NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
Extreme Material Physical Properties and Measurements above 100 tesla
NASA Astrophysics Data System (ADS)
Mielke, Charles
2011-03-01
The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges. National Science Foundation DMR-Award 0654118.
Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P
2017-04-27
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.
Tsatrafyllis, N.; Kominis, I. K.; Gonoskov, I. A.; Tzallas, P.
2017-01-01
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet. PMID:28447616
NASA Astrophysics Data System (ADS)
Wintoft, Peter; Viljanen, Ari; Wik, Magnus
2016-05-01
High-frequency ( ≈ minutes) variability of ground magnetic fields is caused by ionospheric and magnetospheric processes driven by the changing solar wind. The varying magnetic fields induce electrical fields that cause currents to flow in man-made conductors like power grids and pipelines. Under extreme conditions the geomagnetically induced currents (GIC) may be harmful to the power grids. Increasing our understanding of the extreme events is thus important for solar-terrestrial science and space weather. In this work 1-min resolution of the time derivative of measured local magnetic fields (|dBh/dt|) and computed electrical fields (Eh), for locations in Europe, have been analysed with extreme value analysis (EVA). The EVA results in an estimate of the generalized extreme value probability distribution that is described by three parameters: location, width, and shape. The shape parameter controls the extreme behaviour. The stations cover geomagnetic latitudes from 40 to 70° N. All stations included in the study have contiguous coverage of 18 years or more with 1-min resolution data. As expected, the EVA shows that the higher latitude stations have higher probability of large |dBh/dt| and |Eh| compared to stations further south. However, the EVA also shows that the shape of the distribution changes with magnetic latitude. The high latitudes have distributions that fall off faster to zero than the low latitudes, and upward bounded distributions can not be ruled out. The transition occurs around 59-61° N magnetic latitudes. Thus, the EVA shows that the observed series north of ≈ 60° N have already measured values that are close to the expected maxima values, while stations south of ≈ ° N will measure larger values in the future.
NASA Astrophysics Data System (ADS)
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies
NASA Astrophysics Data System (ADS)
Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.
2006-08-01
It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
High-temperature Y267 EPDM elastomer: field and laboratory experiences, August 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.
1982-03-01
Experiences which indicate the superiority of Y267 EPDM elastomer for high-temperature brines and other environments uses are summarized. Its good processing qualities, extremely good thermochemical stability, extremely good mechanical properties, its low-cost constituents, and its good performance in hydrocarbons are described in some case histories. (MCW)
Apparatus having reduced mechanical forces for supporting high magnetic fields
Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.
1991-01-01
The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...
2014-10-13
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less
Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China
NASA Astrophysics Data System (ADS)
GAO, X.
2017-12-01
China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.
Lynn, Alan G; Gilmore, Mark
2014-11-01
Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.
Microbial Diversity in Extreme Marine Habitats and Their Biomolecules
Poli, Annarita; Finore, Ilaria; Romano, Ida; Gioiello, Alessia; Lama, Licia; Nicolaus, Barbara
2017-01-01
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields. PMID:28509857
Gow, J.D.
1961-01-10
An extremely compact two-terminal gaseous discharge device is described that is capable of producing neutrons in copious quantities, relatively high energy ions, intense x rays, and the like. Principal novelty resides in the provision of a crossed electric-magnetic field region in the discharge envelope that traps electrons and accelerates them to very high energies to provide an intense ionizing medium adjacent the anode of the device for ionizing gas therein with extremely high efficiency. In addition, the crossed-field trapping region holds the electrons close to the anode whereby the acceleration of ions to the cathode is not materially effected by the electron sheath and the ions assume substantially the full energy of the anodecathode potential drop. (auth)
Scientific Design of a High Contrast Integral Field Spectrograph for the Subaru Telescope
NASA Technical Reports Server (NTRS)
McElwain, Michael W.
2012-01-01
Ground based telescopes equipped with adaptive optics systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the scientific design for a high contrast integral field spectrograph for the Subaru Telescope. This lenslet based integral field spectrograph will be implemented into the new extreme adaptive optics system at Subaru, called SCExAO.
Parra-Robles, Juan; Cross, Albert R; Santyr, Giles E
2005-05-01
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.
Feletar, Marie; Hall, Stephen; Bird, Paul
2016-01-01
To assess the responsiveness of high- and low-field extremity magnetic resonance imaging (MRI) variables at multiple timepoints in the first 12 weeks post-antitumor necrosis factor (anti-TNF) therapy initiation in patients with psoriatic arthritis (PsA) and active dactylitis. Twelve patients with active PsA and clinical evidence of dactylitis involving at least 1 digit were recruited. Patients underwent sequential high-field conventional (1.5 Tesla) and extremity low-field MRI (0.2 Tesla) of the affected hand or foot, pre- and postgadolinium at baseline (pre-TNF), 2 weeks (post-TNF), 6 weeks, and 12 weeks. A blinded observer scored all images on 2 occasions using the PsA MRI scoring system. Eleven patients completed the study, but only 6 patients completed all high-field and low-field MRI assessments. MRI scores demonstrated rapid response to TNF inhibition with score reduction in tenosynovitis, synovitis, and osteitis at 2 weeks. Intraobserver reliability was good to excellent for all variables. High-field MRI demonstrated greater sensitivity to tenosynovitis, synovitis, and osteitis and greater responsiveness to change posttreatment. Treatment responses were maintained to 12 weeks. This study demonstrates the use of MRI in detecting early response to biologic therapy. MRI variables of tenosynovitis, synovitis, and osteitis demonstrated responsiveness posttherapy with high-field scores more responsive to change than low-field scores.
Phase transition in the quantum limit of the Weyl semimetal TaAs
NASA Astrophysics Data System (ADS)
Ramshaw, Brad
Under extreme magnetic fields, electrons in a metal are confined to a single highly-degenerate quantum state -a regime known as the quantum limit. This state is unstable to the formation of new states of matter, such as the fractional quantum Hall effect in two dimensions. The fate of 3D metals in the quantum limit, on the other hand, has been relatively unexplored. The discovery of monopnictide Weyl semimetals has renewed interest in the high-field properties of 3D electrons, particularly those with linear dispersions. Several difficulties in determining the high-field properties have arisen, including the highly anisotropic nature of the magnetoresistance, and the presence of trivial (parabolic) Fermi pockets that cloud the underlying behaviour of Weyl pockets. We use magnetic fields up to 90 Tesla to put the Weyl semimetal TaAs into its extreme quantum limit, isolating its linear 0th Landau level from the rest of the electronic spectrum. We find that a gap opens in the conductivity parallel to the magnetic field above 70 Tesla, and also find an abrupt reversal in the field-evolution of the sound velocity at the same magnetic field, suggesting a thermodynamic phase transition to a new state of matter. DOE BES ''Science at 100 T''.
Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.
1991-01-01
The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.
Prueitt, M.L.; Mueller, F.M.; Smith, J.L.
1991-04-09
The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.
Hig Resolution Seismometer Insensitive to Extremely Strong Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovich, Igor A.
A highly sensitive broadband seismic sensor has been developed successfully to be used in beam focusing systems of particale accelerators. The sensor is completely insensitive to extremely strong magnetic fields and to hard radiation conditions that exist at the place of their installation. A unique remote sensor calibration method has been invented and implemented. Several such sensors were sold to LAPP (LAPP-IN2P3/CNRS-Université de Savoie; Laboratoire d'Annecy-le-Vieux de Physique des Particules)
NASA Astrophysics Data System (ADS)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Bulanov, S. S.; Gong, Z.; Yan, X. Q.; Kando, M.
2017-04-01
The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motion resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; ...
2017-03-09
The multiple colliding laser pulse concept formulated by Bulanovet al.(Phys. Rev. Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude of coherent electromagnetic field. Since the topology of electric and magnetic fields of multiple colliding laser pulses oscillating in time is far from trivial and the radiation friction effects are significant in the high field limit, the dynamics of charged particles interacting with the multiple colliding laser pulses demonstrates remarkable features corresponding to random walk trajectories, limit circles, attractors, regular patterns and Lévy flights. Lastly, under extremely high intensity conditions the nonlinear dissipation mechanism stabilizes the particle motionmore » resulting in the charged particle trajectory being located within narrow regions and in the occurrence of a new class of regular patterns made by the particle ensembles.« less
NASA Astrophysics Data System (ADS)
Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.
2018-05-01
We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.
2014-06-28
constructed from inexpensive semiconductor lasers could lead to the development of novel neuro-inspired optical computing devices (threshold detectors ...optical computing devices (threshold detectors , logic gates, signal recognition, etc.). Other topics of research included the analysis of extreme events in...Extreme events is nowadays a highly active field of research. Rogue waves, earthquakes of high magnitude and financial crises are all rare and
NASA Technical Reports Server (NTRS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex
2013-01-01
Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.
Abuasbi, Falastine; Lahham, Adnan; Abdel-Raziq, Issam Rashid
2018-05-01
In this study, levels of extremely low-frequency electric and magnetic fields originated from overhead power lines were investigated in the outdoor environment in Ramallah city, Palestine. Spot measurements were applied to record fields intensities over 6-min period. The Spectrum Analyzer NF-5035 was used to perform measurements at 1 m above ground level and directly underneath 40 randomly selected power lines distributed fairly within the city. Levels of electric fields varied depending on the line's category (power line, transformer or distributor), a minimum mean electric field of 3.9 V/m was found under a distributor line, and a maximum of 769.4 V/m under a high-voltage power line (66 kV). However, results of electric fields showed a log-normal distribution with the geometric mean and the geometric standard deviation of 35.9 and 2.8 V/m, respectively. Magnetic fields measured at power lines, on contrast, were not log-normally distributed; the minimum and maximum mean magnetic fields under power lines were 0.89 and 3.5 μT, respectively. As a result, none of the measured fields exceeded the ICNIRP's guidelines recommended for general public exposures to extremely low-frequency fields.
NASA Astrophysics Data System (ADS)
Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Sbarrato, T.
2015-07-01
High-energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347-121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. (2011), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multiwavelength spectral energy distribution of the resulting nine sources, profiting of publicly available archival observations performed by Swift, GALEX, and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
High northern latitude temperature extremes, 1400-1999
NASA Astrophysics Data System (ADS)
Tingley, M. P.; Huybers, P.; Hughen, K. A.
2009-12-01
There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in more than 98% of the ensemble members.
Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M
2008-05-01
Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.
Strong terahertz field generation, detection, and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Yong
2016-05-22
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-drivenmore » extremely nonlinear phenomena in a university laboratory.« less
Strong terahertz field generation, detection, and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-Yong
2016-05-15
This report describes the generation and detection of high-power, broadband terahertz (THz) radiation with using femtosecond terawatt (TW) laser systems. In particular, this focuses on two-color laser mixing in gases as a scalable THz source, addressing both microscopic and macroscopic effects governing its output THz yield and radiation profile. This also includes the characterization of extremely broad THz spectra extending from microwaves to infrared frequencies. Experimentally, my group has generated high-energy (tens of microjoule), intense (>8 MV/cm), and broadband (0.01~60 THz) THz radiation in two-color laser mixing in air. Such an intense THz field can be utilized to study THz-drivenmore » extremely nonlinear phenomena in a university laboratory.« less
High numerical aperture projection system for extreme ultraviolet projection lithography
Hudyma, Russell M.
2000-01-01
An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.
The matter in extreme conditions instrument at the Linac Coherent Light Source
Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...
2015-04-21
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.
Footwear traction and lower extremity noncontact injury.
Wannop, John W; Luo, Geng; Stefanyshyn, Darren J
2013-11-01
Football is the most popular high school sport; however, it has the highest rate of injury. Speculation has been prevalent that foot fixation due to high footwear traction contributes to injury risk. Therefore, the purpose of the study was to determine whether a relationship exists between the athlete's specific footwear traction (measured with their own shoes on the field of play) and lower extremity noncontact injury in high school football. For 3 yr, 555 high school football athletes had their footwear traction measured on the actual field of play at the start of the season, and any injury the athletes suffered during a game was recorded. Lower extremity noncontact injury rates, grouped based on the athlete's specific footwear traction (both translational and rotational), were compared. For translational traction, injury rate reached a peak of 23.3 injuries/1000 game exposures within the midrange of translational traction, before decreasing to 5.0 injuries/1000 game exposures in the high range of traction. For rotational traction, there was a steady increase in injury rate as footwear traction increased, starting at 4.2 injuries/1000 game exposures at low traction and reaching 19.2 injuries/1000 game exposures at high traction. A relationship exists between footwear traction and noncontact lower extremity injury, with increases in rotational traction leading to a greater injury rate and increases in translational traction leading to a decrease in injury. It is recommended that athletes consider selecting footwear with the lowest rotational traction values for which no detriment in performance results.
Phenomenology of anomalous chiral transports in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang
2018-01-01
High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.
Characteristics of Extreme Geoelectric Fields and Their Possible Causes: Localized Peak Enhancements
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Ngwira, C. M.; Bernabeu, E.; Eichner, J.; Viljanen, A.; Crowley, G.
2015-12-01
One of the major challenges pertaining to extreme geomagnetic storms is to understand the basic processes associated with the development of dynamic magnetosphere-ionosphere currents, which generate large induced surface geoelectric fields. Previous studies point out the existence of localized peak geoelectric field enhancements during extreme storms. We examined induced global geoelectric fields derived from ground-based magnetometer recordings for 12 extreme geomagnetic storms between the years 1982--2005. However for the present study, an in-depth analysis was performed for two important extreme storms, October 29, 2003 and March 13, 1989. The primary purpose of this paper is to provide further evidence on the existence of localized peak geoelectric field enhancements, and to show that the structure of the geoelectric field during these localized extremes at single sites can differ greatly from globally and regionally averaged fields. Although the physical processes that govern the development of these localized extremes are still not clear, we discuss some possible causes.
Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate
NASA Astrophysics Data System (ADS)
Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.
2018-06-01
Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.
Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen
2016-06-01
Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.
Torgomyan, Heghine; Trchounian, Armen
2013-02-01
Low-intensity electromagnetic field (EMF) of extremely high frequencies is a widespread environmental factor. This field is used in telecommunication systems, therapeutic practices and food protection. Particularly, in medicine and food industries EMF is used for its bactericidal effects. The significant targets of cellular mechanisms for EMF effects at resonant frequencies in bacteria could be water (H(2)O), cell membrane and genome. The changes in H(2)O cluster structure and properties might be leading to increase of chemical activity or hydration of proteins and other cellular structures. These effects are likely to be specific and long-term. Moreover, cell membrane with its surface characteristics, substance transport and energy-conversing processes is also altered. Then, the genome is affected because the conformational changes in DNA and the transition of bacterial pro-phages from lysogenic to lytic state have been detected. The consequences for EMF interaction with bacteria are the changes in their sensitivity to different chemicals, including antibiotics. These effects are important to understand distinguishing role of bacteria in environment, leading to changed metabolic pathways in bacteria and their antibiotic resistance. This EMF may also affect the cell-to-cell interactions in bacterial populations, since bacteria might interact with each other through EMF of sub-extremely high frequency range.
Extremely large magnetoresistance in a high-quality WTe2 grown by flux method
NASA Astrophysics Data System (ADS)
Tsumura, K.; Yano, R.; Kashiwaya, H.; Koyanagi, M.; Masubuchi, S.; Machida, T.; Namiki, H.; Sasagawa, T.; Kashiwaya, S.
2018-03-01
We have grown single crystals of WTe2 by a self-flux method and evaluated the quality of the crystals. A Hall bar-type device was fabricated from an as-exfoliated film on a Si substrate and longitudinal resistance Rxx was measured. Rxx increased with an applied perpendicular magnetic field without saturation and an extremely large magnetoresistance as high as 376,059 % was observed at 8.27 T and 1.7 K.
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
SOI N-Channel Field Effect Transistors, CHT-NMOS80, for Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Almad
2009-01-01
Extreme temperatures, both hot and cold, are anticipated in many of NASA space exploration missions as well as in terrestrial applications. One can seldom find electronics that are capable of operation under both regimes. Even for operation under one (hot or cold) temperature extreme, some thermal controls need to be introduced to provide appropriate ambient temperatures so that spacecraft on-board or field on-site electronic systems work properly. The inclusion of these controls, which comprise of heating elements and radiators along with their associated structures, adds to the complexity in the design of the system, increases cost and weight, and affects overall reliability. Thus, it would be highly desirable and very beneficial to eliminate these thermal measures in order to simplify system's design, improve efficiency, reduce development and launch costs, and improve reliability. These requirements can only be met through the development of electronic parts that are designed for proper and efficient operation under extreme temperature conditions. Silicon-on-insulator (SOI) based devices are finding more use in harsh environments due to the benefits that their inherent design offers in terms of reduced leakage currents, less power consumption, faster switching speeds, good radiation tolerance, and extreme temperature operability. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. The objective of this work was to evaluate the performance of a new commercial-off-the-shelf (COTS) SOI parts over an extended temperature range and to determine the effects of thermal cycling on their performance. The results will establish a baseline on the suitability of such devices for use in space exploration missions under extreme temperatures, and will aid mission planners and circuit designers in the proper selection of electronic parts and circuits. The electronic part investigated in this work comprised of a CHT-NMOS80 high temperature N-channel MOSFET (metal-oxide semiconductor field-effect transistor) device that was manufactured by CISSOID. This high voltage, medium-power transistor is fabricated using SOI processes and is designed for extreme wide temperature applications such as geothermal well logging, aerospace and avionics, and automotive industry. It has a high DC current capability and is specified for operation in the temperature range of -55 C to +225 C
The Matter in Extreme Conditions instrument at the Linac Coherent Light Source
Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja
2015-01-01
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063
VizieR Online Data Catalog: Bootes field LOFAR 150-MHz observations (Williams+, 2016)
NASA Astrophysics Data System (ADS)
Williams, W. L.; van Weeren, R. J.; Rottgering, H. J. A.; Best, P.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G.; Prandoni, I.; Sabater, J.; Shimwell, T. W.; Tasse, C.; van Bemmel, I. M.; Bruggen, M.; Brunetti, G.; Conway, J. E.; Ensslin, T.; Engels, D.; Falcke, H.; Ferrari, C.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; Kapinska, A. D.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Morganti, R.; Orru, E.; Retana-Montenegro, E.; Sridhar, S. S.; Toribio, M. C.; White, G. J.; Wise, M. W.; Zwart, J. T. L.
2017-11-01
Here, we report on the first LOFAR Cycle 2 High Band Antenna (HBA) observations of the Bootes field. The Bootes field is one of the Tier-3 Survey fields, and the aim is to eventually survey this field to the extreme rms depth of 12uJy/beam (1σ) at 150MHz. The Bootes field was observed on 2014 August 10 with the LOFAR HBA stations. (2 data files).
Wyszkowska, Joanna; Shepherd, Sebastian; Sharkh, Suleiman; Jackson, Christopher W.; Newland, Philip L.
2016-01-01
Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) electromagnetic fields are particularly poorly understood especially at high field strengths as they are rarely encountered at ground level. Flying insects, however, can approach close to high field strength transmission lines prompting the question as to how these high levels of exposure affect behaviour and physiology. Here we utilise the accessible nervous system of the locust to ask how exposure to high levels of ELF EMF impact at multiple levels. We show that exposure to ELF EMFs above 4 mT leads to reduced walking. Moreover, intracellular recordings from an identified motor neuron, the fast extensor tibiae motor neuron, show increased spike latency and a broadening of its spike in exposed animals. In addition, hind leg kick force, produced by stimulating the extensor tibiae muscle, was reduced following exposure, while stress-protein levels (Hsp70) increased. Together these results suggest that ELF EMF exposure has the capacity to cause dramatic effects from behaviour to physiology and protein expression, and this study lays the foundation to explore the ecological significance of these effects in other flying insects. PMID:27808167
Field Scale Monitoring and Modeling of Water and Chemical Transfer in the Vadose Zone
USDA-ARS?s Scientific Manuscript database
Natural resource systems involve highly complex interactions of soil-plant-atmosphere-management components that are extremely difficult to quantitatively describe. Computer simulations for prediction and management of watersheds, water supply areas, and agricultural fields and farms have become inc...
Extreme Environment Technologies for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.
2008-01-01
Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.
NASA Astrophysics Data System (ADS)
Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.
2013-12-01
Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore, current extreme N deposition events -and the predicted future increase in extreme deposition events- may represent an important source of eutrophication to 'pristine' arctic tundra.
NASA Astrophysics Data System (ADS)
Fox, W.; Bhattacharjee, A.; Fiksel, G.
2016-10-01
Colliding plasmas are ubiquitous in astrophysical environments and allow conversion of kinetic energy into heat and, most importantly, the acceleration of particles to extremely high energies to form the cosmic ray spectrum. In collisionless astrophysical plasmas, kinetic plasma processes govern the interaction and particle acceleration processes, including shock formation, self-generation of magnetic fields by kinetic plasma instabilities, and magnetic field compression and reconnection. How each of these contribute to the observed spectra of cosmic rays is not fully understood, in particular both shock acceleration processes and magnetic reconnection have been proposed. We will review recent results of laboratory astrophysics experiments conducted at high-power, inertial-fusion-class laser facilities, which have uncovered significant results relevant to these processes. Recent experiments have now observed the long-sought Weibel instability between two interpenetrating high temperature plasma plumes, which has been proposed to generate the magnetic field necessary for shock formation in unmagnetized regimes. Secondly, magnetic reconnection has been studied in systems of colliding plasmas using either self-generated magnetic fields or externally applied magnetic fields, and show extremely fast reconnection rates, indicating fast destruction of magnetic energy and further possibilities to accelerate particles. Finally, we highlight kinetic plasma simulations, which have proven to be essential tools in the design and interpretation of these experiments.
NASA Astrophysics Data System (ADS)
Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.
2017-05-01
Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.
NASA Astrophysics Data System (ADS)
Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin
2017-05-01
By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.
High-harmonic generation in amorphous solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Yin, Yanchun; Wu, Yi
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
High-harmonic generation in amorphous solids
You, Yong Sing; Yin, Yanchun; Wu, Yi; ...
2017-09-28
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
NASA Astrophysics Data System (ADS)
Tajima, T.; Mourou, G.
2002-04-01
Over the past fifteen years we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 1026-28 W/cm2 in the coming decade, much beyond the current and near future intensity regime 1023 W/cm2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. Such a laser intensity may also be very beneficial to an alternative, more direct approach of fast ignition in laser fusion. We suggest a new possibility to explore this. .
Field effect transistors improve buffer amplifier
NASA Technical Reports Server (NTRS)
1967-01-01
Unity gain buffer amplifier with a Field Effect Transistor /FET/ differential input stage responds much faster than bipolar transistors when operated at low current levels. The circuit uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth.
Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science
NASA Technical Reports Server (NTRS)
Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.
2004-01-01
Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.
Focus issue on the Study of Matter at Extreme Conditions
NASA Astrophysics Data System (ADS)
Saini, Naurang L.; Saxena, Surendra K.; Bansil, Arun
2015-09-01
Study of matter at extreme conditions encompasses many different approaches for understanding the physics, chemistry and materials science underlying processes, products and technologies important for society. Although extreme conditions have been associated traditionally with research in areas of geology, mineral and earth sciences, the field has expanded in the recent years to include work on energy related materials and quantum functional materials from hard to soft matter. With the motivation to engage a large number of scientists with various disciplinary interests, ranging from physics, chemistry, geophysics to materials science, the study of matter at extreme conditions has been the theme of a series of conferences hosted by the High Pressure Science Society of America (HiPSSA) and the Center for the Study of Matter at Extreme Conditions (CeSMEC) of Florida International University (FIU), Miami. These SMEC (Study of Matter at Extreme Conditions) conferences are aimed at providing a unique platform for leading researchers to meet and share cutting-edge developments, and to bridge established fields under this interdisciplinary umbrella for research on materials. The seventh meeting in the SMEC series was held during March 23-30, 2013, while sailing from Miami to the Caribbean Islands, and concluded with great enthusiasm.
Extreme Transients in the High Energy Universe
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2013-01-01
The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.
Birkhofer, Klaus; Henschel, Joh; Lubin, Yael
2012-11-01
Individuals of most animal species are non-randomly distributed in space. Extreme climatic events are often ignored as potential drivers of distribution patterns, and the role of such events is difficult to assess. Seothyra henscheli (Araneae, Eresidae) is a sedentary spider found in the Namib dunes in Namibia. The spider constructs a sticky-edged silk web on the sand surface, connected to a vertical, silk-lined burrow. Above-ground web structures can be damaged by strong winds or heavy rainfall, and during dispersal spiders are susceptible to environmental extremes. Locations of burrows were mapped in three field sites in 16 out of 20 years from 1987 to 2007, and these grid-based data were used to identify the relationship between spatial patterns, climatic extremes and sampling year. According to Morisita's index, individuals had an aggregated distribution in most years and field sites, and Geary's C suggests clustering up to scales of 2 m. Individuals were more aggregated in years with high maximum wind speed and low annual precipitation. Our results suggest that clustering is a temporally stable property of populations that holds even under fluctuating burrow densities. Climatic extremes, however, affect the intensity of clustering behaviour: individuals seem to be better protected in field sites with many conspecific neighbours. We suggest that burrow-site selection is driven at least partly by conspecific cuing, and this behaviour may protect populations from collapse during extreme climatic events.
The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed
Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling
2013-01-01
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898
NASA Astrophysics Data System (ADS)
Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.
NASA Astrophysics Data System (ADS)
Knappe-Grueneberg, Silvia; Schnabel, Allard; Wuebbeler, Gerd; Burghoff, Martin
2008-04-01
The Berlin magnetically shielded room 2 (BMSR-2) features a magnetic residual field below 500pT and a field gradient level less than 0.5pT/mm, which are needed for very sensitive human biomagnetic recordings or low field NMR. Nevertheless, below 15Hz, signals are compromised by an additional noise contribution due to vibration forced sensor movements in the field gradient. Due to extreme shielding, the residual field and its homogeneity are determined mainly by the demagnetization results of the mumetal shells. Eight different demagnetization coil configurations can be realized, each results in a characteristic field pattern. The spatial dc flux density inside BMSR-2 is measured with a movable superconducting quantum interference device system with an accuracy better than 50pT. Residual field and field distribution of the current-driven coils fit well to an air-core coil model, if the high permeable core and the return lines outside of the shells are neglected. Finally, we homogenize the residual field by selecting a proper coil configuration.
Extremely large magnetoresistance and high-density Dirac-like fermions in ZrB2
NASA Astrophysics Data System (ADS)
Wang, Qi; Guo, Peng-Jie; Sun, Shanshan; Li, Chenghe; Liu, Kai; Lu, Zhong-Yi; Lei, Hechang
2018-05-01
We report the detailed study on transport properties of ZrB2 single crystal, a predicted topological nodal-line semimetal. ZrB2 exhibits extremely large magnetoresistance as well as field-induced resistivity upturn and plateau. These behaviors can be well understood by the two-band model with the perfect electron-hole compensation and high carrier mobilities. More importantly, the electrons with small effective masses and nontrivial Berry phase have significantly high density when compared to those in known topological semimetals. It strongly suggests that ZrB2 hosts Dirac-like nodal-line fermions.
Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra
NASA Astrophysics Data System (ADS)
Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.
2018-03-01
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.
NASA Astrophysics Data System (ADS)
Matsuda, Shinpei; Kikuchi, Erumu; Yamane, Yasumasa; Okazaki, Yutaka; Yamazaki, Shunpei
2015-04-01
Field-effect transistors (FETs) with c-axis-aligned crystalline In-Ga-Zn-O (CAAC-IGZO) active layers have extremely low off-state leakage current. Exploiting this feature, we investigated the application of CAAC-IGZO FETs to LSI memories. A high on-state current is required for the high-speed operation of these LSI memories. The field-effect mobility μFE of a CAAC-IGZO FET is relatively low compared with the electron mobility of single-crystal Si (sc-Si). In this study, we measured and calculated the channel length L dependence of μFE for CAAC-IGZO and sc-Si FETs. For CAAC-IGZO FETs, μFE remains almost constant, particularly when L is longer than 0.3 µm, whereas that of sc-Si FETs decreases markedly as L shortens. Thus, the μFE difference between both FET types is reduced by miniaturization. This difference in μFE behavior is attributed to the different susceptibilities of electrons to phonon scattering. On the basis of this result and the extremely low off-state leakage current of CAAC-IGZO FETs, we expect high-speed LSI memories with low power consumption.
Strong magnetic field generated by the extreme oxygen-rich red supergiant VY Canis Majoris
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Claussen, Mark J.; Yamamoto, Satoshi; Shimojo, Masumi
2017-12-01
Evolved stars experience high mass-loss rates forming thick circumstellar envelopes (CSEs). The circumstellar material is made of the result of stellar nucleosynthesis and, as such, plays a crucial role in the chemical evolution of galaxies and the universe. Since asymmetric geometries of CSEs are common, and with very complex structures for some cases, radiative pressure from the stars can explain only a small portion of the mass-loss processes; thus the essential driving mechanism is still unknown, particularly for high-mass stars. Here we report on magnetic field measurements associated with the well-known extreme red supergiant (RSG) VY Canis Majoris (VY CMa). We measured the linear polarization and the Zeeman splitting of the SiO v = 0, J = 1-0 transition using a sensitive radio interferometer. The measured magnetic field strengths are surprisingly high; their upper limits range between 150 and 650 G within 530 au (˜80 R*) of the star. The lower limit of the field strength is expected to be at least ˜10 G based on the high degree of linear polarization. Since the field strengths are very high, the magnetic field must be a key element in understanding the stellar evolution of VY CMa, as well as the dynamical and chemical evolution of the complex CSE of the star. M-type RSGs, with large stellar surface, were thought to be very slow rotators. This would seem to make a dynamo in operation difficult, and would also dilute any fossil magnetic field. At least for VY CMa, we expect that powerful dynamo processes must still be active to generate the intense magnetic field.
Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells
2014-01-01
Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758
Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years
NASA Astrophysics Data System (ADS)
Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal
2017-12-01
Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.
Laser waveform control of extreme ultraviolet high harmonics from solids.
You, Yong Sing; Wu, Mengxi; Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Gholam-Mirzaei, Shima; Browne, Dana A; Chini, Michael; Chang, Zenghu; Schafer, Kenneth J; Gaarde, Mette B; Ghimire, Shambhu
2017-05-01
Solid-state high-harmonic sources offer the possibility of compact, high-repetition-rate attosecond light emitters. However, the time structure of high harmonics must be characterized at the sub-cycle level. We use strong two-cycle laser pulses to directly control the time-dependent nonlinear current in single-crystal MgO, leading to the generation of extreme ultraviolet harmonics. We find that harmonics are delayed with respect to each other, yielding an atto-chirp, the value of which depends on the laser field strength. Our results provide the foundation for attosecond pulse metrology based on solid-state harmonics and a new approach to studying sub-cycle dynamics in solids.
Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.
Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S
2013-04-01
The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.
Electric-field-induced extremely large change in resistance in graphene ferromagnets
NASA Astrophysics Data System (ADS)
Song, Yu
2018-01-01
A colossal magnetoresistance (˜100×10^3% ) and an extremely large magnetoresistance (˜1×10^6% ) have been previously explored in manganite perovskites and Dirac materials, respectively. However, the requirement of an extremely strong magnetic field (and an extremely low temperature) makes them not applicable for realistic devices. In this work, we propose a device that can generate even larger changes in resistance in a zero-magnetic field and at a high temperature. The device is composed of graphene under two strips of yttrium iron garnet (YIG), where two gate voltages are applied to cancel the heavy charge doping in the YIG-induced half-metallic ferromagnets. By calculations using the Landauer-Büttiker formalism, we demonstrate that, when a proper gate voltage is applied on the free ferromagnet, changes in resistance up to 305×10^6% (16×10^3% ) can be achieved at the liquid helium (nitrogen) temperature and in a zero magnetic field. We attribute such a remarkable effect to a gate-induced full-polarization reversal in the free ferromagnet, which results in a metal-state to insulator-state transition in the device. We also find that the proposed effect can be realized in devices using other magnetic insulators, such as EuO and EuS. Our work should be helpful for developing a realistic switching device that is energy saving and CMOS-technology compatible.
NASA Astrophysics Data System (ADS)
Yang, L.; Smith, J. A.; Liu, M.; Baeck, M. L.; Chaney, M. M.; Su, Y.
2017-12-01
Hurricane Harvey made landfall on 25 August 2017 and produced more than a meter of rain during a four-day period over eastern Texas, making it the wettest tropical cyclone on record in the United States. Extreme rainfall from Harvey was predominantly related to the dynamics and structure of outer rain bands. In this study, we provide details of the extreme rainfall produced by Hurricane Harvey. The principal research questions that motivate this study are: (1) what are the key microphysical properties of extreme rainfall from landfalling tropical cyclones and (2) what are the capabilities and deficiencies of existing bulk microphysics parameterizations from the physical models in capturing them. Our analyses are centered on intercomparisons of high-resolution simulations using the Weather Research and Forecasting (WRF) model and polarimetric radar fields from KHGX (Houston, Texas) WSR-88D. The WRF simulations accurately capture the track and intensity of Hurricane Harvey. Multi-rainband structure and its key evolution features are also well represented in the simulations. Two microphysics parameterizations (WSM6 and WDM6) are tested in this study. Radar reflectivity and differential reflectivity fields simulated by the WRF model are compared with polarimetric radar observations. An important feature for the extreme rainfall from Hurricane Harvey is the sharp boundary of spatial rainfall accumulation along the coast (with torrential rainfall distributed over Houston and its surrounding inland areas). We will examine the role of land-sea contrasts in dictating storm structure and evolution from both WRF simulations and polarimetric radar fields. Implications for improving hurricane rainfall forecasts and estimates will be provided.
Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields
NASA Astrophysics Data System (ADS)
Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.
2018-05-01
Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.
Large Area Field of View for Fast Temporal Resolution Astronomy
NASA Astrophysics Data System (ADS)
Covarrubias, Ricardo A.
2018-01-01
Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.
Can test fields destroy the event horizon in the Kerr–Taub–NUT spacetime?
NASA Astrophysics Data System (ADS)
Düztaş, Koray
2018-02-01
In this work we investigate if the interaction of the Kerr–Taub–NUT spacetime with test scalar and neutrino fields can lead to the destruction of the event horizon. It turns out that both extremal and nearly extremal black holes can be destroyed by scalar and neutrino fields if the initial angular momentum of the spacetime is sufficiently large relative to its mass and NUT charge. This is the first example in which a classical field satisfying the null energy condition can actually destroy an extremal black hole. For scalar fields, the modes that can lead to the destruction of the horizon are restricted to a narrow range due to superradiance. Since superradiance does not occur for neutrino fields, the destruction of the horizon by neutrino fields is generic, and it cannot be fixed by backreaction effects. We also show that the extremal black holes that can be destroyed by scalar fields correspond to naked singularities in the Kerr limit, in accord with the previous results which imply that extremal Kerr black holes cannot be destroyed by scalar test fields.
NASA Astrophysics Data System (ADS)
Garg, M.; Kim, H. Y.; Goulielmakis, E.
2018-05-01
Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.
Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars.
Murdin, B N; Li, Juerong; Pang, M L Y; Bowyer, E T; Litvinenko, K L; Clowes, S K; Engelkamp, H; Pidgeon, C R; Galbraith, I; Abrosimov, N V; Riemann, H; Pavlov, S G; Hübers, H-W; Murdin, P G
2013-01-01
Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.
Herrero, Asier; Zamora, Regino
2014-01-01
The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions.
Herrero, Asier; Zamora, Regino
2014-01-01
The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions. PMID:24489971
Physics in strong magnetic fields near neutron stars
NASA Technical Reports Server (NTRS)
Harding, Alice K.
1991-01-01
Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.
Geomagnetically Induced Currents: Principles
NASA Astrophysics Data System (ADS)
Oliveira, Denny M.; Ngwira, Chigomezyo M.
2017-10-01
The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.
Flat-field anastigmatic mirror objective for high-magnification extreme ultraviolet microscopy
NASA Astrophysics Data System (ADS)
Toyoda, Mitsunori
2015-08-01
To apply high-definition microscopy to the extreme ultraviolet (EUV) region in practice, i.e. to enable in situ observation of living tissue and the at-wavelength inspection of lithography masks, we constructed a novel reflective objective made of three multilayer mirrors. This objective is configured as a two-stage imaging system made of a Schwarzschild two-mirror system as the primary objective and an additional magnifier with a single curved mirror. This two-stage configuration can provide a high magnification of 1500, which is suitable for real-time observation with an EUV charge coupled device (CCD) camera. Besides, since off-axis aberrations can be corrected by the magnifier, which provides field flattener optics, we are able to configure the objective as a flat-field anastigmatic system, in which we will have a diffraction-limited spatial resolution over a large field-of-view. This paper describes in detail the optical design of the present objective. After calculating the closed-form equations representing the third-order aberrations of the objective, we apply these equations to practical design examples with a numerical aperture of 0.25 and an operation wavelength of 13.5 nm. We also confirm the imaging performances of this novel design by using the numerical ray-tracing method.
Ko, Alexander E.; Bieman, Donald N.; Schal, Coby; Silverman, Jules
2015-01-01
BACKGROUND Bait formulations are considered the most effective method for reducing German cockroach infestations. An important property of some bait formulations is secondary kill, whereby active ingredient is translocated in insect-produced residues throughout the cockroach population, especially affecting relatively sedentary early instar nymphs. RESULTS Blattella germanica was collected from a location where baits containing hydramethylnon, fipronil, or indoxacarb became ineffective, and these AIs were topically applied to adult males. Results revealed the first evidence for hydramethylnon resistance, moderate resistance to fipronil and extremely high resistance to indoxacarb. Insecticide residues excreted by field-collected males that ingested commercial baits effectively killed nymphs of an insecticide-susceptible laboratory strain of B. germanica but failed to kill most nymphs of the field-collected strain. CONCLUSIONS We report three novel findings: 1) The first evidence for hydramethylnon resistance in any insect; 2) extremely high levels of indoxacarb resistance in a field population; and 3) reduced secondary mortality in an insecticide-resistant field-collected strain of B. germanica. We suggest that while secondary mortality is considered to be advantageous in cockroach interventions, the ingestion of sublethal doses of AI by nymphs may select for high insecticide resistance by increasing the frequency of AI resistance alleles within the population. PMID:26689433
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
The Pioneer XI high field fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Acuna, M. A.; Ness, N. F.
1975-01-01
The high field fluxgate magnetometer experiment flown aboard the Pioneer XI spacecraft is described. This extremely simple instrument was used to extend the spacecraft's upper-limit measurement capability by approximately an order of magnitude (from 0.14 mT to 1.00 mT) with minimum power and volume requirements. This magnetometer was designed to complement the low-field measurements provided by a helium vector magnetometer and utilizes magnetic ring core sensors with biaxial orthogonal sense coils. The instrument is a single-range, triaxial-fluxgate magnetometer capable of measuring fields of up to 1 mT along each orthogonal axis, with a maximum resolution of 1 microT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin
The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSnmore » 4 is gapped out for PdSn 4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4; based on detailed analysis of the magnetoresistivity ρ ( H , T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.« less
Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin; ...
2017-10-27
The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSnmore » 4 is gapped out for PdSn 4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4; based on detailed analysis of the magnetoresistivity ρ ( H , T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.« less
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
Wide-range nuclear magnetic resonance detector
NASA Technical Reports Server (NTRS)
Sturman, J. C.; Jirberg, R. J.
1972-01-01
Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.
Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging
NASA Astrophysics Data System (ADS)
Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.
2018-05-01
We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.
2016-04-01
SUBJECT TERMS carbon nanotubes, composite, electromagnetic shielding , extreme environments, magnetism , fibers, woven composite, boron nitride...AFRL-AFOSR-VA-TR-2016-0158 Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments Konstantin...From - To) 15 Sep 2012 to 14 Nov 2017 4. TITLE AND SUBTITLE Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for
A nested observation and model approach to non linear groundwater surface water interactions.
NASA Astrophysics Data System (ADS)
van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.
2009-04-01
Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential of nested-scale, high frequency observations. The distributed hydrological model results will be used to show transient catchment scale relations between groundwater levels and discharges. These analyses lead to a simple expression that can describe catchment scale groundwater surface water interactions.
Comparison of Measured vs Modeled TE and TM Field Penetration into a Slotted Circular Cylinder
2011-01-01
1. INTRODUCTION In the testing of military systems and subsystems for electromag- netic vulnerability (EMV) and hazards of electromagnetic radiation ...to ordnance ( HERO ), extremely high amplitude (peak and rms) elec- tromagnetic fields must be generated and radiated to immerse the sys- tem/subsystem...Progress In Electromagnetics Research B, Vol. 28, 201–218, 2011 COMPARISON OF MEASURED VS. MODELED TE AND TM FIELD PENETRATION INTO A SLOTTED
Eskelin, Katri; Lampi, Mirka; Meier, Florian; Moldenhauer, Evelin; Bamford, Dennis H; Oksanen, Hanna M
2017-11-01
Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.
Defense Acquisitions: Assessments of Selected Weapon Programs
2009-03-01
a field experiment , but program officials report that it will take additional efforts to transition the waveform to an operational platform. The...successfully demonstrated during a field experiment ending in October 2008 that included a multi-subnet test by Future Combat Systems personnel. The...Individual Programs 29 Advanced Extremely High Frequency (AEHF) Satellites 31 Advanced Threat Infrared Countermeasure/Common Missile Warning System
NASA Astrophysics Data System (ADS)
Matin, M.; Mondal, Rajib; Barman, N.; Thamizhavel, A.; Dhar, S. K.
2018-05-01
Here, we report an extremely large positive magnetoresistance (XMR) in a single-crystal sample of MoSi2, approaching almost 107% at 2 K in a 14-T magnetic field without appreciable saturation. Hall resistivity data reveal an uncompensated nature of MoSi2 with an electron-hole compensation level sufficient enough to expect strong saturation of magnetoresistance in the high-field regime. Magnetotransport and the complementary de Haas-van Alphen (dHvA) oscillations results, however, suggest that strong Zeeman effect causes a magnetic field-induced modulation of the Fermi pockets and drives the system towards perfect electron-hole compensation condition in the high-field regime. Thus, the nonsaturating XMR of this semimetal arises under the unconventional situation of Zeeman effect-driven electron-hole compensation, whereas its huge magnitude is decided solely by the ultralarge value of the carrier mobility. Intrinsic ultralarge carrier mobility, strong suppression of backward scattering of the charge carriers, and nontrivial Berry phase in dHvA oscillations attest to the topological character of MoSi2. Therefore, this semimetal represents another material hosting combination of topological and conventional electronic phases.
High-Resolution and Frequency, Printed Miniature Magnetic Probes
NASA Astrophysics Data System (ADS)
Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian
2013-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan
2016-01-01
Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.
Wide-Field Imaging Using Nitrogen Vacancies
NASA Technical Reports Server (NTRS)
Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)
2017-01-01
Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
Extreme value modelling of Ghana stock exchange index.
Nortey, Ezekiel N N; Asare, Kwabena; Mettle, Felix Okoe
2015-01-01
Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana stock exchange all-shares index (2000-2010) by applying the extreme value theory (EVT) to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before the EVT method was applied. The Peak Over Threshold approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model's goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the value at risk and expected shortfall risk measures at some high quantiles, based on the fitted GPD model.
NASA Astrophysics Data System (ADS)
Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark
2014-07-01
With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.
Seeing Red and Shooting Blanks: A Study of Red Quasars and Blank Field X-Ray Sources
NASA Technical Reports Server (NTRS)
Elvis, Martin; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
We have identified a population of 'blank field sources' (or 'blanks') among the ROSAT (Roentgen Satellite) bright unidentified X-ray sources with faint optical counterparts. The extreme X-ray over optical flux ratio of blank field sources is not compatible with the main classes of X-ray emitters except for extreme BL Lacertae objects at fx/fv is equal to or less than 35. From the analysis of ROSAT archival data we found evidence for only three sources, out of 16, needing absorption in excess of the Galactic value and no indication of variability. We also found evidence for an extended nature for only one of the five blanks with a serendipitous HRI (High Resolution Imager) detection; this source (1WGA J1226.9+3332) was confirmed as a z=0.89 cluster of galaxies. Palomar images reveal the presence of a red (O - E is equal to or greater than 2) counterpart in the X-ray error circle for six blanks. The identification process brought to the discovery of another high z cluster of galaxies, one (possibly extreme) BL Lac and two apparently normal type 1 AGNs (Active Galactic Nuclei). These AGNs, together with four more AGN-like objects seem to form a well defined group: they present type 1 X-ray spectra but red Palomar counterparts. We discuss the possible explanations for the discrepancy between the X-ray and optical data, among which: a suppressed big blue bump emission, an extreme dust to gas (approximately 40 - 60 the Galactic ratio) ratio value and a high redshift (z is greater than or equal to 3.5) QSO (Quasi-Stellar Object) nature. These AGN-like blanks seem to be the bright (and easier to study) analogs of the sources which are being found in deep Chandra observations. Five more blanks have a still an unknown nature.
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
NASA Astrophysics Data System (ADS)
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; Lereu, Aude; Passian, Ali; Zapien, Juan Antonio; Lequime, Michel
2018-02-01
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. We introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the bounding media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.
Space Station Fisheye Fly-Through_ UHD
2016-10-27
Join us for a fly-through of the International Space Station. Produced by Harmonic exclusively for NASA TV UHD, the footage was shot in Ultra High Definition (4K) using a fisheye lens for extreme focus and depth of field.
1993-10-01
particular subject’s water turnover data could be considered triglyceride , high density lipoprotein ( HDL ), low density an outlier (20). Ali results are... Cholesterol and triglycerides values tended to decrease pre- retrospectively distinguish the bars enough to accurately rate to post-study. Further...there was an increase in the HDL them individually. However, the field data show that even fraction and a decrease in the LDL fraction of cholesterol
Reflection type metasurface designed for high efficiency vectorial field generation
NASA Astrophysics Data System (ADS)
Wang, Shiyi; Zhan, Qiwen
2016-07-01
We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries.
Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats
NASA Astrophysics Data System (ADS)
Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.
2016-12-01
Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moroz, P.E.
A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantagesmore » for fusion applications.« less
2015-05-22
Conductors Through Extreme Frequency, Fields, and Light Krzysztof Koziol THE CHANCELLOR, MASTER AND SCHOLARS OF THE UNIVERISTY OF CAMBRIDGE...2011 to 31 August 2014 Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and...Carbon Conductors Through Extreme Frequency, Fields, and Light Krzysztof Koziol THE CHANCELLOR, MASTER AND SCHOLARS OF THE UNIVERISTY OF CAMBRIDGE THE
Extreme depth-of-field intraocular lenses
NASA Astrophysics Data System (ADS)
Baker, Kenneth M.
1996-05-01
A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.
A force balance system for the measurement of skin friction drag force
NASA Technical Reports Server (NTRS)
Moore, J. W.; Mcvey, E. S.
1971-01-01
Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indelicato, Daniel J.; Keole, Sameer R.; Shahlaee, Amir H.
2008-11-01
Purpose: More than 70% of Ewing tumors occur in the extremities and pelvis. This study identified factors influencing local control and functional outcomes after management with definitive radiotherapy (RT). Patients and Methods: A total of 75 patients with a localized Ewing tumor of the extremity or pelvis were treated with definitive RT at the University of Florida between 1970 and 2006 (lower extremity tumors in 30, pelvic tumors in 26, and upper extremity tumors in 19). RT was performed on a once-daily (40%) or twice-daily (60%) basis. The median dose was 55.2 Gy in 1.8-Gy daily fractions or 55.0 Gymore » in 1.2-Gy twice-daily fractions. The median observed follow-up was 4.7 years. Functional outcome was assessed using the Toronto Extremity Salvage Score. Results: The 10-year actuarial overall survival, cause-specific survival, freedom from relapse, and local control rate was 48%, 48%, 42%, and 71%, respectively. Of the 72 patients, 3 required salvage amputation. Inferior cause-specific survival was associated with larger tumors (81% for tumors <8 cm vs. 39% for tumors {>=}8 cm, p <0.05). No patient characteristics or treatment variables were predictive of local failure. No fractures occurred in patients treated with hyperfractionation or with tumors of the distal extremities. Severe late complications were more frequently associated with use of <8-MV photons and fields encompassing the entire bone or hemipelvis. A significantly better Toronto Extremity Salvage Score was associated with a late-effect biologically effective dose of <91.7 Gy{sub 3}. Conclusions: Limb preservation was effectively achieved through definitive RT. Treating limited field sizes with hyperfractionated high-energy RT could minimize long-term complications and provides superior functional outcomes.« less
Public Perception of Extreme Cold Weather-Related Health Risk in a Cold Area of Northeast China.
Ban, Jie; Lan, Li; Yang, Chao; Wang, Jian; Chen, Chen; Huang, Ganlin; Li, Tiantian
2017-08-01
A need exists for public health strategies regarding extreme weather disasters, which in recent years have become more frequent. This study aimed to understand the public's perception of extreme cold and its related health risks, which may provide detailed information for public health preparedness during an extreme cold weather event. To evaluate public perceptions of cold-related health risk and to identify vulnerable groups, we collected responses from 891 participants in a face-to-face survey in Harbin, China. Public perception was measured by calculating the score for each perception question. Locals perceived that extreme cold weather and related health risks were serious, but thought they could not avoid these risks. The significant difference in perceived acceptance level between age groups suggested that the elderly are a "high health risk, low risk perception" group, meaning that they are relatively more vulnerable owing to their high susceptibility and low awareness of the health risks associated with extreme cold weather. The elderly should be a priority in risk communication and health protective interventions. This study demonstrated that introducing risk perception into the public health field can identify vulnerable groups with greater needs, which may improve the decision-making of public health intervention strategies. (Disaster Med Public Health Preparedness. 2017;11:417-421).
Operation of SOI P-Channel Field Effect Transistors, CHT-PMOS30, under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad
2009-01-01
Electronic systems are required to operate under extreme temperatures in NASA planetary exploration and deep space missions. Electronics on-board spacecraft must also tolerate thermal cycling between extreme temperatures. Thermal management means are usually included in today s spacecraft systems to provide adequate temperature for proper operation of the electronics. These measures, which may include heating elements, heat pipes, radiators, etc., however add to the complexity in the design of the system, increases its cost and weight, and affects its performance and reliability. Electronic parts and circuits capable of withstanding and operating under extreme temperatures would reflect in improvement in system s efficiency, reducing cost, and improving overall reliability. Semiconductor chips based on silicon-on-insulator (SOI) technology are designed mainly for high temperature applications and find extensive use in terrestrial well-logging fields. Their inherent design offers advantages over silicon devices in terms of reduced leakage currents, less power consumption, faster switching speeds, and good radiation tolerance. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. Experimental investigation on the operation of SOI, N-channel field effect transistors under wide temperature range was reported earlier [1]. This work examines the performance of P-channel devices of these SOI transistors. The electronic part investigated in this work comprised of a Cissoid s CHT-PMOS30, high temperature P-channel MOSFET (metal-oxide semiconductor field-effect transistor) device [2]. This high voltage, medium-power transistor is designed for geothermal well logging applications, aerospace and avionics, and automotive industry, and is specified for operation in the temperature range of -55 C to +225 C. Table I shows some specifications of this transistor [2]. The CHT-PMOS30 device was characterized at various temperatures over the range of -190 C to +225 C in terms of its voltage/current characteristic curves. The test temperatures included +22, -50, -100, -150, -175, -190, +50, +100, +150, +175, +200, and +225 C. Limited thermal cycling testing was also performed on the device. These tests consisted of subjecting the transistor to a total of twelve thermal cycles between -190 C and +225 C. A temperature rate of change of 10 C/min and a soak time at the test temperature of 10 minutes were used throughout this work. Post-cycling measurements were also performed at selected temperatures. In addition, re-start capability at extreme temperatures, i.e. power switched on while the device was soaking for a period of 20 minutes at the test temperatures of -190 C and +225 C, was investigated.
Photometric detection of high proper motions in dense stellar fields using difference image analysis
NASA Astrophysics Data System (ADS)
Eyer, L.; Woźniak, P. R.
2001-10-01
The difference image analysis (DIA) of the images obtained by the Optical Gravitational Lensing Experiment (OGLE-II) revealed a peculiar artefact in the sample of stars proposed as variable by Woźniak in one of the Galactic bulge fields: the occurrence of pairs of candidate variables showing anti-correlated light curves monotonic over a period of 3yr. This effect can be understood, quantified and related to the stellar proper motions. DIA photometry supplemented with a simple model offers an effective and easy way to detect high proper motion stars in very dense stellar fields, where conventional astrometric searches are extremely inefficient.
Upper extremity transplantation: current concepts and challenges in an emerging field.
Elliott, River M; Tintle, Scott M; Levin, L Scott
2014-03-01
Loss of an isolated upper limb is an emotionally and physically devastating event that results in significant impairment. Patients who lose both upper extremities experience profound disability that affects nearly every aspect of their lives. While prosthetics and surgery can eventually provide the single limb amputee with a suitable assisting hand, limited utility, minimal haptic feedback, weight, and discomfort are persistent problems with these techniques that contribute to high rates of prosthetic rejection. Moreover, despite ongoing advances in prosthetic technology, bilateral amputees continue to experience high levels of dependency, disability, and distress. Hand and upper extremity transplantation holds several advantages over prosthetic rehabilitation. The missing limb is replaced with one of similar skin color and size. Sensibility, voluntary motor control, and proprioception are restored to a greater degree, and afford better dexterity and function than prosthetics. The main shortcomings of transplantation include the hazards of immunosuppression, the complications of rejection and its treatment, and high cost. Hand and upper limb transplantation represents the most commonly performed surgery in the growing field of Vascularized Composite Allotransplantation (VCA). As upper limb transplantation and VCA have become more widespread, several important challenges and controversies have emerged. These include: refining indications for transplantation, optimizing immunosuppression, establishing reliable criteria for monitoring, diagnosing, and treating rejection, and standardizing outcome measures. This article will summarize the historical background of hand transplantation and review the current literature and concepts surrounding it.
Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...
NASA Technical Reports Server (NTRS)
Boomer, Kristen; Hammoud, Ahmad
2015-01-01
Silicon carbide (SiC) devices are becoming widely used in electronic power circuits as replacement for conventional silicon parts due to their attractive properties that include low on-state resistance, high temperature tolerance, and high frequency operation. These attributes have a significant impact by reducing system weight, saving board space, and conserving power. In this work, the performance of an automotive-grade high speed gate driver with potential use in controlling SiC FETs (field-Effect Transistors) in converters or motor control applications was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to assess performance and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-10-01
In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.
Extreme events in total ozone over Arosa - Part 1: Application of extreme value theory
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Peter, T.; Ribatet, M.; Davison, A. C.; Stübi, R.; Weihs, P.; Holawe, F.
2010-05-01
In this study ideas from extreme value theory are for the first time applied in the field of stratospheric ozone research, because statistical analysis showed that previously used concepts assuming a Gaussian distribution (e.g. fixed deviations from mean values) of total ozone data do not adequately address the structure of the extremes. We show that statistical extreme value methods are appropriate to identify ozone extremes and to describe the tails of the Arosa (Switzerland) total ozone time series. In order to accommodate the seasonal cycle in total ozone, a daily moving threshold was determined and used, with tools from extreme value theory, to analyse the frequency of days with extreme low (termed ELOs) and high (termed EHOs) total ozone at Arosa. The analysis shows that the Generalized Pareto Distribution (GPD) provides an appropriate model for the frequency distribution of total ozone above or below a mathematically well-defined threshold, thus providing a statistical description of ELOs and EHOs. The results show an increase in ELOs and a decrease in EHOs during the last decades. The fitted model represents the tails of the total ozone data set with high accuracy over the entire range (including absolute monthly minima and maxima), and enables a precise computation of the frequency distribution of ozone mini-holes (using constant thresholds). Analyzing the tails instead of a small fraction of days below constant thresholds provides deeper insight into the time series properties. Fingerprints of dynamical (e.g. ENSO, NAO) and chemical features (e.g. strong polar vortex ozone loss), and major volcanic eruptions, can be identified in the observed frequency of extreme events throughout the time series. Overall the new approach to analysis of extremes provides more information on time series properties and variability than previous approaches that use only monthly averages and/or mini-holes and mini-highs.
Laser-driven Ion Acceleration using Nanodiamonds
NASA Astrophysics Data System (ADS)
D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin
2016-10-01
Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.
Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology
Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret
2016-01-01
Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782
Valley polarization in bismuth
NASA Astrophysics Data System (ADS)
Fauque, Benoit
2013-03-01
The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.
NASA Astrophysics Data System (ADS)
Moretto, G.; Kuhn, J.; Langlois, M.; Berdugyna, S.; Tallon, M.
2017-09-01
Telescopes larger than currently planned 30-m class instruments must break the mass-aperture scaling relationship of the Keck-generation of multi-segmented telescopes. Partially filled aperture, but highly redundant baseline interferometric instruments may achieve both large aperture and high dynamic range. The PLANETS FOUNDATION group has explored hybrid telescope-interferometer concepts for narrow-field optical systems that exhibit coronagraphic performance over narrow fields-of-view. This paper describes how the Colossus and Exo-Life Finder telescope designs achieve 10x lower moving masses than current Extremely Large Telescopes.
Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo
2015-04-01
During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.
Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo
2015-01-01
During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level. PMID:25837346
A divergence-cleaning scheme for cosmological SPMHD simulations
NASA Astrophysics Data System (ADS)
Stasyszyn, F. A.; Dolag, K.; Beck, A. M.
2013-01-01
In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.
Explosive X-point collapse in relativistic magnetically dominated plasma
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver
2017-12-01
The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.
Climate signature of Northwest U.S. precipitation Extremes
NASA Astrophysics Data System (ADS)
Kushnir, Y.; Nakamura, J.
2017-12-01
The climate signature of precipitation extremes in the Northwest U.S. - the region that includes Oregon, Washington, Idaho, Montana and Wyoming - is studied using composite analysis of atmospheric fields leading to and associated with extreme rainfall events. A K-Medoids cluster analysis is applied to winter (November-February) months, maximum 5-day precipitation amounts calculated from 1-degree gridded daily rainfall between 1950/51 and 2013/14. The clustering divides the region into three sub-regions: one over the far eastern part of the analysis domain, includeing most of Montana and Wyoming. Two other sub-regions are in the west, lying north and south of the latitude of 45N. Using the time series corresponding to the Medoid centers, we extract the largest (top 5%) monthly extreme events to form the basis for the composite analysis. The main circulation feature distinguishing a 5-day extreme precipitation event in the two western sub-regions of the Northwest is the presence of a large, blocking, high pressure anomaly over the Gulf of Alaska about a week before the beginning of the 5-day intense precipitation event. The high pressure center intensifies considerably with time, drifting slowly westward, up to a day before the extreme event. During that time, a weak low pressure centers appears at 30N, to the southwest of the high, deepening as it moves east. As the extreme rainfall event is about to begin, the now deep low is encroaching on the Northwest coast while its southern flank taps well south into the subtropical Pacific, drawing moisture from as south as 15N. During the 5-day extreme precipitation event the high pressure center moves west and weakens while the now intense low converges large amounts of subtropical moisture to precipitate over the western Northwest. The implication of this analysis for extended range prediction is assessed.
Optimization of an on-board imaging system for extremely rapid radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He
2015-11-15
Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less
NASA Astrophysics Data System (ADS)
Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos
2015-04-01
The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.
The Subaru Coronagraphic Extreme AO Project: Progress and Upgrades
NASA Astrophysics Data System (ADS)
Jovanovic, Nemanja; Martinache, F.; Guyon, O.; Clergeon, C.; Garrel, V.
2013-01-01
The Subaru Coronagraphic Extreme AO (SCExAO) instrument consists of a high performance Phase Induced Amplitude Apodisation (PIAA) coronagraph combined with an extreme Adaptive Optics (AO) system operating in the near-infrared (H band). The extreme AO system driven by the 2000 element deformable mirror will allow for Strehl ratios>90% to be achieved in the H-band when it goes closed loop. This makes the SCExAO instrument a powerful platform for high contrast imaging down to angular separations of the order of 1 λ/D. In this paper we report on the recent progress in regards to the development of the instrument, which includes the addition of a visible bench that makes use of the light at shorter wavelengths not currently utilized by SCExAO and closing the loop on the tip/tilt wavefront sensor. We will also discuss two exciting guest instruments which will expand the capabilities of SCExAO over the next few years; namely CHARIS which is a integral field spectrograph as well as VAMPIRES, a visible aperture masking experiment based on polarimetric analysis of circumstellar disks.
Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics
NASA Astrophysics Data System (ADS)
Aharonian, F. A.; Belyanin, A. A.; Derishev, E. V.; Kocharovsky, V. V.; Kocharovsky, Vl. V.
2002-07-01
We formulate the general requirements, set by classical electrodynamics, on the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic fields or by the difference in electric potentials (generalized Hillas criterion) but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of an accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard γ rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects-potential EHECR sources-and discuss their ability to accelerate protons to 1020 eV and beyond. The possibility of gain from ultrarelativistic bulk flows is addressed, with active galactic nuclei and gamma-ray bursts being the examples.
Constraints on the extremely high-energy cosmic rays accelerators from classical electrodynamics
NASA Astrophysics Data System (ADS)
Belyanin, A.; Aharonian, F.; Derishev, E.; Kocharovsky, V.; Kocharovsky, V.
We formulate the general requirements, set by classical electrodynamics, to the sources of extremely high-energy cosmic rays (EHECRs). It is shown that the parameters of EHECR accelerators are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion), but also by the synchrotron radiation, the electro-bremsstrahlung, or the curvature radiation of accelerated particles. Optimization of these requirements in terms of accelerator's size and magnetic field strength results in the ultimate lower limit to the overall source energy budget, which scales as the fifth power of attainable particle energy. Hard gamma-rays accompanying generation of EHECRs can be used to probe potential acceleration sites. We apply the results to several populations of astrophysical objects - potential EHECR sources - and discuss their ability to accelerate protons to 1020 eV and beyond. A possibility to gain from ultrarelativistic bulk flows is addressed, with Active Galactic Nuclei and Gamma-Ray Bursts being the examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Ednilton S.; Crispino, Luis C. B.; Higuchi, Atsushi
2011-10-15
The absorption cross section of Reissner-Nordstroem black holes for the gravitational field is computed numerically, taking into account the coupling of the electromagnetic and gravitational perturbations. Our results are in excellent agreement with low- and high-frequency approximations. We find equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordstroem black holes for all frequencies, which we explain analytically. This gives the first example of objects in general relativity in four dimensions that absorb the electromagnetic and gravitational waves in exactly the same way.
Production and detection of atomic hexadecapole at Earth's magnetic field.
Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D
2008-07-21
Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.
Evidence for Field-parallel Electron Acceleration in Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haerendel, G.
It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.
Measuring the absolute carrier-envelope phase of many-cycle laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzallas, P.; Skantzakis, E.; Charalambidis, D.
2010-12-15
The carrier-envelope phase (CEP) of high-peak-power, many-cycle laser fields becomes a crucial parameter when such fields are used, in conjunction with polarization gating techniques, in isolated attosecond (asec) pulse generation. However, its measurement has not been achieved so far. We demonstrate a physical process sensitive to the CEP value of such fields and describe a method for its online shot-to-shot monitoring. This work paves the way for the exploitation of energetic isolated asec pulses in studies of nonlinear extreme ultraviolet (XUV) processes and XUV-pump-XUV-probe experiments with asec resolutions.
NASA Astrophysics Data System (ADS)
Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.
2010-04-01
The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under these conditions enhanced Larmor and Unruh radiation signals may be observed. Detection of the Unruh photons (together with its competing radiation components) is envisaged via Compton polarimetry in a novel highly granular 2D-segmented position-sensitive germanium detector.
NASA Astrophysics Data System (ADS)
Hori, Yasuko; Kuzuhara, Masaaki; Ando, Yuji; Mizuta, Masashi
2000-04-01
Electric field distribution in the channel of a field effect transistor (FET) with a field-modulating plate (FP) has been theoretically investigated using a two-dimensional ensemble Monte Carlo simulation. This analysis revealed that the introduction of FP is effective in canceling the influence of surface traps under forward bias conditions and in reducing the electric field intensity at the drain side of the gate edge under pinch-off bias conditions. This study also found that a partial overlap of the high-field region under the gate and that at the FP electrode is important for reducing the electric field intensity. The optimized metal-semiconductor FET with FP (FPFET) (LGF˜0.2 μm) exhibited a much lower peak electric field intensity than a conventional metal-semiconductor FET. Based on these numerically calculated results, we have proposed a design procedure to optimize the power FPFET structure with extremely high breakdown voltages while maintaining reasonable gain performance.
Okada, Mitsuhiro; Miyauchi, Yuhei; Matsuda, Kazunari; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Kitaura, Ryo
2017-03-23
Monolayer transition metal dichalcogenides (TMDCs) including WS 2 , MoS 2 , WSe 2 and WS 2 , are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS 2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm 2 ) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.
One-per-mil tumescent technique for upper extremity surgeries: broadening the indication.
Prasetyono, Theddeus O H; Biben, Johannes A
2014-01-01
We studied the effect of 1:1,000,000 epinephrine concentration (1 per mil) to attain a bloodless operative field in hand and upper extremity surgery and to explore its effectiveness and safety profile. This retrospective observational study enrolled 45 consecutive patients with 63 operative fields consisting of various hand and upper extremity problems. One-per-mil solution was injected into the operative field with tumescent technique to create a bloodless operating field without tourniquet. The solution was formulated by adding a 1:1,000,000 concentration of epinephrine and 100 mg of lidocaine into saline solution to form 50 mL of tumescent solution. Observation was performed on the clarity of the operative field, which we described as totally bloodless, minimal bleeding, acceptable bleeding, or bloody. The volume of tumescent solution injected, duration of surgery, and surgical outcome were also reviewed. The tumescent technique with 1-per-mil solution achieved 29% totally bloodless, 48% minimal bleeding, 22% acceptable bleeding, and 2% bloody operative fields in cases that included burn contracture and congenital hand and upper extremity surgeries. One-per-mil tumescent solution created a clear operative field in hand and upper extremity surgery. It proved safe and effective for a wide range of indications. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Psychiatric Aspects of Extreme Sports: Three Case Studies
Tofler, Ian R; Hyatt, Brandon M; Tofler, David S
2018-01-01
Extreme sports, defined as sporting or adventure activities involving a high degree of risk, have boomed since the 1990s. These types of sports attract men and women who can experience a life-affirming transcendence or “flow” as they participate in dangerous activities. Extreme sports also may attract people with a genetic predisposition for risk, risk-seeking personality traits, or underlying psychiatric disorders in which impulsivity and risk taking are integral to the underlying problem. In this report, we attempt to illustrate through case histories the motivations that lead people to repeatedly risk their lives and explore psychiatry’s role in extreme sports. A sports psychiatrist can help with therapeutic management, neuromodulation of any comorbid psychiatric diagnosis, and performance enhancement (eg, risk minimization) to cultivate improved judgment which could include identifying alternative safer recreational options. Because flirting with death is critical to the extreme sports ethos, practitioners must gain further understanding of this field and its at-risk participants. PMID:29401052
Typhoon generated surface gravity waves measured by NOMAD-type buoys
NASA Astrophysics Data System (ADS)
Collins, Clarence O., III
This study examines wind-generated ocean surface waves as measured by NOMAD-type buoys during the ONR-sponsored Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment in 2010. 1-D measurements from two new Extreme Air-Sea Interaction (EASI) NOMAD-type buoys were validated against measurements from established Air-Sea Interaction Spar (ASIS) buoys. Also, during ITOP, 3 drifting Miniature Wave Buoys, a wave measuring marine radar on the R/V Roger Revelle, and several overpasses of JASON-1 (C- and Ku-band) and -2 (Ku-band) satellite altimeters were within 100 km of either EASI buoy. These additional measurements were compared against both EASI buoys. Findings are in line with previous wave parameter inter-comparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information which has been successfully gathered from a buoy with a 6 m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. In addition, details for giving a consistent estimate of sea surface elevation from buoys using strapped down accelerometers are given. This was found to be particularly important for accurate measurement of extreme waves. These technical studies established a high level of confidence in the ITOP wave measurements. Detailed frequency-direction spectra were analyzed. Structures in the wave field were described during the close passages of 4 major tropical cyclones (TC) including: severe tropical storm Dianmu, Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. In addition, significant swell was measured from a distant 5th TC, Typhoon Malakas. Changes in storm direction and intensity are found to have a profound impact on the wave field. Measurements of extreme waves were explored. More extreme waves were measured during TCs which coincided with times of increased wave steepness. The largest extreme waves, which are more impressive than the Draupner (aka Newyears) wave in terms of normalized wave height, were found to occur under circumstances which support the theory of modulation instability. It is suggested that swell and wind sea, as generated by complex TCs winds, may merge and/or couple in such a way to produce sea-states which are unstable. The largest extreme wave, which was over 21 m high, appears to have occurred under such circumstances. However, the development of unstable seas, and the possible connection between the occurrence of extreme waves and unstable seas, has yet to be confirmed.
High strain rate deformation of layered nanocomposites
NASA Astrophysics Data System (ADS)
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.
2012-11-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
High strain rate deformation of layered nanocomposites.
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L
2012-01-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
Adaptive optics at the Subaru telescope: current capabilities and development
NASA Astrophysics Data System (ADS)
Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben
2014-08-01
Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.
Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review
Schmitt, Katrin; Oehse, Kerstin; Sulz, Gerd; Hoffmann, Christian
2008-01-01
Evanescent field sensors based on waveguide surfaces play an important role where high sensitivity is required. Particularly tantalum pentoxide (Ta2O5) is a suitable material for thin-film waveguides due to its high refractive index and low attenuation. Many label-free biosensor systems such as grating couplers and interferometric sensors as well as fluorescence-based systems benefit from this waveguide material leading to extremely high sensitivity. Some biosensor systems based on Ta2O5 waveguides already took the step into commercialization. This report reviews the various detection systems in terms of limit of detection, the applications, and the suitable surface chemistry. PMID:27879731
NASA Technical Reports Server (NTRS)
Roberti, Dino; Ludwig, Reinhold; Looft, Fred J.
1988-01-01
A 3-D computer model of a piston radiator with lenses for focusing and defocusing is presented. To achieve high-resolution imaging, the frequency of the transmitted and received ultrasound must be as high as 10 MHz. Current ultrasonic transducers produce an extremely narrow beam at these high frequencies and thus are not appropriate for imaging schemes such as synthetic-aperture focus techniques (SAFT). Consequently, a numerical analysis program has been developed to determine field intensity patterns that are radiated from ultrasonic transducers with lenses. Lens shapes are described and the field intensities are numerically predicted and compared with experimental results.
Electromagnetic perception and individual features of human beings.
Lebedeva, N N; Kotrovskaya, T I
2001-01-01
An investigation was made of the individual reactions of human subjects exposed to electromagnetic fields. We performed the study on 86 volunteers separated into two groups. The first group was exposed to the electromagnetic field of infralow frequencies, whereas the second group was exposed to the electromagnetic field of extremely high frequencies. We found that the electromagnetic perception of human beings correlated with their individual features, such as EEG parameters, the critical frequency of flash merging, and the electric current sensitivity. Human subjects who had a high-quality perception of electromagnetic waves showed an optimal balance of cerebral processes, an excellent functional state of the central nervous system, and a good decision criterion.
Gresits, Iván; Necz, Péter Pál; Jánossy, Gábor; Thuróczy, György
2015-09-01
Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.
Hot Electron Emission in Semiconductors.
1988-03-25
applied electric field and calculated for each detector according to U = fIRMA I(, (1)U R(w)A(w)IBB(wTe) "dw I0 BB e where R() = R0 r(w) and A(w) = A a...the spectrum of the stimulated emis- magnetic field tunable GaAs detector was used for the de - ,’i. sion from p-Ge by means of an extremely narrowband...crossed electric and magnetic fields is studied by means of a tunable narrow- band GaAs- detector . A multimode spectrum is observed from polished high
Binary-selectable detector holdoff circuit
NASA Technical Reports Server (NTRS)
Kadrmas, K. A.
1974-01-01
High-speed switching circuit protects detectors from sudden, extremely-intense backscattered radiation that results from short-range atmospheric dust layers, or low-level clouds, entering laser/radar field of view. Function of circuit is to provide computer-controlled switching of photodiode detector, preamplifier power-supply voltages, in approximately 10 nanoseconds.
MEASURING AND MODELING DISINFECTION WALL DEMAND IN METALLIC PIPES
A field test procedure was developed and implemented in Detroit to estimate chlorine loss due to wall demand in older 6" (152 mm) and 8" (203 mm) diameter, unlined cast iron pipes. The test results produced extremely high wall reaction rate coefficients that increased significan...
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; ...
2018-02-12
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.
2018-06-01
We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.
Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F
2013-01-28
Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.
Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, M. E., E-mail: weller4@llnl.gov; Beiersdorfer, P.; Soukhanovskii, V. A.
2016-11-15
Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will bemore » used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.« less
Extremely high frequency RF effects on electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less
[The use of a detector of the extremely weak radiation as a variometer of gravitation field].
Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A
2001-01-01
It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.
Compound summer temperature and precipitation extremes over central Europe
NASA Astrophysics Data System (ADS)
Sedlmeier, Katrin; Feldmann, H.; Schädler, G.
2018-02-01
Reliable knowledge of the near-future climate change signal of extremes is important for adaptation and mitigation strategies. Especially compound extremes, like heat and drought occurring simultaneously, may have a greater impact on society than their univariate counterparts and have recently become an active field of study. In this paper, we use a 12-member ensemble of high-resolution (7 km) regional climate simulations with the regional climate model COSMO-CLM over central Europe to analyze the climate change signal and its uncertainty for compound heat and drought extremes in summer by two different measures: one describing absolute (i.e., number of exceedances of absolute thresholds like hot days), the other relative (i.e., number of exceedances of time series intrinsic thresholds) compound extreme events. Changes are assessed between a reference period (1971-2000) and a projection period (2021-2050). Our findings show an increase in the number of absolute compound events for the whole investigation area. The change signal of relative extremes is more region-dependent, but there is a strong signal change in the southern and eastern parts of Germany and the neighboring countries. Especially the Czech Republic shows strong change in absolute and relative extreme events.
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-01-01
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments’ conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*. PMID:28934173
Wu, Zhibin; Li, Nianping; Cui, Haijiao; Peng, Jinqing; Chen, Haowen; Liu, Penglong
2017-09-21
Existing thermal comfort field studies are mainly focused on the relationship between the indoor physical environment and the thermal comfort. In numerous chamber experiments, physiological parameters were adopted to assess thermal comfort, but the experiments' conclusions may not represent a realistic thermal environment due to the highly controlled thermal environment and few occupants. This paper focuses on determining the relationships between upper extremity skin temperatures (i.e., finger, wrist, hand and forearm) and the indoor thermal comfort. Also, the applicability of predicting thermal comfort by using upper extremity skin temperatures was explored. Field studies were performed in office buildings equipped with split air-conditioning (SAC) located in the hot summer and cold winter (HSCW) climate zone of China during the summer of 2016. Psychological responses of occupants were recorded and physical and physiological factors were measured simultaneously. Standard effective temperature (SET*) was used to incorporate the effect of humidity and air velocity on thermal comfort. The results indicate that upper extremity skin temperatures are good indicators for predicting thermal sensation, and could be used to assess the thermal comfort in terms of physiological mechanism. In addition, the neutral temperature was 24.7 °C and the upper limit for 80% acceptability was 28.2 °C in SET*.
NASA Astrophysics Data System (ADS)
Kumar, Nitesh; Shekhar, Chandra; Klotz, J.; Wosnitza, J.; Felser, Claudia
2017-10-01
LaBi is a three-dimensional rocksalt-type material with a surprisingly quasi-two-dimensional electronic structure. It exhibits excellent electronic properties such as the existence of nontrivial Dirac cones, extremely large magnetoresistance, and high charge-carrier mobility. The cigar-shaped electron valleys make the charge transport highly anisotropic when the magnetic field is varied from one crystallographic axis to another. We show that the electrons can be polarized effectively in these electron valleys under a rotating magnetic field. We achieved a polarization of 60% at 2 K despite the coexistence of three-dimensional hole pockets. The valley polarization in LaBi is compared to the sister compound LaSb where it is found to be smaller. The performance of LaBi is comparable to the highly efficient bismuth.
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions
Corvalán Moya, Carolina; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F.; Wartenbe, Mark; Rosa, Priscila F. S.; Betts, Jonathan B.; Crooker, Scott A.; Daou, Ramzy
2017-01-01
In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10−8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies. PMID:29117137
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions.
Jaime, Marcelo; Corvalán Moya, Carolina; Weickert, Franziska; Zapf, Vivien; Balakirev, Fedor F; Wartenbe, Mark; Rosa, Priscila F S; Betts, Jonathan B; Rodriguez, George; Crooker, Scott A; Daou, Ramzy
2017-11-08
In this work, we review single mode SiO₂ fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity ( ΔL/L ) as low as a few parts in one hundred million (≈10 -8 ). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber's index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions
Jaime, Marcelo; Corvalán Moya, Carolina; Weickert, Franziska; ...
2017-11-08
In this work, we review single mode SiO 2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10 -8). Themore » impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.« less
Canto, Azucena; Pérez, Ricardo; Medrano, Mónica; Castellanos, María Clara; Herrera, Carlos M.
2007-01-01
Background and Aims Intra-specific variation in nectar chemistry under natural conditions has been only rarely explored, yet it is an essential aspect of our understanding of how pollinator-mediated selection might act on nectar traits. This paper examines intra-specific variation in nectar sugar composition in field and glasshouse plants of the bumblebee-pollinated perennial herbs Aquilegia vulgaris subsp. vulgaris and Aquilegia pyrenaica subsp. cazorlensis (Ranunculaceae). The aims of the study are to assess the generality of extreme intra-plant variation in nectar sugar composition recently reported for other species in the field, and gaining insight on the possible mechanisms involved. Methods The proportions of glucose, fructose and sucrose in single-nectary nectar samples collected from field and glasshouse plants were determined using high performance liquid chromatography. A hierarchical variance partition was used to dissect total variance into components due to variation among plants, flowers within plants, and nectaries within flowers. Key Results Nectar of the two species was mostly sucrose-dominated, but composition varied widely in the field, ranging from sucrose-only to fructose-dominated. Most intra-specific variance was due to differences among nectaries of the same flower, and flowers of the same plant. The high intra-plant variation in sugar composition exhibited by field plants vanished in the glasshouse, where nectar composition emerged as a remarkably constant feature across plants, flowers and nectaries. Conclusions In addition to corroborating the results of previous studies documenting extreme intra-plant variation in nectar sugar composition in the field, this study suggests that such variation may ultimately be caused by biotic factors operating on the nectar in the field but not in the glasshouse. Pollinator visitation and pollinator-borne yeasts are suggested as likely causal agents. PMID:17259227
Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping
2012-05-10
Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
High-contrast imaging with the JWST-NIRSpec Integral Field Unit
NASA Astrophysics Data System (ADS)
Ygouf, M.; Beichman, C.; Hodapp, K.; Roellig, T.
2017-12-01
With its integral field unit, the near-infrared spectrograph NIRSPEC on JWST will allow to measure high-resolution spectra into the 3-\\SI{5}μm range with an increased sensitivity over ground-based systems. This capability will considerably extend our knowledge of brown dwarfs and bright exoplanets at large separations from their host star. But because there is not any coronagraph on NIRSPEC, the performance in term of contrast at close separation will be extremely limited. In this communication, we explore possibilities to further push this limitation by exploiting the wavelength diversity offered by the spectral differential imaging strategy.
Features of polar cusp electron precipitation associated with a large magnetic storm
NASA Technical Reports Server (NTRS)
Berko, F. W.
1974-01-01
Measurements of precipitating electrons made by the OGO-4 satellite reveal several interesting phenomena in the polar cusp. Extremely high fluxes of 0.7 keV electrons were observed in the polar cusp ninety minutes following the sudden commencement of a very large magnetic storm. Structured, fairly high fluxes of 7.3 keV electrons were also observed in the cusp region, accompanied by very strong search coil magnetometer fluctuations, indicative of strong field-aligned currents. The observations confirm previously reported latitudinal shifts in the location of the polar cusp in response to southward interplanetary magnetic fields.
Homogenous BSCCO-2212 Round Wires for Very High Field Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Scott Campbell
2012-06-30
The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50more » T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) sufficiently high to meet the field decay requirements (in persistent magnets), piece lengths long enough to wind coils, and acceptably low costs. HEP has traditionally used very high current magnets made from Rutherford cables, and the ability to be cabled is another key advantage. Very high on the list of materials able to fulfill the requirements above is Bi-2212 round wire. Both cables and high field coils on a small scale have been demonstrated using this material. By contrast, YBCO is a single-filament tape that is not easy to cable. As shown in Figure 1 these tapes are highly anisotropic in their current density. In the good orientation the performance is considerably better than Bi-2212, however at the highest fields measured, the isotropic current behavior of 2212 exceeds the bad orientation of YBCO.« less
The influence of tree stands and a noise barrier on near-roadway air quality
Prediction of air pollution exposure levels of people living near or commuting on roadways is still very problematic due to the highly localized nature of traffic intensity, fleet composition, and extremely complex air flow patterns in urban areas. Both modelling and field studie...
47 CFR 15.717 - TVBDs that rely on spectrum sensing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... under this section must demonstrate with an extremely high degree of confidence that they will not cause... § 0.459 of this chapter. This public notice will include proposed test procedures and methodologies. (ii) The Commission will conduct laboratory and field tests of the pre-production device. This testing...
USDA-ARS?s Scientific Manuscript database
Lipases with abnormal functionalities such as high thermostability and optimal activity at extreme conditions gain special attentions because of their applicability in the restricted reaction conditions. In particular, cold-active lipases have gained special attentions in various industrial fields s...
SCExAO as a precursor to an ELT exoplanet direct imaging instrument
NASA Astrophysics Data System (ADS)
Jovanovic, Nemanja; Guyon, Olivier; Martinache, Frantz; Clergeon, Christophe; Singh, Garima; Vievard, Sebastien; Kudo, Tomoyuki; Garrel, Vincent; Norris, Barnaby; Tuthill, Peter; Stewart, Paul; Huby, Elsa; Perrin, Guy; Lacour, Sylvestre
2013-12-01
The Subaru Coronagraphic Extreme AO (SCExAO) instrument consists of a high performance Phase Induced Amplitude Apodisation (PIAA) coronagraph combined with an extreme Adaptive Optics (AO) system operating in the near-infrared (H band). The extreme AO system driven by the 2000 element deformable mirror will allow for Strehl ratios>90% to be achieved in the H-band when it goes closed loop. This makes the SCExAO instrument a powerful platform for high contrast imaging down to angular separations of the order of 1 lambda/D and an ideal testbed for exploring coronagraphic techniques for ELTs. In this paper we report on the recent progress in regards to the development of the instrument, which includes the addition of a visible bench that makes use of the light at shorter wavelengths not currently utilized by SCExAO and closing the loop on the tip/tilt wavefront sensor. We will also discuss several exciting guest instruments which will expand the capabilities of SCExAO over the next few years; namely CHARIS which is a integral field spectrograph as well as VAMPIRES, a visible aperture masking experiment based on polarimetric analysis of circumstellar disks. In addition we will elucidate the unique role extreme AO systems will play in enabling high precision radial velocity spectroscopy for the detection of small companions.
Femoral vessel injuries in modern warfare since Vietnam.
Pearl, Jonathan P; McNally, Michael P; Perdue, Philip W
2003-09-01
The incidence of lower extremity injuries is high in modern warfare; however the mortality rate from these injuries is low. Despite the overall low mortality of lower extremity injuries, many deaths in modern conflicts are due to femoral vessel injury. The modern warfare literature was reviewed. In Somalia, 1 of the 14 reported deaths was due to a laceration of the superficial femoral artery. In the Persian Gulf, three deaths were reported in an Army field hospital, one resulted from uncontrolled hemorrhage from a profunda femoris artery wound and two others resulted from traumatic amputations with consequent major arterial injury. Despite the advances in modern body armor, the groin is left unprotected. A strategy to help minimize U.S. casualties in modern warfare may be a method of field hemostasis specifically designed for femoral vessel injury.
This paper critically reviews the Extremely Low Frequency (ELF) Electromagnetic Fields literature from 1978 to the present in regard to research dealing with the reproductive and developmental effects of exposure.
Deadman, J E; Infante-Rivard, C
2002-02-15
Exposures to extremely low frequency (ELF) magnetic fields have not been documented extensively in occupations besides the work environments of electric or telephone utilities. A 1980-1993 study of childhood acute lymphoblastic leukemia (ALL) in Québec, Canada, gathered detailed information about the occupations of 491 mothers of ALL cases and mothers of a similar number of healthy controls. This information was combined with published data on the intensities of ELF magnetic fields associated with sources or work environments to estimate ELF magnetic field exposures for a wide range of jobs commonly held by women. Estimated exposures for 61 job categories ranged from 0.03 to 0.68 microT; the 25th, 50th, and 75th percentiles were 0.135, 0.17, and 0.23 microT, respectively. By job category, the most highly exposed jobs (>0.23 microT) included bakery worker, cashier, cook and kitchen worker, electronics worker, residential and industrial sewing machine operator, and textile machine operator. By work environment, the most highly exposed job categories were electronics worker in an assembly plant (0.70 microT) and sewing machine operators in a textile factory (0.68 microT) and shoe factory (0.66 microT). These results provide new information on expected levels of exposure in a wide range of jobs commonly held by women.
Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries
NASA Astrophysics Data System (ADS)
Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team
2018-01-01
Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.
NASA Astrophysics Data System (ADS)
Adhikari, Binod; Dahal, Subodh; Chapagain, Narayan P.
2017-05-01
A dominant process by which energy and momentum are transported from the magnetosphere to the ionosphere is known as field-aligned current (FAC). It is enhanced during magnetic reconnection and explosive energy release at a substorm. In this paper, we studied FAC, interplanetary electric field component (Ey), interplanetary magnetic field component (Bz), and northward (x) and eastward (y) components of geomagnetic field during three events of supersubstorm occurred on 24 November 2001, 21 January 2005, and 24 August 2005. Large-scale FAC, supposed to be produced during supersubstorm (SSS), has potentiality to cause blackout on Earth. We examined temporal variations of the x and y components of high-latitude geomagnetic field during SSS, which is attributed to the FACs. We shall report the characteristics of high-latitude northward and eastward components of geomagnetic field variation during the growth phase of SSS by the implementation of discrete wavelet transform (DWT) and cross-correlation analysis. Among three examples of SSS events, the highest peak value of FAC was estimated to be 19 μAm-2. This is shore up with the prediction made by Parks (1991) and Stasiewicz et al. (1998) that the FACs may vary from a few tens to several hundred μAm-2. Although this peak value of FACs for SSS event is much higher than the average FACs associated with regular substorms or magnetic storms, it is expedient and can be expect for SSS events which might be due to very high density solar wind plasma parcels (PPs) triggering the SSS events. In all events, during growth phase, the FAC increases to extremely high level and the geomagnetic northward component decreases to extremely low level. This represents a strong positive correlation between FAC and geomagnetic northward component. The DWT analysis accounts that the highest amplitude of the wavelet coefficients indicates singularities present in FAC during SSS event. But the amplitude of squared wavelet coefficient is found to be different from each other, which might be due to the solar wind PPs of different density triggering the SSS events. The cross-correlation analysis suggests that the perturbation on geomagnetic northward component at high latitude during SSS strongly correlates with the fluctuation pattern of FAC density. Hence, the FAC is the primary sources for the eastward-westward magnetic field perturbations at high latitude.
Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.
2018-01-01
Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.
High-energy vacuum birefringence and dichroism in an ultrastrong laser field
NASA Astrophysics Data System (ADS)
Meuren, Sebastian; Bragin, Sergey; Keitel, Christoph H.; di Piazza, Antonino
2017-10-01
The interaction between real photons in vacuum is a long-standing prediction of quantum electrodynamics, which has never been observed experimentally. Upcoming 10 PW laser systems like the Extreme Light Infrastructure (ELI) will provide laser pulses with unprecedented intensities. If combined with highly energetic gamma photons - obtainable via Compton backscattering from laser-wakefield accelerated electron beams - the QED critical field becomes accessible. In we have derived how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. We put forward an experimental scheme to measure these effects in the nontrivial high-energy regime, where the QED critical field is reached and the Euler-Heisenberg approximation, valid for low-frequency electromagnetic fields, breaks down. Our results suggest the feasibility of verifying/rejecting the QED prediction for vacuum birefringence/dichroism at the 3 σ confidence level on the time scale of a few days at several upcoming laser facilities. Now at Princeton University, Princeton, NJ.
NASA Technical Reports Server (NTRS)
Webster, W., Jr.; Frawley, J. J.; Stefanik, M.
1984-01-01
Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.
Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector
NASA Astrophysics Data System (ADS)
Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.
2012-09-01
The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, John S.; Lekawa-Raus, Agnieszka; Rickel, Dwight G.
We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classicalmore » MR involving electronic mobility. Subtracting high-field fits from the aligned fiber’s MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber’s room temperature resistance, appears to lack MR field dependence.« less
Bulmer, John S; Lekawa-Raus, Agnieszka; Rickel, Dwight G; Balakirev, Fedor F; Koziol, Krzysztof K
2017-09-22
We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classical MR involving electronic mobility. Subtracting high-field fits from the aligned fiber's MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber's room temperature resistance, appears to lack MR field dependence.
Bulmer, John S.; Lekawa-Raus, Agnieszka; Rickel, Dwight G.; ...
2017-09-22
We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classicalmore » MR involving electronic mobility. Subtracting high-field fits from the aligned fiber’s MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber’s room temperature resistance, appears to lack MR field dependence.« less
Mediterranean space-time extremes of wind wave sea states
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro; Marcello Falcieri, Francesco; Bonaldo, Davide; Bergamasco, Andrea; Benetazzo, Alvise
2014-05-01
Traditionally, wind wave sea states during storms have been observed, modeled, and predicted mostly in the time domain, i.e. at a fixed point. In fact, the standard statistical models used in ocean waves analysis rely on the implicit assumption of long-crested waves. Nevertheless, waves in storms are mainly short-crested. Hence, spatio-temporal features of the wave field are crucial to accurately model the sea state characteristics and to provide reliable predictions, particurly of wave extremes. Indeed, the experimental evidence provided by novel instrumentations, e.g. WASS (Wave Acquisition Stereo System), showed that the maximum sea surface elevation gathered in time over an area, i.e. the space-time extreme, is larger than that one measured in time at a point, i.e. the time extreme. Recently, stochastic models used to estimate maxima of multidimensional Gaussian random fields have been applied to ocean waves statistics. These models are based either on Piterbarg's theorem or Adler and Taylor's Euler Characteristics approach. Besides a probability of exceedance of a certain threshold, they can provide the expected space-time extreme of a sea state, as long as space-time wave features (i.e. some parameters of the directional variance density spectrum) are known. These models have been recently validated against WASS observation from fixed and moving platforms. In this context, our focus was modeling and predicting extremes of wind waves during storms. Thus, to intensively gather space-time extremes data over the Mediterranean region, we used directional spectra provided by the numerical wave model SWAN (Simulating WAves Nearshore). Therefore, we set up a 6x6 km2 resolution grid entailing most of the Mediterranean Sea and we forced it with COSMO-I7 high resolution (7x7 km2) hourly wind fields, within 2007-2013 period. To obtain the space-time features, i.e. the spectral parameters, at each grid node and over the 6 simulated years, we developed a modified version of the SWAN model, the SWAN Space-Time (SWAN-ST). SWAN-ST results were post-processed to obtain the expected space-time extremes over the model domain. To this end, we applied the stochastic model of Fedele, developed starting from Adler and Taylor's approach, which we found to be more accurate and versatile with respect to Piterbarg's theorem. Results we obtained provide an alternative sight on Mediterranean extreme wave climate, which could represent the first step towards operationl forecasting of space-time wave extremes, on the one hand, and the basis for a novel statistical standard wave model, on the other. These results may benefit marine designers, seafarers and other subjects operating at sea and exposed to the frequent and severe hazard represented by extreme wave conditions.
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
Yang, Jie
2013-01-01
In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189
High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors
NASA Astrophysics Data System (ADS)
Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.
2009-05-01
Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.
Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks
NASA Astrophysics Data System (ADS)
Takeuchi, Satoshi
2018-02-01
A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.
Suga, Hiroshi; Suzuki, Hiroya; Shinomura, Yuma; Kashiwabara, Shota; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2016-01-01
Highly stable, nonvolatile, high-temperature memory based on resistance switching was realized using a polycrystalline platinum (Pt) nanogap. The operating temperature of the memory can be drastically increased by the presence of a sharp-edged Pt crystal facet in the nanogap. A short distance between the facet edges maintains the nanogap shape at high temperature, and the sharp shape of the nanogap densifies the electric field to maintain a stable current flow due to field migration. Even at 873 K, which is a significantly higher temperature than feasible for conventional semiconductor memory, the nonvolatility of the proposed memory allows stable ON and OFF currents, with fluctuations of less than or equal to 10%, to be maintained for longer than eight hours. An advantage of this nanogap scheme for high-temperature memory is its secure operation achieved through the assembly and disassembly of a Pt needle in a high electric field. PMID:27725705
NASA Astrophysics Data System (ADS)
Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying
2011-12-01
Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.
AC Application of HTS Conductors in Highly Dynamic Electric Motors
NASA Astrophysics Data System (ADS)
Oswald, B.; Best, K.-J.; Setzer, M.; Duffner, E.; Soell, M.; Gawalek, W.; Kovalev, L. K.
2006-06-01
Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit.
NASA Astrophysics Data System (ADS)
Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene
2018-06-01
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Characteristics and present trends of wave extremes in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Pino, Cosimo; Lionello, Piero; Galati, Maria Barbara
2010-05-01
Wind generated surface waves are an important factor characterizing marine storminess and the marine environment. This contribution considers characteristics and trends of SWH (Significant Wave Height) extremes (both high and low extremes, such as dead calm duration are analyzed). The data analysis is based on a 44-year long simulation (1958-2001) of the wave field in the Mediterranean Sea. The quality of the model simulation is controlled using satellite data. The results show the different characteristics of the different parts of the basin with the variability being higher in the western (where the highest values are produced) than in the eastern areas of the basin (where absence of wave is a rare condition). In fact, both duration of storms and of dead calm episodes is larger in the east than in the west part of the Mediterranean. The African coast and the southern Ionian Sea are the areas were exceptional values of SWH are expected to occur in correspondence with exceptional meteorological events. Significant trends of storm characteristics are present only in sparse areas and suggest a decrease of both storm intensity and duration (a marginal increase of storm intensity is present in the center of the Mediterranean). The statistics of extremes and high SWH values is substantially steady during the second half of the 20th century. The influence of the large-scale teleconnection patterns (TlcP) that are known to be relevant for the Mediterranean climate on the intensity and spatial distribution of extreme SWH (Significant Wave Height) has been investigated. The analysis was focused on the monthly scale analysing the variability of links along the annual cycle. The considered TlcP are the North Atlantic Oscillation, the East-Atlantic / West-Russian pattern and the Scandinavian pattern and their effect on the intensity and the frequency of high/low SWH conditions. The results show it is difficult to establish a dominant TlcP for SWH extremes, because all 4 patterns considered are important for at least few months in the year and none of them is important for the whole year. High extremes in winter and fall are more influenced by the TlcPs than in other seasons and low extremes.
Studying internal and external magnetic fields in Japan using MAGSAT data
NASA Technical Reports Server (NTRS)
Fukushima, N. (Principal Investigator); Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyazaki, Y.; Uyeda, S.; Kobayashi, K.
1980-01-01
Examination of the total intensity data of CHRONIT on a few paths over Japan and its neighboring sea shows MAGSAT is extremely useful for studying the local magnetic anomaly. In high latitudes, the signatures of field aligned currents are clearly recognized. These include (1) the persistent basic pattern of current flow; (2) the more intense currents in the summer hemisphere than in the winter hemisphere; (3) more fluctuations in current intensities in summer dawn hours; and (4) apparent dawn-dusk asymmetry in the field-aligned current intensity between the north and south polar regions.
Large, nonsaturating thermopower in a quantizing magnetic field
Fu, Liang
2018-01-01
The thermoelectric effect is the generation of an electrical voltage from a temperature gradient in a solid material due to the diffusion of free charge carriers from hot to cold. Identifying materials with a large thermoelectric response is crucial for the development of novel electric generators and coolers. We theoretically consider the thermopower of Dirac/Weyl semimetals subjected to a quantizing magnetic field. We contrast their thermoelectric properties with those of traditional heavily doped semiconductors and show that, under a sufficiently large magnetic field, the thermopower of Dirac/Weyl semimetals grows linearly with the field without saturation and can reach extremely high values. Our results suggest an immediate pathway for achieving record-high thermopower and thermoelectric figure of merit, and they compare well with a recent experiment on Pb1–xSnxSe. PMID:29806031
Determination of boundaries between ranges of high and low gradient of beam profile.
Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr
2016-01-01
This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.
Towards timelike singularity via AdS dual
NASA Astrophysics Data System (ADS)
Bhowmick, Samrat; Chatterjee, Soumyabrata
2017-07-01
It is well known that Kasner geometry with spacelike singularity can be extended to bulk AdS-like geometry, furthermore, one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including spacelike geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.
NASA Astrophysics Data System (ADS)
Mandell, Avi M.; Groff, Tyler D.; Gong, Qian; Rizzo, Maxime J.; Lupu, Roxana; Zimmerman, Neil T.; Saxena, Prabal; McElwain, Michael W.
2017-09-01
One of the key science goals of the Coronograph Instrument (CGI) on the WFIRST mission is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, the CGI instrument will include a integral field spectrograph (IFS) as one of the two science cameras. We present the current science requirements that pertain to the IFS design, describe how our design implementation flows from these requirements, and outline our current instrument design.
Electrical transport of spin-polarized carriers in disordered ultrathin films.
Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M
2003-09-19
Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.
NASA Technical Reports Server (NTRS)
Mandell, Avi M.; Groff, Tyler D.; Gong, Qian; Rizzo, Maxime J.; Lupu, Roxana; Zimmerman, Neil T.; Saxena, Prabal; McElwain, Michael W.
2017-01-01
One of the key science goals of the Coronograph Instrument (CGI) on the WFIRST mission is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, the CGI Instrument will include a integral field spectrograph (IFS) as one of the two science cameras. We present the current science requirements that pertain to the IFS design, describe how our design implementation flows from these requirements, and outline our current instrument design.
NASA Astrophysics Data System (ADS)
Rychlik, Igor; Mao, Wengang
2018-02-01
The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.
ERIC Educational Resources Information Center
Vollmer, Michael; Mollmann, Klaus-Peter
2012-01-01
We present fascinating simple demonstration experiments recorded with high-speed cameras in the field of fluid dynamics. Examples include oscillations of falling droplets, effects happening upon impact of a liquid droplet into a liquid, the disintegration of extremely large droplets in free fall and the consequences of incompressibility. (Contains…
Remedial Investigation Report, Presidio Main Installation, Presidio of San Francisco. Volume 1: Text
1997-01-01
located in the southwestern portion of the PSF, was reportedly a low area which was filled and graded to create a flat surface for a soccer field...1991). Calcium is a macronutrient and is considered nontoxic unless present within a receptors diet at extremely high levels (Bodek et al., 1988
Resolution dependence of precipitation statistical fidelity in hindcast simulations
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...
2016-06-19
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Resolution dependence of precipitation statistical fidelity in hindcast simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.
Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud
2017-09-08
Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.
Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.
Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges
2013-01-01
Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public is not exposed to a risky background electric field in metropolitan Tehran. The result of comparing sensitive recipients showed that the schools have a more desirable status than the hospitals. Nonetheless, epidemiologic studies can lead to more understanding of the impact on public health.
Asymptotic expansion of pair production probability in a time-dependent electric field
NASA Astrophysics Data System (ADS)
Arai, Takashi
2015-12-01
We study particle creation in a single pulse of an electric field in scalar quantum electrodynamics. We investigate the parameter condition for the case where the dynamical pair creation and Schwinger mechanism respectively dominate. Then, an asymptotic expansion for the particle distribution in terms of the time interval of the applied electric field is derived. We compare our result with particle creation in a constant electric field with a finite-time interval. These results coincide in an extremely strong field, however they differ in general field strength. We interpret the reason of this difference as a nonperturbative effect of high-frequency photons in external electric fields. Moreover, we find that the next-to-leading-order term in our asymptotic expansion coincides with the derivative expansion of the effective action.
Gasparov, V. A.; Drigo, L.; Audouard, A.; ...
2016-07-11
Heterostructures made of a layer of a cuprate insulator La 2CuO 4 on the top of a layer of a nonsuperconducting cuprate metal La 1.55Sr 0.45CuO 4 show high-T c interface superconductivity confined within a single CuO 2 plane. Given this extreme quasi-two-dimensional quantum confinement, it is of interest to find out how interface superconductivity behaves when exposed to an external magnetic field. With this motivation, we have performed contactless tunnel-diode-oscillator-based measurements in pulsed magnetic fields up to 56 T as well as measurements of the complex mutual inductance between a spiral coil and the film in static fields upmore » to 3 T. Remarkably, we observe that interface superconductivity survives up to very high perpendicular fields, in excess of 40 T. Additionally, the critical magnetic field H m(T) reveals an upward divergence with decreasing temperature, in line with vortex melting as in bulk superconducting cuprates.« less
The Top 10 Challenges in Extreme-Scale Visual Analytics
Wong, Pak Chung; Shen, Han-Wei; Johnson, Christopher R.; Chen, Chaomei; Ross, Robert B.
2013-01-01
In this issue of CG&A, researchers share their R&D findings and results on applying visual analytics (VA) to extreme-scale data. Having surveyed these articles and other R&D in this field, we’ve identified what we consider the top challenges of extreme-scale VA. To cater to the magazine’s diverse readership, our discussion evaluates challenges in all areas of the field, including algorithms, hardware, software, engineering, and social issues. PMID:24489426
QED cascade saturation in extreme high fields.
Luo, Wen; Liu, Wei-Yuan; Yuan, Tao; Chen, Min; Yu, Ji-Ye; Li, Fei-Yu; Del Sorbo, D; Ridgers, C P; Sheng, Zheng-Ming
2018-05-30
Upcoming ultrahigh power lasers at 10 PW level will make it possible to experimentally explore electron-positron (e - e + ) pair cascades and subsequent relativistic e - e + jets formation, which are supposed to occur in extreme astrophysical environments, such as black holes, pulsars, quasars and gamma-ray bursts. In the latter case it is a long-standing question as to how the relativistic jets are formed and what their temperatures and compositions are. Here we report simulation results of pair cascades in two counter-propagating QED-strong laser fields. A scaling of QED cascade growth with laser intensity is found, showing clear cascade saturation above threshold intensity of ~10 24 W/cm 2 . QED cascade saturation leads to pair plasma cooling and longitudinal compression along the laser axis, resulting in the subsequent formation of relativistic dense e - e + jets along transverse directions. Such laser-driven QED cascade saturation may open up the opportunity to study energetic astrophysical phenomena in laboratory.
Toroidal plasmoid generation via extreme hydrodynamic shear
Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud
2017-01-01
Saint Elmo’s fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. PMID:29146825
NASA Astrophysics Data System (ADS)
Guan, Wen; Li, Li; Jin, Weiqi; Qiu, Su; Zou, Yan
2015-10-01
Extreme-Low-Light CMOS has been widely applied in the field of night-vision as a new type of solid image sensor. But if the illumination in the scene has drastic changes or the illumination is too strong, Extreme-Low-Light CMOS can't both clearly present the high-light scene and low-light region. According to the partial saturation problem in the field of night-vision, a HDR image fusion algorithm based on the Laplace Pyramid was researched. The overall gray value and the contrast of the low light image is very low. We choose the fusion strategy based on regional average gradient for the top layer of the long exposure image and short exposure image, which has rich brightness and textural features. The remained layers which represent the edge feature information of the target are based on the fusion strategy based on regional energy. In the process of source image reconstruction with Laplacian pyramid image, we compare the fusion results with four kinds of basal images. The algorithm is tested using Matlab and compared with the different fusion strategies. We use information entropy, average gradient and standard deviation these three objective evaluation parameters for the further analysis of the fusion result. Different low illumination environment experiments show that the algorithm in this paper can rapidly get wide dynamic range while keeping high entropy. Through the verification of this algorithm features, there is a further application prospect of the optimized algorithm. Keywords: high dynamic range imaging, image fusion, multi-exposure image, weight coefficient, information fusion, Laplacian pyramid transform.
Isosurface Extraction in Time-Varying Fields Using a Temporal Hierarchical Index Tree
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Gerald-Yamasaki, Michael (Technical Monitor)
1998-01-01
Many high-performance isosurface extraction algorithms have been proposed in the past several years as a result of intensive research efforts. When applying these algorithms to large-scale time-varying fields, the storage overhead incurred from storing the search index often becomes overwhelming. this paper proposes an algorithm for locating isosurface cells in time-varying fields. We devise a new data structure, called Temporal Hierarchical Index Tree, which utilizes the temporal coherence that exists in a time-varying field and adoptively coalesces the cells' extreme values over time; the resulting extreme values are then used to create the isosurface cell search index. For a typical time-varying scalar data set, not only does this temporal hierarchical index tree require much less storage space, but also the amount of I/O required to access the indices from the disk at different time steps is substantially reduced. We illustrate the utility and speed of our algorithm with data from several large-scale time-varying CID simulations. Our algorithm can achieve more than 80% of disk-space savings when compared with the existing techniques, while the isosurface extraction time is nearly optimal.
Portable SERS sensor for malachite green and other small dye molecules
NASA Astrophysics Data System (ADS)
Qiu, Suyan; Zhao, Fusheng; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Sensitive detection of specific chemicals on site can be extremely powerful in many fields. Owing to its molecular fingerprinting capability, surface-enhanced Raman scattering has been one of the technological contenders. In this paper, we describe the novel use of DNA topological nanostructure on nanoporous gold nanoparticle (NPG-NP) array chip for chemical sensing. NPG-NP features large surface area and high-density plasmonic field enhancement known as "hotspots". Hence, NPG-NP array chip has found many applications in nanoplasmonic sensor development. This technique can provide novel label-free molecular sensing capability and enables high sensitivity and specificity detection using a portable Raman spectrometer.
REBCO tape performance under high magnetic field
NASA Astrophysics Data System (ADS)
Benkel, Tara; Miyoshi, Yasuyuki; Chaud, Xavier; Badel, Arnaud; Tixador, Pascal
2017-08-01
New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek
Paolucci, Teresa; Piccinini, Giulia; Nusca, Sveva Maria; Marsilli, Gabriella; Mannocci, Alice; La Torre, Giuseppe; Saraceni, Vincenzo Maria; Vulpiani, Maria Chiara; Villani, Ciro
2018-01-01
[Purpose] The aim of this study was to investigate the clinical effects of a nutraceutical composed (Xinepa®) combined with extremely-low-frequency electromagnetic fields in the carpal tunnel syndrome. [Subjects and Methods] Thirty-one patients with carpal tunnel syndrome were randomized into group 1-A (N=16) (nutraceutical + extremely-low-frequency electromagnetic fields) and group 2-C (n=15) (placebo + extremely-low-frequency electromagnetic fields). The dietary supplement with nutraceutical was twice daily for one month in the 1-A group and both groups received extremely-low-frequency electromagnetic fields at the level of the carpal tunnel 3 times per week for 12 sessions. The Visual Analogue Scale for pain, the Symptoms Severity Scale and Functional Severity Scale of the Boston Carpal Tunnel Questionnaire were used at pre-treatment (T0), after the end of treatment (T1) and at 3 months post-treatment (T2). [Results] At T1 and T2 were not significant differences in outcome measures between the two groups. In group 1-A a significant improvement in the scales were observed at T1 and T2. In group 2-C it was observed only at T1. [Conclusion] Significant clinical effects from pre-treatment to the end of treatment were shown in both groups. Only in group 1-A they were maintained at 3 months post-treatment.
NASA Astrophysics Data System (ADS)
McDermott, Jill M.; Sylva, Sean P.; Ono, Shuhei; German, Christopher R.; Seewald, Jeffrey S.
2018-05-01
Hosted in basaltic substrate on the ultra-slow spreading Mid-Cayman Rise, the Piccard hydrothermal field is the deepest currently known seafloor hot-spring (4957-4987 m). Due to its great depth, the Piccard site is an excellent natural system for investigating the influence of extreme pressure on the formation of submarine vent fluids. To investigate the role of rock composition and deep circulation conditions on fluid chemistry, the abundance and isotopic composition of organic, inorganic, and dissolved volatile species in high temperature vent fluids at Piccard were examined in samples collected in 2012 and 2013. Fluids from the Beebe Vents and Beebe Woods black smokers vent at a maximum temperature of 398 °C at the seafloor, however several lines of evidence derived from inorganic chemistry (Cl, SiO2, Ca, Br, Fe, Cu, Mn) support fluid formation at much higher temperatures in the subsurface. These high temperatures, potentially in excess of 500 °C, are attainable due to the great depth of the system. Our data indicate that a single deep-rooted source fluid feeds high temperature vents across the entire Piccard field. High temperature Piccard fluid H2 abundances (19.9 mM) are even higher than those observed in many ultramafic-influenced systems, such as the Rainbow (16 mM) and the Von Damm hydrothermal fields (18.2 mM). In the case of Piccard, however, these extremely high H2 abundances can be generated from fluid-basalt reaction occurring at very high temperatures. Magmatic and thermogenic sources of carbon in the high temperature black smoker vents are described. Dissolved ΣCO2 is likely of magmatic origin, CH4 may originate from a combination of thermogenic sources and leaching of abiotic CH4 from mineral-hosted fluid inclusions, and CO abundances are at equilibrium with the water-gas shift reaction. Longer-chained n-alkanes (C2H6, C3H8, n-C4H10, i-C4H10) may derive from thermal alteration of dissolved and particulate organic carbon sourced from the original seawater source, entrainment of microbial ecosystems peripheral to high temperature venting, and/or abiotic mantle sources. Dissolved ΣHCOOH in the Beebe Woods fluid is consistent with thermodynamic equilibrium for abiotic production via ΣCO2 reduction with H2 at 354 °C measured temperature. A lack of ΣHCOOH in the relatively higher temperature 398 °C Beebe Vent fluids demonstrates the temperature sensitivity of this equilibrium. Abundant basaltic seafloor outcrops and the axial location of the vent field, along with multiple lines of geochemical evidence, support extremely high temperature fluid-rock reaction with mafic substrate as the dominant control on Piccard fluid chemistry. These results expand the known diversity of vent fluid composition, with implications for supporting microbiological life in both the modern and ancient ocean.
Exploring high power, extreme wavelength operating potential of rare-earth-doped silica fiber
NASA Astrophysics Data System (ADS)
Zhou, Pu; Li, Ruixian; Xiao, Hu; Huang, Long; Zhang, Hanwei; Leng, Jinyong; Chen, Zilun; Xu, Jiangmin; Wu, Jian; Wang, Xiong
2017-08-01
Ytterbium-doped fiber laser (YDFL) and Thulium doped fiber laser (TDFL) have been two kinds of the most widely studied fiber laser in recent years. Although both silica-based Ytterbium-doped fiber and Thulium doped fiber have wide emission spectrum band (more than 200 nm and 400 nm, respectively), the operation spectrum region of previously demonstrated high power YDFL and TDFL fall into 1060-1100 nm and 1900-2050nm. Power scaling of YDFL and TDFL operates at short-wavelength or long-wavelength band, especially for extreme wavelength operation, although is highly required in a large variety of application fields, is quite challenging due to small net gain and strong amplified spontaneous emission (ASE). In this paper, we will present study on extreme wavelength operation of high power YDFL and TDFL in our group. Comprehensive mathematical models are built to investigate the feasibility of high power operation and propose effective technical methods to achieve high power operation. We have achieved (1) Diodepumped 1150nm long wavelength YDFL with 120-watt level output power (2) Diode-pumped 1178nm long wavelength YDFL operates at high temperature with 30-watt level output power (3) Random laser pumped 2153nm long wavelength TDFL with 20-watt level output power (4) Diode-pumped 1018nm short wavelength YDFL with a record 2 kilowatt output power is achieved by using home-made fiber combiner.
Torgomyan, Heghine; Trchounian, Armen
2015-01-01
The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.
An assessment of the hardness of miniature vacuum tubes to high-voltage transients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orvis, W.J.
1990-03-01
Miniature vacuum tubes are vacuum switching and control devices fabricated on a silicon wafer, using the same technology as is used to make integrated circuits. They operate in much the same manner as conventional vacuum tubes, but with two important differences: they are micron sized devices, and they employ field emission instead of thermionic emission as the electron source. As these devices have a vacuum as their active region, they will be extremely hard to nuclear radiation and relatively insensitive to temperature effects, they are also expected to be extremely fast devices. We have estimated here that their hardness tomore » high-voltage transients will be at least as good as existing semiconductor devices and possibly better. 5 figs.« less
NASA Astrophysics Data System (ADS)
Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Reznickova, Ladislava
2017-04-01
Different documentary evidence (taxation records, chronicles, insurance reports etc.) and secondary sources (peer-reviewed papers, historical literature, newspapers) are used for reconstruction of hydrometeorological extremes (HMEs) in the former Jihlava region in the 1651-1880 period. The study describes the system of tax alleviation in Moravia, presents assessment of the impacts of HMEs with regard to physical-geographical characteristic of area studied, presents up to now non-utilized documentary evidence (early fire and hail damage insurance claims) and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 500 HMEs were analysed for the 19 estates (past basic economic units) in the region. Thunderstorm in 1651 in Rančířov (the Jihlava estate), which caused damage on the fields and meadows, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Together with floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. The paper shows that particularly archival records, preserved in the Moravian Land Archives in Brno and other district archives, represent a unique source of data contributing to the better understanding of extreme events and their impacts in the past.
NASA Astrophysics Data System (ADS)
Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans
2018-02-01
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.
Hovnanyan, K; Kalantaryan, V; Trchounian, A
2017-09-01
A low-intensity electromagnetic field of extremely high frequency has inhibitory and stimulatory effects on bacteria, including Enterococcus hirae. It was shown that the low-intensity (the incident power density of 0·06 mW cm -2 ) electromagnetic field at the frequencies of 51·8 GHz and 53 GHz inhibited E. hirae ATCC 9790 bacterial growth rate; a stronger effect was observed with 53 GHz, regardless of exposure duration (0·5 h, 1 h or 2 h). Scanning electron microscopy analysis of these effects has been done; the cells were of spherical shape. Electromagnetic field at 53 GHz, but not 51·8 GHz, changed the cell size-the diameter was enlarged 1·3 fold at 53 GHz. These results suggest the difference in mechanisms of action on bacteria for electromagnetic fields at 51·8 GHz and 53 GHz. A stronger inhibitory effect of low-intensity electromagnetic field on Enterococcus hirae ATCC 9790 bacterial growth rate was observed with 53 GHz vs 51·8 GHz, regardless of exposure duration. Scanning electron microscopy analysis showed that almost all irradiated cells in the population have spherical shapes similar to nonirradiated ones, but they have increased diameters in case of irradiated cells at 53 GHz, but not 51·8 GHz. The results are novel, showing distinguishing effects of low-intensity electromagnetic field of different frequencies. They could be applied in treatment of food and different products in medicine and veterinary, where E. hirae plays an important role. © 2017 The Society for Applied Microbiology.
Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.
Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore
2010-09-01
The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.
Propagation of monochromatic light in a hot and dense medium
NASA Astrophysics Data System (ADS)
Masood, Samina S.
2017-12-01
Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.
Extreme Ultraviolet Fractional Orbital Angular Momentum Beams from High Harmonic Generation
Turpin, Alex; Rego, Laura; Picón, Antonio; San Román, Julio; Hernández-García, Carlos
2017-01-01
We investigate theoretically the generation of extreme-ultraviolet (EUV) beams carrying fractional orbital angular momentum. To this end, we drive high-order harmonic generation with infrared conical refraction (CR) beams. We show that the high-order harmonic beams emitted in the EUV/soft x-ray regime preserve the characteristic signatures of the driving beam, namely ringlike transverse intensity profile and CR-like polarization distribution. As a result, through orbital and spin angular momentum conservation, harmonic beams are emitted with fractional orbital angular momentum, and they can be synthesized into structured attosecond helical beams –or “structured attosecond light springs”– with rotating linear polarization along the azimuth. Our proposal overcomes the state of the art limitations for the generation of light beams far from the visible domain carrying non-integer orbital angular momentum and could be applied in fields such as diffraction imaging, EUV lithography, particle trapping, and super-resolution imaging. PMID:28281655
Analytical study of a Kerr-Sen black hole and a charged massive scalar field
NASA Astrophysics Data System (ADS)
Bernard, Canisius
2017-11-01
It is reported that Kerr-Newman and Kerr-Sen black holes are unstable to perturbations of charged massive scalar field. In this paper, we study analytically the complex frequencies which characterize charged massive scalar fields in a near-extremal Kerr-Sen black hole. For near-extremal Kerr-Sen black holes and for charged massive scalar fields in the eikonal large-mass M ≫μ regime, where M is the mass of the black hole, and μ is the mass of the charged scalar field, we have obtained a simple expression for the dimensionless ratio ωI/(ωR-ωc) , where ωI and ωR are, respectively, the imaginary and real parts of the frequency of the modes, and ωc is the critical frequency for the onset of super-radiance. We have also found our expression is consistent with the result of Hod [Phys. Rev. D 94, 044036 (2016), 10.1103/PhysRevD.94.044036] for the case of a near-extremal Kerr-Newman black hole and the result of Zouros and Eardly [Ann. Phys. (N.Y.) 118, 139 (1979), 10.1016/0003-4916(79)90237-9] for the case of neutral scalar fields in the background of a near-extremal Kerr black hole.
The Advanced Telescope for High Energy Astrophysics
NASA Astrophysics Data System (ADS)
Guainazzi, Matteo
2017-08-01
Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.
Extreme Nonlinear Optics of High Intensity Laser Pulse Filamentation in Gases
2016-05-12
of energy from femtosecond filaments. Published * absolute measurements of electronic, vibrational, and rotational nonlinear response in H2 and D2 ...coefficients in the fastest rotating molecules H2 and D2 , which can serve as a benchmark for theory of high field molecule interactions. One of the...17. Absolute measurement of the ultrafast nonlinear electronic and rovibrational response in H2 and D2 J. K. Wahlstrand, S. Zahedpour, Y.-H
2013-01-01
Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1. PMID:23399075
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.
Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B
2014-09-24
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.
A Novel Gravity Compensation Method for High Precision Free-INS Based on “Extreme Learning Machine”
Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing
2016-01-01
In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method. PMID:27916856
[Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].
Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin
2012-03-01
To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P < 0.05), but there was no significant difference of noise between two workplaces (P > 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P < 0.05). There were no differences of sex, age, height, weight between two groups (P > 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.
Superradiant Ka-band Cherenkov oscillator with 2-GW peak power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.
The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm{sup 2} required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due tomore » time delay in the development of the breakdown phenomena.« less
Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources
NASA Astrophysics Data System (ADS)
Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.
2009-12-01
We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).
Environmental Effects for Gravitational-wave Astrophysics
NASA Astrophysics Data System (ADS)
Barausse, Enrico; Cardoso, Vitor; Pani, Paolo
2015-05-01
The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.
First results from the Magnetospheric Multiscale mission
NASA Astrophysics Data System (ADS)
Lavraud, B.
2017-12-01
Since its launch in March 2015, NASA's Magnetospheric Multiscale mission (MMS) provides a wealth of unprecedented high resolution measurements of space plasma properties and dynamics in the near-Earth environment. MMS was designed in the first place to study the fundamental process of collision-less magnetic reconnection. The two first results reviewed here pertain to this topic and highlight how the extremely high resolution MMS data (electrons, in particular, with full three dimensional measurements at 30 ms in burst mode) have permitted to tackle electron dynamics in unprecedented details. The first result demonstrates how electrons become demagnetized and scattered near the magnetic reconnection X line as a result of increased magnetic field curvature, together with a decrease in its magnitude. The second result demonstrates that electrons form crescent-shaped, agyrotropic distribution functions very near the X line, suggestive of the existence of a perpendicular current aligned with the local electric field and consistent with the energy conversion expected in magnetic reconnection (such that J\\cdot E > 0). Aside from magnetic reconnection, we show how MMS contributes to topics such as wave properties and their interaction with particles. Thanks again to extremely high resolution measurements, the lossless and periodical energy exchange between wave electromagnetic fields and particles, as expected in the case of kinetic Alfvén waves, was confirmed. Although not discussed, MMS has the potential to solve many other outstanding issues in collision-less plasma physics, for example regarding shock or turbulence acceleration, with obvious broader impacts in astrophysics in general.
Rabi oscillations in extreme ultraviolet ionization of atomic argon
NASA Astrophysics Data System (ADS)
Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.
2017-02-01
We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.
Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan Pengfei; Lu Peixiang; Cao Wei
2007-08-15
High-order harmonic generation from asymmetric molecules is investigated, and the concept of phase-stabilized infrared ultrashort laser pulses is extended to the extreme ultraviolet regime. It is shown that the ionization symmetry in consecutive half optical cycles is broken for asymmetric molecules, and both even and odd harmonics with comparable intensity are produced. In the time domain, only one attosecond pulse is generated in each cycle of the driving field, and the carrier-envelope phases of the attosecond pulses are equal. Consequently, a clean attosecond pulse train with the same carrier-envelope phase from pulse to pulse is obtained in the extreme ultravioletmore » regime.« less
High-resolution crystal spectrometer for the 10-60 A extreme ultraviolet region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P.; Brown, G.V.; Goddard, R.
2004-10-01
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 A. The instrument utilizes a flat octadecyl hydrogen maleate crystal and a thin-window 1D position-sensitive gas proportional detector. This detector employs a 1-{mu}m-thick 100x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
Magnetically induced orientation of mesochannels in mesoporous silica films at 30 tesla.
Yamauchi, Yusuke; Sawada, Makoto; Komatsu, Masaki; Sugiyama, Atsushi; Osaka, Tetsuya; Hirota, Noriyuki; Sakka, Yoshio; Kuroda, Kazuyuki
2007-12-03
We demonstrate the magnetically induced orientation of mesochannels in mesoporous silica films prepared with low-molecular-weight surfactants under an extremely high magnetic field of 30 T. This process is principally applicable to any type of surfactant that has magnetic anisotropy because such a high magnetic field provides sufficient magnetic energy for smooth magnetic orientation. Hexadecyltrimethylammonium bromide (CTAB) and polyoxyethylene-10-cetyl ether (Brij 56) were used as cationic and nonionic surfactants, respectively. According to XRD and cross-sectional TEM, mesochannels aligned perpendicular to the substrates were observed in films prepared with low-molecular-weight surfactants, although the effect was incomplete. The evolution of these types of films should lead to future applications such as highly sensitive chemical sensors and selective separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo
2013-12-02
A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Hermann, Peter; Hoehl, Arne; Ulrich, Georg; Fleischmann, Claudia; Hermelink, Antje; Kästner, Bernd; Patoka, Piotr; Hornemann, Andrea; Beckhoff, Burkhard; Rühl, Eckart; Ulm, Gerhard
2014-07-28
We describe the application of scattering-type near-field optical microscopy to characterize various semiconducting materials using the electron storage ring Metrology Light Source (MLS) as a broadband synchrotron radiation source. For verifying high-resolution imaging and nano-FTIR spectroscopy we performed scans across nanoscale Si-based surface structures. The obtained results demonstrate that a spatial resolution below 40 nm can be achieved, despite the use of a radiation source with an extremely broad emission spectrum. This approach allows not only for the collection of optical information but also enables the acquisition of near-field spectral data in the mid-infrared range. The high sensitivity for spectroscopic material discrimination using synchrotron radiation is presented by recording near-field spectra from thin films composed of different materials used in semiconductor technology, such as SiO2, SiC, SixNy, and TiO2.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
Effects of Extreme Events on Arsenic Cycling in Salt Marshes
NASA Astrophysics Data System (ADS)
Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.
2018-03-01
Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.
Role of Microstructure in High Temperature Oxidation.
1980-05-01
Surface Prepartion Upon Oxidation ......... .................. 20 EXPERIMENTAL METHODS 21 Speciemen Preparation...angle sectioning method 26 Figure 3. Application of the test line upon the image of NiO scale to determine the number of the NiO grain boundary...of knowledge in this field was readily accounted for by extreme experimental difficulty in applying standard methods of microscopy to the thin
Ivan Bozovic
2017-12-09
"Atomic-Layer Engineering of Cuprate Superconductors." Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the "high-temperature superconductors" of extreme interest both to scientists and to industry. Research to learn their secrets is one of the hottest topics in the field of materials science.
Is the Non-Dipole Magnetic Field Random?
NASA Technical Reports Server (NTRS)
Walker, Andrew D.; Backus, George E.
1996-01-01
Statistical modelling of the Earth's magnetic field B has a long history. In particular, the spherical harmonic coefficients of scalar fields derived from B can be treated as Gaussian random variables. In this paper, we give examples of highly organized fields whose spherical harmonic coefficients pass tests for independent Gaussian random variables. The fact that coefficients at some depth may be usefully summarized as independent samples from a normal distribution need not imply that there really is some physical, random process at that depth. In fact, the field can be extremely structured and still be regarded for some purposes as random. In this paper, we examined the radial magnetic field B(sub r) produced by the core, but the results apply to any scalar field on the core-mantle boundary (CMB) which determines B outside the CMB.
Eisenman, David P; Flavahan, Louise
2017-08-01
This paper asks what programmes and policies for preventing violent extremism (also called 'countering violent extremism', or CVE) can learn from the public health violence prevention field. The general answer is that addressing violent extremism within the wider domain of public health violence prevention connects the effort to a relevant field of research, evidence-based policy and programming, and a broader population reach. This answer is reached by examining conceptual alignments between the two fields at both the case-level and the theoretical level. To address extremist violence within the wider reach of violence prevention, having a shared model is seen as a first step. The World Health Organization uses the social-ecological framework for assessing the risk and protective factors for violence and developing effective public-health based programmes. This study illustrates how this model has been used for gang violence prevention and explores overlaps between gang violence prevention and preventing violent extremism. Finally, it provides policy and programme recommendations to align CVE with public health violence prevention.
Growing hair on the extremal BTZ black hole
NASA Astrophysics Data System (ADS)
Harms, B.; Stern, A.
2017-06-01
We show that the nonlinear σ-model in an asymptotically AdS3 space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear σ-model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear σ-model fields and changes the space-time metric, and it can be used to map the extremal BTZ black hole to infinitely many hairy black hole solutions.
Magnetic field measurements near stand-alone transformer stations.
Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael
2013-12-01
Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.
Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate
NASA Astrophysics Data System (ADS)
Ramstad, R.; Barbash, S.; Futaana, Y.; Nilsson, H.; Holmstrom, M.
2015-12-01
Eight years (2007-2015) of ion flux measurements from Mars Express are used to empirically investigate the influence of the Martian crustal magnetic fields on the atmospheric ion escape rate. We combine ASPERA-3/IMA (Analyzer of Space Plasmas and Energetic Atoms/Ion Mass Analyzer) measurements taken during nominal upstream solar wind and solar Extreme Ultraviolet (EUV) conditions to compute global average ion distribution functions for varying solar zenith angles (SZA) of the strongest crustal field. Escape rates are subsequently calculated from each of the average distribution functions. A statistically significant increase in escape rate is found for high dayside SZA, compared to low SZA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jianyuan; Liu, Jian; He, Yang
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactlymore » soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave.« less
NASA Astrophysics Data System (ADS)
Theissen, Christopher A.; West, Andrew A.
2017-04-01
We present the results of an investigation into the occurrence and properties (stellar age and mass trends) of low-mass field stars exhibiting extreme mid-infrared (MIR) excesses ({L}{IR}/{L}* ≳ 0.01). Stars for the analysis were initially selected from the Motion Verified Red Stars (MoVeRS) catalog of photometric stars with Sloan Digital Sky Survey, 2MASS, and WISE photometry and significant proper motions. We identify 584 stars exhibiting extreme MIR excesses, selected based on an empirical relationship for main-sequence W1-W3 colors. For a small subset of the sample, we show, using spectroscopic tracers of stellar age (Hα and Li I) and luminosity class, that the parent sample is most likely comprised of field dwarfs (≳ 1 Gyr). We also develop the Low-mass Kinematics (LoKi) galactic model to estimate the completeness of the extreme MIR excess sample. Using Galactic height as a proxy for stellar age, the completeness-corrected analysis indicates a distinct age dependence for field stars exhibiting extreme MIR excesses. We also find a trend with stellar mass (using r - z color as a proxy). Our findings are consistent with the detected extreme MIR excesses originating from dust created in a short-lived collisional cascade (≲100,000 years) during a giant impact between two large planetismals or terrestrial planets. These stars with extreme MIR excesses also provide support for planetary collisions being the dominant mechanism in creating the observed Kepler dichotomy (the need for more than a single mode, typically two, to explain the variety of planetary system architectures Kepler has observed), rather than different formation mechanisms.
Projections of extreme water level events for atolls in the western Tropical Pacific
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-12-01
Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.
Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo
2014-12-01
Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.
Origin of the extremely large magnetoresistance in the semimetal YSb
Xu, J.; Ghimire, N. J.; Jiang, J. S.; ...
2017-08-29
Extremely large magnetoresistance (XMR) was recently discovered in YSb but its origin, along with that of many other XMR materials, is an active subject of debate. Here we demonstrate that YSb, with a cubic crystalline lattice and anisotropic bulk electron Fermi pockets, can be an excellent candidate for revealing the origin of XMR. We carried out angle dependent Shubnikov – de Haas quantum oscillation measurements to determine the volume and shape of the Fermi pockets. In addition, by investigating both Hall and longitudinal magnetoresistivities, we reveal that the origin of XMR in YSb lies in its carrier high mobility withmore » a diminishing Hall factor that is obtained from the ratio of the Hall and longitudinal magentoresistivities. The high mobility leads to a strong magnetic field dependence of the longitudinal magnetoconductivity while a diminishing Hall factor reveals the latent XMR hidden in the longitudinal magnetoconductivity whose inverse has a nearly quadratic magnetic-field dependence. The Hall factor highlights the deviation of the measured magnetoresistivity from its full potential value and provides a general formulation to reveal the origin of XMR behavior in high mobility materials and of nonsaturating MR behavior as a whole. Our approach can be readily applied to other XMR materials.« less
Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan
2017-08-01
The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Islam, Md Mahbubul; Strachan, Alejandro
A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.
NASA Astrophysics Data System (ADS)
Yang, Wen-Xing; Xie, Xiao-Tao; Chen, Ai-Xi; Huang, Ziwen; Lee, Ray-Kuang
2016-05-01
We present a theoretical investigation of high-order-harmonic generation (HHG) via bichromatic plasmonic near fields with metal nanoparticles. Bichromatic plasmonic near fields, which depend on temporal waveform synthesis, are generated when a metallic nanoparticle subjected to a moderate-intensity (<1012W /cm2 ) bichromatic few-cycle pulse. By means of a windowed Fourier transform of the time-dependent acceleration, we show that the differences in energies and level crossing between the adiabatic states of a two-level Hamiltonian are responsible for the cutoff energy of harmonics. Thus, we can manipulate the adiabatic states, and consequently the HHG spectra, by means of the bichromatic plasmonic near fields. In contrast to the case of a monochromatic field alone, a significant cutoff extension can be achieved via optimization of the bichromatic few-cycle pulse. Moreover, the supercontinuum in the bichromatic field shows a higher energy spectrum along with a broader bandwidth, which is beneficial for the efficient generation of broadband-isolated ultrashort extreme ultraviolet pulses from few-cycle laser fields.
Reflective optical imaging system for extreme ultraviolet wavelengths
Viswanathan, Vriddhachalam K.; Newnam, Brian E.
1993-01-01
A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 .mu.m, and preferably less than 100 .mu.m. An image resolution of features less than 0.05-0.1 .mu.m, is obtained over a large area field; i.e., 25.4 mm .times.25.4 mm, with a distortion less than 0.1 of the resolution over the image field.
Reflective optical imaging system for extreme ultraviolet wavelengths
Viswanathan, V.K.; Newnam, B.E.
1993-05-18
A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.
NASA Astrophysics Data System (ADS)
Takeda, Shun; Kumagai, Hiroshi
2018-02-01
Hyperpolarized (HP) noble gas has attracted attention in NMR / MRI. In an ultra-low magnetic field, the effectiveness of signal enhancement by HP noble gas should be required because reduction of the signal intensity is serious. One method of generating HP noble gas is spin exchange optical pumping which uses selective excitation of electrons of alkali metal vapor and spin transfer to nuclear spin by collision to noble gas. Although SEOP does not require extreme cooling or strong magnetic field, generally it required large-scale equipment including high power light source to generate HP noble gas with high efficiency. In this study, we construct a simply generation system of HP xenon-129 by SEOP with an ultralow magnetic field (up to 1 mT) and small-scale light source (about 1W). In addition, we measure in situ NMR signal at the same time, and then examine efficient conditions for SEOP in ultra-low magnetic fields.
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne
2016-01-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918
From organized high throughput data to phenomenological theory: The example of dielectric breakdown
NASA Astrophysics Data System (ADS)
Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Rampi
Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. Here, we focus on the intrinsic dielectric breakdown field of insulators--the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
NASA Astrophysics Data System (ADS)
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne
2016-12-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.
[Effect of extremely low frequency magnetic field on glutathione in rat muscles].
Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna
2014-01-01
Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p < 0.001). Exposure to magnetic fields used in the magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.
Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M
2017-08-11
High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.
Scanning in situ Spectroscopy platform for imaging surgical breast tissue specimens
Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2013-01-01
A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1x1cm2 square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the standard knife-edge technique and were found to be within ~8% of the theoretical predictions. Highly localized sampling offered inherent insensitivity to variations in background absorption allowing direct imaging of local scattering parameters, which was validated using a matrix of varying concentrations of Intralipid and blood in phantoms. Four representative, pathologically distinct lumpectomy tissue specimens were imaged, capturing natural variations in tissue scattering response within a given pathology. Variations as high as 60% were observed in the average reflectance and relative scattering power images, which must be taken into account for robust classification performance. Despite this variation, the preliminary data indicates discernible scatter power contrast between the benign vs malignant groups, but reliable discrimination of pathologies within these groups would require investigation into additional contrast mechanisms. PMID:23389199
Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R
2007-04-06
Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.
Axial interaction free-electron laser
Carlsten, Bruce E.
1997-01-01
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.
30 years of Gamma Ray Bursts and the Transient High Energy Sky
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2009-01-01
The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Further, I will discuss my involvement with the discovery of magnetars, neutron stars with extreme magnetic fields, serendipitously detected by GRB observers on 1979. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe.
Axial interaction free-electron laser
Carlsten, B.E.
1997-09-02
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.
High-temperature quantum oscillations caused by recurring Bloch states in graphene superlattices
NASA Astrophysics Data System (ADS)
Krishna Kumar, R.; Chen, X.; Auton, G. H.; Mishchenko, A.; Bandurin, D. A.; Morozov, S. V.; Cao, Y.; Khestanova, E.; Ben Shalom, M.; Kretinin, A. V.; Novoselov, K. S.; Eaves, L.; Grigorieva, I. V.; Ponomarenko, L. A.; Fal'ko, V. I.; Geim, A. K.
2017-07-01
Cyclotron motion of charge carriers in metals and semiconductors leads to Landau quantization and magneto-oscillatory behavior in their properties. Cryogenic temperatures are usually required to observe these oscillations. We show that graphene superlattices support a different type of quantum oscillation that does not rely on Landau quantization. The oscillations are extremely robust and persist well above room temperature in magnetic fields of only a few tesla. We attribute this phenomenon to repetitive changes in the electronic structure of superlattices such that charge carriers experience effectively no magnetic field at simple fractions of the flux quantum per superlattice unit cell. Our work hints at unexplored physics in Hofstadter butterfly systems at high temperatures.
Tenorio, Bruno Mendes; Ferreira Filho, Moisés Bonifacio Alves; Jimenez, George Chaves; de Morais, Rosana Nogueira; Peixoto, Christina Alves; Nogueira, Romildo de Albuquerque; da Silva Junior, Valdemiro Amaro
2014-06-01
Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60 Hz and 1 mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43 °C for 12 min) and then exposed to the magnetic field for 15, 30 and 60 d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60 d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.
NASA Astrophysics Data System (ADS)
Oikonomou, Foteini; Murase, Kohta; Kotera, Kumiko
2014-08-01
High frequency peaked, high redshift blazars, are extreme in the sense that their spectrum is particularly hard and peaks at TeV energies. Standard leptonic scenarios require peculiar source parameters and/or a special setup in order to account for these observations. Electromagnetic cascades seeded by ultra-high energy cosmic rays (UHECR) in the intergalactic medium have also been invoked, assuming a very low intergalactic magnetic field (IGMF). Here we study the synchrotron emission of UHECR secondaries produced in blazars located in magnetised environments, and show that it can provide an alternative explanation to these challenged channels, for sources embedded in structured regions with magnetic field strengths of the order of 10-7 G. To demonstrate this, we focus on three extreme blazars: 1ES 0229+200, RGB J0710+591, and 1ES 1218+304. We model the expected gamma-ray signal from these sources through a combination of numerical Monte Carlo simulations and solving the kinetic equations of the particles in our simulations, and explore the UHECR source and intergalactic medium parameter space to test the robustness of the emission. We show that the generated synchrotron-pair halo and echo flux at the peak energy is not sensitive to variations in the overall IGMF strength. This signal is unavoidable in contrast to the inverse Compton-pair halo and echo intensity, which is appealing in view of the large uncertainties on the IGMF in voids of large scale structure. It is also shown that the variability of blazar gamma-ray emission can be accommodated by the synchrotron emission of secondary products of UHE neutral beams if these are emitted by UHECR accelerators inside magnetised regions.
Three decades of high-resolution coastal sea surface temperatures reveal more than warming.
Lima, Fernando P; Wethey, David S
2012-02-28
Understanding and forecasting current and future consequences of coastal warming require a fine-scale assessment of the near-shore temperature changes. Here we show that despite the fact that 71% of the world's coastlines are significantly warming, rates of change have been highly heterogeneous both spatially and seasonally. We demonstrate that 46% of the coastlines have experienced a significant decrease in the frequency of extremely cold events, while extremely hot days are becoming more common in 38% of the area. Also, we show that the onset of the warm season is significantly advancing earlier in the year in 36% of the temperate coastal regions. More importantly, it is now possible to analyse local patterns within the global context, which is useful for a broad array of scientific fields, policy makers and general public.
An extreme anomaly in stratospheric ozone over Europe in 1940-1942
NASA Astrophysics Data System (ADS)
Brönnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T. M.
2004-04-01
Reevaluated historical total ozone data reveal extraordinarily high values over several European sites in 1940-1942, concurrent with extreme climatic anomalies at the Earth's surface. Using historical radiosonde data, reconstructed upper-level fields, and total ozone data from Arosa (Switzerland), Dombås, and Tromsø (Norway), this unusual case of stratosphere-troposphere coupling is analyzed. At Arosa, numerous strong total ozone peaks in all seasons were due to unusually frequent upper troughs over central Europe and related ozone redistribution in the lower stratosphere. At the Norwegian sites, high winter total ozone was most likely caused by major stratospheric warmings in Jan./Feb. 1940, Feb./Mar. 1941, and Feb. 1942. Results demonstrate that the dynamically driven interannual variability of total ozone can be much larger than that estimated based on the past 25-40 years.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.
2017-12-01
Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.
A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles.
Wang, Ning; Sun, Jing-Chao; Er, Meng Joo; Liu, Yan-Cheng
2016-05-01
In this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require a priori system knowledge nor tuning input weights. Only output weights of the SLFN need to be updated by adaptive projection-based laws derived from the Lyapunov approach. Moreover, an error compensator is incorporated to suppress approximation residuals, and thereby contributing to the robustness and global asymptotic stability of the closed-loop ELC system. Simulation studies and comprehensive comparisons demonstrate that the ELC framework achieves high accuracy in both tracking and approximation.
An extremal $${\\mathcal{N}}=2$$ superconformal field theory
Benjamin, Nathan; Dyer, Ethan; Fitzpatrick, A. Liam; ...
2015-11-16
Here, we provide an example of an extremal chiralmore » $${\\mathcal{N}}$$ = 2 superconformal field theory at c = 24. The construction is based on a $${{\\mathbb{Z}}}_{2}$$ orbifold of the theory associated to the $${A}_{1}^{24}$$ Niemeier lattice. The statespace is governed by representations of the sporadic group M 23.« less
Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral
NASA Astrophysics Data System (ADS)
Lionello, P.; Galati, M. B.; Elvini, E.
Scenario climate projections for extreme marine storms producing storm surges and wind waves are very important for the northern flat coast of the Adriatic Sea, where the area at risk includes a unique cultural and environmental heritage, and important economic activities. This study uses a shallow water model and a spectral wave model for computing the storm surge and the wind wave field, respectively, from the sea level pressure and wind fields that have been computed by the RegCM regional climate model. Simulations cover the period 1961-1990 for the present climate (control simulations) and the period 2071-2100 for the A2 and B2 scenarios. Generalized Extreme Value analysis is used for estimating values for the 10 and 100 year return times. The adequacy of these modeling tools for a reliable estimation of the climate change signal, without needing further downscaling is shown. However, this study has mainly a methodological value, because issues such as interdecadal variability and intermodel variability cannot be addressed, since the analysis is based on single model 30-year long simulations. The control simulation looks reasonably accurate for extreme value analysis, though it overestimates/underestimates the frequency of high/low surge and wind wave events with respect to observations. Scenario simulations suggest higher frequency of intense storms for the B2 scenario, but not for the A2. Likely, these differences are not the effect of climate change, but of climate multidecadal variability. Extreme storms are stronger in future scenarios, but differences are not statistically significant. Therefore this study does not provide convincing evidence for more stormy conditions in future scenarios.
Carbon nanotube transistor based high-frequency electronics
NASA Astrophysics Data System (ADS)
Schroter, Michael
At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.
Extreme geomagnetically induced currents
NASA Astrophysics Data System (ADS)
Kataoka, Ryuho; Ngwira, Chigomezyo
2016-12-01
We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.
Extremal black holes in dynamical Chern-Simons gravity
NASA Astrophysics Data System (ADS)
McNees, Robert; Stein, Leo C.; Yunes, Nicolás
2016-12-01
Rapidly rotating black hole (BH) solutions in theories beyond general relativity (GR) play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of GR. Such solutions are often difficult to find in beyond-general-relativity theories due to the inclusion of additional fields that couple to the metric nonlinearly and non-minimally. In this paper, we consider rotating BH solutions in one such theory, dynamical Chern-Simons (dCS) gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dCS gravity as an effective field theory and work in the decoupling limit, where corrections are treated as small perturbations from GR. We perturb about the maximally rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace, respectively, suffices to ensure a fidelity of over 99% relative to full numerical solutions. The leading-order mode in the Legendre expansion of the trace of the metric perturbation contains a logarithmic divergence at the extremal Kerr horizon, which is likely to be unimportant as it occurs inside the perturbed dCS horizon. The techniques employed here should enable the construction of analytic, closed-form expressions for the scalar field and metric perturbations on a background with arbitrary rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao
A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicablemore » methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.« less
Digital mapping in extreme and remote environments
NASA Astrophysics Data System (ADS)
Andersson, Joel; Bauer, Tobias; Sarlus, Zimer; Zainy, Maher; Brethes, Anais
2017-04-01
During the last few years, Luleå University of Technology has performed a series of research projects in remote areas with extreme climatic conditions using digital mapping technologies. The majority of past and ongoing research projects focus on the arctic regions of the Fennoscandian Shield and Greenland but also on the Zagros fold-and-thrust belt in northern Iraq. Currently, we use the Midland Valley application FieldMove on iPad mini devices with ruggedized casings. As all projects have a strong focus on geological field work, harsh climatic conditions are a challenge not only for the geologists but also for the digital mapping hardware. In the arctic regions especially cold temperatures affect battery lifetime and performance of the screens. But also high temperatures are restricting digital mapping. From experience, a typical temperature range where digital mapping, using iPad tablets, is possible lies between -20 and +40 degrees. Furthermore, the remote character of field areas complicates access but also availability of electricity. By a combination of robust solar chargers and ruggedized batteries we are able to work entirely autarkical. Additionally, we are currently installing a drone system that allows us to map outcrops normally inaccessible because of safety reasons or time deficiency. The produced data will subsequently be taken into our Virtual Reality studio for interpretation and processing. There we will be able to work also with high resolution DEM data from Lidar scanning allowing us to interpret structural features such as post-glacial faults in areas that are otherwise only accessible by helicopter. By combining digital field mapping with drone technique and a Virtual Reality studio we are able to work in hardly accessible areas, improve safety during field work and increase efficiency substantially.
High-numerical aperture extreme ultraviolet scanner for 8-nm lithography and beyond
NASA Astrophysics Data System (ADS)
Schoot, Jan van; Setten, Eelco van; Rispens, Gijsbert; Troost, Kars Z.; Kneer, Bernhard; Migura, Sascha; Neumann, Jens Timo; Kaiser, Winfried
2017-10-01
Current extreme ultraviolet (EUV) projection lithography systems exploit a projection lens with a numerical aperture (NA) of 0.33. It is expected that these will be used in mass production in the 2018/2019 timeframe. By then, the most difficult layers at the 7-nm logic and the mid-10-nm DRAM nodes will be exposed. These systems are a more economical alternative to multiple-exposure by 193 argon fluoride immersion scanners. To enable cost-effective shrink by EUV lithography down to 8-nm half pitch, a considerably larger NA is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently, the shadowing and the variation of the multilayer reflectivity deteriorate the aerial image contrast to unacceptably low values at the current 4× magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that the magnification has to be doubled to 8× to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of the current 0.33-NA step and scan systems and reduce the throughput (TPT) of the high-NA scanner to a value below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable of printing fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a TPT in excess of 150 wafers per hour by increasing the transmission of the optics, as well as increasing the acceleration of the wafer stage and mask stage. This makes it an economically viable lithography solution.
Electronics for Extreme Environments
NASA Astrophysics Data System (ADS)
Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.
2001-01-01
Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.
New probe of magnetic fields in the prereionization epoch. I. Formalism
NASA Astrophysics Data System (ADS)
Venumadhav, Tejaswi; Oklopčić, Antonija; Gluscevic, Vera; Mishra, Abhilash; Hirata, Christopher M.
2017-04-01
We propose a method of measuring extremely weak magnetic fields in the intergalactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. This precession leads to a systematic change in the brightness temperature fluctuations of the 21-cm line from the high-redshift universe, and thus the statistics of these fluctuations encode information about the magnetic field the atoms are immersed in. The method is most suited to probing fields that are coherent on large scales; in this paper, we consider a homogenous magnetic field over the scale of the 21-cm fluctuations. Due to the long lifetime of the triplet state of the 21-cm transition, this technique is naturally sensitive to extremely weak field strengths, of order 10-19 G at a reference redshift of ˜20 (or 10-21 G if scaled to the present day). Therefore, this might open up the possibility of probing primordial magnetic fields just prior to reionization. If the magnetic fields are much stronger, it is still possible to use this method to infer their direction, and place a lower limit on their strength. In this paper (Paper I in a series on this effect), we perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-α photons. We conclude with an analytic formula for the brightness temperature of linear-regime fluctuations in the presence of a magnetic field, and discuss its limiting behavior for weak and strong fields.
Improving the local wavenumber method by automatic DEXP transformation
NASA Astrophysics Data System (ADS)
Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni
2014-12-01
In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.
Experimental demonstration of laser tomographic adaptive optics on a 30-meter telescope at 800 nm
NASA Astrophysics Data System (ADS)
Ammons, S., Mark; Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.
2010-07-01
A critical goal in the next decade is to develop techniques that will extend Adaptive Optics correction to visible wavelengths on Extremely Large Telescopes (ELTs). We demonstrate in the laboratory the highly accurate atmospheric tomography necessary to defeat the cone effect on ELTs, an essential milestone on the path to this capability. We simulate a high-order Laser Tomographic AO System for a 30-meter telescope with the LTAO/MOAO testbed at UCSC. Eight Sodium Laser Guide Stars (LGSs) are sensed by 99x99 Shack-Hartmann wavefront sensors over 75". The AO system is diffraction-limited at a science wavelength of 800 nm (S ~ 6-9%) over a field of regard of 20" diameter. Openloop WFS systematic error is observed to be proportional to the total input atmospheric disturbance and is nearly the dominant error budget term (81 nm RMS), exceeded only by tomographic wavefront estimation error (92 nm RMS). The total residual wavefront error for this experiment is comparable to that expected for wide-field tomographic adaptive optics systems of similar wavefront sensor order and LGS constellation geometry planned for Extremely Large Telescopes.
NASA Astrophysics Data System (ADS)
Perugini, G.; Ricci-Tersenghi, F.
2018-01-01
We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.
Behrens, R; Ambrosi, P
2002-01-01
A few-channel spectrometer for mixed photon, electron and ion radiation fields has been developed. It consists of a front layer of an etched-track detector foil for detecting protons and ions, a stack of PMMA with thermoluminescent detectors at different depths for gaining spectral information about electrons, and a stack of metallic filters with increasing cut-off photon energies, interspersed with thermoluminescent detectors for gaining spectral information about photons. From the reading of the TL detectors the spectral fluence of the electrons (400 keV to 9 MeV) and photons (20 keV to 2 MeV) can be determined by an unfolding procedure. The spectrometer can be used in pulsed radiation fields with extremely high momentary values of the fluence rate. Design and calibration of the spectrometer are described.
High resolution MRI of the normal finger at 0.1 T: anatomic correlations.
Drapé, J L; Constantinesco, A; Arbogast, S; Sick, H; Wolfram-Gabel, R; Brunot, B
1992-01-01
MR images of the fingers are obtained in a 128 x 128 or 256 x 256 matrix format using a prototype of a mini imager dedicated to the hand. The vertical field of 0.1 T is provided by an electro-magnet with an air gap of 15 cm equipped with a single solenoidal coil. No Faraday cage is used. The maximum in plane pixel resolution of 100 mu is obtained for a field of view of 2.5 cm with a slice thickness of 2 mm. The identification of fine structures of the finger is demonstrated by the anatomical and histological correlations. This type of imager which is adapted to very limited field of views demonstrate that high resolution MRI of limb extremities can be achieved at 0.1 T.
Digital communication with Rydberg atoms and amplitude-modulated microwave fields
NASA Astrophysics Data System (ADS)
Meyer, David H.; Cox, Kevin C.; Fatemi, Fredrik K.; Kunz, Paul D.
2018-05-01
Rydberg atoms, with one highly excited, nearly ionized electron, have extreme sensitivity to electric fields, including microwave fields ranging from 100 MHz to over 1 THz. Here, we show that room-temperature Rydberg atoms can be used as sensitive, high bandwidth, microwave communication antennas. We demonstrate near photon-shot-noise limited readout of data encoded in amplitude-modulated 17 GHz microwaves, using an electromagnetically induced-transparency (EIT) probing scheme. We measure a photon-shot-noise limited channel capacity of up to 8.2 Mbit s-1 and implement an 8-state phase-shift-keying digital communication protocol. The bandwidth of the EIT probing scheme is found to be limited by the available coupling laser power and the natural linewidth of the rubidium D2 transition. We discuss how atomic communication receivers offer several opportunities to surpass the capabilities of classical antennas.
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jianyuan; Qin, Hong; Liu, Jian
2015-11-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces fivemore » exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.« less
The evolution of extreme precipitations in high resolution scenarios over France
NASA Astrophysics Data System (ADS)
Colin, J.; Déqué, M.; Somot, S.
2009-09-01
Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics and that both regional and global simulations were run at the same resolution, ARP50 can be regarded as a reference with which FRA50, EUR50 and EUR50-SN should each be compared. After an analysis of the differences between the regional simulations and ARP50 in annual and seasonal mean, we focus on the representation of rainfall extremes comparing two dimensional fields of various index inspired from STARDEX and quantile-quantile plots. The results show a good agreement with the ARP50 reference for all three regional simulations and little differences are found between them. This result indicates that the use of small domains is not significantly detrimental to the modelling of extreme precipitation events. It also shows that the spectral nudging technique has no detrimental effect on the extreme precipitation. Therefore, high resolution scenarios performed on a relatively small domain such as the ones run for SCAMPEI, can be regarded as good tools to explore their possible evolution in the future climate. Preliminary results on the response of precipitation extremes over South-East France are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, Thomas; Windl, Wolfgang
The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.
Self-diffusion imaging by spin echo in Earth's magnetic field.
Mohoric, A; Stepisnik, J; Kos, M; Planinsi
1999-01-01
The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging. Copyright 1999 Academic Press.
Extreme ultraviolet spectra of S IX and S X relevant to solar coronal plasmas
NASA Astrophysics Data System (ADS)
Ali, Safdar; Kato, Hiroyuki; Nakamura, Nobuyuki
2017-10-01
We present extreme ultraviolet laboratory spectra of highly charged S IX and S X measured using a compact electron beam ion trap. The data were recorded using a flat-field grazing incidence spectrometer in the wavelength range between 210 and 290 Å. The beam energy was tuned for three different values at 365, 410 and 465 eV while keeping electron beam current constant at 10 mA. By measuring the beam energy dependence, we identified several lines originating from S IX and S X ions with the support of collisional-radiative modeling. We compared them with the present calculations and transitions listed in the NIST data base and found in good agreement.
Compton Thick AGN in the COSMOS field
NASA Astrophysics Data System (ADS)
Lanzuisi, Giorgio; Cosmos Collaboration
2015-09-01
I will present the results we published in a couple of recent papers (Lanzuisi et al. 2015, A&A 573A 137, Lanzuisi et al. 2015, arXiv 1505.01153) on the properties of X-ray selected Compton Thick (CT, NH>10^24 cm^-2) AGN, in the COSMOS survey. We exploited the rich multi-wavelength dataset available in this field, to show that CT AGN tend to harbor smaller, rapidly growing SMBH with respect to unobscured AGN, and have a higher chance of being hosted by star-forming, merging and post-merger systems.We also demonstrated the detectability of even more heavily obscured AGN (NH>10^25 cm^-2), thanks to a truly multi-wavelength approach in the same field. The extreme source detected in this way shows strong evidences of ongoing powerful AGN feedback, detected as blue-shifted wings of high ionization optical emission lines such as [NeV] and [FeVII], as well as of the [OIII] emission line.The results obtained from these works point toward a scenario in which highly obscured AGN occupy a peculiar place in the galaxy-AGN co-evolution process, in which both the host and the SMBH rapidly evolve toward the local relations.We will also present estimates on the detectability of such extreme sources up to redshift ~6-7 with Athena. Combining the most up to date models for the Luminosity Function of CT AGN at high z, aggressive data analysis techniques on faint sources, and the current Athena survey design, we demonstrate that we will detect, and recognize as such, a small (few to ten) but incredibly valuable sample of CT AGN at such high redshift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchler, R.; Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstrasse 2, 86135 Augsburg; Stingl, C.
2016-07-15
Thermal expansion and magnetostriction are directional dependent thermodynamic quantities. For the characterization of novel quantum phases of matter, it is required to study materials under multi-extreme conditions, in particular, down to very low temperatures, in very high magnetic fields or under high pressure. We developed a miniaturized capacitive dilatometer suitable for temperatures down to 20 mK and usage in high magnetic fields, which exerts a large spring force between 40 to 75 N on the sample. This corresponds to a uniaxial stress up to 3 kbar for a sample with cross section of (0.5 mm){sup 2}. We describe design andmore » performance test of the dilatometer which resolves length changes with high resolution of 0.02 Å at low temperatures. The miniaturized device can be utilized in any standard cryostat, including dilution refrigerators or the commercial physical property measurement system.« less
Gilles, L; Ellerbroek, B L
2010-11-01
Real-time turbulence profiling is necessary to tune tomographic wavefront reconstruction algorithms for wide-field adaptive optics (AO) systems on large to extremely large telescopes, and to perform a variety of image post-processing tasks involving point-spread function reconstruction. This paper describes a computationally efficient and accurate numerical technique inspired by the slope detection and ranging (SLODAR) method to perform this task in real time from properly selected Shack-Hartmann wavefront sensor measurements accumulated over a few hundred frames from a pair of laser guide stars, thus eliminating the need for an additional instrument. The algorithm is introduced, followed by a theoretical influence function analysis illustrating its impulse response to high-resolution turbulence profiles. Finally, its performance is assessed in the context of the Thirty Meter Telescope multi-conjugate adaptive optics system via end-to-end wave optics Monte Carlo simulations.
A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model
NASA Astrophysics Data System (ADS)
Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.
2017-12-01
Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.
Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi2
NASA Astrophysics Data System (ADS)
Gao, Wenshuai; Hao, Ningning; Zheng, Fa-Wei; Ning, Wei; Wu, Min; Zhu, Xiangde; Zheng, Guolin; Zhang, Jinglei; Lu, Jianwei; Zhang, Hongwei; Xi, Chuanying; Yang, Jiyong; Du, Haifeng; Zhang, Ping; Zhang, Yuheng; Tian, Mingliang
2017-06-01
While pyrite-type PtBi2 with a face-centered cubic structure has been predicted to be a three-dimensional (3D) Dirac semimetal, experimental study of its physical properties remains absent. Here we report the angular-dependent magnetoresistance measurements of a PtBi2 single crystal under high magnetic fields. We observed extremely large unsaturated magnetoresistance (XMR) up to (11.2 ×106)% at T =1.8 K in a magnetic field of 33 T, which is comparable to the previously reported Dirac materials, such as WTe2 , LaSb, and NbP. The crystals exhibit an ultrahigh mobility and significant Shubnikov-de Hass quantum oscillations with a nontrivial Berry phase. The analysis of Hall resistivity indicates that the XMR can be ascribed to the nearly compensated electron and hole. Our experimental results associated with the ab initio calculations suggest that pyrite PtBi2 is a topological semimetal candidate that might provide a platform for exploring topological materials with XMR in noble metal alloys.
Shepherd, S; Lima, M A P; Oliveira, E E; Sharkh, S M; Jackson, C W; Newland, P L
2018-05-21
Extremely low frequency electromagnetic field (ELF EMF) pollution from overhead powerlines is known to cause biological effects across many phyla, but these effects are poorly understood. Honey bees are important pollinators across the globe and due to their foraging flights are exposed to relatively high levels of ELF EMF in proximity to powerlines. Here we ask how acute exposure to 50 Hz ELF EMFs at levels ranging from 20-100 µT, found at ground level below powerline conductors, to 1000-7000 µT, found within 1 m of the conductors, affects honey bee olfactory learning, flight, foraging activity and feeding. ELF EMF exposure was found to reduce learning, alter flight dynamics, reduce the success of foraging flights towards food sources, and feeding. The results suggest that 50 Hz ELF EMFs emitted from powerlines may represent a prominent environmental stressor for honey bees, with the potential to impact on their cognitive and motor abilities, which could in turn reduce their ability to pollinate crops.
NASA Technical Reports Server (NTRS)
Taylor, R. C.; Hettrick, M. C.; Malina, R. F.
1983-01-01
High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.
1985-05-01
Environ. Biophys. 20:53-65. 1983. Electric field effects on bacteria and yeast cells . Radiat. Environ. Biophys. 22 :149-162. Husing, J. 0., F. Strauss, and...Jr., Ph.D. 141 A Review of Cell Effects Induced by Exposure of Extremely Low 155 Frequency Electromagnetic Fields - Eugene M. Goodman, Ph.D. and Ben...and E. M. Goodman. 1983. Cell surface effects of 60 Hz electromagnetic fields. Radiat. Res. 94:217-220. artucci, G. I., P. C. Gailey, and R. A. Tell
Racetrack-shape fixed field induction accelerator for giant cluster ions
NASA Astrophysics Data System (ADS)
Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya
2015-05-01
A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.
Transient phenomena in cosmic ray intensity during extreme events
NASA Astrophysics Data System (ADS)
Agarwal, Rekha; Mishra, Rajesh K.
2008-04-01
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ˜500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ˜-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days.
Electric shocks at work in Europe: development of a job exposure matrix.
Huss, Anke; Vermeulen, Roel; Bowman, Joseph D; Kheifets, Leeka; Kromhout, Hans
2013-04-01
Electric shocks have been suggested as a potential risk factor for neurological disease, in particular for amyotrophic lateral sclerosis. While actual exposure to shocks is difficult to measure, occurrence and variation of electric injuries could serve as an exposure proxy. We assessed risk of electric injury, using occupational accident registries across Europe to develop an electric shock job-exposure-matrix (JEM). Injury data were obtained from five European countries, and the number of workers per occupation and country from EUROSTAT was compiled at a 3-digit International Standard Classification of Occupations 1988 level. We pooled accident rates across countries with a random effects model and categorised jobs into low, medium and high risk based on the 75th and 90th percentile. We next compared our JEM to a JEM that classified extremely low frequency magnetic field exposure of jobs into low, medium and high. Of 116 job codes, occupations with high potential for electric injury exposure were electrical and electronic equipment mechanics and fitters, building frame workers and finishers, machinery mechanics and fitters, metal moulders and welders, assemblers, mining and construction labourers, metal-products machine operators, ships' decks crews and power production and related plant operators. Agreement between the electrical injury and magnetic field JEM was 67.2%. Our JEM classifies occupational titles according to risk of electric injury as a proxy for occurrence of electric shocks. In addition to assessing risk potentially arising from electric shocks, this JEM might contribute to disentangling risks from electric injury from those of extremely low frequency magnetic field exposure.
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan; Khan, Sabih D; Shakya, Mahendra M; Moon, Eric; Chang, Zenghu
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2{pi} radians.
NASA Astrophysics Data System (ADS)
Ahn, Hyeon-Seon; Kidane, Tesfaye; Yamamoto, Yuhji; Otofuji, Yo-ichiro
2016-01-01
Palaeointensity variation is investigated for an inferred time period spanning from 2.34 to 1.96 Ma. Twenty-nine consecutive lava flows are sampled along cliffs 350 m high generated by normal faulting on the Dobi section of Afar depression, Ethiopia. Magnetostratigraphy and K-Ar measurements indicate a lava sequence of R-N-R-N geomagnetic field polarities in ascending order; the lower normal polarity is identified as the Réunion Subchron. Reliability of palaeomagnetic data is ascertained through careful thermal demagnetization and by the reversal test. The Tsunakawa-Shaw method yielded 70 successful palaeointensity results from 24 lava flows and gave 11 acceptable mean palaeointensities. Reliability in palaeointensity data is ascertained by the similar values obtained by the IZZI-Thellier method and thus 11 reliable mean values are obtained from our combined results. After the older reverse polarity with the field intensity of 19.6 ± 7.8 μT, an extremely low palaeointensity period with an average of 6.4 μT is shown to occur prior to the Réunion Subchron. During the Réunion Subchron, the dipole field strength is shown to have returned to an average of 19.5 μT, followed by second extreme low of 3.6 μT and rejuvenation with 17.1 ± 5.3 μT in the younger reverse polarity. This `W-shape' palaeointensity variation is characterized by occurrences of two extremely weak fields lower than 8 μT prior to and during the Réunion Subchron and a relatively weak time-averaged field of approximately 15 μT. This feature is also found in sedimentary cores from the Ontong Java Plateau and the north Atlantic, indicative of a possibly global geomagnetic field phenomenon rather than a local effect on Ethiopia. Furthermore, we estimate a weak virtual axial dipole moment of 3.66 (±1.85) × 1022 Am2 during early stage of the Matuyama Chron (inferred time period of 2.34-1.96 Ma).
The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere
NASA Astrophysics Data System (ADS)
Neubauer, Fritz M.
1998-09-01
Recent observations by the Galileo spacecraft and Earth-based techniques have motivated us to reconsider the sub-Alfvénic interaction between the Galilean satellites of Jupiter and the magnetosphere. (1) We show that the atomic processes causing the interaction between the magnetoplasma and a neutral atmosphere can be described by generalized collision frequencies with contributions from elastic collisions, ion pickup, etc. Thus there is no fundamental difference in the effect of these processes on the plasma dynamics claimed in the recent literature. For a magnetic field configuration including possible internal fields, we show that the sub-Alfvénic, low-beta interaction can be described by an anisotropically conducting atmosphere joined to an Alfvén wing as one extreme case and the Jovian ionosphere as the other extreme case. (2) The addition of a small magnetic field of internal origin does not modify the general Alfvén wing model qualitatively but only quantitatively. All magnetic moments discussed in the literature for Io are small in this sense. For an aligned internal dipole and ambient Jovian magnetic field the interaction will be enhanced by focusing of the electric field. (3) A qualitative change occurs by the additional occurrence of closed magnetic field lines for larger internal magnetic fields as in the case of Ganymede. Here the focusing is even enhanced. (4) The first discussion of nonstationary plasma flows at the satellites shows that electromagnetically induced magnetic fields may play an important role if the satellite interiors are highly conducting. From the point of view of the external excitation, induction effects may be strong for Callisto, Io, Europa, and Ganymede in order of decreasing importance. The magnetic field observations at the first Callisto encounter can be explained by these effects.
NASA Astrophysics Data System (ADS)
Shen, Xun
2011-12-01
Water is the most abundant compound on the surface of the Earth, and can be considered to be the most important molecule in living systems. Water plays a variety of cellular functions, being the solvent of most biological molecules, a substrate and product of enzymatic catalysis, an important component of macromolecules, and more. Because of importance of water in life, many physical and chemical treatments were invented to improve the quality of drinking water. Among them, the treatment with electromagnetic field is a well-known, but much debatable physical method. Although electromagnetic field has been utilized for treating water for 80 years, many reports on beneficial biological effect of electromagnetic field-treated water were either anecdotal or less convincing. To explore if there is any physical base for understanding possible biological effects of electromagnetic field-treated water, dielectric relaxation spectra of deionized water treated with an extremely low frequency electromagnetic (ELFEM) field were measured and compared with that of untreated water. It was surprisingly found that the dielectric constant of the ELFEM field-treated water was 3.7% higher than the control over the frequency range of 1-10 GHz, which indicates a higher molecular polarization occurs in the ELFEM field-treated water. Electrostatic and thermodynamic analysis shows that proteins or other biomacromolecules would have more reduced free energy when they are hydrated in high dielectric constant water. Since free energy is of crucial importance for stability of proteins, protein folding and its conformational change, as well as catalytic activity of enzymes, the free energy reduction of the biomacromolecules hydrated with higher dielectric constant water may be responsible for many possible biological effects of electromagnetic field treated water.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
Carbon nanotube transistor based high-frequency electronics
NASA Astrophysics Data System (ADS)
Schroter, Michael
At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.
NASA Astrophysics Data System (ADS)
Gales, S.
2015-10-01
Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.
Main magnetic field of Jupiter and its implications for future orbiter missions
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1975-01-01
A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.
Short initial length quench on CICC of ITER TF coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.
Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of themore » voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.« less
Ideal charge-density-wave order in the high-field state of superconducting YBCO
Jang, H.; Lee, W. -S.; Nojiri, H.; ...
2016-12-05
The existence of charge-density-wave (CDW) correlations in cuprate superconductors has now been established. However, the nature of the CDW ground state has remained uncertain because disorder and the presence of superconductivity typically limit the CDW correlation lengths to only a dozen unit cells or less. Here we explore the field-induced 3D CDW correlations in extremely pure detwinned crystals of YBa 2Cu 3O 2 (YBCO) ortho-II and ortho-VIII at magnetic fields in excess of the resistive upper critical field ( H c2) where superconductivity is heavily suppressed. We observe that the 3D CDW is unidirectional and possesses a long in-plane correlationmore » length as well as significant correlations between neighboring CuO 2 planes. It is significant that we observe only a single sharply defined transition at a critical field proportional to H c2, given that the field range used in this investigation overlaps with other high-field experiments including quantum oscillation measurements. The correlation volume is at least two to three orders of magnitude larger than that of the zero-field CDW. Furthermore, this is by far the largest CDW correlation volume observed in any cuprate crystal and so is presumably representative of the high-field ground state of an “ideal” disorder-free cuprate.« less
Lessons learned in the analysis of high-dimensional data in vaccinomics
Oberg, Ann L.; McKinney, Brett A.; Schaid, Daniel J.; Pankratz, V. Shane; Kennedy, Richard B.; Poland, Gregory A.
2015-01-01
The field of vaccinology is increasingly moving toward the generation, analysis, and modeling of extremely large and complex high-dimensional datasets. We have used data such as these in the development and advancement of the field of vaccinomics to enable prediction of vaccine responses and to develop new vaccine candidates. However, the application of systems biology to what has been termed “big data,” or “high-dimensional data,” is not without significant challenges—chief among them a paucity of gold standard analysis and modeling paradigms with which to interpret the data. In this article, we relate some of the lessons we have learned over the last decade of working with high-dimensional, high-throughput data as applied to the field of vaccinomics. The value of such efforts, however, is ultimately to better understand the immune mechanisms by which protective and non-protective responses to vaccines are generated, and to use this information to support a personalized vaccinology approach in creating better, and safer, vaccines for the public health. PMID:25957070
Lessons learned in the analysis of high-dimensional data in vaccinomics.
Oberg, Ann L; McKinney, Brett A; Schaid, Daniel J; Pankratz, V Shane; Kennedy, Richard B; Poland, Gregory A
2015-09-29
The field of vaccinology is increasingly moving toward the generation, analysis, and modeling of extremely large and complex high-dimensional datasets. We have used data such as these in the development and advancement of the field of vaccinomics to enable prediction of vaccine responses and to develop new vaccine candidates. However, the application of systems biology to what has been termed "big data," or "high-dimensional data," is not without significant challenges-chief among them a paucity of gold standard analysis and modeling paradigms with which to interpret the data. In this article, we relate some of the lessons we have learned over the last decade of working with high-dimensional, high-throughput data as applied to the field of vaccinomics. The value of such efforts, however, is ultimately to better understand the immune mechanisms by which protective and non-protective responses to vaccines are generated, and to use this information to support a personalized vaccinology approach in creating better, and safer, vaccines for the public health. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Palmer, S. J.; Rycroft, M. J.; Cermack, M.
2006-09-01
The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10-15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body. Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.
Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene
Crosse, J. A.; Xu, Xiaodong; Sherwin, Mark S.; Liu, R. B.
2014-01-01
In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron–hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm−1), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm−1 can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron–hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications. PMID:25249245
NASA Astrophysics Data System (ADS)
Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.
2018-01-01
Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.
Vulnerability of global food production to extreme climatic events.
Yeni, F; Alpas, H
2017-06-01
It is known that the frequency, intensity or duration of the extreme climatic events have been changing substantially. The ultimate goal of this study was to identify current vulnerabilities of global primary food production against extreme climatic events, and to discuss potential entry points for adaptation planning by means of an explorative vulnerability analysis. Outcomes of this analysis were demonstrated as a composite index where 118 country performances in maintaining safety of food production were compared and ranked against climate change. In order to better interpret the results, cluster analysis technique was used as a tool to group the countries based on their vulnerability index (VI) scores. Results suggested that one sixth of the countries analyzed were subject to high level of exposure (0.45-1), one third to high to very high level of sensitivity (0.41-1) and low to moderate level of adaptive capacity (0-0.59). Proper adaptation strategies for reducing the microbial and chemical contamination of food products, soil and waters on the field were proposed. Finally, availability of data on food safety management systems and occurrence of foodborne outbreaks with global coverage were proposed as key factors for improving the robustness of future vulnerability assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control
NASA Astrophysics Data System (ADS)
Schlipf, David; Raach, Steffen
2016-09-01
This work presents a wind field generator which allows to shape wind fields in the time domain while maintaining the spectral properties. This is done by an iterative generation of wind fields and by minimizing the error between wind characteristics of the generated wind fields and desired values. The method leads towards realistic ultimate load calculations for lidar-assisted control. This is demonstrated by fitting a turbulent wind field to an Extreme Operating Gust. The wind field is then used to compare a baseline feedback controller alone against a combined feedback and feedforward controller using simulated lidar measurements. The comparison confirms that the lidar-assisted controller is still able to significantly reduce the ultimate loads on the tower base under this more realistic conditions.
Sun, Z Y; Geng, D Y; Chen, C F; Wang, P P; Song, T
2017-06-20
Objective: To investigate the influence of extremely low-frequency magnetic field on periodical expression of cryptochrome ( Cry ) gene in mouse embryonic fibroblast NIH3T3 cells. Methods: The NIH3T3 cells were divided into magnetic field group and sham-exposure group. The NIH3T3 cells in the magnetic field group were stimulated by horse serum and then exposed to an extremely low-frequency magnetic field (50 Hz and 0.3 mT) for 48 hours, and those in the sham-exposure group were also stimulated by horse serum and then exposed to a coil for 48 hours. The NIH3T3 cells were collected, total RNA was extracted, and cDNA was obtained via reverse transcription. Real-time fluorescent quantitative RT-PCR was used to measure the changes in transcription cycles of Cry and Period genes in both groups. Results: There was no significant difference in the proliferation rate at 0, 12, 24, and 48 hours of exposure between the two groups ( P >0.05) . Both sham-exposure group and magnetic field group showed a rhythmic change in the expression of Cry gene, and compared with the sham-exposure group, the magnetic field group had a significantly shortened circadian rhythm of Cry gene in NIH3T3 cells ( t =2.57, P <0.05) . Both groups had rhythmic and periodical expression of Period gene and there was no significant difference between the two groups ( t =0.70, P >0.05) . Conclusion: Extremely low-frequency magnetic field can significantly shorten the circadian rhythm of Cry gene in mouse embryonic fibroblasts, while there is no significant change in the circadian rhythm of Period gene.
First Results from the AKARI FU-HYU Mission Program
NASA Astrophysics Data System (ADS)
Pearson, C.; Serjeant, S.; Takagi, T.; Jeong, W.-S.; Negrello, M.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M.
2009-12-01
The AKARI FU-HYU mission program has carried out mid-infrared imaging of several well studied Spitzer fields. This imaging fills in the wavelength coverage lacking from the Spitzer surveys and gives an extremely high scientific return for minimal input for AKARI. We select fields already rich in multi-wavelength data from radio to X-ray wavelengths and present the results from our initial analysis in the GOODS-N field. We utilize the comprehansive multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. These colour-colours diagrams are used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field.
NASA Astrophysics Data System (ADS)
Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa
2006-11-01
We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.
Planck, Herschel & Spitzer unveil overdense z>2 regions
NASA Astrophysics Data System (ADS)
Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve
2014-12-01
At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST, WFIRST and Euclid.
Influence of Climate Oscillations on Extreme Precipitation in Texas
NASA Astrophysics Data System (ADS)
Bhatia, N.; Singh, V. P.; Srivastav, R. K.
2016-12-01
Much research in the field of hydroclimatology is focusing on the impact of climate variability on hydrologic extremes. Recent studies show that the unique geographical location and the enormous areal extent, coupled with extensive variations in climate oscillations, have intensified the regional hydrologic cycle of Texas. The state-wide extreme precipitation events can actually be attributed to sea-surface pressure and temperature anomalies, such as Bermuda High and Jet Streams, which are further triggered by such climate oscillations. This study aims to quantify the impact of five major Atlantic and Pacific Ocean related climate oscillations: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on extreme precipitation in Texas. Their respective effects will be determined for both climate divisions delineated by the National Climatic Data Centre (NCDC) and climate regions defined by the Köppen Climate Classification System. This study will adopt a weighted correlation approach to attain the robust correlation coefficients while addressing the regionally variable data outliers for extreme precipitation. Further, the variation of robust correlation coefficients across Texas is found to be related to the station elevation, historical average temperature, and total precipitation in the months of extremes. The research will shed light on the relationship between precipitation extremes and climate variability, thus aiding regional water boards in planning, designing, and managing the respective systems as per the future climate change.
Extreme sensitivity biosensing platform based on hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe
2016-06-01
Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.
Extremal optimization for Sherrington-Kirkpatrick spin glasses
NASA Astrophysics Data System (ADS)
Boettcher, S.
2005-08-01
Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient accuracy and with statistical significance are obtained for systems with more than N=1000 variables using ±J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less than 1% accuracy rational values of ω=2/3 for the finite-size correction exponent, and of ρ=3/4 for the fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet. The probability density function for ground state energies is highly skewed and identical within numerical error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity shows that the skewness is connectivity-dependent.
Extreme Light Infrastructure - Nuclear Physics Eli-Np Project
NASA Astrophysics Data System (ADS)
Gales, S.
2015-06-01
The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.
Liew, S K; Carlson, N W
1992-05-20
A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.
Expertise on Cognitive Workloads and Performance During Navigation and Target Detection
2012-03-01
requiring little or no attention 1. Little confusion, risk, frustration, or anxiety exists and can be easily accomodated 2. Occasionally have spare...to confusion, frustration, or anxiety noticeably adds to workload. Significant compensation is required to maintain adequate performance. 3... anxiety . High to extreme determination and self- control required 59 Field Description elapsedTime (sec) Continuous measurement of time from the
Ionospheric convection signatures observed by DE 2 during northward interplanetary magnetic field
NASA Technical Reports Server (NTRS)
Heelis, R. A.; Hanson, W. B.; Reiff, P. H.; Winningham, J. D.
1986-01-01
Observations of the ionospheric convection signature at high latitudes are examined during periods of prolonged northward interplanetary magnetic field (IMF). The data from Dynamics Explorer 2 show that a four-cell convection pattern can frequently be observed in a region that is displaced to the sunward side of the dawn-dusk meridian regardless of season. In the eclipsed ionosphere, extremely structured or turbulent flow exists with no identifiable connection to a more coherent pattern that may simultaneously exist in the dayside region. The two highest-latitude convection cells that form part of the coherent dayside pattern show a dependence on the y component of the IMF. This dependence is such that a clockwise circulating cell displaced toward dawn dominates the high-latitude region when B(Y) is positive. Anti-clockwise circulation displaced toward dusk dominates the highest latitudes when B(Y) is negative. Examination of the simultaneously observed energetic particle environment suggests that both open and closed field lines may be associated with the high-latitude convection cells. On occasions these entire cells can exist on open field lines. The existence of closed field lines in regions of sunward flow is also apparent in the data.
Adaptive Nulling for Interferometric Detection of Planets
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Peters, Robert D.
2010-01-01
An adaptive-nulling method has been proposed to augment the nulling-optical- interferometry method of detection of Earth-like planets around distant stars. The method is intended to reduce the cost of building and aligning the highly precise optical components and assemblies needed for nulling. Typically, at the mid-infrared wavelengths used for detecting planets orbiting distant stars, a star is millions of times brighter than an Earth-sized planet. In order to directly detect the light from the planet, it is necessary to remove most of the light coming from the star. Nulling interferometry is one way to suppress the light from the star without appreciably suppressing the light from the planet. In nulling interferometry in its simplest form, one uses two nominally identical telescopes aimed in the same direction and separated laterally by a suitable distance. The light collected by the two telescopes is processed through optical trains and combined on a detector. The optical trains are designed such that the electric fields produced by an on-axis source (the star) are in anti-phase at the detector while the electric fields from the planet, which is slightly off-axis, combine in phase, so that the contrast ratio between the star and the planet is greatly decreased. If the electric fields from the star are exactly equal in amplitude and opposite in phase, then the star is effectively nulled out. Nulling is effective only if it is complete in the sense that it occurs simultaneously in both polarization states and at all wavelengths of interest. The need to ensure complete nulling translates to extremely tight demands upon the design and fabrication of the complex optical trains: The two telescopes must be highly symmetric, the reflectivities of the many mirrors in the telescopes and other optics must be carefully tailored, the optical coatings must be extremely uniform, sources of contamination must be minimized, optical surfaces must be nearly ideal, and alignments must be extremely precise. Satisfaction of all of these requirements entails substantial cost.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
The CHARIS High-Contrast Integral-Field Spectrograph
NASA Technical Reports Server (NTRS)
Groff, Tyler D.; Chilcote, Jeffrey; Brandt, Timothy; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Rizzo, Maxime; Knapp, Gillian; Guyon, Olivier; Jovanovic, Nemanja;
2017-01-01
One of the leading direct Imaging techniques, particularly in ground-based imaging, uses a coronagraphic system and integral field spectrograph (IFS). The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an IFS that has been built for the Subaru telescope. CHARIS has been delivered to the observatory and now sits behind the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. CHARIS has 'high' and 'low' resolution operating modes. The "high-resolution" mode is used to characterize targets in J, H, and K bands at R70. The "low-resolution" prism is meant for discovery and spans J+H+K bands (1.15-2.37 microns) with a spectral resolution of R18. This discovery mode has already proven better than 15-sigma detections of HR8799c,d,e when combining ADI+SDI. Using SDI alone, planets c and d have been detected in a single 24 second image. The CHARIS team is optimizing instrument performance and refining ADI+SDI recombination to maximize our contrast detection limit. In addition to the new observing modes, CHARIS has demonstrated a design with high robustness to spectral crosstalk. CHARIS is in the final stages of commissioning, with the instrument open for science observations beginning February 2017. Here we review the science case, design, on-sky performance, engineering observations of exoplanet and disk targets, and specific lessons learned for extremely high contrast imagers. Key design aspects that will be demonstrated are crosstalk optimization, wavefront correction using the IFS image, lenslet tolerancing, the required spectral resolution to fit exoplanet atmospheres, and the utility of the spectrum in achieving higher contrast detection limits.
A review of the growth, doping, and applications of β-Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Razeghi, Manijeh; Park, Ji-Hyeon; McClintock, Ryan; Pavlidis, Dimitris; Teherani, Ferechteh H.; Rogers, David J.; Magill, Brenden A.; Khodaparast, Giti A.; Xu, Yaobin; Wu, Jinsong; Dravid, Vinayak P.
2018-03-01
β-Ga2O3 is emerging as an interesting wide band gap semiconductor for solar blind photo detectors (SBPD) and high power field effect transistors (FET) because of its outstanding material properties including an extremely wide bandgap (Eg 4.9eV) and a high breakdown field (8 MV/cm). This review summarizes recent trends and progress in the growth/doping of β-Ga2O3 thin films and then offers an overview of the state-of-the-art in SBPD and FET devices. The present challenges for β-Ga2O3 devices to penetrate the market in real-world applications are also considered, along with paths for future work.
The synergistic effect of manure supply and extreme precipitation on surface water quality
NASA Astrophysics Data System (ADS)
Motew, Melissa; Booth, Eric G.; Carpenter, Stephen R.; Chen, Xi; Kucharik, Christopher J.
2018-04-01
Over-enrichment of phosphorus (P) in agroecosystems contributes to eutrophication of surface waters. In the Midwest US and elsewhere, climate change is increasing the frequency of high-intensity precipitation events, which can serve as a primary conduit of P transport within watersheds. Despite uncertainty in their estimates, process-based watershed models are important tools that help characterize watershed hydrology and biogeochemistry and scale up important mechanisms affecting water quality. Using one such model developed for an agricultural watershed in Wisconsin, we conducted a 2 × 2 factorial experiment to test the effects of (high/low) terrestrial P supply (PSUP) and (high/low) precipitation intensity (PREC) on surface water quality. Sixty-year simulations were conducted for each of the four runs, with annual results obtained for watershed average P yield and concentration at the field scale (220 × 220 m grid cells), P load and concentration at the stream scale, and summertime total P concentration (TP) in Lake Mendota. ANOVA results were generated for the 2 × 2 factorial design, with PSUP and PREC treated as categorical variables. The results showed a significant, positive interaction (p < 0.01) between the two drivers for dissolved P concentration at the field and stream scales, and total P concentration at the field, stream, and lake scales. The synergy in dissolved P was linked to nonlinear dependencies between P stored in manure and the daily runoff to rainfall ratio. The synergistic response of dissolved P loss may have important ecological consequences because dissolved P is highly bioavailable. Overall, the results suggest that high levels of terrestrial P supplied as manure can exacerbate water quality problems in the future as the frequency of high-intensity rainfall events increases with a changing climate. Conversely, lowering terrestrial manure P supply may help improve the resilience of surface water quality to extreme events.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
Dissipation of ‘dark energy’ by cortex in knowledge retrieval
NASA Astrophysics Data System (ADS)
Capolupo, Antonio; Freeman, Walter J.; Vitiello, Giuseppe
2013-03-01
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli.
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L
2016-10-20
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (T c ), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn x Ge 1-x nanomeshes fabricated by nanosphere lithography, in which a T c above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high T c in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.
Dissipation of 'dark energy' by cortex in knowledge retrieval.
Capolupo, Antonio; Freeman, Walter J; Vitiello, Giuseppe
2013-03-01
We have devised a thermodynamic model of cortical neurodynamics expressed at the classical level by neural networks and at the quantum level by dissipative quantum field theory. Our model is based on features in the spatial images of cortical activity newly revealed by high-density electrode arrays. We have incorporated the mechanism and necessity for so-called dark energy in knowledge retrieval. We have extended the model first using the Carnot cycle to define our measures for energy, entropy and temperature, and then using the Rankine cycle to incorporate criticality and phase transitions. We describe the dynamics of two interactive fields of neural activity that express knowledge, one at high and the other at low energy density, and the two operators that create and annihilate the fields. We postulate that the extremely high density of energy sequestered briefly in cortical activity patterns can account for the vividness, richness of associations, and emotional intensity of memories recalled by stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L.
2016-01-01
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1−x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications. PMID:27762320
3 GeV Booster Synchrotron Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedemann, Helmut
2009-06-02
Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.
Quantum information processing with long-wavelength radiation
NASA Astrophysics Data System (ADS)
Murgia, David; Weidt, Sebastian; Randall, Joseph; Lekitsch, Bjoern; Webster, Simon; Navickas, Tomas; Grounds, Anton; Rodriguez, Andrea; Webb, Anna; Standing, Eamon; Pearce, Stuart; Sari, Ibrahim; Kiang, Kian; Rattanasonti, Hwanjit; Kraft, Michael; Hensinger, Winfried
To this point, the entanglement of ions has predominantly been performed using lasers. Using long wavelength radiation with static magnetic field gradients provides an architecture to simplify construction of a large scale quantum computer. The use of microwave-dressed states protects against decoherence from fluctuating magnetic fields, with radio-frequency fields used for qubit manipulation. I will report the realisation of spin-motion entanglement using long-wavelength radiation, and a new method to efficiently prepare dressed-state qubits and qutrits, reducing experimental complexity of gate operations. I will also report demonstration of ground state cooling using long wavelength radiation, which may increase two-qubit entanglement fidelity. I will then report demonstration of a high-fidelity long-wavelength two-ion quantum gate using dressed states. Combining these results with microfabricated ion traps allows for scaling towards a large scale ion trap quantum computer, and provides a platform for quantum simulations of fundamental physics. I will report progress towards the operation of microchip ion traps with extremely high magnetic field gradients for multi-ion quantum gates.
Correlation between tunability and anisotropy in magnetoelectric voltage tunable inductor (VTI).
Yan, Yongke; Geng, Liwei D; Zhang, Lujie; Gao, Xiangyu; Gollapudi, Sreenivasulu; Song, Hyun-Cheol; Dong, Shuxiang; Sanghadasa, Mohan; Ngo, Khai; Wang, Yu U; Priya, Shashank
2017-11-22
Electric field modulation of magnetic properties via magnetoelectric coupling in composite materials is of fundamental and technological importance for realizing tunable energy efficient electronics. Here we provide foundational analysis on magnetoelectric voltage tunable inductor (VTI) that exhibits extremely large inductance tunability of up to 1150% under moderate electric fields. This field dependence of inductance arises from the change of permeability, which correlates with the stress dependence of magnetic anisotropy. Through combination of analytical models that were validated by experimental results, comprehensive understanding of various anisotropies on the tunability of VTI is provided. Results indicate that inclusion of magnetic materials with low magnetocrystalline anisotropy is one of the most effective ways to achieve high VTI tunability. This study opens pathway towards design of tunable circuit components that exhibit field-dependent electronic behavior.
Sampayan, Stephen E.
1998-01-01
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
Villa, Francesco
1990-01-01
A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.
Ishii, Tomoaki; Yamakawa, Hiromichi; Kanaki, Toshiki; Miyamoto, Tatsuya; Kida, Noriaki; Okamoto, Hiroshi; Tanaka, Masaaki; Ohya, Shinobu
2018-05-02
High-speed magnetization control of ferromagnetic films using light pulses is attracting considerable attention and is increasingly important for the development of spintronic devices. Irradiation with a nearly monocyclic terahertz pulse, which can induce strong electromagnetic fields in ferromagnetic films within an extremely short time of less than ~1 ps, is promising for damping-free high-speed coherent control of the magnetization. Here, we successfully observe a terahertz response in a ferromagnetic-semiconductor thin film. In addition, we find that a similar terahertz response is observed even in a non-magnetic semiconductor and reveal that the electric-field component of the terahertz pulse plays a crucial role in the magnetization response through the spin-carrier interactions in a ferromagnetic-semiconductor thin film. Our findings will provide new guidelines for designing materials suitable for ultrafast magnetization reversal.
Field Performance of Photovoltaic Systems in the Tucson Desert
NASA Astrophysics Data System (ADS)
Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander
2011-10-01
At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.
Extending the high-order-harmonic spectrum using surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Ebadian, H.; Mohebbi, M.
2017-08-01
Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.
NASA Astrophysics Data System (ADS)
Decremps, F.; Belliard, L.; Couzinet, B.; Vincent, S.; Munsch, P.; Le Marchand, G.; Perrin, B.
2009-07-01
Recent improvements to measure ultrasonic sound velocities of liquids under extreme conditions are described. Principle and feasibility of picosecond acoustics in liquids embedded in a diamond anvils cell are given. To illustrate the capability of these advances in the sound velocity measurement technique, original high pressure and high temperature results on the sound velocity of liquid mercury up to 5 GPa and 575 K are given. This high pressure technique will certainly be useful in several fundamental and applied problems in physics and many other fields such as geophysics, nonlinear acoustics, underwater sound, petrology or physical acoustics.
NASA Astrophysics Data System (ADS)
Kluge, Thomas
2015-11-01
Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.
Changes in insecticide resistance of the rice striped stem borer (Lepidoptera: Crambidae).
Su, Jianya; Zhang, Zhenzhen; Wu, Min; Gao, Congfen
2014-02-01
Application of insecticides is the most important method to control Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and continuous use of individual insecticides has driven the rapid development of insecticide resistance in C. suppressalis during the past 30 yr. Monitoring insecticide resistance provides information essential for integrated pest management. Insecticide resistance of field populations to monosultap, triazophos, chlorpyrifos, and abamectin in China was examined in 2010 and 2011. The results indicated that the resistance levels of 14 field populations to four insecticides were significantly different. Four populations showed moderate resistance, and other populations possessed low-level resistance or were susceptible to monosultap. Nine populations displayed an extremely high or a high level of resistance to triazophos, whereas four populations were sensitive to this agent. Five populations exhibited a low level of resistance to abamectin, while the others remained sensitive. When compared with historical data, resistance to monosultap and triazophos decreased significantly, and the percentage of populations with high-level or extremely high-level resistance was obviously reduced. By contrast, the resistance to abamectin increased slightly. The increasing and decreasing resistance levels reported in this study highlight the different evolutionary patterns of insecticide resistance in C. suppressalis. An overreliance on one or two insecticides may promote rapid development of resistance. Slow development of resistance to abamectin, which was used mainly in mixtures with other insecticides, implies that the use of insecticide mixtures may be an effective method to delay the evolution of resistance to insecticides.
NASA Astrophysics Data System (ADS)
Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.
2010-12-01
A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.
Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong
2017-09-01
The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.
Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography
Chapman, Henry N.; Nugent, Keith A.
2001-01-01
A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.
Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging
Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. Conclusion Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging. PMID:28662061
Force-Free Magnetic Fields on AN Extreme Reissner-Nordström Spacetime and the Meissner Effect
NASA Astrophysics Data System (ADS)
Takamori, Yousuke; Ken-Ichi, Nakao; Hideki, Ishihara; Masashi, Kimura; Chul-Moon, Yoo
It is known that the Meissner effect of black holes is seen in the vacuum solutions of blackhole magnetosphere: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this article, in order to see the effects of charge currents, we study the force-free magnetic field on the extreme Reissner-Nordström background. In this case, we should solve one elliptic differential equation called the Grad-Shafranov equation which has singular points called light surfaces. In order to see the Meissner effect, we consider the region near the event horizon and try to solve the equation by Taylor expansion about the event horizon. Moreover, we assume that the small rotational velocity of the magnetic field, and then, we construct a perturbative method to solve the Grad-Shafranov equation considering the efftect of the inner light surface and study the behavior of the magnetic field near the event horizon.
BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory
NASA Astrophysics Data System (ADS)
Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David
2017-02-01
Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.
Enabling full-field physics-based optical proximity correction via dynamic model generation
NASA Astrophysics Data System (ADS)
Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas
2017-07-01
As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.
Ichimura, Takashi; Fujiwara, Kohei; Tanaka, Hidekazu
2014-07-24
Controlling the electronic properties of functional oxide materials via external electric fields has attracted increasing attention as a key technology for next-generation electronics. For transition-metal oxides with metallic carrier densities, the electric-field effect with ionic liquid electrolytes has been widely used because of the enormous carrier doping capabilities. The gate-induced redox reactions revealed by recent investigations have, however, highlighted the complex nature of the electric-field effect. Here, we use the gate-induced conductance modulation of spinel ZnxFe₃₋xO₄ to demonstrate the dual contributions of volatile and non-volatile field effects arising from electronic carrier doping and redox reactions. These two contributions are found to change in opposite senses depending on the Zn content x; virtual electronic and chemical field effects are observed at appropriate Zn compositions. The tuning of field-effect characteristics via composition engineering should be extremely useful for fabricating high-performance oxide field-effect devices.
Caligiuri, Luigi Maxmilian
2015-01-01
The question regarding the potential biological and adverse health effects of non-ionizing electromagnetic fields on living organisms is of primary importance in biophysics and medicine. Despite the several experimental evidences showing such occurrence in a wide frequency range from extremely low frequency to microwaves, a definitive theoretical model able to explain a possible mechanism of interaction between electromagnetic fields and living matter, especially in the case of weak and very weak intensities, is still missing. In this paper it has been suggested a possible mechanism of interaction involving the resonant absorption of electromagnetic radiation by microtubules. To this aim these have been modeled as non-dissipative forced harmonic oscillators characterized by two coupled "macroscopic" degrees of freedom, respectively describing longitudinal and transversal vibrations induced by the electromagnetic field. We have shown that the proposed model, although at a preliminary stage, is able to explain the ability of even weak electromagnetic radiating electromagnetic fields to transfer high quantities of energy to living systems by means of a resonant mechanism, so capable to easily damage microtubules structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Ramamurthy
Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. We focus on the intrinsic dielectric breakdown field of insulators—the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsicmore » dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. Lastly, the models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.« less
Kim, Chiho; Pilania, Ghanshyam; Ramprasad, Ramamurthy
2016-02-02
Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. We focus on the intrinsic dielectric breakdown field of insulators—the theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark dataset (generated from laborious first principles computations) of the intrinsicmore » dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. Lastly, the models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials.« less
Extremely large magnetoresistance in the topologically trivial semimetal α -WP2
NASA Astrophysics Data System (ADS)
Du, Jianhua; Lou, Zhefeng; Zhang, ShengNan; Zhou, Yuxing; Xu, Binjie; Chen, Qin; Tang, Yanqing; Chen, Shuijin; Chen, Huancheng; Zhu, Qinqing; Wang, Hangdong; Yang, Jinhu; Wu, QuanSheng; Yazyev, Oleg V.; Fang, Minghu
2018-06-01
Extremely large magnetoresistance (XMR) was recently discovered in many nonmagnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here we report an investigation of the α -phase WP2, a topologically trivial semimetal with monoclinic crystal structure (C 2 /m ), which contrasts with the recently discovered robust type-II Weyl semimetal phase in β -WP2 . We found that α -WP2 exhibits almost all the characteristics of XMR materials: the near-quadratic field dependence of MR, a field-induced up-turn in resistivity followed by a plateau at low temperature, which can be understood by the compensation effect, and high mobility of carriers confirmed by our Hall effect measurements. It was also found that the normalized MRs under different magnetic fields have the same temperature dependence in α -WP2 , the Kohler scaling law can describe the MR data in a wide temperature range, and there is no obvious change in the anisotropic parameter γ value with temperature. The resistance polar diagram has a peanut shape when the field is rotated in the a c plane, which can be understood by the anisotropy of the Fermi surface. These results indicate that both field-induced-gap and temperature-induced Lifshitz transition are not the origin of up-turn in resistivity in the α -WP2 semimetal. Our findings establish α -WP2 as a new reference material for exploring the XMR phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1992-06-01
There is growing evidence that environmental electric and magnetic fields in the extremely-low-frequency (ELF) band below 300 Hz can influence biological functions by mechanisms that are only poorly understood at the present time. The primary objectives of this paper are to review the physical properties of ELF fields, their interactions with living systems at the tissue, cellular, and subcellular levels, and the key role of cell membranes ;in the transduction of signals from imposed ELF fields. Topics of discussion include signal-to-noise ratios for single cells and cell aggregates, resonance phenomena involving a combination of static and ELF magnetic fields, andmore » the possible influence of ELF fields on molecular signaling pathways that involve membrane receptors and cytoplasmic second messengers.« less
The Imaging X-ray Polarimetry Explorer (IXPE)
NASA Astrophysics Data System (ADS)
Weisskopf, Martin C.; Ramsey, Brian; O'Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffitta, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffrey; Kaspi, Victoria; Muleri, Fabio; Marshall, Herman; Matt, Giorgio; Romani, Roger
2016-07-01
The Imaging X-ray Polarimetry Explorer (IXPE) expands observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions—such as neutron stars and black holes. Polarization singularly probes physical anisotropies—ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin—that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.
Six centuries of geomagnetic intensity variations recorded by royal Judean stamped jar handles
NASA Astrophysics Data System (ADS)
Ben-Yosef, Erez; Millman, Michael; Shaar, Ron; Tauxe, Lisa; Lipschits, Oded
2017-02-01
Earth’s magnetic field, one of the most enigmatic physical phenomena of the planet, is constantly changing on various time scales, from decades to millennia and longer. The reconstruction of geomagnetic field behavior in periods predating direct observations with modern instrumentation is based on geological and archaeological materials and has the twin challenges of (i) the accuracy of ancient paleomagnetic estimates and (ii) the dating of the archaeological material. Here we address the latter by using a set of storage jar handles (fired clay) stamped by royal seals as part of the ancient administrative system in Judah (Jerusalem and its vicinity). The typology of the stamp impressions, which corresponds to changes in the political entities ruling this area, provides excellent age constraints for the firing event of these artifacts. Together with rigorous paleomagnetic experimental procedures, this study yielded an unparalleled record of the geomagnetic field intensity during the eighth to second centuries BCE. The new record constitutes a substantial advance in our knowledge of past geomagnetic field variations in the southern Levant. Although it demonstrates a relatively stable and gradually declining field during the sixth to second centuries BCE, the new record provides further support for a short interval of extreme high values during the late eighth century BCE. The rate of change during this “geomagnetic spike” [defined as virtual axial dipole moment > 160 ZAm2 (1021 Am2)] is further constrained by the new data, which indicate an extremely rapid weakening of the field (losing ˜27% of its strength over ca. 30 y).
Assessment of extremely low frequency magnetic field exposure from GSM mobile phones.
Calderón, Carolina; Addison, Darren; Mee, Terry; Findlay, Richard; Maslanyj, Myron; Conil, Emmanuelle; Kromhout, Hans; Lee, Ae-kyoung; Sim, Malcolm R; Taki, Masao; Varsier, Nadège; Wiart, Joe; Cardis, Elisabeth
2014-04-01
Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile communications (GSM) mobile phones, conducted as part of the MOBI-KIDS epidemiological study. The main challenge is to identify a small number of generic phone models that can be used to classify the ELF exposure for the different phones reported in the study. Two-dimensional magnetic flux density measurements were performed on 47 GSM mobile phones at a distance of 25 mm. Maximum resultant magnetic flux density values at 217 Hz had a geometric mean of 221 (+198/-104) nT. Taking into account harmonic data, measurements suggest that mobile phones could make a substantial contribution to ELF exposure in the general population. The maximum values and easily available variables were poorly correlated. However, three groups could be defined on the basis of field pattern indicating that manufacturers and shapes of mobile phones may be the important parameters linked to the spatial characteristics of the magnetic field, and the categorization of ELF magnetic field exposure for GSM phones in the MOBI-KIDS study may be achievable on the basis of a small number of representative phones. Such categorization would result in a twofold exposure gradient between high and low exposure based on type of phone used, although there was overlap in the grouping. © 2013 Wiley Periodicals, Inc.
LPP-EUV light source for HVM lithography
NASA Astrophysics Data System (ADS)
Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.
2017-01-01
We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.
Quantum Phenomena in High Energy Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murnane, Margaret; Kapteyn, Henry
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
[Suicide and suicide prevention in Vienna from 1938 to 1945].
Sonneck, Gernot; Hirnsperger, Hans; Mundschütz, Reinhard
2012-01-01
Beginning with the inception of suicide prevention in interwar Vienna, the paper illustrates how the high number of counselling centres contrasted with a discourse of selection. Despite the fact that suicide rates proved extremely high, suicide prevention declined in importance between 1934 and 1945. Suicide was increasingly attributed to the weak and the inferior. The massive threat to Vienna's Jewish population and the high suicide rates among Viennese Jews are also outlined. The paper concludes with a synopsis of V. E. Frankl's activities in the field of suicide prevention at the Rothschild Hospital as well as the concentration camp in Theresienstadt.
NASA Astrophysics Data System (ADS)
González, P. A.; Papantonopoulos, Eleftherios; Saavedra, Joel; Vásquez, Yerko
2017-03-01
We study the instability of near extremal and extremal four-dimensional anti-de Sitter charged hairy black holes to radial neutral massive and charged massless scalar field perturbations. We solve the scalar field equation by using the improved asymptotic iteration method and the time domain analysis, and we find the quasinormal frequencies. For the charged scalar perturbations, we find the superradiance condition by computing the reflection coefficient in the low-frequency limit, and we show that in the superradiance regime, which depends on the scalar hair charge, all modes of radial charged massless perturbations are unstable, indicating that the charged hairy black hole is superradiantly unstable. On the other hand, calculating the quasinormal frequencies of radial neutral scalar perturbations in this background, we find stability of the charged hairy black hole.
Space-time precipitation extremes for urban hydrology
NASA Astrophysics Data System (ADS)
Bardossy, A.; Pegram, G. G. S.
2017-12-01
Precipitation extremes are essential for hydrological design. In urban hydrology intensity duration frequency curves (IDFs) are estimated from observation records to design sewer systems. The conventional approaches seldom consider the areal extent of events. If they do so, duration-dependent area reduction factors (ARFs) are applied. In this contribution we investigate the influence of the size of the target urban area on the frequency of occurrence of extremes. We introduce two new concepts, (i) the maximum over an area and (ii) the sub-areal extremes. The properties of these are discussed. The space-time dependence of extremes strongly influences these statistics. The findings of this presentation show that the risk of urban flooding is routinely underestimated. We do this by sampling a long sequence of radar rainfall fields of 1 km resolution, not the usual limited information from gauge records at scattered point locations. The procedure we use is to generate 20 years of plausible 'radar' fields of 5 minute precipitation on a square frame of 128x128 one kilometer pixels and sample them in a regimented way. In this presentation we find that the traditional calculations are underestimating the extremes [by up to 30 % to 50 % depending on size and duration] and we show how we can revise them sensibly. The methodology we devise from simulated radar fields is checked against the records of a dense network of pluviometers covered by a radar in Baden-Württemberg, with a (regrettably) short 4-year record, as proof of concept.
Saturn's Internal Magnetic Field Revealed by Cassini Grand Finale
NASA Astrophysics Data System (ADS)
Cao, H.; Dougherty, M. K.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.
2017-12-01
Saturn's internal magnetic field has been puzzling since the first in-situ measurements during the Pioneer 11 Saturn flyby. Cassini magnetometer measurements prior to the Grand Finale phase established 1) the highly axisymmetric nature of Saturn's internal magnetic field with a dipole tilt smaller than 0.06 degrees, 2) at least an order of magnitude slower secular variation rate compared to that of the current geomagnetic field, and 3) expulsion of magnetic fluxes from the equatorial region towards high latitude. The highly axisymmetric nature of Saturn's intrinsic magnetic field not only challenges dynamo theory but also makes an accurate determination of the interior rotation rate of Saturn extremely difficult. The Cassini spacecraft entered the Grand Finale phase in April 2017, during which time the spacecraft dived through the gap between Saturn's atmosphere and the inner edge of the D-ring 22 times before descending into the deep atmosphere of Saturn. The unprecedented proximity to Saturn (reaching 2500 km above the cloud deck) and the highly inclined nature of the Grand Finale orbits provided an ideal opportunity to decode Saturn's internal magnetic field. The fluxgate magnetometer onboard Cassini made precise vector measurements during the Grand Finale phase. Magnetic signals from the interior of the planet, the magnetospheric ring current, the high-latitude field-aligned current (FAC) modulated by the 10.7 hour planetary period oscillation, and low-latitude FACs were observed during the Grand Finale phase. Here we report the magnetometer measurements during the Cassini Grand Finale phase, new features of Saturn's internal magnetic field revealed by these measurements (e.g., the high degree magnetic moments of Saturn, the level of axisymmetry beyond dipole), and implications for the deep interior of Saturn.
Neutron Time-of-Flight Diffractometer HIPPO at LANSCE
NASA Astrophysics Data System (ADS)
Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf
2004-03-01
The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.
Characteristics of electroluminescence phenomenon in virgin and thermally aged LDPE
NASA Astrophysics Data System (ADS)
Bani, N. A.; Abdul-Malek, Z.; Ahmad, H.; Muhammad-Sukki, F.; Mas'ud, A. A.
2015-08-01
High voltage cable requires a good insulating material such as low density polyethylene (LDPE) to be able to operate efficiently in high voltage stresses and high temperature environment. However, any polymeric material will experience degradation after prolonged application of high electrical stresses or other extreme conditions. The continuous degradation will shorten the life of a cable therefore further understanding on the behaviour of the aged high voltage cable needs to be undertaken. This may be observed through electroluminescence (EL) measurement. EL occurs when a solid-state material is subjected to a high electrical field stress and associated with the generation of charge carriers within the polymeric material and that these charges can be produced by injection, de-trapping and field-dissociation at the metal-polymer interface. The behaviour of EL emission can be affected by applied field, applied frequency, ageing time, ageing temperature and types of materials, among others. This paper focuses on the measurement of EL emission of additive-free LDPE thermally aged at different temperature subjected to varying electric stresses at 50Hz. It can be observed that EL emission increases as voltage applied is increased. However, EL emission decreases as ageing temperature is increased for varying applied voltage.
Ultra-compact Marx-type high-voltage generator
Goerz, David A.; Wilson, Michael J.
2000-01-01
An ultra-compact Marx-type high-voltage generator includes individual high-performance components that are closely coupled and integrated into an extremely compact assembly. In one embodiment, a repetitively-switched, ultra-compact Marx generator includes low-profile, annular-shaped, high-voltage, ceramic capacitors with contoured edges and coplanar extended electrodes used for primary energy storage; low-profile, low-inductance, high-voltage, pressurized gas switches with compact gas envelopes suitably designed to be integrated with the annular capacitors; feed-forward, high-voltage, ceramic capacitors attached across successive switch-capacitor-switch stages to couple the necessary energy forward to sufficiently overvoltage the spark gap of the next in-line switch; optimally shaped electrodes and insulator surfaces to reduce electric field stresses in the weakest regions where dissimilar materials meet, and to spread the fields more evenly throughout the dielectric materials, allowing them to operate closer to their intrinsic breakdown levels; and uses manufacturing and assembly methods to integrate the capacitors and switches into stages that can be arranged into a low-profile Marx generator.
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender
2017-01-01
Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).
The impact of on-site wastewater from high density cluster developments on groundwater quality
NASA Astrophysics Data System (ADS)
Morrissey, P. J.; Johnston, P. M.; Gill, L. W.
2015-11-01
The net impact on groundwater quality from high density clusters of unsewered housing across a range of hydro(geo)logical settings has been assessed. Four separate cluster development sites were selected, each representative of different aquifer vulnerability categories. Groundwater samples were collected on a monthly basis over a two year period for chemical and microbiological analysis from nested multi-horizon sampling boreholes upstream and downstream of the study sites. The field results showed no statistically significant difference between upstream and downstream water quality at any of the study areas, although there were higher breakthroughs in contaminants in the High and Extreme vulnerability sites linked to high intensity rainfall events; these however, could not be directly attributed to on-site effluent. Linked numerical models were then built for each site using HYDRUS 2D to simulate the attenuation of contaminants through the unsaturated zone from which the resulting hydraulic and contaminant fluxes at the water table were used as inputs into MODFLOW MT3D models to simulate the groundwater flows. The results of the simulations confirmed the field observations at each site, indicating that the existing clustered on-site wastewater discharges would only cause limited and very localised impacts on groundwater quality, with contaminant loads being quickly dispersed and diluted downstream due to the relatively high groundwater flow rates. Further simulations were then carried out using the calibrated models to assess the impact of increasing cluster densities revealing little impact at any of the study locations up to a density of 6 units/ha with the exception of the Extreme vulnerability site.
Håkansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B
2005-05-01
Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985-94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields.
Hakansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B
2005-01-01
Background: Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. Aims: To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. Methods: This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985–94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. Results: There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. Conclusion: The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields. PMID:15837851
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging
NASA Astrophysics Data System (ADS)
Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.
2015-11-01
State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.
Extremely red objects in the fields of high redshift radio galaxies
NASA Technical Reports Server (NTRS)
Persson, S. E.; Mccarthy, P. J.; Dressler, Alan; Matthews, Keith
1993-01-01
We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it.
Lehr, M E; Plisky, P J; Butler, R J; Fink, M L; Kiesel, K B; Underwood, F B
2013-08-01
In athletics, efficient screening tools are sought to curb the rising number of noncontact injuries and associated health care costs. The authors hypothesized that an injury prediction algorithm that incorporates movement screening performance, demographic information, and injury history can accurately categorize risk of noncontact lower extremity (LE) injury. One hundred eighty-three collegiate athletes were screened during the preseason. The test scores and demographic information were entered into an injury prediction algorithm that weighted the evidence-based risk factors. Athletes were then prospectively followed for noncontact LE injury. Subsequent analysis collapsed the groupings into two risk categories: Low (normal and slight) and High (moderate and substantial). Using these groups and noncontact LE injuries, relative risk (RR), sensitivity, specificity, and likelihood ratios were calculated. Forty-two subjects sustained a noncontact LE injury over the course of the study. Athletes identified as High Risk (n = 63) were at a greater risk of noncontact LE injury (27/63) during the season [RR: 3.4 95% confidence interval 2.0 to 6.0]. These results suggest that an injury prediction algorithm composed of performance on efficient, low-cost, field-ready tests can help identify individuals at elevated risk of noncontact LE injury. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mercury monohalides: suitability for electron electric dipole moment searches.
Prasannaa, V S; Vutha, A C; Abe, M; Das, B P
2015-05-08
Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments.
Near-field analysis of metallic DFB lasers at telecom wavelengths.
Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R
2013-05-06
We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.
Gunga, H C; Kirsch, K A
1995-02-01
For over 52 years, the work of Nathan Zuntz (1847-1920) covered an amazingly wide spectrum of research fields; metabolism, nutrition, respiration, blood gases, exercise, and high altitude physiology were the main themes. Zuntz achieved fame for his invention of the Zuntz-Geppert respiratory apparatus in 1886 and the first Laufband (treadmill) in 1889. To this experimental setup Zuntz later added an X-ray apparatus in 1914 to determine the changes in heart volume during exercise. Moreover, he constructed a climate chamber to study exercise under varying and sometimes extreme climates. For field studies Zuntz invented a transportable Gasuhr (dry gas measuring device). Zuntz was the first to describe the difference between laboratory data gained in a hypobaric chamber and the measurements at high altitude. He found that the barometric formula is not applicable in the field. Two balloon expeditions in 1902 by Zuntz and his pupil, v. Schroetter, marked the step from terrestrial physiology towards aviation medicine. An outline of the development of scientific aviation in Berlin from 1880-1918 elucidates how closely the aviation union, army, and scientific departments were connected with and dependent upon each other. In cooperation with these institutions Zuntz and v. Schroetter constructed an oxygen supply system and planned a pressure cabin for extreme altitudes above 10,000 m, a forerunner of modern systems in aviation and astronautics. In 1912, Zuntz and v. Schroetter each published papers on aviation medicine, both publications internationally unique in style and extent. Zuntz's work in its empirical approach was the counterpart to the established formal mathematical-physical reductionism of the German Physiological Society.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Hulot, G.; Leger, J. M.; Vigneron, P.; Jager, T.; Bertrand, F.; Coisson, P.; Deram, P.; Boness, A.; Tomasini, L.; Faure, B.
2017-12-01
Satellites of the ESA Swarm mission currently in operation carry a new generation of Absolute Scalar Magnetometers (ASM), which nominally deliver 1 Hz scalar for calibrating the relative flux gate magnetometers that complete the magnetometry payload (together with star cameras, STR, for attitude restitution) and providing extremely accurate scalar measurements of the magnetic field for science investigations. These ASM instruments, however, can also operate in two additional modes, a high-frequency 250 Hz scalar mode and a 1 Hz absolute dual-purpose scalar/vector mode. The 250 Hz scalar mode already allowed the detection of until now very poorly documented extremely low frequency whistler signals produced by lightning in the atmosphere, while the 1 Hz scalar/vector mode has provided data that, combined with attitude restitution from the STR, could be used to produce scientifically relevant core field and lithospheric field models. Both ASM modes have thus now been fully validated for science applications. Efforts towards developing an improved and miniaturized version of this instrument is now well under way with CNES support in the context of the preparation of a 12U nanosatellite mission (NanoMagSat) proposed to be launched to complement the Swarm satellite constellation. This advanced miniaturized ASM could potentially operate in an even more useful mode, simultaneously providing high frequency (possibly beyond 500 Hz) absolute scalar data and self-calibrated 1 Hz vector data, thus providing scientifically valuable data for multiple science applications. In this presentation, we will illustrate the science such an instrument taken on board a nanosatellite could enable, and report on the current status of the NanoMagSat project that intends to take advantage of it.
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal
NASA Technical Reports Server (NTRS)
Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.
2016-01-01
The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.
The Climate Science Special Report: Detection and Attribution
NASA Astrophysics Data System (ADS)
Wehner, M. F.
2017-12-01
The Climate Science Special Report reiterates previous findings about the human influence on global mean surface air temperature with the statement "…it is extremely likely that human activities, especially emissions of greenhouse gases, are the dominant cause of the observed warming since the mid 20th century. For the warming over the last century, there is no convincing alternative explanation supported by the extent of the observational evidence." This is a statement made with high confidence and supported by multiple lines of evidence. The report also assesses the latest developments in the field of probabilistic extreme event attribution—the quantification of the influence of anthropogenic climate change on individual extreme weather events—with a focus on those recent events within the United States that have been analyzed. Thirty different events within the US are reported on including heat waves, cold snaps, wet seasons, individual storms and droughts. Most but not all of the individual US events studied revealed an influence from human induced changes to the climate system.
Miniaturized Stretchable and High-Rate Linear Supercapacitors
NASA Astrophysics Data System (ADS)
Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning
2017-07-01
Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.
Miniaturized Stretchable and High-Rate Linear Supercapacitors.
Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning
2017-12-01
Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g -1 at the discharge current of 1 A g -1 .
Use of high temperature superconductors in magnetoplasmadynamic systems
NASA Technical Reports Server (NTRS)
Reed, C. B.; Sovey, J. S.
1988-01-01
The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to magnetoplasmadynamic (MPD) thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field MPD thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.
A hadronic origin for ultra-high-frequency-peaked BL Lac objects
NASA Astrophysics Data System (ADS)
Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S.
2015-03-01
Current Cherenkov telescopes have identified a population of ultra-high-frequency peaked BL Lac objects (UHBLs), also known as extreme blazars, that exhibit exceptionally hard TeV spectra, including 1ES 0229+200, 1ES 0347-121, RGB J0710+591, 1ES 1101-232, and 1ES 1218+304. Although one-zone synchrotron-self-Compton (SSC) models have been generally successful in interpreting the high-energy emission observed in other BL Lac objects, they are problematic for UHBLs, necessitating very large Doppler factors and/or extremely high minimum Lorentz factors of the emitting leptonic population. In this context, we have investigated alternative scenarios where hadronic emission processes are important, using a newly developed (lepto-)hadronic numerical code to systematically explore the physical parameters of the emission region that reproduces the observed spectra while avoiding the extreme values encountered in pure SSC models. Assuming a fixed Doppler factor δ = 30, two principal parameter regimes are identified, where the high-energy emission is due to: (1) proton-synchrotron radiation, with magnetic fields B ˜ 1-100 G and maximum proton energies Ep; max ≲ 1019 eV; and (2) synchrotron emission from p-γ-induced cascades as well as SSC emission from primary leptons, with B ˜ 0.1-1 G and Ep; max ≲ 1017 eV. This can be realized with plausible, sub-Eddington values for the total (kinetic plus magnetic) power of the emitting plasma, in contrast to hadronic interpretations for other blazar classes that often warrant highly super-Eddington values.
NASA Astrophysics Data System (ADS)
Mutiibwa, D.; Albright, T. P.; Wolf, B. O.; Mckechnie, A. E.; Gerson, A. R.; Talbot, W. A.; Sadoti, G.; O'Neill, J.; Smith, E.
2014-12-01
Extreme weather events can alter ecosystem structure and function and have caused mass mortality events in animals. With climate change, high temperature extremes are increasing in frequency and magnitude. To better understand the consequences of climate change, scientists have frequently employed correlative models based on species occurrence records. However, these approaches may be of limited utility in the context of extremes, as these are often outside historical ranges and may involve strong non-linear responses. Here we describe work linking physiological response informed by experimental data to geospatial climate datasets in order to mechanistically model the dynamics of dehydration risk to dessert passerine birds. Specifically, we modeled and mapped the occurrence of current (1980-2013) high temperature extremes and evaporative water loss rates for eight species of passerine birds ranging in size from 6.5-75g in the US Southwest portion of their range. We then explored the implications of a 4° C warming scenario. Evaporative water loss (EWL) across a range of high temperatures was measured in heat-acclimated birds captured in the field. We used the North American Land Data Assimilation System 2 dataset to obtain hourly estimates of EWL with a 14-km spatial grain. Assuming lethal dehydration occurs when water loss reaches 15% of body weight, we then produced maps of total daily EWL and time to lethal dehydration based on both current data and future scenarios. We found that milder events capable of producing dehydration in passerine birds over four or more hours were not uncommon over the Southwest, but rapid dehydration conditions (<3 hours) were rare. Under the warming scenario, the frequency and extent of dehydration events expanded greatly, often affecting areas several times larger than in present-day climate. Dehydration risk was especially high among smaller bodied passerines due to their higher mass-specific rates of water loss. Even after accounting for the moderating effects of microsite and topoclimatic refugia, the increase in occurrence of lethal dehydration risk is cause for concern. In particular, our results suggest that smaller bodied passerines may have difficulty in avoiding extirpation over portions of their current range in the desert southwest.
Robust and brilliant Raman tags based on core-satellite assemblies for brain tumor cell imaging
NASA Astrophysics Data System (ADS)
Chang, Yung-Ching; Huang, Li-Ching; Sun, Wei-Lun; Chuang, Shih Yi; Lin, Tien-Hsin; Wu, Yi-Syuan; Sze, Chun-I.; Chen, Shiuan-Yeh
2018-02-01
GBM (Glioblastoma Multiforme), a fatal brain tumor, is highly infiltrative and difficult to be completely removed by the surgery. In this work, the Raman tags based on the plasmonic core-satellite assemblies with 1 nm internal gap accompanied by extremely high gap field have been fabricated and applied to GBM cell labeling. The brightness of the Raman tags is comparable to the fluorophores. The GBM cells with overexpression of EGFR are labeled with these Raman tags and can be distinguished from the normal cells through Raman imaging.
Saturn's Magnetic Field from the Cassini Grand Finale orbits
NASA Astrophysics Data System (ADS)
Dougherty, M. K.; Cao, H.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.
2017-12-01
The fundamental aims of the Cassini magnetometer investigation during the Cassini Grand Finale orbits were determination of Saturn's internal planetary magnetic field and the rotation rate of the deep interior. The unique geometry of the orbits provided an unprecedented opportunity to measure the intrinsic magnetic field at close distances never before encountered. The surprising close alignment of Saturn's magnetic axis with its spin axis, known about since the days of Pioneer 11, has been a focus of the team's analysis since Cassini Saturn Orbit Insertion. However, the varying northern and southern magnetospheric planetary period oscillations, which fill the magnetosphere, has been a factor in masking the field signals from the interior. Here we describe an overview of the magnetometer results from the Grand Finale orbits, including confirmation of the extreme axisymmetric nature of the planetary magnetic field, implications for knowledge of the rotation rate and the behaviour of external magnetic fields (arising from the ring current, field aligned currents both at high and low latitudes and the modulating effect of the planetary period oscillations).
Description of extreme-wave deposits on the northern coast of Bonaire, Netherlands Antilles
Watt, Steven G.; Jaffe, Bruce E.; Morton, Robert A.; Richmond, Bruce M.; Gelfencaum, Guy
2010-01-01
To develop a better understanding of the origins of extreme-wave deposits and to help assess the potential risk of future overwash events, a field mapping survey was conducted in November 2006 on the northern coast of Bonaire, Netherlands Antilles. Deposits were mapped and analyzed to help develop a systematic sedimentological approach to distinguish the type of extreme-wave event (tsunamis or storms) or combination of events that formed and modified the deposits over time. Extreme-wave deposits on the northern coast of Bonaire between Boka Onima and Boka Olivia have formed sand sheets, poly-modal ridge complexes, and boulder fields on a Pleistocene limestone platform 3?8 meters above sea level. The deposits exhibit characteristics that are consistent with both large storm and tsunami processes that often overlap one another. Sand sheets occur as low-relief features underlying and incorporated with boulder field deposits. The seaward edge of ridge complexes are deposited up to 70 m from the shoreline and can extend over 200 m inland. Over 600 clasts were measured in fields and range in size from coarse gravel to fine block, weigh up to 165 metric tons, and are placed over 280 m from the shoreline. Our analyses indicate that the deposits may have been produced by a combination of hurricane and tsunami events spanning 10s to 1000s of years. Comparing the different deposit morphologies between study sites highlights the importance of shoreline orientation to the distribution of extreme-wave deposits onshore. However, further investigation is required to fully understand the processes that have produced and modified these deposits over time.
NASA Astrophysics Data System (ADS)
Wells, Brian; Kumar, Raj; Reynolds, C. Lewis; Peters, Kara; Bradford, Philip D.
2017-12-01
Carbon nanotubes (CNTs) have been widely investigated as additive materials for composites with potential applications in electronic devices due to their extremely large electrical conductivity and current density. Here, highly aligned CNT composite films were created using a sequential layering fabrication technique. The degree of CNT alignment leads to anisotropic resistance values which varies >400× in orthogonal directions. Similarly, the magnetoresistance (MR) of the CNT composite differs depending upon the relative direction of current and the applied magnetic field. A suppression of negative to positive MR crossover was also observed. More importantly, an overall positive magnetoresistance behavior with localized +/- oscillations was discovered at low fields which persists up to room temperature when the current (I) and in-plane magnetic field (B) were parallel to the axis of CNT (B∥I∥CNT), which is consistent with Aharonov-Bohm oscillations in our CNT/epoxy composites. When the current, applied magnetic field, and nanotube axis are aligned, the in-plane MR is positive instead of negative as observed for all other field, current, and tube orientations. Here, we provide in-depth analysis of the conduction mechanism and anisotropy in the magneto-transport properties of these aligned CNT-epoxy composites.
Bright and durable field-emission source derived from frozen refractory-metal Taylor cones
Hirsch, Gregory
2017-02-22
A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less
Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223
NASA Astrophysics Data System (ADS)
Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto
2017-02-01
We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}⊙ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.
Bright and durable field-emission source derived from frozen refractory-metal Taylor cones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gregory
A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less
Perspectives on Extremes as a Climate Scientist and Farmer
NASA Astrophysics Data System (ADS)
Grotjahn, R.
2016-12-01
The speaker is both a climate scientist whose research emphasizes climate extremes and a small farmer in the most agriculturally productive region in the world. He will share some perspectives about the future of extremes over the United States as they relate to farming. General information will be drawn from the National Climate Assessment (NCA) published in 2014. Different weather-related quantities are useful for different commodities. While plant and animal production are time-integrative, extreme events can cause lasting harm long after the event is over. Animal production, including dairy, is sensitive to combinations of high heat and humidity; lasting impacts include suspended milk production, aborted fetuses, and increased mortality. The rice crop can be devastated by the wrong combination of wind and humidity just before harvest time. Extremes at the bud break, flowering, and nascent fruit stage and greatly reduce the fruit production for the year in tree crops. Saturated soils from heavy rainfall cause major losses to some crops (for example, by fostering pathogen growth), harm water delivery systems, and disrupt timing of field activities (primarily harvest).After an overview of some general issues relating to Agriculture, some extreme weather impacts on specific commodities (primarily dairy and specialty crops, some grains) will be highlighted including quantities relevant to agriculture. Example extreme events economic impacts will be summarized. If there is interest, issues related to water availability and management will be described. Projected extreme event changes over the US will be discussed. Some conclusions will be drawn about: future impacts and possible changes to farming (some are already occurring). Perspectives will be given on including the diverse range of quantities useful to agriculture when developing climate models. As time permits, some personal experiences with climate change and discussing it with fellow farmers will be shared.
ELF (Extremely Low Frequency) Communications Systems Ecological Monitoring Program: Wetland Studies
1989-11-01
energized, or a fully operational, transmitting facility had no measurable effect on peatland plant species. I I I I UNCLASSIFIED SECURITY...field studies (1983-1987) designed to examine potential extremely low frequency (ELF) I electromagnetic field effects on peatland ecosystems in... peatlands within 0.05 km of the antenna system. The INTERMEDIATE sites (Bog’s 3 2,7,11) are located between the antenna arms and had lower
Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography
Chapman, Henry N.; Nugent, Keith A.
2002-01-01
A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
NASA Astrophysics Data System (ADS)
Moser, Simon
2008-03-01
To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.
Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Incropera, F.P.; Prescott, P.J.
Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, bymore » reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.« less
Spatial extreme value analysis to project extremes of large-scale indicators for severe weather
Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M
2013-01-01
Concurrently high values of the maximum potential wind speed of updrafts (Wmax) and 0–6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd. PMID:24223482
Space-time extreme wind waves: Observation and analysis of shapes and heights
NASA Astrophysics Data System (ADS)
Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Filippo; Carniel, Sandro; Sclavo, Mauro
2016-04-01
We analyze here the temporal shape and the maximal height of extreme wind waves, which were obtained from an observational space-time sample of sea surface elevations during a mature and short-crested sea state (Benetazzo et al., 2015). Space-time wave data are processed to detect the largest waves of specific 3-D wave groups close to the apex of their development. First, maximal elevations of the groups are discussed within the framework of space-time (ST) extreme statistical models of random wave fields (Adler and Taylor, 2007; Benetazzo et al., 2015; Fedele, 2012). Results of ST models are also compared with observations and predictions of maxima based on time series of sea surface elevations. Second, the time profile of the extreme waves around the maximal crest height is analyzed and compared with the expectations of the linear (Boccotti, 1983) and second-order nonlinear extension (Arena, 2005) of the Quasi-Determinism (QD) theory. Main purpose is to verify to what extent, using the QD model results, one can estimate the shape and the crest-to-trough height of large waves in a random ST wave field. From the results presented, it emerges that, apart from the displacements around the crest apex, sea surface elevations of very high waves are greatly dispersed around a mean profile. Yet the QD model furnishes, on average, a fair prediction of the wave height of the maximal waves, especially when nonlinearities are taken into account. Moreover, the combination of ST and QD model predictions allow establishing, for a given sea condition, a framework for the representation of waves with very large crest heights. The results have also the potential to be implemented in a phase-averaged numerical wave model (see abstract EGU2016-14008 and Barbariol et al., 2015). - Adler, R.J., Taylor, J.E., 2007. Random fields and geometry. Springer, New York (USA), 448 pp. - Arena, F., 2005. On non-linear very large sea wave groups. Ocean Eng. 32, 1311-1331. - Barbariol, F., Alves, J.H.G.., Benetazzo, A., Bergamasco, F., Bertotti, L., Carniel, S., Cavaleri, L., Chao, Y.Y., Chawla, A., Ricchi, A., Sclavo, M., Tolman, H., 2015. Space-Time Wave Extremes in WAVEWATCH III: Implementation and Validation for the Adriatic Sea Case Study, in: 14th International Workshop on Wave Hindcasting and Forecasting. November, 8-13, Key West, Florida (USA). - Benetazzo, A., Barbariol, F., Bergamasco, F., Torsello, A., Carniel, S., Sclavo, M., 2015. Observation of extreme sea waves in a space-time ensemble. J. Phys. Oceanogr. 45, 2261-2275. - Boccotti, P., 1983. Some new results on statistical properties of wind waves. Appl. Ocean Res. 5, 134-140. - Fedele, F., 2012. Space-Time Extremes in Short-Crested Storm Seas. J. Phys. Oceanogr. 42, 1601-1615.
Compensation of high order harmonic long quantum-path attosecond chirp
NASA Astrophysics Data System (ADS)
Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.
2017-12-01
We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.
Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M
2016-04-14
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.
Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions
NASA Astrophysics Data System (ADS)
García-Herrera, R.; Díaz, J.; Trigo, R. M.; Hernández, E.
2005-02-01
This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP), 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air flows over the central Iberian plateau, which had been previously heated.
Very fast optical flaring from a possible new Galactic magnetar.
Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G
2008-09-25
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.
New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.
Byun, Gangil; Choo, Hosung
2017-01-01
One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.
Future of IT, PT and superconductivity technology
NASA Astrophysics Data System (ADS)
Tanaka, Shoji
2003-10-01
Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.
Sudakov, S K; Nazarova, G A; Alekseeva, E V; Bashkatova, V G
2013-07-01
We compared individual anxiety assessed by three standard tests, open-field test, elevated plus-maze test, and Vogel conflict drinking test, in the same animals. No significant correlations between the main anxiety parameters were found in these three experimental models. Groups of animals with high and low anxiety rats were formed by a single parameter and subsequent selection of two extreme groups (10%). It was found that none of the tests could be used for reliable estimation of individual anxiety in rats. The individual anxiety level with high degree of confidence was determined in high-anxiety and low-anxiety rats demonstrating behavioral parameters above and below the mean values in all tests used. Therefore, several tests should be used for evaluation of the individual anxiety or sensitivity to emotional stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Chien-Jui; Leou, Keh-Chyang; Manoharan, Divinah
2015-08-24
Needle-like diamond grains encased in nano-graphitic layers are an ideal granular structure of diamond films to achieve high conductivity and superior electron field emission (EFE) properties. This paper describes the plasma post-treatment (ppt) of ultrananocrystalline diamond (UNCD) films at low substrate temperature to achieve such a unique granular structure. The CH{sub 4}/N{sub 2} plasma ppt-processed films exhibit high conductivity of σ = 1099 S/cm as well as excellent EFE properties with turn-on field of E{sub 0} = 2.48 V/μm (J{sub e} = 1.0 mA/cm{sup 2} at 6.5 V/μm). The ppt of UNCD film is simple and robust process that is especially useful for device applications.
A simple compact UHV and high magnetic field compatible inertial nanopositioner
NASA Astrophysics Data System (ADS)
Pang, Zongqiang; Li, Xiang; Xu, Lei; Rong, Zhou; Liu, Ruilan
2015-01-01
We present a novel simple piezoelectric nanopositioner which just has one piezoelectric scanner tube (PST) and one driving signal, using two short quartz rods and one BeCu spring which form a triangle to press the central shaft and can promise the nanopositioner's rigidity. Applying two pulse inverted voltage signals on the PST's outer and inner electrodes, respectively, according to the principle of piezoelectricity, the PST will elongate or contract suddenly while the central shaft will keep stationary for its inertance, so the central shaft will be sliding a distance relative to quartz rods and spring, and then withdraw the pulse voltages slowly, the central shaft will move upward or downward one step. The heavier of the central shaft, the better moving stability, so the nanopositioner has high output force. Due to its compactness and mechanical stability, it can be easily implanted into some extreme conditions, such as ultrahigh vacuum, ultralow temperature, and high magnetic field.
Notes on the uwainat oil rim development, Maydan Mahzam and Bul Hanine Fields, offshore Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamam, K.A.
As a result of reservoir simulation studies of the Uwainat reservoirs (Maydan Mahzam and Bul Hanine Fields), drilling to the Uwainat oil rim target became very ''tight'' with a very limited vertical tolerance. To achieve drilling to the tight target requires a precise position of the well at the top of the Lower Arab IV reservoir (a reliable marker) and an accurate isochore of the Lower Arab IV - Uwainat. The discussion shows that the level of accuracy needed in determining both the actual subsea well position and in constructing the depth contours of the reservoirs is extremely high.
Baker, W.R.
1961-08-22
A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)
Magneto-optical effects in semimetallic Bi 1–xSb x (x=0.015)
Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; ...
2012-09-12
We report the results of infrared and magneto-optical spectroscopy study on electrodynamic response of bismuth doped with 1.5% of antimony. The spectra are presented for temperatures down to 4.2 K, and in magnetic fields as high as 18 T. The results reveal strong magneto-optical activity, similar to pure bismuth, however there are some differences introduced by antimony doping. Analysis of optical functions reveals that the two type of charge carriers respond differently to external magnetic field. Finally, when the system enters the extreme quantum regime, both the inter- and intraband Landau Level transition are observed in the spectra.
Pushing particles in extreme fields
NASA Astrophysics Data System (ADS)
Gordon, Daniel F.; Hafizi, Bahman; Palastro, John
2017-03-01
The update of the particle momentum in an electromagnetic simulation typically employs the Boris scheme, which has the advantage that the magnetic field strictly performs no work on the particle. In an extreme field, however, it is found that onerously small time steps are required to maintain accuracy. One reason for this is that the operator splitting scheme fails. In particular, even if the electric field impulse and magnetic field rotation are computed exactly, a large error remains. The problem can be analyzed for the case of constant, but arbitrarily polarized and independent electric and magnetic fields. The error can be expressed in terms of exponentials of nested commutators of the generators of boosts and rotations. To second order in the field, the Boris scheme causes the error to vanish, but to third order in the field, there is an error that has to be controlled by decreasing the time step. This paper introduces a scheme that avoids this problem entirely, while respecting the property that magnetic fields cannot change the particle energy.
Probing periodic potential of crystals via strong-field re-scattering
NASA Astrophysics Data System (ADS)
You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu
2018-06-01
Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.
APPARATUS FOR THE DENSIFICATION AND ENERGIZATION OF CHARGED PARTICLES
Post, R.F.; Coensgen, F.H.
1962-12-18
This patent relates to a device for materially increasing the energy and density of a plasma to produce conditions commensurate with the establishment and promotion of controlled thermonuclear reactions. To this end the device employs three successive stages of magnetic compression, each stage having magnetic mirrors to compress a plasma, the mirrors being moveable to transfer the plasma to successive stages for further compression. Accordingly, a plasma introduced to the first stage is increased in density and energy in stepwide fashion by virtue of the magnetic compression in the successive stages such that the plasma upon reaching the last stage is of extremely high energy and density commensurate the plasma particles undergoing thermonuclear reactions. The principal novelty of the device resides in the provision of a unidirectional magnetic field which increases in stepwise fashion in coaxially communicating compression chambers of progressively decreasing lengths and diameters. Pulsed magnetic fields are superimposed upon the undirectional field and are manipulated to establish resultant magnetic compression fields which increase in intensity and progressively move, with respect to time, through the compression chambers in the direction of the smallest one thereof. The resultant field in the last compression chamber is hence of relatively high intensity, and the density and energy of the plasma confined therein are correspondingly high. (AEC)
Optical design of a Michelson wide-field multiple-aperture telescope
NASA Astrophysics Data System (ADS)
Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David
2004-02-01
Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.
Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes
NASA Astrophysics Data System (ADS)
Romero, Manuel; González-Aguilar, José; Luque, Salvador
2017-06-01
The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.
Dissipation, intermittency, and singularities in incompressible turbulent flows
NASA Astrophysics Data System (ADS)
Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.
2018-05-01
We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.
NASA Astrophysics Data System (ADS)
Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.
2010-05-01
The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually fast-moving fire front and the resultant short fire residence time during this event. Thick ash layers were present at the time of sampling despite some significant earlier pre-sampling rainfall events. This suggests that the wettable ash (up to 15 cm thick) was able to store substantial amounts of water, which would otherwise have formed overland flow moving over the highly water repellent underlying mineral soil. Once this hydrological ‘sponge' is removed, the lack of ground cover is expected to lead to the underlying soil being susceptible to erosion until the ground cover becomes re-established. This ‘erosion window‘ is likely to be relatively brief over much of the burnt area as the vegetation is already showing a comparatively rapid regrowth response. This is supported by initial results from laboratory germination experiments, which showed seedling emergence from even the most severely burnt sites. The factors contributing to the fire impacts determined here are explored in conjunction with predictions for future burn severity under a changing climate. The soil samples collected represent a reference soil sample collection, which are available to the scientific community for further investigation.
Drake, John E; Tjoelker, Mark G; Vårhammar, Angelica; Medlyn, Belinda E; Reich, Peter B; Leigh, Andrea; Pfautsch, Sebastian; Blackman, Chris J; López, Rosana; Aspinwall, Michael J; Crous, Kristine Y; Duursma, Remko A; Kumarathunge, Dushan; De Kauwe, Martin G; Jiang, Mingkai; Nicotra, Adrienne B; Tissue, David T; Choat, Brendan; Atkin, Owen K; Barton, Craig V M
2018-06-01
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO 2 and H 2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dolak, Lukas; Brazdil, Rudolf; Chroma, Katerina; Valasek, Hubert; Belinova, Monika; Reznickova, Ladislava
2016-04-01
Different documentary evidence (taxation records, chronicles, insurance reports etc.) is used for reconstruction of hydrometeorological extremes (HMEs) in the Jihlava region (central part of the recent Czech Republic) in the 17th-19th centuries. The aim of the study is description of the system of tax alleviation in Moravia, presentation of utilization of early fire and hail damage insurance claims and application of the new methodological approaches for the analysis of HMEs impacts. During the period studied more than 400 HMEs were analysed for the 16 estates (past basic economic units). Late frost on 16 May 1662 on the Nove Mesto na Morave estate, which destroyed whole cereals and caused damage in the forests, is the first recorded extreme event. Downpours causing flash floods and hailstorms are the most frequently recorded natural disasters. Moreover, floods, droughts, windstorms, blizzards, late frosts and lightning strikes starting fires caused enormous damage as well. The impacts of HMEs are classified into three categories: impacts on agricultural production, material property and the socio-economic impacts. Natural disasters became the reasons of losses of human lives, property, supplies and farming equipment. HMEs caused damage to fields and meadows, depletion of livestock and triggered the secondary consequences as lack of seeds and finance, high prices, indebtedness, poverty and deterioration in field fertility. The results are discussed with respect to uncertainties associated with documentary evidences and their spatiotemporal distribution. Archival records, preserved in the Moravian Land Archives in Brno and other district archives, create a unique source of data contributing to the better understanding of extreme events and their impacts.
Extremal Correlators in the Ads/cft Correspondence
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Freedman, Daniel Z.; Mathur, Samir D.; Matusis, Alec; Rastelli, Leonardo
The non-renormalization of the 3-point functions
Isokinetic knee joint evaluation in track and field events.
Deli, Chariklia K; Paschalis, Vassilis; Theodorou, Anastasios A; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Koutedakis, Yiannis
2011-09-01
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.
Chau, Q; Bruguier, P
2007-01-01
In nuclear facilities, some activities such as reprocessing, recycling and production of bare fuel rods expose the workers to mixed neutron-photon fields. For several workplaces, particularly in glove boxes, some workers expose their hands to mixed fields. The mastery of the photon extremity dosimetry is relatively good, whereas the neutron dosimetry still raises difficulties. In this context, the Institute for Radiological Protection and Nuclear Safety (IRSN) has proposed a study on a passive neutron extremity dosemeter based on chemically etched CR-39 (PADC: polyallyldiglycolcarbonate), named PN-3, already used in routine practice for whole body dosimetry. This dosemeter is a chip of plastic sensitive to recoil protons. The chemical etching process amplifies the size of the impact. The reading system for tracks counting is composed of a microscope, a video camera and an image analyser. This system is combined with the dose evaluation algorithm. The performance of the dosemeter PN-3 has been largely studied and proved by several laboratories in terms of passive individual neutron dosemeter which is used in routine production by different companies. This study focuses on the sensitivity of the extremity dosemeter, as well as its performance in the function of the level of the neutron energy. The dosemeter was exposed to monoenergetic neutron fields in laboratory conditions and to mixed fields in glove boxes at workplaces.
Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection
2016-07-15
hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non-ionizing...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled with...Simulated image of 25 point scatterers imaged at range 1.5m, with array layout depicted in Fig. 3. Left: image formed with Equation (5) ( Fourier
NASA Astrophysics Data System (ADS)
Chiuchiolo, A.; Bajko, M.; Perez, J. C.; Bajas, H.; Consales, M.; Giordano, M.; Breglio, G.; Palmieri, L.; Cusano, A.
2014-08-01
The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.
2012-06-29
resistances, respectively, and gd is the output conductance. The reduced parasitic capacitances and resistances provided by the self-aligned T-gate design ...Department of the Army position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT Approved for...position, policy or decision, unless so designated by other documentation. Approved for public release; distribution is unlimited. ... 59654.5-MS-DRP Self
Vanderstraeten, Jacques; Burda, Hynek; Verschaeve, Luc; De Brouwer, Christophe
2015-07-01
It has been suggested that weak 50/60 Hz [extremely low frequency (ELF)] magnetic fields (MF) could affect circadian biorhythms by disrupting the clock function of cryptochromes (the "cryptochrome hypothesis," currently under study). That hypothesis is based on the premise that weak (Earth strength) static magnetic fields affect the redox balance of cryptochromes, thus possibly their signaling state as well. An appropriate method for testing this postulate could be real time or short-term study of the circadian clock function of retinal cryptochromes under exposure to the static field intensities that elicit the largest redox changes (maximal "low field" and "high field" effects, respectively) compared to zero field. Positive results might encourage further study of the cryptochrome hypothesis itself. However, they would indicate the need for performing a similar study, this time comparing the effects of only slight intensity changes (low field range) in order to explore the possible role of the proximity of metal structures and furniture as a confounder under the cryptochrome hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coelho, Eduardo Lenho, E-mail: eduardo.coelho@uva.br; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço
One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. Themore » matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.« less
NASA Astrophysics Data System (ADS)
Carr, Ian A.; Beratlis, Nikolaos; Balaras, Elias; Plesniak, Michael W.
2017-11-01
Extremely pulsatile flow (where the amplitude of oscillation pulsation is of the same order as the mean flow) over a three-dimensional, surface-mounted bluff body gives rise a wealth of fluid dynamics phenomena. In this study, we extend our previous experimental work on extremely pulsatile flow around a surface-mounted hemisphere by performing a complementary direct numerical simulation. Results from the experiment and simulation will be presented and compared. After establishing the agreement between experiment and simulation, we will examine the morphology and dynamics of the vortex structures in the wake of the hemisphere, and the effects of extreme pulsatility. The dynamics of the arch-type recirculation vortex is of primary interest, in particular its upstream propagation due to self-induced velocity in the direction opposite to the freestream during deceleration. In addition to the velocity field, the surface pressure field throughout the pulsatile cycle will be presented. These synergistic experiments and simulations provide a detailed view into the complex flow fields associated with pulsatile flow over a surface-mounted hemisphere. This material is based upon work supported by the National Science Foundation under Grant Number CBET-1236351 and the GW Center for Biomimetics and Bioinspired Engineering.
NASA Astrophysics Data System (ADS)
Arenas, Felipe A.; Pugin, Benoit; Henríquez, Nicole A.; Arenas-Salinas, Mauricio A.; Díaz-Vásquez, Waldo A.; Pozo, María F.; Muñoz, Claudia M.; Chasteen, Thomas G.; Pérez-Donoso, José M.; Vásquez, Claudio C.
2014-03-01
The tellurium oxyanion, tellurite, is extremely noxious to most living organisms. Its toxicity has been mainly related to the generation of reactive oxygen species (ROS) as well as to an unbalancing of the thiol:redox buffering system. Nevertheless, a few bacteria are capable of thriving at high tellurite concentrations. One mechanism of resistance is the enzymatic and non-enzymatic reduction of tellurite to the less toxic elemental tellurium. This reduction generates nano- to micrometric tellurium crystals that display different shapes and sizes. To date, a very limited number of highly tellurite-resistant and tellurite-reducing bacterial species are available from international culture collections. In this work, we decided to look for tellurite-reducing bacteria from an extreme environment, Antarctica. This environment exhibits a combination of several extreme factors such as high UV-radiation and desiccation and freezing conditions that impact directly on the local biodiversity. Since, as does, all these factors induce ROS formation, we hypothesized that Antarctic bacteria could also exhibit tellurite-resistance. In this context, we isolated 123 tellurite-resistant bacteria, and characterized six new tellurite-resistant and tellurite-reducing bacterial strains from samples collected in Antarctica. These strains were identified according to their 16S rRNA gene sequence as Staphylococcus hameolyticus, Staphylococcus sciuri, Acinetobacter haemolyticus, Pseudomonas lini, and two strains of Psychrobacter immobilis. The isolates display tellurite-resistance about 35- to 500-fold higher than Escherichia coli (Te-sensitive organism), and a high level of tellurite reduction which might be interesting for an application in the field of bioremediation or nanoparticle biosynthesis.
Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.
Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.
1987-01-01
Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.
Magnetic field strength of a neutron-star-powered ultraluminous X-ray source
NASA Astrophysics Data System (ADS)
Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.
2018-04-01
Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.
Li, Qi; Chen, Li-ding; Qi, Xin; Zhang, Xin-yu; Ma, Yan; Fu, Bo-jie
2007-01-01
Guanting Reservoir, one of the drinking water supply sources of Beijing, suffers from water eutrophication. It is mainly supplied by Guishui River. Thus, to investigate the reasons of phosphorus (P) loss and improve the P management strategies in Guishui River watershed are important for the safety of drinking water in this region. In this study, a Revised Field P Ranking Scheme (PRS) was developed to reflect the field vulnerability of P loss at the field scale based on the Field PRS. In this new scheme, six factors are included, and each one was assigned a relative weight and a determination method. The affecting factors were classified into transport factors and source factors, and, the standards of environmental quality on surface water and soil erosion classification and degradation of the China were used in this scheme. By the new scheme, thirty-four fields in the Guishui River were categorized as "low", "medium" or "high" potential for P loss into the runoff. The results showed that the P loss risks of orchard and vegetable fields were higher than that of corn and soybean fields. The source factors were the main factors to affect P loss from the study area. In the study area, controlling P input and improving P usage efficiency are critical to decrease P loss. Based on the results, it was suggested that more attention should be paid on the fields of vegetable and orchard since they have extremely high usage rate of P and high soil test of P. Compared with P surplus by field measurements, the Revised Field PRS was more suitable for reflecting the characteristics of fields, and had higher potential capacity to identify critical source areas of P loss than PRS.
Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields
NASA Astrophysics Data System (ADS)
Nakagawa, Hidenori; Ohuchi, Mikio
2017-06-01
We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.
NASA Astrophysics Data System (ADS)
Rudnick, Gregory; Hodge, Jacqueline; Walter, Fabian; Momcheva, Ivelina; Tran, Kim-Vy; Papovich, Casey; da Cunha, Elisabete; Decarli, Roberto; Saintonge, Amelie; Willmer, Christopher; Lotz, Jennifer; Lentati, Lindley
2017-11-01
We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio > 5. Both galaxies have log({{ M }}\\star /{{ M }}⊙ ) > 11 and are gas rich, with {{ M }}{mol}/({{ M }}\\star +{{ M }}{mol}) ˜ 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-{{ M }}\\star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z< 1 clusters.
Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal
NASA Astrophysics Data System (ADS)
Sagnotti, Leonardo; Scardia, Giancarlo; Giaccio, Biagio; Liddicoat, Joseph C.; Nomade, Sebastien; Renne, Paul R.; Sprain, Courtney J.
2014-11-01
We report a palaeomagnetic investigation of the last full geomagnetic field reversal, the Matuyama-Brunhes (M-B) transition, as preserved in a continuous sequence of exposed lacustrine sediments in the Apennines of Central Italy. The palaeomagnetic record provides the most direct evidence for the tempo of transitional field behaviour yet obtained for the M-B transition. 40Ar/39Ar dating of tephra layers bracketing the M-B transition provides high-accuracy age constraints and indicates a mean sediment accumulation rate of about 0.2 mm yr-1 during the transition. Two relative palaeointensity (RPI) minima are present in the M-B transition. During the terminus of the upper RPI minimum, a directional change of about 180 ° occurred at an extremely fast rate, estimated to be less than 2 ° per year, with no intermediate virtual geomagnetic poles (VGPs) documented during the transit from the southern to northern hemisphere. Thus, the entry into the Brunhes Normal Chron as represented by the palaeomagnetic directions and VGPs developed in a time interval comparable to the duration of an average human life, which is an order of magnitude more rapid than suggested by current models. The reported investigation therefore provides high-resolution integrated palaeomagnetic and radioisotopic data that document the fine details of the anatomy and tempo of the M-B transition in Central Italy that in turn are crucial for a better understanding of Earth's magnetic field, and for the development of more sophisticated models that are able to describe its global structure and behaviour.
Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu
2016-01-01
Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.
NASA Astrophysics Data System (ADS)
Berg, Danielle A.; Erb, Dawn K.; Auger, Matthew W.; Pettini, Max; Brammer, Gabriel B.
2018-06-01
We report new observations of SL2S J021737–051329, a lens system consisting of a bright arc at z = 1.84435, magnified ∼17× by a massive galaxy at z = 0.65. SL2S0217 is a low-mass (M < 109 M ⊙), low-metallicity (Z ∼ 1/20 Z ⊙) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for C IV λλ1548, 1550, He II λ1640, O III] λλ1661, 1666, Si III] λλ1883, 1892, and C III] λλ1907, 1909. (2) Double-peaked Lyα emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sight line to the lensed galaxy. The relative emission-line strengths can be reproduced with a very high ionization, low-metallicity starburst with binaries, with the exception of He II, which indicates that an additional ionization source is needed. We rule out large contributions from active galactic nuclei and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early universe.
Surface plasmon resonance spectroscopy sensor and methods for using same
Anderson, Brian Benjamin; Nave, Stanley Eugene
2002-01-01
A surface plasmon resonance ("SPR") probe with a detachable sensor head and system and methods for using the same in various applications is described. The SPR probe couples fiber optic cables directly to an SPR substrate that has a generally planar input surface and a generally curved reflecting surface, such as a substrate formed as a hemisphere. Forming the SPR probe in this manner allows the probe to be miniaturized and operate without the need for high precision, expensive and bulky collimating or focusing optics. Additionally, the curved reflecting surface of the substrate can be coated with one or multiple patches of sensing medium to allow the probe to detect for multiple analytes of interest or to provide multiple readings for comparison and higher precision. Specific applications for the probe are disclosed, including extremely high sensitive relative humidity and dewpoint detection for, e.g., moisture-sensitive environment such as volatile chemical reactions. The SPR probe disclosed operates with a large dynamic range and provides extremely high quality spectra despite being robust enough for field deployment and readily manufacturable.
NASA Astrophysics Data System (ADS)
Defelice, Thomas Peter
The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how very low pH clouds might be deacidified. That is, base gases (eg. ammonia) locally introduced into such clouds at the proper time may render them harmless upon impact with the forest canopy, and beneficial to regional water supply users.
Effect of electromagnetic fields on some biomechanical and biochemical properties of rat’s blood
NASA Astrophysics Data System (ADS)
Mohaseb, M. A.; Shahin, F. A.; Ali, F. M.; Baieth, H. A.
2017-06-01
In order to study the effect of electromagnetic fields (0.3 mT, 50 Hz) on some biomechanical and biochemical properties of rats’ blood, healthy thirty male albino rats of 150 ± 10 g were divided into three equal groups namely A, B1, B2. Group A used as a control group, group B1 was continuously exposed to a magnetic field of (0.3 mT, 50 Hz) for a period of 21 days for direct effect studies. Group B2 was continuously exposed to the same magnetic field for the same period of time, then was housed away from the magnetic field for a period of 45 days for delayed effects studies. After examination, the results indicated that the apparent viscosity and the consistency index increased significantly and very high significantly for groub B1 and B2 compared to control at P<0.05. Red blood cell counts (RBCs) membrane elasticity had significantly and very high significantly decreased for groups B1 and B2. Moreover, delayed effects studies indicated that there is deterioration in the bone marrow functions. These results are supported by the blood film image, where irregularities and deformations in the RBCs membranes had been occurred. We conclude that the cell membrane properties are highly affected by the extremely low frequency (ELF) magnetic fields, which proved to be biologically toxic.
An observational and modeling study of the August 2017 Florida climate extreme event.
NASA Astrophysics Data System (ADS)
Konduru, R.; Singh, V.; Routray, A.
2017-12-01
A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.
High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure
Han, Seunghwoi; Kim, Hyunwoong; Kim, Yong Woo; Kim, Young-Jin; Kim, Seungchul; Park, In-Yong; Kim, Seung-Woo
2016-01-01
Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics. PMID:27721374
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2018-04-01
Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2013-03-01
Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram
Nanomaterials in Extreme Environments Rostislav A. Andrievski and Arsen V. Khatchoyan Springer, 2016 106 pages, $99.00 (e-book $69.99) ISBN 978–3-319–25331–2 This slim volume is an extensive review of our current understanding of the response of nanostructured materials to extreme operating conditions, such as high temperature, flux of high energy neutrons, high pressure, mechanical stress, and oxidizing environments. The emphasis is on metallic materials, especially Cu alloys. Graphene-based materials, fullerenes, polymeric materials, nano-glasses and glass-ceramics are not covered by this review. The book has six chapters including an introduction and a brief conclusion. The introduction documents the growth of scientific interestmore » in nanostructured materials and stresses the need to study the behavior of nanomaterials under extreme conditions. This chapter also presents Herbert Gleiter’s classification of nanomaterials into twelve groups based on the shapes of the nanoscale features and chemical composition of the components of the nanostructure. The second chapter deals with the high temperature environment and the thermodynamics and kinetics of grain growth. The authors identify the lack of reliable thermodynamic data as a key limitation in this field. The discussion brings out the interplay of structural relaxation, redistribution of excess free volume, diffusion, and recrystallization in multicomponent nanostructures at elevated temperature. Chapter 3 focuses on the effects of ion and neutron irradiation on the structure and properties of nanomaterials. The authors do a good job of highlighting recent studies on the radiation tolerance of nanocrystalline oxides and rapid grain growth under irradiation. The material addresses both fission and fusion reactor applications. Chapter 4 reviews the effects of severe plastic deformation and cyclic loading on nanostructure formation and phase transformation. This chapter also explores the challenge of achieving high density while retaining nanostructural features during processing under extreme loads and high temperatures. Chapter 5 discusses the effects of corrosion on nanomaterials. The behavior of a variety of alloys and high melting point compounds in liquid media and high temperature oxidizing environments is reviewed. The concluding chapter identifies areas for further research. The book would have benefited from careful copy editing for use of the English language. Moreover, the excessive use of acronyms makes the text difficult to read. Each chapter ends with a section on the application of nanomaterials and a long list of references. The integration of theoretical approaches and simulation results with experimental data offers fresh insights into the behavior of nanomaterials. Overall, this book will serve as useful reference material for researchers interested in nanomaterials driven to extremes. Reviewer: Ram Devanathan is Technical Group Manager of Reactor Materials and Mechanical Design, Pacific Northwest National Laboratory, USA.« less
NASA Astrophysics Data System (ADS)
Drost, Edwin J. F.; Lowe, Ryan J.; Ivey, Greg N.; Jones, Nicole L.; Péquignet, Christine A.
2017-05-01
The numerical wave model SWAN (Simulating WAves Nearshore) and historical wave buoy observations were used to investigate the response of surface wave fields to tropical cyclone (TC) wind forcing on the Australian North West Shelf (NWS). Analysis of historical wave data during TC events at a key location on the NWS showed that an average of 1.7 large TCs impacted the region each year, albeit with high variability in TC track, intensity and size, and also in the surface wave field response. An accurately modeled TC wind field resulted in a good prediction of the observed extreme wave conditions by SWAN. Results showed that the presence of strong background winds during a TC and a long TC lifetime (with large variations in translation speed) can provide additional energy input. This potentially enhances the generated swell waves and increases the spatial extent of the TC generated surface wave fields. For the TC translation speeds in this study, a positive relationship between TC translation speed and the resulting maximum significant wave height and wave field asymmetry was observed. Bottom friction across the wide NWS limited the amount of wave energy reaching the coastal region; consistently reducing wave energy in depths below 50 m, and in the case of the most extreme conditions, in depths up to 100 m that comprise much of the shelf. Nevertheless, whitecapping was still the dominant dissipation mechanism on the broader shelf region. Shelf-scale refraction had little effect on the amount of wave energy reaching the nearshore zone; however, refraction locally enhanced or reduced wave energy depending on the orientation of the isobaths with respect to the dominant wave direction during the TC.
NASA Astrophysics Data System (ADS)
Chiang, C. Y.; Tam, S. W. Y.; Chang, T. F.; Syugu, W. J.; Kazama, Y.; Wang, S. Y.; Wang, B. J.; Asamura, K.; Higashio, N.; Kasahara, S.; Kasahara, Y.; Matsuoka, A.; Mitani, T.; Yokota, S.; Miyoshi, Y.; Shinohara, I.
2017-12-01
The Energization and Radiation in Geospace (ERG) satellite, launched in December 2016 and also known as "Arase" since then, began its regular observations of the inner magnetosphere in March 2017. On board the satellite are various instruments for the measurements of electrons and ions of various energy ranges, and electric and magnetic fields at various frequencies. The electron instruments include the Low-Energy Particle Experiments - Electron Analyzer (LEP-e), which performs measurements of electrons in the energy range between 20 eV and 19 keV, and three other experiments, Medium-Energy Particle Experiments - Electron Analyzer (MEP-e), High-Energy Electron Experiments (HEP) and Extremely High-Energy Electron Experiments (XEP), respectively covering the medium, high, and extremely high energy ranges up to 20 MeV. Ion measurements are performed by Low-Energy Particle Experiments - Ion Mass Analyzer (LEP-i) and Medium-Energy Particle Experiments - Ion Mass Analyzer (MEP-i) together for energies between 10 eV and 180 keV per unit charge, while the electric and magnetic fields are observed by Plasma Wave Experiment (PWE) and Magnetic Field Experiment (MGF).As LEP-e focuses on the lowest energy range among the electron sensors, it is expected to cover the largest electron population in the observations. Hence, significant variations in the LEP-e measurements are indicators of physical processes that affect a majority of electrons. Over several months, LEP-e has observed a number of events in which the measured electron counts exhibit prominent fluctuations at regular time scales. These events are examined also using measurements of the other aforementioned experiments, and it is found that similar prominent fluctuations are also observed by all of those instruments in quite a few events. In this presentation, we focus on such events and discuss the similarities and differences among them.
Operational characteristics of Wedge and Strip image readout systems
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.
1986-01-01
Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.
Micromechanical ``Trampoline'' Magnetometers for Use in Pulsed Magnetic Fields Exceeding 60 Tesla
NASA Astrophysics Data System (ADS)
Balakirev, F. F.; Boebinger, G. S.; Aksyuk, V.; Gammel, P. L.; Haddon, R. C.; Bishop, D. J.
1998-03-01
We present the design, construction, and operation of a novel magnetometer for use in intense pulsed magnetic fields. The magnetometer consists of a silicon micromachined "trampoline" to which the sample is attached. The small size of the device (typically 400 microns on a side) gives a fast mechanical response (10,000 to 50,000 Hz) and extremely high sensitivity (10-11 Am^2, corresponding to 10-13 Am^2/Hz^(1/2)). The device is robust against electrical and mechanical noise and requires no special vibration isolation from the pulsed magnet. As a demonstration, we present data taken in a 60 tesla pulsed magnetic field which show clear de Haas-van Alphen oscillations in a one microgram sample of the organic superconductor K-(BEDT-TTF)_2Cu(NCS)_2.
Multi-band implications of external-IC flares
NASA Astrophysics Data System (ADS)
Richter, Stephan; Spanier, Felix
2015-02-01
Very fast variability on scales of minutes is regularly observed in Blazars. The assumption that these flares are emerging from the dominant emission zone of the very high energy (VHE) radiation within the jet challenges current acceleration and radiation models. In this work we use a spatially resolved and time dependent synchrotron-self-Compton (SSC) model that includes the full time dependence of Fermi-I acceleration. We use the (apparent) orphan γ -ray flare of Mrk501 during MJD 54952 and test various flare scenarios against the observed data. We find that a rapidly variable external radiation field can reproduce the high energy lightcurve best. However, the effect of the strong inverse Compton (IC) cooling on other bands and the X-ray observations are constraining the parameters to rather extreme ranges. Then again other scenarios would require parameters even more extreme or stronger physical constraints on the rise and decay of the source of the variability which might be in contradiction with constraints derived from the size of the black hole's ergosphere.
Probing Black Holes With Gravitational Radiation
NASA Astrophysics Data System (ADS)
Cornish, Neil J.
2006-09-01
Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.
Gravitational wave astronomy: needle in a haystack.
Cornish, Neil J
2013-02-13
A worldwide array of highly sensitive ground-based interferometers stands poised to usher in a new era in astronomy with the first direct detection of gravitational waves. The data from these instruments will provide a unique perspective on extreme astrophysical objects, such as neutron stars and black holes, and will allow us to test Einstein's theory of gravity in the strong field, dynamical regime. To fully realize these goals, we need to solve some challenging problems in signal processing and inference, such as finding rare and weak signals that are buried in non-stationary and non-Gaussian instrument noise, dealing with high-dimensional model spaces, and locating what are often extremely tight concentrations of posterior mass within the prior volume. Gravitational wave detection using space-based detectors and pulsar timing arrays bring with them the additional challenge of having to isolate individual signals that overlap one another in both time and frequency. Promising solutions to these problems will be discussed, along with some of the challenges that remain.
Extreme ionization of Xe clusters driven by ultraintense laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidenreich, Andreas; Last, Isidore; Jortner, Joshua
We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
NASA Astrophysics Data System (ADS)
Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.
2014-12-01
In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time scales close to and faster than the revolution time of the turbine. For a few of the Extreme load estimations there is, on the other hand, a tendency that non-Gaussian effects increase the overall dynamical load, and hence can be of importance in wind energy load estimations.
V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.
We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similarmore » to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.« less
ELTs adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules
NASA Astrophysics Data System (ADS)
Neichel, B.; Conan, J.-M.; Fusco, T.; Gendron, E.; Puech, M.; Rousset, G.; Hammer, F.
2006-06-01
In the last few years, new Adaptive Optics [AO] techniques have emerged to answer new astronomical challenges: Ground-Layer AO [GLAO] and Multi-Conjugate AO [MCAO] to access a wider Field of View [FoV], Multi-Object AO [MOAO] for the simultaneous observation of several faint galaxies, eXtreme AO [XAO] for the detection of faint companions. In this paper, we focus our study to one of these applications : high red-shift galaxy observations using MOAO techniques in the framework of Extremely Large Telescopes [ELTs]. We present the high-level specifications of a dedicated instrument. We choose to describe the scientific requirements with the following criteria : 40% of Ensquared Energy [EE] in H band (1.65μm) and in an aperture size from 25 to 150 mas. Considering these specifications we investigate different AO solutions thanks to Fourier based simulations. Sky Coverage [SC] is computed for Natural and Laser Guide Stars [NGS, LGS] systems. We show that specifications are met for NGS-based systems at the cost of an extremely low SC. For the LGS approach, the option of low order correction with a faint NGS is discussed. We demonstrate that, this last solution allows the scientific requirements to be met together with a quasi full SC.
Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles.
Vimercati, L; Hamsher, S; Schubert, Z; Schmidt, S K
2016-09-01
Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth.
Numerical investigation of freak waves
NASA Astrophysics Data System (ADS)
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).
Nanofocusing of the free-space optical energy with plasmonic Tamm states.
Niu, Linyu; Xiang, Yinxiao; Luo, Weiwei; Cai, Wei; Qi, Jiwei; Zhang, Xinzheng; Xu, Jingjun
2016-12-20
To achieve extreme electromagnetic enhancement, we propose a plasmonic Tamm states (PTSs) configuration based on the metal-insulator-metal Bragg reflector, which is realized by periodically modulating the width of the insulator. Both the thick (2D) and thin (3D) structures are discussed. Through optimization performed by the impedance-based transfer matrix method and the finite difference time domain method, we find that both the electric field and magnetic field intensities can be increased by three orders of magnitude. The field-enhancement inside the PTSs configuration is not limited to extremely sharp waveguide terminal, which can greatly reduce processing difficulties.
2008-11-01
ISTC Project No. #1592P The Comparative Study of The Effects of Extremely Low Frequency Electromagnetic Fields and Infrasound on Water Molecule...performed under the agreement with the International Science and Technology Center ( ISTC ), Moscow. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...dissociation and generation of reactive oxygen spaces. 5a. CONTRACT NUMBER ISTC Registration No: A-1592p 5b. GRANT NUMBER 5c. PROGRAM ELEMENT