Science.gov

Sample records for extremely high current

  1. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  2. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    SciTech Connect

    Hirano, Y. E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; Kiyama, S.; Koguchi, H.; Fujiwara, Y.; Sakakita, H.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  3. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  4. High Resolution Simulation of a Colorado Rockies Extreme Snow and Rain Event in both a Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David

    2016-04-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.

  5. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteopenia and rickets are common among extremely low birth weight infants (ELBW, <1000 g birth weight) despite current practices of vitamin and mineral supplementation. Few data are available evaluating the usual course of markers of mineral status in this population. Our objectives in this study w...

  6. Extremely high latitude auroras

    NASA Astrophysics Data System (ADS)

    Gussenhoven, M. S.

    1982-04-01

    It is pointed out that imaging devices on the polar orbiting ISIS and Defense Meteorological Satellite Program (DMSP) satellites have greatly increased the extent of polar cap and auroral zone coverage and have prompted several studies of polar cap arcs. A description is presented of a statistical study of the occurrence conditions for arcs recorded in DMSP images at extremely high latitudes, taking into account corrected geomagnetic latitudes equal to or greater than 80 deg. The 80 deg boundary is chosen to minimize the problems associated with defining a polar cap boundary. Attention is given to the data base and categorization of extremely high latitude auroras, the relationship to magnetic activity, and the relationship to solar wind conditions. It is found that one category of extremely high latitude auroras is distinctly different from the rest. This category includes the oval auroras which expand poleward in the midnight sector.

  7. Analysis of the wake field effects in the PEP-II storage rings with extremely high currents

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Seeman, J.; Sullivan, M.

    2014-01-01

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  8. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    NASA Astrophysics Data System (ADS)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  9. Left-Wing Extremism: The Current Threat

    SciTech Connect

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  10. High performance x-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Moet, Date; van der Steen, Jan Laurens; van Breemen, Albert; Shanmugam, Santhosh; Gilot, Jan; Andriessen, Ronn; Simon, Matthias; Ruetten, Walter; Douglas, Alexander; Raaijmakers, Rob; Malinowski, Pawel E.; Myny, Kris; Gelinck, Gerwin

    2015-10-01

    High performance X-ray imaging detectors on foil using solution-processed organic photodiodes with extremely low dark leakage current Abhishek Kumara, Date Moeta, Albert van Breemena, Santhosh Shanmugama, Jan-Laurens van der Steena, Jan Gilota, Ronn Andriessena, Matthias Simonb, Walter Ruettenb, Alexander U. Douglasb, Rob Raaijmakersc, Pawel E. Malinowskid, Kris Mynyd and Gerwin H. Gelincka,e a. Holst Centre/TNO, High Tech Campus 31, Eindhoven 5656 AE, The Netherlands b. Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands c. Philips Healthcare, Veenpluis 6-8, 5684 PC Best, The Netherlands d. Department of Large Area Electronics, imec vzw, Kapeldreef 75, Leuven B3001, Belgium e. Applied Physics Department, TU Eindhoven, Eindhoven, The Netherlands We demonstrate high performance X-ray imaging detectors on foil suitable for medical grade X-ray imaging applications. The detectors are based on solution-processed organic photodiodes forming bulk-heterojunctions from photovoltaic donor and acceptor blend. The organic photodiodes are deposited using an industrially compatible slot die coating technique with end of line processing temperature below 100°C. These photodiodes have extremely low dark leakage current density of 10-7 mA/cm2 at -2V bias with very high yield and have peak absorption around 550 nm wavelength. We combine these organic photodiodes with high mobility metal oxide semiconductor based thin film transistor arrays with high pixel resolution of 200ppi on thin plastic substrate. When combined with a typical CsI(TI) scintillator material on top, they are well suited for low dose X-ray imaging applications. The optical crosstalk is insignificant upto resolution of 200 ppi despite the fact that the photodiode layer is one continuous layer and is non-pixelated. Low processing temperatures are another key advantage since they can be fabricated on plastic substrate. This implies that we can make X-ray detectors on flexible foil. Those

  11. Current management of the mangled upper extremity.

    PubMed

    Bumbasirevic, Marko; Stevanovic, Milan; Lesic, Aleksandar; Atkinson, Henry D E

    2012-11-01

    Mangled describes an injury caused by cutting, tearing, or crushing, which leads to the limb becoming unrecognizable; in essence, there are two treatment options for mangled upper extremities, amputation and salvage reconstruction. With advances in our understanding of human physiology and basic science, and with the development of new fixation devices, modern microsurgical techniques and the possibility of different types of bony and soft tissue reconstruction, the clinical and functional outcomes are often good, and certainly preferable to those of contemporary prosthetics. Early or even immediate (emergency) complete upper extremity reconstruction appears to give better results than delayed or late reconstruction and should be the treatment of choice where possible. Before any reconstruction is attempted, injuries to other organs must be excluded. Each step in the assessment and treatment of a mangled extremity is of utmost importance. These include radical tissue debridement, prophylactic antibiotics, copious irrigation with a lavage system, stable bone fixation, revascularization, nerve repair, and soft tissue coverage. Well-planned and early rehabilitation leads to a better functional outcome. Despite the use of scoring systems to help guide decisions and predict outcomes, the decision to reconstruct or to amputate still ultimately lies with the surgical judgment and experience of the treating surgeon.

  12. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  13. Current thinking about acute compartment syndrome of the lower extremity.

    PubMed

    Shadgan, Babak; Menon, Matthew; Sanders, David; Berry, Gregg; Martin, Claude; Duffy, Paul; Stephen, David; O'Brien, Peter J

    2010-10-01

    Acute compartment syndrome of the lower extremity is a clinical condition that, although uncommon, is seen fairly regularly in modern orthopedic practice. The pathophysiology of the disorder has been extensively described and is well known to physicians who care for patients with musculoskeletal injuries. The diagnosis, however, is often difficult to make. In this article, we review the clinical risk factors of acute compartment syndrome of the lower extremity, identify the current concepts of diagnosis and discuss appropriate treatment plans. We also describe the Canadian medicolegal environment in regard to compartment syndrome of the lower extremity.

  14. Extreme Consumption Drinking Gaming and Prepartying among High School Students

    ERIC Educational Resources Information Center

    Tomaso, Cara C.; Zamboanga, Byron L.; Haas, Amie L.; Kenney, Shannon R.; Ham, Lindsay S.; Borsari, Brian

    2016-01-01

    Drinking games and prepartying (i.e., drinking before going to a social gathering/event) have emerged as high-risk drinking behaviors in high school students. The present study examines the current prepartying behaviors of high school students who report current participation in extreme-consumption games (e.g., chugging) with those who do not.…

  15. Joint probability of extreme waves and currents on Norwegian shelf--

    SciTech Connect

    Heideman, J.C. ); Hagen, O. )

    1989-07-01

    Simultaneous wave and current measurements on the Norwegian Shelf were used to estimate the appropriate current to associate with extreme waves in platform design. The primary data consisted of seven years of measurements at Tromsoflaket (71{degrees}30'N, 19{degrees}E, 230 m depth), including 38 storms with peak significant wave heights above 7 m. The maximum wave height and maximum current occurred simultaneously in only one of the 38 storms. The wave and current time-series data were used to calculate the time series of drag load on a simple structure and statistics of wave height and drag load were developed. The data showed that the in-line current that must be added to extreme waves in order to preserve the extreme loads approaches 25 cm/s asymptotically as storm severity increases. Sensitivity studies suggest that this limit is largely insensitive to reasonable variations in current profile, wave kinematics theory, structure geometry, tidal current removal, length of data base, or site location. These results show that the current specified by Norwegian regulatory authorities is conservative, and provide a basis for reducing the design hydrodynamic loads on drag-dominated offshore structures on the Norwegian shelf.

  16. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  17. Extreme current fluctuations in lattice gases: beyond nonequilibrium steady states.

    PubMed

    Meerson, Baruch; Sasorov, Pavel V

    2014-01-01

    We use the macroscopic fluctuation theory (MFT) to study large current fluctuations in nonstationary diffusive lattice gases. We identify two universality classes of these fluctuations, which we call elliptic and hyperbolic. They emerge in the limit when the deterministic mass flux is small compared to the mass flux due to the shot noise. The two classes are determined by the sign of compressibility of effective fluid, obtained by mapping the MFT into an inviscid hydrodynamics. An example of the elliptic class is the symmetric simple exclusion process, where, for some initial conditions, we can solve the effective hydrodynamics exactly. This leads to a super-Gaussian extreme current statistics conjectured by Derrida and Gerschenfeld [J. Stat. Phys. 137, 978 (2009)] and yields the optimal path of the system. For models of the hyperbolic class, the deterministic mass flux cannot be neglected, leading to a different extreme current statistics. PMID:24580151

  18. The Extreme and Variable High Energy Sky

    NASA Astrophysics Data System (ADS)

    A critically important region of the astrophysical spectrum is the hard X-ray/gamma-ray band, from the keV to the GeV energy range. In this band, an unusually rich range of astrophysical processes occur: this is the energy domain where fundamental changes from thermal to non-thermal sources/phenomena are expected, where the effects of absorption are drastically reduced and a clearer picture of the Universe is possible. This is also the energy range where most of the extreme astrophysical behavior is taking place, e.g. cosmic acceleration, explosions and accretion onto black holes and neutron stars; where variability is more the rule than the exception and where a number of instruments are actively working (e.g. INTEGRAL, SWIFT, Suzaku, MAXI, AGILE, Fermi and HESS). These telescopes are providing an unprecedented view of the high energy sky. Combined with data obtained at lower energies from a number of satellites and ground based telescopes we have for the first time the possibility of studying this extreme and variable sky over a very broad energy band and with unprecedented sensitivity.The workshop is aimed at bringing together scientists active across the field of high energy astrophysics in order to focus on the opportunities offered by the high energy window both from the observational and theoretical viewpoints, while a dedicated section will also be devoted to discuss the current status of planned and future missions. The meeting will consist of invited talks and contributions which are welcome as either posters or as short presentations. There will be time for open discussions throughout.We intend to cover the most extreme phenomena associated with acceleration, explosions and accretion onto galactic and extragalactic objects as well as to study variability in all types of objects and environments. In view of the extension of INTEGRAL operational lifetime, the workshop will provide a unique opportunity to prepare for extra observational possibility and to

  19. A road map to extreme high vacuum

    NASA Astrophysics Data System (ADS)

    Adderley, P.; Myneni, G.

    2008-05-01

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and procedures [1, 2]. Until now much attention has been paid to minimizing hydrogen outgassing from the vacuum chamber wall materials, however, procedures and processing deserve further scrutiny. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1×10-12 Torr l/sec should be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This paper presents the current status of the CEBAF DC photogun. This state of the art technology is driving the need for Extreme High Vacuum (XHV). We also present sensitive helium leak detection techniques with RGA's, vacuum gauge and RGA calibration procedures, metal sponges for cryosorption pumping of hydrogen to XHV, low cost surface diffusion barriers for reducing the hydrogen gas load and clean assembly procedures. Further, alternative backing pump systems based on active NEGs [3] for turbo molecular pumps are also discussed.

  20. High detection efficiency micro-structured solid-state neutron detector with extremely low leakage current fabricated with continuous p-n junction

    NASA Astrophysics Data System (ADS)

    Huang, Kuan-Chih; Dahal, Rajendra; Lu, James J.-Q.; Danon, Yaron; Bhat, Ishwara B.

    2013-04-01

    We report the continuous p-n junction formation in honeycomb structured Si diode by in situ boron deposition and diffusion process using low pressure chemical vapor deposition for solid-state thermal neutron detection applications. Optimized diffusion temperature of 800 °C was obtained by current density-voltage characteristics for fabricated p+-n diodes. A very low leakage current density of ˜2 × 10-8 A/cm2 at -1 V was measured for enriched boron filled honeycomb structured neutron detector with a continuous p+-n junction. The neutron detection efficiency for a Maxwellian spectrum incident on the face of the detector was measured under zero bias voltage to be ˜26%. These results are very encouraging for fabrication of large area solid-state neutron detector that could be a viable alternative to 3He tube based technology.

  1. High current induction linacs

    NASA Astrophysics Data System (ADS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge.

  2. Extremely high energy neutrinos from cosmic strings

    SciTech Connect

    Berezinsky, Veniamin; Sabancilar, Eray; Vilenkin, Alexander

    2011-10-15

    Superstring theory and other supersymmetric theories predict the existence of relatively light, weakly interacting scalar particles, called moduli, with a universal form of coupling to matter. Such particles can be emitted from cusps of cosmic strings, where extremely large Lorentz factors are achieved momentarily. Highly boosted modulus bursts emanating from cusps subsequently decay into gluons; they generate parton cascades which in turn produce large numbers of pions and then neutrinos. Because of very large Lorentz factors, extremely high energy neutrinos, up to the Planck scale and above, are produced. For some model parameters, the predicted flux of neutrinos with energies > or approx. 10{sup 21} eV is observable by JEM-EUSO and by the future large radio detectors LOFAR and SKA.

  3. Extreme Transients in the High Energy Universe

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  4. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  5. Extremely compliant and highly stretchable patterned graphene

    NASA Astrophysics Data System (ADS)

    Zhu, Shuze; Huang, Yinjun; Li, Teng

    2014-04-01

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7-9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  6. Extremely compliant and highly stretchable patterned graphene

    SciTech Connect

    Zhu, Shuze; Huang, Yinjun; Li, Teng

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (7–9 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  7. Mitochondrial function at extreme high altitude.

    PubMed

    Murray, Andrew J; Horscroft, James A

    2016-03-01

    At high altitude, barometric pressure falls and with it inspired P(O2), potentially compromising O2 delivery to the tissues. With sufficient acclimatisation, the erythropoietic response increases red cell mass such that arterial O2 content (C(aO2)) is restored; however arterial P(O2)(P(aO2)) remains low, and the diffusion of O2 from capillary to mitochondrion is impaired. Mitochondrial respiration and aerobic capacity are thus limited, whilst reactive oxygen species (ROS) production increases. Restoration of P(aO2) with supplementary O2 does not fully restore aerobic capacity in acclimatised individuals, possibly indicating a peripheral impairment. With prolonged exposure to extreme high altitude (>5500 m), muscle mitochondrial volume density falls, with a particular loss of the subsarcolemmal population. It is not clear whether this represents acclimatisation or deterioration, but it does appear to be regulated, with levels of the mitochondrial biogenesis factor PGC-1α falling, and shows similarities to adapted Tibetan highlanders. Qualitative changes in mitochondrial function also occur, and do so at more moderate high altitudes with shorter periods of exposure. Electron transport chain complexes are downregulated, possibly mitigating the increase in ROS production. Fatty acid oxidation capacity is decreased and there may be improvements in biochemical coupling at the mitochondrial inner membrane that enhance O2 efficiency. Creatine kinase expression falls, possibly impairing high-energy phosphate transfer from the mitochondria to myofibrils. In climbers returning from the summit of Everest, cardiac energetic reserve (phosphocreatine/ATP) falls, but skeletal muscle energetics are well preserved, possibly supporting the notion that mitochondrial remodelling is a core feature of acclimatisation to extreme high altitude. PMID:26033622

  8. A Road Map to Extreme High Vacuum

    SciTech Connect

    Myneni, Ganapati Rao

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1× 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEG’s [3] for turbo molecular pumps will be presented.

  9. Extreme Precipitation and High-Impact Landslides

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing

  10. Resuscitation of extremely preterm infants - controversies and current evidence

    PubMed Central

    Patel, Pooja N; Banerjee, Jayanta; Godambe, Sunit V

    2016-01-01

    Despite significant advances in perinatal medicine, the management of extremely preterm infants in the delivery room remains a challenge. There is an increasing evidence for improved outcomes regarding the resuscitation and stabilisation of extremely preterm infants but there is a lack of evidence in the periviable (gestational age 23-25 wk) preterm subgroup. Presence of an experienced team during the delivery of extremely preterm infant to improve outcome is reviewed. Adaptation from foetal to neonatal cardiorespiratory haemodynamics is dependent on establishing an optimal functional residual capacity in the extremely preterm infants, thus enabling adequate gas exchange. There is sufficient evidence for a gentle approach to stabilisation of these fragile infants in the delivery room. Evidence for antenatal steroids especially in the periviable infants, delayed cord clamping, strategies to establish optimal functional residual capacity, importance of temperature control and oxygenation in delivery room in extremely premature infants is reviewed in this article. PMID:27170925

  11. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  12. Recent high mountain rockfalls and warm daily temperature extremes

    NASA Astrophysics Data System (ADS)

    Allen, S. K.; Huggel, C.

    2012-04-01

    Linkages between longer term warming of the climate, related changes in the cryosphere, and destabilisation of high mountain rockwalls have been documented in several studies. Although understanding is far from complete, a range of physical processes related to longer term warming are understood to have an effect on slope stability. More recently, some attention has turned to the possible influence of much shorter periods of extremely warm temperatures, as a contributing factor, or even trigger of slope failures. So far, studies have not extended beyond highlighting one or a few individual events, and no common approach to quantifying the 'extremity' of the prevailing temperatures has been used. In the current study, we integrate established practices used in the climatology community in the analyses of climate extremes, together with an inventory of ca. 20 recent rock failures (1987 - 2010) in the central European Alps, to assess temporal relationships between daily air temperature extremes and rock failure occurrence. Using data from three high elevation recording sites across Switzerland, we focus on daily maximum temperatures in the 4 weeks immediately prior to each rockfall occurrence, where an extremely warm day is defined as exceeding the 95th percentile during the climatological reference period of 1971 - 2000. The 95th percentile is calculated in a 21 day moving window, so that extreme temperatures are considered relative to the time of year, and not on an annual basis. In addition, rock failures from the Southern Alps of New Zealand are analysed, although high elevation climate data are limited from this region. Results from the European Alps show that a majority of recent slope failures have been preceded by one or more extreme, unseasonably warm days, most notably in the week immediately prior to the failure. For example, for 9 slope failures in the Valais - Mt Blanc region (based on Grand St Bernhard climate data), 6 were proceeded by extremely warm

  13. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  14. High sea-floor stress induced by extreme hurricane waves

    NASA Astrophysics Data System (ADS)

    Wijesekera, Hemantha W.; Wang, David W.; Teague, William J.; Jarosz, Ewa

    2010-06-01

    Strong surface waves and currents generated by major hurricanes can produce extreme forces at the seabed that scour the seafloor and cause massive underwater mudslides. Our understanding of these forces is poor due to lack of concurrent measurements of waves and currents under these storms. Using unique observations collected during the passage of a category-4 hurricane, Ivan, bottom stress due to currents and waves over the outer continental shelf in the Gulf of Mexico was examined. During the passage of Ivan, the bottom stress was highly correlated with the wind with a maximum of about 40% of the wind stress. The bottom stress was dominated by the wave-induced stresses, and exceeded critical levels at depths as large as 90 m. Surprisingly, the bottom damaging stress persisted after the passage of Ivan for about a week, and was modulated by near-inertial waves.

  15. Survival in extreme environments - on the current knowledge of adaptations in tardigrades.

    PubMed

    Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M

    2011-07-01

    Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation.

  16. Survival in extreme environments - on the current knowledge of adaptations in tardigrades.

    PubMed

    Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M

    2011-07-01

    Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation. PMID:21251237

  17. Electronic test instrument generates extremely small current signals

    NASA Technical Reports Server (NTRS)

    Brookshier, W. K.

    1967-01-01

    Generator produces dynamic test signals in the range from 0.0001 and 10 to the minus 12th power amperes. It involves an extension of the technique of applying a triangular voltage waveform to a small capacitor to obtain a square-wave output current. The effects of stray capacitance are minimized by appropriate shielding.

  18. High current, high bandwidth laser diode current driver

    NASA Technical Reports Server (NTRS)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  19. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  20. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  1. High Critical Current Coated Conductors

    SciTech Connect

    Paranthaman, M. P.; Selvamanickam, V.

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  2. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  3. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  4. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  5. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  6. High current capacity electrical connector

    DOEpatents

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  7. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    DOEpatents

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  8. Is Extremely High Life Satisfaction during Adolescence Advantageous?

    ERIC Educational Resources Information Center

    Suldo, Shannon M.; Huebner, E. Scott

    2006-01-01

    This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…

  9. Extreme high-head portables provide more pumping options

    SciTech Connect

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  10. Automatic residue removal for high-NA extreme illumination

    NASA Astrophysics Data System (ADS)

    Moon, James; Nam, Byong-Sub; Jeong, Joo-Hong; Kong, Dong-Ho; Nam, Byung-Ho; Yim, Dong Gyu

    2007-10-01

    An epidemic for smaller node has been that, as the device architecture shrinks, lithography process requires high Numerical Aperture (NA), and extreme illumination system. This, in turn, creates many lithography problems such as low lithography process margin (Depth of Focus, Exposure Latitude), unstable Critical Dimension (CD) uniformity and restricted guideline for device design rule and so on. Especially for high NA, extreme illumination such as immersion illumination systems, above all the related problems, restricted design rule due to forbidden pitch is critical and crucial issue. This forbidden pitch is composed of numerous optical effects but majority of these forbidden pitch compose of photo resist residue and these residue must be removed to relieve some room for already tight design rule. In this study, we propose automated algorithm to remove photo resist residue due to high NA and extreme illumination condition. This algorithm automatically self assembles assist patterns based on the original design layout, therefore insuring the safety and simplicity of the generated assist pattern to the original design and removes any resist residue created by extreme illumination condition. Also we tested our automated algorithm on full chip FLASH memory device and showed the residue removal effect by using commercial verification tools as well as on actual test wafer.

  11. Extreme ultraviolet high-harmonic spectroscopy of solids.

    PubMed

    Luu, T T; Garg, M; Kruchinin, S Yu; Moulet, A; Hassan, M Th; Goulielmakis, E

    2015-05-28

    Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.

  12. Extreme ultraviolet high-harmonic spectroscopy of solids.

    PubMed

    Luu, T T; Garg, M; Kruchinin, S Yu; Moulet, A; Hassan, M Th; Goulielmakis, E

    2015-05-28

    Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics. PMID:26017451

  13. Creating Extreme Material Properties with High-Energy Laser Systems

    NASA Astrophysics Data System (ADS)

    Meyerhofer, David

    2005-07-01

    Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd, Rochester, NY 14623 High-energy laser systems create extreme states of matter by coupling their energy into a target via ablation of the outer layers. In planar experiments on the OMEGA laser system, single-shock pressures can exceed 10 Mbar. In spherical geometry, the compressed target pressures can be significantly higher than 1 Gbar. These pressures will be increased by one or two orders of magnitude on the 1.8-MJUV National Ignition Facility, under construction at LLNL. The inherent flexibility of multibeam laser systems allows many techniques to be applied to studying the properties of materials under extreme conditions. Recent experiments have used Extended X-ray Absorption Fine Structure to observe shock-induced phase transformations in Fe on the ns time scale. Techniques are being used and/or developed to measure the equation of state of compressed materials, including solids, foams, and liquid D2, both on and off the Hugoniot. The coupling of high-energy petawatt (HEPW) lasers to high-energy laser systems will greatly extend the accessible range of material conditions. HEPW lasers produce extremely intense beams of electrons and protons that can be coupled with high-energy compression to access a large region of temperature and density space, for example, by heating a compressed target. These beams, along with the extremely bright x-ray emission, provide new diagnostic opportunities. This presentation will highlight some of the recent advances and future opportunities in creating and measuring extreme materials properties. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the NY State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  14. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  15. High current gain transistor laser.

    PubMed

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-10

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  16. High current gain transistor laser

    NASA Astrophysics Data System (ADS)

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  17. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  18. The importance of the eastward zonal current for generating extreme El Niño

    NASA Astrophysics Data System (ADS)

    Kim, WonMoo; Cai, Wenju

    2014-06-01

    Extreme El Niño (e.g., 1983/1983 and 1997/1998) causes severe weather and climate impacts globally, but the associated dynamics is not fully understood. The present study shows that advection of mean temperature by anomalous eastward zonal current plays an important role in producing such extreme events especially during the early part of the developing period. While the climatological direction of the upper oceanic current in the equatorial Pacific is westward, at times the direction reverses. These eastward current events are well distinguished from the normal, westward conditions. The upper-layer zonal current in the equatorial Pacific is basically in geostrophic balance and forced by wind stress. However, in the case of the eastward zonal current events, persistent westerly winds are observed in the Western Pacific, and the current becomes synchronized with the westerly wind stress above. The advection of the mean temperature by the anomalous zonal current in the early developing period always precedes strong El Niño, though it does not significantly contribute to the growth of La Niña, neutral, and moderate El Niño; and is the major contributor of asymmetry in the early developing phase.

  19. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  20. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  1. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  2. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  3. Developments of Multi-extreme High Field ESR in Kobe

    NASA Astrophysics Data System (ADS)

    Ohta, H.; Okubo, S.; Ohmichi, E.; Sakurai, T.; Zhang, W.-M.; Shimokawa, T.

    2013-03-01

    Recent developments of "multi-extreme" high magnetic field electron spin resonance (ESR) in Kobe will be reviewed. Our high magnetic field ESR covers the frequency region between 0.03 and 7 THz and the temperature region between 1.8 and 300 K. With this high magnetic field ESR system we can apply the magnetic field up to 55 T using a Cu-Ag pulsed magnet and a 300 kJ (10 kV) capacitor bank. Under this high magnetic field we can also apply the high pressure up to 1.4 GPa. As we can make the measurement under low temperature, high magnetic field and high pressure simultaneously, we name it as "multi-extreme" ESR. Moreover, in order to gain the sensitivity of our high magnetic field ESR, we have developed a micro-cantilever ESR system using a torque method, which enables the ESR measurement of micrometer size single crystal at low temperature. At the moment we are in the process of extending the magnetic field region of micro-cantilever ESR. Recently we have succeeded in making the measurement up to 369 GHz and the achieved sensitivity is about 1010 spins/G, which is much higher than that using the conventional transmission method. Finally our development of magnetization detected ESR using SQUID magnetometer (SQUID ESR) will be also presented.

  4. High northern latitude temperature extremes, 1400-1999

    NASA Astrophysics Data System (ADS)

    Tingley, M. P.; Huybers, P.; Hughen, K. A.

    2009-12-01

    There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in

  5. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  6. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  7. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  8. ELECTROMIGRATION ISSUES IN HIGH CURRENT HORN.

    SciTech Connect

    ZHANG, S.Y.; BELLAVIA, S.; SANDBERG, J.; ET AL.

    2005-05-16

    The secondary particle focusing horn for the AGS neutrino experiment proposal is a high current and high current density device. The peak current of horn is 300 kA. At the smallest area of horn, the current density is near 8 kA/mm{sup 2}. At very high current density, a few kA/mm{sup 2}, the electromigration phenomena will occur. Momentum transfer between electrons and metal atoms at high current density causes electromigration. The reliability and lifetime of focusing horn can be severely reduced by electromigration. In this paper, we discuss issues such as device reliability model, incubation time of electromigration, and lifetime of horn.

  9. Solidification at the High and Low Rate Extreme

    SciTech Connect

    Meco, Halim

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  10. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  11. Heineman Prize: Extreme Transients in the High Energy Universe

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone - I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  12. Studying and applying channeling at extremely high bunch charges

    SciTech Connect

    Carrigan, R.A.; /Fermilab

    2005-01-01

    The potentially high plasma densities possible in solids might produce extremely high acceleration gradients. However solid-state plasmas could pose daunting challenges. Crystal channeling has been suggested as a mechanism to ameliorate these problems. A high-density plasma in a crystal lattice could quench the channeling process. There is no experimental or theoretical guidance on channeling for intense charged particle beams. An experiment has been carried out at the Fermilab A0 photoinjector to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than in earlier experiments. Possible new channeling experiments are discussed for the much higher bunch charge densities and shorter times required to probe channeling breakdown and plasma behavior.

  13. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  14. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  15. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  16. Bacterial survival responses to extreme desiccation and high humidity

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shinichi; Yamagishi, Akihiko

    The presence of water is thought to be essential for life and strongly considered in life searching operation on extraterrestrial planets. In this study we show different survival responses of bacterial species to water availability and temperatures (25, 4 and - 70 o C). At these temperatures, E.coli lost viability much faster under extreme desiccation than under high humidity. Deinococcus radiodurans exhibited much higher survival rate under desiccation than under high humidity at 25 o C, while its survivals under desiccation and high humidity increased to the same level at 4 and - 70 o C. Bacillus pumilus spores generally survived well under all tested conditions. Water is favorable for the survival of most microorganisms but not a "safeguard" for all microorganisms. Microbial survival at low temperatures may not be affected by water availability. Water absence should not preclude us from seeking life on other planets.

  17. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  18. Hybrid high direct current circuit interrupter

    DOEpatents

    Rockot, Joseph H.; Mikesell, Harvey E.; Jha, Kamal N.

    1998-01-01

    A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.

  19. Hybrid high direct current circuit interrupter

    DOEpatents

    Rockot, J.H.; Mikesell, H.E.; Jha, K.N.

    1998-08-11

    A device and a method are disclosed for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens. 7 figs.

  20. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  1. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb.

    PubMed

    Zhang, Bosheng; Gardner, Dennis F; Seaberg, Matthew H; Shanblatt, Elisabeth R; Porter, Christina L; Karl, Robert; Mancuso, Christopher A; Kapteyn, Henry C; Murnane, Margaret M; Adams, Daniel E

    2016-08-01

    We report a proof-of-principle demonstration of a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. This scheme is enabled by combining ptychographic information multiplexing (PIM) with a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and a more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both microscopy and spectroscopy aspects. In addition to spectromicroscopy, this method images the multicolor EUV beam in situ, making this a powerful beam characterization technique. In contrast to other methods, the techniques described here use no hardware to separate wavelengths, leading to efficient use of the EUV radiation. PMID:27505837

  2. Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high harmonic comb

    NASA Astrophysics Data System (ADS)

    Zhang, Bosheng; Gardner, Dennis F.; Seaberg, Matthew H.; Shanblatt, Elisabeth R.; Porter, Christina L.; Karl, Robert; Mancuso, Christopher A.; Kapteyn, Henry C.; Murnane, Margaret M.; Adams, Daniel E.

    2016-08-01

    We demonstrate a new scheme of spectromicroscopy in the extreme ultraviolet (EUV) spectral range, where the spectral response of the sample at different wavelengths is imaged simultaneously. It is enabled by applying ptychographical information multiplexing (PIM) to a tabletop EUV source based on high harmonic generation, where four spectrally narrow harmonics near 30 nm form a spectral comb structure. Extending PIM from previously demonstrated visible wavelengths to the EUV/X-ray wavelengths promises much higher spatial resolution and more powerful spectral contrast mechanism, making PIM an attractive spectromicroscopy method in both the microscopy and the spectroscopy aspects. Besides the sample, the multicolor EUV beam is also imaged in situ, making our method a powerful beam characterization technique. No hardware is used to separate or narrow down the wavelengths, leading to efficient use of the EUV radiation.

  3. Extreme ultraviolet spectra of highly ionized oxygen and fluorine

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Haselton, H. H.; Laubert, R.; Mowat, J. R.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.

    1974-01-01

    The foil-excitation method has been used to study the extreme ultraviolet spectra of highly ionized oxygen and fluorine. Several previously unreported lines in heliumlike fluorine are reported and other newly reported lines in heliumlike oxygen have been measured to higher accuracy. Included in the measurements are certain heliumlike oxygen transitions of significance in interpretation of solar-flare spectral observations. The wavelength determinations are usually in good agreement with calculated results which includes relativistic corrections, but discrepancies arise when nonrelativistic calculations are used. A comparison of the present results and those recently obtained by theta-pinch and laser-induced plasma sources is made for both heliumlike and lithiumlike ions; a few discrepancies occur, with results in most cases in better agreement with relativistically corrected calculations. Certain unidentified lines in the spectra may be attributable to radiative transitions between quartet states of lithiumlike ions.

  4. Proton delocalization under extreme conditions of high pressure and temperature

    SciTech Connect

    Goncharov, Alexander F.; Crowhurst, Jonathan

    2008-10-02

    Knowledge of the behaviour of light hydrogen-containing molecules under extreme conditions of high pressure and temperature is crucial to a comprehensive understanding of the fundamental physics and chemistry that is relevant under such conditions. It is also vital for interpreting the results of planetary observations, in particular those of the gas giants, and also for various materials science applications. On a fundamental level, increasing pressure causes the redistribution of the electronic density, which results in a modification of the interatomic potentials followed by a consequent qualitative change in the character of the associated bonding. Ultimately, at sufficiently high pressure, one may anticipate a transformation to a homogeneously bonded material possessing unusual physical properties (e.g. a quantum fluid). As temperature increases so does the concentration of ionised species leading ultimately to a plasma. Considerable improvements have recently been made in both the corresponding experimental and theoretical investigations. Here we review recent results for hydrogen and water that reveal unexpected routes of transformation to nonmolecular materials. We stress the importance of quantum effects, which remain significant even at high temperatures.

  5. High current ion beam transport using solenoids

    SciTech Connect

    Hollinger, R.; Spaedtke, P.

    2008-02-15

    In the framework of the future project FAIR several upgrade programs and construction of new facilities are in progress such as the U{sup 4+} upgrade for the existing high current injector and the new 70 MeV proton injector. For both injectors solenoids in the low energy beam transport section are foreseen to inject the beam into the following rf accelerator. The paper presents beam quality measurements of high current ion beams behind a solenoid using a slit-grid emittance measurement device, viewing targets, and a pepper pot measurement device at the high current test bench at GSI.

  6. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  7. High pressure, high current, low inductance, high reliability sealed terminals

    DOEpatents

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  8. Extremely high-frequency micro-Doppler measurements of humans

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  9. Extreme-ultraviolet ultrafast ARPES at high repetition rates

    NASA Astrophysics Data System (ADS)

    Buss, Jan; Wang, He; Xu, Yiming; Stoll, Sebastian; Zeng, Lingkun; Ulonska, Stefan; Denlinger, Jonathan; Hussain, Zahid; Jozwiak, Chris; Lanzara, Alessandra; Kaindl, Robert

    Time- and angle-resolved photoemission spectroscopy (trARPES) represents a powerful approach to resolve the electronic structure and quasiparticle dynamics in complex materials, yet is often limited in either momentum space (incident photon energy), probe sensitivity (pulse repetition rate), or energy resolution. We demonstrate a novel table-top trARPES setup that combines a bright 50-kHz source of narrowband, extreme ultraviolet (XUV) pulses at 22.3 eV with UHV photoemission instrumentation to sensitively access dynamics for a large momentum space. The output of a high-power Ti:sapphire amplifier is split to provide the XUV probe and intense photoexcitation (up to mJ/cm2) . A vacuum beamline delivers spectral and flux characterization, differential pumping, as well as XUV beam steering and toroidal refocusing onto the sample with high incident flux of 3x1011 ph/s. Photoemission studies are carried out in a customized UHV chamber equipped with a hemispherical analyzer (R4000), six-axis sample cryostat, and side chambers for sample loading, storage and preparation. An ARPES energy resolution down to 70 meV with the direct XUV output is demonstrated. We will discuss initial applications of this setup including Fermi surface mapping and trARPES of complex materials.

  10. AlGaInP red-emitting light emitting diode under extremely high pulsed pumping

    NASA Astrophysics Data System (ADS)

    Yadav, Amit; Titkov, Ilya E.; Sokolovskii, Grigorii S.; Karpov, Sergey Y.; Dudelev, Vladislav V.; Soboleva, Ksenya K.; Strassburg, Martin; Pietzonka, Ines; Lugauer, Hans-Juergen; Rafailov, Edik U.

    2016-03-01

    Efficiency of commercial 620 nm AlGaInP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. To understand the nature of LED efficiency decrease with current, pulse width variation is used. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major factor controlling the LED efficiency reduction at CW and sub-microsecond pumping. The overheating can be effectively avoided by the use of sub-nanosecond current pulses. A direct correlation between the onset of the efficiency decrease and LED overheating is demonstrated.

  11. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  12. A compact submicrosecond, high current generator.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Zorin, V B; Zherlitsyn, A A

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 ohms damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (approximately 0.08 ohms). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24x1.2x0.18 m(3) and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus. PMID:19725652

  13. A compact submicrosecond, high current generator.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Zorin, V B; Zherlitsyn, A A

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 ohms damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (approximately 0.08 ohms). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24x1.2x0.18 m(3) and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  14. High dose of tigecycline for extremely resistant Gram-negative pneumonia: yes, we can

    PubMed Central

    2014-01-01

    Few antimicrobials are currently active to treat infections caused by extremely resistant Gram-negative bacilli (ERGNB), which represent a serious global public health concern. Tigecycline, which covers the majority of these ERGNB (with the exception of Pseudomonas aeruginosa), is not currently approved for hospital-acquired pneumonia, and several meta-analyses have suggested an increased risk of death in patients receiving this antibiotic. Other studies suggest that the use of high-dose tigecycline may represent an alternative in daily practice. De Pascale and colleagues report that the clinical cure rate in patients with ventilator-associated pneumonia is significantly higher with a high dose of tigecycline than with the conventional dose, although mortality was unaffected. This high dose is safe; no patients required discontinuation or dose reduction. PMID:25043402

  15. Quench properties of high current superconductors

    SciTech Connect

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  16. Scour Caused by Extreme Waves and Currents near Offshore Gravitational Platforms

    NASA Astrophysics Data System (ADS)

    Shchemelinin, Leonid; Belyaev, Nikolay; Lebedev, Vladimir; Nudner, Igor; Semenov, Konstantin; Pelinovsky, Efim; Maximov, Vasily

    2014-05-01

    A soil scour problem is very important by operation of the gravity based structures (GBS). Strong scour may lead to loss of stability of the structure and cause technological disaster. In connection with this, it is necessary to assess and minimize the possibility of scour. Here we present the results of physical modeling of bed scour near the GBS with flat bottoms, close to the square and rectangular. The results of measurements of the bottom deformation caused by extreme waves and currents are given. The experiments were conducted in enclosure of model basin (40 x 6.2 m), within the work area (12x 6.2 m) with the model bottom and GBS. The work area was a broad crested weir. The bottom was formed by fine sand with a mean particle diameter of 0.22 mm. The wind waves were created by portable beam-type wave maker (the length of the beam was 6.1 m) mounted on the bottom of the basin. The modeling of the current was performed using standard centrifugal pump through pipes and valves. The wave impact was carried out using a single stationary vacuum wavemaker. The soil scour modeling was performed according to Froude number in the self-similar area of the Reynolds numbers. The modeling scale was 1:60. The optical measurements system of the surfaces (OMSS) was used to evaluate the bed deformation. The 3-D maps of the bottom after the end of the tests and drying of the model were given using the OMSS. The contactless acoustic measurement system has been applied for measuring of the bottom change during the large-amplitude wave action on the GBS model at discrete points. The results are used for the preparation of recommendations for the protection against scour.

  17. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. PMID:26956177

  18. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  19. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  20. High Temperature Extremes - Will They Transform Structure of Avian Assemblages in the Desert Southwest?

    NASA Astrophysics Data System (ADS)

    Mutiibwa, D.; Albright, T. P.; Wolf, B. O.; Mckechnie, A. E.; Gerson, A. R.; Talbot, W. A.; Sadoti, G.; O'Neill, J.; Smith, E.

    2014-12-01

    Extreme weather events can alter ecosystem structure and function and have caused mass mortality events in animals. With climate change, high temperature extremes are increasing in frequency and magnitude. To better understand the consequences of climate change, scientists have frequently employed correlative models based on species occurrence records. However, these approaches may be of limited utility in the context of extremes, as these are often outside historical ranges and may involve strong non-linear responses. Here we describe work linking physiological response informed by experimental data to geospatial climate datasets in order to mechanistically model the dynamics of dehydration risk to dessert passerine birds. Specifically, we modeled and mapped the occurrence of current (1980-2013) high temperature extremes and evaporative water loss rates for eight species of passerine birds ranging in size from 6.5-75g in the US Southwest portion of their range. We then explored the implications of a 4° C warming scenario. Evaporative water loss (EWL) across a range of high temperatures was measured in heat-acclimated birds captured in the field. We used the North American Land Data Assimilation System 2 dataset to obtain hourly estimates of EWL with a 14-km spatial grain. Assuming lethal dehydration occurs when water loss reaches 15% of body weight, we then produced maps of total daily EWL and time to lethal dehydration based on both current data and future scenarios. We found that milder events capable of producing dehydration in passerine birds over four or more hours were not uncommon over the Southwest, but rapid dehydration conditions (<3 hours) were rare. Under the warming scenario, the frequency and extent of dehydration events expanded greatly, often affecting areas several times larger than in present-day climate. Dehydration risk was especially high among smaller bodied passerines due to their higher mass-specific rates of water loss. Even after

  1. The Current State of Head and Neck Injuries in Extreme Sports

    PubMed Central

    Sharma, Vinay K.; Rango, Juan; Connaughton, Alexander J.; Lombardo, Daniel J.; Sabesan, Vani J.

    2015-01-01

    Background: Since their conception during the mid-1970s, international participation in extreme sports has grown rapidly. The recent death of extreme snowmobiler Caleb Moore at the 2013 Winter X Games has demonstrated the serious risks associated with these sports. Purpose: To examine the incidence and prevalence of head and neck injuries (HNIs) in extreme sports. Study Design: Descriptive epidemiological study. Methods: The National Electronic Injury Surveillance System (NEISS) was used to acquire data from 7 sports (2000-2011) that were included in the Winter and Summer X Games. Data from the NEISS database were collected for each individual sport per year and type of HNI. Cumulative data for overall incidence and injuries over the entire 11-year period were calculated. National estimates were determined using NEISS-weighted calculations. Incidence rates were calculated for extreme sports using data from Outdoor Foundation Participation Reports. Results: Over 4 million injuries were reported between 2000 and 2011, of which 11.3% were HNIs. Of all HNIs, 83% were head injuries and 17% neck injuries. The 4 sports with the highest total incidence of HNI were skateboarding (129,600), snowboarding (97,527), skiing (83,313), and motocross (78,236). Severe HNI (cervical or skull fracture) accounted for 2.5% of extreme sports HNIs. Of these, skateboarding had the highest percentage of severe HNIs. Conclusion: The number of serious injuries suffered in extreme sports has increased as participation in the sports continues to grow. A greater awareness of the dangers associated with these sports offers an opportunity for sports medicine and orthopaedic physicians to advocate for safer equipment, improved on-site medical care, and further research regarding extreme sports injuries. PMID:26535369

  2. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  3. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-01

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers. PMID:25793819

  4. Extreme Degree of Ionization in Homogenous Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyaptsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.

    2015-03-01

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520 -μ m -diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3 GA cm-2 greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe28 + , while xenon impurities in hydrogen discharges reach Xe30 + . The unique characteristics of these hot, ˜300 :1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  5. Ring current development during high speed streams

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Matsui, H.; Puhl-Quinn, P. A.; Thomsen, M. F.; Mursula, K.; Holappa, L.

    2009-07-01

    Episodes of southward (Bz<0) interplanetary magnetic field (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We simulate ring current evolution during a HSS-driven storm that occurred during 24-26 October 2002 and compare its dynamics with a CME-driven storm of similar strength during 22-23 April 2001. We use our kinetic ring current-atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. Ring current evolution depends on the interplay of time-dependent inflow of plasma from the magnetotail, particle acceleration and loss (mainly due to charge exchange) along adiabatic drift paths, and outflow of plasma from the dayside magnetopause; all of these processes are incorporated in our model. We compare results from simulations using a newly developed, Cluster data based, University of New Hampshire inner magnetospheric electric field (UNH-IMEF) convection model with simulations using a Volland-Stern (V-S) type convection model. We find that, first, periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. Second, during the HSS-driven storm the convection potential from UNH-IMEF model is highly variable and causes sporadic shallow injections resulting in a weak ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ion injection penetrating to lower L shells and stronger ring current buildup. V-S model predicts larger ring current injection during both storms. Third, the RAM driven by either convection model underestimates the total ring current energy during the recovery phase of the HSS storm

  6. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  7. An extremely high altitude plume seen at Mars morning terminator

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  8. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after

  9. Physics issues of high bootstrap current tokamaks

    NASA Astrophysics Data System (ADS)

    Ozeki, T.; Azumi, M.; Ishii, Y.; Kishimoto, Y.; Fu, G. Y.; Fujita, T.; Rewoldt, G.; Kikuchi, M.; Kamada, Y.; Kimura, H.; Kusama, Y.; Saigusa, M.; Ide, S.; Shirai, H.

    1997-05-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of qmin is close to the region of high $\</p>
      </li>

      <li>
      <p><a target=Fast high-temperature superconductor switch for high current applications

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Li, Qiang

    2013-07-01

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity.

  10. Magnetic relaxation, current sheets, and structure formation in an extremely Tenuous fluid medium

    SciTech Connect

    Bajer, K.; Moffatt, H. K.

    2013-12-20

    The process of relaxation of a unidirectional magnetic field in a highly conducting tenuous fluid medium is considered. Null points of the field play a critical role in this process. During an initial stage of relaxation, variations in magnetic pressure are eliminated, and current sheets build up in the immediate neighborhood of null points. This initial phase is followed by a long diffusive phase of slow algebraic decay of the field, during which fluid is continuously sucked into the current sheets, leading to exponential growth of fluid density and concentration of mass around the null points, which show a tendency to cluster. Ultimately, this second phase of algebraic decay gives way to a final period of exponential decay of the field. The peaks of density at the null points survive as a fossil relic of the decay process. Numerical solution of the governing equations provides convincing confirmation of this three-stage scenario. Generalizations to two- and three-dimensional fields are briefly considered.

  11. High-order harmonic generation yielding tunable extreme-ultraviolet radiation of high spectral purity.

    PubMed

    Brandi, F; Neshev, D; Ubachs, W

    2003-10-17

    Production of extreme-ultraviolet radiation by high-order harmonic generation is demonstrated to yield unprecedented spectral purity of lambda/Delta lambda=2.5 x 10(5) at wavelengths covering the entire range 40-100 nm. Tunability and sub-cm(-1) bandwidth of the harmonics are demonstrated in recordings of the He (1s4p) and Ar (3p(5)3d') resonance lines at 52.2 and 86.6 nm. Frequency shift of the harmonics due to chirp-induced phenomena are investigated and found to be small, resulting in a frequency accuracy of about 5 x 10(-7) in the domain of extreme-ultraviolet radiation.

  12. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  13. High current LiSOCl2 batteries

    NASA Astrophysics Data System (ADS)

    Debiccari, Daniel J.

    The paper describes cell construction, performance, and safety aspects of two high-rate active Li/SOCl2 batteries designed to operate at current densities as high as 26 mA/sq cm in pulse modes of 20 millisec to several minutes. Both cell designs employ a flat-plate arrangement of electrodes, a cyanoacrylate-coated anode, a bonded carbon/copper cathode, and a 1.6 M electrolyte. The major differences of the two designs are the size of the cell and the method of anode attachment. The two batteries were shown to provide over 10 times the mission life of the Ni-Cd batteries; thus, they will eliminate the logistic problems associated with the recharge requirements of the latter. In addition, a replacement of the Ni-Cd battery types with lighter Li-thionyl chloride batteries will significantly reduce battery weight and increase its capacity.

  14. Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror

    SciTech Connect

    Evans, J W; Morzinski, K; Reza, L; Severson, S; Poyneer, L; Macintosh, B; Dillon, D; Sommargren, G

    2005-08-16

    ''Extreme'' adaptive optics systems are optimized for ultra-high-contrast applications, such as ground-based extrasolar planet detection. The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. We use a simple optical design to minimize wavefront error and maximize the experimentally achievable contrast. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Previously, we have demonstrated RMS wavefront errors of <1.5 nm and a contrast of >10{sup 7} over a substantial region using a shaped pupil without a deformable mirror. Current work includes the installation and characterization of a 1024-actuator Micro-Electro-Mechanical-Systems (MEMS) deformable mirror, manufactured by Boston Micro-Machines for active wavefront control. Using the PSDI as the wavefront sensor we have flattened the deformable mirror to <1 nm within the controllable spatial frequencies and measured a contrast in the far field of >10{sup 6}. Consistent flattening required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. Ultimately this testbed will be used to test all aspects of the system architecture for an extrasolar planet-finding AO system.

  15. Extremely short impulse eddy current system for titanium and inconel samples testing

    SciTech Connect

    Chady, T.; Frankowski, P.

    2011-06-23

    This paper presents a new system for eddy current testing. The system enables tests with very short current impulses. Therefore, the frequency spectrum of the excitation signal is very wide. In this paper, a study of eddy current differential transducer for testing titanium element is also presented.

  16. Extremely high energy cosmic neutrinos and relic neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2006-03-01

    I review the essentials of ultrahigh-energy neutrino interactions, show how neutral-current detection and flavor tagging can enhance the scientific potential of neutrino telescopes, and sketch new studies on neutrino encounters with dark matter relics and on gravitational lensing of neutrinos.

  17. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  18. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  19. Cesium telluride cathodes for the next generation of high-average current high-brightness photoinjectors

    SciTech Connect

    Filippetto, D. Qian, H.; Sannibale, F.

    2015-07-27

    We report on the performances of a Cs{sub 2}Te photocathode under extreme conditions of high peak time-dependent accelerating fields, continuous wave operations, and MHz pulse extraction with up to 0.3 mA average current. The measurements, performed in a normal conducting cavity, show extended lifetime and robustness, elucidate the main mechanisms for cathode degradation, and set the required system vacuum performance for compatibility with the operations of a high average power X-ray free electron laser user facility, opening the doors to the next generation of MHz-scale ultrafast scientific instruments.

  1. Note: High resolution alternating current/direct current Harman technique

    NASA Astrophysics Data System (ADS)

    Chavez, R.; Becker, A.; Bartel, M.; Kessler, V.; Schierning, G.; Schmechel, R.

    2013-10-01

    This note describes the construction and engineering of a high precision Harman set-up for metrology of the thermoelectric figure of merit (ZT) of modules and materials based on steady state AC and DC measurements. The Harman technique presented in this article has a resolution of milli-ZT and it does not employ lock-in amplifiers or AC bridges; rather, the technique is developed to avoid typical complications experienced in AC Harman systems. By one-time reference measurements the best operation point for the system is chosen, minimizing the effects of capacitive loads due to AC signals.

  2. High Current Energy Recovery Linac at BNL

    SciTech Connect

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  3. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  4. Mismatch Oscillations in High Current Accelerators

    SciTech Connect

    Anderson, O.A.

    2005-05-03

    When planning the design of high-current FODO transport for accelerators, it is useful to have simple, accurate tools for calculating quantities such as the phase advances {sigma}{sub 0} and !given the lattice and beam parameters. Along with the KV beam model, the smooth approximation is often used. It is simple but not very accurate in many cases. Although Struckmeier and Reiser [1] showed that the stable oscillation frequencies of mismatched beams could be obtained accurately, they actually used a hybrid approach where {sigma}{sub 0} and {sigma} were already known precisely. When starting instead with basic quantities such as quadrupole dimensions, field strength, beam line charge density and emittance, the smooth approximation gives substantial errors. Here we derive a simple modification of the smooth approximation formula that improves the accuracy of the predicted frequencies by a factor of five at {sigma}{sub 0} = 83{sup o}.

  5. Achromatic beam transport of High Current Injector

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  6. Estimation of friction velocity from the wind-wave spectrum at extremely high wind speeds

    NASA Astrophysics Data System (ADS)

    Takagaki, N.; Komori, S.; Suzuki, N.

    2016-05-01

    The equilibrium range of wind-waves at normal and extremely high wind speeds was investigated experimentally using a high-speed wind-wave tank together with field measurements at normal wind speeds. Water level fluctuations at normal and extremely high wind speeds were measured with resistance-type wave gauges, and the wind-wave spectrum and significant phase velocity were calculated. The equilibrium range constant was estimated from the wind-wave spectrum and showed the strong relationship with inverse wave age at normal and extremely high wind speeds. Using the strong relation between the equilibrium range constant and inverse wave age, a new method for estimating the wind speed at 10-m height (U 10) and friction velocity (u*) was proposed. The results suggest that U 10 and u* can be estimated from wave measurements alone at extremely high wind speeds in oceans under tropical cyclones.

  7. Resection and reconstruction of pelvic and extremity soft tissue sarcomas with major vascular involvement: Current concepts

    PubMed Central

    McGoldrick, Niall P; Butler, Joseph S; Lavelle, Maire; Sheehan, Stephen; Dudeney, Sean; O'Toole, Gary C

    2016-01-01

    Soft tissue sarcoma accounts for approximately 1% of all cancers diagnosed annually in the United States. When these rare malignant mesodermal tumours arise in the pelvis and extremities, they may potentially encase or invade large calibre vascular structures. This presents a major challenge in terms of safe excision while also leaving acceptable surgical margins. In recent times, the trend has been towards limb salvage with vascular reconstruction in preference to amputation. Newer orthopaedic and vascular reconstructive techniques including both synthetic and autogenous graft reconstruction have made complex limb-salvage surgery feasible. Despite this, limb-salvage surgery with concomitant vascular reconstruction remains associated with higher rates of post-operative complications including infection and amputation. In this review we describe the initial presentation and investigation of patients presenting with soft tissue sarcomas in the pelvis and extremities, which involve vascular structures. We further discuss the key surgical reconstructive principles and techniques available for the management of these complex tumours, drawn from our institution’s experience as a national tertiary referral sarcoma service. PMID:27190757

  8. High Intensive Processes and Extreme States of Matter: Achievements and Problems

    SciTech Connect

    Simonenko, V. A.

    2006-08-03

    The paper briefly presents some main highlights of High Energy Density Physics (HEDP) achievements starting from its origin in the 1940s to the current time. A decisive role of high explosives (HE) is emphasized in studying high intensive processes and high energy density states of matter. Mechanisms of detonation and kinetics of energy release still remain acute in the HE studying. Research and scientific applications of nuclear explosions opened a new stage in HEDP development. They provided a million-fold increase of energy density if compared to that of high explosives. High intensive heat waves and strong shock waves were studied and used to measure dense plasma opacities and matter properties under extreme conditions. This data remains important for the development of theoretical models of matter. Powerful pulsed facilities (lasers, electric explosion installations, and charged particle accelerators) were constructed to extend opportunities for the HEDP research. One of their main goals is to study inertial confinement fusion. HEDP technologies and results are very useful in space and astrophysical research, and on the contrary, astrophysical studies enrich HEDP with new models, problems and solutions.

  9. Fast high-temperature superconductor switch for high current applications

    SciTech Connect

    Solovyov, VF; Li, Q

    2013-07-15

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity. (C) 2013 AIP Publishing LLC.

  10. The High Current Experiment: First Results

    SciTech Connect

    Seidl, P; Baca, D; Bieniosek, F; Faltens, A; Lund, S; Molvik, A; Prost, L

    2004-05-10

    The High Current Experiment (HCX) is being assembled at Lawrence Berkeley National Laboratory as part of the U.S. program to explore heavy ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy ion beams at high space-charge intensity (line-charge density {approx}0.2{micro}C/m) over long pulse durations (>4 {micro}s). This machine will test transport issues at a driver-relevant scale resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, lost-particle induced electron effects, and longitudinal bunch control. We present the first experimental results carried out with the coasting K{sup +} ion beam transported through the first 10 electrostatic transport quadrupoles and associated diagnostics. Later phases of the experiment will include more electrostatic lattice periods to allow more sensitive tests of emittance growth, and also magnetic quadrupoles to explore similar issues in magnetic channels with a full driver scale beam.

  11. The high current experiment: First results

    SciTech Connect

    Seidl, Peter A.; Baca, D.; Bieniosek, F.M.; Faltens, A.; Lund, S.M.; Molvik, A.W.; Prost, L.R.; Waldron, W.L.

    2002-05-26

    The High Current Experiment (HCX) is being assembled at Lawrence Berkeley National Laboratory as part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy-ion beams at high spacecharge intensity (line-charge density {approx} 0.2 {micro}C/m) over long pulse durations (>4 {micro}s). This machine will test transport issues at a driver-relevant scale resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, lost-particle induced electron effects, and longitudinal bunch control. We present the first experimental results carried out with the coasting K{sup +} ion beam transported through the first 10 electrostatic transport quadrupoles and associated diagnostics. Later phases of the experiment will include more electrostatic lattice periods to allow more sensitive tests of emittance growth, and also magnetic quadrupoles to explore similar issues in magnetic channels with a full driver scale beam.

  12. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  13. The 1859 Solar-Terrestrial Disturbance And the Current Limits of Extreme Space Weather Activity

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Svalgaard, L.

    2004-10-01

    It is generally appreciated that the September 1859 solar-terrestrial disturbance, the first recognized space weather event, was exceptionally large. How large and how exceptional? To answer these questions, we compiled rank order lists of the various measures of solar-induced disturbance for events from 1859 to the present. The parameters considered included: magnetic crochet amplitude, solar energetic proton fluence (McCracken et al., 2001a), Sun-Earth disturbance transit time, geomagnetic storm intensity, and low-latitude auroral extent. While the 1859 event has close rivals or superiors in each of the above categories of space weather activity, it is the only documented event of the last ˜150 years that appears at or near the top of all of the lists. Taken together, the top-ranking events in each of the disturbance categories comprise a set of benchmarks for extreme space weather activity.

  14. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  15. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8 nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  16. Adaptation potential of naturally ventilated barns to high temperature extremes: The OptiBarn project

    NASA Astrophysics Data System (ADS)

    Menz, Christoph

    2016-04-01

    Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.

  17. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  18. MACHINE PROTECTION FOR HIGH AVERAGE CURRENT LINACS

    SciTech Connect

    Jordan, Kevin; Allison, Trent; Evans, Richard; Coleman, James; Grippo, Albert

    2003-05-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high current accelerators. The Jefferson Lab FEL [1,2] has multiple electron beam paths and many different types of diagnostic insertion devices. The MPS [3] needs to monitor both the status of these devices and the magnet settings which define the beam path. The matrix of these devices and beam paths are programmed into gate arrays, the output of the matrix is an allowable maximum average power limit. This power limit is enforced by the drive laser for the photocathode gun. The Beam Loss Monitors (BLMs), RF status, and laser safety system status are also inputs to the control matrix. There are 8 Machine Modes (electron path) and 8 Beam Modes (average power limits) that define the safe operating limits for the FEL. Combinations outside of this matrix are unsafe and the beam is inhibited. The power limits range from no beam to 2 megawatts of electron beam power.

  19. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  20. Extremely high electron mobility in a phonon-glass semimetal.

    PubMed

    Ishiwata, S; Shiomi, Y; Lee, J S; Bahramy, M S; Suzuki, T; Uchida, M; Arita, R; Taguchi, Y; Tokura, Y

    2013-06-01

    The electron mobility is one of the key parameters that characterize the charge-carrier transport properties of materials, as exemplified by the quantum Hall effect as well as high-efficiency thermoelectric and solar energy conversions. For thermoelectric applications, introduction of chemical disorder is an important strategy for reducing the phonon-mediated thermal conduction, but is usually accompanied by mobility degradation. Here, we show a multilayered semimetal β-CuAgSe overcoming such a trade-off between disorder and mobility. The polycrystalline ingot shows a giant positive magnetoresistance and Shubnikov de Haas oscillations, indicative of a high-mobility small electron pocket derived from the Ag s-electron band. Ni doping, which introduces chemical and lattice disorder, further enhances the electron mobility up to 90,000 cm(2) V(-1) s(-1) at 10 K, leading not only to a larger magnetoresistance but also a better thermoelectric figure of merit. This Ag-based layered semimetal with a glassy lattice is a new type of promising thermoelectric material suitable for chemical engineering.

  1. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    SciTech Connect

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  2. In-vehicle extremity injuries from improvised explosive devices: current and future foci

    PubMed Central

    Ramasamy, Arul; Masouros, Spyros D.; Newell, Nicolas; Hill, Adam M.; Proud, William G.; Brown, Katherine A.; Bull, Anthony M. J.; Clasper, Jon C.

    2011-01-01

    The conflicts in Iraq and Afghanistan have been epitomized by the insurgents' use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies. PMID:21149353

  3. In-vehicle extremity injuries from improvised explosive devices: current and future foci.

    PubMed

    Ramasamy, Arul; Masouros, Spyros D; Newell, Nicolas; Hill, Adam M; Proud, William G; Brown, Katherine A; Bull, Anthony M J; Clasper, Jon C

    2011-01-27

    The conflicts in Iraq and Afghanistan have been epitomized by the insurgents' use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.

  4. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  5. Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps

    NASA Astrophysics Data System (ADS)

    Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2016-10-01

    Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field.

  6. Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps

    PubMed Central

    Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2016-01-01

    Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705

  7. Effects of frequency of "extreme" temperature highs on development of soybean rust.

    PubMed

    Bonde, M R; Nester, S E; Berner, D K

    2013-07-01

    Previously, we hypothesized that summer "extreme" diurnal temperature highs in the southeastern United States were responsible for the yearly absence or delay of soybean rust development until fall. Utilizing temperature-controlled growth chambers, a diurnal temperature pattern of 33°C high and 20°C low reduced urediniospore production by 81%. However, that study did not consider the influence of frequency of extreme temperatures on soybean rust. We now report that a temperature high of 35°C for 1 h on three consecutive days, initiated 15 days after inoculation, when lesions had formed, reduced urediniospore production by 50% and required 9 to 12 days for sporulation to resume once the extreme temperature highs ceased. Furthermore, three consecutive days in which the temperature high was 37°C, beginning immediately after inoculation and subsequent dew period, reduced lesion numbers by 60%. The combined effects of reduced numbers of lesions and urediniospores per lesion caused by extreme temperature highs can account for observed absence or delay of soybean rust development in the southeastern United States until fall. A comparison of frequency of extreme temperature highs with numbers of counties reporting presence of soybean rust from 2005 to 2012 verified that extreme temperature highs may be largely responsible for absence or delay of soybean rust development. This is the first report showing the effect of frequency of extreme temperature highs on development of soybean rust. Because the south-to-north progression of soybean rust is required for the disease to occur in the major soybean-production regions of the United States, temperatures in the southeastern United States have a major effect on the entire U.S. soybean industry.

  8. Interannual to millennial variability of climate extreme indices over Europe: evidence from high resolution proxy data

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Lohmann, Gerrit

    2016-04-01

    Interannual to millennial time scale variability of precipitation (R20mm, Rx5day, R95pTOT), cold (TN10p, CSDI and CFD), heat (TX90p and WSDI) and drought (CDD) extreme climate indices is investigated using long-term observational and proxy records. We detect significant correlations between these indices and various high resolution proxy records like lake sediments from southern Germany, stable oxygen isotopes from Greenland ice cores and stable oxygen isotopes from Red Sea corals during observational period. The analysis of long-term reanalysis data in combination with extreme climate indices and proxy data reveals that distinct atmospheric circulation patterns explain most of the identified relationships. In particular, we show that a sediment record from southern Germany (lake Ammersee), which records flood frequency of River Ammer during the last 5500 years, is related to a wave-train atmospheric circulation pattern with a pronounced negative center over western Europe. We show that high frequency of River Ammer floods is related not only to high frequency of extreme precipitation events (R95p) in the Ammer region but also with significant positive anomalies of various extreme temperature indices (TX90p and TXx) over northeastern Europe. Such extreme temperatures are forced by cloudiness anomaly pattern associated with flood related atmospheric circulation pattern. Based on this record we discuss possible interannual to millennial scale variations of extreme precipitation and temperature indices over Europe during the last 5500 years. Coherent variations of extreme precipitation and temperature indices over Europe and stable oxygen isotopes from Greenland ice cores and northern Red Sea corals during observational period are related to atmospheric blocking variability in the North Atlantic region. Possible variations of climate extreme indices during different time slices of the Holocene period and their implications for future extreme climate variability are

  9. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  10. Characterization of high-current, high-temperature superconductor current lead elements

    SciTech Connect

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  11. Number of Black Children in Extreme Poverty Hits Record High. Analysis Background.

    ERIC Educational Resources Information Center

    Children's Defense Fund, Washington, DC.

    To examine the experiences of black children and poverty, researchers conducted a computer analysis of data from the U.S. Census Bureau's Current Population Survey, the source of official government poverty statistics. The data are through 2001. Results indicated that nearly 1 million black children were living in extreme poverty, with after-tax…

  12. Combining hydraulic and granular flow extremes for density currents by depth averaging two phase flow equations.

    NASA Astrophysics Data System (ADS)

    Cordoba, G. A.; Sheridan, M.; Pitman, B.

    2009-05-01

    Ground-hugging particle-laden flows constitute some of the most dangerous natural phenomena on Earth. Such currents, in the form of snow avalanches, pyroclastic flows, debris flows, lahars, and landslides, are among the most destructive processes in nature. Humans tend to settle in areas near rich soils, volcanoes, or watercourses, all of which could be strongly affected by these dangerous flows. In order to improve risk preparedness and site management in the affected zones, an appropriate knowledge of these natural hazardous phenomena is required. Their evolution in time, flow dynamics and run out distance are key aspects that help in the planning for hazardous events, development of hazardous regions and design of management policy to prepare in advance of potential natural disasters. This paper describes a depth-averaged model for two phase flows that is currently in develop at the University at Buffalo. It is presently implemented within the TITAN2D framework to improve the version that currently simulates dry geophysical mass flows over natural-scale terrains. The initial TITAN2D code was developed to simulate granular flow. But because the introduction of an interstitial fluid strongly modifies the dynamics of the flow, a new, more general, two-phase model was developed to account for a broad range in volume fraction of solids. The proposed mathematical model depth-integrates the Navier-Stokes equations for each phase, solid and fluid. The solid phase is modeled assuming a Coulomb constitutive behavior (at the theoretical limit of pure solids), whereas the fluid phase conforms to a typical hydraulic approach (at the limit of pure fluid). The linkage for compositions between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating particle volumetric fractions as dilute as 0.001 and as concentrated as 0.55.

  13. Extremely Large Diamagnetic Cavities Observed In The Dayside High-altitute Cusps

    NASA Astrophysics Data System (ADS)

    Chen, Jiasheng; Fritz, Theodore A.

    Some extremely large diamagnetic cavities have been observed in April, 1999 when the POLAR spacecraft was crossing through the dayside high-altitude cusp regions. These diamagnetic cavities were associated with strong magnetic field turbulence. Some of the diamagnetic cavities were independent of the IMF directions, which is unexpected by the current MHD models, suggesting that the diamagnetic cavities are different from the magnetospheric sash. The size of the cavities were found to be as large as 6 Re. Associated with these cavities are ions with energies from 40 keV up to 8 MeV that are more typical of the trapped ring current and radiation belt populations than the solar wind. The intensities of the energetic ions were observed to increase by as large as four orders of the magnitudes during the cavity crossings, indicating the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. By their geometry cusp mag- netic field lines are connected to all of the magnetopause boundary layers and these cavity charged particles will form an energetic particle layer on the magnetopause. These energetic particles in the cusp diamagnetic cavity together with the cusp's con- nectivity have significant global impacts on the geospace environment research and will be shedding light on the long-standing unsolved fundamental issue about the ori- gins of the energetic particles in the ring current and in upstream ion events.

  14. Prospects of hydroacoustic detection of ultra-high and extremely high energy cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Dedenko, L. G.; Karlik, Ya. S.; Learned, J. G.; Svet, V. D.; Zheleznykh, I. M.

    2001-07-01

    The prospects of construction of deep underwater neutrino telescopes in the world's oceans for the goals of ultra-high and super-high energy neutrino astrophysics (astronomy) using acoustic technologies are reviewed. The effective detection volume of the acoustic neutrino telescopes can be far greater than a cubic kilometer for extreme energies. In recent years, it was proposed that an existing hydroacoustic array of 2400 hydrophones in the Pacific Ocean near Kamchatka Peninsula could be used as a test base for an acoustic neutrino telescope SADCO (Sea-based Acoustic Detector of Cosmic Objects) which should be capable of detecting acoustic signals produced in water by the cosmic neutrinos with energies 1019-21 eV (e.g., topological defect neutrinos). We report on simulations of super-high energy electron-hadron and electron-photon cascades with the Landau-Pomeranchuk-Migdal effect taken into account. Acoustic signals emitted by neutrino-induced cascades with energies 1020-21 eV were calculated. The possibilities of using a converted hydroacoustic station MG-10 (MG-10M) of 132 hydrophones as a basic module for a deep water acoustic neutrino detector with the threshold detection energy 1015 eV in the Mediterranean Sea are analyzed (with the aim of searching for neutrinos with energies 1015-16 eV from Active Galactic Nuclei). .

  15. Modular High Current Test Facility at LLNL

    SciTech Connect

    Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

    2008-05-20

    This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

  16. High pressure research at the Partnership for eXtreme Xtallography (PX^2) Project

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Dera, P.; Zhang, J.; Eng, P. J.; Stubbs, J.; Prakapenka, V.; Rivers, M. L.

    2015-12-01

    The Partnership for eXtreme Xtallography (PX^2) project is a collaboration between the University of Hawaii and GeoSoilEnviroCARS (GSECARS), located at the Advanced Photon Source (APS) experimental station 13-BM-C. PX^2 is providing new capabilities for high-pressure diamond anvil cell research at the GSECARS APS beamline. This beamline provides focused x-rays at two fixed energies: 15 and 29 keV, and a unique 6-circle heavy duty diffractometer, optimized for a variety of advanced crystallography experiments including interface studies, powder and single crystal structure determination, equation of state studies and thermal diffuse scattering. Currently we support high pressure and temperature experiments using resistively heated diamond anvil cells, and have achieved P-T conditions of 100 GPa and 1000 K. Results of multiple recent experiments, including powder and single crystal diffraction over a range of P-T conditions, equations of state and thermal diffuse scattering will be presented to demonstrate the experimental capabilities. These new capabilities are available to all researchers interested in studying deep earth materials through the APS General User Proposal system.

  17. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  18. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  19. About the biological effects of high and extremely high frequency electromagnetic fields.

    PubMed

    Mileva, K; Georgieva, B; Radicheva, N

    2003-01-01

    This paper deals with the effects of high (microwave) and extremely high (millimetre waves, MMW) frequency electromagnetic fields on the membrane processes and ion channels, molecular complexes, excitable and other structures. Microwaves as well as millimetre waves are widely used in medical practice and in everyday life. The existence of interaction between the exogenous and endogenous electromagnetic fields with biological systems is now a subject of intense discussion. The most contentious question is the existence of a possible specific (non-thermal) effect of microwaves, unrelated to that caused by increased temperature. Although numerous data have been published on the possible non-thermal effects of the studied electromagnetic fields on different kinds of living systems, only little understanding is gained about the modes of microwave action. Here we review data, which provide evidence that non-thermal microwave effects do exist and may play a significant role. This evidence is based on research at all biological levels, from cell-free systems through cells, tissues and organs, to animal and human organisms. PMID:14570154

  20. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  1. How extreme are extremes?

    NASA Astrophysics Data System (ADS)

    Cucchi, Marco; Petitta, Marcello; Calmanti, Sandro

    2016-04-01

    High temperatures have an impact on the energy balance of any living organism and on the operational capabilities of critical infrastructures. Heat-wave indicators have been mainly developed with the aim of capturing the potential impacts on specific sectors (agriculture, health, wildfires, transport, power generation and distribution). However, the ability to capture the occurrence of extreme temperature events is an essential property of a multi-hazard extreme climate indicator. Aim of this study is to develop a standardized heat-wave indicator, that can be combined with other indices in order to describe multiple hazards in a single indicator. The proposed approach can be used in order to have a quantified indicator of the strenght of a certain extreme. As a matter of fact, extremes are usually distributed in exponential or exponential-exponential functions and it is difficult to quickly asses how strong was an extreme events considering only its magnitude. The proposed approach simplify the quantitative and qualitative communication of extreme magnitude

  2. Extreme High and Low Temperature Operation of the Silicon-On-Insulator Type CHT-OPA Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    A new operational amplifier chip based on silicon-on-insulator technology was evaluated for potential use in extreme temperature environments. The CHT-OPA device is a low power, precision operational amplifier with rail-to-rail output swing capability, and it is rated for operation between -55 C and +225 C. A unity gain inverting circuit was constructed utilizing the CHT-OPA chip and a few passive components. The circuit was evaluated in the temperature range from -190 C to +200 C in terms of signal gain and phase shift, and supply current. The investigations were carried out to determine suitability of this device for use in space exploration missions and aeronautic applications under wide temperature incursion. Re-restart capability at extreme temperatures, i.e. power switched on while the device was soaked at extreme temperatures, was also investigated. In addition, the effects of thermal cycling under a wide temperature range on the operation of this high performance amplifier were determined. The results from this work indicate that this silicon-on-insulator amplifier chip maintained very good operation between +200 C and -190 C. The limited thermal cycling had no effect on the performance of the amplifier, and it was able to re-start at both -190 C and +200 C. In addition, no physical degradation or packaging damage was introduced due to either extreme temperature exposure or thermal cycling. The good performance demonstrated by this silicon-on-insulator operational amplifier renders it a potential candidate for use in space exploration missions or other environments under extreme temperatures. Additional and more comprehensive characterization is, however, required to establish the reliability and suitability of such devices for long term use in extreme temperature applications.

  3. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  4. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  5. Wave-mixing with high-order harmonics in extreme ultraviolet region

    SciTech Connect

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-12

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process.

  6. W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun

    SciTech Connect

    Cho, Boklae; Shigeru, Kokubo; Oshima, Chuhei

    2013-01-15

    An extremely high vacuum cold-field electron emission (CFE) gun operating at pressures ranging from {approx}10{sup -8} Pa to {approx}10{sup -10} Pa was constructed. Only the CFE current emitting from W(310) surfaces revealed the existence of a 'stable region' with high current angular density just after tip flash heating. In the 'stable region,' the CFE current was damped very slowly. The presence of non-hydrogen gas eliminated this region from the plot. Improvement of the vacuum prolonged the 90% damping time of the CFE current from {approx}10 min to 800 min. The current angular density I{sup Prime} of CFE current was 60 and 250 {mu}A/sr in the 'stable region' for total CFE currents of 10 and 50 {mu}A, respectively. These results were about three times larger than I{sup Prime} when measured after the complete damping of the CFE current. The CFE gun generated bright scanning transmission electron microscopy images of a carbon nanotube at 30 kV.

  7. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography.

  8. High aspect ratio tungsten grating on ultrathin Si membranes for extreme UV lithography.

    PubMed

    Peng, Xinsheng; Ying, Yulong

    2016-09-01

    Extreme ultraviolet lithography is one of the modern lithography tools for high-volume manufacturing with 22 nm resolution and beyond. But critical challenges exist to the design and fabrication of large-scale and highly efficient diffraction transmission gratings, significantly reducing the feature sizes down to 22 nm and beyond. To achieve such a grating, the surface flatness, the line edge roughness, the transmission efficiency and aspect ratio should be improved significantly. Delachat et al (2015 Nanotechnology 26 108262) develop a full process to fabricate a tungsten diffraction grating on an ultrathin silicon membrane with higher aspect ratio up to 8.75 that met all the aforementioned requirements for extreme ultraviolet lithography. This process is fully compatible with standard industrial extreme ultraviolet lithography. PMID:27458188

  9. Current situation on highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  10. Current Perspectives in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  11. Probability modeling of high flow extremes in Yingluoxia watershed, the upper reaches of Heihe River basin

    NASA Astrophysics Data System (ADS)

    Li, Zhanling; Li, Zhanjie; Li, Chengcheng

    2014-05-01

    Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to

  12. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    PubMed

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Smith, G D; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  13. Extremely high energy neutrinos in six years of IceCube data

    NASA Astrophysics Data System (ADS)

    Ishihara, Aya; IceCube Collaboration

    2016-05-01

    The IceCube neutrino observatory is capable of detecting ultra-high-energy cosmic neutrinos even above PeV - EeV energies. These extremely high energy (EHE) neutrinos (≥ 10 PeV) are produced from interactions of the most energetic cosmic rays (≥ 1 EeV) and ambient photons/matter in the sources or diffuse photon fields such as the cosmic microwave background. Therefore, observations of these EHE neutrinos can be used to probe the origin of the highest energy cosmic rays with energies extending up to 100 EeV. We present the results of an updated analysis of the EHE neutrino sample with energies greater than ~ 1 PeV in 6 years of IceCube data (3 years of partially completed IceCube data (2008-2011) and 3 years of completed IceCube data (2011-2014)). While one event depositing an energy of 770±200 TeV was observed, it is incompatible with a hypothesis of cosmogenic origin. The resultant improvement in the upper limit corresponds to a factor of more than 2.5 from the previous study of two years of data from the nearly completed IceCube detector. Our limits disfavor the parameter space of sources of ultra-high-energy cosmic rays for which the cosmological evolution is stronger than the star formation rate, where the source candidate classes of active galactic nuclei (AGN) and gamma-ray bursts (GRB) belong, assuming the cosmic-ray composition is proton dominated. Results from a 7-year data analysis by adding another year’s worth of data to the current sample are also anticipated soon.

  14. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  15. High-resolution analysis of 1 day extreme precipitation in Sicily

    NASA Astrophysics Data System (ADS)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with dramatic consequences on human life and environment. A long term, rational planning of urban development is mandatory for protecting population and avoiding huge economic losses in the future. This requires a deep knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In the present study, we address this issue, and attempt a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We extrapolate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and make evident the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events. This analysis thus provides an operational tool for extreme precipitation risk assessment and, at the same time, is an useful basis for validation and downscaling of regional climate models.

  16. Design, fabrication, and characterization of high-efficiency extreme ultraviolet diffusers

    SciTech Connect

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2004-02-19

    As the development of extreme ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, makes it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such example is the diffuser often implemented with ordinary ground glass in the visible light regime. Here we demonstrate the fabrication of reflective EUV diffusers with high efficiency within a controllable bandwidth. Using these techniques we have fabricated diffusers with efficiencies exceeding 10% within a moderate angular single-sided bandwidth of approximately 0.06 radians.

  17. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes.

    PubMed

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).

  18. Extreme deformations and clusterization at high spin in the A ~ 40 mass region

    NASA Astrophysics Data System (ADS)

    Ray, Debisree; Afanasjev, Anatoli

    2015-10-01

    Recent revival of the interest to the study of superdeformation and clusterization in light nuclei has motivated us to undertake the study of extreme deformations in the A ~ 32 - 50 N ~ Z nuclei. Unfortunately, at spin zero the predicted structures with extreme deformation are located at high excitation energies which prevents their experimental observation. On the other hand, the rotation brings such structures closer to the yrast line and, in principle, makes their observation possible with future generation of facilities such as GRETA. Thus, the systematic study of the extremely deformed structures and clusterization has been performed in the framework of cranked relativistic mean field theory. The major features of such structures, the spins at which they become yrast and the possiblities of their experimental observation will be discussed in this presentation. This work has been supported by the U.S. Department of Energy under the Grant DE-FG02-07ER41459.

  19. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  20. An extremely high-altitude plume seen at Mars' morning terminator.

    PubMed

    Sánchez-Lavega, A; Muñoz, A García; García-Melendo, E; Pérez-Hoyos, S; Gómez-Forrellad, J M; Pellier, C; Delcroix, M; López-Valverde, M A; González-Galindo, F; Jaeschke, W; Parker, D; Phillips, J; Peach, D

    2015-02-26

    The Martian limb (that is, the observed 'edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere. PMID:25686601

  1. An extremely high-altitude plume seen at Mars' morning terminator

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; García Muñoz, A.; García-Melendo, E.; Pérez-Hoyos, S.; Gómez-Forrellad, J. M.; Pellier, C.; Delcroix, M.; López-Valverde, M. A.; González-Galindo, F.; Jaeschke, W.; Parker, D.; Phillips, J.; Peach, D.

    2015-02-01

    The Martian limb (that is, the observed `edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere.

  2. An extremely high-altitude plume seen at Mars' morning terminator.

    PubMed

    Sánchez-Lavega, A; Muñoz, A García; García-Melendo, E; Pérez-Hoyos, S; Gómez-Forrellad, J M; Pellier, C; Delcroix, M; López-Valverde, M A; González-Galindo, F; Jaeschke, W; Parker, D; Phillips, J; Peach, D

    2015-02-26

    The Martian limb (that is, the observed 'edge' of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day-night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere. They were spotted at a longitude of about 195° west, a latitude of about -45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north-south and east-west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth's aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected. Importantly, both explanations defy our current understanding of Mars' upper atmosphere.

  3. Construction of an extreme ultraviolet polarimeter based on high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Brimhall, N.; Painter, J. C.; Turner, M.; Voronov, S. V.; Turley, R. S.; Ware, M.; Peatross, J.

    2006-08-01

    We report on the development of a polarimeter for characterizing reflective surfaces throughout the extreme ultraviolet (EUV). The instrument relies on laser high-order harmonics generated in helium, neon, or argon gas. The 800 nm laser generates a discrete comb of odd harmonics up to order 100 (wavelengths from 8-62 nm). The flux of EUV light is a couple orders of magnitude less than a synchrotron source but 30,000 times greater than a plasma source currently in operation at BYU. The polarimeter determines the reflectance from surfaces as a function of incident angle, linear light polarization orientation, and wavelength. The instrument uses a wave plate in the laser beam to control the orientation of the harmonic polarization (linear, same as laser). After reflecting from the sample, the harmonic beams are dispersed by a grating and focused onto a micro-channel plate coupled to a phosphor screen. We have demonstrated the feasibility of this project with a simple prototype instrument, which measured the reflectance of samples from 30 nm to 62 nm. The prototype demonstrated that sensitivity is sufficient for measuring reflectances as low as 0.5% for both s- and p-polarized light. The full instrument employs extensive scanning mobility as opposed to the fixed angle and fixed wavelength range of our earlier prototype. An advantage of employing harmonics as a source for EUV polarimetry is that a wide range of wavelengths can be measured simultaneously. This project represents an authentic 'work-horse' application for high-order harmonics, as opposed to merely demonstrating proof of concept.

  4. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation.

    PubMed

    Plötzing, M; Adam, R; Weier, C; Plucinski, L; Eich, S; Emmerich, S; Rollinger, M; Aeschlimann, M; Mathias, S; Schneider, C M

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  5. Using a High-Resolution Global Climate Model to Simulate Extreme Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Catalano, A. J.; Kapnick, S. B.; Broccoli, A. J.

    2015-12-01

    Extreme coastal storms devastate heavily populated areas around the world. Our understanding of exposure to extreme storms is limited due to the short duration of the observational record, which causes difficulty in assessing their true probability of occurrence. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). Therefore, we examine the ability of a high-resolution coupled atmosphere-ocean general circulation model (GFDL FLOR) to realistically simulate extreme ETCs in the northwestern Atlantic Ocean. We analyze similarities between results from a long (i.e. multi-century) FLOR simulation and several atmospheric reanalysis products. After considering differences in spatial and temporal resolution, results indicate that atmospheric measures of ETC intensity are comparable to those diagnosed from reanalyses. The full 1500-year simulation provides a higher frequency of the strongest intensity measures over the northwestern Atlantic Ocean compared with reanalyses. This illustrates that the larger number of realizations in the simulation provides a better opportunity to sample the tail of the ETC distribution. We further investigate the realism of simulated ETCs by using a tracking algorithm to conduct quantitative comparisons of feature, track, cyclogenesis, and cyclolysis densities of simulated ETC subsamples with storms from recent history (using reanalyses).

  6. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of

  7. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  8. High-resolution analysis of 1 day extreme precipitation in Sicily

    NASA Astrophysics Data System (ADS)

    Maugeri, Maurizio; Brunetti, Michele; Garzoglio, Mistral; Simolo, Claudia; Bertolini, Andrea

    2016-04-01

    Sicily, the major Mediterranean island, experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and environment. A long term, rational planning of urban development is indispensable to protect the population and to avoid huge economic losses in the future. This requires a thorough knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In this study, we perform a detailed investigation of observed 1-day precipitation extremes and their frequency distribution, based on a dense data-set of high-quality, homogenized station records in 1921-2005. We estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-yr return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and show the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events.

  9. High-resolution analysis of 1 day extreme precipitation in Sicily

    NASA Astrophysics Data System (ADS)

    Maugeri, M.; Brunetti, M.; Garzoglio, M.; Simolo, C.

    2015-10-01

    Sicily, a major Mediterranean island, has experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and the environment. Long-term, rational planning of urban development is indispensable to protect the population and to avoid huge economic losses in the future. This requires a thorough knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In this study, we perform a detailed investigation of observed 1 day precipitation extremes and their frequency distribution, based on a dense data set of high-quality, homogenized station records in 1921-2005. We estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and show the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events.

  10. High-Flow Arteriovenous Malformation of the Lower Extremity: Ethanolamine Oleate Sclerotherapy

    SciTech Connect

    Hyodoh, Hideki; Fujita, Akifumi; Hyodoh, Kazusa; Furuse, Makoto; Kamisawa, Osamu; Hareyama, Masato

    2001-09-15

    We report the case of a young man presenting with high-flow arteriovenous malformation (AVM), in whom percutaneous direct nidus puncture ethanolamine oleate (EO) sclerotherapy was useful in the management of the AVM. To our knowledge, this is the first report of percutaneous trans-nidus EO sclerotherapy for AVM in the extremities. Percutaneous trans-nidus sclerotherapy should be considered as an alternative choice for the management of symptomatic AVM.

  11. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  12. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  13. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  14. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  15. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  16. High dimensional spatial modeling of extremes with applications to United States Rainfalls

    NASA Astrophysics Data System (ADS)

    Zhou, Jie

    2007-12-01

    Spatial statistical models are used to predict unobserved variables based on observed variables and to estimate unknown model parameters. Extreme value theory(EVT) is used to study large or small observations from a random phenomenon. Both spatial statistics and extreme value theory have been studied in a lot of areas such as agriculture, finance, industry and environmental science. This dissertation proposes two spatial statistical models which concentrate on non-Gaussian probability densities with general spatial covariance structures. The two models are also applied in analyzing United States Rainfalls and especially, rainfall extremes. When the data set is not too large, the first model is used. The model constructs a generalized linear mixed model(GLMM) which can be considered as an extension of Diggle's model-based geostatistical approach(Diggle et al. 1998). The approach improves conventional kriging with a form of generalized linear mixed structure. As for high dimensional problems, two different methods are established to improve the computational efficiency of Markov Chain Monte Carlo(MCMC) implementation. The first method is based on spectral representation of spatial dependence structures which provides good approximations on each MCMC iteration. The other method embeds high dimensional covariance matrices in matrices with block circulant structures. The eigenvalues and eigenvectors of block circulant matrices can be calculated exactly by Fast Fourier Transforms(FFT). The computational efficiency is gained by transforming the posterior matrices into lower dimensional matrices. This method gives us exact update on each MCMC iteration. Future predictions are also made by keeping spatial dependence structures fixed and using the relationship between present days and future days provided by some Global Climate Model(GCM). The predictions are refined by sampling techniques. Both ways of handling high dimensional covariance matrices are novel to analyze large

  17. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  18. Current constriction of high-current vacuum arc in vacuum interrupters

    SciTech Connect

    Wang Lijun; Jia Shenli; Zhang Ling; Yang Dingge; Shi Zongqian; Gentils, Francois; Jusselin, Benoit

    2008-03-15

    Compared with previous paper [L. Wang et al., J. Appl. Phys. 100, 113304 (2006)], higher-current vacuum arc is simulated and analyzed based on magnetohydrodynamics model, and current constriction phenomenon in arc column is mainly paid attention to and analyzed in this paper. According to simulation results, it can be found that significant current constriction only appears near anode regions for lower-current vacuum arc. However, with the increase of arc current, current constriction also appears near the cathode side, and with the further increase of arc current, current constriction near the cathode side can become more significant than that near the anode side. The current constriction near the cathode side can be mainly caused by very high current level. The increase of axial magnetic field (AMF) strength will inhibit current constriction in the whole arc column. For influence of AMF distribution, saddle-shaped distributed AMF can more efficiently inhibit current constriction of arc column than bell-shaped AMF. The phenomenon of current constriction near the cathode side has also been found by many experiments, which also can verify the correctness of simulation results.

  19. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  20. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  1. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  2. Asymmetrically contacted germanium photodiode using a metal-interlayer-semiconductor-metal structure for extremely large dark current suppression.

    PubMed

    Zang, Hwan-Jun; Kim, Gwang-Sik; Park, Gil-Jae; Choi, Yong-Soo; Yu, Hyun-Yong

    2016-08-15

    In this study, we proposed germanium (Ge) metal-interlayer-semiconductor-metal (MISM) photodiodes (PD), with an anode of a metal-interlayer-semiconductor (MIS) contact and a cathode of a metal-semiconductor (MS) contact, to efficiently suppress the dark current of Ge PD. We selected titanium dioxide (TiO2) as an interlayer material for the MIS contact, due to its large valence band offset and negative conduction band offset to Ge. We significantly suppress the dark current of Ge PD by introducing the MISM structure with a TiO2 interlayer, as this enhances the hole Schottky barrier height, and thus acts as a large barrier for holes. In addition, it collects photo-generated carriers without degradation, due to its negative conduction band offset to Ge. This reduces the dark current of Ge MISM PDs by ×8000 for 7-nm-thick TiO2 interlayer, while its photo current is still comparable to that of Ge metal-semiconductor-metal (MSM) PDs. Furthermore, the proposed Ge PD shows ×6,600 improvement of the normalized photo-to-dark-current ratio (NPDR) at a wavelength of 1.55 μm. The proposed Ge MISM PD shows considerable promise for low power and high sensitivity Ge-based optoelectronic applications. PMID:27519063

  3. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  4. EMG analysis of the lower extremities during pitching in high-school baseball.

    PubMed

    Yamanouchi, T

    1998-01-01

    I evaluated the contractions of the muscles of the lower extremities during baseball pitching using video imaging and simultaneous surface EMG. The subjects were 10 members of a high school baseball club and, for contrast, 10 students without any baseball club experience. I divided their pitching movements into two phases determined with respect to the landing of the non-pivot leg. The EMG signal intensities over the 2 seconds prior to landing, and over the 2 seconds after landing, were then integrated to give an EMG value to each phase. I then computed this value as the % MMT. The abductor and adductor of the hip muscles of both lower extremities in the players were strongly contracted, especially the adductor. This finding was consistent with the observation that pitching tends to lead to adductor muscle disorders. Strengthening the adductor and its antagonist abductor can therefore directly influence the capability for pitching, and can reduce the risk for the adductor disorders. PMID:9658746

  5. EMG analysis of the lower extremities during pitching in high-school baseball.

    PubMed

    Yamanouchi, T

    1998-01-01

    I evaluated the contractions of the muscles of the lower extremities during baseball pitching using video imaging and simultaneous surface EMG. The subjects were 10 members of a high school baseball club and, for contrast, 10 students without any baseball club experience. I divided their pitching movements into two phases determined with respect to the landing of the non-pivot leg. The EMG signal intensities over the 2 seconds prior to landing, and over the 2 seconds after landing, were then integrated to give an EMG value to each phase. I then computed this value as the % MMT. The abductor and adductor of the hip muscles of both lower extremities in the players were strongly contracted, especially the adductor. This finding was consistent with the observation that pitching tends to lead to adductor muscle disorders. Strengthening the adductor and its antagonist abductor can therefore directly influence the capability for pitching, and can reduce the risk for the adductor disorders.

  6. Extreme hydrophobicity and omniphilicity of high-aspect-ratio silicon structures

    NASA Astrophysics Data System (ADS)

    Kwak, Moon Kyu; Park, Cheol Woo; Hwang, Kwang-Il; Park, Choon Man; Jeong, Hoon Eui; Choi, Jun Ho

    2015-03-01

    We present an application of high-aspect-ratio (high-AR) silicon structures (black silicon) with high water repellency and good wettability by oils and solvents. The fabrication of black silicon consists of a deep reactive-ion etching process for extremely-high-AR silicon structures and surface treatment with C4F8 gas. Such high-AR structures were found to be highly resistant against wetting by water, but they also have good wetting characteristics with respect to certain liquids such as ethanol, hexane and mineral oil. To determine the relationship between the AR of nanostructures and wetting selectivity, four different black silicon samples with different pattern heights were used. The static contact angles of various liquid were measured for the analysis of wetting properties of the four black silicon samples. To explore feasible applications, ethanol-water separation was performed as a miniaturized experimental simulation of environmental remediation.

  7. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  8. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  9. Evolution of laser-produced Sn extreme ultraviolet source diameter for high-brightness source

    SciTech Connect

    Roy, Amitava E-mail: aroy@barc.gov.in; Arai, Goki; Hara, Hiroyuki; Higashiguchi, Takeshi; Ohashi, Hayato; Sunahara, Atsushi; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Miura, Taisuke; Mocek, Tomas; Endo, Akira

    2014-08-18

    We have investigated the effect of irradiation of solid Sn targets with laser pulses of sub-ns duration and sub-mJ energy on the diameter of the extreme ultraviolet (EUV) emitting region and source conversion efficiency. It was found that an in-band EUV source diameter as low as 18 μm was produced due to the short scale length of a plasma produced by a sub-ns laser. Most of the EUV emission occurs in a narrow region with a plasma density close to the critical density value. Such EUV sources are suitable for high brightness and high repetition rate metrology applications.

  10. High resolution extreme ultraviolet spectrometer for an electron beam ion trap

    SciTech Connect

    Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki; Sakaue, Hiroyuki A.

    2011-08-15

    An extreme ultraviolet spectrometer has been developed for spectroscopic studies of highly charged ions with an electron beam ion trap. It has a slit-less configuration with a spherical varied-line-spacing grating that provides a flat focal plane for grazing incidence light. Alternative use of two different gratings enables us to cover the wavelength range 1-25 nm. Test observations with the Tokyo electron beam ion trap demonstrate the high performance of the present spectrometer such as a resolving power of above 1000.

  11. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  12. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-08-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10{sup 9} n/cm{sup 2}/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin ({approximately} 5 cm iron). However, this approach has an extremely low neutron yield (n/p {approximately} 1.0({minus}6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target {approximately} 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies ({approximately} 2.5 MeV) have a much higher yield (n/p {approximately} 1.0({minus}4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV.

  13. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Xin, Yu; Zhang, Ling; Kang, Wenliang; Wang, Wu

    2012-11-01

    An extremely acidophilic sulfur-oxidizing bacterium was isolated from an industrial-scale bioheap of the Zijinshan copper mine and was named ZJJN. A tuft of flagella and a layer of thick capsule outside the cell envelope were clearly observed under transmission electron microscopy (TEM), which might be closely related to the extremely acid-proof capacity of ZJJN cells in the bioleaching system; 16S ribosomal RNA (rRNA) phylogeny showed that the isolated strain was highly homologous to the genera of Acidithiobacillus. The optimum temperature of ZJJN was determined at 30 °C and pH at 1.0. It was capable of growth at even pH 0. Strain ZJJN can utilize reduced sulfur as an energy source but not with organics or ferrous ion. Strain ZJJN was sensitive to all antibiotics with different concentrations; when it showed a certain resistance to different concentrations of Cu(2+). In the mixed strains of ZJJN and A. ferrooxidans system (initial pH 1.0), the copper-leaching efficiency was up to 60.1 %, which was far higher than other systems. Scanning electron microscopy (SEM) analysis showed that less jarosite precipitation was produced in the most efficient system. The extremely acidophilic strain ZJJN would be of great potential in the application of chalcopyrite bioleaching.

  14. Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.

  15. The evolutionary status of high and extremely low surface brightness dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven

    2015-10-01

    Studying dwarf galaxies can shed light on the original building blocks of galaxy formation. Most large galaxies are thought to be built up over billions of years through the collisions and mergers of smaller galaxies. The dwarf galaxies we see today are the evolved remnants of those building blocks, and by understanding their nature and evolution, we can study the raw ingredients of galaxy formation. Blue Compact Dwarf galaxies (BCDs) and Almost Dark galaxies are at opposite extremes of today's population of dwarf galaxies. BCDs are exceptionally compact and host very intense starbursts, while Almost Dark galaxies are much more diffuse and have weak stellar populations. This work studies the evolutionary context of BCDs by using deep, high-resolution images to study the detailed structure of their components, and by fitting our multi-wavelength observations with models to describe the properties of their stars, gas, and dust. BCDs appear to have exceptionally compact old stellar populations and unusually large star formation rates, when compared to typical dwarf galaxies. By contrast, the optically faint, gas-dominated Almost Dark galaxies have extremely low star formation rates and weak stellar populations. In particular, one of the Almost Darks studied in this work has very unusual properties and is in disagreement with widely-studied scaling relations for large samples of galaxies. It appears to have too little stellar mass, a distribution of HI that is too extended to be supported by its modest rotation, and the highest well-measured gas mass-to-light ratio ever observed. These two extreme classes may represent evolutionary stages that all galaxies pass through, and appear to be extreme ends of the broad continuum of dwarf galaxy properties. In order to use today's dwarf galaxies as windows into the building blocks of early galaxy formation, these unusual states and evolutionary pathways must be understood.

  16. The evolutionary status of high and extremely low surface brightness dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven

    2015-07-01

    Studying dwarf galaxies can shed light on the original building blocks of galaxy formation. Most large galaxies are thought to be built up over billions of years through the collisions and mergers of smaller galaxies. The dwarf galaxies we see today are the evolved remnants of those building blocks, and by understanding their nature and evolution, we can study the raw ingredients of galaxy formation. Blue Compact Dwarf galaxies (BCDs) and Almost Dark galaxies are at opposite extremes of today's population of dwarf galaxies. BCDs are exceptionally compact and host very intense starbursts, while Almost Dark galaxies are much more diffuse and have weak stellar populations. This work studies the evolutionary context of BCDs by using deep, high-resolution images to study the detailed structure of their components, and by fitting our multi-wavelength observations with models to describe the properties of their stars, gas, and dust. BCDs appear to have exceptionally compact old stellar populations and unusually large star formation rates, when compared to typical dwarf galaxies. By contrast, the optically faint, gas-dominated Almost Dark galaxies have extremely low star formation rates and weak stellar populations. In particular, one of the Almost Darks studied in this work has very unusual properties and is in disagreement with widely-studied scaling relations for large samples of galaxies. It appears to have too little stellar mass, a distribution of HI that is too extended to be supported by its modest rotation, and the highest well-measured gas mass-to-light ratio ever observed. These two extreme classes may represent evolutionary stages that all galaxies pass through, and appear to be extreme ends of the broad continuum of dwarf galaxy properties. In order to use today's dwarf galaxies as windows into the building blocks of early galaxy formation, these unusual states and evolutionary pathways must be understood.

  17. Examining Spatio-Temporal Intensity-Frequency Variations in Extreme Monsoon Rainfall using High Resolution Data

    NASA Astrophysics Data System (ADS)

    Devak, M.; Rajendran, V.; C T, D.

    2015-12-01

    The study of extreme events has gained the attention of hydrologists in recent times. Though these events are rare, the effects are catastrophic. It is reported that the frequency of the occurrence of these events has increased in recent decades, and is attributed to the recent revelation of climate change. Numerous studies have pointed out significant changes in extremely heavy precipitation over India, using coarse resolution data. Though there are disagreements in the results and its spatial uniformity, all these studies emphasize the need of fine resolution analysis. Fine resolution analysis is necessary mainly due to the highly heterogeneous characteristics of Indian monsoon, and for the proper employment in flood hazard preparedness and water resources management. The present study aims to analyse the spatio-temporal variation and trends in the intensity and frequency of heavy precipitation during Indian monsoon using 0.25°×0.25° resolution gridded data for a period of 113 years (1901-2013). The exceedance threshold is fixed at 90th percentile of rainfall over 113 years and parameters are defined accordingly. The maximum intensity of each extreme rainfall episode of 30 year moving window has been modelled using Peak Over Threshold based Extreme Value Theory to compute return level (considered for intensity). In addition, the number of such episodes in a particular year has been termed as frequency. Non-parametric Mann-Kendall test has been carried out for both intensity and frequency, to compute the statistical trend. In addition, moving block bootstrap approach has been used to incorporate the serial correlation. The significance of the trend has been evaluated at different significance levels and finally, change in trend over last century has been examined.

  18. From ozone mini-holes and mini-highs towards extreme value theory: New insights from extreme events and non-stationarity

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.

    2009-04-01

    Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the

  19. EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2016-05-01

    The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.

  20. In situ observation and measurement of composites subjected to extremely high temperature

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  1. In situ observation and measurement of composites subjected to extremely high temperature.

    PubMed

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  2. Image-based motion compensation for high-resolution extremities cone-beam CT

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  3. Uterine choriocarcinoma accompanied by an extremely high human chorionic gonadotropin level and thyrotoxicosis.

    PubMed

    Hsieh, Tsung-Ying; Hsu, Keng-Fu; Kuo, Pao-Lin; Huang, Soon-Cen

    2008-04-01

    The conventional treatments given to a 24-year-old woman with metastatic uterine choriocarcinoma and clinical and biochemical thyrotoxicosis did not appear to have any effect, probably due to an extremely high serum human chorionic gonadotropin (hCG) level which was up to 11,910,000 mIU/mL, and were initially underscored in light of the 'high-dose hook effect'. To our knowledge, no extremely high hCG level in a uterine choriocarcinoma patient has been reported in the literature. Her decapacitating symptoms subsided after the first course of chemotherapy by etoposide, methotrexate, and actinomycin D-cyclophosphamide and vincristine (EMA-CO) regimen. The serum hCG level, which reflects the quantification of host tumor burden, returned to the reference range after the fifth course of chemotherapy and the thyroid function reached euthyroid status before the third course of chemotherapy; two final courses were administered after the hCG level became undetectable. Two years after remission of disease, the patient experienced a normal pregnancy, and a term baby girl was delivered vaginally. No recurrence of uterine choriocarcinoma has been noted for 7 years. PMID:18412797

  4. High-performance soft-tissue imaging in extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Muhit, A.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Clinical performance studies of an extremity cone-beam CT (CBCT) system indicate excellent bone visualization, but point to the need for improvement of soft-tissue image quality. To this end, a rapid Monte Carlo (MC) scatter correction is proposed, and Penalized Likelihood (PL) reconstruction is evaluated for noise management. Methods: The accelerated MC scatter correction involved fast MC simulation with low number of photons implemented on a GPU (107 photons/sec), followed by Gaussian kernel smoothing in the detector plane and across projection angles. PL reconstructions were investigated for reduction of imaging dose for projections acquired at ~2 mGy. Results: The rapid scatter estimation yielded root-mean-squared-errors of scatter projections of ~15% of peak scatter intensity for 5ṡ106 photons/projection (runtime ~0.5 sec/projection) and 25% improvement in fat-muscle contrast in reconstructions of a cadaveric knee. PL reconstruction largely restored soft-tissue visualization at 2 mGy dose to that of 10 mGy FBP image. Conclusion: The combination of rapid (5-10 minutes/scan) MC-based, patient-specific scatter correction and PL reconstruction offers an important means to overcome the current limitations of extremity CBCT in soft-tissue imaging.

  5. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  6. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  7. Laboratory measurements of materials in extreme conditions; The use of high energy radiation sources for high pressure studies

    SciTech Connect

    Cauble, R.; Remington, B.A.

    1998-06-01

    High energy lasers can be used to study material conditions that are appropriate fort inertial confinement fusion: that is, materials at high densities, temperatures, and pressures. Pulsed power devices can offer similar opportunities. The National Ignition Facility (NIF) will be a high energy multi-beam laser designed to achieve the thermonuclear ignition of a mm-scale DT-filled target in the laboratory. At the same time, NE will provide the physics community with a unique tool for the study of high energy density matter at states unreachable by any other laboratory technique. Here we describe how these lasers and pulsed power tools can contribute to investigations of high energy density matter in the areas of material properties and equations of state, extend present laboratory shock techniques such as high-speed jets to new regimes, and allow study of extreme conditions found in astrophysical phenomena.

  8. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI)

    NASA Astrophysics Data System (ADS)

    Huang, Yun-Ru; Jiang, Yijie; Hor, Jyo Lyn; Gupta, Rohini; Zhang, Lei; Stebe, Kathleen J.; Feng, Gang; Turner, Kevin T.; Lee, Daeyeon

    2014-12-01

    Polymer nanocomposite films (PNCFs) with extremely high concentrations of nanoparticles are important components in energy storage and conversion devices and also find use as protective coatings in various applications. PNCFs with high loadings of nanoparticles, however, are difficult to prepare because of the poor processability of polymer-nanoparticle mixtures with high concentrations of nanoparticles even at an elevated temperature. This problem is exacerbated when anisotropic nanoparticles are the desired filler materials. Here we report a straightforward method for generating PNCFs with extremely high loadings of nanoparticles. Our method is based on what we call capillary rise infiltration (CaRI) of polymer into a dense packing of nanoparticles. CaRI consists of two simple steps: (1) the preparation of a two-layer film, consisting of a porous layer of nanoparticles and a layer of polymer and (2) annealing of the bilayer structure above the temperature that imparts mobility to the polymer (e.g., glass transition of the polymer). The second step leads to polymer infiltration into the interstices of the nanoparticle layer, reminiscent of the capillary rise of simple fluid into a narrow capillary or a packing of granules. We use in situ spectroscopic ellipsometry and a three-layer Cauchy model to follow the capillary rise of polystyrene into the random network of nanoparticles. The infiltration of polystyrene into a densely packed TiO2 nanoparticle layer is shown to follow the classical Lucas-Washburn type of behaviour. We also demonstrate that PNCFs with densely packed anisotropic TiO2 nanoparticles can be readily generated by spin coating anisotropic TiO2 nanoparticles atop a polystyrene film and subsequently thermally annealing the bilayer film. We show that CaRI leads to PNCFs with modulus, hardness and scratch resistance that are far superior to the properties of films of the component materials. In addition, CaRI fills in cracks that may exist in the

  9. First high-precision differential abundance analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Reggiani, Henrique; Meléndez, Jorge; Yong, David; Ramírez, Ivan; Asplund, Martin

    2016-02-01

    Context. Studies of extremely metal-poor stars indicate that chemical abundance ratios [X/Fe] have a root mean square scatter as low as 0.05 dex (12%). It remains unclear whether this reflects observational uncertainties or intrinsic astrophysical scatter arising from physical conditions in the interstellar medium at early times. Aims: We measure differential chemical abundance ratios in extremely metal-poor stars to investigate the limits of precision and to understand whether cosmic scatter or observational errors are dominant. Methods: We used high-resolution (R ~ 95 000) and high signal-to-noise (S/N = 700 at 5000 Å) HIRES/Keck spectra to determine high-precision differential abundances between two extremely metal-poor stars through a line-by-line differential approach. We determined stellar parameters for the star G64-37 with respect to the standard star G64-12. We performed EW measurements for the two stars for the lines recognized in both stars and performed spectral synthesis to study the carbon abundances. Results: The differential approach allowed us to obtain errors of σ(Teff) = 27 K, σ(log g) = 0.06 dex, σ( [Fe/H] ) = 0.02 dex and σ(vt) = 0.06 km s-1. We estimated relative chemical abundances with a precision as low as σ([X/Fe]) ≈ 0.01 dex. The small uncertainties demonstrate that there are genuine abundance differences larger than the measurement errors. The observed Li difference cannot be explained by the difference in mass because the less massive star has more Li. Conclusions: It is possible to achieve an abundance precision around ≈ 0.01-0.05 dex for extremely metal-poor stars, which opens new windows on the study of the early chemical evolution of the Galaxy. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A67

  10. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  11. Integrated compact optical current sensors with high sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Duanni; Pintus, Paolo; Srinivasan, Sudharsanan; Bowers, John E.

    2016-02-01

    We demonstrate a Sagnac based fiber optic current sensor using only 10cm of terbium doped fiber with a high Verdet constant of 15.5 rad/Tm at a wavelength of 1300nm. Measurements of the fiber inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. In order to decrease size while increasing sensitivity even further, we consider integrated magneto-optic waveguides as the sensing element. Using silicon waveguides alongside magneto-optic material such as cerium doped yttrium iron garnet (Ce:YiG), we model the Verdet constant to be as high as 10,000 rad/Tm. This improvement by three orders of magnitude shows potential for magnetooptic waveguides to be used in ultra-high sensitivity optical magnetometers and current sensors. Finally, we propose a fully integrated optical current sensor using heterogeneous integration for silicon photonics.

  12. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    NASA Astrophysics Data System (ADS)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  13. A merging preaccelerator for high current H - ion beams

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Miyamoto, K.; Mizuno, M.; Okumura, Y.; Ohara, Y.; Ackerman, G. D.; Chan, C. F.; Cooper, W. S.; Kwan, J. W.; Vella, M. C.

    1995-07-01

    The high power ion beams used in the next generation thermonuclear fusion reactors require high current negative ion beams accelerated to high energy, with high efficiency. One way to meet these requirements is to merge multiple low current density H- beamlets into a single high current beam. The feasibility of a high current merging preaccelerator was demonstrated in this experiment by merging 19 beamlets of H- ions distributed over a circular area 80 mm in diameter from a Japan Atomic Energy Research Institute negative ion source. H- ions were extracted at a current density exceeding 10 mA/cm2 at the ion source which operates at 0.13 Pa (1 mTorr), with a low arc power density (70 V×250 A). Spherically curved grids (with built-in magnetic electron suppression) were used in the preaccelerator to focus the extracted beamlets into a single 104 mA, 100 keV beam. The merged beam has a diameter of 23 mm and a converging angle of ±30 mrad at the beam envelope. The rms emittance of the 104 mA merging beam was 1.00 π mrad cm, which is a condition acceptable to the electrostatic quadropole accelerator for further acceleration.

  14. Current Student Assessment Practices of High School Band Directors

    ERIC Educational Resources Information Center

    LaCognata, John P.

    2010-01-01

    Measurement and assessment are becoming increasingly important to all music educators. The purpose of this study was to investigate the following questions: 1) in what specific ways are current high school band directors assessing students in their ensemble classes; 2) what are high school band directors' attitudes toward the assessment process;…

  15. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Fujimoto, Masayuki Y.; Carollo, Daniela; Sivarani, Thirupathi E-mail: takuma.suda@nao.ac.jp E-mail: lee@pa.msu.edu E-mail: hidai@apus.rh.u-tokai.ac.jp E-mail: fujimoto@astro1.sci.hokudai.ac.jp E-mail: sivarani@iiap.res.in

    2013-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K){sub 0} and (g - r){sub 0} colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

  16. Global Distribution of Extreme Precipitation and High-Impact Landslides in 2010 Relative to Previous Years

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George

    2012-01-01

    It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.

  17. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    PubMed

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century. PMID:23263349

  18. Wide-field broadband extreme ultraviolet transmission ptychography using a high-harmonic source.

    PubMed

    Baksh, Peter D; Odstrčil, Michal; Kim, Hyun-Su; Boden, Stuart A; Frey, Jeremy G; Brocklesby, William S

    2016-04-01

    High-harmonic generation (HHG) provides a laboratory-scale source of coherent radiation ideally suited to lensless coherent diffractive imaging (CDI) in the EUV and x-ray spectral region. Here we demonstrate transmission extreme ultraviolet (EUV) ptychography, a scanning variant of CDI, using radiation at a wavelength around 29 nm from an HHG source. Image resolution is diffraction-limited at 54 nm and fields of view up to ∼100  μm are demonstrated. These results demonstrate the potential for wide-field, high-resolution, laboratory-scale EUV imaging using HHG-based sources with potential application in biological imaging or EUV lithography pellicle inspection. PMID:27192225

  19. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  20. The physiology of extremes: Ancel Keys and the International High Altitude Expedition of 1935.

    PubMed

    Tracy, Sarah W

    2012-01-01

    This article examines the International High Altitude Expedition of 1935 and its significance in the life and science of Ancel Keys. Both the expedition and Keys's story afford excellent opportunities to explore the growing reach of interwar physiology into extreme climates-whether built or natural. As IHAE scientists assessed human performance and adaptation to hypoxia, low barometric pressure, and cold, they not only illuminated the physiological and psychological processes of high altitude acclimatization, but they also drew borderlines between the normal and the pathological, paved the way for the neocolonial exploitation of natural and human resources in Latin America, and pioneered field methods in physiology that were adapted and adopted by the Allied Forces during the Second World War. This case study in the physiology of place reveals the power and persistence of environmental determinism within biomedicine well into the twentieth century.

  1. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; Williams, C.; Zichichi, A.; Zuyeuski, R.

    2008-04-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  2. Numerical evaluation of a 13.5-nm high-brightness microplasma extreme ultraviolet source

    SciTech Connect

    Hara, Hiroyuki Arai, Goki; Dinh, Thanh-Hung; Higashiguchi, Takeshi; Jiang, Weihua; Miura, Taisuke; Endo, Akira; Ejima, Takeo; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sunahara, Atsushi

    2015-11-21

    The extreme ultraviolet (EUV) emission and its spatial distribution as well as plasma parameters in a microplasma high-brightness light source are characterized by the use of a two-dimensional radiation hydrodynamic simulation. The expected EUV source size, which is determined by the expansion of the microplasma due to hydrodynamic motion, was evaluated to be 16 μm (full width) and was almost reproduced by the experimental result which showed an emission source diameter of 18–20 μm at a laser pulse duration of 150 ps [full width at half-maximum]. The numerical simulation suggests that high brightness EUV sources should be produced by use of a dot target based microplasma with a source diameter of about 20 μm.

  3. Compact Tb doped fiber optic current sensor with high sensitivity.

    PubMed

    Huang, Duanni; Srinivasan, Sudharsanan; Bowers, John E

    2015-11-16

    A highly sensitive fiber optic current sensor using terbium doped fiber is presented. The Verdet constant of the terbium doped fiber at 1300nm is found to be 19.5μrad/A using both a polarimetric and interferometric type sensor. Measurements on a Sagnac-loop sensor using 10cm of terbium doped fiber placed inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. Extrapolations of our measurements show that in a practical setup with Tb fiber wrapped around a current carrying wire, the optimal configuration is a 0.5m piece of Tb fiber with a noise limit of 22mA/√Hz. This sensor is promising for current sensing applications that require high sensitivity and small size, weight, and power. PMID:26698480

  4. Multistable current states in high-temperature superconducting composites

    NASA Astrophysics Data System (ADS)

    Romanovskii, V. R.

    2016-09-01

    Conditions for current instabilities that arise in high-temperature superconducting composites with essentially nonlinear dependences of the critical current densities and resistivity on the temperature and magnetic induction have been studied. The analysis has been conducted in terms of zero-dimensional models, which has made it possible to formulate general physical mechanisms behind the formation of currents states in superconducting composites according to the external magnetic field induction, cooling conditions, and the properties of the superconductor and cladding. The possible existence of current and temperature stable steps, as well as stable steps of the electric field strength, in the absence of the superconducting-normal transition, has been demonstrated. Reasons for instabilities under multistable current states have been discussed.

  5. High-current, fast-switching transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    The design, wafer-processing techniques, and various measurements which include forward safe operating area, dc characteristics, and switching times are described for a larger-diameter (33) transistor. An improved base contact for equalizing the base-emitter voltage at high currents was developed along with an improved emitter contact preform which increases the silicon area available for current conduction. The electrical performance achieved is consistent with the proposed optimum design.

  6. High-density turbidity currents: Are they sandy debris flows?

    SciTech Connect

    Shanmugam, G.

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  7. Microstructures and critical currents in high-{Tc} superconductors

    SciTech Connect

    Suenaga, Masaki

    1998-11-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high {Tc} superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa{sub 2}Cu{sub 3}O{sub 7} if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa{sub 2}Cu{sub 3}O{sub 7} and how effective are these in pinning vortices.

  8. Discharge current modes of high power impulse magnetron sputtering

    SciTech Connect

    Wu, Zhongzhen Xiao, Shu; Ma, Zhengyong; Cui, Suihan; Ji, Shunping; Pan, Feng; Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  9. High current DyBCO-ROEBEL Assembled Coated Conductor (RACC)

    NASA Astrophysics Data System (ADS)

    Goldacker, W.; Nast, R.; Kotzyba, G.; Schlachter, S. I.; Frank, A.; Ringsdorf, B.; Schmidt, C.; Komarek, P.

    2006-06-01

    Low AC loss high transport current HTS cables (>1 kA) are required for application in transformers, generators and are considered for future generations of fusion reactors coils. 2G coated conductors are suitable candidates for high field application at quite high operation temperatures of 50-77 K, which is crucial precondition for economical cooling costs. As a feasibility study we present the first ROEBEL bar cable of approx. 35 cm length made from industrial DyBCO coated conductor (THEVA GmbH, Germany). Meander shaped ROEBEL strands of 4 mm width with a twist pitch of 180 mm were cut from 10 mm wide CC tapes using a specially designed tool. The strands carried in average 157 Amps/cm-width DC and were assembled to a subcable with 5 strands and a final cable with 16 strands. The 5 strand cable was tested and carried a transport current of >300 Amps DC at 77 K, equivalent to the sum of the individual strand transport critical currents. The 16 strand cable carried 500 A limited through heating effects and non sufficient stabilisation and current sharing. A pulse current load indicated a current carrying potential of >1 kA for the 16 strand cable.

  10. Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.

    PubMed

    Vimercati, L; Hamsher, S; Schubert, Z; Schmidt, S K

    2016-09-01

    Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth. PMID:27315166

  11. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  12. Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma.

    PubMed

    Bergmann, K; Schriever, G; Rosier, O; Müller, M; Neff, W; Lebert, R

    1999-09-01

    An extreme-ultraviolet (EUV) radiation source near the 13-nm wavelength generated in a small (1.1 J) pinch plasma is presented. The ignition of the plasma occurs in a pseudosparklike electrode geometry, which allows for omitting a switch between the storage capacity and the electrode system and for low inductive coupling of the electrically stored energy to the plasma. Thus energies of only a few joules are sufficient to create current pulses in the range of several kiloamperes, which lead to a compression and a heating of the plasmas to electron densities of more than 10(17) cm(-3) and temperatures of several tens of electron volts, which is necessary for emission in the EUV range. As an example, the emission spectrum of an oxygen plasma in the 11-18-nm range is presented. Transitions of beryllium- and lithium-like oxygen ions can be identified. Current waveform and time-resolved measurements of the EUV emission are discussed. In initial experiments a repetitive operation at nearly 0.2 kHz could be demonstrated. Additionally, the broadband emission of a xenon plasma generated in a 2.2-J discharge is presented.

  13. [The theory of lymphangion and current approaches to the pathogenesis, diagnosis and treatment of lymphedema of the lower extremities].

    PubMed

    Bubnova, N A; Borisova, R P; Borisov, A V

    2003-01-01

    The paper describes the results of examination carried out by the Sankt-Peterburg school of lymphologists, pertaining to the structure, physiological properties and function of lymphangions responsible for active lymph transport. The problems of the pathogenesis, diagnosis and treatment of lymphedema of the lower extremities used in clinical practice are reviewed from the standpoint of the new theory. The data obtained as a result of the clinico-morphofunctional studies allowed to delineate the stages of lymphedema as dependent on the degree of lymphocytic structure and function integrity. Based on the aforesaid the new approaches to the diagnosis and selection of the treatment methods for lymphedema of the lower extremities have been formulated. PMID:12811377

  14. FEL POTENTIAL OF THE HIGH CURRENT ERLs AT BNL.

    SciTech Connect

    KAYRAN,D.; BEN-ZVI, I.; LITVINENKO, V.; POZDEYEV, E.; MATVEENKO, A.; SHEVCHENKO, O.; VINOKUROV, N.

    2007-08-26

    An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. This ERL prototype will be used as a test bed to study issues relevant for very high current ERLs. High average current and high performance of electron beam with some additional components make this ERL an excellent driver for high power far infrared Free Electron Laser (FEL). A possibility for future up-grade to a two-pass ERL is considered. We present the status and our plans for construction and commissioning of the ERL. We discus a FEL potential based on electron beam provided by BNL ERL.

  15. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator†

    PubMed Central

    Chambert, Thierry; Rotella, Jay J.; Garrott, Robert A.

    2012-01-01

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change. PMID:23015628

  16. Environmental extremes versus ecological extremes: impact of a massive iceberg on the population dynamics of a high-level Antarctic marine predator.

    PubMed

    Chambert, Thierry; Rotella, Jay J; Garrott, Robert A

    2012-11-22

    Extreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected. We also found suggestive evidence for a prolonged shift towards higher variability in reproductive rates. The annual number of females attending colonies showed unusual swings during the iceberg period, a pattern that was apparently the consequence of changes in sea-ice conditions. In contrast to the dramatic effects that were recorded in nearby populations of emperor penguins, our results suggest that this unusual environmental event did not have an extreme impact on the population of seals in the short-term, as they managed to avoid survival costs and were able to rapidly re-achieve high levels of reproduction by the end of the perturbation. Nevertheless, population projections suggest that even this modest impact on reproductive rates could negatively affect the population in the long run if such events were to occur more frequently, as is predicted by models of climate change.

  17. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  18. Assessing current genetic status of the Hainan gibbon using historical and demographic baselines: implications for conservation management of species of extreme rarity.

    PubMed

    Bryant, J V; Gottelli, D; Zeng, X; Hong, X; Chan, B P L; Fellowes, J R; Zhang, Y; Luo, J; Durrant, C; Geissmann, T; Chatterjee, H J; Turvey, S T

    2016-08-01

    Evidence-based conservation planning is crucial for informing management decisions for species of extreme rarity, but collection of robust data on genetic status or other parameters can be extremely challenging for such species. The Hainan gibbon, possibly the world's rarest mammal, consists of a single population of ~25 individuals restricted to one protected area on Hainan Island, China, and has persisted for over 30 years at exceptionally low population size. Analysis of genotypes at 11 microsatellite loci from faecal samples for 36% of the current global population and tissue samples from 62% of existing historical museum specimens demonstrates limited current genetic diversity (Na = 2.27, Ar = 2.24, He  = 0.43); diversity has declined since the 19th century and even further within the last 30 years, representing declines of ~30% from historical levels (Na = 3.36, Ar = 3.29, He  = 0.63). Significant differentiation is seen between current and historical samples (FST  = 0.156, P = 0.0315), and the current population exhibits extremely small Ne (current Ne  = 2.16). There is evidence for both a recent population bottleneck and an earlier bottleneck, with population size already reasonably low by the late 19th century (historical Ne  = 1162.96). Individuals in the current population are related at the level of half- to full-siblings between social groups, and full-siblings or parent-offspring within a social group, suggesting that inbreeding is likely to increase in the future. The species' current reduced genetic diversity must be considered during conservation planning, particularly for expectations of likely population recovery, indicating that intensive, carefully planned management is essential.

  19. Assessing current genetic status of the Hainan gibbon using historical and demographic baselines: implications for conservation management of species of extreme rarity.

    PubMed

    Bryant, J V; Gottelli, D; Zeng, X; Hong, X; Chan, B P L; Fellowes, J R; Zhang, Y; Luo, J; Durrant, C; Geissmann, T; Chatterjee, H J; Turvey, S T

    2016-08-01

    Evidence-based conservation planning is crucial for informing management decisions for species of extreme rarity, but collection of robust data on genetic status or other parameters can be extremely challenging for such species. The Hainan gibbon, possibly the world's rarest mammal, consists of a single population of ~25 individuals restricted to one protected area on Hainan Island, China, and has persisted for over 30 years at exceptionally low population size. Analysis of genotypes at 11 microsatellite loci from faecal samples for 36% of the current global population and tissue samples from 62% of existing historical museum specimens demonstrates limited current genetic diversity (Na = 2.27, Ar = 2.24, He  = 0.43); diversity has declined since the 19th century and even further within the last 30 years, representing declines of ~30% from historical levels (Na = 3.36, Ar = 3.29, He  = 0.63). Significant differentiation is seen between current and historical samples (FST  = 0.156, P = 0.0315), and the current population exhibits extremely small Ne (current Ne  = 2.16). There is evidence for both a recent population bottleneck and an earlier bottleneck, with population size already reasonably low by the late 19th century (historical Ne  = 1162.96). Individuals in the current population are related at the level of half- to full-siblings between social groups, and full-siblings or parent-offspring within a social group, suggesting that inbreeding is likely to increase in the future. The species' current reduced genetic diversity must be considered during conservation planning, particularly for expectations of likely population recovery, indicating that intensive, carefully planned management is essential. PMID:27273107

  20. Extreme solar-terrestrial events of October 2003: High-latitude and Cluster observations of the large geomagnetic disturbances on 30 October

    NASA Astrophysics Data System (ADS)

    Rosenqvist, L.; Opgenoorth, H.; Buchert, S.; McCrea, I.; Amm, O.; Lathuillere, C.

    2005-09-01

    The extremely large solar eruption on 28 October 2003 caused an intense geomagnetic storm at Earth. A second solar eruption on 29 October resulted in a reintensification of the storm about a day later. Similarities and differences between these two events in terms of solar eruption, solar wind driver, and their resulting effect on the near-Earth environment are investigated and put into context of previous works on storm geoeffectivness. Within the second storm some of the strongest substorms in the history of magnetic recordings occurred in northern Scandinavia. The aim of this study is to investigate the cause and resulting effects of these extreme geomagnetic disturbances on the ionosphere and upper atmosphere, focusing on the northern Scandinavian sector where these disturbances reached extremely high values. During this time period, well after the initial arrival of the Interplanetary Coronal Mass Ejection (ICME), the Cluster spacecraft were located at the flank of the magnetospheric tail. The satellites were passed several times by an inward and consecutively outward moving magnetopause in close relation to the substorm intensifications in northern Scandinavia. We propose that the evolution of these magnetospheric substorm intensifications are influenced by the changing dynamics of the solar wind in the form of increased pressure occurring after a prolonged period of southward Interplanetary Magnetic Field (IMF) and thus excessive energy loading into the magnetosphere prior to the onset of the intensifications. We present evidence of external pressure pulse triggering and possibly also quenching of these substorm onsets and recoveries. In addition, EISCAT data have been used to investigate the detailed local behavior of the ionospheric plasma, giving rise to such extreme disturbances. We found that in this case, extreme combinations of enhanced conductivity and intense electric field resulted in very high current intensities (westward electrojet ˜7.4 MA) and

  1. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  2. Simulations of high bootstrap current experiments on Tore Supra

    NASA Astrophysics Data System (ADS)

    Basiuk, V.; Becoulet, A.; Hoang, G. T.; Joffrin, E.; Litaudon, X.; Hutter, T.; Nguyen, F.; Saoutic, B.; Houlberg, W. A.; Kessel, C. E.

    1996-11-01

    The bootstrap current is a good candidate for sustaining a large fraction of the plasma current, f_boot, in the "Advanced Tokamak" regime of a reactor. It is thus important to study the stability of discharges with high f_boot, and to control them. By means of fast wave electron heating (FWEH, up to 9 MW), stationnary high bootstrap discharges (duration ≈ 5 sec. and f_boot ≈ 0.5) are routinely obtained in Tore Supra. The bootstrap profile is computed with the matrix formulation of Houlberg( E. Joffrin et al.), 22nd EPS (1995) 19C, part IV, p 125. and Kessel.( C.E. Kessel, Nuclear Fusion, 34), (1994). The simulation of the loop voltage either with the code CRONOS( F. Kazarian-Vibert et al.), 22nd EPS (1995), 19C, part III, p 373. (1D current diffusion code) using the profile of bootstrap current, or with the knowledge of the resistivity,^1 allows a self consistent determination of the bootstrap current. First results show that the energy enhancement factor H increases linearly with the f_boot. Effects of various plasma parameters on the bootstrap profile, on f_boot, and on the confinement are analysed in a way to implement a current profile control.

  3. Structure of High Latitude Currents in Magnetosphere-Ionosphere Models

    NASA Astrophysics Data System (ADS)

    Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.

    2016-07-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  4. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  5. High-altitude cusp: The tremendous large and extremely dynamic region in geospace

    NASA Astrophysics Data System (ADS)

    Chen, J.; Fritz, T. A.

    2003-04-01

    High-altitude dayside cusps (both northern and southern) are the tremendous large and extremely dynamic regions in geospace. They have a size of as large as 6 Re and are always there day after day. Turbulent diamagnetic cavities have been observed there. Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions are observed to increase by as large as four orders of the magnitude when compared to regions adjacent to the cusp which includes the magnetosheath. Their seed populations is a mixture of ionospheric and solar wind particles. Some of the diamagnetic cavities were independent of the IMF directions, suggesting that the cusp diamagnetic cavities are different from the magnetospheric sash predicted by MHD simulations. Turbulent electrical field with an amplitude of about 10 mV/m also presents in the cusp, and a cusp resonant acceleration mechanism is suggested.

  6. Performance Analysis of Cooperative Wireless Backhaul Networks Operating at Extremely High Frequencies

    NASA Astrophysics Data System (ADS)

    Sakarellos, Vasileios K.; Chortatou, Maria; Skraparlis, Dimitrios; Panagopoulos, Athanasios D.; Kanellopoulos, John D.

    2011-04-01

    Extremely high frequency (EHF) bands above 50 GHz have been proposed to be used as backhaul links of modern cellular mobile networks. They provide interconnectivity between the base stations and the core network. In this paper, we propose the employment of cooperative techniques in backhaul networks. More specifically, the outage performance analysis of a simple cooperative diversity system operating at EHF bands is presented. The destination node combines the direct link with the signal received through a regenerative relay using selection combining. A combined statiform and convective model of rainfall rate for the rain attenuation prediction is considered. The correlation properties and the joint statistics among the microwave paths are also calculated. Numerical results present the impact of the geometrical parameters and the climatic conditions on the outage performance.

  7. Reduction of image optics dependence of resist image performance for high NA extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Chun, Ouyang; Li, Yanqiu; Liu, Lihui

    2013-12-01

    High Numerical Aperture (NA) extreme ultraviolet lithography (EUVL) with different reduction is one option for 16 nm node and below. In our work, as NA increases to about 0.45, we discuss the impacts of reduction ratio of 5 or 6 on resist image performance such as Horizontal-Vertical (H-V) critical dimension (CD) bias for various incident angles and CD Uniformity induced by mask CD errors at wafer level. Commercial software PROLITH ™ and in-house program are adopted in simulation referred above. In conclusion, resist image performance can be improved with the increase of reduction ratio. H-V CD Bias with reduction ratio of 6 is obviously smaller than that with reduction ratio of 5 at maximum incident angle. Additionally, CD Uniformity (nm, 3 sigma) induced by mask CD errors for 5× optics system is larger, which means image quality is worse at 5× optics system.

  8. Note: Thermally stable thin-film filters for high-power extreme-ultraviolet applications.

    PubMed

    Tarrio, C; Berg, R F; Lucatorto, T B; Lairson, B; Lopez, H; Ayers, T

    2015-11-01

    We investigated several types of thin-film filters for high intensity work in the extreme-ultraviolet (EUV) spectral range. In our application, with a peak EUV intensity of 2.7 W cm(-2), Ni-mesh-backed Zr filters have a typical lifetime of 20 h, at which point they suffer from pinholes and a 50% loss of transmission. Initial trials with Si filters on Ni meshes resulted in rupture of the filters in less than an hour. A simple thermal calculation showed that the temperature rise in those filters to be about 634 K. A similar calculation indicated that using a finer mesh with thicker wires and made of Cu reduces the temperature increase to about 60 K. We have exposed a Si filter backed by such a mesh for more than 60 h with little loss of transmission and no leaks. PMID:26628184

  9. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    DOEpatents

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  10. Measurement of partial pressures in extremely high vacuum region using a modified residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Watanabe, Shu; Oyama, Hitoshi; Kato, Shigeki; Aono, Masakazu

    1999-03-01

    The measurement of partial pressures using a residual gas analyzer (RGA) in an extremely high vacuum (XHV) region has several problems, including the influence of electron stimulated desorption ions and the outgassing rate from the ion source of the RGA. In order to measure partial pressures in the XHV, a commercial RGA was modified as follows: an electrostatic analyzer was used to only measure gas phase ions; a low work function material, thoria, was used as a filament of the ion source to lower temperature of the filament and Cu wires connected the filament and releasing the heat around the ion source to atmosphere. After these modifications, the RGA could measure only gas phase ions and, at the same time the outgassing rate from the RGA was reduced. Partial pressures and total pressure in the XHV could be measured by the RGA.

  11. Gene expression profiles in liver of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Lien, Sigbjørn; Bendixen, Christian; Hedegaard, Jakob; Hornshøj, Henrik; Berget, Ingunn; Meuwissen, Theo HE; Grindflek, Eli

    2008-01-01

    Background Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue. Results Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase FMO1. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases UGT1A5, UGT2A1 and UGT2B15, sulfotransferase STE, N-acetyltransferase NAT12 and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (HSD17B2, HSD17B4, HSD17B11 and HSD17B13) and plasma proteins alpha-1-acid glycoprotein (AGP) and orosomucoid (ORM1). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of FMO1, NAT12, HSD17B2 and

  12. High efficiency current regulator for ring laser gyroscope

    SciTech Connect

    Ljung, B.H.

    1981-08-04

    A method and apparatus for regulating the anode current of a gas lasing system with reduced power dissipation is disclosed. According to this invention a feedback loop is connected between the anode circuitry and the high voltage power supply such that the anode current regulator has a much lower voltage across itself than has been the case in the past. Since the voltage across the current regulator is reduced, there is not nearly as much power for the regulator to dissipate. In addition, because of the smaller power handling requirements, a stabilized anode current can be achieved at about half the level required by prior art circuitry. Thus, the power dissipation can be reduced even further.

  13. Rf Gun with High-Current Density Field Emission Cathode

    SciTech Connect

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  14. Design considerations for high-current superconducting ion linacs

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-08-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context.

  15. Extreme ultraviolet spectroscopy and photometry of VV Puppis during a high accretion state

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Szkody, Paula; Sion, Edward M.; Long, Knox S.

    1995-01-01

    We determine the physical properties of the accretion region of the AM Her-type binary VV Puppis using extreme ultraviolet (EUV) medium-resolution spectroscopy and photometry obtained with the Extreme Ultraviolet Explorer (EUVE) observatory. The EUV continuum from VV Pup was detected in the wavelength range from 75 to 135 A and was simultaneously recorded with the Deep Survey/Spectrometer (DS/S) imaging telescope, allowing for the extraction of an accurate light curve. VV Pup appeared to have entered a high-accretion state just prior to the pointed EUVE observations. We use the EUV light curve to infer the diameter of the accretion region (d = 220 km) assuming a hemispherical geometry and a radius of 9000 km for the white dwarf. We perform a model atmosphere analysis and, based on the light curve properties and assuming a distance of 145 pc, we derive an effective temperature of the accretion region in the range 270,000 is less than T(sub eff) is less than 360,000 K and a neutral hydrogen column density in the local interstellar medium of n(sub H) = 1.9 - 3.7 x 10(exp 19)/sq cm. The total EUV/soft X-ray energy radiated by the accretion region is approximately 3.5 x 10(exp 32) ergs/s. Our results provide a first verification of past suggestions that deep heating of the white dwarf surface produces the soft X-ray flux from the polars. We present a possible detection of O VI absortion features, and we suggest that extensive EUVE observations targeting high-accretion events may result in oxygen and heavier element abundance determination in the accretion region.

  16. High Fill-Out, Extreme Mass Ratio Overcontact Binary Systems. VIII. EM Piscium

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; He, J.-J.; Soonthornthum, B.; Liu, L.; Zhu, L.-Y.; Li, L.-J.; Liao, W. P.; Dai, Z.-B.

    2008-11-01

    CCD photometric observations of the newly discovered close binary, EM Piscium, obtained from 2006 December 4 to 2008 January 7, are presented. The light curves are symmetric and show complete eclipses with an eclipse duration of 54 minutes. When comparing the present light curves with those published by González-Rojas et al., it is found that the depths of the two minima of the light curve have been interchanged, and the positive O'Connell effect has disappeared. The symmetric light curves in R and I bands were analyzed with the 2003 version of the W-D code. It is found that EM Piscium is a high fill-out overcontact binary system (f = 95.3 ± 2.7%) with an extreme mass ratio of q = 0.1487, suggesting that it is on the late evolutionary stage of late-type tidal-locked binaries. Based on the nine instances of light minimum that we determined and those published by previous investigators, it is discovered that the orbital period shows a cyclic period variation with a period of 3.3 years, while it undergoes a continuously rapid increase at a rate of dP/dt = +3.97 × 10-6 days year-1. The cyclic period reveals the presence of a tertiary companion, which may play an important role for the formation and evolution of the overcontact binary by drawing angular momentum from the central system via Kozai oscillation or a combination of Kozai cycle and tidal friction. The high fill-out, the extreme mass ratio, and the rapid period increase may suggest that the binary system is quickly evolving into a rapid-rotating single star.

  17. High beta plasma in the dynamic Jovian current sheet

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Kivelson, M. G.; Schardt, A. W.

    1978-01-01

    The equatorial current sheet, which Pioneer 10 repeatedly encountered on its outbound pass through the Jovian magnetosphere, frequently was associated with intense fluxes of energetic protons. Simultaneous observations of the changes in the energetic proton flux and in the magnetic-field magnitude demonstrate that the current sheet is embedded in a high-beta plasma in which high-energy (above 60 keV) ions frequently are the dominant constituents. Large differences in the plasma temperature and the thickness of this plasma sheet between encounters only 10 hours apart indicate that the Jovian plasma sheet is very dynamic on a time scale of hours. Occasional observations of significant temporal variations in the magnetic field and particle populations during periods within the plasma sheet may represent in situ observations of Jovian magnetic disturbances. Comparison with previous observations suggests that low-energy (not more than 5 keV) plasma contributes less than 3% to the current-sheet energy density.

  18. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  19. High-quality lossy compression: current and future trends

    NASA Astrophysics Data System (ADS)

    McLaughlin, Steven W.

    1995-01-01

    This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.

  20. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  2. The distribution of Extremely High Accretion Rates and Metallicities of QSO's as a Function of Redshift over Cosmic Evolution

    NASA Astrophysics Data System (ADS)

    Abu Seif, Nasser; Kazanas, Demosthenes

    2016-07-01

    The investigation of how QSOs' extremity of accretion rates vary with redshift has remained a major focus of our study in the last five years. How does the evolution of QSOs trace the accretion history of early SMBH? What does accretion at super-Eddington rates look like? Does the correlation between SMBHs and metallicity of QSOs emission line evolve differently at high redshift? Is it a surprise that metallicity is high at high redshift, or is this expected? Here, we establish a new database for the width of an emission line (e.g., Hβ, Mg II and C IV) to obtain a large statistical sample of QSOs at different redshifts. We calculated L/LEdd that determined mass from previous studies (Sloan Digital Sky Survey (SDSS)). We investigated the significant evolution of L/ LEdd for any value of MBH as a function of redshift. Also, we investigated the evolution and distribution of the accretion rate (L/LEdd) over cosmic time with a concentration on the extremely high accretion rate sources at high redshift. The current study investigated the accretion rate (L/LEdd) correlation to other QSO properties and investigated how the accretion of Black Holes L/LEdd and MBH occurs within heavily obscured environments. Our research found that some QSOs are radiating near the Eddington limit with L/ Ledd ~ 1 and those QSOs have extreme accretion. We also found that the lowest M BH has the highest accretion rate, a result that was already noted by McClure & Dunlop (2004). The distribution of Eddington ratio displayed by QSOs clearly shows that all luminous QSOs accreted at their Eddington limit have a poor approximation. This result is important because it is often assumed that optically luminous QSOs are accreting at their Eddington limit within the models of QSOs evolution. We determined the peak of the L/LEdd versus redshift and we found the largest of those peaks to be at the interval of redshift (1< Z < 2). We noted that the highest peak of the distribution of L/LEdd at all

  3. Status of high transport current ROEBEL assembled coated conductor cables

    NASA Astrophysics Data System (ADS)

    Goldacker, Wilfried; Frank, Antje; Kudymow, Andrej; Heller, Reinhard; Kling, Andrea; Terzieva, Stanimira; Schmidt, Curt

    2009-03-01

    Assembling coated conductors (CC) into flat ROEBEL bars (RACC cable) was introduced in 2005 by the authors as a practicable method of reaching high transport currents in a low AC loss cable, which is a cable design suited for application in windings. The transport current of 1.02 kA in self-field at 77 K achieved so far, however, is still too low for several applications in electrical machinery such as larger transformers and generators/motors. A new cable concept for further increased currents was presented just recently. The goal of the new design was primarily to demonstrate the possibility of strongly increased transport currents without changing the important cable features for low AC losses. such as, for example, the transposition length of the strands. We present detailed investigations of the properties of this progressed cable design, which has threefold layered strands, an unchanged transposition pitch of 18.8 cm and finally the application of 45 coated conductors in the cable. A 1.1 m long sample (equivalent to six transposition lengths) was prepared from commercial Cu stabilized coated conductors purchased from Superpower. The measured new record DC transport current of the cable was 2628 A at 77 K in self-field (5 µV cm-1 criterion). The use of three slightly different current carrying batches of strand material (± 10%) was a special feature of the cable, which allowed for interesting investigations of current redistribution effects in the cable, by monitoring a representative strand of each batch during the critical current measurement. Although current redistribution effects showed a complex situation, the behaviour of the cable was found to be absolutely stable under all operational conditions, even above the critical current. The high self-field degradation of the critical current reached the order of 60% at 77 K, and could be modelled satisfactory with calculations based on a proven Biot-Savart-law approach, adapted to the specific boundary

  4. Current halo structures in high-current plasma experiments: {theta}-pinch

    SciTech Connect

    Matveev, Yu. V.

    2007-03-15

    Experimental data elucidating mechanisms for halo formation in {theta}-pinch discharges are presented and discussed. The experiments were performed with different gases (H{sub 2}, D{sub 2}, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 {mu}s, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  5. 41 CFR 302-7.20 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.20... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  6. 41 CFR 302-7.19 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.19... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  7. 41 CFR 302-7.20 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.20... include items that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  8. 41 CFR 302-7.20 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.20... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  9. 41 CFR 302-7.19 - Should I include items that are irreplaceable or of extremely high monetary or sentimental value...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? 302-7.19... that are irreplaceable or of extremely high monetary or sentimental value in my HHG shipment? Generally no; items that are irreplaceable or of extremely high monetary or sentimental value should not...

  10. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  11. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  12. Transient analysis and burnout of high temperature superconducting current leads

    NASA Astrophysics Data System (ADS)

    Seol, S. Y.; Hull, J. R.

    The transient behaviour of high-temperature superconductor (HTS) current leads operated between liquid helium and liquid nitrogen temperatures is analysed for burnout conditions upon transition of the HTS into the normal state. Leads composed of HTS only and of HTS sheathed by pure silver or silver alloy are investigated numerically for temperature-dependent properties and analytically for temperature-independent properties. For lower values of shape factor (current density times length), the lead can be operated indefinitely without burnout. At higher values of shape factor, the lead reaches burnout in a finite time. With high current densities, the leads heat adiabatically. For a fixed shape factor, low current densities are desired to achieve long burnout times. To achieve a low helium boil-off rate in the superconducting state without danger of burnout, there is a preferred temperature dependence for thermal conductivity, and silver alloy sheaths are preferred to pure silver sheaths. However, for a given current density, pure silver sheaths take longer to burn out.

  13. Hard carbon coatings deposited by pulsed high current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Solov'ev, A. A.; Rabotkin, S. V.

    2014-12-01

    Hard (up to 17 GPa) carbon coatings are deposited onto face SiC bearings used in liquid pumps by pulsed high-current magnetron sputtering of graphite. As a result, the friction coefficient is decreased from 0.43 to 0.11 and the wear rate is decreased from 26 to 0.307 μm3 N-1 m-1, which increases the service life of the bearings by approximately three times. The deposited carbon coatings have a high hardness and wear resistance due to the generation of high-density (up to 1013 cm-3) plasma.

  14. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  15. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    PubMed

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  16. Extreme-ultraviolet polarimeter utilizing laser-generated high-order harmonics.

    PubMed

    Brimhall, Nicole; Turner, Matthew; Herrick, Nicholas; Allred, David D; Turley, R Steven; Ware, Michael; Peatross, Justin

    2008-10-01

    We describe an extreme-ultraviolet (EUV) polarimeter that employs laser-generated high-order harmonics as the light source. The polarimeter is designed to characterize materials and thin films for use with EUV light. Laser high harmonics are highly directional with easily rotatable linear polarization, not typically available with other EUV sources. The harmonics have good wavelength coverage, potentially spanning the entire EUV from a few to a hundred nanometers. Our instrument is configured to measure reflectances from 14 to 30 nm and has approximately 180 spectral resolution (lambda/Delta lambda). The reflection from a sample surface can be measured over a continuous range of incident angles (5 degrees-75 degrees). A secondary 14 cm gas cell attenuates the harmonics in a controlled way to keep signals within the linear dynamic range of the detector, comprised of a microchannel plate coupled to a phosphorous screen and charge coupled device camera. The harmonics are produced using approximately 10 mJ, approximately 35 fs, and approximately 800 nm laser pulses with a repetition rate of 10 Hz. Per-shot energy monitoring of the laser discriminates against fluctuations. The polarimeter reflectance data agree well with data obtained at the Advanced Light Source Synchrotron (Beamline 6.3.2).

  17. A method of batch-purifying microalgae with multiple antibiotics at extremely high concentrations

    NASA Astrophysics Data System (ADS)

    Han, Jichang; Wang, Song; Zhang, Lin; Yang, Guanpin; Zhao, Lu; Pan, Kehou

    2016-01-01

    Axenic microalgal strains are highly valued in diverse microalgal studies and applications. Antibiotics, alone or in combination, are often used to avoid bacterial contamination during microalgal isolation and culture. In our preliminary trials, we found that many microalgae ceased growing in antibiotics at extremely high concentrations but could resume growth quickly when returned to an antibiotics-free liquid medium and formed colonies when spread on a solid medium. We developed a simple and highly efficient method of obtaining axenic microalgal cultures based on this observation. First, microalgal strains of different species or strains were treated with a mixture of ampicillin, gentamycin sulfate, kanamycin, neomycin and streptomycin (each at a concentration of 600 mg/L) for 3 days; they were then transferred to antibiotics-free medium for 5 days; and finally they were spread on solid f/2 media to allow algal colonies to form. With this method, five strains of Nannochloropsis sp. (Eustigmatophyceae), two strains of Cylindrotheca sp. (Bacillariophyceae), two strains of Tetraselmis sp. (Chlorodendrophyceae) and one strain of Amphikrikos sp. (Trebouxiophyceae) were purified successfully. The method shows promise for batch-purifying microalgal cultures.

  18. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    PubMed Central

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  19. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    USGS Publications Warehouse

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawam, J.Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  20. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies

    PubMed Central

    Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef

    2016-01-01

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286

  1. Extremely high-frequency piezoelectroacoustic transducer based on BN-tube/SiC-whiskers rope

    NASA Astrophysics Data System (ADS)

    Pokropivny, V.; Pokropivny, A.; Lohmus, A.; Lohmus, R.; Kovrygin, S.; Sylenko, P.; Partch, R.; Prilutskii, E.

    2007-03-01

    Innovative idea of piezoelectric electroacoustic transducer in extremely high-frequency terahertz range on the basis of BN-tube/SiC-whiskers rope is suggested and substantiated. Unlike an acoustic spectrum of solid rectangular pins and films used so far in ultrasonic pulsers and receivers, in the acoustic spectrum of circular hollow nanotubes, the peculiar squash E2g and the subsequent Eng modes of starlike chain belonging to a gallery of whispering acoustic modes was shown by ab initio RHF/6-31G calculations to exist in the Raman spectra. Inherent important feature of these standing vibrations is their weak attenuation and high frequency, which, as depended on the nanotube diameter, fall in the range of about ∼1 GHz-1 THz. Hypersound was suggested to be excited by resonant microwaves using the piezoelectric properties of BN heteropolar nanotubes and then to transmit it into a sample by high modulus encapsulated SiC-whiskers. Such BN-tube/SiC-whiskers of 100-800 nm in diameter and with ∼20 aspect ratio were synthesized by carbothermal and CVD techniques. Cactus-like arrays of SiC nanowhiskers were synthesized by CVD technique. A sketch of the hypersound generator/detector, with the piezoelectroacoustical transducer on the basis of the BN-tube/SiC-whisker assembly serving as hypersonic antenna, was advanced.

  2. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus.

    PubMed

    Hawkes, L A; Balachandran, S; Batbayar, N; Butler, P J; Chua, B; Douglas, D C; Frappell, P B; Hou, Y; Milsom, W K; Newman, S H; Prosser, D J; Sathiyaselvam, P; Scott, G R; Takekawa, J Y; Natsagdorj, T; Wikelski, M; Witt, M J; Yan, B; Bishop, C M

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  3. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; Craig, Anthony P.; Bates, Susan C.; Rosenbloom, Nan A.

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  4. The Application of High-Order Harmonics to Extreme Ultraviolet Polarimetry

    NASA Astrophysics Data System (ADS)

    Brimhall, Nicole; Painter, John; Turner, Matthew; Turley, R. Steven; Ware, Michael; Peatross, Justin

    2006-10-01

    We report on the construction of an extreme ultraviolet (EUV) polarimeter based on high-order harmonic generation for characterizing optical surfaces from 8-62 nm. High harmonics as an EUV source are advantageous in that they are polarized (linear, same as laser) and measurements of several wavelengths of light can be made simultaneously. Although not as bright as a synchrotron source, the flux of EUV light is 30,000 times that of a commonly used plasma source. We have demonstrated the feasibility of this project with a simple prototype instrument, which measured the reflectance of samples from 30 nm to 62 nm. The prototype demonstrated that sensitivity is sufficient for measuring reflectances as low as 0.5%. The full instrument employs extensive scanning mobility as opposed to the fixed angle and fixed wavelength range of our earlier prototype. This project represents an authentic `work-horse' application for high-order harmonics, as opposed to merely demonstrating proof of concept.

  5. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account.

  6. Gene expression profiles in testis of pigs with extreme high and low levels of androstenone

    PubMed Central

    Moe, Maren; Meuwissen, Theo; Lien, Sigbjørn; Bendixen, Christian; Wang, Xuefei; Conley, Lene Nagstrup; Berget, Ingunn; Tajet, Håvard; Grindflek, Eli

    2007-01-01

    Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes. Results: Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p < 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72 were found to be common for the two breeds, suggesting the possibility of both general and breed specific mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an importance of these genes, and the association between

  7. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    NASA Astrophysics Data System (ADS)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  8. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau.

    PubMed

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (<1 m) in bacterial diversity and community composition between two of those ponds with contrasting apparent color, using 454 pyrosequencing of the 16S rRNA gene. Further, we compared the results with the nearest (80 m) main lagoon in the system to elucidate the importance of different environmental factors such as salinity and the importance of these ponds as a source of shared diversity. Bacterial diversity was higher in both ponds than in the lagoon and community composition was largely different among them and characterized by very low operational taxonomic unit sharing. Whereas the "green" pond with relatively low dissolved organic carbon (DOC) concentration (33.5 mg L(-1)) was dominated by Proteobacteria and Bacteroidetes, the one with extreme DOC concentration (424.1 mg L(-1)) and red hue was dominated by Cyanobacteria. By contrast, the lagoon was largely dominated by Proteobacteria, particularly by Gammaproteobacteria. A large percentage (47%) of all reads was unclassified suggesting the existence of large undiscovered bacterial diversity. Our results suggest that even at the very small-scale spatial range considered, local environmental factors are important in explaining differences in bacterial community composition in those systems. Further, our study highlights that Altiplano peatland ponds represent a hitherto unknown source of microbial diversity.

  9. Large Differences in Bacterial Community Composition among Three Nearby Extreme Waterbodies of the High Andean Plateau

    PubMed Central

    Aguilar, Pablo; Acosta, Eduardo; Dorador, Cristina; Sommaruga, Ruben

    2016-01-01

    The high Andean plateau or Altiplano contains different waterbodies that are subjected to extreme fluctuations in abiotic conditions on a daily and an annual scale. The bacterial diversity and community composition of those shallow waterbodies is largely unexplored, particularly, of the ponds embedded within the peatland landscape (i.e., Bofedales). Here we compare the small-scale spatial variability (<1 m) in bacterial diversity and community composition between two of those ponds with contrasting apparent color, using 454 pyrosequencing of the 16S rRNA gene. Further, we compared the results with the nearest (80 m) main lagoon in the system to elucidate the importance of different environmental factors such as salinity and the importance of these ponds as a source of shared diversity. Bacterial diversity was higher in both ponds than in the lagoon and community composition was largely different among them and characterized by very low operational taxonomic unit sharing. Whereas the “green” pond with relatively low dissolved organic carbon (DOC) concentration (33.5 mg L-1) was dominated by Proteobacteria and Bacteroidetes, the one with extreme DOC concentration (424.1 mg L-1) and red hue was dominated by Cyanobacteria. By contrast, the lagoon was largely dominated by Proteobacteria, particularly by Gammaproteobacteria. A large percentage (47%) of all reads was unclassified suggesting the existence of large undiscovered bacterial diversity. Our results suggest that even at the very small-scale spatial range considered, local environmental factors are important in explaining differences in bacterial community composition in those systems. Further, our study highlights that Altiplano peatland ponds represent a hitherto unknown source of microbial diversity. PMID:27446017

  10. New high-current Dynamitron accelerators for electron beam processing

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Thompson, C. C.; Saito, H.; Lisanti, T. F.; Burgess, R. G.; Malone, H. F.; Loby, R. J.; Galloway, R. A.

    1993-06-01

    The material throughput capabilities of RDI's new 550 keV and 800 keV Dynamitron R accelerators have been enhanced by increasing their beam current ratings from 100 mA to 160 mA. Future requirements up to 200 mA have been anticipated in the designs. The high-voltage power supply, beam scanner and beam window have all been modified to accommodate the higher current ratings. A new programmable control system has also been developed. The basic design concepts are described and performance data are presented in this paper.

  11. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  12. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude.

  13. Liquid jet impingement cooling with diamond substrates for extremely high heat flux applications

    SciTech Connect

    Lienhard, J.H. V; Khounsary, A.M.

    1993-09-01

    The combination of impinging jets and diamond substrates may provide an effective solution to a class of extremely high heat flux problems in which very localized heat loads must be removed. Some potential applications include the cooling of high-heat-load components in synchrotron x-ray, fusion, and semiconductor laser systems. Impinging liquid jets are a very effective vehicle for removing high heat fluxes. The liquid supply arrangement is relatively simple, and low thermal resistances can be routinely achieved. A jet`s cooling ability is a strong function of the size of the cooled area relative to the jet diameter. For relatively large area targets, the critical heat fluxes can approach 20 W/mm{sup 2}. In this situation, burnout usually originates at the outer edge of the cooled region as increasing heat flux inhibits the liquid supply. Limitations from liquid supply are minimized when heating is restricted to the jet stagnation zone. The high stagnation pressure and high velocity gradients appear to suppress critical flux phenomena, and fluxes of up to 400 W/mm{sup 2} have been reached without evidence of burnout. Instead, the restrictions on heat flux are closely related to properties of the cooled target. Target properties become an issue owing to the large temperatures and large temperature gradients that accompany heat fluxes over 100 W/mm{sup 2}. These conditions necessitate a target with both high thermal conductivity to prevent excessive temperatures and good mechanical properties to prevent mechanical failures. Recent developments in synthetic diamond technology present a possible solution to some of the solid-side constraints on heat flux. Polycrystalline diamond foils can now be produced by chemical vapor deposition in reasonable quantity and at reasonable cost. Synthetic single crystal diamonds as large as 1 cm{sup 2} are also available.

  14. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  15. High current density, cryogenically cooled sliding electrical joint development

    SciTech Connect

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an approx. 20 T toroidal field magnet with a flat top conductor current of approx. 300 kA and a sliding electrical joint with a gross current density of approx. 0.6 kA/cm/sup 2/. A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025.

  16. Drift distance survey in DPIS for high current beam production

    SciTech Connect

    Kanesue,T.; Okamura, M.; Kondo, K.; Tamura, J.; Kashiwagi, H.; Zhang, Z.

    2009-09-20

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between laser target and beam extraction position. In direct plasma injection scheme (DPIS), which uses a laser ion source and Radio Frequency Quadrupole (RFQ) linac, we can apply relatively higher electric field at the beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration like several tens of mA, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C{sup 6+} beam was accelerated. We confirmed that the matching condition can be improved by controlling plasma drift distance.

  17. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments. PMID:27614243

  18. Characterizing the Chemical Stability of High Temperature Materials for Application in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    2005-01-01

    The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.

  19. Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light.

    PubMed

    Brown, A C; van der Hart, H W

    2016-08-26

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in extreme-ultraviolet (XUV)-initiated high-harmonic generation in neon. By probing the atom with a low-energy (below the 2s ionization threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories, we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process.

  20. Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light.

    PubMed

    Brown, A C; van der Hart, H W

    2016-08-26

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in extreme-ultraviolet (XUV)-initiated high-harmonic generation in neon. By probing the atom with a low-energy (below the 2s ionization threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories, we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process. PMID:27610852

  1. Extreme-Ultraviolet-Initated High-Order Harmonic Generation: Driving Inner-Valence Electrons Using Below-Threshold-Energy Extreme-Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Brown, A. C.; van der Hart, H. W.

    2016-08-01

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in extreme-ultraviolet (XUV)-initiated high-harmonic generation in neon. By probing the atom with a low-energy (below the 2 s ionization threshold) ultrashort XUV pulse, the 2 p electron is steered away from the core, while the 2 s electron is enabled to describe recollision trajectories. By selectively suppressing the 2 p recollision trajectories, we can resolve the contribution of the 2 s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2 s electron, which allows for an intuitive understanding of the process.

  2. Testing of full size high current superconductors in SULTAN III

    SciTech Connect

    Blau, B.; Rohleder, I.; Vecsey, G.

    1994-07-01

    The high field test facility SULTAN III in operation at PSI/Switzerland tests full size industrial prototype superconductors for fusion applications such as ITER. The facility provides a background field of up to 11 T over a length of 58 cm. A 50 kA superconducting transformer works as a very low noise current source which allows a criterion of 0.1 {mu}V/cm to determine the superconducting to normal transition. Three 3.6 m long cable-in-conduit conductors based on both NbTi and Nb{sub 3}Sn, developed by different manufacturers, suitable for the central solenoid and toroidal field coils of ITER, have been tested so far. This paper presents the results of extensive measurements of critical current and current sharing temperature of the Nb{sub 3}Sn conductors in the 8--11 T range for temperatures between 4.5 K and 11 K Voltage versus current curves have been analyzed with respect to the n value. The manufacturing of a high quality joint between two Nb{sub 3}Sn conductors after heat treatment is reported, together with some measurements of the joint resistance.

  3. High current pulse testing for ground rod integrity

    NASA Technical Reports Server (NTRS)

    Walko, Lawrence C.

    1991-01-01

    A test technique was developed to assess various grounding system concepts used for mobile facilities. The test technique involves applying a high current pulse to the grounding system with the proper waveshape and magnitude to simulate a lightning return stroke. Of concern were the step voltages present along the ground near the point of lightning strike. Step voltage is equated to how fast the current pulse is dissipated by the grounding system. The applied current pulse was produced by a high current capacitor bank with a total energy content of 80 kilojoules. A series of pulse tests were performed on two types of mobile facility grounding systems. One system consisted of an array of four 10 foot copper clad steel ground rods connected by 1/0 gauge wire. The other system was an array of 10 inch long tapered ground rods, strung on stainless steel cable. The focus here is on the pulse test technique used and its relevance to actual lightning strike conditions.

  4. Electronic Current Transducer (ECT) for high voltage dc lines

    NASA Astrophysics Data System (ADS)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  5. MHD Modeling of Conductors at Ultra-High Current Density

    SciTech Connect

    ROSENTHAL,STEPHEN E.; DESJARLAIS,MICHAEL P.; SPIELMAN,RICK B.; STYGAR,WILLIAM A.; ASAY,JAMES R.; DOUGLAS,M.R.; HALL,C.A.; FRESE,M.H.; MORSE,R.L.; REISMAN,D.B.

    2000-08-29

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model.

  6. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  7. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  8. Significant mobility enhancement in extremely thin highly doped ZnO films

    SciTech Connect

    Look, David C.; Heller, Eric R.; Yao, Yu-Feng; Yang, C. C.

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H} vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.

  9. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  10. Extremely high prevalence of multidrug resistant tuberculosis in Murmansk, Russia: a population-based study.

    PubMed

    Mäkinen, J; Marjamäki, M; Haanperä-Heikkinen, M; Marttila, H; Endourova, L B; Presnova, S E; Mathys, V; Bifani, P; Ruohonen, R; Viljanen, M K; Soini, H

    2011-09-01

    Drug resistance and molecular epidemiology of tuberculosis (TB) in the Murmansk region was investigated in a 2-year, population-based surveillance of the civilian population. During 2003 and 2004, isolates from all culture-positive cases were collected (n = 1,226). Prevalence of multi-drug resistance (MDR) was extremely high, as 114 out of 439 new cases (26.0%), and 574 out of 787 previously treated cases (72.9%) were resistant to at least isoniazid (INH) and rifampin (RIF). Spoligotyping of the primary MDR-TB isolates revealed that most isolates grouped to the Beijing SIT1 genotype (n = 91, 79.8%). Isolates of this genotype were further analyzed by IS6110 RFLP. Sequencing of gene targets associated with INH and RIF resistance further showed that the MDR-TB strains are highly homogeneous as 78% of the MDR, SIT1 strains had the same resistance-conferring mutations. The genetic homogeneity of the MDR-TB strains indicates that they are actively transmitted in Murmansk. PMID:21394425

  11. The High-Resolution Extreme-Ultraviolet Spectrum of N_2 by Electron Impact

    NASA Astrophysics Data System (ADS)

    Heays, Alan; Ajello, Joe M.; Aguilar, Alejandro; Lewis, Brenton R.; Gibson, Stephen

    2014-06-01

    We have recorded high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800--1350 Å) laboratory emission spectra of molecular nitrogen excited by 20 and 100 eV electron impact under mostly optically thin conditions. From these, emission cross sections were determined for a total of 491 features arising from N_2 electronic-vibrational transitions and atomic N I and N II multiplets. Molecular emission was observed from those excited levels which are not completely predissociative and to ground-state vibrational levels as high as v=17. The frequently-blended molecular emission bands were disentangled with the aid of a coupled-channels model of excited N_2 states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. The observed emission bands probe a large range of vibrational motion so that internuclear-distance-dependent electronic transition moments could be deduced experimental. The coupled-channels model could then be used to predict the emission cross sections of unobserved bands and those that are optically thick in the experimental spectra. The electron-impact-induced fluorescence measurements and model were compared with Cassini UVIS observations of emissions from Titan's upper atmosphere.

  12. Microsystem for remote sensing of high energy radiation with associated extremely low photon flux densities

    NASA Astrophysics Data System (ADS)

    Otten, A.; Jain, V. K.

    2015-08-01

    This paper presents a microsystem for remote sensing of high energy radiation in extremely low flux density conditions. With wide deployment in mind, potential applications range from nuclear non-proliferation, to hospital radiation-safety. The daunting challenge is the low level of photon flux densities - emerging from a Scintillation Crystal (SC) on to a ~1 mm-square detector, which are a factor of 10000 or so lower than those acceptable to recently reported photonic chips (including `single-photon detection' chips), due to a combination of low Lux, small detector size, and short duration SC output pulses - on the order of 1 μs. These challenges are attempted to be overcome by the design of an innovative `System on a Chip' type microchip, with high detector sensitivity, and effective coupling from the SC to the photodetector. The microchip houses a tiny n+ diff p-epi photodiode (PD) as well as the associated analog amplification and other related circuitry, all fabricated in 0.5micron, 3-metal 2-poly CMOS technology. The amplification, together with pulse-shaping of the photocurrent-induced voltage signal, is achieved through a tandem of two capacitively coupled, double-cascode amplifiers. Included in the paper are theoretical estimates and experimental results.

  13. The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism.

    PubMed

    Yamada, Masatoshi; Wang, Zhong-Liang; Zheng, Jian

    2006-01-01

    Large-volume seawater samples were collected in the Sulu and South China Seas and their (137)Cs activities were determined by gamma-ray spectrometry using a low background type high-purity Ge detector. Vertical distributions of (137)Cs activity showed an exponential decrease in the South China Sea, whereas a subsurface maximum at 200m depth and monotonic decrease below 300m were observed in the Sulu Sea. A significant difference in intermediate water (137)Cs activities in the 500-2000m depth was observed between the Sulu and South China Seas, i.e., the (137)Cs activities in the Sulu Sea were remarkably higher than those in the South China Sea. The difference in the (137)Cs inventory below 500m was approximately 1200Bqm(-2) between the Sulu and South China Seas. The (137)Cs total inventory of 3200Bqm(-2) in the Sulu Sea was 5.7 times higher than that expected from global fallout. A possible mechanism controlling this extremely high (137)Cs total inventory may be inflows of the (137)Cs rich water masses through the Luzon Strait, lateral transport across the Mindoro Strait into the Sulu Sea, and then subduction into the deep layer in the basin.

  14. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  15. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  16. Electron beam current in high power cylindrical diode

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Sharma, Vishnu; Singh, S. K.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-01-15

    Intense electron beam generation studies were carried out in high power cylindrical diode to investigate the effect of the accelerating gap and diode voltage on the electron beam current. The diode voltage has been varied from 130 to 356 kV, whereas the current density has been varied from 87 to 391 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam current in the cylindrical diode has been compared with the Langmuir-Blodgett law. It was found that the diode current can be explained by a model of anode and cathode plasma expanding toward each other. However, the diode voltage and current do not follow the bipolar space-charge limited flow model. It was also found that initially only a part of the cathode take part in the emission process. The plasma expands at 4.2 cm/mus for 1.7 cm anode-cathode gap and the plasma velocity decreases for smaller gaps. The electrode plasma expansion velocity of the cylindrical diode is much smaller as compared with the planar diode for the same accelerating gap and diode voltage. Therefore, much higher voltage can be obtained for the cylindrical diodes as compared with the planar diodes for the same accelerating gap.

  17. Testing of a high current dc ESQ accelerator

    SciTech Connect

    Kwan, J.W.; Ackerman, G.D.; Ackerman, O.A.; Chan, C.F.; Cooper, W.S.; deVries, G.J.; Kunkel, W.B.; Soroka, L.; Steele, W.F.; Wells, R.P.

    1991-05-01

    A high current dc electrostatic quadrupole (ESQ) accelerator is being developed for negative-ion-based neutral beam heating and current drive on the next generation tokamak. Beam energy and current will eventually be in the MeV and multiampere range.l This CCVV (constant- current variable-voltage) accelerator uses a series of identical ESQ modules. We have successfully tested a prototype CCVV accelerator up to 200 keV with a 100 mA He{sub +} beam (with space charge equivalence of 140 mA of D{sup {minus}}) for a pulse length of 1 s. Testing was also done with a 42 mA H{sup {minus}} beam (H{sup {minus}} beam current was limited by source performance). There was almost no beam loss in the ESQ accelerator. no emittance growth was found in the beam injected from the preaccelerator into the ESQ accelerator had low aberration. We are presently designing a proof-of- principle one-channel CCVV accelerator that would accelerate 1.0 A of D{sup {minus}} 1.3 MeV energy. 4 refs., 7 figs.

  18. Exploring thermal and mechanical properties of selected transition elements under extreme conditions: Experiments at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav

    Transition metals (Ti, Zr, Hf, Mo, W, V, Nb, Ta, Pd, Pt, Cu, Ag, and Au) are essential building units of many materials and have important industrial applications. Therefore, it is important to understand their thermal and physical behavior when they are subjected to extreme conditions of pressure and temperature. This dissertation presents: • An improved experimental technique to use lasers for the measurement of thermal conductivity of materials under conditions of very high pressure (P, up to 50 GPa) and temperature (T up to 2500 K). • An experimental study of the phase relationship and physical properties of selected transition metals, which revealed new and unexpected physical effects of thermal conductivity in Zr, and Hf under high P-T.. • New phase diagrams created for Hf, Ti and Zr from experimental data. • P-T dependence of the lattice parameters in α-hafnium. Contrary to prior reports, the α-ω phase transition in hafnium has a negative dT/dP slope. • New data on thermodynamic and physical properties of several transition metals and their respective high P-T phase diagrams. • First complete thermodynamic database for solid phases of 13 common transition metals was created. This database has: All the thermochemical data on these elements in their standard state (mostly available and compiled); All the equations of state (EoS) formulated from pressure-volume-temperature data (measured as a part of this study and from literature); Complete thermodynamic data for selected elements from standard to extreme conditions. The thermodynamic database provided by this study can be used with available thermodynamic software to calculate all thermophysical properties and phase diagrams at high P-T conditions. For readers who do not have access to this software, tabulated values of all thermodynamic and volume data for the 13 metals at high P-T are included in the APPENDIX. In the APPENDIX, a description of several other high-pressure studies of selected

  19. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  20. New HOM coupler design for high current SRF cavity

    SciTech Connect

    Xu, W.; Ben-Zvi, I.; Belomestnykh, S.; Hahn, H.; Johnson, E.

    2011-03-28

    Damping higher order modes (HOMs) significantly to avoid beam instability is a challenge for the high current Energy Recovery Linac-based eRHIC at BNL. To avoid the overheating effect and high tuning sensitivity, current, a new band-stop HOM coupler is being designed at BNL. The new HOM coupler has a bandwidth of tens of MHz to reject the fundamental mode, which will avoid overheating due to fundamental frequency shifting because of cooling down. In addition, the S21 parameter of the band-pass filter is nearly flat from first higher order mode to 5 times the fundamental frequency. The simulation results showed that the new couplers effectively damp HOMs for the eRHIC cavity with enlarged beam tube diameter and 2 120{sup o} HOM couplers at each side of cavity. This paper presents the design of HOM coupler, HOM damping capacity for eRHIC cavity and prototype test results.

  1. Infinitely high selective inductively coupled plasma etching of an indium tin oxide binary mask structure for extreme ultraviolet lithography

    SciTech Connect

    Park, Y. R.; Ahn, J. H.; Kim, J. S.; Kwon, B. S.; Lee, N.-E.; Kang, H. Y.; Hwangbo, C. K.; Ahn, Jinho; Seo, Hwan Seok

    2010-07-15

    Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics with a completely different configuration than those of conventional photolithography. This study investigated the etching properties of indium tin oxide (ITO) binary mask materials for EUVL, such as ITO (absorber layer), Ru (capping/etch-stop layer), and a Mo-Si multilayer (reflective layer), by varying the Cl{sub 2}/Ar gas flow ratio, dc self-bias voltage (V{sub dc}), and etch time in inductively coupled plasmas. The ITO absorber layer needs to be etched with no loss in the Ru layer on the Mo-Si multilayer for fabrication of the EUVL ITO binary mask structure proposed here. The ITO layer could be etched with an infinitely high etch selectivity over the Ru etch-stop layer in Cl{sub 2}/Ar plasma even with a very high overetch time.

  2. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour.

    PubMed

    Huang, Xing; Sheng, Peng; Tu, Zeyi; Zhang, Fengjiao; Wang, Junhua; Geng, Hua; Zou, Ye; Di, Chong-an; Yi, Yuanping; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2015-06-15

    Currently, studies on organic two-dimensional (2D) materials with special optic-electronic properties are attracting great research interest. However, 2D organic systems possessing promising electrical transport properties are still rare. Here a highly crystalline thin film of a copper coordination polymer, Cu-BHT (BHT=benzenehexathiol), is prepared via a liquid-liquid interface reaction between BHT/dichloromethane and copper(II) nitrate/H2O. The morphology and structure characterization reveal that this film is piled up by nanosheets of 2D lattice of [Cu3(C6S6)]n, which is further verified by quantum simulation. Four-probe measurements show that the room temperature conductivity of this material can reach up to 1,580 S cm(-1), which is the highest value ever reported for coordination polymers. Meanwhile, it displays ambipolar charge transport behaviour and extremely high electron and hole mobilities (99 cm(2 )V(-1 )s(-1) for holes and 116 cm(2 )V(-1 )s(-1) for electrons) under field-effect modulation.

  3. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour

    PubMed Central

    Huang, Xing; Sheng, Peng; Tu, Zeyi; Zhang, Fengjiao; Wang, Junhua; Geng, Hua; Zou, Ye; Di, Chong-an; Yi, Yuanping; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2015-01-01

    Currently, studies on organic two-dimensional (2D) materials with special optic-electronic properties are attracting great research interest. However, 2D organic systems possessing promising electrical transport properties are still rare. Here a highly crystalline thin film of a copper coordination polymer, Cu-BHT (BHT=benzenehexathiol), is prepared via a liquid–liquid interface reaction between BHT/dichloromethane and copper(II) nitrate/H2O. The morphology and structure characterization reveal that this film is piled up by nanosheets of 2D lattice of [Cu3(C6S6)]n, which is further verified by quantum simulation. Four-probe measurements show that the room temperature conductivity of this material can reach up to 1,580 S cm−1, which is the highest value ever reported for coordination polymers. Meanwhile, it displays ambipolar charge transport behaviour and extremely high electron and hole mobilities (99 cm2 V−1 s−1 for holes and 116 cm2 V−1 s−1 for electrons) under field-effect modulation. PMID:26074272

  4. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour

    NASA Astrophysics Data System (ADS)

    Huang, Xing; Sheng, Peng; Tu, Zeyi; Zhang, Fengjiao; Wang, Junhua; Geng, Hua; Zou, Ye; di, Chong-An; Yi, Yuanping; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2015-06-01

    Currently, studies on organic two-dimensional (2D) materials with special optic-electronic properties are attracting great research interest. However, 2D organic systems possessing promising electrical transport properties are still rare. Here a highly crystalline thin film of a copper coordination polymer, Cu-BHT (BHT=benzenehexathiol), is prepared via a liquid-liquid interface reaction between BHT/dichloromethane and copper(II) nitrate/H2O. The morphology and structure characterization reveal that this film is piled up by nanosheets of 2D lattice of [Cu3(C6S6)]n, which is further verified by quantum simulation. Four-probe measurements show that the room temperature conductivity of this material can reach up to 1,580 S cm-1, which is the highest value ever reported for coordination polymers. Meanwhile, it displays ambipolar charge transport behaviour and extremely high electron and hole mobilities (99 cm2 V-1 s-1 for holes and 116 cm2 V-1 s-1 for electrons) under field-effect modulation.

  5. An accurate continuous calibration system for high voltage current transformer

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  6. Interdigitated back contact solar cell with high-current collection

    SciTech Connect

    Garner, C. M.; Nasby, R. D.; Sexton, F. W.; Rodriguez, J. L.; Norwood, D. P.

    1981-01-01

    Internal current-collection efficiencies greater than 90 percent and energy-conversion efficiencies of 18 percent at 30 suns have been measured on a laboratory version of the interdigitated back contact (IBC) solar cell. The quantum efficiency at 600 nm was greater than 90 percent which implies a minority carrier lifetime of greater than 350 ..mu..sec and a front surface recombination velocity of less than 30 cm/sec on the better devices. To achieve these high-current collection efficiencies, a phosphorous gettering diffusion was performed on the front surface and then etched off. Also, thermal oxides were grown on the front and back of the cell to passivate the silicon surfaces. Although the internal collection efficiencies of the cell were high, series resistance caused the fill factor (FF) to decrease at concentrations above 30 suns. Dark current measurements on cells with a new grid spacing indicate that the series resistance is much lower than in the previous cell design. This should result in higher efficiencies at high concentration.

  7. A double output pulsed high current thyratron driver

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Kumar, Manoj; Verma, Abrat; Mandloi, Vagesh; Kukreja, L. M.; Shrivastava, P.

    2012-11-01

    The design and development of a double output pulsed high current driver for high power multi-grid thyratron is reported. The driver generates a 100 A current pulse of 2 μs duration with a compliance voltage of 1000 V for driving grid-1. A voltage pulse of 1200 V and 1.2 μs duration, superimposed with -150 V bias has been generated for driving grid-2. A delay of 1 μs between the two drive pulses is achieved with the use of a simple circuit. The rate of rise of voltage better than 10 kV/μs and jitter of ±3 ns is achieved for grid-2 pulse. This driver module has been successfully used in a 50 kV, CX1575C thyratron switched pulsed power supply to drive a multi-joule transversely excited atmospheric CO2 laser at 100 Hz. The grid driver module can also be used for driving any high current thyratrons with minor external changes.

  8. A double output pulsed high current thyratron driver.

    PubMed

    Reghu, T; Kumar, Manoj; Verma, Abrat; Mandloi, Vagesh; Kukreja, L M; Shrivastava, P

    2012-11-01

    The design and development of a double output pulsed high current driver for high power multi-grid thyratron is reported. The driver generates a 100 A current pulse of 2 μs duration with a compliance voltage of 1000 V for driving grid-1. A voltage pulse of 1200 V and 1.2 μs duration, superimposed with -150 V bias has been generated for driving grid-2. A delay of 1 μs between the two drive pulses is achieved with the use of a simple circuit. The rate of rise of voltage better than 10 kV/μs and jitter of ±3 ns is achieved for grid-2 pulse. This driver module has been successfully used in a 50 kV, CX1575C thyratron switched pulsed power supply to drive a multi-joule transversely excited atmospheric CO(2) laser at 100 Hz. The grid driver module can also be used for driving any high current thyratrons with minor external changes.

  9. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  10. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  11. Compilation of current high-energy-physics experiments

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  12. Recent Progress on High-Current SRF Cavities at Jlab

    SciTech Connect

    Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand

    2010-05-01

    JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.

  13. Evolution of extreme high waters along the east coast of India and at the head of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Antony, Charls; Unnikrishnan, A. S.; Woodworth, Philip L.

    2016-05-01

    The recent evolution of extreme high waters along the severe cyclone-risk coasts of the Bay of Bengal (the east coast of India and Bangladesh) was assessed using long-term (24-34 years) hourly tide gauge data available from five stations. The highest water levels above mean sea level have the greatest magnitude towards the northern part of the Bay, which decreases towards its south-west. Extreme high waters were observed to result from a combination of moderate, or even small, surges with large tides at these stations in most of the cases. Increasing trends, which are significant, were observed in the extreme high waters at Hiron Point, at the head of the Bay. However, the trends in extremes are slightly lower than its mean sea level trend. For the other stations, Cox's Bazaar, Paradip Visakhapatnam and Chennai, no significant trends were observed. At inter-annual time scales, changes in extreme high waters in the Bay of Bengal were found to be influenced by the El Niño Southern Oscillation and the Indian Ocean Dipole.

  14. Edge current profile measurements of peeling-like modes at high in Pegasus

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.

    2009-11-01

    Large-scale, coherent, high-m filamentary edge instabilities are routinely observed under conditions of high in Pegasus. These ELM-like filaments are characterized with high-speed imaging, as well as scanning magnetic and Langmuir probes. Their properties include: low- to intermediate-n; a coherent electromagnetic signature; large poloidal coherence lengths; rotation with the bulk plasma; and explosive detachment from the edge with outboard radial propagation. Stability is sensitive to jedge, with mode drive or suppression dependent on the sign of Ip. The extremely low B (Bt,0<=0.1 T) and high jedge 0.1 MA/m^2 in Pegasus lead to high peeling instability drive, proportional to , comparable to that achieved in H-mode on larger experiments. However, in Pegasus jedge is driven by large Ip (<= 50 MA/s) and associated skin currents as opposed to a localized region of high bootstrap current in an H-mode pedestal. A new radial array of Hall-effect sensors measures internal B,dge(R) directly with high spatial and temporal resolution to provide strong experimental constraint on jedge(ψ) in equilibrium reconstructions. Such equilibria may be used to uniquely test predictions of peeling-ballooning stability theory.

  15. Finite difference calculations of current densities in a homogeneous model of a man exposed to extremely low frequency electric fields.

    PubMed

    Dimbylow, P J

    1987-01-01

    This paper presents three-dimensional finite difference calculations of induced current densities in a grounded, homogeneous, realistically human-shaped phantom. Comparison is made with published experimental values of current density at 60 Hz, measured in conducting saline manikins with their arms down by the side. The congruence between calculation and experiment gives confidence in the applicability of the numerical method and phantom shape to other configurations. The effect of raising both arms above the head is to reduce the current densities in the head and neck by approximately 50% and to increase those from the thorax downwards by 20-30%. A sensitivity analysis was performed on the shape and dimensions of the phantom, from a 45-kg, 1.5-m-tall person to a 140-kg, 1.9-m-tall person. When the phantom is grounded through both feet the current densities range from 50 to 90 microAm-2 in the head (all values for a 60-Hz, 1-kVm-1, vertical applied field), 70 to 140 microAm-2 in the thorax, 150 to 440 microAm-2 at the crotch, and 500 to 2,230 microAm-2 in the ankle. When grounded through only one foot the current densities at the crotch range from 400 to 1,000 microAm-2 and from 1,000 to 4,400 microAm-2 in the ankle of the grounded leg. Scale transformations of the short-circuit current with phantom height, weight, and surface area are confirmed. PMID:3122768

  16. Dynamics of charged current sheets at high-latitude magnetopause

    NASA Astrophysics Data System (ADS)

    Savin, S.; Amata, E.; Zelenyi, L.; Dunlop, M.; Andre, M.; Song, P.; Blecki, J.; Buechner, J.; Rauch, J. L.; Skalsky, A.

    E. Amata (2), L. Zelenyi (1), M. Dunlop (3), M. Andre (4), P. Song (5), J. Blecki (6), J. Buechner (7), J.L Rauch, J.G. Trotignon (8), G. Consolini, F. Marcucci (2), B. Nikutowski (7), A. Skalsky, S. Romanov, E. Panov (1) (2) IFSI, Roma, Italy, (3) RAL, UK, (4) IRFU, Uppsala, Sweden, (5) U. Mass. Lowell, USA, (6) SRC, Warsaw, Poland, (7) MPAe, Germany, (8) LPCE, Orleans, France; We study dynamics of thin current sheets over polar cusps from data of Interball-1 and Cluster. At the high-beta magnetopause current sheet width often reaches ion gyroradius scales, that leads to their Hall dynamics in the presence of local surface charges. Respective perpendicular electric fields provide the means for momentum coupling through the current sheets and are able to accelerate ions with gyroradius of the order or larger than the sheet width. At borders of large diamagnetic cavities this mechanism is able to support mass exchange and accelerate/ heat incoming magnetosheath particles. At larger scales the inhomogeneous electric fields at the current sheet borders can accelerate incident plasma downtail along magnetopause via inertial drift. It serves to move external plasma away for dynamic equilibrium supporting. Farther away from magnetopause similar nonlinear electric field wave trains, selfconsistently produced by interaction of reflected from the obstacle waves with magnetosheath fluctuations, destroy the incident flux into accelerated magnetosonic jets and decelerated Alfvenic flows and generate small-scale current sheets due to different sign of electron and ion inertial drift in the nonlinear electric field bursts. We suggest that this direct kinetic energy transformation creates current sheets with anomalous statistics of field rotation angles in the turbulent boundary layer in front of magnetopause, which have been attributed earlier to an intermittent turbulence. We compare measured spectra with a model of nonlinear system with intermittent chaotic behavior. Work was

  17. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings

    PubMed Central

    Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.

    2015-01-01

    Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID

  18. High-temperature operating 894.6nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks.

    PubMed

    Zhang, Jianwei; Zhang, Xing; Zhu, Hongbo; Zhang, Jian; Ning, Yongqiang; Qin, Li; Wang, Lijun

    2015-06-01

    We report on the design and fabrication of 894.6nm vertical-cavity surface-emitting lasers (VCSELs) with extremely low threshold at high temperatures, for use in chip-scale Cs atomic clocks. A new design method based on the analysis of the threshold gain and the desired carrier density for different active region structures was proposed to gain the low transparent current density. The increase of the threshold current at higher temperatures was successfully suppressed by introducing the large gain-cavity detuning of VCSEL. By detuning the gain-cavity mode to be -11nm, the minimum threshold current of only 0.23mA at 70 °C was achieved. The operating temperature for emitting the wavelength of 894.6nm was 110 °C, with the single mode suppression ratio (SMSR) of more than 25dB and the threshold current of only 0.32mA.

  19. Electrical and hydrodynamic characterization of a high current pulsed arc

    NASA Astrophysics Data System (ADS)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  20. High frequency fast wave current drive for DEMO

    NASA Astrophysics Data System (ADS)

    Koch, R.; Lerche, E.; Van Eester, D.; Nightingale, M.

    2011-12-01

    A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n∥ is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n∥ can be upshifted along the wave propagation path, allowing low n∥ launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n∥). Note however that the n∥ upshift is a self-organized feature, that electron absorption is in competition with α-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n∥ slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

  1. High Metabolomic Microdiversity within Co-Occurring Isolates of the Extremely Halophilic Bacterium Salinibacter ruber

    PubMed Central

    Antón, Josefa; Lucio, Marianna; Peña, Arantxa; Cifuentes, Ana; Brito-Echeverría, Jocelyn; Moritz, Franco; Tziotis, Dimitrios; López, Cristina; Urdiain, Mercedes; Schmitt-Kopplin, Philippe; Rosselló-Móra, Ramon

    2013-01-01

    Salinibacter ruber is an extremely halophilic member of the Bacteroidetes that thrives in crystallizer ponds worldwide. Here, we have analyzed two sets of 22 and 35 co-occurring S. ruber strains, newly isolated respectively, from 100 microliters water samples from crystalizer ponds in Santa Pola and Mallorca, located in coastal and inland Mediterranean Spain and 350 km apart from each other. A set of old strains isolated from the same setting were included in the analysis. Genomic and taxonomy relatedness of the strains were analyzed by means of PFGE and MALDI-TOF, respectively, while their metabolomic potential was explored with high resolution ion cyclotron resonance Fourier transform mass spectrometry (ICR-FT/MS). Overall our results show a phylogenetically very homogeneous species expressing a very diverse metabolomic pool. The combination of MALDI-TOF and PFGE provides, for the newly isolated strains, the same scenario presented by the previous studies of intra-specific diversity of S. ruber using a more restricted number of strains: the species seems to be very homogeneous at the ribosomal level while the genomic diversity encountered was rather high since no identical genome patterns could be retrieved from each of the samples. The high analytical mass resolution of ICR-FT/MS enabled the description of thousands of putative metabolites from which to date only few can be annotated in databases. Some metabolomic differences, mainly related to lipid metabolism and antibiotic-related compounds, provided enough specificity to delineate different clusters within the co-occurring strains. In addition, metabolomic differences were found between old and new strains isolated from the same ponds that could be related to extended exposure to laboratory conditions. PMID:23741374

  2. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II

    PubMed Central

    Tu, Wenfeng; Li, Yang; Liu, Wu; Wu, Lishuan; Xie, Xiaoyan; Zhang, Yuanming; Wilhelm, Christian; Yang, Chunhong

    2016-01-01

    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments. PMID:26779223

  3. Short period, high field cryogenic undulator for extreme performance x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    O'Shea, F. H.; Marcus, G.; Rosenzweig, J. B.; Scheer, M.; Bahrdt, J.; Weingartner, R.; Gaupp, A.; Grüner, F.

    2010-07-01

    Short period, high field undulators can enable short wavelength free electron lasers (FELs) at low beam energy, with decreased gain length, thus allowing much more compact and less costly FEL systems. We describe an ongoing initiative to develop such an undulator based on an approach that utilizes novel cryogenic materials. While this effort was begun in the context of extending the photon energy regime of a laser-plasma accelerator based electron source, we consider here implications of its application to sub-fs scenarios in which more conventional injectors are employed. The use of such low-charge, ultrashort beams, which has recently been proposed as a method of obtaining single-spike performance in x-ray FELs, is seen in simulation to give unprecedented beam brightness. This brightness, when considered in tandem with short wavelength, high field undulators, enables extremely high performance FELs. Two examples discussed in this paper illustrate this point well. The first is the use of the SPARX injector at 2.1 GeV with 1 pC of charge to give 8 GW peak power in a single spike at 6.5 Å with a photon beam peak brightness greater than 1035photons/(smm2mrad20.1%BW), which will also reach LCLS wavelengths on the 5th harmonic. The second is the exploitation of the LCLS injector with 0.25 pC, 150 as pulses to lase at 1.5 Å using only 4.5 GeV energy; beyond this possibility, we present start-to-end simulations of lasing at unprecedented short wavelength, 0.15 Å, using 13.65 GeV LCLS design energy.

  4. Formation of fast notched'' current waveforms through a high inductance

    SciTech Connect

    Spanjers, G.; Nelson, B.A.; Ribe, F.L. )

    1991-10-01

    A fast notch'' current has been produced on the (4 {mu}H) hardcore central conductor (C. M. Greenfield, M. E. Koepke, and F. L. Ribe, Phys. Fluids B {bold 2}, 133 (1990)) of the high beta Q machine, a 2.6 m theta pinch (S. O. Knox, H. Meuth, E. Sevillano, and F. L. Ribe, 3rd IEEE International Pulsed Power Conf., 1981, IEEE Publ. 81 CH1662/6, paper 3.1). With the notch circuitry, the current can be slowly ({tau}{sub 1/4} = 14 {mu}s) brought to a crowbarred dc value (20 kA) and then quickly ({tau}{sub 1/4} = 1.3 {mu}s) notched'' to a different value (typically either 0 kA or twice the dc value) and then quickly returned to the dc value. The use of a new inductively loaded spark gap switch eliminates extraneous ringing in the final crowbarred current waveform. As described here, by driving the hardcore circuit with two isolated capacitor banks, and a voltage stepup transformer, the notch current is created using spark gaps and ignitrons for switching, resulting in an inexpensive and technically simple circuit.

  5. Extremely High-Frequency Holographic Radar Imaging of Personnel and Mail

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.; Lechelt, Wayne M.

    2006-08-01

    The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presently under development to defeat these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.

  6. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-03-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 {mu}m; they have extinction coefficients of k{approx}10{sup {minus}7}. Application of electric field during cross linking can polarize (``pole``) the film to greatly enhance the nonlinear optical properties. ``Poling`` films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle`s Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  7. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-01-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 [mu]m; they have extinction coefficients of k[approx]10[sup [minus]7]. Application of electric field during cross linking can polarize (''pole'') the film to greatly enhance the nonlinear optical properties. ''Poling'' films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle's Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  8. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  9. European Extremely Large Telescope Site Characterization. II. High Angular Resolution Parameters

    NASA Astrophysics Data System (ADS)

    Vázquez Ramió, Héctor; Vernin, Jean; Muñoz-Tuñón, Casiana; Sarazin, Marc; Varela, Antonia M.; Trinquet, Hervé; Delgado, José Miguel; Fuensalida, Jesús J.; Reyes, Marcos; Benhida, Abdelmajid; Benkhaldoun, Zouhair; García Lambas, Diego; Hach, Youssef; Lazrek, M.; Lombardi, Gianluca; Navarrete, Julio; Recabarren, Pablo; Renzi, Victor; Sabil, Mohammed; Vrech, Rubén

    2012-08-01

    This is the second article of a series devoted to European Extremely Large Telescope (E-ELT) site characterization. In this article we present the main properties of the parameters involved in high angular resolution observations from the data collected in the site testing campaign of the E-ELT during the design study (DS) phase. Observations were made in 2008 and 2009, in the four sites selected to shelter the future E-ELT (characterized under the ELT-DS contract): Aklim mountain in Morocco, Observatorio del Roque de los Muchachos (ORM) in Spain, Macón range in Argentina, and Cerro Ventarrones in Chile. The same techniques, instruments, and acquisition procedures were taken on each site. A multiple aperture scintillation sensor (MASS) and a differential image motion monitor (DIMM) were installed at each site. Global statistics of the integrated seeing, the free atmosphere seeing, the boundary layer seeing, and the isoplanatic angle were studied for each site, and the results are presented here. In order to estimate other important parameters, such as the coherence time of the wavefront and the overall parameter "coherence étendue," additional information of vertical profiles of the wind speed was needed. Data were retrieved from the National Oceanic and Atmospheric Administration (NOAA) archive. Ground wind speed was measured by automatic weather stations (AWS). More aspects of the turbulence parameters, such as their seasonal trend, their nightly evolution, and their temporal stability, were also obtained and analyzed.

  10. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    PubMed Central

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  11. Hypothesis testing at the extremes: fast and robust association for high-throughput data.

    PubMed

    Zhou, Yi-Hui; Wright, Fred A

    2015-07-01

    A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled [Formula: see text]-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled [Formula: see text]-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html.

  12. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  13. Cry me a river: identifying the behavioral consequences of extremely high-stakes interpersonal deception.

    PubMed

    Ten Brinke, Leanne; Porter, Stephen

    2012-12-01

    Deception evolved as a fundamental aspect of human social interaction. Numerous studies have examined behavioral cues to deception, but most have involved inconsequential lies and unmotivated liars in a laboratory context. We conducted the most comprehensive study to date of the behavioral consequences of extremely high-stakes, real-life deception--relative to comparable real-life sincere displays--via 3 communication channels: speech, body language, and emotional facial expressions. Televised footage of a large international sample of individuals (N = 78) emotionally pleading to the public for the return of a missing relative was meticulously coded frame-by-frame (30 frames/s for a total of 74,731 frames). About half of the pleaders eventually were convicted of killing the missing person on the basis of overwhelming evidence. Failed attempts to simulate sadness and leakage of happiness revealed deceptive pleaders' covert emotions. Liars used fewer words but more tentative words than truth-tellers, likely relating to increased cognitive load and psychological distancing. Further, each of these cues explained unique variance in predicting pleader sincerity. PMID:23205594

  14. Investigating Operating System Noise in Extreme-Scale High-Performance Computing Systems using Simulation

    SciTech Connect

    Engelmann, Christian

    2013-01-01

    Hardware/software co-design for future-generation high-performance computing (HPC) systems aims at closing the gap between the peak capabilities of the hardware and the performance realized by applications (application-architecture performance gap). Performance profiling of architectures and applications is a crucial part of this iterative process. The work in this paper focuses on operating system (OS) noise as an additional factor to be considered for co-design. It represents the first step in including OS noise in HPC hardware/software co-design by adding a noise injection feature to an existing simulation-based co-design toolkit. It reuses an existing abstraction for OS noise with frequency (periodic recurrence) and period (duration of each occurrence) to enhance the processor model of the Extreme-scale Simulator (xSim) with synchronized and random OS noise simulation. The results demonstrate this capability by evaluating the impact of OS noise on MPI_Bcast() and MPI_Reduce() in a simulated future-generation HPC system with 2,097,152 compute nodes.

  15. Broad-beam, high current, metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs.

  16. LDRD ER Final Report: Recreating Planetary Cores in the Laboratory: New Techniques to Extremely High Density States

    SciTech Connect

    Collins, G; Celliers, P; Hicks, D; Cauble, R; Bradley, D; MacKinnon, A; Moon, S; Young, D; Chau, R; Eggert, J; Willi, P; Pasley, J; Jeanloz, R; Lee, K; Bennedetti, R; Koenig, M; Benuzzi-Mounaix, A; Batani, D; Loubeyre, P; Hubbard, W

    2003-02-07

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, very few materials have their high pressure (>few Mbar) EOS experimentally validated, and even then, only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isotropic compression (ignoring phase separation) to ultra-high densities. An example of the hydrogen phase space composing Jupiter and one particular Brown Dwarf is shown. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and low temperature fusion. High density experiments on Earth are achieved with either static compression techniques (i.e. diamond anvil cells) or dynamic compression techniques using large laser facilities, gas guns, or explosives. The ultimate goal of this multi-directorate and multi-institutional proposal was to develop techniques that will enable us to understand material states that previously only existed at the core of giant planets, stars, or speculative theories. Our effort was a complete success, meeting all of the objectives set out in our proposals. First we focused on developing accurate Hugoniot techniques to be used for constraining the equation of state at high pressure/temperature. We mapped out an accurate water EOS and measured that the ionic->electronic conduction transition occurs at lower pressures than models predict. These data and their impact are fully described in the first enclosed paper ''The Equation of State and Optical Properties of Water Compressed by Strong Shock Waves.'' Currently models used to construct planetary isentropes are constrained by only the planet radius, outer atmospheric spectroscopy, and space probe gravitational moment and magnetic field data. Thus these data, which provide rigid constraints to these models, will

  17. Relationship between Lower Extremity Tightness and Star Excursion Balance Test Performance in Junior High School Baseball Players.

    PubMed

    Endo, Yasuhiro; Sakamoto, Masaaki

    2014-05-01

    [Purpose] The purpose of this study was to examine the relationship between lower extremity tightness and lower extremity balance, measured by the Star Excursion Balance Test (SEBT), in junior high school baseball players. [Subjects] Thirty-three male students belonging to baseball clubs in 2 junior high schools participated in this study. [Methods] For the SEBT, we chose to examine the anterior (ANT), posterior (POS), lateral (LAT), and medial (MED) directions. Regarding muscle tightness measurement, the angle of each joint of the bilateral iliopsoas, quadriceps, hamstring, gastrocnemius, hip internal rotator, and hip external rotator was measured. [Results] The ANT direction of the SEBT was significantly negatively correlated with gastrocnemius tightness. The MED direction of the SEBT was significantly positively correlated with hip internal rotator tightness and hamstrings tightness and significantly negatively correlated with gastrocnemius tightness. The LAT direction of the SEBT was significantly negatively correlated with iliopsoas tightness and gastrocnemius tightness. [Conclusion] Since the rate of upper extremity injury is high in these subjects and this could be due to tightness and instability of the lower extremity from a kinetic viewpoint, the SEBT could be used as a standard evaluation test when examining upper extremity injuries in young baseball players.

  18. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    SciTech Connect

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  19. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  20. Optimization of high-temperature superconductor current leads

    SciTech Connect

    Seol, S.Y.; Hull, J.R.; Chyu, M.C.

    1995-02-01

    Methods to improve the performance of high-temperature superconducting current leads are analyzed. Designs are considered that are inherently safe from burnup, even if the lead enters the normal state. The effect of a tapered lead that takes advantage of the increase in critical current density with decreasing temperature will decrease helium boiloff by about a factor of two for an area ratio of four. A new concept, in which Ag powder is distributed in increasing concentration from the cold end to the hot end of the lead in sintered YBCO, is shown to have comparable performance to that of leads made with Ag-alloy sheaths. Performance of the best inherently safe designs is about one order of magnitude better than that of optimized nonsuperconducting leads. BSCCO leads with Ag-alloy sheaths show improved performance for Au fractions up to about 3%, after which increases in Au fraction yield negligible performance improvement.

  1. High-side Digitally Current Controlled Biphasic Bipolar Microstimulator

    PubMed Central

    Hanson, Timothy L.; Ómarsson, Björn; O'Doherty, Joseph E.; Peikon, Ian D.; Lebedev, Mikhail; Nicolelis, Miguel AL.

    2012-01-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware - without active artifact rejection - we are able to observe stimulus artifacts of less than 2 ms in duration. PMID:22328184

  2. Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.

    2001-01-01

    Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space

  3. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, P.

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  4. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, Pavel

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  5. Radiation Damped Profiles of Extremely High Column Density Neutral Hydrogen : Implications of Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2016-09-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line-of-sight mainly affects the far off-center region of the red damping wing, but the effect is not significant. The shape of the line-center can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half maximum) as an effective line-width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N HI ≲ 1021 cm-2, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7% errors. However, as the local column density reaches N HI ˜ 1022.3 cm-2, this classical approximation yields a relative error of a 10% overestimation in the red wing and a 20% underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  6. Ultra high strength nanofilamentary conductors: the way to reach extreme properties

    NASA Astrophysics Data System (ADS)

    Thilly, L.; Lecouturier, F.; Coffe, G.; Peyrade, J. P.; Askénazy, S.

    2001-01-01

    To enhance the intensity of non-destructive magnetic fields with long pulse duration, reinforced conductors are needed with extremely high mechanical strength and good electrical conductivity. The ideal conductors for this application should have an action integral close to that of pure copper. An elaboration process based on cold drawing and restacking has been developed at LNCMP for this purpose. The best results have been obtained with Cu/Nb nanocomposite wires with a section of 3×10 -2 mm 2 composed of a copper matrix embedding 9×10 6 continuous parallel niobium whiskers with a diameter of 40 nm. The ultimate tensile strength is 1950 MPa at 77 K. The fundamental properties linked to the effect of nanometer size have been investigated. Nevertheless, because of their small section these conductors cannot be practically used in the winding of our magnets. Therefore, we are elaborating a new generation of optimized Cu/Nb nanostructured wires exhibiting ultra high strength in a section of 2 mm 2. The latest developments are presented. Concurrently, we are developing Cu/Ta multifilamentary conductors. Since the shear modulus of tantalum is greater than that of Nb ( μTa≈2 μNb), the Cu/Ta UTS should be enhanced. However, drawing of Cu/Ta billets leads to the formation of a macroscopic roughness at the Cu/Ta interface and to the fracture of Ta. This phenomenon is interpreted in terms of stress-driven rearrangement (Grinfeld instabilities). We have investigated some solutions to prevent its formation.

  7. High-precision reflectometry of multilayer coatings for extreme ultraviolet lithography

    SciTech Connect

    Wedowski, M; Underwood, J H; Gullikson, E M; Bajt, S; Folta, J A; Kearney, P A; Montcalm, C; Spiller, E

    1999-12-29

    Synchrotron-based reflectometry is an important technique for the precise determination of optical properties of reflective multilayer coatings for Extreme Ultraviolet Lithography (EUVL). Multilayer coatings enable normal incidence reflectances of more than 65% in the wavelength range between 11 and 15 nm. In order to achieve high resolution and throughput of EUVL systems, stringent requirements not only apply to their mechanical and optical layout, but also apply to the optical properties of the multilayer coatings. Therefore, multilayer deposition on near-normal incidence optical surfaces of projection optics, condenser optics and reflective masks requires suitable high-precision metrology. Most important, due to their small bandpass on the order of only 0.5 nm, all reflective multilayer coatings in EUVL systems must be wavelength-matched to within {+-}0.05 nm. In some cases, a gradient of the coating thickness is necessary for wavelength matching at variable average angle of incidence in different locations on the optical surfaces. Furthermore, in order to preserve the geometrical figure of the optical substrates, reflective multilayer coatings need to be uniform to within 0.01 nm in their center wavelength. This requirement can only be fulfilled with suitable metrology, which provides a precision of a fraction of this value. In addition, for the detailed understanding and the further development of reflective multilayer coatings a precision in the determination of peak reflectances is desirable on the order of 0.1%. Substrates up to 200 mm in diameter and 15 kg in mass need to be accommodated. Above requirements are fulfilled at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley. This beamline proved to be precise within 0.2% (ms) for reflectance and 0.002 nm (rms) for wavelength.

  8. Impaired dynamic cerebral autoregulation at extreme high altitude even after acclimatization.

    PubMed

    Iwasaki, Ken-ichi; Zhang, Rong; Zuckerman, Julie H; Ogawa, Yojiro; Hansen, Lærke H; Levine, Benjamin David

    2011-01-01

    Cerebral blood flow (CBF) increases and dynamic cerebral autoregulation is impaired by acute hypoxia. We hypothesized that progressive hypocapnia with restoration of arterial oxygen content after altitude acclimatization would normalize CBF and dynamic cerebral autoregulation. To test this hypothesis, dynamic cerebral autoregulation was examined by spectral and transfer function analyses between arterial pressure and CBF velocity variabilities in 11 healthy members of the Danish High-Altitude Research Expedition during normoxia and acute hypoxia (10.5% O(2)) at sea level, and after acclimatization (for over 1 month at 5,260 m at Chacaltaya, Bolivia). Arterial pressure and CBF velocity in the middle cerebral artery (transcranial Doppler), were recorded on a beat-by-beat basis. Steady-state CBF velocity increased during acute hypoxia, but normalized after acclimatization with partial restoration of SaO(2) (acute, 78% ± 2%; chronic, 89% ± 1%) and progression of hypocapnia (end-tidal carbon dioxide: acute, 34 ± 2 mm Hg; chronic, 21 ± 1 mm Hg). Coherence (0.40 ± 0.05 Units at normoxia) and transfer function gain (0.77 ± 0.13 cm/s per mm Hg at normoxia) increased, and phase (0.86 ± 0.15 radians at normoxia) decreased significantly in the very-low-frequency range during acute hypoxia (gain, 141% ± 24%; coherence, 136% ± 29%; phase, -25% ± 22%), which persisted after acclimatization (gain, 136% ± 36%; coherence, 131% ± 50%; phase, -42% ± 13%), together indicating impaired dynamic cerebral autoregulation in this frequency range. The similarity between both acute and chronic conditions suggests that dynamic cerebral autoregulation is impaired by hypoxia even after successful acclimatization to an extreme high altitude.

  9. The High-resolution Extreme-ultraviolet Spectrum of N2 by Electron Impact

    NASA Astrophysics Data System (ADS)

    Heays, A. N.; Ajello, J. M.; Aguilar, A.; Lewis, B. R.; Gibson, S. T.

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a 1Π g , b 1Π u , and b'1Σ u + excited valence states and the Rydberg series c'n +1 1Σ u +, cn 1Π u , and on 1Π u for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  10. Crossing historical and sedimentary archives to reconstruct an extreme flood event calendar in high alpine areas

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Giguet-Covex, C.; Arnaud, F.; Allignol, F.; Legaz, A.; Melo, A.

    2010-09-01

    to reconstruct a high-resolution flood calendar to assess a reliable frequency of extreme flood events which can be compared with precise climatic parameters as the instrumental and reconstructed temperature. Finally it was equally possible to compare the recorded intensity of flood events between the both archives and thus estimate the hazard perception and vulnerability of local people throughout the last three centuries.

  11. Continuous p-n junction with extremely low leakage current for micro-structured solid-state neutron detector applications

    NASA Astrophysics Data System (ADS)

    Huang, Kuan-Chih; Dahal, Rajendra; Lu, James J.-Q.; Danon, Yaron; Bhat, Ishwara B.

    2013-05-01

    Considerable progress has been achieved recently to enhance the thermal neutron detection efficiency of solid-state neutron detectors that incorporate neutron sensitive materials such as 10B and 6LiF in Si micro-structured p-n junction diode. Here, we describe the design, fabrication process optimization and characterization of an enriched boron filled honeycomb structured neutron detector with a continuous p+-n junction. Boron deposition and diffusion processes were carried out using a low pressure chemical vapor deposition to study the effect of diffusion temperature on current density-voltage characteristics of p+-n diodes. TSUPREM-4 was used to simulate the thickness and surface doping concentration of p+-Si layers. MEDICI was used to simulate the depletion width and the capacitance of the microstructured devices with continuous p+-n junction. Finally, current density-voltage and pulse height distribution of fabricated devices with 2.5×2.5 mm2 size were studied. A very low leakage current density of ~2×10-8 A/cm2 at -1 V (for both planar and honeycomb structured devices) and a bias-independent thermal neutron detection efficiency of ~26% under zero bias voltage were achieved for an enriched boron filled honeycomb structured neutron detector with a continuous p+-n junction.

  12. Electron beam induced current in the high injection regime

    NASA Astrophysics Data System (ADS)

    Haney, Paul M.; Yoon, Heayoung P.; Koirala, Prakash; Collins, Robert W.; Zhitenev, Nikolai B.

    2015-07-01

    Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.

  13. Electron beam induced current in the high injection regime.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Koirala, Prakash; Collins, Robert W; Zhitenev, Nikolai B

    2015-07-24

    Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the total electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in one- and two-dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the three-dimensional model.

  14. Some Physical and Engineering Aspects of High Current EBIS

    SciTech Connect

    Pikin, A; Prelec, K.

    1999-05-21

    Some applications of an Electron Beam Ion Source (EBIS) require intensities of highly charged ions significantly greater than those which have been achieved in present EBIS sources. For example, the ion source for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) must be capable of generating 3 x 10{sup 9} ions of Au{sup 35+} or 2 x 10{sup 9} ions of U{sup 45+} per pulse. In this case, if the fraction of ions of interest is 20% of the total ion space charge, the total extracted charge is {approximately} 5 x 10{sup 11}. It is also desirable to extract these ions in a 10 {micro}s pulse to allow single turn injection into the first synchrotrons. Requirements for an EBIS which could meet the needs of the LHC at CERN are similar ({approximately} 1.5 x 10{sup 9} ions of Pb{sup 54+} in 5.5 {micro}s). This charge yield is about an order of magnitude greater than that achieved in existing EBIS sources, and is what is meant here by high current. This also implies, then, an EBIS with a high electron beam current.

  15. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  16. Optimization of transistor design including large signal device/circuit interactions at extremely high frequencies (20-100+GHz)

    NASA Technical Reports Server (NTRS)

    Levy, Ralph; Grubin, H. L.

    1991-01-01

    Transistor design for extremely high frequency applications requires consideration of the interaction between the device and the circuit to which it is connected. Traditional analytical transistor models are to approximate at some of these frequencies and may not account for variations of dopants and semiconductor materials (especially some of the newer materials) within the device. Physically based models of device performance are required. These are based on coupled systems of partial differential equations and typically require 20 minutes of Cray computer time for a single AC operating point. A technique is presented to extract parameters from a few partial differential equation solutions for the device to create a nonlinear equivalent circuit model which runs in approximately 1 second of personal computer time. This nonlinear equivalent circuit model accurately replicates the contact current properties of the device as computed by the partial differential solver on which it is based. Using the nonlinear equivalent circuit model of the device, optimization of systems design can be performed based on device/circuit interactions.

  17. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments. PMID:26931934

  18. New progress of high current gasdynamic ion source (invited)

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  19. Low Impedance Bellows for High-current Beam Operations

    SciTech Connect

    Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J; Kim, S H

    2012-07-01

    In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

  20. Astro-E2 Magnesium Diboride High Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.

    2003-01-01

    The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.

  1. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  2. High-energy X-ray diffraction of melts and amorphous solids at extreme conditions

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Yu, T.; Wang, Y.; Eng, P. J.; Skinner, L. B.; Stubbs, J.; Prakapenka, V.

    2015-12-01

    The structural analysis of amorphous materials, glasses and liquids at extreme conditions using X-ray diffraction is a very challenging endeavor. The samples are typically very small and surrounded by pressure vessels, which result in a huge background signal which may be orders of magnitude stronger than the actual sample signal. Furthermore, the background signal changes during compression in diamond anvil cells (DAC), making analysis of the diffraction data impossible at large pressures (>60 GPa). A key factor for obtaining high quality structural data is the maximum obtainable Q of the data collection. While at ambient conditions a maximum Q of more than 20 Å-1 has become standard, at high pressures data have been reported and analyzed with a maximum Q as low as 7 Å-1, which significantly reduces the resolution of the obtained real space data for multicomponent systems. In order to overcome those challenges, we have successfully installed a multichannel collimator (MCC) for the DAC setup at APS/GSECARS 13-IDD and for the Paris Edinburgh Press (PEP) at 13-IDC. The MCC leads to a significant increase in signal to background ratio and the background remains almost constant during compression in a DAC and removes the additional diffraction signal from the pressure media in the PEP. The combination of MCC and the high-energy X-ray optics of the 13ID beamline enables data collection of melts, glasses and amorphous materials up to 10 GPa in the PEP with a maximum Q of about 16 Å-1 and the collection of amorphous materials and glasses up to pressures above 150 GPa with a maximum Q of about 13 Å-1, thus, enabling the structural investigation of amorphous materials at much larger pressures than previously achievable. Further, we have developed several new user-friendly software packages for the analysis of X-ray diffraction data with specific data reduction and optimization algorithms for the analysis of amorphous materials at high-pressure. In order to show the

  3. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  4. Part 2. Association of daily mortality with ambient air pollution, and effect modification by extremely high temperature in Wuhan, China.

    PubMed

    Qian, Zhengmin; He, Qingci; Lin, Hung-Mo; Kong, Lingli; Zhou, Dunjin; Liang, Shengwen; Zhu, Zhichao; Liao, Duanping; Liu, Wenshan; Bentley, Christy M; Dan, Jijun; Wang, Beiwei; Yang, Niannian; Xu, Shuangqing; Gong, Jie; Wei, Hongming; Sun, Huilin; Qin, Zudian

    2010-11-01

    conclusion, the findings for the aims from the current study are consistent with those in most previous studies of air pollution and mortality. The small differences between mortality effects for deaths coded using ICD-9 and ICD-10 show that the change in coding had a minimal impact on our study. Few published papers have reported synergistic effects of extremely high temperatures and air pollution on mortality, and further studies are needed. Establishing causal links between heat, PM10, and mortality will require further toxicologic and cohort studies.

  5. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  6. High current photoemission with 10 picosecond uv pulses

    SciTech Connect

    Fischer, J.; Srinivasan-Rao, T.; Tsang, T.

    1990-06-01

    The quantum efficiency and the optical damage threshold of various metals were explored with 10 ps, 266 nm, UV laser pulses. Efficiencies for Cu, Y, and Sm were: 1.4, 5, and 7 {times} 10{sup {minus}4}, with damage thresholds about 100, 10, and 30 mJ/cm{sup 2}. This would permit over 1 {mu}C/cm{sup 2} or current densities exceeding 100 kA/cm{sup 2}. High charge and current densities of up to 66 kA/cm{sup 2} were obtained on 0.25 mm diam cathodes, and 21 kA/cm{sup 2} on a 3 mm diam yttrium cathode. The maximum currents were limited by space charge and the dc field. The experiments with small area illumination indicate that the emitted electrons spread transversely due to Coulomb repulsion and their initial transverse velocity. This increases the effective area above the cathode, reduces the space charge effect and increases emission density on the cathode. The quantum efficiency can be increased substantially by enhancing the field on the surface by either a suitable electrode geometry or microstructures on it. 14 refs., 12 figs., 3 tabs.

  7. A microbeam slit system for high beam currents

    NASA Astrophysics Data System (ADS)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  8. Energetic ion production in high current hollow cathodes

    NASA Astrophysics Data System (ADS)

    Foster, John; Kovach, Yao; Arthur, Neil; Viges, Eric; Davis, Chris

    2015-09-01

    High power Hall and gridded ion thrusters are being considered as a propulsion option supporting human operations (cargo or tug) to Mars. These engines utilize hollow cathodes for plasma production and beam neutralization. It has now been well documented that these cathodes produce energetic ions when operated at high current densities. Such ions are observed with peak energies approaching 100 eV. Because these ions can drive erosion of the cathode assembly, they represent a credible failure mode. An understanding of energetic ion production and approaches to mitigation is therefore desired. Presented here are data documenting the presence of energetic ions for both a barium oxide and a lanthanum hexaboride cathode as measured using a retarding potential analyzer. Also presented are energetic ion mitigation approaches, which are designed to eliminate the ion energy transfer mechanism. NASA SBIR Contract NNX15CP62P.

  9. The Transition to High School: Current Knowledge, Future Directions

    PubMed Central

    2011-01-01

    In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a particular developmental domain (e.g., academics and socioemotional well-being) to the exclusion of a more integrated model. This review relies on life course theory to establish an organizational framework for interpreting and connecting the diffuse and sometimes disparate findings on the high school transition, including adolescent developmental trajectories and the influence of social ties, changing sociocultural contexts, and stratification systems. Conclusions identify aspects for future inquiry suggested by current knowledge and the tenets of the life course perspective. PMID:21966178

  10. Resilience of a High Latitude Red Sea Frining Corals Exposed to Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Moustafa, M.; Moustafa, M. S.; Moustafa, S.; Moustafa, Z. D.

    2013-05-01

    , while minimum daily means at Ein Sokhna were almost equal to those at Ismailia (200 km north). These trends were opposite to what was expected considering each stations geographical locations. The unexpected temperature trends, the daily/half daily dominant frequencies, and the short distance between the mountain range and Zaki's Reef vs. Hurghada (0.5 vs. 35 km), prompted us to hypothesize that a Foehn wind may be responsible for the high air temperatures observed at Ein Sokhna. We applied NOAA's HYSPLIT model to explore local circulation patterns, which suggest that the high mountain range blocks the year-round trade wind and forces it to climb up the western slope, where it loses moisture and reduces its temperature. As this cool, denser air reaches the mountain top, the air parcel starts rolling down the eastern slopes, which causes air temperature to rise and result in an increase in local air temperatures. These warmer than normal air temperatures measured here may aid in securing these northernmost reefs survival. Further scrutiny of the mechanisms by which area reefs are able to thrive extreme environmental conditions continues to be investigated.

  11. Hypothesis testing at the extremes: fast and robust association for high-throughput data

    PubMed Central

    Zhou, Yi-Hui; Wright, Fred A.

    2015-01-01

    A number of biomedical problems require performing many hypothesis tests, with an attendant need to apply stringent thresholds. Often the data take the form of a series of predictor vectors, each of which must be compared with a single response vector, perhaps with nuisance covariates. Parametric tests of association are often used, but can result in inaccurate type I error at the extreme thresholds, even for large sample sizes. Furthermore, standard two-sided testing can reduce power compared with the doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-value, due to asymmetry in the null distribution. Exact (permutation) testing is attractive, but can be computationally intensive and cumbersome. We present an approximation to exact association tests of trend that is accurate and fast enough for standard use in high-throughput settings, and can easily provide standard two-sided or doubled \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-values. The approach is shown to be equivalent under permutation to likelihood ratio tests for the most commonly used generalized linear models (GLMs). For linear regression, covariates are handled by working with covariate-residualized responses and predictors. For GLMs, stratified covariates can be handled in a manner similar to exact conditional testing. Simulations and examples illustrate the wide applicability of the approach. The accompanying mcc package is available on CRAN http://cran.r-project.org/web/packages/mcc/index.html. PMID:25792622

  12. Extreme-ultraviolet beam-foil spectroscopy of highly ionized neon and argon. Doctoral thesis

    SciTech Connect

    Demarest, J.A.

    1986-08-01

    A study of the extreme-ultraviolet radiation emitted by ion beams of highly ionized neon and argon after passage through thin foils was conducted. A grazing-incidence spectrometer was equipped with a position-sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50-mm-wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of - 0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n=2-3,4,5; n=3-4,5,6,7,8; n=4-6,7; and n=5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n=3 states of Ne VIII and Ne IX. An overpopulation of states with low orbital angular momenta support electron-capture predictions by the first-order Born approximation. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavlength region from 355 to 25 A from n=2-2; n=3-4; n=4-5,6,7; and n=6-8. Lifetime determinations were made by the simultaneous measurement of 26 argon lines in the spectral region from 295-180 A. Many of the n=2-2 transitions agreed well with theory.

  13. HIGH-RESOLUTION SIMULATION ON STRUCTURE FORMATION WITH EXTREMELY LIGHT BOSONIC DARK MATTER

    SciTech Connect

    Woo, T.-P.; Chiueh Tzihong E-mail: chiuehth@phys.ntu.edu.tw

    2009-05-20

    A bosonic dark matter model is examined in detail via high-resolution simulations. These bosons have particle mass of the order of 10{sup -22} eV and are noninteracting. If they do exist and can account for structure formation, these bosons must be condensed into the Bose-Einstein state and described by a coherent wave function. This matter, also known as fuzzy dark matter, is speculated to be able, first, to eliminate the subgalactic halos to solve the problem of overabundance of dwarf galaxies, and, second, to produce flat halo cores in galaxies suggested by some observations. We investigate this model with simulations up to 1024{sup 3} resolution in a 1 h {sup -1} Mpc box that maintains the background matter density {omega} {sub m} = 0.3 and {omega}{sub {lambda}} = 0.7. Our results show that the extremely light bosonic dark matter can indeed eliminate low-mass halos through the suppression of short-wavelength fluctuations, as predicted by the linear perturbation theory. But in contrast to expectation, our simulations yield singular cores in the collapsed halos, where the halo density profile is similar, but not identical, to the Navarro-Frenk-White profile. Such a profile arises regardless of whether the halo forms through accretion or merger. In addition, the virialized halos exhibit anisotropic turbulence inside a well-defined virial boundary. Much like the velocity dispersion of standard dark matter particles, turbulence is dominated by the random radial flow in most part of the halos and becomes isotropic toward the halo cores. Consequently, the three-dimensional collapsed halo mass distribution can deviate from spherical symmetry, as the cold dark matter halo does.

  14. Extremely high ferritin level after an acute myocardial infarction in an end stage renal disease patient.

    PubMed

    Sandhu, Gagangeet; Mankal, Pavan; Gupta, Isha; Tagani, Adrian; Ranade, Aditi; Jones, James; Bansal, Anip

    2014-07-01

    We present here a case of an asymptomatic end-stage renal disease (ESRD) patient, who had an unexplained persistent mild leukocytosis in the setting of an extremely high ferritin level (8,997 ng/ml; reference range: 12 - 300 ng/ml) 3 weeks after she suffered from a myocardial infarction (MI). Infection as the cause of these laboratory abnormalities was ruled out. A week later, the patient was noted to have asymptomatic hypotension (100/60 mmHg; her baseline blood pressure was 120/70 mmHg) during a maintenance hemodialysis session. An echocardiography revealed an interval development of moderate pericardial effusion when compared to her previous echocardiography 4 weeks before. In the setting of a recent MI with other laboratory markers suggesting an ongoing inflammatory process, a tentative diagnosis of Dressler's syndrome was made. A pericardial tap yielded exudative (bloody) fluid, thus, confirming our suspicion. Dressler's syndrome results from an inflammation of the pericardium as a consequence of an underlying autoimmune process few weeks to months after a myocardial infarction or post-cardiac surgery. Although it typically presents with pleuritic chest pain, fever, leukocytosis, and a friction rub; our case illustrates that the initial presentation may be asymptomatic in ESRD patients. For the same reason, it is likely an under-recognized entity in such patients. An unexplained elevated ferritin in an ESRD patient with recent history of MI should prompt an investigation for Dressler's syndrome. In those with associated significant pericardial effusion, daily HD should be initiated and anticoagulation should be avoided. Unlike other ESRD associated pericarditis, steroids and NSAIDs should be avoided in Dressler's syndrome as they may hamper cardiac remodeling in the immediate post-MI period. Colchicine may offer some benefit in patients with associated chest pain. For those failing medical management or manifesting overt signs of tamponade, surgical drainage

  15. A high-resolution beam profile measuring system for high-current ion implanters

    NASA Astrophysics Data System (ADS)

    Fujishita, N.; Noguchi, K.; Sasaki, S.; Yamamoto, H.

    1991-04-01

    A high-resolution beam profile measuring system (BPM) has been developed to analyze the correlation between charging damage and the ion beam profile for high-current ion implanters. With the increase of the ion beam current, insulators such as thin oxide layers of VLSI devices are subject to charging damage during ion implantation. To obtain accurate information on the local current density of the ion beam, 125 Faraday cups are placed in the BPM. This system has two measuring modes. One is a topographic mode that can detect the ion beam current density of 12500 sampling points in 30 s. A high-resolution contour map of the current density distribution is displayed on a CRT. The other is a real-time mode in which the current density distribution (125 sampling points) of the ion beam can be monitored every half second on the CRT. In this mode, fine adjustment of the ion beam profile is easily possible by visual control. The charging damage of insulating layers in the TEG (test element group) to the beam profile was investigated using this newly developed BPM. It has been proven that the damage probability increases rapidly above some threshold level of the beam current density. It is confirmed that for high-current implantation a uniform current density distribution of the ion beam is very effective to prevent charging damage. It is concluded that this measuring system is valuable not only for quick analysis of damage phenomena, but also for evaluating machine performance.

  16. High Current Cathodes Fabricated by KrF Laser Ablation

    SciTech Connect

    Gilgenbach, Ronald M.; Lau, Y. Y.; Jones, M. C.; Johnston, M. D.; Jordan, N. M.; Hoff, B. W.

    2010-10-08

    In this paper we review several high power laser ablation techniques that have been utilized to fabricate high current (1-80 kA) electron beam cathodes for accelerators and microwave sources: 1) Projection Ablation Lithography (PAL) cathodes, 2) Ablation Line Focus (ALF) cathodes, and 3) Metal-Oxide-Junction (MOJ) cathodes. Laser-ablative micromachining techniques (PAL and ALF) have been utilized to generate micron-scale features on metal substrates that provide electric field (beta) enhancement for Fowler-Nordheim emission and plasma cathodes. Since these laser-ablated patterns are directly, laser-written on the substrate metal they exhibit much higher thermal conductivity for higher current capability and increased damage thresholds. Metal-Oxide-Junction (MOJ) cathodes exploit the triple-point electron emission that occurs at the interface between metal, insulator and vacuum.The ablation laser is a KrF excimer laser with a pulse energy of 600 mJ and pulselength of 20 ns. Cathode experiments were performed on the MELBA-C accelerator: V = -300 kV, pulselength = 0.5 microsecond. Data will be presented for PAL, ALF and MOJ cathodes.

  17. Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency.

    PubMed

    Chen, Dongcheng; Xie, Gaozhan; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian

    2016-01-13

    Fluorescent organic light-emitting diodes capable of radiative utilization of both singlet and triplet excitons are achieved via a simple double-layer planar pn hetero-junction configuration without a conventional emission layer, leading to high external quantum efficiency above 10% and extremely low driving voltages close to the theoretical minima.

  18. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    SciTech Connect

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-06-11

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. In this article, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s-1 is generated at 22.3 eV, with 5 × 10-5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Finally, spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications.

  19. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  20. Catheter-directed thrombectomy and thrombolysis for symptomatic lower-extremity deep vein thrombosis: review of current interventional treatment strategies.

    PubMed

    Lin, Peter H; Ochoa, Lyssa N; Duffy, Patrick

    2010-09-01

    Deep vein thromboses (DVT) along with its clinical sequelae represent a major health care challenge in our society. An acute massive DVT can result in pulmonary embolism resulting in sudden death. Although oral or systemic anticoagulation therapy may minimize thrombus propagation, it remains ineffective in removing thrombus burden and consequently does not prevent postthrombotic syndrome. Recent advances in catheter-based interventions have led to the development of a variety of minimally invasive endovascular strategies to remove venous thrombi. These technologies use various principles, including catheter-directed thrombolytic infusion, rheolytic thrombectomy, mechanical fragmentation, or ultrasound energy to remove intraluminal thrombi. This article reviews the current advances in this technology and discusses the techniques of percutaneous treatment strategies of venous thrombotic conditions using various devices, including the AngioJet Power Pulse system, Trellis, and ultrasound-accelerated EkoSonic system. Finally, the authors' institutional experiences using these interventional treatment strategies in patients with acute and chronic DVT are discussed.

  1. [Injury mechanisms in extreme violence settings].

    PubMed

    Arcaute-Velazquez, Fernando Federico; García-Núñez, Luis Manuel; Noyola-Vilallobos, Héctor Faustino; Espinoza-Mercado, Fernando; Rodríguez-Vega, Carlos Eynar

    2016-01-01

    Extreme violence events are consequence of current world-wide economic, political and social conditions. Injury patterns found among victims of extreme violence events are very complex, obeying several high-energy injury mechanisms. In this article, we present the basic concepts of trauma kinematics that regulate the clinical approach to victims of extreme violence events, in the hope that clinicians increase their theoretical armamentarium, and reflecting on obtaining better outcomes.

  2. Scalable large-area solid-state neutron detector with continuous p-n junction and extremely low leakage current

    NASA Astrophysics Data System (ADS)

    Huang, Kuan-Chih; Dahal, Rajendra; Lu, James J.-Q.; Weltz, Adam; Danon, Yaron; Bhat, Ishwara B.

    2014-11-01

    We report on the fabrication and characterization of solid-state thermal neutron detectors with detection areas up to 16 cm2 that require only a single preamplifier for data acquisition. These detectors consist of a honeycomb-like micro-structured Si diode with boron-10 filled deep holes. A continuous p-n junction formed over the entire surface of the microstructure helps to achieve a low leakage current density of ~6.1×10-9 A/cm2 at -1 V for a 2.5×2.5 mm2 detector. This low leakage current results in low electronic noise, which enables the fabrication of large-area detectors. An intrinsic thermal neutron detection efficiency of up to 26% was measured for a 2.5×2.5 mm2 detector module and up to 24% was measured for a 1 cm2 detector module. These measurements were obtained under zero bias voltage using a moderated californium-252 source. The relative efficiency remains almost the same when scaling the detector area up to 8 cm2 by connecting 1 cm2 detector modules in series. However, it decreases to 0.89 and 0.82, respectively, for 12 and 16 cm2. Nevertheless, these results demonstrate the promise of using boron filled micro-structured Si diodes as a cost effective alternative to the helium-3 based neutron detection technology and the potential of fabricating scalable large-area solid-state neutron detectors that are desirable for many applications.

  3. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    SciTech Connect

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  4. [Current Trends in Radiotherapy Following Surgical Resection of Soft-tissue Sarcoma of the Extremities and Trunk].

    PubMed

    Kraus-Tiefenbacher, U S; Van Kampen, M

    2015-04-01

    Besides surgery, radiotherapy plays its well-established part in the multimodality treatment of soft-tissue sarcomas. It can be delivered before or after surgery with similar control rates. Adjuvant radiotherapy increases the local control rates as well as the overall survival in intermediate or high-grade soft-tissue sarcomas. Due to the complex and sophisticated nature of the treatment, patients should be referred to specialised centres where modern radiotherapeutic options like intensity modulated radiotherapy and image-guided radiotherapy can be offered.

  5. Lower hybrid current drive in a high density diverted tokamak

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Hubbard, A. E.; Shiraiwa, S.; Bonoli, P. T.; Faust, I. C.; Harvey, R. W.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Meneghini, O.; Parker, R. R.; Reinke, M. L.; Schmidt, A. E.; Smirnov, A. P.; Terry, J. L.; Whyte, D. G.; Wilson, J. R.; Wright, J. C.; Wukitch, S. J.

    2011-12-01

    Experimental observations of LHCD at high density (n¯e>1020m˜3) on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops sharply in single null discharges well below the density limit previously observed on limited tokamaks (ω/ωLH˜2). Modeling and experimental evidence suggest that the absence of LH driven fast electrons at high density may be due to collisional absorption in the scrape off layer. Experiments show that the expected current drive density dependence is recovered for inner wall limited discharges across the range of densities scanned (0.5×1020m-3high n¯e. Ray tracing/Fokker-Planck simulations of these discharges predict the observed sensitivity to plasma position when the effects of collisional absorption in the SOL are included in the model.

  6. Current status of the advanced high temperature reactor

    SciTech Connect

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  7. Current Status of the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  8. Extreme Weight-Control Behaviors and Suicide Risk among High School Students

    ERIC Educational Resources Information Center

    Johnson, Emily R.; Weiler, Robert M.; Barnett, Tracey E.; Pealer, Lisa N.

    2016-01-01

    Background: Suicide is the third leading cause of death for people ages 15-19. Research has established an association across numerous risk factors and suicide, including depression, substance abuse, bullying victimization, and feelings of alienation. However, the connection between disordered eating as manifested in extreme weight-control…

  9. Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Hamann, Fred; Pâris, Isabelle; Brandt, W. N.; Greene, Jenny E.; Strauss, Michael A.; Villforth, Carolin; Wylezalek, Dominika; Alexandroff, Rachael M.; Ross, Nicholas P.

    2016-07-01

    Black hole feedback is now a standard component of galaxy formation models. These models predict that the impact of black hole activity on its host galaxy likely peaked at z = 2-3, the epoch of strongest star formation activity and black hole accretion activity in the Universe. We used XSHOOTER on the Very Large Telescope to measure rest-frame optical spectra of four z ˜ 2.5 extremely red quasars with infrared luminosities ˜1047 erg s-1. We present the discovery of very broad (full width at half max = 2600-5000 km s-1), strongly blueshifted (by up to 1500 km s-1) [O III] λ5007 Å emission lines in these objects. In a large sample of type 2 and red quasars, [O III] kinematics are positively correlated with infrared luminosity, and the four objects in our sample are on the extreme end in both [O III] kinematics and infrared luminosity. We estimate that at least 3 per cent of the bolometric luminosity in these objects is being converted into the kinetic power of the observed wind. Photo-ionization estimates suggest that the [O III] emission might be extended on a few kpc scales, which would suggest that the extreme outflow is affecting the entire host galaxy of the quasar. These sources may be the signposts of the most extreme form of quasar feedback at the peak epoch of galaxy formation, and may represent an active `blow-out' phase of quasar evolution.

  10. Further Evidence on the "Costs of Privilege": Perfectionism in High-Achieving Youth at Socioeconomic Extremes

    ERIC Educational Resources Information Center

    Lyman, Emily L.; Luthar, Suniya S.

    2014-01-01

    This study involved two academically-gifted samples of 11th and 12th grade youth at the socioeconomic status (SES) extremes; one from an exclusive private, affluent school, and the other from a magnet school with low-income students. Negative and positive adjustment outcomes were examined in relation to multiple dimensions of perfectionism…

  11. Current-matched high-efficiency, multijunction monolithic solar cells

    SciTech Connect

    Olson, J.M.; Kurtz, S.R.

    1993-06-29

    A high-efficiency multijunction photovoltaic solar cell is described, consisting essentially of: a top semiconductor cell fabricated from Ga[sub x]In[sub l[minus]x]P wherein x is (0 < x < 0.5) a light-sensitive n/p homojunction therein for absorbing higher energy photons; a bottom semiconductor cell fabricated from GaAs with a light sensitive n/p homojunction therein for absorbing lower energy photons; and wherein the top cell thickness is optimized by thinning to from 0.5 to 1.7 microns and less than the bottom cell thickness in order to provide current matching between the top cell and the bottom cell in order to obtain improved conversion efficiency, a low-resistance attachment between the top cell and the bottom cell, wherein the top cell is lattice matched to the bottom cell; and electrical contact means attached to opposite sides of the solar cell to conduct current away from and into the solar cell.

  12. High-speed low-current-density 850 nm VCSELs

    NASA Astrophysics Data System (ADS)

    Larsson, Anders; Westbergh, Petter; Gustavsson, Johan; Haglund, Åsa

    2010-02-01

    The design of an oxide confined 850 nm VCSEL has been engineered for high speed operation at low current density. Strained InGaAs/AlGaAs QWs, with a careful choice of In and Al concentrations based on rigorous band structure and gain calculations, were used to increase differential gain and reduce threshold carrier density. Various measures, including multiple oxide layers and a binary compound in the lower distributed Bragg reflector, were implemented for reducing capacitance and thermal impedance. Modulation bandwidths > 20 GHz at 25°C and > 15 GHz at 85°C were obtained. At room temperature, the bandwidth was found to be limited primarily by the still relatively large oxide capacitance, while at 85°C the bandwidth was also limited by the thermal saturation of the resonance frequency. Transmission up to 32 Gb/s (on-off keying) over multimode fiber was successfully demonstrated with the VCSEL biased at a current density of only 11 kA/cm2. In addition, using a more spectrally efficient modulation format (16 QAM subcarrier multiplexing), transmission at 40 Gb/s over 200 m multimode fiber was demonstrated.

  13. Mevva development for the new GSI high-current injector

    SciTech Connect

    Wolf, B.H.; Emig, H.; Spaedtke, P.

    1996-08-01

    To increase the intensity of the heavy ion synchrotron SIS for heavy elements by a factor of {approximately}50, a new prestripper accelerator is planned for Unilac and the heavy ion synchrotron SIS. It is designed to accept ions with mass/charge {le} 65 and an injection energy of 2.2 keV/u. A vacuum arc ion source with a strong axial magnetic field will deliver 15 mA of U{sup 4+} as heaviest element at a repetition rate of 1 Hz and a pulse length of 300 {mu}s. The investigation of the Mevva ion source with pulsed magnetic field of several kGauss have shown that ion currents of 8 mA U{sup 4+} can be measured at the authors test bench after 5m of transport and charge analysis (transmission at the test bench 25% only). The noise on the extracted ion beam was already {le}25%, a value similar to the Pig ion source in the sputter mode, but efficient high current beam transport probably requests further improvements.

  14. Quantitative methods for stochastic high frequency spatio-temporal and non-linear analysis: Assessing health effects of exposure to extreme ambient temperature

    NASA Astrophysics Data System (ADS)

    Liss, Alexander

    Extreme weather events, such as heat waves and cold spells, cause substantial excess mortality and morbidity in the vulnerable elderly population, and cost billions of dollars. The accurate and reliable assessment of adverse effects of extreme weather events on human health is crucial for environmental scientists, economists, and public health officials to ensure proper protection of vulnerable populations and efficient allocation of scarce resources. However, the methodology for the analysis of large national databases is yet to be developed. The overarching objective of this dissertation is to examine the effect of extreme weather on the elderly population of the Conterminous US (ConUS) with respect to seasonality in temperature in different climatic regions by utilizing heterogeneous high frequency and spatio-temporal resolution data. To achieve these goals the author: 1) incorporated dissimilar stochastic high frequency big data streams and distinct data types into the integrated data base for use in analytical and decision support frameworks; 2) created an automated climate regionalization system based on remote sensing and machine learning to define climate regions for the Conterminous US; 3) systematically surveyed the current state of the art and identified existing gaps in the scientific knowledge; 4) assessed the dose-response relationship of exposure to temperature extremes on human health in relatively homogeneous climate regions using different statistical models, such as parametric and non-parametric, contemporaneous and asynchronous, applied to the same data; 5) assessed seasonal peak timing and synchronization delay of the exposure and the disease within the framework of contemporaneous high frequency harmonic time series analysis and modification of the effect by the regional climate; 6) modeled using hyperbolic functional form non-linear properties of the effect of exposure to extreme temperature on human health. The proposed climate

  15. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  16. Design of a proof of principle high current transport experiment

    SciTech Connect

    Lund, S.M.; Bangerter, R.O.; Barnard, J.J.; Celata, C.M.; Faltens, A.; Friedman, A.; Kwan, J.W.; Lee, E.P.; Seidl, P.A.

    2000-01-15

    Preliminary designs of an intense heavy-ion beam transport experiment to test issues for Heavy Ion Fusion (HIF) are presented. This transport channel will represent a single high current density beam at full driver scale and will evaluate practical issues such as aperture filling factors, electrons, halo, imperfect vacuum, etc., that cannot be fully tested using scaled experiments. Various machine configurations are evaluated in the context of the range of physics and technology issues that can be explored in a manner relevant to a full scale driver. it is anticipated that results from this experiment will allow confident construction of next generation ''Integrated Research Experiments'' leading to a full scale driver for energy production.

  17. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  18. PENETRATION AND DEFECT FORMATION IN HIGH CURRENT ARC WELDING

    SciTech Connect

    MENDEZ,P.F.; EAGAR, T.W.

    2003-01-01

    The work performed during the three previous years can be roughly divided into two main categories: (1) development of advanced modeling techniques; and (2) modeling of arc welding process. The work in the first category comprised the development of the Order of Magnitude Scaling (OMS) technique, which is complementary to numerical modeling techniques such as finite elements, but it provides approximate formulas instead of just numerical results. Borrowing concepts from OMS, another modeling technique based on empirical data was also developed. During this stage special software was also developed. The second category comprised the application of OMS to the three main subsystems of arc welding: the weld pool, the arc, and the electrode. For each of these subsystems they found scaling laws and regimes. With this knowledge, they analyzed the generation of weld pool defects during high current arc welding, proposed a mechanistic description of the process, and possible solutions.

  19. Aerosol and CCN Concentrations under Extremely High DMS Levels over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brooks, S. D.; Thornton, D. C.; Bell, T. G.; Saltzman, E. S.; De Bruyn, W. J.

    2013-12-01

    Despite numerous studies since the CLAW hypothesis was first suggested in 1987, the extent to which marine phytoplankton derived dimethyl sulfide (CH3SCH3, DMS) contributes to marine atmospheric aerosol populations and the ability of those aerosols to act as cloud condensation nuclei (CCN) remains unclear, especially over oceanic areas obviously influenced by continental sources. Here, we present data from a cruise aboard the R/V Knorr over the North Atlantic during June-July 2011which passed through areas of both high and low phytoplankton biomasses, as well as intermediate primary production bloom regions where extremely high DMS concentrations (over 1800 pptv) were observed. Continuous ambient measurements of aerosol concentration, cloud condensation nuclei (CCN) concentration, aerosol particle size distributions, and surface seawater and atmospheric dimethyl sulfide (DMS) concentrations were performed simultaneously during the three-week-cruise. Throughout the cruise, CCN concentrations were measured at a series of five supersaturation levels and used to derive the critical supersaturation required for aerosols to activate as CCN. Air masses have been classified into three different categories based on the 48-hr back trajectories, i.e., air mass influenced by continents, coasts and the open ocean. Aerosol concentrations have noticeably different patterns depending on the air mass paths. Continually high CCN and aerosol concentrations had been found to coincide with high DMS concentration over the open ocean, which may be explained by the nucleation and condensational growth in marine boundary layer (MBL) resulting from the oxidation products of DMS or primary aerosols from the sea surface. Calculation of DMS oxidation rates based on the variation of DMS in the lower atmosphere and sea-to-air flux measurement during the whole cruise verified that the influence of continental sources on marine atmosphere is significant during the majority of sample times

  20. Enabling Astronomy in the Extremes: Developing the Antarctic High Plateau for Science

    NASA Astrophysics Data System (ADS)

    Burton, Michael

    2015-08-01

    The high plateau of Antarctica provides the driest, coldest and most stable environment on the Earth's surface, facets that facilitate astronomical observations. New windows are opened in the atmosphere in the terahertz bands, low sky backgrounds improve sensitivities across the infrared bands, and the stability enables precision photometry. Of course, the Antarctic high plateau is a challenging environment for humans to work in, logistics is difficult and access only possible for limited periods of the year. Operation is akin to space, albeit at less cost, using robotic facilities installed and serviced over the summer months.This talk will discuss astronomical developments on the Antarctic high plateau, in particular at its highest location, Dome A and the nearby Ridge A. At the former China is building the Kunlun Observatory, with mid-scale facilities for IR and THz astronomy planned. Currently a series of pathfinder optical / IR telescopes are in operation and being developed (the three 50cm AST telescopes). At Ridge A, the 60cm HEAT telescope is in operation, surveying the Galactic plane at 0.5 and 0.8 THz.

  1. Changes in extreme high-temperature tolerance and activities of antioxidant enzymes of sacred lotus seeds.

    PubMed

    Ding, YanFen; Cheng, HongYan; Song, SongQuan

    2008-09-01

    Sacred lotus (Nelumbo nucifera Gaertn. 'Tielian') seed is long-lived and extremely tolerant of high temperature. Water content of lotus and maize seeds was 0.103 and 0.129 g H2O [g DW](-1), respectively. Water content, germination percentage and fresh weight of seedlings produced by surviving seeds gradually decreased with increasing treatment time at 100 degrees C. Germination percentage of maize (Zea mays L. 'Huangbaogu') seeds was zero after they were treated at 100 degrees C for 15 min and that of lotus seeds was 13.5% following the treatment at 100 degrees C for 24 h. The time in which 50% of lotus and maize seeds were killed by 100 degrees C was about 14.5 h and 6 min, respectively. With increasing treatment time at 100 degrees C, relative electrolyte leakage of lotus axes increased significantly, and total chlorophyll content of lotus axes markedly decreased. When treatment time at 100 degrees C was less than 12 h, subcellular structure of lotus hypocotyls remained fully intact. When treatment time at 100 degrees C was more than 12 h, plasmolysis gradually occurred, endoplasmic reticulum became unclear, nuclei and nucleoli broke down, most of mitochondria swelled, lipid granules accumulated at the cell periphery, and organelles and plasmolemma collapsed. Malondialdehyde (MDA) content of lotus axes and cotyledons decreased during 0 -12 h of the treatment at 100 degrees C and then increased. By contrast, the MDA content of maize embryos and endosperms increased during 5-10 min of the treatment at 100 degrees C and then decreased slightly. For lotus seeds: (1) activities of superoxide dismutase (SOD) and glutathione reductase (GR) of axes and cotyledons and of catalase (CAT) of axes increased during the early phase of treatment at 100 degrees C and then decreased; and (2) activities of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) of axes and cotyledons and of CAT of cotyledons gradually decreased with increasing treatment time at 100 degrees

  2. Temporal Changes in Extreme High Temerature, Heat Waves in Istanbul Between 1960-2014

    NASA Astrophysics Data System (ADS)

    Yürük, C.; Ünal, Y. S.; Bilgen, S. I.; Menteş, Ş. S.; İncecik, S.

    2015-12-01

    Climate change has crucial effects on cities and especially for informal settlements, urban poor and other vulnerable groups by influencing human health, assets and livelihoods. These impacts directly result from the variations in temperature and precipitation, and emergence of heat waves, droughts, floods and fires (IPCC, 2014). Summertime episodes with extremely high air temperatures which last for several days or longer are addressed to as heat waves and affect the weather and climate in the globe. The aim of this study is to analyze the occurrence of heat waves in terms of quantity, duration and frequency and also to evaluate the accuracy of the COSMO-CLM (CCLM) model in reproducing the characteristics of heat waves in Istanbul. The summer maximum temperatures of six Turkish State Meteorological Service (TSMS) stations are selected between 1960 and 2014 to estimate the characteristics of heat waves in Istanbul. We define the heat wave if the maximum temperatures exceed a threshold value for at least three consecutive days. The threshold value is determined as 30.5 from the 90th percentile of all six station's observations. Then it is used in the detection of the hot days, heat waves and their durations. The results show that not only the number of heat waves but also duration of heat waves increase towards the end of the study period. Especially, a significant increase in heat wave events is evident after 1990s. In 2012, the number of hot days reaches the maximum value in all stations and Kartal station located southern part of city, has the highest value of 60 hot days. Furthermore, Kartal as an urban area in the Asian side of the city, exhibits highest heat wave duration with 18 consecutive days in 1998. To estimate the relationship between urban heat island intensity and the heat waves, we examined data at 43 stations collected by Disaster Coordination Center and TSMS between 2007 and 2012. Urban heat island phenomenon is found to be related to higher

  3. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  4. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  5. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  6. Flux pinning in high-current-density superconductors

    SciTech Connect

    Freyhardt, H.

    1983-05-01

    A major application of superconducting wire materials is the generation of magnetic fields, often in large volumes, with particular strenth, homogeneity, and field gradients. To fabricate superconductors which can carry high current densities at high temperatures and fields, flux pinning, by crystal inhomogeneities, must be understood. This paper attempts to answer two questions about flux pinning. The first addresses the nature and strenght of the elementary interaction force (f) between one flux line (FL) and one obstacle; the second, the correct summation of these elementary interactions between the obstacles in a unit volume and the FL to the (total) volume pinning force F /SUB v/ = B X J /SUB c/ . The discussion is confined to NbTi and A15 superconductors such as Nb/sub 3/Sn and V/sub 3/Ga. Important pinning sites in these superconductors are dislocation walls, precipitates, small inclusions, voids, grain boundaries, and bubbles. A series of mathematical models which have been used in the past are presented and synthesized into a more sophisticated explanation of pinning.

  7. A high energy Space Station (HESS) array for studying extremely energetic cosmic rays

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Streitmatter, R. E.

    1985-01-01

    The scientific aims and design concept of a High-Energy Space Station (HESS) cosmic-ray detector array are discussed. The current state of knowledge on cosmic-ray acceleration and high-energy interactions is briefly reviewed, and the need for observations yielding elemental composition and spectra in the 10-10,000-TeV/nucleon range is demonstrated. It is predicted that 2 yr of observations with a space-borne detector of geometry factor 30 sq m sr would provide adequate data to determine the acceleration mechanism (by comparing the energy level at which the spectra of He nuclei and protons break). A modular HESS array comprising W/scintillator/PM-tube calorimeter modules and Cerenkov charge-sensitive detector modules and weighing about 30 tonnes is described. The array could be assembled on orbit after transport in the Space Shuttle cargo bay, and data could be taken as soon as one or two layers of modules had been attached to the mounting-frame/support-electronics unit.

  8. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  9. Extremely Preterm Born Children at Very High Risk for Developing Autism Spectrum Disorder.

    PubMed

    Verhaeghe, Liedewij; Dereu, Mieke; Warreyn, Petra; De Groote, Isabel; Vanhaesebrouck, Piet; Roeyers, Herbert

    2016-10-01

    This study aimed to provide a more comprehensive picture of the prevalence of autism spectrum disorder (ASD) in a geographic cohort of extremely preterm born adolescents by using established diagnostic instruments in addition to screening instruments. 53 participants passed a screening procedure with two screening instruments and a diagnostic evaluation with a semi-structured assessment and a parent interview. 28 % of the adolescents had a community based clinical diagnosis of ASD. When research diagnoses were also taken into account, this rate increased to 40 %. Intellectual disability, language impairment and behavioural difficulties are characteristic for these children with ASD. This study is to our knowledge the first to use ASD-specific diagnostic instruments to confirm ASD diagnoses in extremely preterm born children in early adolescence. The study expands findings of previous research and raises the need for follow-up into late childhood and early adolescence. PMID:26546379

  10. Simulated Extreme Prepitation Indices over Northeast Brasil in Current Climate and Future Scenarios RCP4.5 and RCP8.5

    NASA Astrophysics Data System (ADS)

    Wender Santiago Marinho, Marcos; Araújo Costa, Alexandre; Cassain Sales, Domingo; Oliveira Guimarães, Sullyandro; Mariano da Silva, Emerson; das Chagas Vasconcelos Júnior, Francisco

    2013-04-01

    In this study, we analyzed extreme precipitation indices, for present and future modeled climates over Northeast of Brazil (NEB), from CORDEX simulations over the domain of Tropical Americas. The period for the model validation was from 1989-2007, using data from the European Center (ECWMF) Reanalysis, ERA-INTERIM, as input to drive the regional model (RAMS 6.0). Reanalysis data were assimilated via both lateral boundaries and the entire domain (a much weaker "central nudging"). Six indices of extreme precipitation were calculated over NEB: the average number of days above 10, 20 and 30 mm in one year (R10, R20, R30), the number of consecutive dry days (CDD), the number of consecutive wet days (CWD) and the maximum rainfall in five consecutive days (RX5). Those indices were compared against two independent databases: MERRA (Modern Era Retrospective analysis for Research and Applications) and TRMM (Tropical Rainfall Measuring Mission). After validation, climate simulations were performed for the present climate (1985-2005) and short-term (2015-2035), mid-term (2045-2065) and long-term (2079 to 2099) future climates for two scenarios: RCP 4.5 and RCP 8.5, nesting RAMS into HadGEM2-ES global model (a participant of CMIP5). Along with the indices, we also calculated Probability Distribution Functions (PDFs) to study the behavior of daily precipitation in the present and by the end of the 21st century (2079 to 2099) to assess possible changes under RCPs 4.5 and 8.5. The regional model is capable of representing relatively well the extreme precipitation indices for current climate, but there is some difficulties in performing a proper validation since the observed databases disagree significantly. Future projections show significant changes in most extreme indices. Rnn generally tend to increase, especially under RCP8.5. More significant changes are projected for the long-term period, under RCP8.5, which shows a pronounced R30 enhancement over northern states. CDD tends

  11. Current State of the Art in High Brightness LEDs

    NASA Astrophysics Data System (ADS)

    Craford, George

    2007-03-01

    LED's have been commercially available since the 1960's. For many years they were used primarily for indicator applications. The remarkable increase in materials technology and efficiency that has been achieved since the early 1990's for AlInGaP red and amber LEDs, and InGaN green and blue LEDs, has enabled the penetration of markets such as outdoor display, signaling, and automotive brake light and turn signal applications. White LEDs, which are either blue LEDs combined with a phosphor, or a combination of red, green, and blue LEDs, are being used in emerging applications such as cell phone flash, television backlights, projection, and automotive headlights. In addition, to efficiency improvements these applications have required the development of higher power packages and, in some of these applications which are etendue limited, higher luminance devices. High power devices are commercially available which are capable of 140 lumens output and have an efficacy of around 70 lm/W for white emission. New package and chip technologies have been demonstrated which have a luminance of 38 mega nits (Mcd/m^2), approximately 50% more luminance than that of an automotive headlamp halogen bulb (˜25 mega nits). The recent progress in materials technology, packaging, and chip technology makes it clear that LED's will become important for general illumination applications. The rate of LED penetration of this market will depend upon continued increases in performance and lower costs as well as better control of the white spectral emission. Efficiency, current density, and costs are closely linked because the cost in dollars/lumen is inversely proportional to how many lumens can be realized from each unit of device area for a given device type. Performance as high as 138 lm/W, and over 40% wall plug efficiency, has been reported for low power research devices and over 90 lm/W for high power research devices. It is clear that high power commercial products with performance in

  12. Phytoplankton dynamics and blooms: study of the spectral dynamics and extreme intensities using high frequency data

    NASA Astrophysics Data System (ADS)

    Derot, J.; Schmitt, F. G.; Gentilhomme, V.; Zongo, S.

    2012-12-01

    We consider in this study the fluorescence time series from an automatic measuring buoy in the Eastern English Channel (Boulogne-sur-mer, France). The data are recorded at an automatic station equipped with physic-chemical measuring devices with time resolution of 20 minutes. The fluorescence data are measured from 2004 to present and the fluorescence sensor covers measurement from 0 up to 50 FFU. The fluorescence data from 2004 to 2012 reveal very large fluctuations at all scales showing the different intensities that are often associated with phytoplankton blooms. We consider the dynamics by studying the Fourier power-law regimes and also by using empirical mode decomposition of the time series. In order to consider the extremes, we estimate the probability density function of fluorescence and characterize its extremes by comparing lognormal and power law fits. We finally perform year-by-year analyses of the dynamics and extreme statistics, in order to obtain universal behaviour in relation with mean annual abundance.

  13. Upper extremity blood flow in collegiate and high school baseball pitchers A preliminary report.

    PubMed

    Bast, S C; Perry, J R; Poppiti, R; Vangsness, C T; Weaver, F A

    1996-01-01

    The arterial and venous volume blood flow in the dominant and nondominant upper extremities of five male pitchers, ages 16 to 21, was measured using color flow duplex ultrasound. Blood-flow measurements were obtained at baseline, after warm-up, and after each sequence of 20 pitches until 100 pitches were thrown. Blood flow was additionally determined 1 hour after the last pitch. The velocity of each pitch was recorded with a speed gun. Anthropomorphic measurements of the upper extremity were obtained at baseline and immediately after Pitch 100 using a standard measuring tape. The highest average arterial volume flow in the pitching arm occurred after 40 pitches, reaching a peak of 549 ml/min (56% increase from baseline). Thereafter, the average arterial blood flow steadily declined, reaching an average of 402 ml/min after the 100th pitch (14% increase from baseline). In contrast, the arterial blood flow in the nonpitching arm increased only slightly from baseline, reaching a maximal volume flow of 448 ml/min immediately after the warm-up period (10% increase from baseline). The volume flow then persistently fell to a level 30% below baseline after the 100th pitch. Although this small pilot study does not demonstrate causation between a decline in pitching performance and arterial blood flow, it suggests arterial flow in the dominant extremity falls as the pitch count increases.

  14. Does the shift to higher capacities for isoprene emission at extreme temperatures in some oak species reflect acclimation to extreme drought and high temperature conditions?

    NASA Astrophysics Data System (ADS)

    Barta, C.; Gramann, J. H.; White, S. L.; Schade, G. W.

    2013-12-01

    decrease of 40% in the sensitive species. As opposed to 2011, the above average precipitation in the first months of 2012, allowed for recovery in both studied species. Photosynthesis rates were maintained at optimum levels throughout the summer of 2012, while standard isoprene emission rates completely recovered in the resistant Q.stellata. Photosynthesis and isoprene emission of the sensitive Q. nigra recovered only partially. Isoprene emission response to increasing temperatures in Q. stellata indicated a shift to higher capacities for isoprene emission at extreme temperatures, exceeding current model predictions during all three years, possibly reflecting an adaptation to the local climate. Additionally, in 2012 and 2013 we recorded a further shift of 3-5°C in the optimum temperature for isoprene emission in this species. We hypothesize, that these responses are due to the evolution of a more thermo-tolerant isoprene synthase enzyme in this species. For comparison, the sensitive species' emissions decreased above 40°C, as predicted by models.

  15. Compact high current generator for x-ray radiography

    NASA Astrophysics Data System (ADS)

    Kharlov, A. V.; Kovalchuk, B. M.; Zorin, V. B.

    2006-12-01

    We report here a design of the portable high current generator, which can be used for a row of experiments and applications, including, but not limited to, X pinch, plasma focus, vacuum spark, etc. The X generator consists of the capacitor bank, multigap spark switch, load chamber, and built-in high voltage triggering generator. The capacitor bank consists of 12 General Atomics 35404 type capacitors (20nF, 25nH, 0.2Ω, 100kV). It stores ˜0.8kJ at 80kV charging voltage. Each three capacitors are commuted to a load by the multigap spark switch, which is able to commute by eight parallel channels. Switches operate in ambient air at atmospheric pressure. At 76kV charging voltage the generator provides ˜260kA with 120ns rise time and 5nH inductive load and ˜220kA with 145ns rise time and 10nH. Delay of output pulse relative to high voltage triggering pulse is ˜65ns with 5ns jitter. The dimensions of the generator are 1240×1240×225mm3 and the weight is ˜250kg, and only one high voltage power supply is required as additional equipment for the generator. The generator with a pumping system is placed on area about 0.5m2. Operation and handling are very simple, because no oil nor purified gases are required for the generator. The X generator has been successfully employed for experiments on the Ni X pinch load. X-ray pulse duration (full width at half maximum above 1keV) was about 5ns. Radiation yield Wr⩾500mJ was observed in the 1.2-1.5KeV range and Wr⩾20mJ in the 3-5keV energy range, which is comparable to results, obtained on the nanosecond accelerators. Clearly resolved images of 6μm wire indicate micron level size of hot spot. These results demonstrate possibility of this generator for application for x-ray backlighting.

  16. Compact high current generator for x-ray radiography

    SciTech Connect

    Kharlov, A. V.; Kovalchuk, B. M.; Zorin, V. B.

    2006-12-15

    We report here a design of the portable high current generator, which can be used for a row of experiments and applications, including, but not limited to, X pinch, plasma focus, vacuum spark, etc. The X generator consists of the capacitor bank, multigap spark switch, load chamber, and built-in high voltage triggering generator. The capacitor bank consists of 12 General Atomics 35404 type capacitors (20 nF, 25 nH, 0.2 {omega}, 100 kV). It stores {approx}0.8 kJ at 80 kV charging voltage. Each three capacitors are commuted to a load by the multigap spark switch, which is able to commute by eight parallel channels. Switches operate in ambient air at atmospheric pressure. At 76 kV charging voltage the generator provides {approx}260 kA with 120 ns rise time and 5 nH inductive load and {approx}220 kA with 145 ns rise time and 10 nH. Delay of output pulse relative to high voltage triggering pulse is {approx}65 ns with 5 ns jitter. The dimensions of the generator are 1240x1240x225 mm{sup 3} and the weight is {approx}250 kg, and only one high voltage power supply is required as additional equipment for the generator. The generator with a pumping system is placed on area about 0.5 m{sup 2}. Operation and handling are very simple, because no oil nor purified gases are required for the generator. The X generator has been successfully employed for experiments on the Ni X pinch load. X-ray pulse duration (full width at half maximum above 1 keV) was about 5 ns. Radiation yield W{sub r}{>=}500 mJ was observed in the 1.2-1.5 KeV range and W{sub r}{>=}20 mJ in the 3-5 keV energy range, which is comparable to results, obtained on the nanosecond accelerators. Clearly resolved images of 6 {mu}m wire indicate micron level size of hot spot. These results demonstrate possibility of this generator for application for x-ray backlighting.

  17. [Antitumor effect of low-intensity extremely high-frequency electromagnetic radiation on a model of solid Ehrlich carcinoma].

    PubMed

    Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K

    2009-01-01

    The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.

  18. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  19. High-density matter: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  20. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  1. Extremely scaled high-k/In₀.₅₃Ga₀.₄₇As gate stacks with low leakage and low interface trap densities

    SciTech Connect

    Chobpattana, Varistha; Mikheev, Evgeny; Zhang, Jack Y.; Mates, Thomas E.; Stemmer, Susanne

    2014-09-28

    Highly scaled gate dielectric stacks with low leakage and low interface trap densities are required for complementary metal-oxide-semiconductor technology with III-V semiconductor channels. Here, we show that a novel pre-deposition technique, consisting of alternating cycles of nitrogen plasma and tetrakis(dimethylamino)titanium, allows for HfO₂ and ZrO₂ gate stacks with extremely high accumulation capacitance densities of more than 5 μF/cm₂ at 1 MHz, low leakage current, low frequency dispersion, and low midgap interface trap densities (10¹²cm⁻²eV⁻¹range). Using x-ray photoelectron spectroscopy, we show that the interface contains TiO₂ and small quantities of In₂O₃, but no detectable Ga- or As-oxides, or As-As bonding. The results allow for insights into the microscopic mechanisms that control leakage and frequency dispersion in high-k/III-V gate stacks.

  2. A new extension of the polarizable continuum model: Toward a quantum chemical description of chemical reactions at extreme high pressure.

    PubMed

    Cammi, Roberto

    2015-11-15

    A quantum chemical method for studying potential energy surfaces of reactive molecular systems at extreme high pressures is presented. The method is an extension of the standard Polarizable Continuum Model that is usually used for Quantum Chemical study of chemical reactions at a standard condition of pressure. The physical basis of the method and the corresponding computational protocol are described in necessary detail, and an application of the method to the dimerization of cyclopentadiene (up to 20 GPa) is reported.

  3. Note: Development of a volume-limited dot target for a high brightness extreme ultraviolet microplasma source

    SciTech Connect

    Dinh, Thanh Hung Suzuki, Yuhei; Hara, Hiroyuki; Higashiguchi, Takeshi; Hirose, Ryoichi; Ohashi, Hayato; Li, Bowen; Dunne, Padraig; O’Sullivan, Gerry; Sunahara, Atsushi

    2014-11-15

    We report on production of volume-limited dot targets based on electron beam lithographic and sputtering technologies for use in efficient high brightness extreme ultraviolet microplasma sources. We successfully produced cylindrical tin (Sn) targets with diameters of 10, 15, and 20 μm and a height of 150 nm. The calculated spectrum around 13.5 nm was in good agreement with that obtained experimentally.

  4. Conceptualising the agency of highly marginalised women: Intimate partner violence in extreme settings.

    PubMed

    Campbell, Catherine; Mannell, Jenevieve

    2016-01-01

    How is the agency of women best conceptualised in highly coercive settings? We explore this in the context of international efforts to reduce intimate partner violence (IPV) against women in heterosexual relationships. Articles critique the tendency to think of women's agency and programme endpoints in terms of individual actions, such as reporting violent men or leaving violent relationships, whilst neglecting the interlocking social, economic and cultural contexts that make such actions unlikely or impossible. Three themes cut across the articles. (1) Unhelpful understandings of gender and power implicit in commonly used 'men-women' and 'victim-agent' binaries obscure multi-faceted and hidden forms of women's agency, and the complexity of agency-violence intersections. (2) This neglect of complexity results in a poor fit between policy and interventions to reduce IPV, and women's lives. (3) Such neglect also obscures the multiplicities of women's agency, including the competing challenges they juggle alongside IPV, differing levels of response, and the temporality of agency. We outline a notion of 'distributed agency' as a multi-level, incremental and non-linear process distributed across time, space and social networks, and across a continuum of action ranging from survival to resistance. This understanding of agency implies a different approach to those currently underpinning policies and interventions.

  5. The Critical Current Density in High Critical Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Sengupta, Suvankar

    Critical current density, j_{ rm c}, is an important parameter for determining the usefulness. This work focuses on the understanding of various phenomena related to the j_{ rm c} in type II superconductor. Various methods to enhance j_{rm c} by introducing pinning are also considered. In particular, the effect of secondary phase addition and mechanical treatment on the microstructure and j _{rm c} of various high T _{rm c} superconducting system is investigated. Fine inclusions (<0.1 μm) can be introduced by secondary phase additions. An enhancement in j_{ rm c} is always observed associated with the presence of fine inclusions. These cavities are found to interact strongly with flux lines in a high T _{rm c} superconductor. However, the cavities are found ineffective to pin a large number of flux lines. Dislocations and other structural defects are introduced by consolidating Bi_2Sr _2CaCu_2O _{rm x} by hot isotatically pressing (HIP). Samples HIPed for 15 min. contained a high density of dislocations and showed a substantial higher j_{rm c} than the samples HIPed for 45 min. and 120 min., where most of the dislocations were annihilated during the recovery process. Various methods of determining the irreversibility line are also considered. Using the criterion of a constant j_{rm c}, the irreversibility line obtained from magnetic hysteresis measurements was found to improve with the enhancement of flux pinning and reduction of interlayer spacing. The results can be best explained by the model proposed by Kim et al (1) and Clem (2). Magnetic relaxation of various type II superconductors is also reported. The non-logarithmic of decay of magnetization can be understood by assuming a non-linear U-j relationship. A method to extract U-j relationship from magnetic relaxation experiments is also developed. The effect of flux pinning on the U-j relationship is also investigated. Melt-processed YBa_2Cu _3O_{rm x} samples with strong levitation force are also fabricated

  6. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    SciTech Connect

    Jiang, C.; Samnakay, R.; Balandin, A. A.; Rumyantsev, S. L.; Shur, M. S.

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  7. Survival of high latitude fringing corals in extreme temperatures: Red Sea oceanography

    NASA Astrophysics Data System (ADS)

    Moustafa, M. Z.; Moustafa, M. S.; Moustafa, Z. D.; Moustafa, S. E.

    2014-04-01

    This multi-year study set out to establish a comprehensive knowledgebase for a fringing coral reef in the Gulf of Suez, while also investigating the link between coral reef survivability and the extreme environmental conditions present in the region. The Gulf of Suez is a narrow branch of the northern Red Sea for which all forms of environmental and scientific data are severely lacking. Monitoring oceanographic and meteorological data provides evidence of both seasonal variability and interannual variability in this region, and may reveal correlations between reef health and prevailing climate conditions. Specifically, this research sought to document the environmental conditions under which Zaki's Reef, a small fringing coral reef (29.5°N and 32.4°E) that lies at the northernmost limit of tropical reefs worldwide, is able to survive, in order to determine how extreme the conditions are. Results of observed seawater temperature revealed that coral species at Zaki's Reef regularly experience 2-4 °C and 10-15 °C daily and seasonal temperature variations, respectively. Seawater temperature monthly means reached a minimum of 14 °C in February and a maximum of 33 °C in August. Monthly mean sea surface temperature climatology obtained from satellite measurements was comparable to observed seawater temperatures, while annual air and seawater temperature means were identical at 22 °C. Observed seawater temperatures exceeded established coral bleaching thresholds for extended periods of time, suggesting that coral species at this location may have developed a mechanism to cope with such extreme temperatures. Further scrutiny of these species and the mechanisms by which they are able to thrive is recommended.

  8. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  9. Dynamics of laser-produced Sn microplasma for a high-brightness extreme ultraviolet light source

    SciTech Connect

    Yuspeh, S.; Tao, Y.; Burdt, R. A.; Tillack, M. S.; Ueno, Y.; Najmabadi, F.

    2011-05-16

    The effect of laser focal spot diameters of 26 and 150 {mu}m on 13.5 nm extreme ultraviolet (EUV) radiation is investigated. Simulations show that the smaller spot size has a shorter electron plasma density scale length and deeper and denser laser energy deposition region. This results in additional time required for plasma expansion and radiation transport to efficiently emit EUV light. This is experimentally observed as an increase in the delay between the EUV emission and the laser pulse. The shorter scale length plasma reabsorbs less EUV light, resulting in a higher conversion efficiency, smaller and slightly brighter light source.

  10. Design of a phase-shifting interferometer in the extreme ultraviolet for high-precision metrology.

    PubMed

    Capeluto, María Gabriela; Marconi, Mario Carlos; Iemmi, Claudio Cesar

    2014-03-01

    The design of a phase-shift interferometer in the extreme ultraviolet (EUV) is described. The interferometer is expected to achieve a significantly higher precision as compared with similar instruments that utilize lasers in the visible range. The interferometer's design is specifically adapted for its utilization with a table top pulsed capillary discharge EUV laser. The numerical model evaluates the errors in the interferograms and in the retrieved wavefront induced by the shot-to-shot fluctuations and pointing instabilities of the laser. PMID:24663354

  11. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  12. Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures.

    PubMed

    Imoto, Sho; Kibies, Patrick; Rosin, Christopher; Winter, Roland; Kast, Stefan M; Marx, Dominik

    2016-08-01

    Biophysics under extreme conditions is the fundamental platform for scrutinizing life in unusual habitats, such as those in the deep sea or continental subsurfaces, but also for putative extraterrestrial organisms. Therefore, an important thermodynamic variable to explore is pressure. It is shown that the combination of infrared spectroscopy with simulation is an exquisite approach for unraveling the intricate pressure response of the solvation pattern of TMAO in water, which is expected to be transferable to biomolecules in their native solvent. Pressure-enhanced hydrogen bonding was found for TMAO in water. TMAO is a molecule known to stabilize proteins against pressure-induced denaturation in deep-sea organisms. PMID:27351995

  13. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  14. High-efficiency collector design for extreme-ultraviolet and x-ray applications

    SciTech Connect

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double-reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  15. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications. PMID:17119587

  16. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  17. High-temperature strain measurement techniques: Current developments and challenges

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  18. High-temperature strain measurement techniques: Current developments and challenges

    NASA Astrophysics Data System (ADS)

    Lemcoe, M. M.

    1992-09-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  19. The impact of extremely high temperatures on mortality and mortality cost.

    PubMed

    Roldán, E; Gómez, M; Pino, M R; Díaz, J

    2015-01-01

    The aim of this study was to determine the temperature threshold that triggers an increase in heat-induced mortality in Zaragoza, Spain to determine the impact of extreme heat on mortality and in-hospital cost. A longitudinal ecological study was conducted according to an autoregressive integrated moving average model of a time series for daily deaths and to determine the relative risk of mortality for each degree that the temperature threshold was exceeded. Mortality showed a statistically significant increase when the daily maximum temperature exceeded 38 °C. A Relative Risk was 1.28 with a 95 % confidence interval (95 %CI:1.08-1.57) This threshold temperature didn't change over time. A total of 107 (95 %CI:42-173) heat-attributable deaths were estimated for the period 2002-2006, and the in-hospital estimated cost of these deaths reach € 426,087(95 %CI.€ 167,249-€ 688,907). The articulation of preventive measures to minimize the impact of extreme heat on human health is necessary because of the mortality-temperature relationship.

  20. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae).

    PubMed

    Sueur, Jérôme; Mackie, David; Windmill, James F C

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2) SPL rms re 2.10(-5) Pa with a peak at 99.2 (85.7-104.6) SPL re 2.10(-5) Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  1. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  2. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  3. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought.

    PubMed

    Jeffries, Ken M; Connon, Richard E; Davis, Brittany E; Komoroske, Lisa M; Britton, Monica T; Sommer, Ted; Todgham, Anne E; Fangue, Nann A

    2016-06-01

    Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally.

  4. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought.

    PubMed

    Jeffries, Ken M; Connon, Richard E; Davis, Brittany E; Komoroske, Lisa M; Britton, Monica T; Sommer, Ted; Todgham, Anne E; Fangue, Nann A

    2016-06-01

    Climate change and associated increases in water temperatures may impact physiological performance in ectotherms and exacerbate endangered species declines. We used an integrative approach to assess the impact of elevated water temperature on two fishes of immediate conservation concern in a large estuary system, the threatened longfin smelt (Spirinchus thaleichthys) and endangered delta smelt (Hypomesus transpacificus). Abundances have reached record lows in California, USA, and these populations are at imminent risk of extirpation. California is currently impacted by a severe drought, resulting in high water temperatures, conditions that will become more common as a result of climate change. We exposed fish to environmentally relevant temperatures (14°C and 20°C) and used RNA sequencing to examine the transcriptome-wide responses to elevated water temperature in both species. Consistent with having a lower temperature tolerance, longfin smelt exhibited a pronounced cellular stress response, with an upregulation of heat shock proteins, after exposure to 20°C that was not observed in delta smelt. We detected an increase in metabolic rate in delta smelt at 20°C and increased expression of genes involved in metabolic processes and protein synthesis, patterns not observed in longfin smelt. Through examination of responses across multiple levels of biological organization, and by linking these responses to habitat distributions in the wild, we demonstrate that longfin smelt may be more susceptible than delta smelt to increases in temperatures, and they have little room to tolerate future warming in California. Understanding the species-specific physiological responses of sensitive species to environmental stressors is crucial for conservation efforts and managing aquatic systems globally. PMID:27252456

  5. Using Extreme Value Theory Approaches to Forecast the Probability of Outbreak of Highly Pathogenic Influenza in Zhejiang, China

    PubMed Central

    Chen, Jiangpeng; Lei, Xun; Zhang, Li; Peng, Bin

    2015-01-01

    Background Influenza is a contagious disease with high transmissibility to spread around the world with considerable morbidity and mortality and presents an enormous burden on worldwide public health. Few mathematical models can be used because influenza incidence data are generally not normally distributed. We developed a mathematical model using Extreme Value Theory (EVT) to forecast the probability of outbreak of highly pathogenic influenza. Methods The incidence data of highly pathogenic influenza in Zhejiang province from April 2009 to November 2013 were retrieved from the website of Health and Family Planning Commission of Zhejiang Province. MATLAB “VIEM” toolbox was used to analyze data and modelling. In the present work, we used the Peak Over Threshold (POT) model, assuming the frequency as a Poisson process and the intensity to be Pareto distributed, to characterize the temporal variability of the long-term extreme incidence of highly pathogenic influenza in Zhejiang, China. Results The skewness and kurtosis of the incidence of highly pathogenic influenza in Zhejiang between April 2009 and November 2013 were 4.49 and 21.12, which indicated a “fat tail” distribution. A QQ plot and a mean excess plot were used to further validate the features of the distribution. After determining the threshold, we modeled the extremes and estimated the shape parameter and scale parameter by the maximum likelihood method. The results showed that months in which the incidence of highly pathogenic influenza is about 4462/2286/1311/487 are predicted to occur once every five/three/two/one year, respectively. Conclusions Despite the simplicity, the present study successfully offers the sound modeling strategy and a methodological avenue to implement forecasting of an epidemic in the midst of its course. PMID:25710503

  6. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra).

    PubMed

    Keever, Carson C; Puritz, Jonathan B; Addison, Jason A; Byrne, Maria; Grosberg, Richard K; Toonen, Robert J; Hart, Michael W

    2013-10-23

    We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents. PMID:23925835

  7. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra).

    PubMed

    Keever, Carson C; Puritz, Jonathan B; Addison, Jason A; Byrne, Maria; Grosberg, Richard K; Toonen, Robert J; Hart, Michael W

    2013-10-23

    We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents.

  8. Conversion of high explosive chemical energy into energy of powerful nanosecond high-current pulses

    NASA Astrophysics Data System (ADS)

    Gorbachev, K. V.; Mikhaylov, V. M.; Nesterov, E. V.; Stroganov, V. A.; Chernykh, E. V.

    2015-01-01

    This study is a contribution into the development of physicotechnical foundations for generation of powerful nanosecond high-current pulses on the basis of explosively driven magnetic flux compression generators. This problem is solved by using inductive storage of energy for matching comparatively low-voltage explosively driven magnetic flux compression generators and high-impedance loads; short forming lines and vacuum diodes. Experimental data of charging of forming lines are given.

  9. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    PubMed

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures.

  10. Extreme ultraviolet spectra from highly charged gadolinium and neodymium ions in the Large Helical Device and laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; O'Gorman, C.; Li, B.; Harte, C. S.; Donnelly, T.; O'Sullivan, G.

    2013-09-01

    We have observed extreme ultraviolet spectra from highly charged gadolinium (Gd) and neodymium (Nd) ions produced in two different types of light sources for comparative studies. Only broad quasicontinuum feature arising from unresolved transition array was observed in high-density laser produced plasmas of pure/diluted Gd and Nd targets at the University College Dublin, and the spectral feature largely depends on electron temperature in optically thin plasmas produced in the Large Helical Device at the National Institute for Fusion Science. The difference in spectral feature among a number of spectra can be qualitatively interpreted by considering dominant ion stages and opacity effects in the plasmas.

  11. High-frequency turbidity currents in British Columbia fjords

    NASA Astrophysics Data System (ADS)

    Bornhold, Brian D.; Ren, Ping; Prior, David B.

    1994-12-01

    The frequency of turbidity currents in Bute Inlet and Knight Inlet (British Columbia, Canada) was monitored. A prototype instrument (turbidity event detector) was deployed adjacent to prominent incised sea-floor channels. Approximately 25 30 turbidity currents occur annually. They appear closely correlated to periods of higher river discharge into the heads of the fjords. Two peaks in both discharge and turbidity current fequency occur, one in response to snow melt in late June early July, the other to glacier melt in August. Virtually no turbidity currents were observed in winter. River mouth bars, channel deposits, and other deltaic sediments build up during lower discharge periods and are swept onto the steep delta front and into subaqueous channels, along with bedload, during floods.

  12. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  13. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    NASA Astrophysics Data System (ADS)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  14. A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Seidel, J.; Imbery, F.

    2010-09-01

    A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events Against the background of an increasing world population and the changes that this is causing to the earth, the increasing industrialisation resulting in more emissions of greenhouse gases, it is indispensable to differentiate between natural and anthropogenic climate changes. This applies equally to global as well as regional climates. Due to the fact, that the weather data measurement series in the upper Rhine valley go back a maximum of 150 years, it is not possible to use this data to grasp long term climate fluctuations. For example, the current climate is integrated in long scale climate cycles which last thousands of years. To describe these changes accurately, it is necessary to reconstruct the climate beyond that of instrumental series measurements. With the application of direct and indirect data (proxy data) a climate reconstruction will be attempted for the area of region TriRhena. With the application of documentary data it is possible to reconstruct the climate prior to instrumental measurements. These historical records are made up of, for e.g. weather descriptions, information about the wine harvest and other agricultural products, as well as their price fluctuations. Using this data it is possible to calculate meteorological parameters creating an index of air temperature and precipitation values. Climate is an integration of weather and therefore its worth to set the focus also on single interesting weather events. Especially extreme events can contribute to the thesis "learning from the past for a better future". Aim of the research is to identify and apply extreme flood events of the past 500 years as a basis for further analysis like a contribution to improve current flood hazard maps. The data which will be presented were extracted from historical records such as local annuals and

  15. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  16. [Thermoelastic excitation of acoustic waves in biological models under the effect of the high peak-power pulsed electromagnetic radiation of extremely high frequency].

    PubMed

    Gapeev, A B; Rubanik, A V; Pashovkin, T N; Chemeris, N K

    2007-01-01

    The capability of high peak-power pulsed electromagnetic radiation of extremely high frequency (35,27 GHz, pulse widths of 100 and 600 ns, peak power of 20 kW) to excite acoustic waves in model water-containing objects and muscular tissue of animals has been experimentally shown for the first time. The amplitude and duration of excited acoustic pulses are within the limits of accuracy of theoretical assessments and have a complex nonlinear dependence on the energy input of electromagnetic radiation supplied. The velocity of propagation of acoustic pulses in water-containing models and isolated muscular tissue of animals was close to the reference data. The excitation of acoustic waves in biological systems under the action of high peak-power pulsed electromagnetic radiation of extremely high frequency is the important phenomenon, which essentially contributes to the understanding of the mechanisms of biological effects of these electromagnetic fields.

  17. High School Feedback: An Analysis of States' Current Efforts

    ERIC Educational Resources Information Center

    Data Quality Campaign, 2011

    2011-01-01

    There is increased demand from multiple stakeholders for information about K-12 students' success after high school. When this information is provided back to high schools, it is often referred to as "high school feedback" information. This working document captures knowledge about states' capacity to and progress in providing high school feedback…

  18. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2016-06-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  19. Record high-average current from a high-brightness photoinjector

    SciTech Connect

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel; and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  20. High-current quasi-square-wave millisecond light source for high-speed photography

    NASA Astrophysics Data System (ADS)

    Lin, Wenzheng; Jiang, Aibao; Zhuo, Meizhen

    1993-01-01

    A novel powerful strobe for high-speed photography is described which can replace the high power cw light source, to save energy and synchroflash with the camera. In this strobe, three- phase transformerless direct rectifier, high current SCR switch and pre-ionization technique are used so that the energy consumption goes down greatly, and its total weight is less than 25 Kg. Its principal parameters are as follows: average power, 50 KW; light emitting pulse width, 1 - 100 ms; pulse rise time, less than 0.05 ms; pulse fall time, less than 0.1 ms.