exposed to mixed middle-income neighborhoods in the first place and to transition into them over time, even when adjusting for immigrant status, education, income, and residential mobility. The results here enhance our knowledge of the dynamics of income inequality at the neighborhood level, and the endurance of concentrated extremes suggests that policies seeking to promote mixed-income neighborhoods face greater odds than commonly thought. PMID:26722129

  14. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    NASA Astrophysics Data System (ADS)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  15. Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive

    NASA Astrophysics Data System (ADS)

    Hatteberg, R.; Takle, E. S.

    2011-12-01

    Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce these isolated extreme events by assessing their existence, location, magnitude, synoptic linkage, initiation time and duration as compared to the record of observations of derechos in the Midwest and Northeast US. We find that RCMs do reproduce features with close resemblance to derechos although their magnitudes are considerably below those observed (which may be expected given the 50-km grid spacing of the RCM models). Extreme low wind speeds in summer are frequently associated with stagnation conditions leading to high air pollution events in major cities. Low winds also lead to reduced evapotranspiration by crops, which can impact phenological processes (e.g. pollination and seed fertilization, carbon uptake by plants). We evaluate whether RCMs can simulate climatic distributions of low-wind conditions in the northern US. Results show differences among models in their ability to reproduce observed characteristics of low summer-time winds. Only one model reproduces observed high frequency of calm night-time surface winds in summer, which suggests a need to improve model capabilities for simulating extreme stagnation events.

  16. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  17. A highly sensitive magnetic biosensor for detection and quantification of anticancer drugs tagged to superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Wingo, J.; Devkota, J.; Mai, T. T. T.; Nguyen, X. P.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Vietnam Academy of Science and Technology Collaboration; University of South Florida Team

    2014-03-01

    A precise detection of low concentrations of biomolecules attached to magnetic nanoparticles in complex biological systems is a challenging task and requires biosensors with improved sensitivity. Here, we present a highly sensitive magnetic biosensor based on the magneto-reactance (MX) effect of a Co65Fe4Ni2Si15B14 amorphous ribbon with nanohole-patterned surface for detection and quantification of anticancer drugs (Curcumin) tagged to Fe3O4 nanoparticles. The detection and quantification of Curcumin were assessed by the change in MX of the ribbon subject to varying concentrations of the functionalized Fe3O4 nanoparticles. A high capacity of the MX-based biosensor in quantitative analysis of the nanoparticles was achieved in the range of 0 - 50 ng/ml, beyond which the detection sensitivity (η) remained unchanged. The η of the biosensor reached an extremely high value of 30%, which is about 4-5 times higher than that of a magneto-impedance (MI) based biosensor. This biosensor is well suited for detection of low-concentration magnetic biomarkers in biological systems. This work was supported by was supported by the Florida Cluster for Advanced Smart Sensor Technologies, USAMRMC (Grant # W81XWH-07-1-0708), and the NSF-funded REU program at the USF.

  18. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    Iceland is extremely active dust region and desert areas of over 44,000 km2 acknowledge Iceland as the largest Arctic and European desert. Frequent dust events, up to 135 dust days annually, transport dust particles far distances towards the Arctic and Europe. Satellite MODIS pictures have revealed dust plumes exceeding 1,000 km. The annual dust deposition was calculated as 40.1 million tons yr-1. Two dust storms were measured in transverse horizontal profile about 90 km far from different dust sources in southwestern Iceland in the summer of 2015. Aerosol monitor DustTrak DRX 8533EP was used to measure PM mass concentrations corresponding to PM1, PM2.5, PM4, PM10 and the total PM15 at several places within the dust plume. Images from camera network operated by the Icelandic Road and Coastal Administration were used to estimate the visibility and spatial extent of measured dust events. A numerical simulation of surface winds was carried out with the numerical model HIRLAM with horizontal resolution of 5 km and used to calculate the total dust flux from the sources. The in situ measurements inside the dust plumes showed that aeolian dust can be very fine. The study highlights that suspended volcanic dust in Iceland causes air pollution with extremely high PM1 concentrations comparable to the polluted urban stations in Europe or Asia rather than reported dust event observations from around the world. The PM1/PM2.5 ratios are generally low during dust storms outside of Iceland, much lower than > 0.9 and PM1/PM10 ratios of 0.34-0.63 found in our study. It shows that Icelandic volcanic dust consists of higher proportion of submicron particles compared to crustal dust. The submicron particles are predicted to travel long distances. Moreover, such submicron particles pose considerable health risk because of high potential for entering the lungs. Icelandic volcanic glass has often fine pipe-vesicular structures known from asbestos and high content of heavy metals. Previous in situ measurements at the dust source in 2013 revealed extremely high number concentrations of submicron particles, specifically in the size range 0.3-0.337 μm. The PM2.5/PM10 ratios of mass concentrations seem to be lower at the dust sources that in some distance from the sources as measured in 2015. Common dust storms in Iceland are of several hundred thousand tons of magnitude from relatively well defined main dust sources. Numerical simulations were used calculate the total dust flux from the sources as 180,000 - 280,000 tons in this study. The mean PM1 (PM10) concentrations inside of the dust plumes varied from 97 to 241 µg m-3 (PM10 = 158 to 583 µg m-3). The extent of moderate dust events was calculated as 2.450 km2 to 4.220 km2 of the land area suggesting the regional scale of the events. Dust plumes reported here passed the most densely inhabited areas of Iceland, health risk warnings for the general public were, however, not issued. The data provided stresses the need for such warning system and is an important step towards its development.

  19. Measurement of radiation exposure of astronauts by radiochemical techniques

    NASA Technical Reports Server (NTRS)

    Brodzinski, R. L.

    1972-01-01

    Only two of the fecal specimens collected inflight during the Apollo 15 mission were returned for analysis. Difficulty in obtaining reasonably accurate radiation dose estimates based on the cosmogenic radionuclide content of the specimens was encountered due to the limited sampling. The concentrations of Na-22, K-40, Cr-51, Fe-59, and Cs-137 are reported. The concentrations of 24 major, minor, and trace elements in these two specimens were determined. Most concentrations are typical of those observed previously. Major exceptions are extremely low values for selenium and extraordinarily high values for rare earth elements. The net Po-210 activities in the Apollo 11 and 12 Solar Wind Composition foils and in the Apollo 8 and 12 spacecraft reflective coatings due to lunar exposure have been determined. Equilibrium concentrations of 0.082 + or - 0.012 disintegrations /sq cm sec of Rn-222 in the lunar atmosphere and 0.0238 + or - 0.0035 disintegrations /sq cm sec of Po-210 on the lunar surface have been calculated for Oceanus Procellarum.

  20. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    NASA Technical Reports Server (NTRS)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  1. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  2. Transport of free and particulate-associated bacteria in karst

    USGS Publications Warehouse

    Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.

    2000-01-01

    Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst. (C) 2000 Elsevier Science B.V.Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended

  3. Health risk represented by inhaling polycyclic aromatic hydrocarbons (PAH) during daily commuting involving using a high traffic flow route in Bogotá.

    PubMed

    Pachón, Jorge E; Sarmiento, Hugo; Hoshiko, Tomomi

    2013-01-01

    Assessing the risk to health by inhaling particles and particle-bound PAH during daily commuting along a high traffic flow route/corridor in Bogotá. A van was equipped with a PAS2000 photo-electric sensor for real-time measurement of particle-bound PAH and a Dust Trakfor monitoring PM10 concentration; it drove along typical commuting routes in the city. Exposure to particles and particle-bound PAH was assessed by using an inhalation intake model. A similar trend was observed for both PM10 and PAH concentration, indicating that traffic was the same source for both contaminants. Extreme PM10 and PAH inhalation concentrations were recorded every time direct bus and microbus emissions were measured by the van. Inhalation model results indicated that exposure was significantly greater when using a venues having mixed traffic use (i.e. buses, microbuses, passenger vehicles, motorcycles) compared to using roads where the TransMilenio system (articulated buses) had been implemented. The results may support evaluating bus drivers, commuters and bike users' exposure to toxic compounds in the city.

  4. Collapse of the surface dusty plasma waves under the plasma-beam instability

    NASA Astrophysics Data System (ADS)

    Grimalsky, Volodymyr; Kotsarenko, Anatoliy; Koshevaya, Svetlana; Escobedo-A., Jesus

    2017-12-01

    The nonlinear dynamics of the dusty plasma-dusty beam instability is investigated in the dusty plasma waveguides bounded by dielectrics. The dusty plasma includes the positive ions as the light component and the negative dust as the heavy component. A beam of dust particles moves along the waveguide. The set of hydrodynamic equations for the dust and beam particles, namely, the continuity equations and the equations for the momentum jointly with the Poisson one are used. The Boltzmann distribution is used for the ions. The electric and hydrodynamic boundary conditions are applied at the interfaces. The simulations have demonstrated that the dusty sound waves of small amplitudes are the subject to amplification with a high increment due to the convective instability, even when the concentration of the beam particles is ≤0.1 of the uniform dust concentration. The amplification very rapidly transits to the regime of strong surface nonlinearity, and near the interfaces the variations of the dust concentration reach extremely high values, where the collapse of the beam dust component occurs.

  5. Flow-induced gelation of microfiber suspensions.

    PubMed

    Perazzo, Antonio; Nunes, Janine K; Guido, Stefano; Stone, Howard A

    2017-10-10

    The flow behavior of fiber suspensions has been studied extensively, especially in the limit of dilute concentrations and rigid fibers; at the other extreme, however, where the suspensions are concentrated and the fibers are highly flexible, much less is understood about the flow properties. We use a microfluidic method to produce uniform concentrated suspensions of high aspect ratio, flexible microfibers, and we demonstrate the shear thickening and gelling behavior of such microfiber suspensions, which, to the best of our knowledge, has not been reported previously. By rheological means, we show that flowing the suspension triggers the irreversible formation of topological entanglements of the fibers resulting in an entangled water-filled network. This phenomenon suggests that flexible fiber suspensions can be exploited to produce a new family of flow-induced gelled materials, such as porous hydrogels. A significant consequence of these flow properties is that the microfiber suspension is injectable through a needle, from which it can be extruded directly as a hydrogel without any chemical reactions or further treatments. Additionally, we show that this fiber hydrogel is a soft, viscoelastic, yield-stress material.

  6. Occurrence of Toxic Cyanobacterial Blooms in Rio de la Plata Estuary, Argentina: Field Study and Data Analysis

    PubMed Central

    Giannuzzi, L.; Carvajal, G.; Corradini, M. G.; Araujo Andrade, C.; Echenique, R.; Andrinolo, D.

    2012-01-01

    Water samples were collected during 3 years (2004–2007) at three sampling sites in the Rio de la Plata estuary. Thirteen biological, physical, and chemical parameters were determined on the water samples. The presence of microcystin-LR in the reservoir samples, and also in domestic water samples, was confirmed and quantified. Microcystin-LR concentration ranged between 0.02 and 8.6 μg.L−1. Principal components analysis was used to identify the factors promoting cyanobacteria growth. The proliferation of cyanobacteria was accompanied by the presence of high total and fecal coliforms bacteria (>1500 MNP/100 mL), temperature ≥25°C, and total phosphorus content ≥1.24 mg·L−1. The observed fluctuating patterns of Microcystis aeruginosa, total coliforms, and Microcystin-LR were also described by probabilistic models based on the log-normal and extreme value distributions. The sampling sites were compared in terms of the distribution parameters and the probability of observing high concentrations for Microcystis aeruginosa, total coliforms, and microcystin-LR concentration. PMID:22523486

  7. Organochlorine pesticides, PCBs, and mercury in hawk, falcon, eagle, and owl eggs from the Lipetsk, Voronezh, Novgorod and Saratov regions, Russia, 1992-1993

    USGS Publications Warehouse

    Henny, Charles J.; Ganusevich, S.A.; Ward, F.P.; Schwartz, T.R.; Mischenko, A.L.; Moseikin, V.N.; Sarychev, V.S.

    1998-01-01

    Fifty-two eggs (one per nest) of 12 species of raptors were collected in 1992-93 for contaminant analysis in three southern European locations in Russia. One Peregrine Falcon (Falco peregrinus) egg was also collected farther northwest in the Novgorod region. A high DDE concentration (27.3 ppm, wet weight [w/w]) in the Peregrine Falcon egg raised concern for the species in European Russia south of the Arctic Circle. Although a number of organochlorine contaminants were found in eggs of the other species, concentrations were all below known effect levels. Mercury levels were also extremely low. Nesting success in southern Russia in 1992 (only year with follow-up visits) appeared normal.

  8. Secondary polycythaemia associated with high plasma erythropoietin concentrations in a dog with a necrotising pyelonephritis.

    PubMed

    Kessler, M

    2008-07-01

    An 11-year-old mixed breed dog was presented with anorexia, apathy and intermittent macrohaematuria, absolute polycythaemia (packed cell volume, 80 per cent; red blood cell, 12.2 x 10(6)/microl) and elevated erythropoietin concentrations. A renal mass was detected by ultrasonography and, following total nephrectomy, diagnosed as necrotising pyelonephritis. After surgery, the haematological parameters and erythropoietin values returned to normal, suggesting that the pyelonephritis was the cause of the polycythaemia. While secondary polycythaemia because of a non-neoplastic condition of the kidneys occasionally occurs in human beings, it has only extremely rarely been reported in dogs. This is the first case report of a unilateral pyelonephritis causing secondary polycythaemia in a dog.

  9. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  10. Identification of Thiols in Yellow Onion (Allium cepa L.) Using Solvent Vented Large Volume Injection GC-MS.

    PubMed

    Wermes, Clint; Cannon, Robert; Haasnoot, Sytze; Colstee, Hans; Niedeveld, Cor; Koopmanschap, Gijs; Da Costa, Neil C

    2017-11-01

    Thiols are often highly odor active molecules and as such can significantly contribute to aroma while being present at extremely low concentrations. This paper details the identification of thiols in yellow onion juice by solvent extraction followed by thiol enrichment using a mercuric agarose gel column. Due to the inherent thermal instability and low concentrations of thiols in onion, chromatographic analysis utilized larger volume solvent elimination injections. New sulfur compounds in onion included 1,1-propanedithiol, bis-(1-sulfanylpropyl)-sulfide, 1-methylsulfanyl-1-propanethiol, 1-propylsulfanyl-1-propanethiol, and 1-allylsulfanyl-1-propanethiol. A discussion on the potential route of formation for each compound is included along with the orthonasal and retronasal evaluations of the synthesized molecules. This work investigated and identified 5 newly identified compounds present in onions that can impart onion character at low concentrations levels. © 2017 Institute of Food Technologists®.

  11. Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin).

    PubMed

    Régine, Maury-Brachet; Gilles, Durrieu; Yannick, Dominique; Alain, Boudou

    2006-09-01

    Within a multidisciplinary research programme set up in French Guiana (Amazonian basin), twelve fish species from six food regimes were collected from the upper part of the Maroni River in order to analyze mercury (Hg) distribution in six organs (gills, liver, kidneys, skeletal muscle, stomach, and intestine) and to look for a relationship between Hg organotropism and food regimes. As many studies have shown, mercury biomagnification leads to extremely marked differences in muscle accumulation levels: the average ratio between extreme concentrations measured in piscivorous and herbivorous species was almost 500. A first principal component analysis on primary Hg concentration variables showed that biomagnification had a marked effect, masking differences between Hg distribution in the organs according to fish species and their food regimes. In order to avoid this, we determined ratios between Hg concentrations measured in the different organs and in the skeletal muscle, considered as the reference tissue for biomagnification effects. A new principal component analysis using these normalized values, in conjunction with a Ward's hierarchical clustering method, revealed that there is a link between Hg organotropism and the food regimes, with comparatively high [Hg]gills/[Hg]muscle ratios for the herbivorous species; high [Hg]intestine-liver-kidneys/[Hg]muscle ratios for the benthivorous and periphytophagous species, and, in contrast, ratios of less than 1 in the different organs for the piscivorous and omnivorous species. Our determinations of methylmercury (MMHg) percentages in the food consumed by the fish (aquatic macrophytes, terrestrial material from the river banks, biofilms, benthic invertebrates, fish muscle tissues), according to the different food regimes (herbivorous, periphytophagous, benthivorous, omnivorous, carnivorous, piscivorous), showed that this criterion can account for the differences in Hg distribution in the fish organs. For instance, the periphytophagous and benthivorous fish species ingest biofilms and small benthic invertebrates with quite low MMHg burdens (18% and 35 to 52% of Hgtotal, respectively). The highest [Hg]organs/[Hg]muscle ratios were observed for the liver and kidneys, the two principal target organs for inorganic Hg in fish. On the other hand, the piscivorous species ingest a large amount of fish of varying size, with high MMHg percentages in their muscle tissue (nearly 80%); Hg organotropism is characterized by high MMHg concentrations in the skeletal muscle and comparatively low [Hg]organs/[Hg]muscle ratios.

  12. Online sensing and control of oil in process wastewater

    NASA Astrophysics Data System (ADS)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  13. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH3SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH3SH/H2S ratios (high H2S but low CH3SH concentrations, n = 14; high CH3SH but low H2S concentrations, n = 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH3SH group had higher proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity. PMID:22355729

  14. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production.

    PubMed

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n 5 14; high CH(3)SH but low H2S concentrations, n 5 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella,Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity.

  15. Radon exhalation rate and natural radionuclide content in building materials of high background areas of Ramsar, Iran.

    PubMed

    Bavarnegin, E; Fathabadi, N; Vahabi Moghaddam, M; Vasheghani Farahani, M; Moradi, M; Babakhni, A

    2013-03-01

    Radon exhalation rates from building materials used in high background radiation areas (HBRA) of Ramsar were measured using an active radon gas analyzer with an emanation container. Radon exhalation rates from these samples varied from below the lower detection limit up to 384 Bq.m(-2) h(-1). The (226)Ra, (232)Th and (40)K contents were also measured using a high resolution HPGe gamma- ray spectrometer system. The activity concentration of (226)Ra, (232)Th and (40)K content varied from below the minimum detection limit up to 86,400 Bq kg(-1), 187 Bq kg(-1) and 1350 Bq kg(-1), respectively. The linear correlation coefficient between radon exhalation rate and radium concentration was 0.90. The result of this survey shows that radon exhalation rate and radium content in some local stones used as basements are extremely high and these samples are main sources of indoor radon emanation as well as external gamma radiation from uranium series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Isokinetic profile of elbow flexion and extension strength in elite junior tennis players.

    PubMed

    Ellenbecker, Todd S; Roetert, E Paul

    2003-02-01

    Descriptive study. To determine whether bilateral differences exist in concentric elbow flexion and extension strength in elite junior tennis players. The repetitive nature of tennis frequently produces upper extremity overuse injuries. Prior research has identified tennis-specific strength adaptation in the dominant shoulder and distal upper extremity musculature of elite players. No previous study has addressed elbow flexion and extension strength. Thirty-eight elite junior tennis players were bilaterally tested for concentric elbow flexion and extension muscle performance on a Cybex 6000 isokinetic dynamometer at 90 degrees/s, 210 degrees/s, and 300 degrees/s. Repeated-measures ANOVAs were used to test for differences between extremities, muscle groups, and speed. Significantly greater (P<0.002) dominant-arm elbow extension peak torque values were measured at 90 degrees/s, 210 degrees/s, and 300 degrees/s for males. Significantly greater (P<0.002) dominant-arm single-repetition work values were also measured at 90 degrees/s and 210 degrees/s for males. No significant difference was measured between extremities in elbow flexion muscular performance in males and for elbow flexion or extension peak torque and single-repetition work values in females. No significant difference between extremities was measured in elbow flexion/extension strength ratios in females and significant differences between extremities in this ratio were only present at 210 degrees/s in males (P<0.002). These data indicate muscular adaptations around the dominant elbow in male elite junior tennis players but not females. These data have ramifications for clinicians rehabilitating upper extremity injuries in patients from this population.

  17. A highly sensitive biological detection substrate based on TiO2 nanowires supporting gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying

    2011-12-01

    Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.

  18. Best of both worlds: simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone Lithops aucampiae.

    PubMed

    Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P

    2013-01-01

    "Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.

  19. The spatial domain of wildfire risk and response in the wildland urban interface in Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Price, O. F.; Bradstock, R. A.

    2013-12-01

    In order to quantify the risks from fire at the wildland urban interface (WUI), it is important to understand where fires occur and their likelihood of spreading to the WUI. For each of the 999 fires in the Sydney region we calculated the distance between the ignition and the WUI, the fire's weather and wind direction and whether it spread to the WUI. The likelihood of burning the WUI was analysed using binomial regression. Weather and distance interacted such that under mild weather conditions, the model predicted only a 5% chance that a fire starting >2.5 km from the interface would reach it, whereas when the conditions are extreme the predicted chance remained above 30% even at distances >10 km. Fires were more likely to spread to the WUI if the wind was from the west and in the western side of the region. We examined whether the management responses to wildfires are commensurate with risk by comparing the distribution of distance to the WUI of wildfires with roads and prescribed fires. Prescribed fires and roads were concentrated nearer to the WUI than wildfires as a whole, but further away than wildfires that burnt the WUI under extreme weather conditions (high risk fires). Overall, 79% of these high risk fires started within 2 km of the WUI, so there is some argument for concentrating more management effort near the WUI. By substituting climate change scenario weather into the statistical model, we predicted a small increase in the risk of fires spreading to the WUI, but the increase will be greater under extreme weather. This approach has a variety of uses, including mapping fire risk and improving the ability to match fire management responses to the threat from each fire. They also provide a baseline from which a cost-benefit analysis of complementary fire management strategies can be conducted.

  20. The spatial domain of wildfire risk and response in the Wildland Urban Interface in Sydney, Australia

    NASA Astrophysics Data System (ADS)

    Price, O. F.; Bradstock, R. A.

    2013-09-01

    In order to quantify the risks from fire at the Wildland Urban Interface (WUI), it is important to understand where fires occur and their likelihood of spreading to the WUI. For each of 999 fires in the Sydney region we calculated the distance between the ignition and the WUI, the fire weather and wind direction and whether it spread to the WUI. The likelihood of burning the WUI was analysed using binomial regression. Weather and distance interacted such that under mild weather conditions, the model predicted only a 5% chance that a fire starting more than 2.5 km from the interface would reach it, whereas when the conditions are extreme the predicted chance remained above 30% even at distances further than 10 km. Fires were more likely to spread to the WUI if the wind was from the west and in the western side of the region. We examined whether the management responses to wildfires are commensurate with risk by comparing the distribution of distance to the WUI of wildfires with roads and prescribed fires. Prescribed fires and roads were concentrated nearer to the WUI than wildfires as a whole, but further away than wildfires that burnt the WUI under extreme weather conditions (high risk fires). 79% of these high risk fires started within 2 km of the WUI, so there is some argument for concentrating more management effort near the WUI. By substituting climate change scenario weather into the statistical model, we predicted a small increase in the risk of fires spreading to the WUI, but the increase will be greater under extreme weather. This approach has a variety of uses, including mapping fire risk and improving the ability to match fire management responses to the threat from each fire. They also provide a baseline from which a cost-benefit analysis of complementary fire management strategies can be conducted.

  1. Mobilization of aluminum by the acid percolates within unsaturated zone of sandstones.

    PubMed

    Navrátil, Tomáš; Vařilová, Zuzana; Rohovec, Jan

    2013-09-01

    The area of the Black Triangle has been exposed to extreme levels of acid deposition in the twentieth century. The chemical weathering of sandstones found within the Black Triangle became well-known phenomenon. Infiltration of acid rain solutions into the sandstone represents the main input of salt components into the sandstone. The infiltrated solutions--sandstone percolates--react with sandstone matrix and previously deposited materials such as salt efflorescence. Acidic sandstone percolates pH 3.2-4.8 found at ten sites within the National Park Bohemian Switzerland contained high Al-tot (0.8-10 mg L(-1)) concentrations and high concentrations of anions SO4 (5-66 mg L(-1)) and NO3 (2-42 mg L(-1)). A high proportion (50-98 %) of Al-tot concentration in acid percolates was represented by toxic reactive Al(n+). Chemical equilibrium modeling indicated as the most abundant Al species Al(3+), AlSO4 (+), and AlF(2+). The remaining 2-50 % of Al-tot concentration was present in the form of complexes with dissolved organic matter Al-org. Mobilization and transport of Al from the upper zones of sandstone causes chemical weathering and sandstone structure deterioration. The most acidic percolates contained the highest concentrations of dissolved organic material (estimated up to 42 mg L(-1)) suggesting the contribution of vegetation on sandstone weathering processes. Very low concentrations of Al-tot in springs at BSNP suggest that Al mobilized in unsaturated zone is transported deeper into the sandstone. This process of mobilization could represent a threat for the water quality small-perched aquifers.

  2. Subsurface geomicrobiology of the Iberian Pyritic Belt, a terrestrial analogue of Mars

    NASA Astrophysics Data System (ADS)

    Amils, Ricardo

    Terrestrial subsurface geomicrobiology is a matter of growing interest on many levels. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies, e.g., Mars. Ŕ Tinto is an unusual extreme acidic environment due to its size, constant acidic pH, high ıo concentration of heavy metals and high level of microbial diversity. Ŕ Tinto rises in the core of ıo the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ŕ Tinto are not due to acid mine drainage resulting ıo from mining activity. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ from retrieved cores (MARTE project). Preliminary results clearly show that there is an active subsurface geomicrobiology in the Iberian Pyritic Belt associated to places were ground waters intersects the sulfidic ore body.

  3. Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium.

    PubMed

    Sowmya, M; Rejula, M P; Rejith, P G; Mohan, Mahesh; Karuppiah, Makesh; Hatha, A A Mohamed

    2014-07-01

    Microorganisms which can resist high concentration of toxic heavy metals are often considered as effective tools of bioremediation from such pollutants. In the present study, sediment samples from Vembanad Lake were screened for the presence of halophilic bacteria that are tolerant to heavy metals. A total of 35 bacterial strains belonging to different genera such as Alcaligenes, Vibrio, Kurthia, Staphylococcus and members of the family Enterobacteriaceae were isolated from 21 sediment samples during February to April, 2008. The salt tolerance and optimum salt concentrations of the isolates revealed that most of them were moderate halophiles followed by halotolerant and extremely halotolerant groups. The minimum inhibitory concentrations (MICs) against cadmium and lead for each isolate revealed that the isolates showed higher MIC against lead than cadmium. Based on the resistance limit concentration, most of them were more tolerant to lead than cadmium at all the three salt concentrations tested. Heavy metal removal efficiency of selected isolates showed a maximum reduction of 37 and 99% against cadmium and lead respectively. The study reveals the future prospects of halophilic microorganisms in the field of bioremediation.

  4. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  5. Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.

    1991-01-01

    Samples of 'evolved' lithologies, felsite, quartz monzodiorite (QMD), and whitlockite-rich quartz monzodiorite, were identified compositionally and petrographically among 2-4-mm soil particles from Apollo 14. Fragments of QMD were found to be extremely rare in the Apollo 14 samples. Felsite is similar to previously reported samples. QMD 14161,7069 is similar to 15405 QMD and has ITE concentrations in KREEP-like concentration ratios of about twice the ITE concentrations of average high-K KREEP. QMD cumulate has the highest measured REE concentrations of any lunar sample to date with the exception of individual whitlockite grains. Felsite and whitlockite-rich lithologies appear to be petrogenetically related and have complementary compositions representing separated fractions of the QMD or KREEP-like parental melt. Felsite is a silica-rich fraction of the residual liquid or it is a derivative of the silica-rich fraction. Felsite or lunar granite of this type results from residual liquid separation following crystal-liquid separation of a QMD-like parent melt with concentration ratios of ITEs similar to those of KREEP.

  6. Nonparametric functional data estimation applied to ozone data: prediction and extreme value analysis.

    PubMed

    Quintela-del-Río, Alejandro; Francisco-Fernández, Mario

    2011-02-01

    The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Identification of microbial pigments in evaporitic matrices using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Jehlička, Jan; Edwards, Howell G. M.; Wierzchos, Jacek

    2010-05-01

    An evaporitic environment is considered as one of the possible habitats for life on Mars. From terrestrial geological scenarios we know that microorganisms inhabiting such an extreme environment (halophiles) are rich in protective pigments, depending on the metabolic pathways and specific adaptation to the harsh environmental conditions. Carotenoids typically occur within the cells of halophiles (bacteria, archaea as well as eukaryotic algae) in large amounts as part of their photosystem and protective adaptation to high doses of UV radiation that are typical for most recent evaporitic environments. Chlorophyll occurs in halophilic cyanobacteria together with carotenoids and possibly other pigments which are synthetised in response to the high UV radiation insolation. Here we present the results of Raman spectroscopic investigations of a) beta-carotene in experimentally prepared mixtures with halite, gypsum and epsomite; and b) cyanobacterial colonies inhabiting real halite and gypsum matrices in the Atacama Desert. Our results demonstrate the possibility of detection of beta-carotene - a typical carotenoid - in relatively low concentrations within the evaporitic powdered mixtures; the lowest concentration of carotenoid signal detected was 0,1 mg kg-1, which represents 100 ppb. Raman spectroscopic analyses of natural specimens (endolithic cyanobacteria) from the Atacama desert revealed the presence of scytonemin, an extremely efficient UV protective pigment, carotenoids of various types and chlorophyll. The detection potential as well as limitations of Raman spectroscopy as a part of a payload within future robotic space missions focused on the search for life on Mars is discussed.

  8. Numerical analysis of diffusion around a suspended expressway by a multi-scale CFD model

    NASA Astrophysics Data System (ADS)

    kondo, Hiroaki; Asahi, Kazutake; Tomizuka, Takayuki; Suzuki, Motoo

    The diffusion of NO x around Ikegami-Shinmachi crossroads, which are among the most polluted roadside areas in Japan, was analyzed with a CFD model. This is a suspended four-lane express road with a six-lane ground-level road under the expressway and another four-lane ground-level road intersecting the two roads. Three types of boundary conditions for the CFD model were tested. In the first case, the boundary conditions were given with the results from the mesoscale meteorological model; in other words, the model was multi-scale. In the second case, the boundary conditions were given with the local one-point observation. In the third case, the conditions for the wind were given with the observation, and those for the turbulence were given with the mesoscale numerical model. All of the calculations indicated high concentrations in the morning and low ones in the afternoon, but they did not indicate high concentrations in the evening. The reasons for such time variations of NO x concentrations were investigated from the viewpoints of the wind direction, velocity, and boundary layer height. The results suggested that the extremely high concentration was generated by local sources and advection from the large source area of Tokyo. On the whole, the calculation with the boundary condition with the mesoscale model appears to be better than the other calculations.

  9. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f {sub {nu}}(24 {mu}m)/f {sub {nu}}(R) {approx}> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z {approx} 2 {+-} 0.5. Extreme mid-IR luminosities (L {sub IR} > 10{sup 12-14}) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponentialmore » disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of {approx}1 kpc, circumstantial evidence for ongoing mergers.« less

  11. Silver Nanoparticle Oligonucleotide Conjugates Based on DNA with Triple Cyclic Disulfide Moieties

    PubMed Central

    Lee, Jae-Seung; Lytton-Jean, Abigail K. R.; Hurst, Sarah J.; Mirkin, Chad A.

    2011-01-01

    We report a new strategy for preparing silver nanoparticle oligonucleotide conjugates that are based upon DNA with cyclic disulfide-anchoring groups. These particles are extremely stable and can withstand NaCl concentrations up to 1.0 M. When silver nanoparticles functionalized with complementary sequences are combined, they assemble to form DNA-linked nanoparticle networks. This assembly process is reversible with heating and is associated with a red-shifting of the particle surface plasmon resonance and a concomitant color change from yellow to pale red. Analogous to the oligonucleotide-functionalized gold nanoparticles, these particles also exhibit highly cooperative binding properties with extremely sharp melting transitions. This work is an important step towards being able to use silver nanoparticle oligonucleotide conjugates for a variety of purposes, including molecular diagnostic labels, synthons in programmable materials synthesis approaches, and functional components for nanoelectronic and plasmonic devices. PMID:17571909

  12. Developing Normal Turns-Amplitude Clouds for Upper and Lower Limbs.

    PubMed

    Jabre, Joe F; Nikolayev, Sergey G; Babayev, Michael B; Chindilov, Denis V; Muravyov, Anatoly Y

    2016-10-01

    Turns and amplitude analysis (T&A) is a frequently used method for automatic EMG interference pattern analysis. The T&A normal values have only been developed for a limited number of muscles. Our objective was to obtain normal T&A clouds for upper and lower extremity muscles for which no normal values exist in the literature. The T&A normative data using concentric needle electrodes were obtained from 68 men and 56 women aged 20 to 60 years. Normal upper and lower extremity T&A clouds were obtained and presented in this article. The T&A normal values collected in this study maybe used to detect neurogenic and myopathic abnormalities in men and women at low-to-moderate muscle contractions. The effect of turns-amplitude data obtained at high force level of muscle contraction and its potential to falsely show neurogenic abnormalities are discussed.

  13. Extremely efficient crystallization of HKUST-1 and Keggin-loaded related phases through the epoxide route.

    PubMed

    Oestreicher, Víctor; Jobbágy, Matías

    2017-03-25

    Highly crystalline HKUST-1 and COK-16-like phases were obtained based on a mild in situ alkalinization one-pot epoxide driven method. A slurry composed of finely ground trimesic acid, H 3 BTC, dispersed in a CuCl 2 aqueous solution quantitatively developed well crystallized HKUST-1 after the addition of propylene oxide. The use of solid H 3 BTC ensures a low concentration of free linker, favoring crystalline growth over the precipitation of amorphous or metastable impurities. An extreme space-time yield of 2.1 × 10 5 kg m -3 day -1 was reached, with no linker excess and minimum use of solvent. The method was equally efficient in the achievement of pure NENU/COK-16 phases, containing [PW 12 O 40 ] 3- , [PMo 12 O 40 ] 3- and [SiMo 12 O 40 ] 4- polyoxometalates.

  14. A deep mixing solution to the aluminum and oxygen isotope puzzles in pre-solar grains

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Trippella, O.; Busso, M.

    2017-05-01

    We present here the application of a model for a mass circulation mechanism in between the H-burning shell and the base of the convective envelope of low-mass asymptotic giant branch (AGB) stars, aimed at studying the isotopic composition of those pre-solar grains showing the most extreme levels of 18O depletion and high concentration of 26Mg from the decay of 26Al. The mixing scheme we present is based on a previously suggested magnetic-buoyancy process, already shown to account adequately for the formation of the main neutron source for slow neutron captures in AGB stars. We find that this scenario is also capable of reproducing for the first time the extreme values of the 17O/16O, 18O/16O, and 26Al/27Al isotopic ratios found in the mentioned oxide grains, including the highest amounts of 26Al measured there.

  15. Deadly heat waves projected in the densely populated agricultural regions of South Asia.

    PubMed

    Im, Eun-Soon; Pal, Jeremy S; Eltahir, Elfatih A B

    2017-08-01

    The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.

  16. Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A. T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F.

    2016-10-01

    By using direct numerical simulations (DNS) at unprecedented resolution, we study turbulence under rotation in the presence of simultaneous direct and inverse cascades. The accumulation of energy at large scale leads to the formation of vertical coherent regions with high vorticity oriented along the rotation axis. By seeding the flow with millions of inertial particles, we quantify—for the first time—the effects of those coherent vertical structures on the preferential concentration of light and heavy particles. Furthermore, we quantitatively show that extreme fluctuations, leading to deviations from a normal-distributed statistics, result from the entangled interaction of the vertical structures with the turbulent background. Finally, we present the first-ever measurement of the relative importance between Stokes drag, Coriolis force, and centripetal force along the trajectories of inertial particles. We discover that vortical coherent structures lead to unexpected diffusion properties for heavy and light particles in the directions parallel and perpendicular to the rotation axis.

  17. Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.

    PubMed

    Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M

    2016-01-21

    Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.

  18. Relationship of peak serum methotrexate concentration to prognosis and drug tolerance in non-metastatic extremity osteosarcomas.

    PubMed

    Wang, Bo; Yao, Hao; Xie, Xianbiao; Yin, Junqiang; Zou, Changye; Huang, Gang; Shen, Jingnan

    2018-05-28

    This study aimed to explore whether peak serum methotrexate concentration (C max ) correlated with adverse events, overall survival (OS) and event-free survival (EFS) in patients with primary extremity osteosarcoma. Patients with extremity osteosarcoma who were treated at our center between 2005 and 2015 were retrospectively studied. All the patients were Enneking stage II and had received standard perioperative chemotherapy composed of high-dose methotrexate, doxorubicin, cisplatin and ifosfamide. C max and treatment-associated toxicities of each cycle were recorded. OS and EFS were estimated and compared by Kaplan-Meier survival analysis, and Cox regression models were performed for univariate comparisons. In total, 567 patients were followed for an average of 53 months (24-104 months). The estimated 3- and 5-year EFS were 71.7 and 63.1%, and the 3- and 5-year OS were 78.2 and 72.9%, respectively. C max ranged from 527 to 2495 µmol/L with a mean value of 931 ± 106 µmol/L. No significant differences in EFS and OS (p = 0.18 and p = 0.28) were observed among patients with a mean C max  > 1500, > 1000, > 700 and < 700 µmol/L. However, patients with a mean C max  > 1500 µmol/L had significantly increased rates of grade 3-5 toxicity. In the univariate analysis, C max was not a prognostic factor for EFS (p = 0.08) or OS (p = 0.16). C max did not correlate significantly with the oncologic prognosis of non-metastatic extremity osteosarcoma patients treated by multi-agent chemotherapy; however, C max correlated closely with toxicities and complications. The persistent inclusion of methotrexate in classical multidisciplinary chemotherapy was questioned and should be examined in future trials.

  19. The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba

    PubMed Central

    Mayzel, Boaz; Aizenberg, Joanna; Ilan, Micha

    2014-01-01

    Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat's coral reefs. PMID:24759635

  20. Numerical Analysis of Extremely-rich CH4/O2/H2O Premixed Flames at High Pressure and High Temperature Considering Production of Higher Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kumagami, Manabu; Ogami, Yasuhiro; Tamaki, Yuichi; Kobayashi, Hideaki

    Numerical analysis of CH4/O2/H2O laminar premixed flame under various conditions of pressure, equivalence ratio and steam concentration was performed using GRI-Mech 3.0 and the mechanism proposed by Davis and Law, which consists of C1 to C6 hydrocarbons in addition to GRI-Mech 3.0. The pressure dependence of laminar burning velocity and flame structure under fuel-rich conditions was focused on. Effects of the formation of higher hydrocarbons under fuel-rich conditions were also clarified using the mechanism proposed by Davis and Law. Results showed that for extremely fuel-rich conditions, laminar burning velocity increases as pressure increases for both mechanisms. The increase of laminar burning velocity is caused by the shift of the oxidation pathway of CH3 radical from the C2 Route to the C1 Route. The formation of C3-C6 hydrocarbons has only a small effect on laminar burning velocity. Under fuel-rich conditions, super-adiabatic flame temperature (SAFT) occurs and its pressure dependency was clarified.

  1. A Case of Scurvy-Uncommon Disease-Presenting as Panniculitis, Purpura, and Oligoarthritis.

    PubMed

    Mintsoulis, Danielle; Milman, Nataliya; Fahim, Simone

    2016-11-01

    Scurvy remains prevalent in certain populations, including addicts, people of low socioeconomic status, and the severely malnourished. It classically presents as follicular hyperkeratosis and perifollicular hemorrhage of the lower extremities, as well as bleeding in other areas such as the gingiva and joints. This case presentation and literature review highlights the common pathophysiological findings associated with scurvy and current methods of diagnosis and treatment. The patient described in this case presented with sudden oligoarthritis and purpura of the lower extremities. Following progression of the patient's symptoms and a low vitamin C serum concentration, the patient was treated with vitamin C supplementation and dramatically improved. This was considered to be the result of an underlying vitamin C deficiency secondary to insufficient fruit and vegetable intake due to allergies. This case highlights the importance of maintaining a high index of suspicion for scurvy in atypical presentations of purpura not better explained by another disease or in additional populations at high risk of vitamin C deficiency. Early diagnosis by either a primary care physician or dermatologist can expedite the treatment process and improve patient prognosis. © The Author(s) 2016.

  2. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  3. Characteristics of pristine volcanic materials: Beneficial and harmful effects and their management for restoration of agroecosystem.

    PubMed

    Anda, Markus; Suparto; Sukarman

    2016-02-01

    Eruption of Sinabung volcano in Indonesia began again in 2010 after resting for 1200 years. The volcano is daily emitting ash and pyroclastic materials since September 2013 to the present, damaging agroecosystems and costing for management restoration. The objective of the study was to assess properties and impacts of pristine volcanic material depositions on soil properties and to provide management options for restoring the affected agroecosytem. Land satellite imagery was used for field studies to observe the distribution, thickness and properties of ashfall deposition. The pristine ashfall deposits and the underlying soils were sampled for mineralogical, soluble salt, chemical, physical and toxic compound analyses. Results showed that uneven distribution of rainfall at the time of violent eruption caused the areas receiving mud ashfall developed surface encrustation, which was not occur in areas receiving dry ashfall. Ashfall damaged the agroecosytem by burning vegetation, forming surface crusts, and creating soil acidity and toxicity. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses of encrustated layer indicated the presence of gypsum and jarosite minerals. Gypsum likely acted as a cementing agent in the formation of the encrustation layer with extremely low pH (2.9) and extremely high concentrations of Al, Ca and S. Encrustation is responsible for limited water infiltration and root penetration, while the extremely high concentration of Al is responsible for crop toxicity. Mud ashfall and dry ashfall deposits also greatly changed the underlying soil properties by decreasing soil pH and cation exchange capacity and by increasing exchangeable Ca, Al, and S availability. Despite damaging vegetation in the short-term, the volcanic ashfall enriched the soil in the longer term by adding nutrients like Ca, Mg, K, Na, P, Si and S. Suggested management practices to help restore the agroecosystem after volcanic eruptions include: (i) the application of lime to increase soil pH, increase cation exchange capacity and decrease Al and S toxicities, (ii) the selection of crops which are tolerant to low pH and high concentrations of soluble Al and S, (iii) physically disrupting the hard surface crusts that form on some soils (if <2 cm thick) to allow water infiltration and root penetration, (iv) application of N and K fertilizers, and (v) incorporation of dry ashfall into the soil (if <5 cm thick) to exploit the newly deposited nutrients. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Concentration of the Most-Cited Papers in the Scientific Literature: Analysis of Journal Ecosystems

    PubMed Central

    Ioannidis, John P. A.

    2006-01-01

    Background A minority of scientific journals publishes the majority of scientific papers and receives the majority of citations. The extent of concentration of the most influential articles is less well known. Methods/Principal Findings The 100 most-cited papers in the last decade in each of 21 scientific fields were analyzed; fields were considered as ecosystems and their “species” (journal) diversity was evaluated. Only 9% of journals in Journal Citation Reports had published at least one such paper. Among this 9%, half of them had published only one such paper. The number of journals that had published a larger number of most-cited papers decreased exponentially according to a Lotka law. Except for three scientific fields, six journals accounted for 53 to 94 of the 100 most-cited papers in their field. With increasing average number of citations per paper (citation density) in a scientific field, concentration of the most-cited papers in a few journals became even more prominent (p<0.001). Concentration was unrelated to the number of papers published or number of journals available in a scientific field. Multidisciplinary journals accounted for 24% of all most-cited papers, with large variability across fields. The concentration of most-cited papers in multidisciplinary journals was most prominent in fields with high citation density (correlation coefficient 0.70, p<0.001). Multidisciplinary journals had published fewer than eight of the 100 most-cited papers in eight scientific fields (none in two fields). Journals concentrating most-cited original articles often differed from those concentrating most-cited reviews. The concentration of the most-influential papers was stronger than the already prominent concentration of papers published and citations received. Conclusions Despite a plethora of available journals, the most influential papers are extremely concentrated in few journals, especially in fields with high citation density. Existing multidisciplinary journals publish selectively most-cited papers from fields with high citation density. PMID:17183679

  5. Extreme events assessment methodology coupling rainfall and tidal levels in the coastal floodplain of the São Paulo North Coast (Brazil) for drainage purposes

    NASA Astrophysics Data System (ADS)

    Alfredini, P.; Cartacho, D. L.; Arasaki, E.; Rosso, M.; Sousa, W. C., Jr.; Lanzieri, D. R.; Ferreira, J. P. M.

    2012-04-01

    The Caraguatatuba Coastal Plain is the wider in São Paulo State (Brazil) North Coastline. The Santo Antônio Torrent Catchmenth drains that region with high urban concentration (around 100,000 permanent inhabitants), which may quintuplicate with the turists in the summer period. In the last decade important oil and gas sea reserves were discovered and the facilities for their treatment were located in that region. For that great economic growth scenario it is mandatory to design mitigation risk measures to have the fluvial forcing processes well known, considering the natural hazards. The Santo Antônio catchment has a surface area of 40 km2, heavy rainfall rates (around 3000 mm/year), concentrated mainly in the summer period, producing high fluvial sediment transport capacity, floods and debris-flows. Due to the steep slopes and the altitude (~ 1000 m) of the mountains near the coast, the hydrological orographic effect rapidly condensates the sea humidity and recurrent and intense flood events cause extensive risks and damages to population and infrastructures. Strong debris-flows occur in that region, because rains higher than 300-400 mm per day occur in multi decadal periods. Due to the wind blowing landward the humidity from the sea, also meteorological tides occur in correspondence of high rainfall rates. The aim of this project is to present an extreme hydrological assessment methodology, coupling rainfall rates and tidal levels, to show the impact of climate changes during the last decades. It is also presented the magnitude of the rising meteorological tide coupled with the extreme rainfall events. The data base analysed comprised long term data of rainfall and tidal measurements from 1954 to 2003. The correlations of the two data were divided in five classes of rainfall in mm per day (> 0, > 25, > 50, > 75 and > 100) and estimated the tidal levels for different return periods in years (2, 5, 10, 20, 50, 75 and 100). The comparison of two distint periods (1954 to 1980 and 1981 to 2000) for extreme events typically used for drainage projects (rains higher than 50 mm/day) clearly showed an increasing in tidal levels for the same return period. That trend indicates the importance to mantain a monitoring network in order to avoid the interruption of long term data series. According to that conclusions were evaluated the number of constructions and inhabitants affected in the are prone of that flooding in the next decades.

  6. Identifying Patterns in Extreme Precipitation Risk and the Related Impacts

    NASA Astrophysics Data System (ADS)

    Schroeer, K.; Tye, M. R.

    2017-12-01

    Extreme precipitation can harm human life and assets through flooding, hail, landslides, or debris flows. Flood risk assessments typically concentrate on river or mountain torrent channels, using water depth, flow velocity, and/or sediment deposition to quantify the risk. In addition, extreme events with high recurrence intervals are often the main focus. However, damages from short-term and localized convective showers often occur away from watercourses. Also, damages from more frequent small scale extremes, although usually less disastrous, can accumulate to considerable financial burdens. Extreme convective precipitation is expected to intensify in a warmer climate, and vulnerability patterns might change in tandem with changes in the character of precipitation and flood types. This has consequences for adaptation planners who want to establish effective protection measures and reduce the cost from natural hazards. Here we merge hydrological and exposure data to identify patterns of risk under varying synoptic conditions. Exposure is calculated from a database of 76k damage claims reported to the national disaster fund in 480 municipalities in south eastern Austria from 1990-2015. Hydrological data comprise sub-daily precipitation (59 gauges) and streamflow (62 gauges) observations. We use synoptic circulation types to identify typical precipitation patterns. They indicate the character of precipitation even if a gauge is not in close proximity, facilitating potential future research with regional climate model data. Results show that more claims are reported under synoptic conditions favouring convective precipitation (on average 1.5-3 times more than on other days). For agrarian municipalities, convective precipitation damages are among the costliest after long low-intensity precipitation events. In contrast, Alpine communities are particularly vulnerable to convective high-intensity rainfall. In addition to possible observational error, uncertainty is present in damage reporting errors, claims from private insurers and adaptation effects after damaging events. As for the latter, preliminary results indicate that investments regularly occur after big events, which may skew subsequent damage claims. Their effectiveness, though, needs to be analyzed in future research.

  7. Precipitation response to solar geoengineering in a high-resolution tropical-cyclone permitting coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Irvine, P. J.; Keith, D.; Dykema, J. A.; Vecchi, G. A.; Horowitz, L. W.

    2016-12-01

    Solar geoengineering may limit or even halt the rise in global-average surface temperatures. Evidence from the geoMIP model intercomparison project shows that idealized geoengineering can greatly reduce temperature changes on a region-by-region basis. If solar geoengineering is used to hold radiative forcing or surface temperatures constant in the face of rising CO2, then the global evaporation and precipitation rates will be reduced below pre-industrial. The spartial and frequency distribution of the precipitation response is, however, much less well understood. There is limited evidence that solar geoengineering may reduce extreme precipitation events more that it reduces mean precipitation, but that evidence is based on relatively course resolution models that may to a poor job representing the distribution of extreme precipitation in the current climate. The response of global and regional climate, as well as tropical cyclone (TC) activity, to increasing solar geoengineering is explored through experiments with climate models spanning a broad range of atmospheric resolutions. Solar geoengineering is represented by an idealized adjustment of the solar constant that roughly halves the rate of increase in radiative forcing in a scenario with increasing CO2 concentration. The coarsest resolution model has approximately a 2-degree global resolution, representative of the typical resolution of past GCMs used to explore global response to CO2 increase, and its response is compared to that of two tropical cyclone permitting GCMs of approximately 0.5 and 0.25 degree resolution (FLOR and HiFLOR). The models have exactly the same ocean and sea-ice components, as well as the same parameterizations and parameter settings. These high-resolution models are used for real-time seasonal prediction, providing a unified framework for seasonal-to-multidecadal climate modeling. We assess the extreme precipitation response, comparing the frequency distribution of extreme events with and without solar geoengineering. We compare our results to two prior studies of the response of climate extremes to solar geoengineering.

  8. Exposure to extreme heat events is associated with increased hay fever prevalence among nationally representative sample of us, Adults: 1997-2013

    USDA-ARS?s Scientific Manuscript database

    Warmer temperature can alter seasonality of pollen as well as pollen concentration, and may impact allergic diseases such as hay fever. Recent studies suggest that extreme heat events will likely increase in frequency, intensity, and duration in coming decades. The overall objective of this study i...

  9. Post-disturbance sediment recovery: Implications for watershed resilience

    NASA Astrophysics Data System (ADS)

    Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.

    2018-03-01

    Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.

  10. A Review of the Clinical Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Vedolizumab.

    PubMed

    Rosario, Maria; Dirks, Nathanael L; Milch, Catherine; Parikh, Asit; Bargfrede, Michael; Wyant, Tim; Fedyk, Eric; Fox, Irving

    2017-11-01

    Vedolizumab is a humanized anti-α 4 β 7 integrin monoclonal antibody that selectively blocks trafficking of memory T cells to inflamed gut tissue by inhibiting the α 4 β 7 -mucosal addressin cell adhesion molecule-1 (MAdCAM-1) interaction. Approved for treating patients with moderately to severely active ulcerative colitis (UC) or Crohn's disease (CD), vedolizumab is administered as a 300 mg intravenous infusion. Vedolizumab undergoes a rapid, saturable, non-linear, target-mediated elimination process at low concentrations and a slower, linear, non-specific elimination process at higher concentrations. At therapeutic concentrations, vedolizumab primarily undergoes linear elimination. From population pharmacokinetic modeling, the vedolizumab terminal elimination half-life (t ½ β) was estimated to be 25.5 days; linear clearance (CL L ) was similar for patients with UC (0.159 L/day) and CD (0.155 L/day). Extreme low albumin concentrations and extreme high body weight values were potentially clinically important predictors of vedolizumab CL L . Other factors, including concomitant therapy use (methotrexate, azathioprine, mercaptopurine, or aminosalicylates) or prior tumor necrosis factor-α (TNF-α) antagonist use, had no clinically relevant effects on CL L . A positive exposure-efficacy relationship for clinical remission and clinical response was apparent for vedolizumab induction therapy in patients with UC or CD. On average, patients with higher albumin, lower fecal calprotectin (UC only), lower C-reactive protein (CD only), and no prior TNF-α antagonist use had a higher probability of remission. Off drug, 10% of patients with UC or CD were positive for anti-drug antibodies. This article provides a comprehensive review of the clinical pharmacokinetics, pharmacodynamics, exposure-efficacy relationships, and immunogenicity of vedolizumab.

  11. Usefulness of the plasma glucose concentration-to-HbA1c ratio in predicting clinical outcomes during acute illness with extreme hyperglycaemia.

    PubMed

    Su, Y-W; Hsu, C-Y; Guo, Y-W; Chen, H-S

    2017-02-01

    To evaluate the correlation between the plasma glucose-to-glycated haemoglobin ratio (GAR) and clinical outcome during acute illness. This retrospective observational cohort study enrolled 661 patients who visited the emergency department of our hospital between 1 July 2008 and 30 September 2010 with plasma glucose concentrations>500mg/dL. Systolic blood pressure, heart rate, white blood cells, neutrophils, haematocrit, blood urea nitrogen, serum creatinine, liver function and plasma glucose concentration were recorded at the initial presentation to the emergency department. Data on glycated haemoglobin over the preceding 6 months were reviewed from our hospital database. The glucose-to-HbA 1c ratio (GAR) was calculated as the plasma glucose concentration divided by glycated haemoglobin. The GAR of those who died was significantly higher than that of the survivors (81.0±25.9 vs 67.6±25.0; P<0.001). There was a trend towards a higher 90-day mortality rate in patients with higher GARs (log-rank test P<0.0001 for trend). On multivariate Cox regression analysis, the GAR was significantly related to 90-day mortality (hazard ratio [HR] for 1 standard deviation [SD] change: 1.41, 95% confidence interval [CI]: 1.22-1.63; P<0.001), but not to plasma glucose (HR: 0.89, 95% CI: 0.70-1.13; P=0.328). Rates of intensive care unit (ICU) admission and mechanical ventilator use were also higher in those with higher GARs. GAR independently predicted 90-day mortality, ICU admission and use of mechanical ventilation. It was also a better predictor of patient outcomes than plasma glucose alone in patients with extremely high glucose levels. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration.

    PubMed

    Hor, Jyo Lyn; Wang, Haonan; Fakhraai, Zahra; Lee, Daeyeon

    2018-03-28

    We explore the effect of confinement and polymer-nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer-nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas-Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer-nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers.

  13. Extreme Landfalling Atmospheric River Events in Arizona: Possible Future Changes

    NASA Astrophysics Data System (ADS)

    Singh, I.; Dominguez, F.

    2016-12-01

    Changing climate could impact the frequency and intensity of extreme atmospheric river events. This can have important consequences for regions like the Southwestern United Sates that rely upon AR-related precipitation for meeting their water demand and are prone to AR-related flooding. This study investigates the effects of climate change on extreme AR events in the Salt and Verde river basins in Central Arizona using a pseudo global warming method (PGW). First, the five most extreme events that affected the region were selected. High-resolution control simulations of these events using the Weather Research and Forecasting model realistically captured the magnitude and spatial distribution of precipitation. Subsequently, following the PGW approach, the WRF initial and lateral boundary conditions were perturbed. The perturbation signals were obtained from an ensemble of 9 General Circulation Models for two warming scenarios - Representative Concentration Pathway (RCP) 4.5 and RCP8.5. Several simulations were conducted changing the temperature and relative humidity fields. PGW simulations reveal that while the overall dynamics of the storms did not change significantly, there was marked strengthening of associated Integrated Vertical Transport (IVT) plumes. There was a general increase in the precipitation over the basins due to increased moisture availability, but heterogeneous spatial changes. Additionally, no significant changes in the strength of the pre-cold frontal low-level jet in the future simulations were observed.

  14. Peatland Microbial Communities as Indicators of the Extreme Atmospheric Dust Deposition.

    PubMed

    Fiałkiewicz-Kozieł, B; Smieja-Król, B; Ostrovnaya, T M; Frontasyeva, M; Siemińska, A; Lamentowicz, M

    We investigated a peat profile from the Izery Mountains, located within the so-called Black Triangle, the border area of Poland, Czech Republic, and Germany. This peatland suffered from an extreme atmospheric pollution during the last 50 years, which created an exceptional natural experiment to examine the impact of pollution on peatland microbes. Testate amoebae (TA), Centropyxis aerophila and Phryganella acropodia , were distinguished as a proxy of atmospheric pollution caused by extensive brown coal combustion. We recorded a decline of mixotrophic TA and development of agglutinated taxa as a response for the extreme concentration of Al (30 g kg -1 ) and Cu (96 mg kg -1 ) as well as the extreme amount of fly ash particles determined by scanning electron microscopy (SEM) analysis, which were used by TA for shell construction. Titanium (5.9 %), aluminum (4.7 %), and chromium (4.2 %) significantly explained the highest percentage of the variance in TA data. Elements such as Al, Ti, Cr, Ni, and Cu were highly correlated ( r  > 0.7, p  < 0.01) with pseudostome position/body size ratio and pseudostome position. Changes in the community structure, functional diversity, and mechanisms of shell construction were recognized as the indicators of dust pollution. We strengthen the importance of the TA as the bioindicators of the recent atmospheric pollution.

  15. Extreme flood event reconstruction spanning the last century in the El Bibane Lagoon (southeastern Tunisia): a multi-proxy approach

    NASA Astrophysics Data System (ADS)

    Affouri, Aida; Dezileau, Laurent; Kallel, Nejib

    2017-06-01

    Climate models project that rising atmospheric carbon dioxide concentrations will increase the frequency and the severity of some extreme weather events. The flood events represent a major risk for populations and infrastructures settled on coastal lowlands. Recent studies of lagoon sediments have enhanced our knowledge on extreme hydrological events such as palaeo-storms and on their relation with climate change over the last millennium. However, few studies have been undertaken to reconstruct past flood events from lagoon sediments. Here, the past flood activity was investigated using a multi-proxy approach combining sedimentological and geochemical analysis of surfaces sediments from a southeastern Tunisian catchment in order to trace the origin of sediment deposits in the El Bibane Lagoon. Three sediment sources were identified: marine, fluvial and aeolian. When applying this multi-proxy approach on core BL12-10, recovered from the El Bibane Lagoon, we can see that finer material, a high content of the clay and silt, and a high content of the elemental ratios (Fe / Ca and Ti / Ca) characterise the sedimentological signature of the palaeo-flood levels identified in the lagoonal sequence. For the last century, which is the period covered by the BL12-10 short core, three palaeo-flood events were identified. The age of these flood events have been determined by 210Pb and 137Cs chronology and give ages of AD 1995 ± 6, 1970 ± 9 and 1945 ± 9. These results show a good temporal correlation with historical flood events recorded in southern Tunisia in the last century (AD 1932, 1969, 1979 and 1995). Our finding suggests that reconstruction of the history of the hydrological extreme events during the upper Holocene is possible in this location through the use of the sedimentary archives.

  16. RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...

  17. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    PubMed

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  18. PM2.5 and Black carbon enhancement at Socheongcho Ocean Research Station in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Rhee, H.; Lee, M.; JinYong, J.; Min, I.; Shim, J.

    2017-12-01

    Socheongcho Ocean Research Station (SORS) has been established in northern Yellow Sea by the Korea Institute of Ocean Science and Technology (KIOST). At SORS, PM2.5 and Black carbon (BC) were measured every 10 minutes during October 2014 June 2017 using beta-ray absorption method (FH62C14, Thermo. Inc, USA) and Multi Angle Absorption Photometer (MAAP; Model 5012, Thermo. Inc, USA), respectively. In addition, CO, CO2 and CH4 were determined by Cavity Ring Down Spectroscopy (CRDS; Model G2401, Picarro. Inc, USA). Measurements were intermittently interrupted for SORS maintenance reasons. For BC and PM2.5, the mean, 90th %tile and maximum concentrations were 1.16, 2.29, and 20.07 ug/m3 and 25, 48, and 177 ug/m3, respectively. There was no clear diurnal variation observed for both species. PM2.5 and BC concentrations were higher in cold seasons than in warm seasons. The highest PM2.5 and BC concentrations (>99th %tile) were more frequently observed in winter. Particularly, the extremely high BC were sporadically observed and lasted for no longer than 1 hour. The possible sources of PM2.5 and BC were examined using Conditional Probability Function (CPF), Potential Source Contribution (PSCF), and Concentration Weighted Trajectory (CWT) analysis. The results suggest the dominant influence from China, particularly for high concentrations.

  19. How to boost the sluggish lithium-ion hopping dynamic in borophene?

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Chen, Xianfei; Deng, Xiaoyu; Zhang, Wentao; Li, Junfeng; Xiao, Beibei; Pu, Min

    2018-05-01

    In light of low atomic mass, three types of experimentally synthetized borophene including β12, χ3 and striped t-sheet have been predicted to be promising anode materials for lithium-ion batteries (LIBs) with extremely high capacity. However, the rate performances of β12 and χ3 are quite poor with high diffusion barrier of 0.66-0.81 eV on β12 and 0.60-0.85 eV on χ3 in contrast with that in t-sheet (typically <0.1 eV). Isolation of t-sheet from their blend remains a fundamental challenge in the field of nanotechnology and a mechanistic understanding and control over the hopping dynamic of Li+ therein are thus of extremely important to facilitate the development of borophene-based anode material, but still lacking. In this work, we performed a comprehensive theoretical investigation on the adsorptions and migrations of Li+ on perfect and defective β12 and χ3 based on density functional theory. We determined a new kind of vacancy in β12 that modulates the adsorption and boosts the diffusion of Li+ nearby remarkably. With the aid of charge doping, we uncover a general mechanism (charge-concentration mechanism) involved with the celebrated bonding theory of borophene, where the hopping barrier of Li+ on β12 could be reduced to be 0.06 eV, rationalizing the boosting Li+ hopping as a result of electron deficiency in vacant borophene. By extending our calculations to H functionalized borophene and Ag supported borophene, we further confirm the validity of the "charge-concentration mechanism" under more realistic experimental conditions. The proposed mechanism could be used as a guiding principle to improve or develop new borophene-based electrode materials with high rate performance for LIBs.

  20. Disinfection byproduct precursor dynamics and water treatability during an extreme flooding event in a coastal blackwater river in southeastern United States.

    PubMed

    Ruecker, A; Uzun, H; Karanfil, T; Tsui, M T K; Chow, A T

    2017-12-01

    Coastal blackwater rivers, characterized by high concentrations of natural organic matter, are source water for millions of people in the southeastern US. In October 2015, large areas of coastal South Carolina were flooded by Hurricane Joaquin. This so-called "thousand-year" rainfall mobilized and flushed large amounts of terrestrial organic matter and associated pollutants (e.g. mercury) into source water, affecting water quality and safety of municipal water supply. To understand the dynamics of water quality and water treatability during this extreme flood, water samples were collected from Waccamaw River (a typical blackwater river in the southeastern US) during rising limb, peak discharge, falling limb, and base flow. Despite decreasing water flow after peak discharge, dissolved organic carbon (DOC) levels (increased by up to 125%), and formation potentials of trihalomethanes and haloacetic acids (increased by up to 150%) remained high for an extended period of time (>eight weeks after peak discharge), while variation in the N-nitrosodimethylamine (NDMA) FP was negligible. Coagulation with alum and ferric at optimal dosage significantly reduced concentrations of DOC by 51-76%, but up to 10 mg/L of DOC still remained in treated waters. For an extended period of time, elevated levels of THMs (71-448 μg/L) and HAAs (88-406 μg/L) were quantified in laboratory chlorination experiments under uniform formation conditions (UFC), exceeding the United States Environmental Protection Agency's (USEPA) maximum contaminant level of 80 and 60 μg/L, respectively. Results demonstrated that populations in coastal cities are at high risk with disinfection by-products (DBPs) under the changing climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy.

    PubMed

    Karpf, Andreas; Qiao, Yuhao; Rao, Gottipaty N

    2016-06-01

    We present a simplified cavity ringdown (CRD) trace gas detection technique that is insensitive to vibration, and capable of extremely sensitive, real-time absorption measurements. A high-power, multimode Fabry-Perot (FP) diode laser with a broad wavelength range (Δλlaser∼0.6  nm) is used to excite a large number of cavity modes, thereby reducing the detector's susceptibility to vibration and making it well suited for field deployment. When detecting molecular species with broad absorption features (Δλabsorption≫Δλlaser), the laser's broad linewidth removes the need for precision wavelength stabilization. The laser's power and broad linewidth allow the use of on-axis cavity alignment, improving the signal-to-noise ratio while maintaining its vibration insensitivity. The use of an FP diode laser has the added advantages of being inexpensive, compact, and insensitive to vibration. The technique was demonstrated using a 1.1 W (λ=400  nm) diode laser to measure low concentrations of nitrogen dioxide (NO2) in zero air. A sensitivity of 38 parts in 1012 (ppt) was achieved using an integration time of 128 ms; for single-shot detection, 530 ppt sensitivity was demonstrated with a measurement time of 60 μs, which opens the door to sensitive measurements with extremely high temporal resolution; to the best of our knowledge, these are the highest speed measurements of NO2 concentration using CRD spectroscopy. The reduced susceptibility to vibration was demonstrated by introducing small vibrations into the apparatus and observing that there was no measurable effect on the sensitivity of detection.

  2. Tidally Heated Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity excursions. Viscoelastic solutions for GJ 876d are typical of extreme short period high eccentricity objects with tidal-convectiveequilibrium heat rates between ˜10,000 to 500,000 terawatts.

  3. Extreme values in the Chinese and American stock markets based on detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Cao, Guangxi; Zhang, Minjia

    2015-10-01

    This paper focuses on the comparative analysis of extreme values in the Chinese and American stock markets based on the detrended fluctuation analysis (DFA) algorithm using the daily data of Shanghai composite index and Dow Jones Industrial Average. The empirical results indicate that the multifractal detrended fluctuation analysis (MF-DFA) method is more objective than the traditional percentile method. The range of extreme value of Dow Jones Industrial Average is smaller than that of Shanghai composite index, and the extreme value of Dow Jones Industrial Average is more time clustering. The extreme value of the Chinese or American stock markets is concentrated in 2008, which is consistent with the financial crisis in 2008. Moreover, we investigate whether extreme events affect the cross-correlation between the Chinese and American stock markets using multifractal detrended cross-correlation analysis algorithm. The results show that extreme events have nothing to do with the cross-correlation between the Chinese and American stock markets.

  4. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    DOE PAGES

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; ...

    2016-12-27

    The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less

  5. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald

    The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less

  6. Multistage bioassociation of uranium onto an extremely halophilic archaeon revealed by a unique combination of spectroscopic and microscopic techniques.

    PubMed

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea

    2017-04-05

    The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.

  7. The mechanism for efficacy of eccentric loading in Achilles tendon injury; an in vivo study in humans.

    PubMed

    Rees, J D; Lichtwark, G A; Wolman, R L; Wilson, A M

    2008-10-01

    Degenerative disorders of tendons present an enormous clinical challenge. They are extremely common, prone to recur and existing medical and surgical treatments are generally unsatisfactory. Recently eccentric, but not concentric, exercises have been shown to be highly effective in managing tendinopathy of the Achilles (and other) tendons. The mechanism for the efficacy of these exercises is unknown although it has been speculated that forces generated during eccentric loading are of a greater magnitude. Our objective was to determine the mechanism for the beneficial effect of eccentric exercise in Achilles tendinopathy. Seven healthy volunteers performed eccentric and concentric loading exercises for the Achilles tendon. Tendon force and length changes were determined using a combination of motion analysis, force plate data and real-time ultrasound. There was no significant difference in peak tendon force or tendon length change when comparing eccentric with concentric exercises. However, high-frequency oscillations in tendon force occurred in all subjects during eccentric exercises but were rare in concentric exercises (P < 0.0001). These oscillations provide a mechanism to explain the therapeutic benefit of eccentric loading in Achilles tendinopathy and parallels recent evidence from bone remodelling, where the frequency of the loading cycles is of more significance than the absolute magnitude of the force.

  8. Effect of various concentrations of antibiotics on osteogenic cell viability and activity.

    PubMed

    Rathbone, Christopher R; Cross, Jessica D; Brown, Kate V; Murray, Clinton K; Wenke, Joseph C

    2011-07-01

    Infection is a common complication of open fractures. Systemic antibiotics often cause adverse events before eradication of infected bone occurs. The local delivery of antibiotics and the use of implants that deliver both growth factors and antimicrobials are ways to circumvent systemic toxicity while decreasing infection and to reach extremely high levels required to treat bacterial biofilms. When choosing an antibiotic for a local delivery system, one should consider the effect that the antibiotic has on cell viability and osteogenic activity. To address this concern, osteoblasts were treated with 21 different antibiotics over 8 concentrations from 0 to 5000 µg/ml. Osteoblast deoxyribonucleic acid content and alkaline phosphatase activity (ALP) were measured to determine cell number and osteogenic activity, respectively. Antibiotics that caused the greatest decrement include rifampin, minocycline, doxycycline, nafcillin, penicillin, ciprofloxacin, colistin methanesulfonate, and gentamicin; their cell number and ALP were significantly less than control at drug concentrations ≤ 200 µg/ml. Conversely, amikacin, tobramycin, and vancomycin were the least cytotoxic and did not appreciably affect cell number and ALP until very high concentrations were used. This comprehensive evaluation of numerous antibiotics' effects on osteoblast viability and activity will enable clinicians and researchers to choose the optimal antibiotic for treatment of infection and maintenance of healthy host bone. Copyright © 2011 Orthopaedic Research Society.

  9. An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr3+ removal capacity

    NASA Astrophysics Data System (ADS)

    Lei, Peng-cheng; Shen, Xian-jiang; Li, Yang; Guo, Min; Zhang, Mei

    2016-07-01

    A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III) (5-100 mg·L-1). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial pH value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg·g-1 for zeolite 4A, measured at an initial pH value of 4 and an initial Cr(III) concentration of 5 mg·L-1. This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III).

  10. Survey of human pharmaceuticals in drinking water in the Czech Republic.

    PubMed

    Kozisek, Frantisek; Pomykacova, Ivana; Jeligova, Hana; Cadek, Vaclav; Svobodova, Veronika

    2013-03-01

    The first large-scale assessment of pharmaceuticals in drinking water in the Czech Republic (CR) focused on the detection of five substances. Samples were collected from public water systems supplying 5.3 million people, 50.5% of the Czech population. In the initial survey of tap water from 92 major supply zones using mostly surface water, no pharmaceutical exceeded the limit of quantification (LOQ = 0.5 ng/L). In a second survey, samples were collected from the outlet of 23 water treatment plants (WTPs) considered of high risk because they use surface waters influenced by wastewater. Ibuprofen was the most frequently found pharmaceutical (19 samples), followed by carbamazepine (12), naproxen (8), and diclofenac (3); concentrations ranged from 0.5 to 20.7 ng/L, with medians below 6 ng/L. Concentrations of 17α-ethinylestradiol were below the LOQ. A follow-up survey included tap and outlet samples from eight of the 23 WTPs with the highest concentrations. Pharmaceuticals were quantified in only three tap water samples. Regarding risks to consumers, these results suggest that a relatively small population (<10%) in the CR is exposed to quantifiable concentrations of pharmaceuticals in tap water and that an extremely high margin of safety (several thousand-fold to several million-fold) is associated with these exposures.

  11. Concentration-discharge relationships during an extreme event: Contrasting behavior of solutes and changes to chemical quality of dissolved organic material in the Boulder Creek Watershed during the September 2013 flood: SOLUTE FLUX IN A FLOOD EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rue, Garrett P.; Rock, Nathan D.; Gabor, Rachel S.

    During the week of September 10-17, 2013, close to 20 inches of rain fell across Boulder County, Colorado, USA. This rainfall represented a 1000-year event that caused massive hillslope erosion, landslides, and mobilization of sediments. The resultant stream flows corresponded to a 100-year flood. For the Boulder Creek Critical Zone Observatory (BC-CZO), this event provided an opportunity to study the effect of extreme rainfall on solute concentration-discharge relationships and biogeochemical catchment processes. We observed base cation and dissolved organic carbon (DOC) concentrations at two sites on Boulder Creek following the recession of peak flow. We also isolated three distinct fractionsmore » of dissolved organic matter (DOM) for chemical characterization. At the upper site, which represented the forested mountain catchment, the concentrations of the base cations Ca, Mg and Na were greatest at the peak flood and decreased only slightly, in contrast with DOC and K concentrations, which decreased substantially. At the lower site within urban corridor, all solutes decreased abruptly after the first week of flow recession, with base cation concentrations stabilizing while DOC and K continued to decrease. Additionally, we found significant spatiotemporal trends in the chemical quality of organic matter exported during the flood recession, as measured by fluorescence, 13C-NMR spectroscopy, and FTICR-MS. Similar to the effect of extreme rainfall events in driving landslides and mobilizing sediments, our findings suggest that such events mobilize solutes by the flushing of the deeper layers of the critical zone, and that this flushing regulates terrestrial-aquatic biogeochemical linkages during the flow recession.« less

  12. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  13. Regional climate change over South Korea projected by the HadGEM2-AO and WRF model chain under RCP emission scenarios

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Im, Eun-Soon; Jo, Sera

    2017-04-01

    This study assesses the regional climate projection newly projected within the framework of the national downscaling project in South Korea. The fine-scale climate information (12.5 km) is produced by dynamical downscaling of the HadGEM2-AO global projections forced by the representative concentration pathway (RCP4.5 and 8.5) scenarios using the Weather Research and Forecasting (WRF) modeling system. Changes in temperature and precipitation in terms of long-term trends, daily characteristics and extremes are presented by comparing two 30 yr periods (2041-2070 vs. 2071-2100). The temperature increase presents a relevant trend, but the degree of warming varies in different periods and emission scenarios. While the temperature distribution from the RCP8.5 projection is continuously shifted toward warmer conditions by the end of the 21st century, the RCP4.5 projection appears to stabilize warming in accordance with emission forcing. This shift in distribution directly affects the magnitude of extremes, which enhances extreme hot days but reduces extreme cold days. Precipitation changes, however, do not respond monotonically to emission forcing, as they exhibit less sensitivity to different emission scenarios. An enhancement of high intensity precipitation and a reduction of weak intensity precipitation are discernible, implying an intensified hydrologic cycle. Changes in return levels of annual maximum precipitation suggest an increased probability of extreme precipitation with 20 yr and 50 yr return periods. Acknowledgement : This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-2081

  14. Trace elements in native and transplanted Fontinalis antipyretica and Platyhypnidium riparioides from rivers polluted by uranium mining.

    PubMed

    Kosior, Grzegorz; Steinnes, Eiliv; Samecka-Cymerman, Aleksandra; Lierhagen, Syverin; Kolon, Krzysztof; Dołhańczuk-Śródka, Agnieszka; Ziembik, Zbigniew

    2017-03-01

    The past uranium/polymetallic mining activities in the Sudety (SW Poland) left abandoned mines, pits, and dumps of waste rocks with trace elements and radionuclides which may erode or leach out and create a potential risk for the aquatic ecosystem, among others. In the present work four rivers affected by effluents from such mines were selected to evaluate the application of aquatic mosses for the bioindication of 56 elements. Naturally growing F. antipyretica and P. riparioides were compared with transplanted samples of the same species. The results demonstrate serious pollution of the examined rivers, especially with As, Ba, Fe, Mn, Pb, Ti, U and Zn, reaching extremely high concentrations in native moss samples. In the most polluted rivers native F. antipyretica and P. riparioides samples showed significantly higher concentrations of As, Ba, Cu, Fe, La, Nd, Ni, Pb, U and Zn than corresponding transplanted samples, whereas at less polluted sites a reverse situation was sometimes observed. Transplanted moss moved from clean to extremely polluted rivers probably protects itself against the accumulation of toxic elements by reducing their uptake. Selection of native or transplanted F. antipyretica and P. riparioides depended on the pollution load. Copyright © 2016. Published by Elsevier Ltd.

  15. The effects of oral contraceptive use on muscle stiffness across the menstrual cycle.

    PubMed

    Bell, David R; Blackburn, J Troy; Ondrak, Kristin S; Hackney, Anthony C; Hudson, Jeffrey D; Norcross, Marc F; Padua, Darin A

    2011-11-01

    To determine the effect of oral contraceptives (OC) on hamstring neuromechanics and lower extremity stiffness across the menstrual cycle (MC). Causal comparative. Research laboratory. Thirty, healthy, normally menstruating female volunteers who were using OC (OC group, n = 15) or not (non-OC group, n = 15). Stiffness and hamstring neuromechanics were assessed at 2 points of the MC corresponding to low (menses) and high (ovulation) hormone concentrations. Menses testing took place 3 to 5 days after the onset of menses (or pills 3-5 for the OC group). Ovulation test session occurred 2 to 4 days after ovulation identified using a commercial ovulation kit (or pills 15-17 in the OC group). Lower extremity stiffness and hamstring neuromechanics [stiffness, electromechanical delay, rate of force production (RFP), time to 50% peak force (T50%)] and blood plasma concentrations of estradiol-β-17, free testosterone, and progesterone. Estradiol-β-17, free testosterone, and progesterone increased at ovulation in the non-OC group and remained constant in the OC group. No changes were observed across the MC or between the groups in other variables (P > 0.05). Although previous literature suggests a prophylactic effect of OC use with respect to musculoskeletal injury risk, our results indicate that OC use does not affect muscle properties in manners thought to reduce ACL injury risk.

  16. Extremely Cost-Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper.

    PubMed

    Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu; Gan, Qiaoqiang

    2017-02-27

    Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m 2 h) -1 . When scaled up to a 100 cm 2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high-efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.

  17. Spawning activity of the Australian lungfish Neoceratodus forsteri in an impoundment.

    PubMed

    Roberts, D T; Mallett, S; Krück, N C; Loh, W; Tibbetts, I

    2014-01-01

    This study assessed the spawning activity of the threatened Australian lungfish Neoceratodus forsteri by measuring egg densities within the artificial habitat of a large impoundment (Lake Wivenhoe, Australia). Eggs were sampled (August to November 2009) from multiple locations across the impoundment, but occurred at highest densities in water shallower than 40 cm along shorelines with a dense cover of submerged terrestrial vegetation. The numbers of eggs declined over the study period and all samples were dominated by early developmental stages and high proportions of unviable eggs. The quality of the littoral spawning habitats declined over the study as flooded terrestrial grasses decomposed and filamentous algae coverage increased. Water temperatures at the spawning site exhibited extreme variations, ranging over 20·4° C in water shallower than 5 cm. Dissolved oxygen concentrations regularly declined to <1 mg l⁻¹ at 40 and 80 cm water depth. Spawning habitats utilised by N. forsteri within impoundments expose embryos to increased risk of desiccation or excessive submergence through water-level variations, and extremes in temperature and dissolved oxygen concentration that present numerous challenges for successful spawning and recruitment of N. forsteri in large impoundment environments. © 2014 The Fisheries Society of the British Isles.

  18. Inhalation of substance P and thiorphan: acute toxicity and effects on respiration in conscious guinea pigs.

    PubMed

    Koch, B L; Edvinsson, A A; Koskinen, L O

    1999-01-01

    Substance P is a tachykinin and a biologically active neuropeptide. The peptide produces salivation, neuronal excitation, vasodilatation, increased vascular permeability and contraction of smooth muscles in the respiratory tract. The study was designed to evaluate the acute effects in guinea pigs of inhaled aerosolized Substance P (SP). Apart from the acute toxic effect of the peptide, the distribution in different organs was also investigated. The acute inhalation toxicity of SP (LC50, 15 min) when co-administrated with the neutral endopeptidase inhibitor thiorphan was 368 microg m(-3). The peptide caused an increase in respiratory rate proceeding a decrease in tidal volume. As the exposure proceeded, a decrease in both respiratory rate and further decreases in tidal volume were observed until either the animal died or the exposure was terminated. The decreases in respiratory rate and tidal volume were probably due to bronchoconstriction caused by SP. Eighteen per cent of the inhaled amount of radioactive SP was retained in the body, and the highest concentrations of radioactivity were found in the kidney, lung and liver. Substance P in combination with thiorphan administered as an aerosol is extremely toxic and highly potent. Exposure to the substance at extremely low air concentrations may result in incapacitation in humans.

  19. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  20. Bacillus subtilis as a bioindicator for estimating pentachlorophenol toxicity and concentration.

    PubMed

    Ayude, M A; Okada, E; González, J F; Haure, P M; Murialdo, S E

    2009-05-01

    Pentachlorophenol (PCP) and its sodium salt (Na-PCP) are extremely toxic chemicals responsible for important soil and groundwater pollution, mainly caused by wastes from wood-treatment plants, because chlorinated phenols are widely used as wood preservatives. The methods most commonly used for routine analysis of pesticides such as PCP and Na-PCP are high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS). A variety of rapid biological screening tests using marine organisms, bioluminescent bacteria, and enzymes have also been reported. In this study, rapid biological screening analysis using Bacillus subtilis was developed, to assess the biodegradation of PCP and its by-products in liquid samples. An empirical model is proposed for spectrophotometric analysis of Na-PCP concentration after growth of Bacillus subtilis.

  1. Experimental study on the cool storage performance of super absorbent polymers for cool storage clothes

    NASA Astrophysics Data System (ADS)

    Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong

    2017-11-01

    In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.

  2. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  3. Pregestational diabetes with extreme insulin resistance: use of U-500 insulin in pregnancy.

    PubMed

    Zuckerwise, Lisa C; Werner, Erika F; Pettker, Christian M; McMahon-Brown, Erin K; Thung, Stephen F; Han, Christina S

    2012-08-01

    Increased insulin requirements in pregnancy can hinder attainment of glycemic control in diabetic patients. U-500 insulin is a concentrated form of regular insulin that can be a valuable tool in the treatment of patients with severe insulin resistance. A 24-year-old woman with pregestational diabetes mellitus experienced increasing insulin requirements during pregnancy, peaking at 650 units daily. The frequent, large-volume injections of standard-concentration insulin were poorly tolerated by the patient and resulted in nonadherence. She subsequently achieved glycemic control on thrice-daily U-500 insulin. Pregnancy exacerbates insulin resistance in diabetic patients, and these patients may require high doses of insulin. U-500 insulin is an effective alternative for patients with severe insulin resistance and should be considered for pregnant women with difficulty achieving glycemic control.

  4. B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism.

    PubMed

    Xu, Zhenye; Liu, Yu; Zhou, Wei; Tade, Moses O; Shao, Zongping

    2018-03-21

    Perovskite oxides are highly promising electrodes for oxygen-ion-intercalation-type supercapacitors owing to their high oxygen vacancy concentration, oxygen diffusion rate, and tap density. Based on the anion intercalation mechanism, the capacitance is contributed by surface redox reactions and oxygen ion intercalation in the bulk materials. A high concentration of oxygen vacancies is needed because it is the main charge carrier. In this study, we propose a B-site cation-ordered Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ as an electrode material with an extremely high oxygen vacancy concentration and oxygen diffusion rate. A maximum capacitance of 1050 F g -1 was achieved, and a high capacitance of 780 F g -1 was maintained even after 3000 charge-discharge cycles at a current density of 1 A g -1 with an aqueous alkaline solution (6 M KOH) electrolyte, indicating an excellent cycling stability. In addition, the specific volumetric capacitance of Ba 2 Bi 0.1 Sc 0.2 Co 1.7 O 6-δ reaches up to 2549.4 F cm -3 based on the dense construction and high tap density (3.2 g cm -3 ). In addition, an asymmetric supercapacitor was constructed using activated carbon as a negative electrode, and it displayed the highest specific energy density of 70 Wh kg -1 at the power density of 787 W kg -1 in this study.

  5. Assessing the Impact of Climate Change on Extreme Streamflow and Reservoir Operation for Nuuanu Watershed, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; El-Kadi, A. I.; Dulaiova, H.

    2016-12-01

    Extreme events, such as flooding and drought, are expected to occur at increased frequencies worldwide due to climate change influencing the water cycle. This is particularly critical for tropical islands where the local freshwater resources are very sensitive to climate. This study examined the impact of climate change on extreme streamflow, reservoir water volume and outflow for the Nuuanu watershed, using the Soil and Water Assessment Tool (SWAT) model. Based on the sensitive parameters screened by the Latin Hypercube-One-factor-At-a-Time (LH-OAT) method, SWAT was calibrated and validated to daily streamflow using the SWAT Calibration and Uncertainty Program (SWAT-CUP) at three streamflow gauging stations. Results showed that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. This was verified with Nash-Sutcliffe Efficiency that resulted in acceptable values of 0.58 to 0.88, whereby more than 90% of observations were bracketed within 95% model prediction uncertainty interval for both calibration and validation periods, signifying the potential applicability of SWAT for future prediction. The climate change impact on extreme flows, reservoir water volume and outflow was assessed under the Representative Concentration Pathways of 4.5 and 8.5 scenarios. We found wide changes in extreme peak and low flows ranging from -44% to 20% and -50% to -2%, respectively, compared to baseline. Consequently, the amount of water stored in Nuuanu reservoir will be decreased up to 27% while the corresponding outflow rates are expected to decrease up to 37% relative to the baseline. In addition, the stored water and extreme flows are highly sensitive to rainfall change when compared to temperature and solar radiation changes. It is concluded that the decrease in extreme low and peak flows can have serious consequences, such as flooding, drought, with detrimental effects on riparian ecological functioning. This study's results are expected to aid in reservoir operation as well as in identifying appropriate climate change adaptation strategies.

  6. Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall

    NASA Astrophysics Data System (ADS)

    van Breemen, N.; Burrough, P. A.; Velthorst, E. J.; van Dobben, H. F.; de Wit, Toke; Ridder, T. B.; Reijnders, H. F. R.

    1982-10-01

    Acid rain commonly has high concentrations of dissolved SO2-4, NH+4 and NO-3. Sulphuric and nitric acids are usually considered to be the acidic components, whereas ammonium has a tendency to increase the pH of rainwater1. Ammonium can be transformed to nitric acid in soil but this source of acidity is generally less important than wet and dry deposition of free acids2,3. Here we describe the occurrence of high concentrations of ammonium in canopy throughfall (rainwater falling through the tree canopy) and stemflow in woodland areas in the Netherlands, resulting in acid inputs to soils two to five times higher than those previously described for acid atmospheric deposition2-5. The ammonium is present as ammonium sulphate, which probably forms by interaction of ammonia (volatilized from manure) with sulphur dioxide (from fossil fuels), on the surfaces of vegetation. After leaching by rainwater the ammonium sulphate reaching the soil oxidizes rapidly to nitric and sulphuric acid, producing extremely low pH values (2.8-3.5) and high concentrations of dissolved aluminium in the non-calcareous soils studied. Deposition of ammonium sulphate on the surfaces of vegetation and its environmental consequences are probably most important in areas with intensive animal husbandry.

  7. Adsorption properties of thermally sputtered calcein film

    NASA Astrophysics Data System (ADS)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  8. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil.

    PubMed

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg-1) and Sb (range from 226.67 to 3923.07 mg kg-1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.

  9. Metagenomic Approach Reveals Variation of Microbes with Arsenic and Antimony Metabolism Genes from Highly Contaminated Soil

    PubMed Central

    Luo, Jinming; Bai, Yaohui; Liang, Jinsong; Qu, Jiuhui

    2014-01-01

    Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment. PMID:25299175

  10. The Superstatistical Nature and Interoccurrence Time of Atmospheric Mercury Concentration Fluctuations

    EPA Science Inventory

    The probability density function (PDF) of the time intervals between subsequent extreme events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0 dynamic possesses a long-term memory autocorrelation function. Above a fixed thresh...

  11. Relationship between sensitizer concentration and resist performance of chemically amplified extreme ultraviolet resists in sub-10 nm half-pitch resolution region

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2017-01-01

    The development of lithography processes with sub-10 nm resolution is challenging. Stochastic phenomena such as line width roughness (LWR) are significant problems. In this study, the feasibility of sub-10 nm fabrication using chemically amplified extreme ultraviolet resists with photodecomposable quenchers was investigated from the viewpoint of the suppression of LWR. The relationship between sensitizer concentration (the sum of acid generator and photodecomposable quencher concentrations) and resist performance was clarified, using the simulation based on the sensitization and reaction mechanisms of chemically amplified resists. For the total sensitizer concentration of 0.5 nm-3 and the effective reaction radius for the deprotection of 0.1 nm, the reachable half-pitch while maintaining 10% critical dimension (CD) LWR was 11 nm. The reachable half-pitch was 7 nm for 20% CD LWR. The increase in the effective reaction radius is required to realize the sub-10 nm fabrication with 10% CD LWR.

  12. One-per-mil tumescent technique for upper extremity surgeries: broadening the indication.

    PubMed

    Prasetyono, Theddeus O H; Biben, Johannes A

    2014-01-01

    We studied the effect of 1:1,000,000 epinephrine concentration (1 per mil) to attain a bloodless operative field in hand and upper extremity surgery and to explore its effectiveness and safety profile. This retrospective observational study enrolled 45 consecutive patients with 63 operative fields consisting of various hand and upper extremity problems. One-per-mil solution was injected into the operative field with tumescent technique to create a bloodless operating field without tourniquet. The solution was formulated by adding a 1:1,000,000 concentration of epinephrine and 100 mg of lidocaine into saline solution to form 50 mL of tumescent solution. Observation was performed on the clarity of the operative field, which we described as totally bloodless, minimal bleeding, acceptable bleeding, or bloody. The volume of tumescent solution injected, duration of surgery, and surgical outcome were also reviewed. The tumescent technique with 1-per-mil solution achieved 29% totally bloodless, 48% minimal bleeding, 22% acceptable bleeding, and 2% bloody operative fields in cases that included burn contracture and congenital hand and upper extremity surgeries. One-per-mil tumescent solution created a clear operative field in hand and upper extremity surgery. It proved safe and effective for a wide range of indications. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  14. Regulatory effects on particulate pollution in the early hours of Chinese New Year, 2015.

    PubMed

    Lai, Yonghang; Brimblecombe, Peter

    2017-08-23

    Human activities are a key driver of air pollution, so it is hardly surprising that celebrations affect air quality. The use of fireworks contributes to high particulate concentrations in many parts of the world, with the Chinese Lunar New Year (spring festival) particularly noticeable, as firecrackers are traditionally used to drive off evil spirits. Fireworks lead to short-term peaks in the concentration of PM10, PM2.5 and SO 2 . Regulatory actions that restrict the use of fireworks have been evident in China since the 1990s. This paper investigates the particulate concentrations in nine Chinese cities (Beijing, Chengdu, Chongqing, Tianjin, Xi'an, Nanjing, Shanghai, Guangzhou and Shenzhen, along with Hong Kong (a Special Administrative Region) and Taipei and Kaohsiung (Taiwan) with a particular focus on the celebrations of 2015. Extremely high concentrations of particulate matter were observed, with some sites revealing peak PM10 concentrations in excess of 1000 μg m -3 in the early hours of the New Year. In Beijing, Tianjin and Chongqing, the activities caused high particulate matter concentrations at most sites throughout the city. These peaks in particulate load in the early hours of Chinese New Year do not appear to be closely related to meteorological parameters. However, in cities where fireworks appear to be better regulated, there are fewer sharp pollution peaks just after midnight, although lowered air quality can still be found in the outer parts of some cities, remote from regulatory pressures. A few cities seem to have been effective at reducing the impact of the celebrations on air quality, with Nanjing a recent example. An increasing focus on light displays and electric lanterns also seems to offer a sense of celebration with much reduced impacts on air quality.

  15. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  16. Exploring between the extremes: conversion-dependent kinetics of phosphite-modified hydroformylation catalysis.

    PubMed

    Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin

    2012-07-09

    The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiOx capping layer by sputtering and post-annealing

    NASA Astrophysics Data System (ADS)

    Huang, Shyh-Jer; Chou, Cheng-Wei; Su, Yan-Kuin; Lin, Jyun-Hao; Yu, Hsin-Chieh; Chen, De-Long; Ruan, Jian-Long

    2017-04-01

    In this paper, we present a technique to fabricate normally off GaN-based high-electron mobility transistor (HEMT) by sputtering and post-annealing p-NiOx capping layer. The p-NiOx layer is produced by sputtering at room temperature and post-annealing at 500 °C for 30 min in pure O2 environment to achieve high hole concentration. The Vth shifts from -3 V in the conventional transistor to 0.33 V, and on/off current ratio became 107. The forward and reverse gate breakdown increase from 3.5 V and -78 V to 10 V and -198 V, respectively. The reverse gate leakage current is 10-9 A/mm, and the off-state drain-leakage current is 10-8 A/mm. The Vth hysteresis is extremely small at about 33 mV. We also investigate the mechanism that increases hole concentration of p-NiOx after annealing in oxygen environment resulted from the change of Ni2+ to Ni3+ and the surge of (111)-orientation.

  18. On the origin of (4)He and (40)Ar in natural gold

    NASA Technical Reports Server (NTRS)

    Eugster, O.; Hofmann, B.; Niedermann, S.; Thalmann, CH.

    1993-01-01

    In a first report on our investigations of noble gases in native gold we demonstrated that placer gold contains an excess of radiogenic (4)He and (40)Ar relative to the concentrations expected from in situ decay of U, Th, and K, respectively, during the geologic age of about 30 Ma of the samples. We also showed that the U/Th-(4)He age of 36 Ma of vein-type gold from the Southern Alps agrees with its K-Ar formation age derived from associated muscovite and biotite. We now studied the question of the origin of the (4)He and (40)Ar excesses of placer gold. We conclude that gold contains two components of noble gases, a low-temperature component from fluid inclusions or phases which release noble gases at less than 800 C and a high-temperature component released when gold melts (1064 C). In some samples extremely high U and K concentrations or an unreasonably high formation age would be required to explain the observed (4)He abundances. Thus, trapped (4)He and (40)Ar must be present in gold.

  19. Detection of IL-6 by magnetic nanoparticles grown with the assistance of mid-infrared lighting.

    PubMed

    Jiang, Xiufeng; Zhang, Ye; Miao, Xiaofei; Li, Zenghui; Bao, Zengtao; Wang, Tong

    2013-01-01

    Nanomedical systems have attracted considerable attention primarily due to suitability in applications for specific cell selection through biomolecular targeting and rare cell detection enhancement in a diverse, multicellular population. In the present study, magnetic nanoparticles were prepared for use in high accuracy cell sensing. Magnetic nanoparticle growth was assisted by mid-infrared lighting. By this mechanism, a narrow window, estimated to be 2%, was achieved for the dimension distribution of grown nanoparticles. Combined with silicon nanowire (SiNW) transistors, a sensor with ultra high sensitivity for the detection of specific potential low abundance biomarkers has been achieved, which has been specifically used to detect interleukin-6 (IL-6) at extremely low concentrations. A novel biosensor with high sensitivity has been fabricated and utilized in the detection of IL-6 at 75 fM to 50 pM. The system consists of an SiNW transistor and magnetic nanoparticles with even dimension distribution. The novel sensor system is suitable for quantifying IL-6 at low concentrations in protein samples.

  20. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam

    2017-08-01

    The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).

  1. Huperzine alkaloids from Australasian and southeast Asian Huperzia.

    PubMed

    Lim, Wei-Han; Goodger, Jason Q D; Field, Ashley R; Holtum, Joseph A M; Woodrow, Ian E

    2010-09-01

    The pharmaceutical alkaloid huperzine A (HupA), currently used in herbal supplements and medicines worldwide, is predominantly sourced from the Chinese lycopod Huperzia serrata (Thunb. ex Murray) Trev. (Lycopodiaceae), which on average contains only 0.08 mg HupA g(-1) dry weight, and is experiencing a rapid decline in China due to over-harvesting. To find a high-yielding, natural source of HupA and/or the related huperzine B (HupB) that could potentially be used as the starting material in a commercial propagation program. We surveyed 17 Huperzia species (15 indigenous to Australia and southeast Asia) for their foliar HupA and HupB concentrations. We also studied intra-specific variation for the huperzines in four species that were available in sufficient numbers, and determined tissue-specific accumulation in larger specimens. HupA was detected in 11 Australasian and southeast Asian species, with eight also containing HupB, albeit at much lower concentrations. A H. elmeri (Herter) Holub plant from the Philippines had one of the highest HupA concentrations recorded (1.01 mg g(-1) dry wt) and it also had the highest HupB content of all plants surveyed (0.34 mg g(-1) dry wt). Intra-specific HupA and HupB concentrations were extremely variable, and at the intra-plant level, reproductive strobili were found to accumulate the highest HupA concentrations. Select Huperzia species from Australia and southeast Asia have potential as the starting material for establishing commercial HupA plantations, but the high intra-specific variability observed suggests that detailed screening is needed to isolate high huperzine-yielding individuals.

  2. MicroRNA Detection by Whole-Mount In Situ Hybridization in C. elegans.

    PubMed

    Andachi, Yoshiki; Kohara, Yuji

    2018-01-01

    MicroRNAs (miRNAs) loaded on argonaute proteins guide RNA-induced silencing complexes to target mRNAs. An excellent method to decipher the spatiotemporal expression patterns of miRNAs is whole-mount in situ hybridization (WISH), which has been successfully used in vertebrate embryos but still remains unavailable for many animal species. Here, we describe a WISH method for miRNA detection in Caenorhabditis elegans at both embryonic and post-embryonic stages. Strategies devised for detection include fixation of animals with carbodiimide at a high temperature and subsequent partial digestion of the fixed animals with an extremely high concentration of proteinase. WISH signals are visualized by staining with a chromogenic substrate or a fluorescent dye.

  3. Growth and Survival of Perchlorate-Reducing Bacteria in Media Containing Elevated Perchlorate Concentrations and UV-C Conditions

    NASA Technical Reports Server (NTRS)

    Bywaters, K. F.; Mckay, C. P.; Quinn, R. C.

    2017-01-01

    Introduction: The identification of perchlorate (ClO4(-)) on Mars has led to the possibility that complete redox couples are available for microbial metabolism in contemporary surface environments. Perchlorate-reducing bacteria (PRB) utilize ClO4(-) and chlorate (ClO3(-)) as terminal electron acceptors due to the high reduction potential. Additionally, ClO4(-) salts have been suggested as a possible source of brines on Mars and spectral evidence indicates that the hydration of ClO4(-) salts in the regolith of Martian is linked to the surface recurring slope lineae (RSL). For these reasons PRB may serve as analog organisms for possible life on Mars. However, there is very little information on the viability of PRB in aqueous environments that contain high levels of perchlorate Microorganisms on or near the surface of Mars, such as in the RSL, would potentially be exposed to high-salinity and high ultraviolet radiation environments. Under these extreme conditions, microorganisms must possess mechanisms for maintaining continued high genome fidelity. To assess possible microbial viability in contemporary Mars analog environments we are investigating the tolerance of two PRB strains in aqueous conditions under high UV-C conditions and high ClO4(-) concentrations.

  4. Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing

    NASA Astrophysics Data System (ADS)

    Milazzo, R.; Impellizzeri, G.; Piccinotti, D.; De Salvador, D.; Portavoce, A.; La Magna, A.; Fortunato, G.; Mangelinck, D.; Privitera, V.; Carnera, A.; Napolitani, E.

    2017-01-01

    Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 1020 cm-3 by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ˜4 × 1019 cm-3. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ˜3 × 1019 cm-3. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.

  5. Biomonitoring of trace metal bioavailabilities to the barnacle Amphibalanus amphitrite along the Iranian coast of the Persian Gulf.

    PubMed

    Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S

    2014-10-01

    The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014-2016 northeast Pacific warm anomaly

    NASA Astrophysics Data System (ADS)

    Ryan, J. P.; Kudela, R. M.; Birch, J. M.; Blum, M.; Bowers, H. A.; Chavez, F. P.; Doucette, G. J.; Hayashi, K.; Marin, R.; Mikulski, C. M.; Pennington, J. T.; Scholin, C. A.; Smith, G. J.; Woods, A.; Zhang, Y.

    2017-06-01

    An ecologically and economically disruptive harmful algal bloom (HAB) affected much of the northeast Pacific margin in 2015, during a prolonged oceanic warm anomaly. Caused by diatoms of the genus Pseudo-nitzschia, this HAB produced the highest particulate concentrations of the biotoxin domoic acid (DA) ever recorded in Monterey Bay, California. Bloom inception followed strong upwelling during the spring transition, which introduced nutrients and eliminated the warm anomaly locally. Subsequently, moderate and intermittent upwelling created favorable conditions for growth and accumulation of HAB biomass, which was dominated by a highly toxigenic species, P. australis. High cellular DA concentrations were associated with available nitrogen for DA synthesis coincident with silicate exhaustion. This nutrient influence resulted from two factors: (1) disproportionate depletion of silicate in upwelling source waters during the warm anomaly, the most severe depletion observed in 24 years, and (2) silicate uptake by the dense diatom bloom.

  7. Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats

    NASA Astrophysics Data System (ADS)

    Ridd, Peter V.; Sam, Renagi

    1996-11-01

    The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.

  8. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia coli NAD+-Auxotrophic Mutant ▿

    PubMed Central

    Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.

    2011-01-01

    NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD+ de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD+. We then constructed the NAD+-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD+ biosynthesis in cells harboring the ntt4 gene. The minimal NAD+ level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD+, while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD+ was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD+ concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed. PMID:21742902

  9. The risk of river pollution due to washout from contaminated floodplain water bodies during high floods

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Parshakova, Yanina; Tiunov, Alexey

    2016-04-01

    Today, the potential impact of extremely high floods, which in the last years have become a rather frequent weather-related disaster, is the problem of primary concern. In studies of the potential impact of floods the emphasis is placed first of all on the estimation of possible flood zones and the analysis of the flow regimes in these zones. However, in some cases the hydrochemical parameters related to changes in the chemical composition of water are more important than the hydraulic parameters. It is generally believed that the higher is the flow rate, the more intensive is the process of dissolution, i.e. the lower is the concentration of limiting contaminants in water. However, this statement is valid provided that flooding does not activate new sources of water pollution such as contaminated floodplain water bodies located in the vicinity of water supply systems. Being quite reliable and safe at small and moderate discharges, in the case of extremely high level of river waters they become intensive sources of water pollution, essentially limiting the water consumption schedule for downstream water consumers. It should be noted that compared to the well-studied mechanisms of waste discharge due to failure of hydraulic engineering structures by flood waves, the mechanisms of pollutant washout from the contaminated floodplain water bodies by the flood waves is still poorly understood. We analyze the impacts of such weather-related events on the quality of water in the water intake system, taking as an example, the section of the Vyatka River located in the Prikamskaya lowland of the Russian Federation. The risk of river pollution due to washout from the contaminated floodplain water bodies during high floods is studied by hydrodynamical modeling in the framework of combined approach using one-, two- and three-dimensional hydrodynamic models are implemented and by in situ measurements. It is shown that during high floods the removal of pollutants from the contaminated floodplain water bodies takes place. The washout process includes two stages. The first rapid stage lasts about two hours, during this stage the upper layer is washed out. During the second, longer stage, the concentration of contaminant in the floodplain water body remains nearly constant. The maximal concentration of contaminant in the river in the vicinity of water intake located 21 kilometers downstream is attained in 9 hours from the beginning of the flood; it can become several times larger than acceptable concentration. The calculations and in-situ measurements have also shown that the primary peak of contaminant concentration near the water intake is followed by a smaller second peak related to the contaminant propagation through inundated floodplain. After the second peak the concentration slowly decreases and reaches acceptable values in 30-40 hours. Thus, during high floods, contaminated floodplain water bodies located near drinking water supply systems can become new sources of water pollution which has to be taken into account in downstream water consumption schedule. This work was supported by Russian Science Foundation (grant 14-21-00090).

  10. Behavior of whey protein concentrates under extreme storage conditions

    USDA-ARS?s Scientific Manuscript database

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  11. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The EPOCH-JAPAN study.

    PubMed

    Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori

    2018-02-08

    The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  12. Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang

    2017-08-01

    WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.

  13. The origin of high-nitrate ground waters in the Australian arid zone

    NASA Astrophysics Data System (ADS)

    Barnes, C. J.; Jacobson, G.; Smith, G. D.

    1992-08-01

    Nitrate concentrations beyond the drinking-water limit of 10 mg1 -1 NO 3-N, are common in Australian arid-zone ground waters and are often associated with otherwise potable waters. In some aquifers nitrate-N concentrations of up to 80 mg1 -1 have been found, and this is a severe constraint on water supply development for small settlements. Water-bore data indicate a correlation of high-nitrate ground waters with shallow unconfined aquifers. Aguifer hydrochemistry indicats that these ground waters were emplaced by episodic Holocene recharge events in an otherwise arid climate regime. Nitrate has been flushed through the unsaturated zone which apparently lacks denitrification activity. The nitrate originates by near-surface biological fixation and contributing organisms include cyanobacteria in soil crusts and bacteria in termite mounds with the highest soil nitrate concentrations found in the outer skin of termite mounds. Bacteria associated with the termites appear to fix nitrogen, which eventually appears in an inorganic form, principally as ammonia. Nitrate is produced by bacterial oxidation of the ammonia, and is leached to the outside of the termite mound by capillary action. Diffuse recharge from extreme rainfall events then flushes this nitrate to the water table.

  14. High Resolution X-ray Scattering Studies of Structural Phase Transitions in BaFe2-x Cr x As 2

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Clancy, J. P.; Wagman, J. J.; Sefat, A. S.

    2011-03-01

    While the effects of electron-doping on the parent compounds of the 122 family of Fe-based superconductors have been extremely well-studied in recent years, far less is known about the influence of hole-doping in compounds such as BaFe 2-x Cr x As 2 . In contrast to the electron-doped 122 systems, the hole-doped compounds do not become superconducting. Furthermore, while the hole-doped compounds exhibit similar structural and magnetic phase transitions, they appear to be much less sensitive to dopant concentration. We have performed high resolution x-ray scattering and magnetic susceptibility measurements on single crystal samples of BaFe 2-x Cr x As 2 for Cr concentrations ranging from 0 <= x <= 0.67 . These measurements allow us to determine the magnetic and structural phase transitions for this series and map out the low temperature phase diagram as a function of doping. In particular, we have carried out detailed measurements of the tetragonal (I4/mmm) to orthorhombic (Fmmm) structural phase transition which reveal how the orthorhombicity of the system evolves with increasing Cr concentration and how this correlates with the values of Ts and Tm .

  15. Metal bioaccumulation pattern by Cotylorhiza tuberculata (Cnidaria, Scyphozoa) in the Mar Menor coastal lagoon (SE Spain).

    PubMed

    Muñoz-Vera, Ana; García, Gregorio; García-Sánchez, Antonio

    2015-12-01

    Coastal lagoons are ecosystems highly vulnerable to human impacts because of their situation between terrestrial and marine environment. Mar Menor coastal lagoon is one of the largest lagoons of the Mediterranean Sea, placed in SE Spain and subjected to major human impacts, in particular the mining of metal sulphides. As a consequence, metal concentration in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, the present study has assessed the ability of Cotylorhiza tuberculata for bioaccumulating metals from sea water. Up to 65 individuals were sampled at 8 different sampling stations during the summer of 2012. Although the concentration values for different elements considered were moderate (Pb: 0.04-29.50 ppm, Zn: 2.27-93.44 ppm, Cd: 0-0.67 ppm, As: 0.56-130.31 ppm) by dry weight of the jellyfish tissues (bell and oral arms combined), bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content because of their potential environmental and health implications.

  16. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  17. High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of Southern China: Dynamic variations and effects of meteorology.

    PubMed

    Zhou, Shengzhen; Davy, Perry K; Wang, Xuemei; Cohen, Jason Blake; Liang, Jiaquan; Huang, Minjuan; Fan, Qi; Chen, Weihua; Chang, Ming; Ancelet, Travis; Trompetter, William J

    2016-12-01

    Hourly-resolved PM 2.5 and PM 10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM 2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source. Copyright © 2016. Published by Elsevier B.V.

  18. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.

  19. Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: Contamination profiles and risk assessment.

    PubMed

    Lam, Nguyen Hoang; Jeong, Hui-Ho; Kang, Su-Dong; Kim, Dae-Jin; Ju, Mi-Jo; Horiguchi, Toshihiro; Cho, Hyeon-Seo

    2017-08-15

    A simultaneous monitoring study on organotins (butyltins and phenyltins) and most frequently used alternative antifouling biocides (Irgarol 1051, Diuron, Sea-Nine 211 and M1) in water and sediments (n=44) collected from three Special Management Sea Areas operated by Korean government. The lower concentration of butyltins (BTs) than that of new antifouling biocides (NEW) was found in water but the significant greater concentration of BTs than that of NEW was still found in sediments. The tributyltin (TBT) levels in water exceeded the chronic criterion to protect seawater aquatic life at several sites. Even ten years after the ban of the use of TBT-based antifouling paint, the concentrations of TBT, Diuron and Irgarol 1051 in sediments from shipyards exceeded global sediment quality guidelines and potentially poses adverse risks on marine organisms and extremely high concentration of TBT up to 2304ng/g was found for a sediment collected at a shipyard. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Well-Defined High Molecular Weight Polystyrene with High Rates and High Livingness Synthesized via Two-Stage RAFT Emulsion Polymerization.

    PubMed

    Yan, Kun; Gao, Xiang; Luo, Yingwu

    2015-07-01

    A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top