NASA Astrophysics Data System (ADS)
Helgert, Sebastian; Khodayar, Samiro
2017-04-01
In a warmer Mediterranean climate an increase in the intensity and frequency of extreme events like floods, droughts and extreme heat is expected. The ability to predict such events is still a great challenge and exhibits many uncertainties in the weather forecast and climate predictions. Thereby the missing knowledge about soil moisture-atmosphere interactions and their representation in models is identified as one of the main sources of uncertainty. In this context the soil moisture(SM) plays an important role in the partitioning of sensible and latent heat fluxes on the surface and consequently influences the boundary-layer stability and the precipitation formation. The aim of this research work is to assess the influence of soil moisture-atmosphere interactions on the initiation and development of extreme events in the western Mediterranean (WMED). In this respect the impact of realistic SM initialization on the model representation of extreme events is investigated. High-resolution simulations of different regions in the WMED, including various climate zones from moderate to arid climate, are conducted with the atmospheric COSMO (Consortium for Small-scale Modeling) model in the numerical weather prediction and climate mode. A multiscale temporal and spatial approach is used (days to years, 7km to 2.8km grid spacing). Observational data provided by the framework of the HYdrological cycle in the Mediterranean EXperiment (HyMeX) as well as satellite data such as precipitation from CMORPH (CPC MORPHing technique), evapotranspiration from Land Surface Analysis Satellite Applications Facility (LSA-SAF) and atmospheric moisture from MODIS (Moderate Resolution Imaging Spectroradiometer) are used for process understanding and model validation. To select extreme dry and wet periods the Effective Drought Index (EDI) is calculated. In these periods sensitivity studies of extreme SM initialization scenarios are performed to prove a possible impact of soil moisture on precipitation in the WMED. For the realistic SM initialization different state-of-art high-resolution SM products (25km up to 1km grid spacing) of the Soil Moisture Ocean Salinity mission (SMOS) are examined. A CDF-matching method is applied to reduce the bias between model and SMOS-satellite observation. Moreover, techniques to estimate the initial soil moisture profile from satellite data are tested.
Imaging of upper extremity stress fractures in the athlete.
Anderson, Mark W
2006-07-01
Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.
A Neglected Population: Drug-Using Women and Women's Methods of HIV/STI Prevention
ERIC Educational Resources Information Center
Gollub, Erica L.
2008-01-01
Women drug users are at extremely high risk of HIV and sexually transmitted infections (STIs) from sexual transmission, but remain seriously neglected in intervention research promoting women-initiated methods of HIV/STI prevention. Sparse available data indicate a high interest and enthusiasm for women-initiated methods among these women.…
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
Lower extremity muscle activation during baseball pitching.
Campbell, Brian M; Stodden, David F; Nixon, Megan K
2010-04-01
The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.
The Highly-Automated Airplane: Its Impact on Aviation Safety and an Analysis of Training Philosophy.
1997-06-01
equipment. This means more than just knowing how to program the device and being familiar with the functions of varying modes (Patrick, 1996:18). 33...the function that I wanted to use or modify in a flight plan." "Initially it is extremely difficult to figure out exactly how to program or pull up...commented: "Getting used to the EFIS display was the hardest. Initially it is extremely difficult to figure out exactly how to program or pull up the
Conformally flat black hole initial data with one cylindrical end
NASA Astrophysics Data System (ADS)
Gabach Clément, María E.
2010-06-01
We give a complete analytical proof of the existence and uniqueness of extreme-like black hole initial data for Einstein equations, which possess a cylindrical end, analogous to extreme Kerr, extreme Reissner-Nördstrom and extreme Bowen-York's initial data. This extends and refines a previous result (Dain and Clement 2009 Class. Quantum Grav. 26 035020) to a general case of conformally flat, maximal initial data with angular momentum, linear momentum and matter.
Lohrmann, David; YoussefAgha, Ahmed; Jayawardene, Wasantha
2014-04-01
We determined current trends and patterns in overweight, obesity, and extreme high obesity among Pennsylvania pre-kindergarten (pre-K) to 12th grade students and simulated future trends. We analyzed body mass index (BMI) of pre-K to 12th grade students from 43 of 67 Pennsylvania counties in 2007 to 2011 to determine trends and to discern transition patterns among BMI status categories for 2009 to 2011. Vinsem simulation, confirmed by Markov chain modeling, generated future prevalence trends. Combined rates of overweight, obesity, and extreme high obesity decreased among secondary school students across the 5 years, and among elementary students, first increased and then markedly decreased. BMI status remained constant for approximately 80% of normal and extreme high obese students, but both decreased and increased among students who initially were overweight and obese; the increase in BMI remained significant. Overall trends in child and adolescent BMI status seemed positive. BMI transition patterns indicated that although overweight and obesity prevalence leveled off, extreme high obesity, especially among elementary students, is projected to increase substantially over time. If current transition patterns continue, the prevalence of overweight, obesity, and extreme high obesity among Pennsylvania students in 2031 is projected to be 16.0%, 6.6%, and 23.2%, respectively.
Explosive Bolt Dual-Initiated from One Side
NASA Technical Reports Server (NTRS)
Snow, Eric
2011-01-01
An explosive bolt has been developed that has a one-sided dual initiation train all the way down to the pyro charge for high reliability, while still allowing the other side of the bolt to remain in place after actuation to act as a thermal seal in an extremely high-temperature environment. This lightweight separation device separates at a single fracture plane, and has as much redundancy/reliability as possible. The initiation train comes into the explosive bolt from one side.
Extreme-ultraviolet-initiated high-order harmonic generation in Ar+
NASA Astrophysics Data System (ADS)
Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.
2018-02-01
We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.
Small deformations of extreme five dimensional Myers-Perry black hole initial data
NASA Astrophysics Data System (ADS)
Alaee, Aghil; Kunduri, Hari K.
2015-02-01
We demonstrate the existence of a one-parameter family of initial data for the vacuum Einstein equations in five dimensions representing small deformations of the extreme Myers-Perry black hole. This initial data set has `' symmetry and preserves the angular momenta and horizon geometry of the extreme solution. Our proof is based upon an earlier result of Dain and Gabach-Clement concerning the existence of -invariant initial data sets which preserve the geometry of extreme Kerr (at least for short times). In addition, we construct a general class of transverse, traceless symmetric rank 2 tensors in these geometries.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
NASA Astrophysics Data System (ADS)
Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.
2014-12-01
A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dain, Sergio; Max Planck Institute for Gravitational Physics
2010-11-15
We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggestsmore » that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the nontrivial family of spinning Bowen-York initial data.« less
Ultimately Reliable Pyrotechnic Systems
NASA Technical Reports Server (NTRS)
Scott, John H.; Hinkel, Todd
2015-01-01
This paper presents the methods by which NASA has designed, built, tested, and certified pyrotechnic devices for high reliability operation in extreme environments and illustrates the potential applications in the oil and gas industry. NASA's extremely successful application of pyrotechnics is built upon documented procedures and test methods that have been maintained and developed since the Apollo Program. Standards are managed and rigorously enforced for performance margins, redundancy, lot sampling, and personnel safety. The pyrotechnics utilized in spacecraft include such devices as small initiators and detonators with the power of a shotgun shell, detonating cord systems for explosive energy transfer across many feet, precision linear shaped charges for breaking structural membranes, and booster charges to actuate valves and pistons. NASA's pyrotechnics program is one of the more successful in the history of Human Spaceflight. No pyrotechnic device developed in accordance with NASA's Human Spaceflight standards has ever failed in flight use. NASA's pyrotechnic initiators work reliably in temperatures as low as -420 F. Each of the 135 Space Shuttle flights fired 102 of these initiators, some setting off multiple pyrotechnic devices, with never a failure. The recent landing on Mars of the Opportunity rover fired 174 of NASA's pyrotechnic initiators to complete the famous '7 minutes of terror.' Even after traveling through extreme radiation and thermal environments on the way to Mars, every one of them worked. These initiators have fired on the surface of Titan. NASA's design controls, procedures, and processes produce the most reliable pyrotechnics in the world. Application of pyrotechnics designed and procured in this manner could enable the energy industry's emergency equipment, such as shutoff valves and deep-sea blowout preventers, to be left in place for years in extreme environments and still be relied upon to function when needed, thus greatly enhancing safety and operational availability.
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
van Halem, Karlijn; Vrolijk, Lucia; Pereira, Alberto Martin
2017-01-01
Abstract In patients with Cushing’s syndrome, development of Pneumocystis pneumonia (PCP) is associated with extreme cortisol production levels. In this setting, immune reconstitution after abrogation of cortisol excess appears to induce development of symptomatic PCP. The high mortality rate warrants timely initiation of chemoprophylaxis or even preemptive treatment of PCP. PMID:28480275
Shock-activated electrochemical power supplies
Benedick, William B.; Graham, Robert A.; Morosin, Bruno
1988-01-01
A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.
Shock-activated electrochemical power supplies
Benedick, W.B.; Graham, R.A.; Morosin, B.
1988-11-08
A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.
NASA Astrophysics Data System (ADS)
Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.
2014-12-01
Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and Mexico. This in-progress research will ultimately contribute to integrate OLAM and VIC models and improve predictability of extreme hydrometeorological events.
Yamada, Yasutaka; Sakamoto, Shinichi; Amiya, Yoshiyasu; Sasaki, Makoto; Shima, Takayuki; Komiya, Akira; Suzuki, Noriyuki; Akakura, Koichiro; Ichikawa, Tomohiko; Nakatsu, Hiroomi
2018-05-04
The prognostic significance of initial prostate-specific antigen (PSA) level for metastatic prostate cancer remains uncertain. We investigated the differences in prognosis and response to hormonal therapies of metastatic prostate cancer patients according to initial PSA levels. We analyzed 184 patients diagnosed with metastatic prostate cancer and divided them into three PSA level groups as follows: low (<100 ng ml -1 ), intermediate (100-999 ng ml -1 ), and high (≥1000 ng ml -1 ). All patients received androgen deprivation therapy (ADT) immediately. We investigated PSA progression-free survival (PFS) for first-line ADT and overall survival (OS) within each of the three groups. Furthermore, we analyzed response to antiandrogen withdrawal (AW) and alternative antiandrogen (AA) therapies after development of castration-resistant prostate cancer (CRPC). No significant differences in OS were observed among the three groups (P = 0.654). Patients with high PSA levels had significantly short PFS for first-line ADT (P = 0.037). Conversely, patients in the high PSA level group had significantly longer PFS when treated with AW than those in the low PSA level group (P = 0.047). Furthermore, patients with high PSA levels had significantly longer PFS when provided with AA therapy (P = 0.049). PSA responders to AW and AA therapies had significantly longer survival after CRPC development than nonresponders (P = 0.011 and P < 0.001, respectively). Thus, extremely high PSA level predicted favorable response to vintage sequential ADT and AW. The current data suggest a novel aspect of extremely high PSA value as a favorable prognostic marker after development of CRPC.
Extremism without extremists: Deffuant model with emotions
NASA Astrophysics Data System (ADS)
Sobkowicz, Pawel
2015-03-01
The frequent occurrence of extremist views in many social contexts, often growing from small minorities to almost total majority, poses a significant challenge for democratic societies. The phenomenon can be described within the sociophysical paradigm. We present a modified version of the continuous bounded confidence opinion model, including a simple description of the influence of emotions on tolerances, and eventually on the evolution of opinions. Allowing for psychologically based correlation between the extreme opinions, high emotions and low tolerance for other people's views leads to quick dominance of the extreme views within the studied model, without introducing a special class of agents, as has been done in previous works. This dominance occurs even if the initial numbers of people with extreme opinions is very small. Possible suggestions related to mitigation of the process are briefly discussed.
Iguchi, Toshihiro; Hiraki, Takao; Matsui, Yusuke; Fujiwara, Hiroyasu; Masaoka, Yoshihisa; Tanaka, Takashi; Sato, Takuya; Gobara, Hideo; Toyooka, Shinichi; Kanazawa, Susumu
2018-05-01
To retrospectively evaluate the technical success of computed tomography fluoroscopy-guided short hookwire placement before video-assisted thoracoscopic surgery and to identify the risk factors for initial placement failure. In total, 401 short hookwire placements for 401 lesions (mean diameter 9.3 mm) were reviewed. Technical success was defined as correct positioning of the hookwire. Possible risk factors for initial placement failure (i.e., requirement for placement of an additional hookwire or to abort the attempt) were evaluated using logistic regression analysis for all procedures, and for procedures performed via the conventional route separately. Of the 401 initial placements, 383 were successful and 18 failed. Short hookwires were finally placed for 399 of 401 lesions (99.5%). Univariate logistic regression analyses revealed that in all 401 procedures only the transfissural approach was a significant independent predictor of initial placement failure (odds ratio, OR, 15.326; 95% confidence interval, CI, 5.429-43.267; p < 0.001) and for the 374 procedures performed via the conventional route only lesion size was a significant independent predictor of failure (OR 0.793, 95% CI 0.631-0.996; p = 0.046). The technical success of preoperative short hookwire placement was extremely high. The transfissural approach was a predictor initial placement failure for all procedures and small lesion size was a predictor of initial placement failure for procedures performed via the conventional route. • Technical success of preoperative short hookwire placement was extremely high. • The transfissural approach was a significant independent predictor of initial placement failure for all procedures. • Small lesion size was a significant independent predictor of initial placement failure for procedures performed via the conventional route.
Extreme Weather and Climate: Workshop Report
NASA Technical Reports Server (NTRS)
Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc;
2016-01-01
Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.
DOT National Transportation Integrated Search
1993-08-01
The U.S. has implemented a national initiative to develop maglev (magnetic levitation) and other high-speed rail (HSR) : systems. There are concerns for potential adverse health effects of the Extremely Lou Frequency (3-3,000 Hz) electric : and magne...
Initial ecosystem restoration in the highly erodible Kisatchie Sandstone Hills
D. Andrew Scott
2014-01-01
Restoration of the unique and diverse habitats of the Kisatchie Sandstone Hills requires the re-introduction of fire to reduce fuel accumulation and promote herbaceous vegetation, but some soils in the area are extremely erodible, and past fires have resulted in high erosion rates. Overstory and understory vegetation, downed woody fuels, and other stand attributes were...
Khalatbari, Mahmoud Reza; Hamidi, Mehrdokht; Moharamzad, Yashar; Setayesh, Ali; Amirjamshidi, Abbas
2013-01-01
Brown tumor is a bone lesion secondary to hyperparathyroidism of various etiologies. Skeletal involvement in primary hyperparathyroidism secondary to parathyroid adenoma is very uncommon and brown tumor has become extremely a rare clinical entity. Hyperparathyroidism is usually associated with high levels of serum calcium. Brown tumor as the only and initial symptom of normocalcemic primary hyperparathyroidism is extremely rare. Moreover, involvement of the skull base and the orbit is exceedingly rare. The authors would report three cases of brown tumor of the anterior skull base that were associated with true normocalcemic primary hyperparathyroidism. Clinical manifestations, neuroimaging findings, pathological findings, diagnosis and treatment of the patients are discussed and the relevant literature is reviewed.
Evaluating average and atypical response in radiation effects simulations
NASA Astrophysics Data System (ADS)
Weller, R. A.; Sternberg, A. L.; Massengill, L. W.; Schrimpf, R. D.; Fleetwood, D. M.
2003-12-01
We examine the limits of performing single-event simulations using pre-averaged radiation events. Geant4 simulations show the necessity, for future devices, to supplement current methods with ensemble averaging of device-level responses to physically realistic radiation events. Initial Monte Carlo simulations have generated a significant number of extremal events in local energy deposition. These simulations strongly suggest that proton strikes of sufficient energy, even those that initiate purely electronic interactions, can initiate device response capable in principle of producing single event upset or microdose damage in highly scaled devices.
ERIC Educational Resources Information Center
Yu, Lucy C.; And Others
1993-01-01
Data from 204 female faculty or faculty wives show that family life cycle (number and ages of children) and family migration significantly affect wives' employment status. Only extremely highly educated women initiate family relocation. (SK)
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes
NASA Astrophysics Data System (ADS)
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.
2016-10-01
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.
Short initial length quench on CICC of ITER TF coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.
Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of themore » voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.« less
Predictors of Longitudinal Growth in Inhibitory Control in Early Childhood
Moilanen, Kristin L.; Shaw, Daniel S.; Dishion, Thomas J.; Gardner, Frances; Wilson, Melvin
2009-01-01
In the current study, we examined latent growth in 731 young children’s inhibitory control from ages 2 to 4, and whether demographic characteristics or parenting behaviors were related to initial levels and growth in inhibitory control. As part of an ongoing longitudinal evaluation of the Family Check-Up (FCU), children’s inhibitory control was assessed yearly at ages 2, 3, and 4. Inhibitory control was initially low and increased linearly to age 4. High levels of harsh parenting and male gender were associated with low initial status in inhibitory control. High levels of supportive parenting were associated with faster growth. Extreme family poverty and African American ethnicity were also associated with slower growth. The results highlight parenting as a target for early interventions in contexts of high socioeconomic risk. PMID:20376201
Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.
Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok
2015-08-25
The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.
Vichitvejpaisal, Pornpattana; Reeponmahar, Somporn; Tantisiriwat, Woraphot
2009-06-01
Typical progressive outer retinal necrosis (PORN) is an acute ocular infectious disease in acquired immunodeficiency syndrome (AIDS) patients with extremely low CD4+ T-cell counts. It is a form of the Varicella- zoster virus (VZV) infection. This destructive infection has an extremely rapid course that may lead to blindness in affected eyes within days or weeks. Attempts at its treatment have had limited success. We describe the case of a bilateral PORN in an AIDS patient with an initial CD4+ T-cell count >100 cells/microL that developed after initiation of highly active antiretroviral therapy (HAART). A 29-year-old Thai female initially diagnosed with human immunodeficiency virus (HIV) in 1998, presented with bilaterally decreased visual acuity after initiating HAART two months earlier. Multiple yellowish spots appeared in the deep retina without evidence of intraocular inflammation or retinal vasculitis. Her CD4+ T-cell count was 127 cells/microL. She was diagnosed as having PORN based on clinical features and positive VZV in the aqueous humor and vitreous by polymerase chain reaction (PCR). Despite combined treatment with intravenous acyclovir and intravitreous ganciclovir, the patient's visual acuity worsened with no light-perception in either eye. This case suggests that PORN should be included in the differential diagnosis of reduced visual acuity in AIDS patients initiating HAART with higher CD4+ T-cell counts. PORN may be a manifestation of the immune reconstitution syndrome.
A Modeling Study of the Spring 2011 Extreme US Weather Activity
NASA Technical Reports Server (NTRS)
Schubert, S.; Suarez, M.; Chang, Y.
2012-01-01
The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding.
Porous carbon derived from Sunflower as a host matrix for ultra-stable lithium-selenium battery.
Jia, Min; Niu, Yubin; Mao, Cuiping; Liu, Sangui; Zhang, Yan; Bao, Shu-Juan; Xu, Maowen
2017-03-15
A novel porous carbon material using the spongy tissue of sunflower as raw material is reported for the first time. The obtained porous carbon has an extremely high surface area of 2493.0m 2 g -1 , which is beneficial to focus on encapsulating selenium in it and have an inhibiting effect about diffusion of polyselenides over the charge/discharge processes used as the host matrix for Li-Se battery. The porous carbon/Se composite electrode with 63wt% selenium delivers a high specific capacitance of 319mAhg -1 of the initial capacity, and maintains 290mAhg -1 , representing an extremely high capacity retention of 90.9% after 840 cycles with the rate of 1C. Copyright © 2016. Published by Elsevier Inc.
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L
2016-10-21
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.
Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Lauer, Frank
This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less
Ma, Jin; Li, Honghui; Ding, Xiaohu; Tanumiharjo, Silvia; Lu, Lin
2017-01-01
Purpose To evaluate the efficacy of a combined macular buckle under direct vision and 23-gauge pars plana vitrectomy (PPV) with internal limiting membrane (ILM) peeling in refractory macular hole retinal detachment (MHRD) with extreme high axial myopia. Design Prospective, randomised controlled study. Participants The study included 98 eyes of 98 patients of MHRD with extreme high axial (>30 mm) myopia. Intervention Patients were randomly assigned to undergo PPV with ILM peeling (group 1, n=52) or PPV with ILM peeling combined with macular buckle under direct vision (group 2, n=46). Main outcome measures Complete ocular examination included best-corrected visual acuity (BCVA) (LogMAR), applanation tonometry, optical biometry, slit-lamp biomicroscopy, colour fundus photography, ultrasound examination and optical coherence tomography at baseline and every follow-up visit. Results Initial retinal reattachment rate was significantly higher in group 2 than in group 1 at 12-month postoperatively (χ2 test, p=0.020). Macular hole closure rate in group 2 was significantly higher than that in group 1 at 3, 12, 18 and 24 months postoperatively (Fisher's exact test, p<0.05). In initial retinal reattachment cases, the mean BCVA decreased significantly in group 2 than in group 1 at 3 months postoperatively (Wilcoxon matched pairs signed rank test, p=0.036), and had increased significantly in group 2 than in group 1 since 6 months postoperatively (Wilcoxon matched pairs signed rank test, p<0.05). Mean axial lengths in group 2 were significantly shorter than that of group 1 at each follow-up time point (Wilcoxon matched pairs signed rank test, p<0.05). Conclusions Combined macular buckle under direct vision and PPV with ILM peeling is more effective in treatment of MHRD with extreme high axial (>30 mm) myopia. PMID:28292775
McKay, Brian J; Bir, Cynthia A
2009-11-01
Anti-vehicular (AV) landmines and improvised explosive devices (IED) have accounted for more than half of the United States military hostile casualties and wounded in Operation Iraqi Freedom (OIF) (Department of Defense Personnel & Procurement Statistics, 2009). The lower extremity is the predominantly injured body region following an AV mine or IED blast accounting for 26 percent of all combat injuries in OIF (Owens et al., 2007). Detonations occurring under the vehicle transmit high amplitude and short duration axial loads onto the foot-ankle-tibia region of the occupant causing injuries to the lower leg. The current effort was initiated to develop lower extremity injury criteria for occupants involved in underbelly blast impacts. Eighteen lower extremity post mortem human specimens (PMHS) were instrumented with an implantable load cell and strain gages and impacted at one of three incrementally severe AV axial loading conditions. Twelve of the 18 PMHS specimens sustained fractures of the calcaneus, talus, fibula and/or tibia. The initiation of skeletal injury was precisely detected by strain gages and corresponded with local peak axial tibia force. Survival analysis identified peak axial tibia force and impactor velocity as the two best predictors of incapacitating injury. A tibia axial force of 5,931 N and impactor velocity of 10.8 m/s corresponds with a 50 percent risk of an incapacitating injury. The criteria may be utilized to predict the probability of lower extremity incapacitating injury in underbelly blast impacts.
Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda
2004-01-01
Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.
Intensity changes in future extreme precipitation: A statistical event-based approach.
NASA Astrophysics Data System (ADS)
Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen
2017-04-01
Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical method, unchanged. The advantages of the suggested Pi-Td method of projecting future precipitation events from historic events is that it is simple to use, is less expensive time, computational and resource wise compared to a numerical model. The outcome can be used directly for hydrological and climatological studies and for impact analysis such as for flood risk assessments.
High Energy Astrophysics Mission
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)
2000-01-01
The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.
Economic Geology of the Moon: Some Considerations
NASA Technical Reports Server (NTRS)
Gillett, Stephen L.
1992-01-01
Supporting any but the smallest lunar facility will require indigenous resources due to the extremely high cost of bringing material from Earth. The Moon has also attracted interest as a resource base to help support near-Earth space activities, because of the potential lower cost once the necessary infrastructure has been amortized. Obviously, initial lunar products will be high-volume, bulk commodities, as they are the only ones for which the economics of lunar production are conceivably attractive. Certain rarer elements, such as the halogens, C, and H, would also be extremely useful (for propellant, life support, and/or reagents), and indeed local sources of such elements would vastly improve the economics of lunar resource extraction. The economic geology of the Moon is discussed.
Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration
NASA Astrophysics Data System (ADS)
Yang, Wenchang; Magnusdottir, Gudrun
2017-05-01
Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.
Poor outcome of bilateral lower extremity morel-lavallee lesions: a case report.
Stanley, Sharon S; Molmenti, Ernesto P; Siskind, Eric; Kasabian, Armen K; Huang, Su-I D
2014-03-01
The Morel-Lavallee lesion is a closed, internal degloving injury that results when a strong, shearing force is applied parallel to the plane of injury, as is common in vehicular trauma. It is an underdiagnosed entity that is often missed during the initial trauma workup as symptoms can be subtle. There are few reports of lesions occurring below the knee. Most cases affect the proximal thigh and trochanter, as these tend to be dependent areas in high velocity trauma. To the best of our knowledge, this is the first literature report of bilateral lower extremity Morel-Lavallee lesions.
Massive gas gangrene secondary to occult colon carcinoma.
Griffin, Andrew S; Crawford, Matthew D; Gupta, Rajan T
2016-06-01
Gas gangrene is a rare but often fatal soft-tissue infection. Because it is uncommon and the classic symptom of crepitus does not appear until the infection is advanced, prompt diagnosis requires a high index of suspicion. We present a case report of a middle-aged man who presented with acute onset lower-extremity pain that was initially thought to be due to deep vein thrombosis. After undergoing workup for pulmonary embolism, he was found to have massive gas gangrene of the lower extremity secondary to an occult colon adenocarcinoma and died within hours of presentation from multisystem organ failure.
Dismounted Complex Blast Injury.
Andersen, Romney C; Fleming, Mark; Forsberg, Jonathan A; Gordon, Wade T; Nanos, George P; Charlton, Michael T; Ficke, James R
2012-01-01
The severe Dismounted Complex Blast Injury (DCBI) is characterized by high-energy injuries to the bilateral lower extremities (usually proximal transfemoral amputations) and/or upper extremity (usually involving the non-dominant side), in addition to open pelvic injuries, genitourinary, and abdominal trauma. Initial resuscitation and multidisciplinary surgical management appear to be the keys to survival. Definitive treatment follows general principals of open wound management and includes decontamination through aggressive and frequent debridement, hemorrhage control, viable tissue preservation, and appropriate timing of wound closure. These devastating injuries are associated with paradoxically favorable survival rates, but associated injuries and higher amputation levels lead to more difficult reconstructive challenges.
Response of the Vegetation-Climate System to High Temperature (Invited)
NASA Astrophysics Data System (ADS)
Berry, J. A.
2009-12-01
High temperature extremes may lead to inhibition of photosynthesis and stomatal closure at the leaf scale. When these responses occur over regional scales, they can initiate a positive feedback loop in the coupled vegetation-climate system. The fraction of net radiation that is used by the land surface to evaporate water decreases leading to deeper, drier boundary layers, fewer clouds, increased solar radiation reaching the surface, and possibility reduced precipitation. These interactions within the vegetation-climate system may amplify natural (or greenhouse gas forced) variations in temperature and further stress the vegetation. Properly modeling of this system depends, among other things, on getting the plant responses to high temperature correct. I will review the current state of this problem and present some studies of rain forest trees to high temperature and drought conducted in the Biosphere 2 enclosure that illustrate how experiments in controlled systems can contribute to our understanding of complex systems to extreme events.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
ERIC Educational Resources Information Center
Carlson, Gigi; Crowther, Judith
2004-01-01
Television melodrama, like grand opera, is constructed to formula. Character interactions are highly charged and plot dominates, initiating excitement, suspense, and raising questions around timeless and universal themes. Despite--or because of--their extreme nature, the soaps remain one of the longest-standing television genres, with the loyal…
Lewandowski, Louis R.; Weintrob, Amy C.; Tribble, David R.; Rodriguez, Carlos J.; Petfield, Joseph; Lloyd, Bradley A.; Murray, Clinton K.; Stinner, Daniel; Aggarwal, Deepak; Shaikh, Faraz; Potter, Benjamin K.
2015-01-01
Objective Clinicians have anecdotally noted that combat-related invasive fungal wound infections (IFIs) lead to residual limb shortening, additional days and operative procedures prior to initial wound closure, and high early complication rates. We evaluated the validity of these observations and identified risk factors that may impact time to initial wound closure. Design Retrospective review and case-control analysis. Setting Military hospitals. Patients/Participants United States military personnel injured during combat operations (2009–2011). The IFI cases were identified based upon the presence of recurrent, necrotic extremity wounds with mold growth in culture and/or histopathologic fungal evidence. Non-IFI controls were matched on injury pattern and severity. In a supplemental matching analysis, non-IFI controls were also matched by blood volume transfused within 24 hours of injury. Intervention None. Main Outcome Measurements Amputation revision rate and loss of functional levels. Results Seventy-one IFI cases (112 fungal-infected extremity wounds) were identified and matched to 160 control patients (315 non-IFI extremity wounds). The IFI wounds resulted in significantly more changes in amputation level (p<0.001). Additionally, significantly (p<0.001) higher number of operative procedures and longer duration to initial wound closure was associated with IFI. A shorter duration to initial wound closure was significantly associated with wounds lacking IFIs (Hazard ratio: 1.53; 95% CI: 1.17, 2.01). The supplemental matching analysis found similar results. Conclusions Our analysis indicates that IFIs adversely impact wound healing and patient recovery, requiring more frequent proximal amputation revisions and leading to higher early complication rates. PMID:26360542
Extreme Events in the tropics - Hurricane Manuel and La Pintada Landslide
NASA Astrophysics Data System (ADS)
Ramirez-Herrera, M. T.; Gaidzik, K.
2016-12-01
Extreme events in regions of humid-warm tropical climate are repeatedly causing loss of life and economic devastation. Deadly landslides are commonly triggered by extreme storms. Many of them originate on mountain slopes along river systems in areas often populated, increasing the risk to human settlements, theirs activities, and the local envrionment. Frequently hit by hurricanes and tropical cyclones the mountainous areas of Guerrero in southern Mexico are particularly prone to landslide hazard. On 16 September 2013 a huge landslide caused 71 fatalities and destroyed a large part of the La Pintada village. The landslide initiated after extreme rainfall caused by Hurricane Manuel. We performed a post-landslide field survey, applied remote sensing techniques using LIDAR DEM and images, digital models derived from Structure from Motion (SfM), satellite images, orthophotomaps, eyewitness accounts, geotechnical laboratory tests of slope material, and slope stability analysis to examine physical characteristics and processes that influenced the failure of La Pintada landslide. Our results indicate that anomalous precipitation producing oversaturation of soil was the direct factor that initiated the deep-sited La Pintada landslide, in an area where big landslides have occurred in the past. We hypothesized that climate change has contributed to the short recurrence period of extreme meteorological events that trigger great landslides in this tropical area. The lack of high and dense vegetation on La Pintada slope, resulting in increased soil erosion, acted as a preparatory causal factor for landsliding, making the slope more prone to mass wasting. It is likely that human activity (including deforestation activities) also contributed to the decrease of slope stability by cutting the toe of the slope to build houses. Seismic activity, even if did not contribute directly to the initiation of the La Pintada landslide, might have promoted the decrease in slope stability in this tectonically active region.
Okada, Kyoji; Hasegawa, Tadashi; Kawai, Akira; Ogose, Akira; Nishida, Jun; Yanagisawa, Michiro; Morita, Tetsuro; Tajino, Takahiro; Tsuchiya, Takashi
2011-09-01
Dedifferentiated liposarcomas usually occur in the retroperitoneal space and relatively rarely in the extremities. We identified 18 patients with primary dedifferentiated liposarcoma in the extremities from the files of Tohoku Musculoskeletal Tumor Society and analyzed demographics, histologic findings, treatments and prognostic factors. The average follow-up period was 58 months. The subjects were 12 men and 6 women with a mean age of 65 years. All tumors were in the thigh. Nine patients noticed a rapid enlargement of the long-standing tumor. Histologic subtypes of the dedifferentiated area were undifferentiated pleomorphic sarcoma (n = 12), osteosarcoma (n = 2), rhabdomyosarcoma (n = 2), leiomyosarcoma (n = 1) and malignant peripheral nerve sheath tumor (n = 1). In the patient with rhabdomyosarcoma-like dedifferentiated area, extensive necrosis was observed after the preoperative chemotherapy. One patient who underwent marginal excision developed a local recurrence, but inadequate surgical margin was not associated with a risk of local recurrence. Three patients had lung metastasis at initial presentation, and four other patients developed lung metastases during the follow-up period. The overall survival rate was 61.1% at 5 years. On univariate analyses, large size of the dedifferentiated area (>8 cm), high MIB-1-labeling index (>30%) for the dedifferentiated area and lung metastasis at initial presentation were significantly associated with poor prognosis. Primary dedifferentiated liposarcoma in the extremities predominantly occurred in the thigh and a rapid enlargement of long-standing tumors was a characteristic symptom. Although the local behavior of these tumors was less aggressive than that of retroperitoneal dedifferentiated liposarcomas, they had a relatively high metastatic potential.
NASA Astrophysics Data System (ADS)
Bao, Han; Wang, Ning; Bao, Bocheng; Chen, Mo; Jin, Peipei; Wang, Guangyi
2018-04-01
Memristor-based nonlinear dynamical system easily presents the initial condition-dependent dynamical phenomenon of extreme multistability, i.e., coexisting infinitely many attractors, which has been received much attention in recent years. By introducing an ideal and active flux-controlled memristor into an existing hypogenetic chaotic jerk system, an interesting memristor-based chaotic system with hypogenetic jerk equation and circuit forms is proposed. The most striking feature is that this system has four line equilibria and exhibits the extreme multistability phenomenon of coexisting infinitely many attractors. Stability of these line equilibria are analyzed, and coexisting infinitely many attractors' behaviors with the variations of the initial conditions are investigated by bifurcation diagrams, Lyapunov exponent spectra, attraction basins, and phased portraits, upon which the forming mechanism of extreme multistablity in the memristor-based hypogenetic jerk system is explored. Specially, unusual transition behavior of long term transient period with steady chaos, completely different from the phenomenon of transient chaos, can be also found for some initial conditions. Moreover, a hardware circuit is design and fabricated and its experimental results effectively verify the truth of extreme multistablity.
Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.
2016-01-01
We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.
Givel, M S; Glantz, S A
2000-01-01
In 1979 and 1980 in Dade County, Florida, a small grassroots advocacy group, Group Against Smoking Pollution (GASP), attempted to enact a clean indoor air ordinance through the initiative process. The tobacco industry's successful efforts to defeat the initiatives were expensive high-tech media-centered campaigns. Even though GASP's electoral resources were extremely limited for both initiatives, GASP utilized similar media-centered tactics. This approach attempted to defeat the tobacco industry in its own venue, in spite of the tobacco industry's vastly greater resources. Nevertheless, the industry defeated these ordinances by narrow margins because of broad voter support for the initiatives before the industry started its campaigns. Health advocates will never have the resources to match the tobacco industry in expensive high-tech media-centered initiative campaigns. Rather, their power lies in the general popularity of tobacco control legislation and their ability to mobilize broad grassroots efforts combined with an adequately funded media campaign.
Measuring the High-Mass IMF in Low-Metallicity Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Weisz, Daniel
2017-08-01
We propose to measure the stellar initial mass function above >1-2 Msun in 46 nearby dwarf galaxies with archival HST observations. This novel approach leverages the redundant age information provided by the main sequence and blue core helium burning stars <500 years old to break the well-known degeneracy between the IMF and star formation history (SFH), enabling a direct measurement of the high-mass IMF in dwarf galaxies. We will be able to constrain the high-mass IMF slope to a precision better than 0.1 to 0.3 dex in each galaxy. Our sample spans a factor of 6 in metallicity ( 5-30% Zsun), 4 decades in star formation rate, and 3 decades in both stellar and gas mass, allowing us to explore the IMF over a wide range of extreme environments.Current observational evidence suggests that nearby dwarf galaxies are the most likely candidates to host significant and systematic variations in the high-mass IMF (e.g., Halpha/UV ratios). However, to date there have been no direct measurements of the high-mass IMF in environments with lower star formation rates and/or more metal poor than the Magellanic Clouds. Our program remedies this shortcoming allowing us to (1) make the first-ever measurement of the high-mass IMF in extremely metal-poor environments; (2) empirically quantify environmental the (lack of) variations in the high-mass IMF; (3) directly test the integrated galactic mass initial mass function (IGIMF), which predicts environmental sensitivity of the IMF in dwarf galaxies.
EEE - Extreme Energy Events: an astroparticle physics experiment in Italian High Schools
NASA Astrophysics Data System (ADS)
Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferrarov, A.; Forster, R.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Maggiora, A.; Maron, G.; Mazziotta, M. N.; Miozzi, S.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Rodriguez Rodriguez, A.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Taiuti, M.; Terreni, G.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.
2016-05-01
The Extreme Energy Events project (EEE) is aimed to study Extensive Air Showers (EAS) from primary cosmic rays of more than 1018 eV energy detecting the ground secondary muon component using an array of telescopes with high spatial and time resolution. The second goal of the EEE project is to involve High School teachers and students in this advanced research work and to initiate them in scientific culture: to reach both purposes the telescopes are located inside High School buildings and the detector construction, assembling and monitoring - together with data taking and analysis - are done by researchers from scientific institutions in close collaboration with them. At present there are 42 telescopes in just as many High Schools scattered all over Italy, islands included, plus two at CERN and three in INFN units. We report here some preliminary physics results from the first two common data taking periods together with the outreach impact of the project.
Pediatric Major Head Injury: Not a Minor Problem.
Leetch, Aaron N; Wilson, Bryan
2018-05-01
Traumatic brain injury is a highly prevalent and devastating cause of morbidity and mortality in children. A rapid, stepwise approach to the traumatized child should proceed, addressing life-threatening problems first. Management focuses on preventing secondary injury from physiologic extremes such as hypoxemia, hypotension, prolonged hyperventilation, temperature extremes, and rapid changes in cerebral blood flow. Initial Glasgow Coma Score, hyperglycemia, and imaging are often prognostic of outcome. Surgically amenable lesions should be evacuated promptly. Reduction of intracranial pressure through hyperosmolar therapy, decompressive craniotomy, and seizure prophylaxis may be considered after stabilization. Nonaccidental trauma should be considered when evaluating pediatric trauma patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Jaeschke, Roman; Stevens, Scott M.; Goodacre, Steven; Wells, Philip S.; Stevenson, Matthew D.; Kearon, Clive; Schunemann, Holger J.; Crowther, Mark; Pauker, Stephen G.; Makdissi, Regina; Guyatt, Gordon H.
2012-01-01
Background: Objective testing for DVT is crucial because clinical assessment alone is unreliable and the consequences of misdiagnosis are serious. This guideline focuses on the identification of optimal strategies for the diagnosis of DVT in ambulatory adults. Methods: The methods of this guideline follow those described in Methodology for the Development of Antithrombotic Therapy and Prevention of Thrombosis Guidelines: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Results: We suggest that clinical assessment of pretest probability of DVT, rather than performing the same tests in all patients, should guide the diagnostic process for a first lower extremity DVT (Grade 2B). In patients with a low pretest probability of first lower extremity DVT, we recommend initial testing with D-dimer or ultrasound (US) of the proximal veins over no diagnostic testing (Grade 1B), venography (Grade 1B), or whole-leg US (Grade 2B). In patients with moderate pretest probability, we recommend initial testing with a highly sensitive D-dimer, proximal compression US, or whole-leg US rather than no testing (Grade 1B) or venography (Grade 1B). In patients with a high pretest probability, we recommend proximal compression or whole-leg US over no testing (Grade 1B) or venography (Grade 1B). Conclusions: Favored strategies for diagnosis of first DVT combine use of pretest probability assessment, D-dimer, and US. There is lower-quality evidence available to guide diagnosis of recurrent DVT, upper extremity DVT, and DVT during pregnancy. PMID:22315267
Initial performance results for high-aspect ratio gold MEMS deformable mirrors
NASA Astrophysics Data System (ADS)
Fernández, Bautista; Kubby, Joel
2009-02-01
The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.
Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations
NASA Astrophysics Data System (ADS)
Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-Hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen R.; Granskog, Mats A.
2017-02-01
Recent cold winter extremes over Eurasia and North America have been considered to be a consequence of a warming Arctic. More accurate weather forecasts are required to reduce human and socioeconomic damages associated with severe winters. However, the sparse observing network over the Arctic brings errors in initializing a weather prediction model, which might impact accuracy of prediction results at midlatitudes. Here we show that additional Arctic radiosonde observations from the Norwegian young sea ICE expedition (N-ICE2015) drifting ice camps and existing land stations during winter improved forecast skill and reduced uncertainties of weather extremes at midlatitudes of the Northern Hemisphere. For two winter storms over East Asia and North America in February 2015, ensemble forecast experiments were performed with initial conditions taken from an ensemble atmospheric reanalysis in which the observation data were assimilated. The observations reduced errors in initial conditions in the upper troposphere over the Arctic region, yielding more precise prediction of the locations and strengths of upper troughs and surface synoptic disturbances. Errors and uncertainties of predicted upper troughs at midlatitudes would be brought with upper level high potential vorticity (PV) intruding southward from the observed Arctic region. This is because the PV contained a "signal" of the additional Arctic observations as it moved along an isentropic surface. This suggests that a coordinated sustainable Arctic observing network would be effective not only for regional weather services but also for reducing weather risks in locations distant from the Arctic.
Ma, Jin; Li, Honghui; Ding, Xiaohu; Tanumiharjo, Silvia; Lu, Lin
2017-10-01
To evaluate the efficacy of a combined macular buckle under direct vision and 23-gauge pars plana vitrectomy (PPV) with internal limiting membrane (ILM) peeling in refractory macular hole retinal detachment (MHRD) with extreme high axial myopia. Prospective, randomised controlled study. The study included 98 eyes of 98 patients of MHRD with extreme high axial (>30 mm) myopia. Patients were randomly assigned to undergo PPV with ILM peeling (group 1, n=52) or PPV with ILM peeling combined with macular buckle under direct vision (group 2, n=46). Complete ocular examination included best-corrected visual acuity (BCVA) (LogMAR), applanation tonometry, optical biometry, slit-lamp biomicroscopy, colour fundus photography, ultrasound examination and optical coherence tomography at baseline and every follow-up visit. Initial retinal reattachment rate was significantly higher in group 2 than in group 1 at 12-month postoperatively (χ 2 test, p=0.020). Macular hole closure rate in group 2 was significantly higher than that in group 1 at 3, 12, 18 and 24 months postoperatively (Fisher's exact test, p<0.05). In initial retinal reattachment cases, the mean BCVA decreased significantly in group 2 than in group 1 at 3 months postoperatively (Wilcoxon matched pairs signed rank test, p=0.036), and had increased significantly in group 2 than in group 1 since 6 months postoperatively (Wilcoxon matched pairs signed rank test, p<0.05). Mean axial lengths in group 2 were significantly shorter than that of group 1 at each follow-up time point (Wilcoxon matched pairs signed rank test, p<0.05). Combined macular buckle under direct vision and PPV with ILM peeling is more effective in treatment of MHRD with extreme high axial (>30 mm) myopia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
2011-02-01
was calculated as the difference between the lowest point of the rigid indenter and the initial position of the sample’s free surface. The total...SiC A high pressure structural phase transformation (HPPT) was previously reported for silicon, gallium arsenide, and silicon nitride and indirect...molecular dynamics (MD) simulations with thermodynamic analysis to settle this debate whether silicon carbide (SiC) can undergo a high pressure phase
High-Z Protocluster Survey by Subaru/HSC
NASA Astrophysics Data System (ADS)
Kashikawa, Nobunari
2017-07-01
We are now conducting a systematic survey for high-redshift (z > 3) protoclusters using the extremely wide imaging data produced by the Subaru/Hyper Suprime Cam. The goal of the HSC protocluster survey is to trace redshift evolution of cluster galaxies up to z 6 with very high number statistics (10 20 protoclusters per redshift bins at z> 2) as well as to see a possible variety of protoclusters ( 1000 protoclusters at z 4) at the same redshift. We applied an effective method to find significant overdense regions of g-dropout galaxies at z 4 based on a high surface number density. We have found 179 protocluster candidates with more than 4 overdensity significance over 121 deg2 of the initial HSC data release for the wide layer. I will report the current status of the survey and initial results.
Coenen, Pieter; Willenberg, Lisa; Parry, Sharon; Shi, Joyce W; Romero, Lorena; Blackwood, Diana M; Maher, Christopher G; Healy, Genevieve N; Dunstan, David W; Straker, Leon M
2018-02-01
Given the high exposure to occupational standing in specific occupations, and recent initiatives to encourage intermittent standing among white-collar workers, a better understanding of the potential health consequences of occupational standing is required. We aimed to review and quantify the epidemiological evidence on associations of occupational standing with musculoskeletal symptoms. A systematic review was performed. Data from included articles were extracted and described, and meta-analyses conducted when data were sufficiently homogeneous. Electronic databases were systematically searched. Peer-reviewed articles on occupational standing and musculoskeletal symptoms from epidemiological studies were identified. Of the 11 750 articles screened, 50 articles reporting 49 studies were included (45 cross-sectional and 5 longitudinal; n=88 158 participants) describing the associations of occupational standing with musculoskeletal symptoms, including low-back (39 articles), lower extremity (14 articles) and upper extremity (18 articles) symptoms. In the meta-analysis, 'substantial' (>4 hours/workday) occupational standing was associated with the occurrence of low-back symptoms (pooled OR (95% CI) 1.31 (1.10 to 1.56)). Evidence on lower and upper extremity symptoms was too heterogeneous for meta-analyses. The majority of included studies reported statistically significant detrimental associations of occupational standing with lower extremity, but not with upper extremity symptoms. The evidence suggests that substantial occupational standing is associated with the occurrence of low-back and (inconclusively) lower extremity symptoms, but there may not be such an association with upper extremity symptoms. However, these conclusions are tentative as only limited evidence was found from high-quality, longitudinal studies with fully adjusted models using objective measures of standing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA
NASA Technical Reports Server (NTRS)
Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.
2014-01-01
We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV) spicules.
Tensile strength and failure mechanisms of tantalum at extreme strain rates
NASA Astrophysics Data System (ADS)
Hahn, Eric; Fensin, Saryu; Germann, Timothy; Meyers, Marc
Non-equilibrium molecular dynamics simulations are used to probe the tensile response of monocrystalline, bicrystalline, and nanocrystalline tantalum over six orders of magnitude of strain rate. Our analysis of the strain rate dependence of strength is extended to over nine orders of magnitude by bridging the present simulations to recent laser-driven shock experiments. Tensile strength shows a power-law dependence with strain rate over this wide range, with different relationships depending on the initial microstructure and active deformation mechanism. At high strain rates, multiple spall events occur independently and continue to occur until communication occurs by means of relaxation waves. Temperature plays a significant role in the reduction of spall strength as the initial shock required to achieve such large strain rates also contributes to temperature rise, through pressure-volume work as well as visco-plastic heating, which leads to softening and sometimes melting upon release. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates at the ultimate cohesive strength of the material. UC Research Laboratories Grant (09-LR-06-118456-MEYM); Department of Energy NNSA/SSAP (DE-NA0002080); DOE ASCR Exascale Co-design Center for Materials in Extreme Environments.
Weather extremes in very large, high-resolution ensembles: the weatherathome experiment
NASA Astrophysics Data System (ADS)
Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.
2011-12-01
Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.
NASA Astrophysics Data System (ADS)
Zhu, Kefeng; Xue, Ming
2016-11-01
On 21 July 2012, an extreme rainfall event that recorded a maximum rainfall amount over 24 hours of 460 mm, occurred in Beijing, China. Most operational models failed to predict such an extreme amount. In this study, a convective-permitting ensemble forecast system (CEFS), at 4-km grid spacing, covering the entire mainland of China, is applied to this extreme rainfall case. CEFS consists of 22 members and uses multiple physics parameterizations. For the event, the predicted maximum is 415 mm d-1 in the probability-matched ensemble mean. The predicted high-probability heavy rain region is located in southwest Beijing, as was observed. Ensemble-based verification scores are then investigated. For a small verification domain covering Beijing and its surrounding areas, the precipitation rank histogram of CEFS is much flatter than that of a reference global ensemble. CEFS has a lower (higher) Brier score and a higher resolution than the global ensemble for precipitation, indicating more reliable probabilistic forecasting by CEFS. Additionally, forecasts of different ensemble members are compared and discussed. Most of the extreme rainfall comes from convection in the warm sector east of an approaching cold front. A few members of CEFS successfully reproduce such precipitation, and orographic lift of highly moist low-level flows with a significantly southeasterly component is suggested to have played important roles in producing the initial convection. Comparisons between good and bad forecast members indicate a strong sensitivity of the extreme rainfall to the mesoscale environmental conditions, and, to less of an extent, the model physics.
NASA Astrophysics Data System (ADS)
von Trentini, F.; Willkofer, F.; Wood, R. R.; Schmid, F. J.; Ludwig, R.
2017-12-01
The ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) focuses on the effects of climate change on hydro-meteorological extreme events and their implications for water management in Bavaria and Québec. Therefore, a hydro-meteorological model chain is applied. It employs high performance computing capacity of the Leibniz Supercomputing Centre facility SuperMUC to dynamically downscale 50 members of the Global Circulation Model CanESM2 over European and Eastern North American domains using the Canadian Regional Climate Model (RCM) CRCM5. Over Europe, the unique single model ensemble is conjointly analyzed with the latest information provided through the CORDEX-initiative, to better assess the influence of natural climate variability and climatic change in the dynamics of extreme events. Furthermore, these 50 members of a single RCM will enhance extreme value statistics (extreme return periods) by exploiting the available 1500 model years for the reference period from 1981 to 2010. Hence, the RCM output is applied to drive the process based, fully distributed, and deterministic hydrological model WaSiM in high temporal (3h) and spatial (500m) resolution. WaSiM and the large ensemble are further used to derive a variety of hydro-meteorological patterns leading to severe flood events. A tool for virtual perfect prediction shall provide a combination of optimal lead time and management strategy to mitigate certain flood events following these patterns.
Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael
2016-01-01
The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.
NASA Astrophysics Data System (ADS)
Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan
2017-12-01
An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.
NASA's high-temperature engine materials program for civil aeronautics
NASA Technical Reports Server (NTRS)
Gray, Hugh R.; Ginty, Carol A.
1992-01-01
The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.
First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.
Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko
2016-10-01
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA. Copyright © 2016 Elsevier Inc. All rights reserved.
Chen, Samuel L; Kuo, Isabella J; Kabutey, Nii-Kabu; Fujitani, Roy M
2017-07-01
Certain critically ill patients with advanced acute limb ischemia with a nonviable extremity may be unsuitable for transport to the operating room to undergo definitive amputation. In these unstable patients, rapid regional cryotherapy allows for prompt infectious source control and correction of hemodynamic and metabolic abnormalities, thereby lessening the risk associated with definitive surgical amputation. We describe our refined technique for lower extremity physiologic cryoamputation and review our institutional experience. After adequate analgesia is administered to the patient, a heating pad is secured circumferentially at the proximal amputation margin and the affected extremity is placed in a customized Styrofoam cooler. A circumferential seal is secured at the proximal chill zone without use of a tourniquet and dry ice is placed into the cooler to surround the entire affected leg. Delayed definitive lower extremity amputation is later performed when hemodynamic and metabolic derangements are corrected. We reviewed 5 patients who underwent lower extremity cryoamputation with this technique identified at our institution between 2005 and 2015. Age ranged from 31 to 79 years old. All presented with severe foot infection and septic shock requiring vasopressor support. All 5 patients stabilized hemodynamically following the initial cryoamputation and later underwent definitive lower extremity amputation, with a median time of 3 days following initial cryoamputation. Lower extremity physiologic cryoamputation is an effective, immediate bedside procedure that can provide local source control and the opportunity for correction of metabolic derangements in initially unstable patients to lessen the risk for definitive major lower extremity amputation. Refinement of the cryoamputation technique, as described in this report, allows for a predictable and reproducible physiologic amputation. Copyright © 2017 Elsevier Inc. All rights reserved.
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.
Chagomerana, Maganizo B; Miller, William C; Pence, Brian W; Hosseinipour, Mina C; Hoffman, Irving F; Flick, Robert J; Tweya, Hannock; Mumba, Soyapi; Chimbwandira, Frank; Powers, Kimberly A
2017-04-01
To estimate preterm birth risk among infants of HIV-infected women in Lilongwe, Malawi, according to maternal antiretroviral therapy (ART) status and initiation time under Option B+. A retrospective cohort study of HIV-infected women delivering at ≥27 weeks of gestation, April 2012 to November 2015. Among women on ART at delivery, we restricted our analysis to those who initiated ART before 27 weeks of gestation. We defined preterm birth as a singleton live birth at ≥27 and <37 weeks of gestation, with births at <32 weeks classified as extremely to very preterm. We used log-binomial models to estimate risk ratios and 95% confidence intervals for the association between ART and preterm birth. Among 3074 women included in our analyses, 731 preterm deliveries were observed (24%). Overall preterm birth risk was similar in women who had initiated ART at any point before 27 weeks and those who never initiated ART (risk ratio = 1.14; 95% confidence interval: 0.84 to 1.55), but risk of extremely to very preterm birth was 2.33 (1.39 to 3.92) times as great in those who never initiated ART compared with those who did at any point before 27 weeks. Among women on ART before delivery, ART initiation before conception was associated with the lowest preterm birth risk. ART during pregnancy was not associated with preterm birth, and it may in fact be protective against severe adverse outcomes accompanying extremely to very preterm birth. As preconception ART initiation appears especially protective, long-term retention on ART should be a priority to minimize preterm birth in subsequent pregnancies.
Detection of Oil in Water Column: Sensor Design
2013-02-01
rivers , and initiating dispersant application or oil recovery operations. Challenges in detecting oil within the water column include poor...facility and along transects in the Delaware River . However, all readings were at background, even when there was visible oil on the water surface...levels for extremely high CDOM rich rivers . Detection of Oil in Water Column: Sensor Design 14 UNCLAS//Public | CG-926 RDC | Fitzpatrick, et al
ERIC Educational Resources Information Center
Spano, Richard; Bolland, John
2013-01-01
Two waves of longitudinal data were used to examine the sequencing between violent victimization, violent behavior, and gun carrying in a high-poverty sample of African American youth. Multivariate logistic regression results indicated that violent victimization T1 and violent behavior T1 increased the likelihood of initiation of gun carrying T2…
Extreme jobs: the dangerous allure of the 70-hour workweek.
Hewlett, Sylvia Ann; Luce, Carolyn Buck
2006-12-01
Today's overachieving professionals labor longer, take on more responsibility, and earn more than the workaholics of yore. They hold what Hewlett and Luce call "extreme jobs", which entail workweeks of 60 or more hours and have at least five often characteristics-such as tight deadlines and lots of travel--culled from the authors' research on this work model. A project of the Hidden Brain Drain Task Force, a private-sector initiative, this research consists of two large surveys (one of high earners across various professions in the United States and the other of high-earning managers in large multinational corporations) that map the shape and scope of such jobs, as well as focus groups and in-depth interviews that get at extreme workers' attitudes and motivations. In this article, Hewlett and Luce consider their data in relation to increasing competitive pressures, vastly improved communication technology, cultural shifts, and other sweeping changes that have made high-stakes employment more prominent. What emerges is a complex picture of the all-consuming career-rewarding in many ways, but not without danger to individuals and to society. By and large, extreme professionals don't feel exploited; they feel exalted. A strong majority of them in the United States-66%-say they love their jobs, and in the global companies survey, this figure rises to 76%. The authors' research suggests, however, that women are at a disadvantage. Although they don't shirk the pressure or responsibility of extreme work, they are not matching the hours logged by their male colleagues. This constitutes a barrier for ambitious women, but it also means that employers face a real opportunity: They can find better ways to tap the talents of women who will commit to hard work and responsibility but cannot put in over-long days.
NASA Technical Reports Server (NTRS)
Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.
1985-01-01
Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.
Yu, Dahai; Yang, Jiyu; Fang, Xuexun; Ren, Hejun
2015-01-01
Bioaugmentation is a promising technology for pollutant elimination from stressed environments, and it would provide an efficient way to solve challenges in traditional biotreatment of wastewater with high strength of ammonia nitrogen (NH4(+)-N). A high NH4(+)-N-resistant bacteria strain, identified as Bacillus cereus (Jlu BC), was domesticated and isolated from the bacteria consortium in landfill leachate. Jlu BC could survive in 100 g/L NH4(+)-N environment, which indicated its extremely high NH4(+)-N tolerance than the stains found before. Jlu BC was employed in the bioaugmented system to remove high strength of NH4(+)-N from landfill leachate, and to increase the removal efficiency, response surface methodology (RSM) was used for optimizing bioaugmentation degradation conditions. At the optimum condition (initial pH 7.33, 4.14 days, initial chemical oxygen demand [COD] concentration [18,000 mg/L], 3.5 mL inoculated domesticated bacteria strain, 0.3 mg/mL phosphorus supplement, 30 °C, and 170 rpm), 94.74 ± 3.8% removal rate of NH4(+)-N was obtained, and the experiment data corresponded well with the predicted removal rate of the RSM models (95.50%). Furthermore, COD removal rate of 81.94 ± 1.4% was obtained simultaneously. The results presented are promising, and the screened strain would be of great practical importance in mature landfill leachate and other NH4(+)-N enrichment wastewater pollution control. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Gales, S.
2015-10-01
Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.
Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2003-10-07
The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.
NASA Astrophysics Data System (ADS)
Khodayar, Samiro; Kalthoff, Norbert
2013-04-01
Among all severe convective weather situations, fall season heavy rainfall represents the most threatening phenomenon in the western Mediterranean region. Devastating flash floods occur every year somewhere in eastern Spain, southern France, Italy, or North Africa, being responsible for a great proportion of the fatalities, property losses, and destruction of infrastructure caused by natural hazards. Investigations in the area have shown that most of the heavy rainfall events in this region can be attributed to mesoscale convective systems. The main goal of this investigation is to understand and identify the atmospheric conditions that favor the initiation and development of such systems. Insight of the involved processes and conditions will improve their predictability and help preventing some of the fatal consequences related with the occurrence of these weather phenomena. The HyMeX (Hydrological cycle in the Mediterranean eXperiment) provides a unique framework to investigate this issue. Making use of high-resolution seasonal simulations with the COSMO-CLM model the mean atmospheric conditions of the fall season, September, October and November, are investigated in different western Mediterranean regions such as eastern Spain, Southern France, northern Africa and Italy. The precipitation distribution, its daily cycle, and probability distribution function are evaluated to ascertain the similarities and differences between the regions of interest, as well as the spatial distribution of extreme events. Additionally, the regional differences of the boundary layer and mid-tropospheric conditions, atmospheric stability and inhibition, and low-level triggering are presented. Selected high impact weather HyMeX episodes' are analyzed with special focus on the atmospheric pre-conditions leading to the extreme weather situations. These pre-conditions are then compared to the mean seasonal conditions to identify and point out possible anomalies in the atmospheric conditions which could favor the initiation and intensification of extreme precipitation weather events.
NASA Astrophysics Data System (ADS)
Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David
2017-06-01
Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.
Paleoindian settlement of the high-altitude Peruvian Andes.
Rademaker, Kurt; Hodgins, Gregory; Moore, Katherine; Zarrillo, Sonia; Miller, Christopher; Bromley, Gordon R M; Leach, Peter; Reid, David A; Álvarez, Willy Yépez; Sandweiss, Daniel H
2014-10-24
Study of human adaptation to extreme environments is important for understanding our cultural and genetic capacity for survival. The Pucuncho Basin in the southern Peruvian Andes contains the highest-altitude Pleistocene archaeological sites yet identified in the world, about 900 meters above confidently dated contemporary sites. The Pucuncho workshop site [4355 meters above sea level (masl)] includes two fishtail projectile points, which date to about 12.8 to 11.5 thousand years ago (ka). Cuncaicha rock shelter (4480 masl) has a robust, well-preserved, and well-dated occupation sequence spanning the past 12.4 thousand years (ky), with 21 dates older than 11.5 ka. Our results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America. Copyright © 2014, American Association for the Advancement of Science.
A high-contrast imaging survey of nearby red supergiants
NASA Astrophysics Data System (ADS)
Scicluna, Peter; Siebenmorgen, Ralf; Blommaert, Joris; Kemper, Francisca; Wesson, Roger; Wolf, Sebastian
2017-11-01
Mass-loss in cool supergiants remains poorly understood, but is one of the key elements in their evolution towards exploding as supernovae. Some show evidence of asymmetric mass loss, discrete mass-ejections and outbursts, with seemingly little to distinguish them from more quiescent cases. To explore the prevalence of discrete ejections and companions we have conducted a high-constrast survey using near-infrared imaging and optical polarimetric imaging of nearby southern and equatorial red supergiants, using the extreme adaptive optics instrument SPHERE, which was designed to image planets around nearby stars. We present the initial results of this survey, including the detection of large (500 nm) dust grains in the ejecta of VY CMa and a candidate dusty torus aligned with the maser ring of VX Sgr. We briefly speculate on the consequences for our understanding of mass loss in these extreme stars.
Moguilevski, Alexandre; Wilke, Martin; Grell, Gilbert; Bokarev, Sergey I; Aziz, Saadullah G; Engel, Nicholas; Raheem, Azhr A; Kühn, Oliver; Kiyan, Igor Yu; Aziz, Emad F
2017-03-03
Photoinduced spin-flip in Fe II complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy) 3 ] 2+ , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chiamori, Heather C.; Angadi, Chetan; Suria, Ateeq; Shankar, Ashwin; Hou, Minmin; Bhattacharya, Sharmila; Senesky, Debbie G.
2014-06-01
The development of radiation-hardened, temperature-tolerant materials, sensors and electronics will enable lightweight space sub-systems (reduced packaging requirements) with increased operation lifetimes in extreme harsh environments such as those encountered during space exploration. Gallium nitride (GaN) is a ceramic, semiconductor material stable within high-radiation, high-temperature and chemically corrosive environments due to its wide bandgap (3.4 eV). These material properties can be leveraged for ultraviolet (UV) wavelength photodetection. In this paper, current results of GaN metal-semiconductor-metal (MSM) UV photodetectors behavior after irradiation up to 50 krad and temperatures of 15°C to 150°C is presented. These initial results indicate that GaN-based sensors can provide robust operation within extreme harsh environments. Future directions for GaN-based photodetector technology for down-hole, automotive and space exploration applications are also discussed.
Minute synthesis of extremely stable gold nanoparticles.
Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar
2009-12-16
We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Extremely Preterm Infant Skin Care: A Transformation of Practice Aimed to Prevent Harm.
Johnson, Deanna E
2016-10-01
The skin of extremely preterm infants is underdeveloped and has poor barrier function. Skin maintenance interventions initiated in the neonatal intensive care unit (NICU) have immediate and lifelong implications when the potential for infection, allergen sensitization, and altered aesthetic outcomes are considered. In addition, the high-level medical needs of extremely preterm infants demand skin-level medical interventions that too often result in unintended skin harm. We describe the use of a harm prevention, or consequence-centered, approach to skin care, which facilitates safer practice for extremely premature infants. Neonatal and pediatric Advanced Practice Registered Nurses (APRN) came together for monthly meetings to review the evidence around best skin care practices for extremely preterm infants, with an emphasis on reduction of skin harm. Findings were focused on the population of interest and clinical implementation strategies. Skin care for extremely preterm infants remains overlooked by current literature. However, clinical practice pearls were extracted and applied in a manner that promotes safer skin care practices in the NICU. Gentle adhesives, such as silicone tapes and hydrogel-backed electrodes, can help to reduce medical adhesive-related skin injuries. Diaper wipes are not appropriate for use among extremely preterm infants, as many ingredients may contain potential allergens. Skin cleansers should be pH neutral to the skin and the prophylactic use of petrolatum-based emollients should be avoided. Further exploration and understanding of skin care practices that examine issues of true risk versus hypothetical risk of harm.
Cooper, Lauren B; Hammill, Bradley G; Peterson, Eric D; Pitt, Bertram; Maciejewski, Matthew L; Curtis, Lesley H; Hernandez, Adrian F
2017-01-01
Heart failure guidelines recommend routine monitoring of serum potassium, and renal function in patients treated with a mineralocorticoid receptor antagonist (MRA). How these recommendations are implemented in high-risk patients or according to setting of drug initiation is poorly characterized. We conducted a retrospective cohort study of Medicare beneficiaries linked to laboratory data in 10 states with prevalent heart failure as of July 1, 2011, and incident MRA use between May 1 and September 30, 2011. Outcomes included laboratory testing before MRA initiation and in the early (days 1-10) and extended (days 11-90) post-initiation periods, based on setting of drug initiation and the presence of renal insufficiency. Additional outcomes included abnormal laboratory results and adverse events proximate to MRA initiation. Of 10 443 Medicare beneficiaries with heart failure started on an MRA, 19.7% were initiated during a hospitalization. Appropriate follow-up laboratory testing across all time periods occurred in 25.2% of patients with inpatient initiation compared with 2.8% of patients begun as an outpatient. Patients with chronic kidney disease had higher rates of both hyperkalemia and acute kidney failure in the early (1.3% and 2.7%, respectively) and extended (5.6% and 9.8%, respectively) post-initiation periods compared with those without chronic kidney disease. Patients initiated on MRA therapy as an outpatient had extremely poor rates of guideline indicated follow-up laboratory monitoring after drug initiation. In particular, patients with chronic kidney disease are at high risk for adverse events after MRA initiation. Quality improvement initiatives focused on systems to improve appropriate laboratory monitoring are needed. © 2017 American Heart Association, Inc.
Incidence of injuries in high school softball and baseball players.
Shanley, Ellen; Rauh, Mitchell J; Michener, Lori A; Ellenbecker, Todd S
2011-01-01
Participation in high school sports has grown 16.1% over the last decade, but few studies have compared the overall injury risks in girls' softball and boys' baseball. To examine the incidence of injury in high school softball and baseball players. Cohort study. Greenville, South Carolina, high schools. Softball and baseball players (n = 247) from 11 high schools. Injury rates, locations, types; initial or subsequent injury; practice or game setting; positions played; seasonal trends. The overall incidence injury rate was 4.5/1000 athlete-exposures (AEs), with more injuries overall in softball players (5.6/1000 AEs) than in baseball players (4.0/1000 AEs). Baseball players had a higher initial injury rate (75.9/1000 AEs) than softball players (66.4/1000 AEs): rate ratio (RR) = 0.88, 95% confidence interval (CI) = 0.4, 1.7. The initial injury rate was higher than the subsequent injury rate for the overall sample (P < .0001) and for softball (P < .0001) and baseball (P < .001) players. For both sports, the injury rate during games (4.6/1000 AEs) was similar to that during practices (4.1/1000 AEs), RR = 1.22, 95% CI = 0.7, 2.2. Softball players were more likely to be injured in a game than were baseball players (RR = 1.92, 95% CI = 0.8, 4.3). Most injuries (77%) were mild (3.5/1000 AEs). The upper extremity accounted for the highest proportion of injuries (63.3%). The incidence of injury for pitchers was 37.3% and for position players was 15.3%. The rate of injury was highest during the first month of the season (7.96/1000 AEs). The incidence of injury was low for both softball and baseball. Most injuries were minor and affected the upper extremity. The injury rates were highest in the first month of the season, so prevention strategies should be focused on minimizing injuries and monitoring players early in the season.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
Processes and mechanisms of persistent extreme precipitation events in East China
NASA Astrophysics Data System (ADS)
Zhai, Panmao; Chen, Yang
2014-11-01
This study mainly presents recent progresses on persistent extreme precipitation events (PEPEs) in East China. A definition focusing both persistence and extremity of daily precipitation is firstly proposed. An identification method for quasi-stationary regional PEPEs is then designed. By utilizing the identified PEPEs in East China, typical circulation configurations from the lower to the upper troposphere are confirmed, followed by investigations of synoptic precursors for key components with lead time of 1-2 weeks. Two characteristic circulation patterns responsible for PEPEs in East China are identified: a double blocking high type and a single blocking high type. They may account for occurrence of nearly 80% PEPEs during last 60 years. For double blocking high type, about two weeks prior to PEPEs, two blockings developed and progressed towards the Ural Mountains and the Sea of Okhotsk, respectively. A northwestward progressive anomalous anticyclone conveying abundant moisture and eastward-extended South Asia High favoring divergence can be detected about one week in advance. A dominant summertime teleconnection over East Asia, East Asia/ Pacific (EAP) pattern, is deemed as another typical regime inducing PEPEs in the East China. Key elements of the EAP pattern initiated westward movement since one week prior to PEPEs. Eastward energy dispersion and poleward energy dispersion contributed to early development and subsequent maintenance of this teleconnection pattern, respectively. These typical circulation patterns and significant precursors may offer local forecasters some useful clues in identifying and predicting such high-impact precipitation events about 1-2 weeks in advance.
Requirements UML Tool (RUT) Expanded for Extreme Programming (CI02)
NASA Technical Reports Server (NTRS)
McCoy, James R.
2003-01-01
A procedure for capturing and managing system requirements that incorporates XP user stories. Because costs associated with identifying problems in requirements increase dramatically over the lifecycle of a project, a method for identifying sources of software risks in user stories is urgently needed. This initiative aims to determine a set of guide-lines for user stories that will result in high-quality requirement. To further this initiative, a tool is needed to analyze user stories that can assess the quality of individual user stories, detect sources cf software risk's, produce software metrics, and identify areas in user stories that can be improved.
A model of high-rate indentation of a cylindrical striking pin into a deformable body
NASA Astrophysics Data System (ADS)
Zalazinskaya, E. A.; Zalazinsky, A. G.
2017-12-01
Mathematical modeling of an impact and high-rate indentation to a significant depth of a flat-faced hard cylindrical striking pin into a massive deformable target body is carried out. With the application of the kinematic extreme theorem of the plasticity theory and the kinetic energy variation theorem, the phase trajectories of the striking pin are calculated, the initial velocity of the striking pin in the body, the limit values of the inlet duct length, and the depth of striking pin penetration into the target are determined.
Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)
NASA Astrophysics Data System (ADS)
Wu, Tao; Efimenko, Kirill; Genzer, Jan
2001-03-01
We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.
Neutron Time-of-Flight Diffractometer HIPPO at LANSCE
NASA Astrophysics Data System (ADS)
Vogel, Sven; Williams, Darrick; Zhao, Yusheng; Bennett, Kristin; von Dreele, Bob; Wenk, Hans-Rudolf
2004-03-01
The High-Pressure Preferred Orientation (HIPPO) neutron diffractometer is the first third-generation neutron time-of-flight powder diffractometer to be constructed in the United States. It produces extremely high intensity by virtue of a short (9 m) initial flight path on a high intensity water moderator and 1380 3He detector tubes covering 4.5 m2 of detector area from 10' to 150' in scattering angles. HIPPO was designed and manufactured as a joint effort between LANSCE and University of California with the goals of attaining world-class science and making neutron powder diffractometry an accessible and available tool to the national user community. Over two decades of momentum transfer are available (0.1-30 A-1) to support studies of amorphous solids; magnetic diffraction; small crystalline samples; and samples subjected to extreme environments such as temperature, pressure, or magnetic fields. The exceptionally high data rates of HIPPO also make it useful for time-resolved studies. In addition to the standard ancillary equipment (100-position sample/texture changer, closed-cycle He refrigerator, furnace), HIPPO has unique high-pressure cells capable of achieving pressures of 30 GPA at ambient and high (2000 K) temperature with samples up to 100 mm3 in volume.
NASA Technical Reports Server (NTRS)
Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.
2004-01-01
High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.
Tertiary survey in polytrauma patients should be an ongoing process.
Ferree, Steven; Houwert, Roderick M; van Laarhoven, Jacqueline J E M; Smeeing, Diederik P J; Leenen, Luke P H; Hietbrink, Falco
2016-04-01
Due to prioritisation in the initial trauma care, non-life threatening injuries can be overlooked or temporally neglected. Polytrauma patients in particular might be at risk for delayed diagnosed injuries (DDI). Studies that solely focus on DDI in polytrauma patients are not available. Therefore the aim of this study was to analyze DDI and determine risk factors associated with DDI in polytrauma patients. In this single centre retrospective cohort study, patients were considered polytrauma when the Injury Severity Score was ≥ 16 as a result of injury in at least 2 body regions. Adult polytrauma patients admitted from 2007 until 2012 were identified. Hospital charts were reviewed to identify DDI. 1416 polytrauma patients were analyzed of which 12% had DDI. Most DDI were found during initial hospital admission after tertiary survey (63%). Extremities were the most affected regions for all types of DDI (78%) with the highest intervention rate (35%). Most prevalent DDI were fractures of the hand (54%) and foot (38%). In 2% of all patients a DDI was found after discharge, consisting mainly of injuries other than a fracture. High energy trauma mechanism (OR 1.8, 95% CI 1.2-2.7), abdominal injury (OR 1.5, 95% CI 1.1-2.1) and extremity injuries found during initial assessment (OR 2.3, 95% CI 1.6-3.3) were independent risk factors for DDI. In polytrauma patients, most DDI were found during hospital admission but after tertiary survey. This demonstrates that the tertiary survey should be an ongoing process and thus repeated daily in polytrauma patients. Most frequent DDI were extremity injuries, especially injuries of the hand and foot. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cole, Conrad R.; Hansen, Nellie I.; Higgins, Rosemary D.; Ziegler, Thomas R.; Stoll, Barbara J.
2009-01-01
OBJECTIVES The objective of this study was to determine the (1) incidence of short bowel syndrome in very low birth weight (<1500 g) infants, (2) associated morbidity and mortality during initial hospitalization, and (3) impact on short-term growth and nutrition in extremely low birth weight (<1000 g) infants. METHODS Infants who were born from January 1, 2002, through June 30, 2005, and enrolled in the National Institute of Child Health and Human Development Neonatal Research Network were studied. Risk factors for developing short bowel syndrome as a result of partial bowel resection (surgical short bowel syndrome) and outcomes were evaluated for all neonates until hospital discharge, death, or 120 days. Extremely low birth weight survivors were further evaluated at 18 to 22 months’ corrected age for feeding methods and growth. RESULTS The incidence of surgical short bowel syndrome in this cohort of 12 316 very low birth weight infants was 0.7%. Necrotizing enterocolitis was the most common diagnosis associated with surgical short bowel syndrome. More very low birth weight infants with short bowel syndrome (20%) died during initial hospitalization than those without necrotizing enterocolitis or short bowel syndrome (12%) but fewer than the infants with surgical necrotizing enterocolitis without short bowel syndrome (53%). Among 5657 extremely low birth weight infants, the incidence of surgical short bowel syndrome was 1.1%. At 18 to 22 months, extremely low birth weight infants with short bowel syndrome were more likely to still require tube feeding (33%) and to have been rehospitalized (79%). Moreover, these infants had growth delay with shorter lengths and smaller head circumferences than infants without necrotizing enterocolitis or short bowel syndrome. CONCLUSIONS Short bowel syndrome is rare in neonates but has a high mortality rate. At 18 to 22 months’ corrected age, extremely low birth weight infants with short bowel syndrome were more likely to have growth failure than infants without short bowel syndrome. PMID:18762491
Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk
2014-01-01
Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention.
Heating-insensitive scale increase caused by convective precipitation
NASA Astrophysics Data System (ADS)
Haerter, Jan; Moseley, Christopher; Berg, Peter
2017-04-01
The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective extremes, we conclude that the formation of extreme events is a highly nonlinear process. However, our results suggest that crucial features of convective organization throughout the day may be independent of temperature - with possible implications for large-scale model parameterizations. Yet, the timing of the onset of initial precipitation depends strongly on the temperature boundary conditions, where higher temperatures, or earlier, moderate heating, lead to earlier initiation of convection and hence allow for more time for development and the production of extremes.
Identifying and Clarifying Organizational Values.
ERIC Educational Resources Information Center
Seevers, Brenda S.
2000-01-01
Of the 14 organizational values ranked by a majority of 146 New Mexico Cooperative Extension educators as extremely valued, 9 were extremely evident in organizational policies and procedures. A values audit such as this forms an important initial step in strategic planning. (SK)
NASA Astrophysics Data System (ADS)
Mayhew, Ellen R.
1994-07-01
Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.
Serious infectious complications related to extremity cast/splint placement in children.
Delasobera, B Elizabeth; Place, Rick; Howell, John; Davis, Jonathan E
2011-07-01
Extremity injuries necessitating splinting or casting are commonly seen in the emergency department (ED) setting. Subsequently, it is not uncommon for patients to present to the ED with complaints related to an extremity cast or splint. To present a literature-based approach to the identification and initial management of patients with possible infectious cast/splint complications in the ED setting. We present two cases of serious infectious complications arising from extremity cast/splint placement seen in a single pediatric ED: a case of toxic shock syndrome in an 8-year-old child, and a case of necrotizing fasciitis resulting in upper extremity amputation in a 3-year-old child. A wide spectrum of potential extremity cast/splint infectious complications may be seen, which include limb- or life-threatening infections such as toxic shock syndrome and necrotizing fasciitis. Simply considering these diagnoses, and removing the cast or splint to carefully inspect the affected extremity, are potential keys to early identification and optimal outcome of cast/splint complications. It is also prudent to maintain particular vigilance when treating a patient with a water-exposed cast, which may lead to moist padding, skin breakdown, and potential infection. In patients with suspected serious infections, aggressive fluid management and antibiotic therapy should be initiated and appropriate surgical consultation obtained without delay. Copyright © 2011 Elsevier Inc. All rights reserved.
[Severely increased serum lipid levels in diabetic ketoacidosis - case report].
Stefansson, Hrafnkell; Sigvaldason, Kristinn; Kjartansson, Hilmar; Sigurjonsdottir, Helga Águsta
2017-01-01
Severe hypertriglyceridemia is a known, but uncommon complication of diabetic ketoacidosis. We discuss the case of a 23-year-old, previously healthy, woman who initially presented to the emergency department with abdominal pain. Grossly lipemic serum due to extremely high triglyceride (38.6 mmol/L) and cholesterol (23.2 mmol/L) levels were observed with a high blood glucose (23 mmol/L) and a low pH of 7.06 on a venous blood gas. She was treated successfully with fluids and insulin and had no sequale of pancreatitis or cerebral edema. Her triglycerides and cholesterol was normalized in three days and she was discharged home on insulin therapy after five days. Further history revealed a recent change in diet with no meat, fish or poultry consumption in the last 12 months and concomitantly an increase in carbohydrate intake which might have contributed to her extremely high serum lipid levels. This case demonstrates that clinicians should be mindful of the different presentations of diabetic ketoacidosis. Key words: diabetic ketoacidosis, hypertriglyceridemia, hyperlipidemia, vegan diet, carbohydrate diet. Correspondence: Hrafnkell Stefansson, hrafnkell.stefans@gmail.com.
Extreme Ultraviolet Explorer Bright Source List
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick
1994-01-01
Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.
Vogt-Koyanagi-Harada syndrome presenting with encephalopathy
Naeini, Alireza E.; Daneshmand, Dana; Khorvash, Farzin; Chitsaz, Ahmad
2014-01-01
Vogt-Koyanagi-Harada (VKH) is a rare syndrome affecting tissues containing melanocytes. The possibility of its autoimmune pathogenesis is supported by high frequent HLA-DR4 presentation, commonly associated with other autoimmune diseases. Eyes are the main affected organs, resulting in blindness. Brain disease is a late-onset event, and is extremely rare. Here, we are reporting a 57-year-old woman, a known case of VKH syndrome, presenting with brain encephalopathy several decades after the initial presentation. We think this long period between initial presentation and presentation of encephalopathy due to VKH syndrome has not been described before. She was treated with corticosteroids and discharged home with a good general condition. PMID:24753681
NASA Astrophysics Data System (ADS)
White, C. J.; Franks, S. W.; McEvoy, D.
2015-06-01
Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.
Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Lee, Geun Woo
2017-05-01
We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH 2 PO 4 ) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.
A young child with fever, alopecia, and skin nodules: a clinicopathological conference.
Vignesh, Pandiarajan; Gupta, Aman; Suri, Deepti; Chatterjee, Debajyoti; Saikia, Uma Nahar; Trehan, Amita; Singh, Surjit
2017-11-21
The illness started as a continuous high-grade fever noted up to 103°F.. Subsequently, he also developed red painful skin nodules that initially appeared over shins and later progressed to involve thighs, trunks, upper extremities, and face. The nodules also appeared over scalp and there was a was a progressive loss of scalp hair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Effect of Defects on Mechanisms of Initiation and Energy Release in Energetic Molecular Crystals
2011-02-10
dynamics of NEEMs ," Aberdeen, MD, Mar. 2010. 60. Dana Dlott (invited) American Chemical Society Annual Meeting, "Vibrational Energy in Molecules with High...hydrocarbons to ascertain their stability under extreme conditions. Also, HEs are often mixed with fuel oils as well so we sought to separately...dependence of the EOS. Ab initio calculations were performed to extract the complete equation of state for an organic molecular crystal over a
B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1)
2013-12-01
2012 FEB 2012 FEB 2012 FEB 2012 Final DIOT&E flight JUL 2012 JUL 2012 JUL 2012 JUL 2012 RAA MAR 2015 MAR 2015 MAR 2016 MAR 2015 Change Explanations...None Memo RAA is defined as eight assigned aircraft modified, sufficient aircrews and maintenance personnel trained, sufficient aircrew and...incremental upgrade. Acronyms and Abbreviations DIOT&E - Dedicated Initial Operational Test and Evaluation RAA - Required Assets Available B-2 EHF Inc 1
Frontal plane landing mechanics in high-arched compared with low-arched female athletes.
Powell, Douglas W; Hanson, Nicholas J; Long, Benjamin; Williams, D S Blaise
2012-09-01
To examine ground reaction forces (GRFs); frontal plane hip, knee, and ankle joint angles; and moments in high-arched (HA) and low-arched (LA) athletes during landing. Experimental study. Controlled research laboratory. Twenty healthy female recreational athletes (10 HA and 10 LA). Athletes performed 5 barefoot drop landings from a height of 30 cm. Frontal plane ankle, knee, and hip joint angles (in degrees) at initial contact, peak vertical GRF, and peak knee flexion; peak ankle, knee, and hip joint moments in the frontal plane. Vertical GRF profiles were similar between HA and LA athletes (P = 0.78). The HA athletes exhibited significantly smaller peak ankle inversion angles than the LA athletes (P = 0.01) at initial contact. At peak vertical GRF, HA athletes had significantly greater peak knee (P = 0.01) and hip abduction angles than LA athletes (P = 0.02). There were no significant differences between HA and LA athletes in peak joint moments (hip: P = 0.68; knee: P = 0.71; ankle: P = 0.15). These findings demonstrate that foot type is associated with altered landing mechanics, which may underlie lower extremity injuries. The ankle-driven strategy previously reported in female athletes suggests that foot function may have a greater relationship with lower extremity injury than that in male athletes. Future research should address the interaction of foot type and gender during landing tasks.
NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.
1992-01-01
The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.
The HZE radiation problem. [highly-charged energetic galactic cosmic rays
NASA Technical Reports Server (NTRS)
Schimmerling, Walter
1990-01-01
Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.
Extreme Task-Specificity in Writer’s Cramp
Shamim, Ejaz A.; Chu, Jason; Scheider, Linda H.; Savitt, Joseph; Jinnah, H. A.; Hallett, Mark
2011-01-01
Background Focal hand dystonia may be task-specific as is the case with writer’s cramp (WC). In early stages, the task-specificity can be so specific that it may be mistaken for a psychogenic movement disorder. Methods We describe four patients who showed extreme task specificity in WC. They initially only had problems writing either a single letter or number. Although they were largely thought to be psychogenic, they progressed to typical WC. Conclusions Early recognition of this condition may provide an opportunity for early initiation of treatment. PMID:21714006
Numerical investigation of freak waves
NASA Astrophysics Data System (ADS)
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).
NASA Astrophysics Data System (ADS)
Doerr, Stefan H.; Shakesby, Richard A.; Sheridan, Gary J.; Lane, Patrick Nj; Smith, Hugh G.; Bell, Tina; Blake, William H.
2010-05-01
The recent catastrophic wildfires near Melbourne, which peaked on Feb. 7 2009, burned ca 400,000 ha and caused the tragic loss of 173 people. They occurred during unprecedented extreme fire weather where dry northerly winds gusting up to 100 km/h coincided with the highest temperatures ever recorded in this region. These conditions, combined with the very high biomass of mature eucalypt forests, very low fuel moisture conditions and steep slopes, generated extreme burning conditions. A rapid response project was launched under the NERC Urgency Scheme aimed at determining the effects of this extreme event on soil properties. Three replicate sites each were sampled for extremely high burn severity, high burn severity and unburnt control terrain, within mature mixed-species eucalypt forests near Marysville in April 2009. Ash and surface soil (0-2.5 cm and 2.5-5 cm) were collected at 20 sample grid points at each site. Here we report on outcomes from Water Drop Penetration Time (WDPT) tests carried out on soil samples to determine the impact of this extreme event on the wettability of a naturally highly water repellent soil. Field assessment suggested that the impact of this extreme wildfire on the soil was less than might be supposed given the extreme burn severity (indicated by the complete elimination of the ground vegetation). This was confirmed by the laboratory results. No major difference in WDPT was detected between (i) burned and control samples, and (ii) between surface and subsurface WDPT patterns, indicating that soil temperatures in the top 0-2.5 cm did not exceed ~200° C. Seedling germination in burned soil was reduced by at least 2/3 compared to the control samples, however, this reduction is indicative an only modest heat input into the soil. The limited heat input into the soil stands in stark contrast to the extreme burn severity (based on vegetation destruction parameters). We speculate that limited soil heating resulted perhaps from the unusually fast-moving fire front and the resultant short fire residence time during this event. Thick ash layers were present at the time of sampling despite some significant earlier pre-sampling rainfall events. This suggests that the wettable ash (up to 15 cm thick) was able to store substantial amounts of water, which would otherwise have formed overland flow moving over the highly water repellent underlying mineral soil. Once this hydrological ‘sponge' is removed, the lack of ground cover is expected to lead to the underlying soil being susceptible to erosion until the ground cover becomes re-established. This ‘erosion window‘ is likely to be relatively brief over much of the burnt area as the vegetation is already showing a comparatively rapid regrowth response. This is supported by initial results from laboratory germination experiments, which showed seedling emergence from even the most severely burnt sites. The factors contributing to the fire impacts determined here are explored in conjunction with predictions for future burn severity under a changing climate. The soil samples collected represent a reference soil sample collection, which are available to the scientific community for further investigation.
A new framework for estimating return levels using regional frequency analysis
NASA Astrophysics Data System (ADS)
Winter, Hugo; Bernardara, Pietro; Clegg, Georgina
2017-04-01
We propose a new framework for incorporating more spatial and temporal information into the estimation of extreme return levels. Currently, most studies use extreme value models applied to data from a single site; an approach which is inefficient statistically and leads to return level estimates that are less physically realistic. We aim to highlight the benefits that could be obtained by using methodology based upon regional frequency analysis as opposed to classic single site extreme value analysis. This motivates a shift in thinking, which permits the evaluation of local and regional effects and makes use of the wide variety of data that are now available on high temporal and spatial resolutions. The recent winter storms over the UK during the winters of 2013-14 and 2015-16, which have caused wide-ranging disruption and damaged important infrastructure, provide the main motivation for the current work. One of the most impactful natural hazards is flooding, which is often initiated by extreme precipitation. In this presentation, we focus on extreme rainfall, but shall discuss other meteorological variables alongside potentially damaging hazard combinations. To understand the risks posed by extreme precipitation, we need reliable statistical models which can be used to estimate quantities such as the T-year return level, i.e. the level which is expected to be exceeded once every T-years. Extreme value theory provides the main collection of statistical models that can be used to estimate the risks posed by extreme precipitation events. Broadly, at a single site, a statistical model is fitted to exceedances of a high threshold and the model is used to extrapolate to levels beyond the range of the observed data. However, when we have data at many sites over a spatial domain, fitting a separate model for each separate site makes little sense and it would be better if we could incorporate all this information to improve the reliability of return level estimates. Here, we use the regional frequency analysis approach to define homogeneous regions which are affected by the same storms. Extreme value models are then fitted to the data pooled from across a region. We find that this approach leads to more spatially consistent return level estimates with reduced uncertainty bounds.
TRMM- and GPM-based precipitation analysis and modelling in the Tropical Andes
NASA Astrophysics Data System (ADS)
Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Onof, Christian
2016-04-01
Despite wide-spread applications of satellite-based precipitation products (SPPs) throughout the TRMM-era, the scarcity of ground-based in-situ data (high density gauge networks, rainfall radar) in many hydro-meteorologically important regions, such as tropical mountain environments, has limited our ability to evaluate both SPPs and individual satellite-based sensors as well as accurately model or merge rainfall at high spatial resolutions, particularly with respect to extremes. This has restricted both the understanding of sensor behaviour and performance controls in such regions as well as the accuracy of precipitation estimates and respective hydrological applications ranging from water resources management to early warning systems. Here we report on our recent research into precipitation analysis and modelling using various TRMM and GPM products (2A25, 3B42 and IMERG) in the tropical Andes. In an initial study, 78 high-frequency (10-min) recording gauges in Colombia and Ecuador are used to generate a ground-based validation dataset for evaluation of instantaneous TRMM Precipitation Radar (TPR) overpasses from the 2A25 product. Detection ability, precipitation time-series, empirical distributions and statistical moments are evaluated with respect to regional climatological differences, seasonal behaviour, rainfall types and detection thresholds. Results confirmed previous findings from extra-tropical regions of over-estimation of low rainfall intensities and under-estimation of the highest 10% of rainfall intensities by the TPR. However, in spite of evident regionalised performance differences as a function of local climatological regimes, the TPR provides an accurate estimate of climatological annual and seasonal rainfall means. On this basis, high-resolution (5 km) climatological maps are derived for the entire tropical Andes. The second objective of this work is to improve the local precipitation estimation accuracy and representation of spatial patterns of extreme rainfall probabilities over the region. For this purpose, an ensemble of high-resolution rainfall fields is generated by stochastic simulation using space-time averaged, coarse-scale (daily, 0.25°) satellite-based rainfall inputs (TRMM 3B42/ -RT) and the high-resolution climatological information derived from the TPR as spatial disaggregation proxies. For evaluation and merging, gridded ground-based rainfall fields are generated from gauge data using sequential simulation. Satellite and ground-based ensembles are subsequently merged using an inverse error weighting scheme. The model was tested over a case study in the Colombian Andes with optional coarse-scale bias correction prior to disaggregation and merging. The resulting outputs were assessed in the context of Generalized Extreme Value theory and showed improved estimation of extreme rainfall probabilities compared to the original TMPA inputs. Initial findings using GPM-IMERG inputs are also presented.
NASA Astrophysics Data System (ADS)
Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.
2017-12-01
Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.
[Differential diagnosis of skin changes on the lower extremities in chronic venous insufficiency].
Binder, Barbara
2016-06-01
Varicous veins and postthrombotic syndrome can make typical reversible or irreversible skin changes on the lower extremities if no treatment is initiated. The typical clinical signs should be recognised in an early stage and possible differential diagnoses have to be excluded.
Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk
2014-01-01
Objective: Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Methods: Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Results: Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Conclusion: Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention. PMID:25202258
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows
NASA Technical Reports Server (NTRS)
Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.
2014-01-01
Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.
Bacterial community initial development in proglacial soils of Larsemann hill, East Antarctica
NASA Astrophysics Data System (ADS)
Ma, H.; Yan, W.; Shi, G.; Sun, B.; Zhang, Y.; Xiao, X.
2016-12-01
Glacial forefields are considered ideal places to explore how microbial communities will response to climate-driven environmental changes. Our knowledge of how the bacterial community activities and structure was influenced by changing environment due to glacier retreat is still very limited, especially at the initial stage of glacier retreat. The short gradient soil samples including the ice free and ice covered sites were sampled in the forehead of East Antarctica ice sheet, in Larsemann Hills. By employing the Miseq sequencing methods, 1.8 x104 high-quality sequences were gotten for each sample and the bacterial diversity including abundant bacteria and rare bacteria were studied and compared between the gradient samples. Even though in such an extreme stress condition, the bacterial diversity was high. The coefficient of variance between the five sites of abundant group was 0.886 which was higher than that of the top 20 rare group (0.159) significantly (unpaired t test, p-value<0.0001) suggesting that the abundant bacterial communities were more sensitive to the ice sheet change in the initial stage than rare bacteria did. And the abundant bacteria contributed the community structure more than the rare bacteria did. The rare group acted more like seed bank to keep the community functionality in the forehead of sheet. And the ice thickness was the major factor to affect the abundant bacterial community. Given the fact that Antarctica environment was more sensitive to the global warming, the study about abundant and rare bacteria response to condition change will be helpful to precisely predict community response to climate change in polar region. This finding will improve the understanding about the relationship between community structure and environment condition in extreme stress condition.
A Yang-Mills field on the extremal Reissner-Nordström black hole
NASA Astrophysics Data System (ADS)
Bizoń, Piotr; Kahl, Michał
2016-09-01
We consider a spherically symmetric (magnetic) SU(2) Yang-Mills field propagating on the exterior of the extremal Reissner-Nordström black hole. Taking advantage of the conformal symmetry, we reduce the problem to the study of the Yang-Mills equation in a geodesically complete spacetime with two asymptotically flat ends. We prove the existence of infinitely many static solutions (two of which are found in closed form) and determine the spectrum of their linear perturbations and quasinormal modes. Finally, using the hyperboloidal approach to the initial value problem, we describe the process of relaxation to the static endstates of evolution, both stable (for generic initial data) and unstable (for codimension-one initial data).
Silent Aircraft Initiative Concept Risk Assessment
NASA Technical Reports Server (NTRS)
Nickol, Craig L.
2008-01-01
A risk assessment of the Silent Aircraft Initiative's SAX-40 concept design for extremely low noise has been performed. A NASA team developed a list of 27 risk items, and evaluated the level of risk for each item in terms of the likelihood that the risk would occur and the consequences of the occurrence. The following risk items were identified as high risk, meaning that the combination of likelihood and consequence put them into the top one-fourth of the risk matrix: structures and weight prediction; boundary-layer ingestion (BLI) and inlet design; variable-area exhaust and thrust vectoring; displaced-threshold and continuous descent approach (CDA) operational concepts; cost; human factors; and overall noise performance. Several advanced-technology baseline concepts were created to serve as a basis for comparison to the SAX-40 concept. These comparisons indicate that the SAX-40 would have significantly greater research, development, test, and engineering (RDT&E) and production costs than a conventional aircraft with similar technology levels. Therefore, the cost of obtaining the extremely low noise capability that has been estimated for the SAX-40 is significant. The SAX-40 concept design proved successful in focusing attention toward low noise technologies and in raising public awareness of the issue.
Incidence of Injuries in High School Softball and Baseball Players
Shanley, Ellen; Rauh, Mitchell J.; Michener, Lori A.; Ellenbecker, Todd S.
2011-01-01
Context: Participation in high school sports has grown 16.1% over the last decade, but few studies have compared the overall injury risks in girls' softball and boys' baseball. Objective: To examine the incidence of injury in high school softball and baseball players. Design: Cohort study. Setting: Greenville, South Carolina, high schools. Patients or Other Participants: Softball and baseball players (n = 247) from 11 high schools. Main Outcome Measure(s): Injury rates, locations, types; initial or subsequent injury; practice or game setting; positions played; seasonal trends. Results: The overall incidence injury rate was 4.5/1000 athlete-exposures (AEs), with more injuries overall in softball players (5.6/1000 AEs) than in baseball players (4.0/1000 AEs). Baseball players had a higher initial injury rate (75.9/1000 AEs) than softball players (66.4/1000 AEs): rate ratio (RR) = 0.88, 95% confidence interval (CI) = 0.4, 1.7. The initial injury rate was higher than the subsequent injury rate for the overall sample (P < .0001) and for softball (P < .0001) and baseball (P < .001) players. For both sports, the injury rate during games (4.6/1000 AEs) was similar to that during practices (4.1/1000 AEs), RR = 1.22, 95% CI = 0.7, 2.2. Softball players were more likely to be injured in a game than were baseball players (RR = 1.92, 95% CI = 0.8, 4.3). Most injuries (77%) were mild (3.5/1000 AEs). The upper extremity accounted for the highest proportion of injuries (63.3%). The incidence of injury for pitchers was 37.3% and for position players was 15.3%. The rate of injury was highest during the first month of the season (7.96/1000 AEs). Conclusions: The incidence of injury was low for both softball and baseball. Most injuries were minor and affected the upper extremity. The injury rates were highest in the first month of the season, so prevention strategies should be focused on minimizing injuries and monitoring players early in the season. PMID:22488191
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Olson, K. J.; McGee, D.; Lowenstein, T. K.; Smoot, J. P.; Janick, J. J.; Lund, S.; Peaple, M.; Chen, C. Y.; Feakins, S. J.; Litwin, R.
2017-12-01
Over decadal to millennial scales, the southwestern U.S has experienced large shifts in hydroclimate ranging from pluvial conditions to extreme droughts. Direct observations, modeling and proxy data suggest precipitation amount and distribution are controlled by multiple factors including the position of the Hadley Cell, strength of the Aleutian Low and North Pacific High, ENSO and the path of winter storm tracks. Sediment records from closed basin lakes provide a means for assessing how hydrologic conditions have responded to past climate changes; however, long (>50 ka) paleoclimate records from lakes are rare and high-resolution age models are challenging to obtain. Searles Lake, in southeastern California, contains a sedimentary record that spans from the Holocene to the Pliocene at high resolution. Previous drill core studies from the basin used stratigraphy and sediment mineralogy to interpret paleoenvironmental changes and have demonstrated that the lake's sediments are able to be precisely dated. These results provide a strong foundation for new high-resolution investigations of the lake sediments. In January 2017, our group collected a new 80 m-long core with the aim of reconstructing hydrologic changes over the last 150 ka at millennial or better resolution. The core was split at the National Lacustrine Core Facility (LacCore) in June. The core contains alternating evaporite layers and finely laminated muds which likely indicate times of dryer and wetter conditions. Despite the challenge of alternating lithologies, core recovery and quality are extremely high. Here, we will present our initial chronological and stratigraphic findings. The core record will be dated using a combination of U/Th, 14C and magnetostratigraphy. We will compare our initial stratigraphic description to the existing Searles Lake literature as well as other records from the region, such as data from Devils Hole. These results provide the framework upon which we will develop detailed stratigraphic and crystallographic interpretations as well as a host of proxy records including leaf waxes, pollen and stable isotopes to advance our understanding of paleoenvironment and paleoclimate.
Security, Extremism and Education: Safeguarding or Surveillance?
ERIC Educational Resources Information Center
Davies, Lynn
2016-01-01
This article analyses how education is positioned in the current concerns about security and extremism. This means firstly examining the different meanings of security (national, human and societal) and who provides security for whom. Initially, a central dilemma is acknowledged: that schooling appears to be simultaneously irrelevant to the huge…
Bose, Ranjita K; Lau, Kenneth K S
2010-08-09
In this work, poly(2-hydroxyethyl methacrylate) (PHEMA), a widely used hydrogel, is synthesized using initiated chemical vapor deposition (iCVD), a one-step surface polymerization that does not use any solvents. iCVD synthesis is capable of producing linear stoichiometric polymers that are free from entrained unreacted monomer or solvent and, thus, do not require additional purification steps. The resulting films, therefore, are found to be noncytotoxic and also have low nonspecific protein adsorption. The kinetics of iCVD polymerization are tuned so as to achieve rapid deposition rates ( approximately 1.5 microm/min), which in turn yield ultrahigh molecular weight polymer films that are mechanically robust with good water transport and swellability. The films have an extremely high degree of physical chain entanglement giving rise to high tensile modulus and storage modulus without the need for chemical cross-linking that compromises hydrophilicity.
Extreme sensitivity of graphene photoconductivity to environmental gases.
Docherty, Callum J; Lin, Cheng-Te; Joyce, Hannah J; Nicholas, Robin J; Herz, Laura M; Li, Lain-Jong; Johnston, Michael B
2012-01-01
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.
Reaction-induced rheological weakening enables oceanic plate subduction.
Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi
2016-08-26
Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.
Chemical and physical microenvironments at the Viking landing sites
NASA Technical Reports Server (NTRS)
Clark, B. C.
1979-01-01
Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmosphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastes may be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.
Lee, Ching-Yu; Li, Yen-Yao; Huang, Tsan-Wen; Huang, Tsung-Yu; Hsu, Wei-Hsiu; Tsai, Yao-Hung; Huang, Jou-Chen; Huang, Kuo-Chin
2016-12-01
No reports have been published on synchronous multifocal necrotizing fasciitis (SMNF), a multifocal presence of necrotizing fasciitis in different extremities. We evaluated the clinical characteristics and outcomes of SMNF. Eighteen patients (14 men, 4 women; mean age: 59 years) diagnosed with SMNF of the extremities between January 2004 to December 2012 were enrolled and evaluated. Vibrio species were the most commonly (78%; n = 14) isolated; others were two cases (11%) of Aeromonas spp., one case (6%) of group A β-hemolytic streptococcus, and one case of coagulase-negative staphylococcus. SMNF was in the bilateral lower limbs (72%; n = 13), bilateral upper limbs (17%; n = 3), and one patient with one upper and one lower limb (11%). Non-surviving patients had more bilateral lower limb involvement and thrombocytopenia. Most patients with SMNF were male and had bilateral lower limb and marine Gram-negative bacteria involvement. The mortality of SMNF remained extremely high in patients with involvement of bilateral lower limb and initial thrombocytopenia.
Chemical and physical microenvironments at the Viking landing sites.
Clark, B C
1979-12-01
Physical and chemical considerations permit the division of the near-surface regolith on Mars into at least six zones of distinct microenvironments. The zones are euphotic, duricrust/peds, tempofrost, permafrost, endolithic, and interfacial/transitional. Microenvironments vary significantly in temperature extremes, mean temperature, salt content, relative pressure of water vapor, UV and visible light irradiance, and exposure to ionizing radiation events (100 Mrad) and oxidative molecular species. From what is known of the chemistry of the atmosphere and regolith fines (soil), limits upon the aqueous chemistry of soil pastes may be estimated. Heat of wetting could reach 45 cal/g dry soil; initial pH is indeterminate between 1 and 10; ionic strength and salinity are predicted to be extremely high; freezing point depression is inadequate to provide quantities of liquid water except in special cases. The prospects for biotic survival are grim by terrestrial standards, but the extremes of biological resiliency are inaccessible to evaluation. Second-generation in situ experiments which will better define Martian microenvironments are clearly possible. Antarctic dry valleys are approximations to Martian conditions, but deviate significantly by at least half-a-dozen criteria.
Current Status of the Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2002-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). An experimental GDM device has been constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. An initial shakedown of the device is currently underway with initial experiments slated to occur in late 2001. This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. The high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. The high plasma density results in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. The device has been constructed to allow a considerable degree of flexibility in its configuration thus permitting the experiment to grow over time without necessitating a great deal of additional fabrication.
Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels
NASA Technical Reports Server (NTRS)
Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry
1998-01-01
As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.
Schindelholz, Eric J.; Christie, Michael A.; Allwein, Shawn P.; ...
2016-06-21
During routine pharmaceutical development and scale-up work, severe corrosion of a Hastelloy Alloy C-22 filter dryer was observed after single, short (several hours) contact with the product slurry at room temperature. Initial investigations showed that the presence of both 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HCl was sufficient in an acetonitrile solution to cause rapid corrosion of C-22. More detailed mass loss studies showed initial corrosion rates exceeding25 mm/year that then decreased over several hours to steady state rates of 3-5 mm/year. The corrosion was highly uniform. Electrochemical measurements demonstrated that although C-22 is spontaneously passive in acetonitrile solution, the presence of HClmore » leads to the development of a transpassive region. Furthermore, DDQ is a sufficiently strong oxidizer, particularly in acidic solutions, to polarize the C-22 well into the transpassive region, leading to the observed high corrosion rates.« less
NASA Astrophysics Data System (ADS)
Castro, C.
2013-05-01
Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.
Strategic Policy for Pandemic Vaccine Distribution
2010-09-01
Act (PREP Act) was passed as part of the “Department of Defense, Emergency Supplemental Appropriations to address hurricanes in the Gulf of Mexico ...few respondents stated, “It caught us by surprise!” The next pandemic was to have come over from Asia. H1N1 came up quickly through Mexico . It was...discussion. The severity of H1N1 in Mexico was extremely high initially, in addition to the attack rate. The case fatality rate exceeded 65 percent.9 A
Horstkotte, M A; Knobloch, J K; Rohde, H; Mack, D
2001-10-01
The detection of PBP 2a by the MRSA-Screen latex agglutination test with 201 clinical coagulase-negative staphylococci had an initial sensitivity of 98% and a high degree of specificity for Staphylococcus epidermidis strains compared to PCR for mecA. Determination of oxacillin MICs evaluated according to the new breakpoint (0.5 microg/ml) of the National Committee for Clinical Laboratory Standards exhibited an extremely low specificity for this population.
Design of Advanced Blading for a High-Speed HP Compressor Using an S1-S2 Flow Calculation System.
1990-11-01
Howell multistage compressor speed squared) and pressure ratio for the initial prediction method (7), with an arbitrary increase of design are given in...improved performance of axial compressors with leading designs to be produced with the current SI-S2 edge normal shock waves, system. However, it is...performance of the new (7) Howell A R and Calvert W J, A new stage- design was extremely encouraging, with a peak stacking technique for axial -flow
Thermodynamic Environments Supporting Extreme Convection in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Trier, S. B.
2015-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems (MCSs) similar to those seen over the U.S. Great Plains and produces damaging tornadoes, hail, and floods across a wide agricultural region. In recent years, studies on the nature of convection in subtropical South America using spaceborne radar data have elucidated key processes responsible for their extreme characteristics, including a strong relationship between the Andes topography and convective initiation. Building on previous work, an investigation of the thermodynamic environment supporting some of the deepest convection in the world will be presented. In particular, an analysis of the thermodynamic destabilization in subtropical South America, which considers the parcel buoyancy minimum for conditionally unstable air parcels, will be presented. Additional comparisons between the nocturnal nature and related diurnal cycle of MCSs in subtropical South America the U.S. Great Plains will provide insights into the processes controlling MCS initiation and upscale growth.
Violent Extremism, Community-Based Violence Prevention, and Mental Health Professionals.
Weine, Stevan M; Stone, Andrew; Saeed, Aliya; Shanfield, Stephen; Beahrs, John; Gutman, Alisa; Mihajlovic, Aida
2017-01-01
New community-based initiatives being developed to address violent extremism in the United States are utilizing mental health services and leadership. This article reviews current approaches to preventing violent extremism, the contribution that mental illness and psychosocial problems can make to violent extremism, and the rationale for integrating mental health strategies into preventing violent extremism. The authors describe a community-based targeted violence prevention model and the potential roles of mental health professionals. This model consists of a multidisciplinary team that assesses at-risk individuals with comprehensive threat and behavioral evaluations, arranges for ongoing support and treatment, conducts follow-up evaluations, and offers outreach, education, and resources for communities. This model would enable mental health professionals in local communities to play key roles in preventing violent extremism through their practice and leadership.
NASA Astrophysics Data System (ADS)
Hauser, Seraphine; Pante, Gregor; Pantillon, Florian; Knippertz, Peter
2017-04-01
The Arabian Peninsula is one of the World's largest dust sources. Severe dust storms occur throughout the year dominated by synoptic-scale driven frontal systems in winter and spring and convective systems during summer and autumn. Dust storm frequency peaks in spring, when extra-tropical upper-level troughs associated with near-surface cold fronts regularly penetrate into the peninsula. In this study we investigate the dynamics of an extreme springtime dust event, which covered the entire Arabian Peninsula and the adjacent Indian Ocean in early April 2015. In addition to the more common trough/frontal characteristics, EUMETSAT's false-colour dust product shows a striking vortex-like structure during the initial state of the storm. Several SYNOP stations on the Arabian Peninsula report severe dust storms, rapid temperature drop, strong increase in wind speed up to 40 kn and zero visibility for several hours on 01 and 02 April. Remarkably also, 61 mm of rainfall are observed on 01 April at the station Arar in northern Saudi Arabia (annual average 52 mm), clearly indicating a convective contribution to this event. Some evidence for significant precipitation is also found in satellite products. Operational analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF) show a distinct short-wave upper-level trough swiftly propagating across the region during this period, accompanied by high relative vorticity values of up to 10 times the planetary vorticity. This vorticity is associated with the trough's curvature, but also with the large cyclonic shear at the northern side of the subtropical jet. The passage of the upper-level disturbance is well timed to overpass the region of the Arabian Peninsula heat low around midday, where vorticity is thermally generated. Most likely the deep boundary layer facilitated the triggering of convection by the upper-level forcing. Ultimately, downward mixing of the high vorticity by convection plus vortex stretching cause exceptionally high vorticity near the surface, which initiated this extreme and unusual dust storm. Short-range ECMWF forecasts produce precipitation but not as extreme as measured at Arar. The model also generates strong near-surface winds, which are generally in good agreement with the SYNOP observations. Interestingly, however, the 10 m wind direction falls short to reflect the extreme cyclonic curvature evident in station observations, pointing to an underestimation of the vortex in the model. We hypothesise that the ECMWF model with its parameterised convection is unable to realistically represent the vertical mixing and vortex stretching. Numerical simulations on the convection permitting scale might improve forecasts of such events, but this is yet to be tested.
High-fluorine rhyolite: An eruptive pegmatite magma at the Honeycomb Hills, Utah
NASA Astrophysics Data System (ADS)
Congdon, Roger D.; Nash, W. P.
1988-11-01
The Honeycomb Hills rhyolite dome in western Utah displays chemical and mineralogical features characteristic of a rare-element pegmatite magma. The lavas show extreme enrichments in such trace elements as Rb (≤1960 ppm), Cs (≤78), Li (≤344), Sn (≤33), Be (≤270), and Y (≤156). Phenocrysts (10%-50% by volume) include sanidine (Or66-70), plagioclase (Ab83-92), quartz, biotite approaching fluorsiderophyllite, and fluortopaz, as well as accessory phases common to highly differentiated granites and pegmatites, including zircon, thorite, fluocerite, columbite, fergusonite, and samarskite. Low temperatures (600 to 640 °C), coupled with high phenocryst and silica content, might normally preclude eruption due to the extremely high viscosity of the melt. However, high concentrations of fluorine (2%-3%) could domal lavas significantly reduce viscosity and allow eruption of domal lavas even after dewatering of the mama during the initial pyroclastic phase of the eruptive cycle. Fractionation of phenocrysts and accessory phases, for which partition coefficients have been measured, is sufficient to account for most compositional gradients inferred in the preeruptive magma body, although transport by a fluid phase formed a may have caused upward enrichments in Li, Be, and Cs. If the Honeycomb Hills magma had crystallized at depth, it would have formed a rare-element pegmatite.
The First New Zealanders: Patterns of Diet and Mobility Revealed through Isotope Analysis
Kinaston, Rebecca L.; Walter, Richard K.; Jacomb, Chris; Brooks, Emma; Tayles, Nancy; Halcrow, Sian E.; Stirling, Claudine; Reid, Malcolm; Gray, Andrew R.; Spinks, Jean; Shaw, Ben; Fyfe, Roger; Buckley, Hallie R.
2013-01-01
Direct evidence of the environmental impact of human colonization and subsequent human adaptational responses to new environments is extremely rare anywhere in the world. New Zealand was the last Polynesian island group to be settled by humans, who arrived around the end of the 13th century AD. Little is known about the nature of human adaptation and mobility during the initial phase of colonization. We report the results of the isotopic analysis (carbon, nitrogen and strontium) of the oldest prehistoric skeletons discovered in New Zealand to assess diet and migration patterns. The isotope data show that the culturally distinctive burials, Group 1, had similar diets and childhood origins, supporting the assertion that this group was distinct from Group 2/3 and may have been part of the initial colonizing population at the site. The Group 2/3 individuals displayed highly variable diets and likely lived in different regions of the country before their burial at Wairau Bar, supporting the archaeological evidence that people were highly mobile in New Zealand since the initial phase of human settlement. PMID:23691250
A Case of Myxedema Coma Presenting as a Brain Stem Infarct in a 74-Year-Old Korean Woman
Ahn, Ji Yun; Kwon, Hyuk-Sool; Ahn, Hee Chol
2010-01-01
Myxedema coma is the extreme form of untreated hypothyroidism. In reality, few patients present comatose with severe myxedema. We describe a patient with myxedema coma which was initially misdiagnosed as a brain stem infarct. She presented to the hospital with alteration of the mental status, generalized edema, hypothermia, hypoventilation, and hypotension. Initially her brain stem reflexes were absent. After respiratory and circulatory support, her neurologic status was not improved soon. The diagnosis of myxedema coma was often missed or delayed due to various clinical findings and concomitant medical condition and precipitating factors. It is more difficult to diagnose when a patient has no medical history of hypothyroidism. A high index of clinical suspicion can make a timely diagnosis and initiate appropriate treatment. We report this case to alert clinicians considering diagnosis of myxedema coma in patients with severe decompensated metabolic state including mental change. PMID:20808690
A case of myxedema coma presenting as a brain stem infarct in a 74-year-old Korean woman.
Ahn, Ji Yun; Kwon, Hyuk-Sool; Ahn, Hee Chol; Sohn, You Dong
2010-09-01
Myxedema coma is the extreme form of untreated hypothyroidism. In reality, few patients present comatose with severe myxedema. We describe a patient with myxedema coma which was initially misdiagnosed as a brain stem infarct. She presented to the hospital with alteration of the mental status, generalized edema, hypothermia, hypoventilation, and hypotension. Initially her brain stem reflexes were absent. After respiratory and circulatory support, her neurologic status was not improved soon. The diagnosis of myxedema coma was often missed or delayed due to various clinical findings and concomitant medical condition and precipitating factors. It is more difficult to diagnose when a patient has no medical history of hypothyroidism. A high index of clinical suspicion can make a timely diagnosis and initiate appropriate treatment. We report this case to alert clinicians considering diagnosis of myxedema coma in patients with severe decompensated metabolic state including mental change.
Gulf of Mexico Initiative: NASA Capacity Building in the Gulf Region
NASA Astrophysics Data System (ADS)
Armstrong, D.; Graham, W. D.; Searby, N. D.
2012-12-01
In the wake of hurricanes Katrina and Rita, NASA created the Gulf of Mexico Initiative (GOMI) to help the region recover and to build the capacity of local and regional organizations to utilize NASA Earth science assets to establish effective policies, encourage sustainable natural resource management and utilization, and to expeditiously respond to crises. GOMI worked closely with the Gulf of Mexico Alliance (GOMA), a regional collaboration of the five US Gulf states and 13 federal agencies, to select projects that addressed high priority issues of the region. Many capabilities developed by this initiative have been adopted by end-users and have been leveraged to respond to other natural and man made disasters such as the Deepwater Horizon oil spill (2010), record breaking floods along the Mississippi River (2011), unprecedented tornado supercells (2011), and extreme drought (2012). Examples of successful capacity building projects will be presented and the lessons learned from these projects will be discussed.
Early formation of the Moon 4.51 billion years ago
Barboni, Melanie; Boehnke, Patrick; Keller, Brenhin; Kohl, Issaku E.; Schoene, Blair; Young, Edward D.; McKeegan, Kevin D.
2017-01-01
Establishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances. Hafnium isotopic analyses of the same fragments show extremely low initial 176Hf/177Hf ratios corrected for cosmic ray exposure that are near the solar system initial value. Our data indicate differentiation of the lunar crust by 4.51 billion years, indicating the formation of the Moon within the first ~60 million years after the birth of the solar system. PMID:28097222
Mitral Transcatheter Technologies
Maisano, Francesco; Buzzatti, Nicola; Taramasso, Maurizio; Alfieri, Ottavio
2013-01-01
Mitral valve regurgitation (MR) is often diagnosed in patients with heart failure and is associated with worsening of symptoms and reduced survival. While surgery remains the gold standard treatment in low-risk patients with degenerative MR, in high-risk patients and in those with functional MR, transcatheter procedures are emerging as an alternative therapeutic option. MitraClip® is the device with which the largest clinical experience has been gained to date, as it offers sustained clinical benefit in selected patients. Further to MitraClip implantation, several additional approaches are developing, to better match with the extreme variability of mitral valve disease. Not only repair is evolving, initial steps towards percutaneous mitral valve implantation have already been undertaken, and initial clinical experience has just started. PMID:23908865
Nearly extremal apparent horizons in simulations of merging black holes
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Scheel, Mark A.; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilágyi, Béla; Chu, Tony; Demos, Nicholas; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Afshari, Nousha
2015-03-01
The spin angular momentum S of an isolated Kerr black hole is bounded by the surface area A of its apparent horizon: 8π S≤slant A, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses M and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to S/{{M}2}=0.994. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality 8π S\\lt A is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also evaluate the Booth-Fairhurst extremality, whose value for a given apparent horizon depends on the scaling of the horizon’s null normal vectors. In particular, we introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst’s extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al (2008 Phys. Rev. D 78 084017), we construct quasiequilibrium binary-black hole initial data with ‘overspun’ marginally trapped surfaces with 8π S\\gt A. We show that the overspun surfaces are indeed superextremal: our lower bound on their Booth-Fairhurst extremality exceeds unity. However, we confirm that these superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with 8π S\\lt A. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole.
Rasch validation of the Arabic version of the lower extremity functional scale.
Alnahdi, Ali H
2018-02-01
The purpose of this study was to examine the internal construct validity of the Arabic version of the Lower Extremity Functional Scale (20-item Arabic LEFS) using Rasch analysis. Patients (n = 170) with lower extremity musculoskeletal dysfunction were recruited. Rasch analysis of 20-item Arabic LEFS was performed. Once the initial Rasch analysis indicated that the 20-item Arabic LEFS did not fit the Rasch model, follow-up analyses were conducted to improve the fit of the scale to the Rasch measurement model. These modifications included removing misfitting individuals, changing item scoring structure, removing misfitting items, addressing bias caused by response dependency between items and differential item functioning (DIF). Initial analysis indicated deviation of the 20-item Arabic LEFS from the Rasch model. Disordered thresholds in eight items and response dependency between six items were detected with the scale as a whole did not meet the requirement of unidimensionality. Refinements led to a 15-item Arabic LEFS that demonstrated excellent internal consistency (person separation index [PSI] = 0.92) and satisfied all the requirement of the Rasch model. Rasch analysis did not support the 20-item Arabic LEFS as a unidimensional measure of lower extremity function. The refined 15-item Arabic LEFS met all the requirement of the Rasch model and hence is a valid objective measure of lower extremity function. The Rasch-validated 15-item Arabic LEFS needs to be further tested in an independent sample to confirm its fit to the Rasch measurement model. Implications for Rehabilitation The validity of the 20-item Arabic Lower Extremity Functional Scale to measure lower extremity function is not supported. The 15-item Arabic version of the LEFS is a valid measure of lower extremity function and can be used to quantify lower extremity function in patients with lower extremity musculoskeletal disorders.
Goldberg, Susan G.
2012-01-01
The initial reactions to a bipolar disorder diagnosis of research participants in a small, qualitative study consisted of astonishment, dread of being “mad,” and extremely negative associations. All had prior mental health diagnoses, including episodes of severe depression (all but one) and alcoholism (one). All participants reported mental health histories prediagnosis and most had spent years contending with mental health labels, medications, symptoms, and hospitalizations. In addition, most participants were highly educated health professionals, quite familiar with the behaviors that the medical system considered to comprise bipolar disorder. Their negative associations to the initial bipolar disorder diagnosis, therefore, appeared inconsistent with their mental health histories and professional knowledge. This article contextualizes these initial reactions of shock and distress and proposes interpretations of these findings from societal and psychodynamic group relations perspectives. The participants’ initial negative reactions are conceptualized as involving the terror of being transported from the group of “normal” people into the group of “mad” or “crazy” people, i.e., people with mental illnesses, who may constitute a societal “denigrated other.” PMID:23049521
USDA-ARS?s Scientific Manuscript database
Climate change poses challenges for northern México and the southern United States, including drought, extreme heat, and flooding. To aid society in preparing for climate- and weather-related risks, partners in the North American Climate Services Partnership have initiated several collaborations. Th...
Neighboring extremal optimal control design including model mismatch errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T.J.; Hull, D.G.
1994-11-01
The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.
Madsen, Kristian Roerbaek
2014-01-08
A 27-year-old man treated with quetiapine for anxiety disorder developed hypertriglyceridaemia-induced acute pancreatitis and diabetic ketoacidosis. He was otherwise physically healthy with no family history of hyperlipidaemia. Despite aggressive intensive therapy he died of multiorgan failure within 36 h from initial presentation. While second-generation antipsychotics are well known to be causally linked to diabetes and hyperlipidaemia, this is to my knowledge the first-described case of a fatal triad of extreme hypertriglyceridaemia, acute pancreatitis and diabetic ketoacidosis possibly induced by quetiapine. Clinicians should be aware of this rare clinical presentation since rapid progression to multiorgan failure can occur. Early supportive therapy should be initiated. Lactescent serum and ketoacidosis in severe acute pancreatitis should not be overlooked-initiate insulin therapy and possibly plasmapheresis in case of extreme hypertriglyceridaemia.
Pelotti, P; Ciminari, R; Bacci, G; Avella, M; Briccoli, A
1988-01-01
The value of stratigraphy and pulmonary CT in the initial work-up of osteosarcoma of the extremities is assessed with reference to 217 patients encountered in the Bone Tumour Centre of Rizzoli Orthopaedic Institute in May 1983-May 1986. Stratigraphy revealed lung metastases not identified by standard radiography in 4 patients (1.8%), while CT revealed metastases not identified by either standard X-rays or stratigraphy in a further 6 cases (2.7%). It is concluded that the increase in the percentage of cures (about 30%) reported in the last 10 years in osteosarcoma cases given adjuvant chemotherapy cannot be explained by any difference in initial selection due to the use of these techniques that were not adopted in the historical series.
Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive
NASA Astrophysics Data System (ADS)
Hatteberg, R.; Takle, E. S.
2011-12-01
Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce these isolated extreme events by assessing their existence, location, magnitude, synoptic linkage, initiation time and duration as compared to the record of observations of derechos in the Midwest and Northeast US. We find that RCMs do reproduce features with close resemblance to derechos although their magnitudes are considerably below those observed (which may be expected given the 50-km grid spacing of the RCM models). Extreme low wind speeds in summer are frequently associated with stagnation conditions leading to high air pollution events in major cities. Low winds also lead to reduced evapotranspiration by crops, which can impact phenological processes (e.g. pollination and seed fertilization, carbon uptake by plants). We evaluate whether RCMs can simulate climatic distributions of low-wind conditions in the northern US. Results show differences among models in their ability to reproduce observed characteristics of low summer-time winds. Only one model reproduces observed high frequency of calm night-time surface winds in summer, which suggests a need to improve model capabilities for simulating extreme stagnation events.
Synthesis and structures of metal chalcogenide precursors
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.
1990-01-01
The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.
Patterns of residual stresses due to welding
NASA Technical Reports Server (NTRS)
Botros, B. M.
1983-01-01
Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.
NASA Astrophysics Data System (ADS)
Wahl, E. R.; Zorita, E.; Trouet, V.; Diaz, H. F.
2015-12-01
A reconstruction of the position of the North Pacific Jet Stream (NPJ) over the past 500 years is evaluated in relation to dry and wet extremes in California and extremes of Sierra Nevada fire activity. This work represents a unique combination of independent annually-resolved paleoclimate and paleoecological reconstructions in the region. Results indicate that fire and precipitation extremes are both closely linked with NPJ winter position, with characteristic wet/low fire and dry/high fire NPJ spatial features in the Pacific adjacent to western North America. These features are in turn evaluated in 21st century climate model scenarios using transient integrations over the past millennium, the instrumental period, and the 21st century. The reconstruction of NPJ position is driven by an analog process that employs independent paleoclimate field reconstructions to select model states closest to the reconstructions; it is thus logically and scientifically most consistent to use comparable models to evaluate the future in relation to the past. Initial results indicate that relatively wet/low fire regional conditions are reasonably possible in the later 21st century under a high greenhouse gas forcing regime (RCP 8.5), even though temperatures rise significantly. Related hydroclimate research reconstructs a precipitation index for the Hawai'ian Islands (HI-precip) over the past 500 years. A northeastern Pacific sea level pressure index reconstructed using the analog process is employed as the driving variable in a calibration against HI-precip. Initial reconstruction results indicate significant bicentennial spectral power, which includes a long-term drying trend that began around 1850 and continues into the first decades of the 21st century. Related statistical downscaling of climate model output for HI-precip to the end of the 21st century suggests the possibility of continued drying under RCP 8.5.
Piper, Megan E.; Vasilenko, Sara A.; Cook, Jessica W.; Lanza, Stephanie T.
2016-01-01
Aims To 1) identify distinct classes of smokers based on quit day withdrawal symptoms and 2) explore the relations between withdrawal classes and demographics, tobacco dependence, treatment, and smoking outcomes. Design Secondary data analysis of participants (N=1504) in a randomized double-blind placebo-controlled multi-site smoking cessation trial who provided ecological momentary assessments of withdrawal symptoms on their quit day. Participants received smoking cessation counseling and were randomized to receive placebo or one of five active pharmacotherapies. Setting Research offices in Madison and Milwaukee, Wisconsin, USA. Participants Adult smokers (N=1236; 58% female, 86% white), recruited from the community via advertisements, who abstained on their quit day. Measurements Demographics and tobacco dependence were assessed at baseline and participants carried palmtop computers to record withdrawal symptoms (craving, negative affect, difficulty concentrating, hunger, and anhedonia) on their quit day. Point-prevalence abstinence and latency to relapse were assessed at Weeks 8 and 26. Findings Latent class analysis identified four withdrawal classes (AIC=70.09): Moderate Withdrawal (64% of sample), High Craving-Anhedonia (8% of sample), Affective Withdrawal (13% of sample) and Hunger (15% of sample). The High Craving-Anhedonia class reported significantly higher dependence (p<0.01), were less likely to have received combination nicotine replacement, reported lower Week 8 abstinence rates, and relapsed sooner than those in the Moderate Withdrawal class (p<0.05). The Affective Withdrawal class reported higher levels of baseline negative affect and lifetime psychopathology (p<0.05) and relapsed more quickly than the Moderate Withdrawal class (p<0.01). Conclusions While the majority of smokers report typical levels of withdrawal symptoms on their quit day, more than one-third report extreme craving or extreme negative affective or extreme hunger responses to initial abstinence. These distinct quit-day withdrawal symptom patterns are related to baseline characteristics, treatment, and cessation success. PMID:27633341
Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration
NASA Technical Reports Server (NTRS)
Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin
2012-01-01
NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.
Hart, Joseph M; Garrison, J Craig; Palmieri-Smith, Riann; Kerrigan, D Casey; Ingersoll, Christopher D
2008-05-01
Lower extremity kinetics while performing a single-leg forward jump landing may help explain gender biased risk for noncontact anterior cruciate ligament injury. Gender comparison of lower extremity joint angles and moments. Static groups comparison. Motion analysis laboratory. 8 male and 8 female varsity, collegiate soccer athletes. 5 single-leg landings from a 100cm forward jump. Peak and initial contact external joint moments and joint angles of the ankle, knee, and hip. At initial heel contact, males exhibited a adduction moment whereas females exhibited a abduction moment at the hip. Females also had significantly less peak hip extension moment and significantly less peak hip internal rotation moment than males had. Females exhibited greater knee adduction and hip internal rotation angles than men did. When decelerating from a forward jump, gender differences exist in forces acting at the hip.
Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts
NASA Technical Reports Server (NTRS)
Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.
2005-01-01
Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko
2015-01-01
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget. PMID:26015574
Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko
2015-06-09
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.
Spillane, Nichea S.; Merrill, Jennifer E.; Jackson, Kristina M.
2016-01-01
Studies on adolescent drinking have not always been able to distinguish between initiation and escalation of drinking, because many studies include samples in which initiation has already occurred; hence initiation and escalation are often confounded. The present study draws from a dual-process theoretical framework to investigate: if changes in the likelihood of drinking initiation and escalation are predicted by a tendency towards rash action when experiencing positive and negative emotions (positive and negative urgency); and whether trait positive and negative affect moderate such effects. Alcohol naïve adolescents (n=944; age: M=12.16, SD=.96; 52% female) completed 6 semi-annual assessments of trait urgency and affect (wave-1) and alcohol use (waves 2–6). A two-part random-effects model was used to estimate changes in the likelihood of any alcohol use vs. escalation in the volume of use amongst initiators. Main effects suggest a significant association between positive affect and change in level of alcohol use amongst initiators, such that lower positive affect predicted increased alcohol involvement. This main effect was qualified by a significant interaction between positive urgency and positive affect predicting changes in the escalation of drinking, such that the effect of positive urgency was augmented for those high on trait positive affect, though only at extremely high levels of positive affect. Results suggest risk factors in the development of drinking depend on whether initiation or escalation is investigated. A more nuanced understanding of the early developmental phases of alcohol involvement can inform prevention and intervention efforts. PMID:27031086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabrielson, F.C. Jr.; Malatino, A.M.; Santa Cruz, G.J.
1980-10-01
Water samples taken throughout the year from a drainage system that had supported giant duckweed blooms were analyzed for nitrogen and phosphorus. Although seasonal separation of the data indicates possible differences within an imppoundment (Bayview Lake), extreme variations make meaningful conclusions difficult. Daily discharge from a large number of points may have masked seasonal differences. Extensive plant mats were present at minimal levels of nitrogen and phosphorus. The growth rate seemed to be governed more by climate than nutrient conditions. Laboratory investigations indicate that giant duckweed can grow under a wide range of nutrient conditions including high heavy metal concentrations.more » Growth rate data show that without a continual input of nutrients, maximum growth rates do not usually continue beyond 14 to 20 days regardless of the initial single element concentration. With a continuous nutrient input, growth would probably only be inhibited by extreme climate conditions.« less
Extreme Algal Bloom Detection with MERIS
NASA Astrophysics Data System (ADS)
Amin, R.; Gilerson, A.; Gould, R.; Arnone, R.; Ahmed, S.
2009-05-01
Harmful Algal Blooms (HAB's) are a major concern all over the world due to their negative impacts on the marine environment, human health, and the economy. Their detection from space still remains a challenge particularly in turbid coastal waters. In this study we propose a simple reflectance band difference approach for use with Medium Resolution Imaging Spectrometer (MERIS) data to detect intense plankton blooms. For convenience we label this approach as the Extreme Bloom Index (EBI) which is defined as EBI = Rrs (709) - Rrs (665). Our initial analysis shows that this band difference approach has some advantages over the band ratio approaches, particularly in reducing errors due to imperfect atmospheric corrections. We also do a comparison between the proposed EBI technique and the Maximum Chlorophyll Index (MCI) Gower technique. Our preliminary result shows that both the EBI and MCI indeces detect intense plankton blooms, however, MCI is more vulnerable in highly scattering waters, giving more positive false alarms than EBI.
Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.
Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi
2016-01-27
The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
The use of ERTS-1 satellite data in Great Lakes mesometeorological studies
NASA Technical Reports Server (NTRS)
Lyons, W. A. (Principal Investigator)
1972-01-01
The author has identified the following significant results. In the original proposal, it was hoped that ERTS could, with its extremely high resolution and multispectral capability, detect many meteorological phenomena occurring at the low end of the mesoscale motion spectrum (1 - 100 km). This included convective cloud phenomena, internal wave patterns, air pollution, snow squalls, etc. For meteorologists, ERTS-1 has more than lived up to initial hopes. First-look inspection of images has produced a large number of truly remarkable finds. Some of the most significant are: (1) Images of Lake Ontario during late summer have revealed several extremely good examples of lake breeze frontal cloud patterns. (2) Detection of suspended particulates from Chicago-Gary industrial complex in the 50,000 to 150,000 tons/year category. (3) Inadvertant weather modification due to anthropogenic condensation and ice nuclei from urban areas.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
Gregersen, I B; Arnbjerg-Nielsen, K
2012-01-01
Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored through the application and discussion of three different theoretical decision support strategies: the precautionary principle, the minimax strategy and Bayesian decision support. The reviewed decision support strategies all proved valuable for addressing the identified uncertainties, at best applied together as they all yield information that improved decision making and thus enabled more robust decisions.
Takano, Yuichi; Hayashi, Masafumi; Niiya, Fumitaka; Nakanishi, Toru; Hanamura, Shotaro; Asonuma, Kunio; Yamamura, Eiichi; Gomi, Kuniyo; Kuroki, Yuichiro; Maruoka, Naotaka; Inoue, Kazuaki; Nagahama, Masatsugu
2017-03-06
Emphysematous liver abscesses are defined as liver abscesses accompanied by gas formation. The fatality rate is extremely high at 27%, necessitating prompt intensive care. The patient was a 69-year-old Japanese man with type 2 diabetes. He visited the emergency outpatient department for fever and general malaise that had been ongoing for 2 weeks. Abdominal computed tomography revealed an abscess 5 cm in diameter accompanied by gas formation in the right hepatic lobe. Markedly impaired glucose tolerance was observed with a blood sugar level of 571 mg/dL and a glycated hemoglobin level of 14.6%. The patient underwent emergency percutaneous abscess drainage, and intensive care was subsequently initiated. Klebsiella pneumoniae was detected in both the abscess cavity and blood cultures. The drain was removed 3 weeks later, and the patient was discharged. Emphysematous liver abscesses are often observed in patients with poorly controlled diabetes, and the fatality rate is extremely high. Fever and malaise occasionally mask life-threatening infections in diabetic patients, necessitating careful examination.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2007-01-01
The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.
Cometary impact and amino acid survival - Chemical kinetics and thermochemistry
Ross, D.S.
2006-01-01
The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.
Supernova 2007bi as a pair-instability explosion.
Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J
2009-12-03
Stars with initial masses such that 10M[symbol: see text]
The 2012 July 23 Backside Eruption: An Extreme Energetic Particle Event?
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Yashiro, S.; Thakur, N.; Makela, P.; Xie, H.; Akiyama, S.
2016-01-01
The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr).The associated solar energetic particle (SEP) event had a greater than 10 MeV proton flux peaking at approximately 5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to giga-electron volt energies). The times of maximum and fluence spectra in the range 10100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed greater than (2000 km s(exp -1), the initial acceleration (approximately 1.70 km s(exp -2), and the shock-formation height (approximately 1.5 solar radii)were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.
THE 2012 JULY 23 BACKSIDE ERUPTION: AN EXTREME ENERGETIC PARTICLE EVENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalswamy, N.; Yashiro, S.; Thakur, N.
The backside coronal mass ejection (CME) of 2012 July 23 had a short Sun-to-Earth shock transit time (18.5 hr). The associated solar energetic particle (SEP) event had a >10 MeV proton flux peaking at ∼5000 pfu, and the energetic storm particle event was an order of magnitude larger, making it the most intense event in the space era at these energies. By a detailed analysis of the CME, shock, and SEP characteristics, we find that the July 23 event is consistent with a high-energy SEP event (accelerating particles to gigaelectronvolt energies). The times of maximum and fluence spectra in the rangemore » 10–100 MeV were very hard, similar to those of ground-level enhancement (GLE) events. We found a hierarchical relationship between the CME initial speeds and the fluence spectral indices: CMEs with low initial speeds had SEP events with the softest spectra, while those with the highest initial speeds had SEP events with the hardest spectra. CMEs attaining intermediate speeds result in moderately hard spectra. The July 23 event was in the group of hard-spectrum events. During the July 23 event, the shock speed (>2000 km s{sup −1}), the initial acceleration (∼1.70 km s{sup −2}), and the shock-formation height (∼1.5 solar radii) were all typical of GLE events. The associated type II burst had emission components from meter to kilometer wavelengths, suggesting a strong shock. These observations confirm that the 2012 July 23 event is likely to be an extreme event in terms of the energetic particles it accelerated.« less
Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.
Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D
2016-01-01
Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Lei, Peng-cheng; Shen, Xian-jiang; Li, Yang; Guo, Min; Zhang, Mei
2016-07-01
A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III) (5-100 mg·L-1). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial pH value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg·g-1 for zeolite 4A, measured at an initial pH value of 4 and an initial Cr(III) concentration of 5 mg·L-1. This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III).
Elnashar, Maha; Abdelrahim, Huda; Fetters, Michael D
2012-06-01
The authors describe the factors that led Weill Cornell Medical College in Qatar (WCMC-Q) to establish the Center for Cultural Competence in Health Care from the ground up, and they explore challenges and successes in implementing cultural competence training.Qatar's capital, Doha, is an extremely high-density multicultural setting. When WCMC-Q's first class of medical students began their clinical clerkships at the affiliated teaching hospital Hamad Medical Corporation in 2006, the complicated nature of training in a multicultural and multilingual setting became apparent immediately. In response, initiatives to improve students' cultural competence were undertaken. Initiatives included launching a medical interpretation program in 2007; surveying the patients' spoken languages, examining the effect of an orientation program on interpretation requests, and surveying faculty using the Tool for Assessing Cultural Competence Training in 2008; implementing cultural competence training for students and securing research funding in 2009; and expanding awareness to the Qatar community in 2010. These types of initiatives, which are generally highly valued in U.S. and Canadian settings, are also apropos in the Arabian Gulf region.The authors report on their initial efforts, which can serve as a resource for other programs in the Arabian Gulf region.
Takahashi, Teruyuki; Ono, Shin-ichi; Ogawa, Katuhiko; Tamura, Masato; Mizutani, Tomohiko
2003-06-01
We report a case of anaphylactoid shock occurring immediately after the initiation of second intravenous administration of high-dose immunoglobulin (IVIg) in a patient with Crow-Fukase syndrome. The patient was a 57-year-old woman, who was admitted to our hospital because of numbness and muscle weakness in the four extremities, difficulty in walking, and foot edema. On admission, her skin was dry and rough, and also showing scattered pigmentation, small hemangiomas, and hypertrichosis in both legs. She had distal dominant muscle weakness, more prominent in her legs, and was not able to walk. Deep tendon reflexes in her four extremities were markedly diminished or absent. She had a glove and stocking type of paresthesia, severe impairment of vibration, and absence of joint position sensation in her four extremities. On laboratory data, serum vascular endothelial growth factor (VEGF) was markedly elevated to 5,184 pg/ml (normal: below 220 pg/ml). Cerebrospinal fluid examination revealed cell counts of 2/microliter and protein level of 114 mg/dl. Abdominal echo showed marked hepatosplenomegaly. On peripheral nerve conduction study, both motor and sensory conduction velocity were undetectable in her legs. We diagnosed her condition as Crow-Fukase syndrome, and started IVIg of polyethyleneglycol-treated gamma-globulin (PEG-glob) at 400 mg/kg/day for 5 consecutive days for polyneuropathy. Since the first IVIg mildly improved muscle weakness, we tried the second IVIg of PEG-glob. However, immediately after the initiation of second IVIg of PEG-glob, she developed hypotention, dyspnea, cold sweating, cyanosis, and became lethargic. We immediately stopped IVIg and started first-aid treatment with epinephrine and corticosteroid for these symptoms. This treatment was successful and the patient fully recovered without any sequelae. Since serum IgE level remained unchanged and lymphocyte stimulation test (LST) was positive against the same rot number of PEG-glob, we diagnosed these symptoms as anaphylactoid shock. Based on the results of LST, we speculated that PEG-glob was the causative agent of anaphylactoid reaction. Anaphylactic or anaphylactoid reaction as adverse effects of IVIg is very rare, and to our knowledge, there are only 4 previous reports of anaphylactic or anaphylactoid reaction caused by IVIg. Therefore, we speculated that the prominent high level of serum VEGF in the present patient might play a significant contributory role in the development of anaphylactoid shock, since the vascular permeability of VEGF is 50,000 times stronger than that of histamine. We consider that it is necessary to carefully monitor IVIg of PEG-glob administration for polyneuropathy in patients with high level of serum VEGF, like Crow-Fukase syndrome.
Post-disturbance sediment recovery: Implications for watershed resilience
NASA Astrophysics Data System (ADS)
Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.
2018-03-01
Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.
Extreme Landfalling Atmospheric River Events in Arizona: Possible Future Changes
NASA Astrophysics Data System (ADS)
Singh, I.; Dominguez, F.
2016-12-01
Changing climate could impact the frequency and intensity of extreme atmospheric river events. This can have important consequences for regions like the Southwestern United Sates that rely upon AR-related precipitation for meeting their water demand and are prone to AR-related flooding. This study investigates the effects of climate change on extreme AR events in the Salt and Verde river basins in Central Arizona using a pseudo global warming method (PGW). First, the five most extreme events that affected the region were selected. High-resolution control simulations of these events using the Weather Research and Forecasting model realistically captured the magnitude and spatial distribution of precipitation. Subsequently, following the PGW approach, the WRF initial and lateral boundary conditions were perturbed. The perturbation signals were obtained from an ensemble of 9 General Circulation Models for two warming scenarios - Representative Concentration Pathway (RCP) 4.5 and RCP8.5. Several simulations were conducted changing the temperature and relative humidity fields. PGW simulations reveal that while the overall dynamics of the storms did not change significantly, there was marked strengthening of associated Integrated Vertical Transport (IVT) plumes. There was a general increase in the precipitation over the basins due to increased moisture availability, but heterogeneous spatial changes. Additionally, no significant changes in the strength of the pre-cold frontal low-level jet in the future simulations were observed.
Satellite-Enhanced Dynamical Downscaling of Extreme Events
NASA Astrophysics Data System (ADS)
Nunes, A.
2015-12-01
Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.
Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2016-01-01
The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.
LSA silicon material task closed-cycle process development
NASA Technical Reports Server (NTRS)
Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.
1979-01-01
The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.
Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments
NASA Astrophysics Data System (ADS)
Stahl, H. Philip
2016-07-01
The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.
Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K
2016-06-01
Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.
2018-01-01
Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.
NASA Astrophysics Data System (ADS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2018-02-01
In this response, we address the three main comments by Tsurutani et al. (2018, http://doi.org/10.1002/2017JA024779) namely, unusually high plasma density, interplanetary magnetic field intensity, and fast storm recovery phase. The authors agree that there is room to improve the modeling by taking into account these comments and other aspects that were not fully explored during our initial work. We are already in the process of undertaking a more comprehensive modeling project.
NASA Astrophysics Data System (ADS)
Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen
2017-12-01
Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.
Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Parker, L. N.; Minow, J. I.; Talaat, E. R.
2016-12-01
Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.
The Extreme Ultraviolet Explorer mission - Overview and initial results
NASA Technical Reports Server (NTRS)
Haisch, B.; Bowyer, S.; Malina, R. F.
1993-01-01
The history of extreme ultraviolet (EUV) astronomy is briefly reviewed, and an overview of the Extreme Ultraviolet Explorer mission, launched into a near-earth (550 km) orbit on June 7, 1992, is presented. First, the principal objective of the mission are summarized. The instrumentation and operation of the mission are then described, with particular attention given to the sky survey instruments, the deep survey instrument, and the spectrometers. The discussion also covers the current view of the interstellar medium, early results from the mission, and future prospects for EUV astronomy.
Charnnok, Boonya; Suksaroj, Thunwadee; Boonswang, Piyarat; Chaiprapat, Sumate
2013-03-01
This work aimed to investigate the interactive effects of empty bed retention time (EBRT), specific hydraulic loading rate (q) and initial pH (pHi) of the aerated recirculating liquid to remove H2S in extreme acidic biofiltration. Biogas containing H2S 6395±2309ppm and CH4 79.8±2.5% was fed to the biofilter as pH of the high dissolved oxygen recirculating liquid swung between pHi to 0.5. Response surface methodology was employed that gave the H2S removal relationship model with R(2) 0.882. The predicted highest H2S removal within the studied parameter ranges was 94.7% at EBRT 180.0s, q 4.0m(3)/m(2)/h and pHi 3.99. Results from separate runs at a random condition were not statistically different from the model prediction, signifying a validity of the model. Additionally, CH4 content in the exit biogas increased by 4.7±0.4%. Acidithiobacullus sp. predominance in the consortia of this extreme acidic condition was confirmed by DGGE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; ...
2016-12-27
The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald
The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea
2017-04-05
The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.
Extremely Painful Multifocal Acquired Predominant Axonal Sensorimotor Neuropathy of the Upper Limb.
Lieba-Samal, Doris; van Eijk, Jeroen J J; van Rosmalen, Marieke H J; van Balken, Irene M F; Verrips, Aad; Mostert, Jop; Pillen, Sigrid; van Alfen, Nens
2018-06-01
The differential diagnosis of upper extremity mononeuritis multiplex includes neuralgic amyotrophy, vasculitic neuropathy, and Lewis-Sumner syndrome. We describe 3 patients initially suspected of neuralgic amyotrophy, who had an extremely painful, protracted, progressive disease course, not fitting one of these established diagnoses. Nerve ultrasonography showed focal caliber changes of the roots, plexus, and limb nerves. Electromyography showed predominant multifocal axonopathy. Ongoing autoimmune neuropathy was suspected. Steroid treatment provided temporary relief, and intravenous immunoglobulin A sustained pain decrease and functional improvement. These patients appear to have extremely painful axonal inflammatory neuropathy, with a good response to immune-modulating treatment. © 2017 by the American Institute of Ultrasound in Medicine.
Reproducing an extreme flood with uncertain post-event information
NASA Astrophysics Data System (ADS)
Fuentes-Andino, Diana; Beven, Keith; Halldin, Sven; Xu, Chong-Yu; Reynolds, José Eduardo; Di Baldassarre, Giuliano
2017-07-01
Studies for the prevention and mitigation of floods require information on discharge and extent of inundation, commonly unavailable or uncertain, especially during extreme events. This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, when Hurricane Mitch struck the city. In this study we hypothesized that it is possible to estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that followed from a combination of models and post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate discharge peaks, times of peak, and high-water marks. These data were used in combination with rain data from two gauges to drive and constrain a combination of well-known modelling tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic model. Simulations were performed within the generalized likelihood uncertainty estimation (GLUE) uncertainty-analysis framework. The model combination predicted peak discharge, times of peaks, and more than 90 % of the observed high-water marks within the uncertainty bounds of the evaluation data. This allowed an inundation likelihood map to be produced. Observed high-water marks could not be reproduced at a few locations on the floodplain. Identifications of these locations are useful to improve model set-up, model structure, or post-event data-estimation methods. Rainfall data were of central importance in simulating the times of peak and results would be improved by a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our study demonstrated that it was possible, considering the uncertainty in the post-event data, to reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric gauging during the event. The method proposed here can be part of a Bayesian framework in which more events can be added into the analysis as they become available.
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; LEucyer, Tristan; Olson, William S.; Hsu, Kuo-lin;
2010-01-01
Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier.
Development and recent results from the Subaru coronagraphic extreme adaptive optics system
NASA Astrophysics Data System (ADS)
Jovanovic, N.; Guyon, O.; Martinache, F.; Clergeon, C.; Singh, G.; Kudo, T.; Newman, K.; Kuhn, J.; Serabyn, E.; Norris, B.; Tuthill, P.; Stewart, P.; Huby, E.; Perrin, G.; Lacour, S.; Vievard, S.; Murakami, N.; Fumika, O.; Minowa, Y.; Hayano, Y.; White, J.; Lai, O.; Marchis, F.; Duchene, G.; Kotani, T.; Woillez, J.
2014-07-01
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is one of a handful of extreme adaptive optics systems set to come online in 2014. The extreme adaptive optics correction is realized by a combination of precise wavefront sensing via a non-modulated pyramid wavefront sensor and a 2000 element deformable mirror. This system has recently begun on-sky commissioning and was operated in closed loop for several minutes at a time with a loop speed of 800 Hz, on ~150 modes. Further suppression of quasi-static speckles is possible via a process called "speckle nulling" which can create a dark hole in a portion of the frame allowing for an enhancement in contrast, and has been successfully tested on-sky. In addition to the wavefront correction there are a suite of coronagraphs on board to null out the host star which include the phase induced amplitude apodization (PIAA), the vector vortex, 8 octant phase mask, 4 quadrant phase mask and shaped pupil versions which operate in the NIR (y-K bands). The PIAA and vector vortex will allow for high contrast imaging down to an angular separation of 1 λ/D to be reached; a factor of 3 closer in than other extreme AO systems. Making use of the left over visible light not used by the wavefront sensor is VAMPIRES and FIRST. These modules are based on aperture masking interferometry and allow for sub-diffraction limited imaging with moderate contrasts of ~100-1000:1. Both modules have undergone initial testing on-sky and are set to be fully commissioned by the end of 2014.
Nearly extremal apparent horizons in simulations of merging black holes
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Scheel, Mark; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilagyi, Bela; Chu, Tony; Demos, Nicholas; Hemberger, Daniel; Kidder, Lawrence; Pfeiffer, Harald; Afshari, Nousha; SXS Collaboration
2015-04-01
The spin S of a Kerr black hole is bounded by the surface area A of its apparent horizon: 8 πS <= A . We present recent results (arXiv:1411.7297) for the extremality of apparent horizons for merging, rapidly rotating black holes with equal masses and equal spins aligned with the orbital angular momentum. Measuring the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, we find that the inequality 8 πS < A is satisfied but is very close to equality on the common apparent horizon at the instant it first appears--even for initial spins as large as S /M2 = 0 . 994 . We compute the smallest value e0 that Booth and Fairhurst's extremality parameter can take for any scaling of the horizon's null normal vectors, concluding that the common horizons are at least moderately close to extremal just after they appear. We construct binary-black-hole initial data with marginally trapped surfaces with 8 πS > A and e0 > 1 , but these surfaces are always surrounded by apparent horizons with 8 πS < A and e0 < 1 .
Meyer, Niklaus; Sutter, Reto; Schirp, Udo; Gutzeit, Andreas
2017-08-24
Sarcoidosis is a multisystemic granulomatous disorder, which in nearly all cases involves the lungs and other organs. Isolated forms of sarcoidosis within the muscles, but without lung involvement, are extremely rare and can lead to delayed or even false diagnosis. A 52-year-old white, Swiss man presented with painful arm cramps and a history of symptoms over the previous 3 years. In the initial clinical investigation, our patient also showed edema in both legs without any other complaints. After performing an magnetic resonance imaging scan of his extremities and a positron emission tomography/computed tomography scan, diffuse myositis was described. The subsequent muscle biopsy provided the surprising diagnosis of muscle sarcoidosis, without involvement of the lungs or any other organ. After starting therapy with glucocorticoids, his symptoms improved immediately. Sarcoidosis is a common disorder, which in most cases affects the lungs. In this case report an isolated sarcoidosis is described without lung involvement, but with involvement of the muscles of the extremities and the trunk. Reported cases of sarcoidosis only involving skeletal muscle and without lung involvement are extremely rare. Radiologists should consider this presentation of sarcoidosis to avoid delayed diagnosis and therapy.
Feletar, Marie; Hall, Stephen; Bird, Paul
2016-01-01
To assess the responsiveness of high- and low-field extremity magnetic resonance imaging (MRI) variables at multiple timepoints in the first 12 weeks post-antitumor necrosis factor (anti-TNF) therapy initiation in patients with psoriatic arthritis (PsA) and active dactylitis. Twelve patients with active PsA and clinical evidence of dactylitis involving at least 1 digit were recruited. Patients underwent sequential high-field conventional (1.5 Tesla) and extremity low-field MRI (0.2 Tesla) of the affected hand or foot, pre- and postgadolinium at baseline (pre-TNF), 2 weeks (post-TNF), 6 weeks, and 12 weeks. A blinded observer scored all images on 2 occasions using the PsA MRI scoring system. Eleven patients completed the study, but only 6 patients completed all high-field and low-field MRI assessments. MRI scores demonstrated rapid response to TNF inhibition with score reduction in tenosynovitis, synovitis, and osteitis at 2 weeks. Intraobserver reliability was good to excellent for all variables. High-field MRI demonstrated greater sensitivity to tenosynovitis, synovitis, and osteitis and greater responsiveness to change posttreatment. Treatment responses were maintained to 12 weeks. This study demonstrates the use of MRI in detecting early response to biologic therapy. MRI variables of tenosynovitis, synovitis, and osteitis demonstrated responsiveness posttherapy with high-field scores more responsive to change than low-field scores.
NASA Astrophysics Data System (ADS)
Rettberg, P.; Ellis-Evans, C.; Prieur, D.; Loreto, F.; Walter, N.; Le Bris, N.; Elster, J.; Amils, R.; Marteinsson, V.
2008-09-01
Life in Extreme Environments is an emerging area of research in which Europe has considerable expertise but a relatively fragmented research infrastructure. The science of such environments has enormous relevance for our knowledge of the diversity and environmental limits of microbial, plant and animal life and the novel strategies employed for survival and growth. Such studies are essential in understanding how life established on the early Earth and in assessing the possibilities for life on other planetary bodies. These environments are also a rich source of novel exploitable compounds. At the European level, there is a need for better coordination of life in extreme environments research, the FP7-funded CAREX project aims to address this need by developing a clearly identifiable, dynamic and durable community. Establishing this community will encourage greater interdisciplinarity and increasing knowledge of extreme environments. It will provide a target for young career scientists and allow a more focussed dialogue with other science areas, with funding agencies, with industrial groups and with international organisations outside Europe. CAREX will last for three years and with a wide scope covering microbial life, plant adaptation and animal adaptation to various marine, polar, terrestrial extreme environments as well as outer space. CAREX's outputs will include a strategic roadmap for European life in extreme environments research (including enabling technologies), diverse opportunities for knowledge transfer, standardisation of methodologies, encouragement and support for early career scientists and a network of links to relevant organisations. These deliverables together with improved community networking, supported by newsletters, promotional leaflets, a series of science publications and an interactive web portal, will help consolidate the community and its identity. Outcomes will be facilitated through science/technology workshops, diverse forums, field/laboratory protocol intercomparisons, a summer school and individual grants to facilitate knowledge transfer. CAREX has evolved with the key players from the highly successful ESF "Investigating Life in Extreme Environments" initiative. For more information: www.carex-eu.org
Extreme sensitivity of graphene photoconductivity to environmental gases
Docherty, Callum J.; Lin, Cheng-Te; Joyce, Hannah J.; Nicholas, Robin J.; Herz, Laura M.; Li, Lain-Jong; Johnston, Michael B.
2012-01-01
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices. PMID:23187628
Reaction-induced rheological weakening enables oceanic plate subduction
Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi
2016-01-01
Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the ‘cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets. PMID:27562366
Thermally stable, highly efficient, ultraflexible organic photovoltaics
Xu, Xiaomin; Fukuda, Kenjiro; Karki, Akchheta; Park, Sungjun; Kimura, Hiroki; Jinno, Hiroaki; Watanabe, Nobuhiro; Yamamoto, Shuhei; Shimomura, Satoru; Kitazawa, Daisuke; Yokota, Tomoyuki; Umezu, Shinjiro; Nguyen, Thuc-Quyen; Someya, Takao
2018-01-01
Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation. PMID:29666257
Literature survey on oxidations and fatigue lives at elevated temperatures
NASA Technical Reports Server (NTRS)
Liu, H. W.; Oshida, Y.
1984-01-01
Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.
Fulminate Hepatic Failure as an Initial Presentation of Non-Hodgkin Lymphoma: A Case Report
Ahmadi, Bizhan; Shafieipour, Sara; Akhavan Rezayat, Kambiz
2014-01-01
Viral hepatitis and toxins comprise most common causes of fulminate hepatic failure that are often diagnosed with standard laboratory tests. Herein we discuss a rare, difficult to diagnosis etiology of acute liver failure (ALF). A 62-year-old man presented with a two-week history of fever and fatigue. At four days before admission he became lethargic. His past medical and drug histories were unremarkable. Physical examination revealed generalized jaundice, fever and loss of consciousness. Laboratory tests showed elevated liver transaminases with direct hyper-bilirubinemia. Abdominal ultrasonography and CT scan showed hepatosplenomegaly and para-aortic abdominal lymphadenopathy. A further work-up included liver biopsy. The histopathology and imunohistochemistry was compatible with diffuse large B-cell lymphoma. He underwent high dose glucocorticoid therapy but his condition deteriorated rapidly and he died eight days after admission. ALF as an initial manifestation of malignant hepatic infiltration is extremely rare yet should be considered in all patients with unknown hepatic failure that are highly suspicious for malignant neoplasm. PMID:24872870
Sola, Chrystelle; Choquet, Olivier; Prodhomme, Olivier; Capdevila, Xavier; Dadure, Christophe
2014-05-01
Adverse events associated with anesthetic management of anterior mediastinal masses in pediatrics are common. To avoid an extremely hazardous general anesthesia, the use of real-time ultrasonography offers an effective alternative in high-risk cases. We report the anesthetic management including a light sedation and ultrasound guidance for regional anesthesia, surgical node biopsy, and placement of a central venous line in two children with an anterior symptomatic mediastinal mass. For pediatric patients with clinical and/or radiologic signs of airway compression, ultrasound guidance provides safety technical assistance to avoid general anesthesia and should be performed for the initial diagnostic and therapeutic procedures. © 2013 John Wiley & Sons Ltd.
Waetjen, Linda; Parker, Matthew; Wilken, Jason M
2012-09-01
High rates of osteoarthritis of the knee joint of the intact limb in persons with amputation have raised concern about the long-term consequence of running. The purpose of this intervention was to determine if loading of the knee on the intact limb of a person with transtibial amputation during running could be decreased by changing the intact limb initial ground contact from rear foot to forefoot strike. This study compared kinematic, kinetic and temporal-spatial data collected while a 27-year-old male, who sustained a traumatic unilateral transtibial amputation of the left lower extremity, ran using a forefoot ground contact and again while using a heel first ground contact. Changing initial ground contact from rear foot strike to forefoot strike resulted in decreases in vertical ground reaction forces at impact, peak knee moments in stance, peak knee powers, and improved symmetry in step length. This case suggests forefoot initial contact of the intact limb may minimize loading of the knee on the intact limb in individuals with transtibial amputation.
Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James C.
2016-01-01
Habitat loss and degradation compound the effects of climate change on wildlife, yet responses to climate and land cover change are often quantified independently. The interaction between climate and land cover change could be intensified in the Great Plains region where grasslands are being converted to row-crop agriculture concurrent with increased frequency of extreme drought events. We quantified the combined effects of land cover and climate change on a species of conservation concern in the Great Plains, the Lesser Prairie-Chicken (Tympanuchus pallidicinctus ). We combined extreme drought events and land cover change with lek count surveys in a Bayesian hierarchical model to quantify changes in abundance of male Lesser Prairie-Chickens from 1978 to 2014 in Kansas, the core of their species range. Our estimates of abundance indicate a gradually decreasing population through 2010 corresponding to drought events and reduced grassland areas. Decreases in Lesser Prairie-Chicken abundance were greatest in areas with increasing row-crop to grassland land cover ratio during extreme drought events, and decreased grassland reduces the resilience of Lesser Prairie-Chicken populations to extreme drought events. A threshold exists for Lesser Prairie-Chickens in response to the gradient of cropland:grassland land cover. When moving across the gradient of grassland to cropland, abundance initially increased in response to more cropland on the landscape, but declined in response to more cropland after the threshold (δ=0.096, or 9.6% cropland). Preservation of intact grasslands and continued implementation of initiatives to revert cropland to grassland should increase Lesser Prairie-Chicken resilience to extreme drought events due to climate change.
Sun-to-Earth MHD Simulation of the 2000 July 14 “Bastille Day” Eruption
NASA Astrophysics Data System (ADS)
Török, Tibor; Downs, Cooper; Linker, Jon A.; Lionello, R.; Titov, Viacheslav S.; Mikić, Zoran; Riley, Pete; Caplan, Ronald M.; Wijaya, Janvier
2018-03-01
Solar eruptions are the main driver of space-weather disturbances at Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 2000 July 14 “Bastille Day” eruption, which produced a very strong geomagnetic storm. After constructing a “thermodynamic” MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption’s source region and initiate the eruption by boundary flows. More than 1033 erg of magnetic energy is released in the eruption within a few minutes, driving a flare, an extreme-ultraviolet wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s‑1, close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hr later and ≈15° too far to the north, with field strengths that are too weak by a factor of ≈1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic field concentrations as it passes 1 au. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.
ERIC Educational Resources Information Center
Leadership Education for Asian Pacifics (LEAP) Asian Pacific American Policy Inst.
Proposition 209 is a statewide constitutional amendment initiative in California, which, if passed in November 1996, will eliminate all statewide affirmative action programs. It is argued that, contrary to its title, this amendment is an extreme and unnecessary measure that will actually undermine further advances in civil rights. There are…
NASA Astrophysics Data System (ADS)
Williamson, Fiona; Allan, Rob; Switzer, Adam D.; Chan, Johnny C. L.; Wasson, Robert James; D'Arrigo, Rosanne; Gartner, Richard
2015-12-01
The value of historic observational weather data for reconstructing long-term climate patterns and the detailed analysis of extreme weather events has long been recognized (Le Roy Ladurie, 1972; Lamb, 1977). In some regions however, observational data has not been kept regularly over time, or its preservation and archiving has not been considered a priority by governmental agencies. This has been a particular problem in Southeast Asia where there has been no systematic country-by-country method of keeping or preserving such data, the keeping of data only reaches back a few decades, or where instability has threatened the survival of historic records. As a result, past observational data are fragmentary, scattered, or even absent altogether. The further we go back in time, the more obvious the gaps. Observational data can be complimented however by historical documentary or proxy records of extreme events such as floods, droughts and other climatic anomalies. This review article highlights recent initiatives in sourcing, recovering, and preserving historical weather data and the potential for integrating the same with proxy (and other) records. In so doing, it focuses on regional initiatives for data research and recovery - particularly the work of the international Atmospheric Circulation Reconstructions over the Earth's (ACRE) Southeast Asian regional arm (ACRE SEA) - and the latter's role in bringing together disparate, but interrelated, projects working within this region. The overarching goal of the ACRE SEA initiative is to connect regional efforts and to build capacity within Southeast Asian institutions, agencies and National Meteorological and Hydrological Services (NMHS) to improve and extend historical instrumental, documentary and proxy databases of Southeast Asian hydroclimate, in order to contribute to the generation of high-quality, high-resolution historical hydroclimatic reconstructions (reanalyses) and, to build linkages with humanities researchers working on issues in environmental and climatic history in the region. Thus, this article also highlights the inherent value of multi/cross/inter-disciplinary projects in providing better syntheses and understanding of human and environmental/climatic variability and change.
Peripheral Quantitative CT (pQCT) Using a Dedicated Extremity Cone-Beam CT Scanner
Muhit, A. A.; Arora, S.; Ogawa, M.; Ding, Y.; Zbijewski, W.; Stayman, J. W.; Thawait, G.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Bingham, C.O.; Means, K.; Carrino, J. A.; Siewerdsen, J. H.
2014-01-01
Purpose We describe the initial assessment of the peripheral quantitative CT (pQCT) imaging capabilities of a cone-beam CT (CBCT) scanner dedicated to musculoskeletal extremity imaging. The aim is to accurately measure and quantify bone and joint morphology using information automatically acquired with each CBCT scan, thereby reducing the need for a separate pQCT exam. Methods A prototype CBCT scanner providing isotropic, sub-millimeter spatial resolution and soft-tissue contrast resolution comparable or superior to standard multi-detector CT (MDCT) has been developed for extremity imaging, including the capability for weight-bearing exams and multi-mode (radiography, fluoroscopy, and volumetric) imaging. Assessment of pQCT performance included measurement of bone mineral density (BMD), morphometric parameters of subchondral bone architecture, and joint space analysis. Measurements employed phantoms, cadavers, and patients from an ongoing pilot study imaged with the CBCT prototype (at various acquisition, calibration, and reconstruction techniques) in comparison to MDCT (using pQCT protocols for analysis of BMD) and micro-CT (for analysis of subchondral morphometry). Results The CBCT extremity scanner yielded BMD measurement within ±2–3% error in both phantom studies and cadaver extremity specimens. Subchondral bone architecture (bone volume fraction, trabecular thickness, degree of anisotropy, and structure model index) exhibited good correlation with gold standard micro-CT (error ~5%), surpassing the conventional limitations of spatial resolution in clinical MDCT scanners. Joint space analysis demonstrated the potential for sensitive 3D joint space mapping beyond that of qualitative radiographic scores in application to non-weight-bearing versus weight-bearing lower extremities and assessment of phalangeal joint space integrity in the upper extremities. Conclusion The CBCT extremity scanner demonstrated promising initial results in accurate pQCT analysis from images acquired with each CBCT scan. Future studies will include improved x-ray scatter correction and image reconstruction techniques to further improve accuracy and to correlate pQCT metrics with known pathology. PMID:25076823
Henzlova, D.; Menlove, H. O.; Marlow, J. B.
2015-07-01
Thermal neutron counters utilized and developed for deployment as non-destructive assay (NDA) instruments in the field of nuclear safeguards traditionally rely on 3He-based proportional counting systems. 3He-based proportional counters have provided core NDA detection capabilities for several decades and have proven to be extremely reliable with range of features highly desirable for nuclear facility deployment. Facing the current depletion of 3He gas supply and the continuing uncertainty of options for future resupply, a search for detection technologies that could provide feasible short-term alternative to 3He gas was initiated worldwide. As part of this effort, Los Alamos National Laboratory (LANL) designedmore » and built a 3He-free full scale thermal neutron coincidence counter based on boron-lined proportional technology. The boronlined technology was selected in a comprehensive inter-comparison exercise based on its favorable performance against safeguards specific parameters. This paper provides an overview of the design and initial performance evaluation of the prototype High Level Neutron counter – Boron (HLNB). The initial results suggest that current HLNB design is capable to provide ~80% performance of a selected reference 3He-based coincidence counter (High Level Neutron Coincidence Counter, HLNCC). Similar samples are expected to be measurable in both systems, however, slightly longer measurement times may be anticipated for large samples in HLNB. The initial evaluation helped to identify potential for further performance improvements via additional tailoring of boron-layer thickness.« less
Cheng, Tessa; Small, Will; Nosova, Ekaterina; Hogg, Bob; Hayashi, Kanna; Kerr, Thomas; DeBeck, Kora
2018-01-16
We investigated the prevalence of and risk factors associated with initiating nonmedical prescription opioid use (NMPOU) before and after illegal drugs using data from two linked cohort studies of street youth and adults who use illegal drugs in Vancouver, Canada. All participants who attended a study visit between 2013 and 2016 were eligible for the primary analyses. Among 512 youth and 833 adult participants, the prevalence of NMPOU was extremely high (88% among street youth; 90% among adults), and over one-third of those who reported engaging in NMPOU had initiated NMPOU before illegal drug use (vs. transitioning from illegal drugs to NMPOU). Participants who reported either transitioning to or from NMPOU had higher risk profiles, particularly related to substance use, when compared with those who reported never engaging in NMPOU. Sub-analyses restricted to only those who engaged in NMPOU found few statistically significant differences between those who initiated NMPOU prior to illegal drugs versus those who initiated illegal drugs prior to NMPOU. Findings suggest that among people who use illegal drugs, early NMPOU trajectories do not appear to critically shape future patterns and practices.
NASA Technical Reports Server (NTRS)
Munasinghe, L.; Jun, T.; Rind, D. H.
2012-01-01
Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.
Insulin Oedema in Newly Diagnosed Type 1 Diabetes Mellitus
Çetinkaya, Semra; Yılmaz Ağladıoğlu, Sebahat; Peltek Kendirici, Havva Nur; Bilgili, Hatice; Yıldırım, Nurdan; Aycan, Zehra
2010-01-01
Despite the essential role of insulin in the management of patients with insulin deficiency, insulin use can lead to adverse effects such as hypoglycaemia and weight gain. Rarely, crucial fluid retention can occur with insulin therapy, resulting in an oedematous condition. Peripheral or generalised oedema is an extremely rare complication of insulin therapy in the absence of heart, liver or renal involvement. It has been reported in newly diagnosed type 1 diabetes, in poorly controlled type 2 diabetes following the initiation of insulin therapy, and in underweight patients on large doses of insulin. The oedema occurs shortly after the initiation of intensive insulin therapy. We describe two adolescent girls with newly diagnosed type 1 diabetes, who presented with oedema of the lower extremities approximately one week after the initiation of insulin treatment; other causes of oedema were excluded. Spontaneous recovery was observed in both patients. Conflict of interest:None declared. PMID:21274337
Li, Zheng; Vendrell, Oriol
2016-01-01
The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. For situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20 to 40 fs driven by strong non-adiabatic effects. PMID:26798842
Gupta, Deepak; Rubens, Andrew; Marjanovic, Milos
2012-03-30
Post-partum Anaphylaxis in mothers is extremely rare and has been reported secondary to initiation of the breast-feeding. However, we hereby report the occurrence of post-partum anaphylaxis in a post-partum patient in the absence of the initiated breast-feeding.
Vascular access infection: survival or mortality.
Hirotani, Sachiko; Kai, Kotaro; Iwatoh, Kazuhiro; Sannomiya, Akihito; Nakajima, Ichiro; Fuchinoue, Shohei
2015-11-01
We conducted an analysis on 11 cases of death after AVG infection that occurred between 1996 and 2013, and compared their information with those of 23 cases of generalized infection due to arteriovenous graft (AVG) infection during the same period who survived. The cause of death was sepsis in all 11 patients. The initial C-reactive protein (CRP) was 10.2-39.8 (28 in average) and the duration from onset of fever to vascular access (VA) hemostasis/removal procedure was 6-9 days (6.4 days in average) in the 11 cases of death. Blood culture revealed a high frequency of methicillin-resistant staphylococcus aureus (MRSA) in 7 of the 11 cases of death. In contrast, in 23 survivors with VA infection and generalized infection, the CRP at the initial visit was 3.2-15.8 (5.6 in average) and the duration from onset of the fever to VA hemostasis/removal procedure was 0-5 days (2.6 days in average), and blood culture revealed a high frequency of methicillin-sensitive staphylococcus aureus (MSSA). Among the cases of death, although VA infection in the upper extremity itself resolved after removing the artificial vessel, they died without an improvement of sepsis. The reason why the sepsis did not resolve is that infectious foci were secondarily formed in other areas than the upper extremity because the start of treatment for VA infection was delayed. Treatment for VA infection should be started as early as possible after onset to avoid the formation of secondary infectious foci in other areas.
Yan, Kun; Gao, Xiang; Luo, Yingwu
2015-07-01
A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wrist loading patterns during pommel horse exercises.
Markolf, K L; Shapiro, M S; Mandelbaum, B R; Teurlings, L
1990-01-01
Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.
Boden, Lauren M; Boden, Stephanie A; Premkumar, Ajay; Gottschalk, Michael B; Boden, Scott D
2018-02-09
Retrospective analysis of prospectively collected data. To create a data-driven triage system stratifying patients by likelihood of undergoing spinal surgery within one year of presentation. Low back pain (LBP) and radicular lower extremity (LE) symptoms are common musculoskeletal problems. There is currently no standard data-derived triage process based on information that can be obtained prior to the initial physician-patient encounter to direct patients to the optimal physician type. We analyzed patient-reported data from 8006 patients with a chief complaint of LBP and/or LE radicular symptoms who presented to surgeons at a large multidisciplinary spine center between September 1, 2005 and June 30, 2016. Univariate and multivariate analysis identified independent risk factors for undergoing spinal surgery within one year of initial visit. A model incorporating these risk factors was created using a random sample of 80% of the total patients in our cohort, and validated on the remaining 20%. The baseline one-year surgery rate within our cohort was 39% for all patients and 42% for patients with LE symptoms. Those identified as high likelihood by the center's existing triage process had a surgery rate of 45%. The new triage scoring system proposed in this study was able to identify a high likelihood group in which 58% underwent surgery, which is a 46% higher surgery rate than in non-triaged patients and a 29% improvement from our institution's existing triage system. The data-driven triage model and scoring system derived and validated in this study (Spine Surgery Likelihood model [SSL-11]), significantly improved existing processes in predicting the likelihood of undergoing spinal surgery within one year of initial presentation. This triage system will allow centers to more selectively screen for surgical candidates and more effectively direct patients to surgeons or non-operative spine specialists. 4.
Do Extremely Violent Juveniles Respond Differently to Treatment?
Asscher, Jessica J.; Deković, M.; Van den Akker, Alithe L.; Prins, Pier J. M.; Van der Laan, Peter H.
2016-01-01
This study increases knowledge on effectiveness of treatment for extremely violent (EV) youth by investigating their response to multisystemic therapy (MST). Using data of a randomized controlled trial on effectiveness of MST, we investigated differences in treatment response between EV youth and not extremely violent (NEV) youth. Pre- to post-treatment comparison indicated MST was equally effective for EV and NEV youth, whereas treatment as usual was not effective for either group. Growth curves of within-treatment changes indicated EV youth responded differently to MST than NEV youth. The within-treatment change was for EV youth non-linear: Initially, they show a deterioration; however, after one month, EV juveniles respond positively to MST, indicating longer lasting, intensive programs may be effective in treating extreme violence. PMID:27794135
Invited Article: A review of haptic optical tweezers for an interactive microworld exploration
NASA Astrophysics Data System (ADS)
Pacoret, Cécile; Régnier, Stéphane
2013-08-01
This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.
Selected highlights from the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1995-01-01
We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.
Hidden Charge States in Soft-X-Ray Laser-Produced Nanoplasmas Revealed by Fluorescence Spectroscopy
NASA Astrophysics Data System (ADS)
Schroedter, L.; Müller, M.; Kickermann, A.; Przystawik, A.; Toleikis, S.; Adolph, M.; Flückiger, L.; Gorkhover, T.; Nösel, L.; Krikunova, M.; Oelze, T.; Ovcharenko, Y.; Rupp, D.; Sauppe, M.; Wolter, D.; Schorb, S.; Bostedt, C.; Möller, T.; Laarmann, T.
2014-05-01
Highly charged ions are formed in the center of composite clusters by strong free-electron laser pulses and they emit fluorescence on a femtosecond time scale before competing recombination leads to neutralization of the nanoplasma core. In contrast to mass spectrometry that detects remnants of the interaction, fluorescence in the extreme ultraviolet spectral range provides fingerprints of transient states of high energy density matter. Spectra from clusters consisting of a xenon core and a surrounding argon shell show that a small fraction of the fluorescence signal comes from multiply charged xenon ions in the cluster core. Initially, these ions are as highly charged as the ions in the outer shells of pure xenon clusters with charge states up to at least 11+.
Transient phases during fast crystallization of organic thin films from solution
NASA Astrophysics Data System (ADS)
Wan, Jing; Li, Yang; Ulbrandt, Jeffrey G.; Smilgies, Detlef-M.; Hollin, Jonathan; Whalley, Adam C.; Headrick, Randall L.
2016-01-01
We report an in situ microbeam grazing incidence X-ray scattering study of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) organic semiconductor thin film deposition by hollow pen writing. Multiple transient phases are observed during the crystallization for substrate temperatures up to ≈93 °C. The layered smectic liquid-crystalline phase of C8-BTBT initially forms and preceedes inter-layer ordering, followed by a transient crystalline phase for temperature >60 °C, and ultimately the stable phase. Based on these results, we demonstrate a method to produce extremely large grain size and high carrier mobility during high-speed processing. For high writing speed (25 mm/s), mobility up to 3.0 cm2/V-s has been observed.
A B-TOF mass spectrometer for the analysis of ions with extreme high start-up energies.
Lezius, M
2002-03-01
Weak magnetic deflection is combined with two acceleration stage time-of-flight mass spectrometry and subsequent position-sensitive ion detection. The experimental method, called B-TOF mass spectrometry, is described with respect to its theoretical background and some experimental results. It is demonstrated that the technique has distinct advantages over other approaches, with special respect to the identification and analysis of very highly energetic ions with an initially large energy broadening (up to 1 MeV) and with high charge states (up to 30+). Similar energetic targets are a common case in intense laser-matter interaction processes found during laser ablation, laser-cluster and laser-molecule interaction and fast particle and x-ray generation from laser-heated plasma. Copyright 2002 John Wiley & Sons, Ltd.
Amorphous metallizations for high-temperature semiconductor device applications
NASA Technical Reports Server (NTRS)
Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.
1981-01-01
The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.
NASA Astrophysics Data System (ADS)
Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.
2017-12-01
Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is rerun using identical model configurations. Response of extreme rainfall as well as changes in thermodynamic and dynamic storm properties will be presented and analyzed. Contrasting responses across the three storm events to climate change will shed light on critical environmental factors for TC-related extreme rainfall over eastern US.
The effect of low velocity impact in the strength characteristics of composite materials laminates
NASA Technical Reports Server (NTRS)
Liebowitz, H.
1983-01-01
The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system.
Temporal context, preference, and resistance to change.
Podlesnik, Christopher A; Jimenez-Gomez, Corina; Thrailkill, Eric A; Shahan, Timothy A
2011-09-01
According to behavioral momentum theory, preference and relative resistance to change in concurrent-chains schedules are correlated and reflect the relative conditioned value of discriminative stimuli. In the present study, we explore the generality of this relation by manipulating the temporal context within a concurrent-chains procedure through changes in the duration of the initial links. Consistent with previous findings, preference for a richer terminal link was less extreme with longer initial links across three experiments with pigeons. In Experiment 1, relative resistance to change and preference were related inversely when responding was disrupted with response-independent food presentations during initial links, replicating a previous finding with rats. However, more food was presented with longer initial links, confounding the disrupter and initial-link duration. In Experiment 2, presession feeding was used instead and eliminated the negative relation between relative resistance to change and preference, but relative resistance to change was not sensitive to relative terminal-link reinforcement rates. In Experiment 3, with more extreme relative terminal-link reinforcement rates, increasing initial-link duration similarly decreased preference and relative resistance to change for the richer terminal link. Thus, when conditions of disruption are equal and assessed under the appropriate reinforcement conditions, changes in temporal context impact relative resistance to change and preference similarly.
Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori
2018-02-08
The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
A Framework to Understand Extreme Space Weather Event Probability.
Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M
2018-03-12
An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Lavers, David A.; Pappenberger, Florian; Richardson, David S.; Zsoter, Ervin
2016-11-01
In winter, heavy precipitation and floods along the west coasts of midlatitude continents are largely caused by intense water vapor transport (integrated vapor transport (IVT)) within the atmospheric river of extratropical cyclones. This study builds on previous findings that showed that forecasts of IVT have higher predictability than precipitation, by applying and evaluating the European Centre for Medium-Range Weather Forecasts Extreme Forecast Index (EFI) for IVT in ensemble forecasts during three winters across Europe. We show that the IVT EFI is more able (than the precipitation EFI) to capture extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase; conversely, the precipitation EFI is better during the negative NAO phase and at shorter leads. An IVT EFI example for storm Desmond in December 2015 highlights its potential to identify upcoming hydrometeorological extremes, which may prove useful to the user and forecasting communities.
Paes-Sousa, Romulo; Vaitsman, Jeni
2014-11-01
Brazilian social protection programs have had consistent effects in reducing poverty and inequality among their respective target-groups: children, adolescents and pregnant and breastfeeding women. In 2011, the Brazil without Extreme Poverty program was launched as a strategy to eradicate extreme poverty by 2014. It makes the promotion of rights the core concept of the official political narrative. This study seeks to provide a systematic description of the Brazil without Extreme Poverty program and its initial results. A review of official documents and academic studies on the social protection programs was conducted. The Brazil without Extreme Poverty program represents an incremental approach to the social protection policies enacted by the previous administration. It advocates a multidimensional and focused approach, funded primarily by the federal government. The strategy subscribes to the international trend of associating social protection with employment and income generation policies.
Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task.
Meinerz, Carolyn M; Malloy, Philip; Geiser, Christopher F; Kipp, Kristof
2015-09-01
Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions. To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task. Controlled laboratory study. University biomechanics laboratory. Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg). Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions. Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles. Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases. Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition.
[Hypercholesterolemia: a therapeutic approach].
Moráis López, A; Lama More, R A; Dalmau Serra, J
2009-05-01
High blood cholesterol levels represent an important cardiovascular risk factor. Hypercholesterolemia is defined as levels of total cholesterol and low-density lipoprotein cholesterol above 95th percentile for age and gender. For the paediatric population, selective screening is recommended in children older than 2 years who are overweight, with a family history of early cardiovascular disease or whose parents have high cholesterol levels. Initial therapeutic approach includes diet therapy, appropriate physical activity and healthy lifestyle changes. Drug treatment should be considered in children from the age of 10 who, after having followed appropriate diet recommendations, still have very high LDL-cholesterol levels or moderately high levels with concomitant risk factors. In case of extremely high LDL-cholesterol levels, drug treatment should be taken into consideration at earlier ages (8 years old). Modest response is usually observed with bile acid-binding resins. Statins can be considered first-choice drugs, once evidence on their efficacy and safety has been shown.
Effects of SiO 2 overlayer at initial growth stage of epitaxial Y 2O 3 film growth
NASA Astrophysics Data System (ADS)
Cho, M.-H.; Ko, D.-H.; Choi, Y. G.; Lyo, I. W.; Jeong, K.; Whang, C. N.
2000-12-01
We investigated the dependence of the Y 2O 3 film growth on Si surface at initial growth stage. The reflection high-energy electron diffraction, X-ray scattering, and atomic force microscopy showed that the film crystallinity and morphology strongly depended on whether Si surface contained O or not. In particular, the films grown on oxidized surfaces revealed significant improvement in crystallinity and surface smoothness. A well-ordered atomic structure of Y 2O 3 film was formed on 1.5 nm thick SiO 2 layer with the surface and interfacial roughness markedly enhanced, compared with the film grown on the clean Si surfaces. The epitaxial film on the oxidized Si surface exhibited extremely small mosaic structures at interface, while the film on the clean Si surface displayed an island-like growth with large mosaic structures. The nucleation sites for Y 2O 3 were provided by the reaction between SiO 2 and Y at the initial growth stage. The SiO 2 layer known to hinder crystal growth is found to enhance the nucleation of Y 2O 3, and provides a stable buffer layer against the silicide formation. Thus, the formation of the initial SiO 2 layer is the key to the high-quality epitaxial growth of Y 2O 3 on Si.
Dabaghi-Richerand, A; Haces-García, F; Capdevila-Leonori, R
2015-01-01
The purpose of this study is to determine the prognostic factors of a satisfactory functional outcome in patients using upper extremity prosthetics with a proximal third forearm stump, and above, level of amputation. All patients with longitudinal deficiencies and traumatic amputations of upper extremity with a level of amputation of proximal third forearm and above were included. A total of 49 patients with unilateral upper extremity amputations that had used the prosthetic for a minimum of 2 years were included in the protocol. The Disability arm shoulder hand (DASH) scale was used to determine a good result with a cut-off of less than 40%. The independent variables were the level of amputation, the etiology for its use, initial age of use and number of hours/day using the prosthesis. It was found that patients with a congenital etiology and those that started using the prosthetic before 6 years of age had better functional results. It was found that when adapting a patient with an upper extremity prosthetic, which has a high rejection rate of up to 49%, better functional outcomes are found in those who started using it before 6 years of age, and preferably because of a congenital etiology. It was also found that the number of hours/day strongly correlates with a favorable functional outcome. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Gupta, Deepak; Rubens, Andrew; Marjanovic, Milos
2012-01-01
Post-partum Anaphylaxis in mothers is extremely rare and has been reported secondary to initiation of the breast-feeding. However, we hereby report the occurrence of post-partum anaphylaxis in a post-partum patient in the absence of the initiated breast-feeding. PMID:24765442
NASA Astrophysics Data System (ADS)
Parodi, Antonio; Boni, Giorgio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco
2017-04-01
Recent studies show that highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapor content. Analyses of available historical records do not provide a univocal answer, since these may be likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria (Italy): The San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs, as they are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the Reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Liguria Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to Reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers and even photographs can be very valuable sources of knowledge in the reconstruction of past extreme events.
Tadevosian, A; Kalantarian, V; Trchunian, A
2007-01-01
It has been shown that coherent electromagnetic irradiation (EMI) of extremely high frequency (45-53 GHz) or millimeter waves (wavelength 5.6-6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) of Escherichia coli K12, grown under anaerobic conditions during the fermentation of sugar (glucose) for 30 min or 1 h, caused a decrease in their growth rate, the maximum inhibitory effect being achieved at a frequency of 51.8 or 53 GHz. This effect depended on medium pH when the maximal action was determined at pH 7.5. In addition, separate 30-min of 1-h irradiation (frequency 51.8 or 53 GHz) of doubly distilled water or some inorganic ions contained in Tris-phosphate buffer where the cells were transferred induced oppositely directed changes in further growth of these bacteria under anaerobic conditions; irradiation of water caused a decrease in the growth rate of bacteria. A significant change in pH of water (0.5-1.5 unit) was induced by a 30-irradiation at a frequency of 49, 50.3, 51.8, or 53 GHz, when the initial pH value was 6.0 or 8.0, but not 7.5. These results indicate the changes in the properties of water and its role in the effects of EMI of extremely high frequency. The marked effect of EMI on bacteria disappeared upon repeated irradiation for 1 h at a frequency of 51.8 or 53 GHz with an interval of 2 hours. This result indicates some compensatory mechanisms in bacteria.
Scale-invariant properties of public-debt growth
NASA Astrophysics Data System (ADS)
Petersen, A. M.; Podobnik, B.; Horvatic, D.; Stanley, H. E.
2010-05-01
Public debt is one of the important economic variables that quantitatively describes a nation's economy. Because bankruptcy is a risk faced even by institutions as large as governments (e.g., Iceland), national debt should be strictly controlled with respect to national wealth. Also, the problem of eliminating extreme poverty in the world is closely connected to the study of extremely poor debtor nations. We analyze the time evolution of national public debt and find "convergence": initially less-indebted countries increase their debt more quickly than initially more-indebted countries. We also analyze the public debt-to-GDP ratio {\\cal R} , a proxy for default risk, and approximate the probability density function P({\\cal R}) with a Gamma distribution, which can be used to establish thresholds for sustainable debt. We also observe "convergence" in {\\cal R} : countries with initially small {\\cal R} increase their {\\cal R} more quickly than countries with initially large {\\cal R} . The scaling relationships for debt and {\\cal R} have practical applications, e.g. the Maastricht Treaty requires members of the European Monetary Union to maintain {\\cal R} < 0.6 .
Norm compliance and self-reported health among Swedish adolescents.
Nygren, Karina; Janlert, Urban; Nygren, Lennart
2011-02-01
This study examines the relationship between norm compliance and self-reported health in adolescents, and how this differs between genders. Our specific aim was to investigate if extremely high norm compliance revealed any particular health patterns. This empirical study used a web-based survey from 2005, which was distributed to all students (n = 5,066) in years 7-9 of compulsory school within six municipalities in northern Sweden. The respondents answered questions about their general health as well as specific health problems such as headaches, stomach ache, sleeping difficulties and stress. Compliance was measured according to different norm-related behaviour, such as truancy, crime and use of tobacco, alcohol and narcotics. The majority of respondents reported good health and norm-compliant behaviour. Girls reported more health problems than boys, a difference that increased with age. Those who were more norm compliant reported better health, fewer somatic complaints and less stress, which goes against our initial hypothesis that extremely high norm compliance and self-reported ill-health are related. There seemed to be a stronger relationship between self-reported health and norm compliance for girls than boys, in absolute terms. The results clearly show a relationship between norm compliance and health, and suggest inequalities between genders.
Towards ab initio extremely metal-poor stars
NASA Astrophysics Data System (ADS)
Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker
2016-12-01
Extremely metal-poor stars have been the focus of much recent attention owing to the expectation that their chemical abundances can shed light on the metal and dust yields of the earliest supernovae. We present our most realistic simulation to date of the astrophysical pathway to the first metal-enriched stars. We simulate the radiative and supernova hydrodynamic feedback of a 60 M⊙ Population III star starting from cosmological initial conditions realizing Gaussian density fluctuations. We follow the gravitational hydrodynamics of the supernova remnant at high spatial resolution through its freely expanding, adiabatic, and radiative phases, until gas, now metal-enriched, has resumed runaway gravitational collapse. Our findings are surprising: while the Population III progenitor exploded with a low energy of 1051 erg and injected an ample metal mass of 6 M⊙, the first cloud to collapse after the supernova explosion is a dense surviving primordial cloud on which the supernova blast wave deposited metals only superficially, in a thin, unresolved layer. The first metal-enriched stars can form at a very low metallicity, of only 2-5 × 10-4 Z⊙, and can inherit the parent cloud's highly elliptical, radially extended orbit in the dark matter gravitational potential.
Studies in useful hard x-ray induced chemistry
NASA Astrophysics Data System (ADS)
Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong
2013-06-01
The observed rapid decomposition of potassium chlorate (via 2KClO3 + h ν --> 2KCl +3O2) via synchrotron hard x-ray irradiation (>10 keV) has enabled experiments that are developing novel and useful hard x-ray chemistry. We have observed a number of radiation-induced in situ decomposition reactions in various substances which release O2, H2, N2, NH3, and H2O in a diamond anvil cell (DAC) at ambient and high pressures. These novel acatalytic and isothermal reactions represent a highly controllable, penetrating, and focused method to initiate chemistry (including x-ray induced combustion) in sealed and/or isolated chambers which maintain matter under extreme conditions. During our studies, we have typically observed a slowing of decomposition with pressure including phase dependent decomposition of KClO3. Energy dependent studies have observed an apparent resonance near 15 keV at which the decomposition rate is maximized. This may enable use of much lower flux and portable x-ray sources (e.g. x-ray tubes) in larger scale experiments. These developments support novel means to load DACs and control chemical reactions providing novel routes of synthesis of novel materials under extreme conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.
2014-01-15
Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition inmore » view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.« less
The Chemical Abundances of New Extremely Metal-Poor Giants with [Fe/H] < -3.0
NASA Astrophysics Data System (ADS)
Rhee, Jaehyon; Fink, M.; Rhee, W.
2012-01-01
Extremely metal-poor (EMP) stars with [Fe/H] < -3.0 observable in the Galactic halo and thick disk today are believed to be the second-generation stars born out of those materials that were slightly chemically polluted by the extinct, metal-free first stars. If true, these oldest surviving stars with the lowest metal abundances are astrophysical laboratories that may shed essential light on the origins and evolution of the chemical elements and on the formation of the Milky Way. In order to newly discover field metal-deficient stars in the inner halo of the Galaxy, the Purdue Ultra Metal-Poor Star Survey (PUMPSS) program was conducted. Candidate metal-poor stars were initially selected utilizing the photometric data of the GALEX and the 2MASS, and subsequent medium- and high-resolution spectroscopy were carried out for the identification of true metal-poor giant stars and detailed chemical abundance analyses, respectively. We present an overview of the PUMPSS program and the results of the abundance analysis for high-dispersion spectra of EMP giant stars taken at the KPNO 4m telescope. We acknowledge support for this work from NASA grants 07-ADP07-0080 and 05-GALEX05-27.
Cold Spray for Repair of Magnesium Components
2011-11-01
powder material. Other advantages of the Cold Spray process include: It provides extremely dense coatings with virtually no inclusions or cracks ... crack on insertion of Rosan fitting and does not reclaim the mechanical properties of the Mg alloy. It is expected that the use of Cold Spray coating...Spray process include: Extremely dense coatings with virtually no inclusions or cracks . Retains properties and microstructure of initial powder
2005-01-01
lavage, and splinting. Exter- nal fixation was used when there was concurrent vascular pro- cedures or if fractures were extremely unstable...foot open fracture Completion lower extremity amputation; completion right upper amputation; external fixation right ankle 8/Iraqi child Class 3 shock...infection Comminuted mandible fracture with loss of airway (casualty 1 in Table 2) Airway control Infection of mandibular plate at echelon 5 facility
Advances in photon counting for bioluminescence
NASA Astrophysics Data System (ADS)
Ingle, Martin B.; Powell, Ralph
1998-11-01
Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.
Naidoo, P; Liu, V J; Bergin, S
2015-01-01
Diabetic complications in the lower extremity are associated with significant morbidity and mortality, and impact heavily upon the public health system. Early and accurate recognition of these abnormalities is crucial, enabling the early initiation of treatments and thus avoiding or minimizing deformity, dysfunction and amputation. Following careful clinical assessment, radiological imaging is central to the diagnostic and follow-up process. We aim to provide a comprehensive review of diabetic lower limb complications designed to assist radiologists and to contribute to better outcomes for these patients. PMID:26111070
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce T.; Lakhina, Gurbax S.; Echer, Ezequiel; Hajra, Rajkumar; Nayak, Chinmaya; Mannucci, Anthony J.; Meng, Xing
2018-02-01
An alternative scenario to the Ngwira et al. (2014, https://doi.org/10.1002/2013JA019661) high sheath densities is proposed for modeling the Carrington magnetic storm. Typical slow solar wind densities ( 5 cm-3) and lower interplanetary magnetic cloud magnetic field intensities ( 90 nT) can be used to explain the observed initial and main phase storm features. A second point is that the fast storm recovery may be explained by ring current losses due to electromagnetic ion cyclotron wave scattering.
2007-01-01
extremely important. In this paper we discuss Teledyne Imaging Sensor’s (TIS)# H4RG-10 CMOS-Hybrid Focal Plane Assembly (FPA)@. The H4RG-10 is a...receipt of a loaned engineering grade unit ( EGU ) that was used initially for electronics set up and testing. We plan on irradiating the EGU at a later...persistence, since exposure to high energy proton flux that is typical of the space environment results in the generation of new traps in the detector
Two phase microstructure for Ag-Ni nanowires
NASA Astrophysics Data System (ADS)
Srivastava, Chandan; Rai, Rajesh Kumar
2013-03-01
In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.
Natural killer/T-cell lymphoma invading the orbit and globe.
Lyons, Lance J; Vrcek, Ivan; Somogyi, Marie; Taheri, Kevin; Admirand, Joan H; Chexal, Saradha; Loukas, Demetrius F; Nakra, Tanuj
2017-10-01
Natural killer/T-cell lymphomas are extremely rare and carry high mortality rates. Epidemiologically, these cancers tend to affect mainly Asian and South American patients and are associated with Epstein-Barr virus seropositivity. This report details a 78-year-old Vietnamese woman who presented initially with vitritis of unknown cause, but later developed proptosis and conjunctival involvement as her disease spread. Biopsies of the orbit, ethmoid sinus, and conjunctiva were found to be significant for natural killer/T-cell lymphoma. The case highlights the diagnostic difficulty of this tumor given its rarity and ability to mimic other disorders.
Natural killer/T-cell lymphoma invading the orbit and globe
Lyons, Lance J.; Somogyi, Marie; Taheri, Kevin; Admirand, Joan H.; Chexal, Saradha; Loukas, Demetrius F.; Nakra, Tanuj
2017-01-01
Natural killer/T-cell lymphomas are extremely rare and carry high mortality rates. Epidemiologically, these cancers tend to affect mainly Asian and South American patients and are associated with Epstein-Barr virus seropositivity. This report details a 78-year-old Vietnamese woman who presented initially with vitritis of unknown cause, but later developed proptosis and conjunctival involvement as her disease spread. Biopsies of the orbit, ethmoid sinus, and conjunctiva were found to be significant for natural killer/T-cell lymphoma. The case highlights the diagnostic difficulty of this tumor given its rarity and ability to mimic other disorders. PMID:28966461
Norwegian scabies - rare case of atypical manifestation.
Ebrahim, Karina Corrêa; Alves, Júlia Barazetti; Tomé, Lísias de Araújo; Moraes, Carlos Floriano de; Gaspar, Arianne Ditzel; Franck, Karin Fernanda; Hussein, Mohamad Ali; Cruz, Lucas Raiser da; Ebrahim, Leonardo Duque; Sidney, Luis Felipe de Oliveira
2016-01-01
Human scabies affects all social classes and different races around the world. It is highly contagious, but the exact figures on its prevalence are unknown. A 19-year-old male patient was admitted to the emergency room reporting fever (38°C) and multiple lesions throughout the body, except face, soles, and palms. Lesions were non-pruritic, which hampered the initial diagnostic suspicion. Skin biopsy was performed, and the final diagnosis was crusted scabies (Norwegian). It was concluded that human scabies is a significant epidemic disease, due to its different clinical manifestations, and because it is extremely contagious.
Conceptualizing the self organization of cloud cells, cold pools and soil moisture
NASA Astrophysics Data System (ADS)
Henneberg, O.; Härter, J. O. M.
2017-12-01
Convective-type cloud is the cause of extreme, short-duration precipitation, challenging weather forecasting and climate modeling. Such extremes are ultimately tied to the uneven redistribution of water in the course of convective self organization and possibly the interaction between clouds [1]. Over land, moisture is organized through: cloud cells, cold pools, and the land surface. Each of these generally capture and release moisture at different rates, e.g. cold pools form quickly but dissipate slowly. Such distinct timescales have implications for the emergent dynamics.Incorporating such distinct time scales, we here present a conceptual model for the spatio-temporal self organization within the diurnal cycle of convection and describe the possible role of soil moisture memory in serving as a predisposition for extremes.We bolster our findings by high resolution, large eddy simulations: Sensible and latent heat fluxes, which are determined by the soil moisture content, can influence the stability of the atmosphere. The onset of initial precipitation is affected by such heat release, which in turn is modified by previous precipitation. Starting from static heat sources, we quantify how their spatial distribution affects the self organization and thus onset, duration and strength of precipitation events in an idealized model setup. Furthermore, an extended model setup with inhomogeneous, self organized distributions of latent and sensible heat fluxes is used to contrast how emergent soil moisture patterns impact on the selforganization structure of convection. Our findings may have implications for the role of land use changes regarding the development of extreme convective precipitation.Reference[1] Moseley et al. (2016) "Intensification of convective extremes driven by cloud-cloud interaction", Nature Geosc. , 9, 748-752
Dedicated Cone-Beam CT System for Extremity Imaging
Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.
2014-01-01
Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for this article. PMID:24475803
Kulchitskaya, D B; Gerasimenko, M Yu; Aphanova, T V; Konchugova, T V
The principal objective of the present work was to evaluate the influence of impulse magnetic therapy on the state of the microcirculatory system in the patients presenting with lymphedema of the lower extremities. The study included 59 patients with stage of 1 and 2 lymphedema who were divided into two groups. Those comprising the first group had impulse magnetic therapy applied to their lower extremities while the patients making up the second group served as controls. All the patients were examined with the use of the laser Doppler flowmetry (LDF) that revealed the initially present pathological changes in the microcirculatory system of their lower extremities. The study has demonstrated that the application of impulse magnetic therapy produced a positive effect on all the constituent components of the microcirculatory blood stream of the patients suffering from lymphedema of the lower extremities. Specifically, the initially increased arteriolar tonus was decreased, the blood flow in the capillary vessels was improved, and congestive phenomena in the venular segments of the microcirculation blood stream were markedly reduced. The results of the LDF examination in the control group gave no evidence of significant changes in the patients' microcirculatory system. The results of the LDF examination of the patients of the control group suggested the absence of any appreciable changes in the microcirculatory system. The present study has demonstrated the advisability of the application of impulse magnetic therapy for the treatment of the patients presenting with lymphedema of the lower extremities as a minimally invasive technique for the evaluation of the condition of the microcirculatory system and the objective assessment of the effectiveness of the outcomes of physiotherapy in the patients with vascular pathology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Putten, Maurice H. P. M.
2015-09-01
Long gamma-ray bursts (GRBs) associated with supernovae and short GRBs with extended emission (SGRBEE) from mergers are probably powered by black holes as a common inner engine, as their prompt GRB emission satisfies the same Amati correlation in the E{sub p,i}–E{sub iso} plane. We introduce modified Bardeen equations to identify hyper-accretion driving newly formed black holes in core-collapse supernovae to near-extremal spin as a precursor to prompt GRB emission. Subsequent spin-down is observed in the BATSE catalog of long GRBs. Spin-down provides a natural unification of long durations associated with the lifetime of black hole spin for normal long GRBsmore » and SGRBEEs, given the absence of major fallback matter in mergers. The results point to major emissions unseen in high frequency gravitational waves. A novel matched filtering method is described for LIGO–Virgo and KAGRA broadband probes of nearby core-collapse supernovae at essentially maximal sensitivity.« less
Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL
Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...
2015-06-18
The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less
Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.
Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G
2015-06-18
The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.
Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?
Jedlicka, Peter
2017-01-01
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics. PMID:29163041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
Enzyme kinetics above denaturation temperature: a temperature-jump/stopped-flow apparatus.
Kintses, Bálint; Simon, Zoltán; Gyimesi, Máté; Tóth, Júlia; Jelinek, Balázs; Niedetzky, Csaba; Kovács, Mihály; Málnási-Csizmadia, András
2006-12-15
We constructed a "temperature-jump/stopped-flow" apparatus that allows us to study fast enzyme reactions at extremely high temperatures. This apparatus is a redesigned stopped-flow which is capable of mixing the reactants on a submillisecond timescale concomitant with a temperature-jump even as large as 60 degrees C. We show that enzyme reactions that are faster than the denaturation process can be investigated above denaturation temperatures. In addition, the temperature-jump/stopped-flow enables us to investigate at physiological temperature the mechanisms of many human enzymes, which was impossible until now because of their heat instability. Furthermore, this technique is extremely useful in studying the progress of heat-induced protein unfolding. The temperature-jump/stopped-flow method combined with the application of structure-specific fluorescence signals provides novel opportunities to study the stability of certain regions of enzymes and identify the unfolding-initiating regions of proteins. The temperature-jump/stopped-flow technique may become a breakthrough in exploring new features of enzymes and the mechanism of unfolding processes.
Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology?
Jedlicka, Peter
2017-01-01
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Dong, Xiquan; Kennedy, Aaron D.
2011-01-01
The degree of coupling between the land surface and PBL in NWP models remains largely undiagnosed due to the complex interactions and feedbacks present across a range of scales. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with observations during the summers of 2006/7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which enables a suite of PBL and land surface model (LSM) options along provides a flexible and high-resolution representation and initialization of land surface physics and states. This coupling is one component of a larger project to develop a NASA-Unified WRF (NU-WRF) system. A range of diagnostics exploring the feedbacks between soil moisture and precipitation are examined for the dry/wet extremes, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture.
Endovascular techniques in limb salvage: cutting, cryo, brachy, and drug-eluting balloons.
Davies, Mark G; Anaya-Ayala, Javier E
2013-04-01
The complex pathophysiology response to injury of the lower-extremity arteries has prompted the development of several unique balloon technologies to overcome initial technical failures and short-term intimal hyperplasia. Cryoplasty alters the cellular and mechanical properties of the vessel wall during angioplasty. Cutting balloons incise the wall, preventing elastic recoil and allowing expansion of the lumen at a lower pressure, thus limiting barotrauma. Drug-eluting balloons actively transfer inhibitory compounds to the wall during the initial therapy, while brachytherapy balloons allow for localized delivery of radiation to inhibit the proliferative response seen after angioplasty. These platforms provide unique means to enhance immediate and short-term results and also reduce stent usage in the lower extremity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Vendrell, Oriol
2016-01-13
The ultrafast nuclear and electronic dynamics of protonated water clusters H+(H2O)n after extreme ultraviolet photoionization is investigated. In particular, we focus on cluster cations with n = 3, 6, and 21. Upon ionization, two positive charges are present in the cluster related to the excess proton and the missing electron, respectively. A correlation is found between the cluster's geometrical conformation and initial electronic energy with the size of the final fragments produced. As a result, for situations in which the electron hole and proton are initially spatially close, the two entities become correlated and separate in a time-scale of 20more » to 40 fs driven by strong non-adiabatic effects.« less
Unprecedented Disease-Related Coral Mortality in Southeastern Florida
NASA Astrophysics Data System (ADS)
Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert
2016-08-01
Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.
Unprecedented Disease-Related Coral Mortality in Southeastern Florida.
Precht, William F; Gintert, Brooke E; Robbart, Martha L; Fura, Ryan; van Woesik, Robert
2016-08-10
Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.
Necrotizing streptococcal myositis of the upper extremity: a case report.
Reichert, Johannes C; Habild, Götz; Simon, Paul; Nöth, Ulrich; Krümpelmann, Jan B
2017-08-15
Necrotizing myositis is a rare but life-threatening soft-tissue infection characterized by rapidly spreading inflammation and subsequent necrosis of the affected tissue. The myositis is often caused by toxin-producing, virulent bacteria such as group A β-hemolytic streptococcus and associated with severe systemic toxicity. It is rapidly fatal unless diagnosed promptly and treated aggressively. However, necrotizing myositis is often initially misdiagnosed as a more benign soft-tissue infection as such fulminant, invasive muscle infections are rare with no more than 30 cases reported over the last century. We illustrate the case of a 74-year-old male Caucasian initially presenting with a progressing swelling and gradually oncoming pain of the upper right extremity. Rapidly, livid discolorations of the skin, blisters, hypoesthesia and severe pain resistant to analgesics treatment developed accompanied by disruption of the arterial blood flow. Due to a manifest compartment syndrome the patient was admitted to theater for fasciotomy of the arm. After multiple revision surgeries wound closure was achieved using a pedicled, fasciocutaneous parascapular flap and a free, ipsilateral anterolateral thigh flap. Microbiological analysis revealed group A β-hemolytic streptococcus, histology a bacterial interstitial myositis with necrotic muscular fibers. A high degree of clinical suspicion is necessary to avert potentially disastrous consequences of necrotizing myositis. Timely diagnosis, broad-spectrum antibiotic therapy, and aggressive surgical debridement of affected tissue are keys to the treatment of this serious, often life-threatening infection.
Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Mount, G. H.; Bybee, R. L.
1979-01-01
The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.
Fulminant bilateral acute retinal necrosis after chickenpox - a case report.
Dascalu, Ana Maria; Stana, Daniela; Popa-Cherecheanu, Alina; Popa-Cherecheanu, Matei; Serban, Dragos
2016-01-01
We present the case of a 34-year-old male, admitted for progressive bilateral loss of vision after a recent episode of chickenpox. Ophthalmological exam revealed bilateral acute retinal necrosis. As the patient was following a drug detoxification program, he was tested for HIV, HVB, HVC, and results highly positive. Immediate intravenous therapy with high doses of acyclovir and methylprednisolone was initiated, but the evolution was extremely severe resulting in necrotic retinal detachment. Surgery was performed in right eye, but no improvement of visual acuity was observed. The fulminant evolution of bilateral acute retinal necrosis and the lack of response to maximal intravenous therapy were clinical elements indicating coexistent immunosuppressive disease. Very severe acute retinal necrosis may occur in immunosuppressed patients, leading to blindness.
Pressure wave injuries to rat dorsal root ganglion cells in culture caused by high-energy missiles.
Suneson, A; Hansson, H A; Lycke, E; Seeman, T
1989-01-01
A high-energy missile impact in an extremity of an animal creates a shock wave which is rapidly dispersed as a burst of oscillating pressure waves that traverses the entire body causing local, regional, and distant injuries. The present study was performed on dorsal root ganglion (DRG) cells, cultured for 3 weeks, to elucidate the cellular mechanism for damage of nerve cells, using a simplified test system. A model system was developed allowing exposure of DRG cultures to a burst of high-frequency oscillating pressure waves, comparable to those recorded in animals after high-energy missile extremity impact. The pressure waves were induced by impact of a high-energy missile in a rubber tube filled with water, in which nerve cell cultures were kept in a closed rubber glove filled with tissue culture medium. The pressure waves had a duration of 0.5-1.5 ms and a frequency spectrum ranging from 0-250 kHz. Within minutes the neurites showed changes in their microtubules. In addition, varicosities, enriched with tubulin immunoreactive material, became irregularly studded along the nerve cell processes. Scattered DRG cells were initially permeable to the marker complex Evans-blue albumin (EBA), used as an indicator of the ability of the plasma membranes to exclude proteins. After 6 hr, however, almost every DRG neuron was intensely stained by EBA. Concomitantly, there was swelling of the nerve cell cytoplasm and organelles, and, to a variable extent, neurofilament tangles were observed.(ABSTRACT TRUNCATED AT 250 WORDS)
Extreme Toughening of Soft Materials with Liquid Metal.
Kazem, Navid; Bartlett, Michael D; Majidi, Carmel
2018-05-01
Soft and tough materials are critical for engineering applications in medical devices, stretchable and wearable electronics, and soft robotics. Toughness in synthetic materials is mostly accomplished by increasing energy dissipation near the crack tip with various energy dissipation techniques. However, bio-materials exhibit extreme toughness by combining multi-scale energy dissipation with the ability to deflect and blunt an advancing crack tip. Here, we demonstrate a synthetic materials architecture that also exhibits multi-modal toughening, whereby embedding a suspension of micron sized and highly deformable liquid metal (LM) droplets inside a soft elastomer, the fracture energy dramatically increases by up to 50x (from 250 ± 50 J m -2 to 11,900 ± 2600 J m -2 ) over an unfilled polymer. For some LM-embedded elastomer (LMEE) compositions, the toughness is measured to be 33,500 ± 4300 J m -2 , which far exceeds the highest value previously reported for a soft elastic material. This extreme toughening is achieved by (i) increasing energy dissipation, (ii) adaptive crack movement, and (iii) effective elimination of the crack tip. Such properties arise from the deformability of the LM inclusions during loading, providing a new mechanism to not only prevent crack initiation, but also resist the propagation of existing tears for ultra tough, soft materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extreme hyperglycemia with ketoacidosis and hyperkalemia in a patient on chronic hemodialysis.
Gupta, Arvin; Rohrscheib, Mark; Tzamaloukas, Antonios H
2008-10-01
A patient on hemodialysis for end-stage renal disease secondary to diabetic nephropathy was admitted in a coma with Kussmaul breathing and hypertension (232/124 mmHg). She had extreme hyperglycemia (1884 mg/dL), acidosis (total CO(2) 4 mmol/L), hyperkalemia (7.2 mmol/L) with electrocardiographic abnormalities, and hypertonicity (330.7 mOsm/kg). Initial treatment with insulin drip resulted in a decrease in serum potassium to 5.3 mmol/L, but no significant change in mental status or other laboratory parameters. Hemodialysis of 1.75 hours resulted in rapid decline in serum glucose and tonicity and rapid improvement of the acidosis, but no change in mental status, which began to improve slowly after the hemodialysis was stopped, but with ongoing treatment with continuous insulin infusion. The rate of decline in tonicity during hemodialysis (14.5 mOsm/kg/h) was high, raising concerns about neurological complications. In this case, extreme hyperglycemia with ketoacidosis, hyperkalemia, and coma developing in a hemodialysis patient responded to insulin infusion. Monitoring of the clinical status and the pertinent laboratory values is required to assess the need for other therapeutic measures including volume and potassium replacement and emergency dialysis. The indications for and risks of emergency dialysis in this setting are not clearly defined.
Improved Hourly and Sub-Hourly Gauge Data for Assessing Precipitation Extremes in the U.S.
NASA Astrophysics Data System (ADS)
Lawrimore, J. H.; Wuertz, D.; Palecki, M. A.; Kim, D.; Stevens, S. E.; Leeper, R.; Korzeniewski, B.
2017-12-01
The NOAA/National Weather Service (NWS) Fischer-Porter (F&P) weighing bucket precipitation gauge network consists of approximately 2000 stations that comprise a subset of the NWS Cooperative Observers Program network. This network has operated since the mid-20th century, providing one of the longest records of hourly and 15-minute precipitation observations in the U.S. The lengthy record of this dataset combined with its relatively high spatial density, provides an important source of data for many hydrological applications including understanding trends and variability in the frequency and intensity of extreme precipitation events. In recent years NOAA's National Centers for Environmental Information initiated an upgrade of its end-to-end processing and quality control system for these data. This involved a change from a largely manual review and edit process to a fully automated system that removes the subjectivity that was previously a necessary part of dataset quality control and processing. An overview of improvements to this dataset is provided along with the results of an analysis of observed variability and trends in U.S. precipitation extremes since the mid-20th century. Multi-decadal trends in many parts of the nation are consistent with model projections of an increase in the frequency and intensity of heavy precipitation in a warming world.
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
Probabilistic forecasting of extreme weather events based on extreme value theory
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert
2016-04-01
Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.
A new hydrological model for estimating extreme floods in the Alps
NASA Astrophysics Data System (ADS)
Receanu, R. G.; Hertig, J.-A.; Fallot, J.-M.
2012-04-01
Protection against flooding is very important for a country like Switzerland with a varied topography and many rivers and lakes. Because of the potential danger caused by extreme precipitation, structural and functional safety of large dams must be guaranteed to withstand the passage of an extreme flood. We introduce a new distributed hydrological model to calculate the PMF from a PMP which is spatially and temporally distributed using clouds. This model has permitted the estimation of extreme floods based on the distributed PMP and the taking into account of the specifics of alpine catchments, in particular the small size of the basins, the complex topography, the large lakes, snowmelt and glaciers. This is an important evolution compared to other models described in the literature, as they mainly use a uniform distribution of extreme precipitation all over the watershed. This paper presents the results of calculation with the developed rainfall-runoff model, taking into account measured rainfall and comparing results to observed flood events. This model includes three parts: surface runoff, underground flow and melting snow. Two Swiss watersheds are studied, for which rainfall data and flow rates are available for a considerably long period, including several episodes of heavy rainfall with high flow events. From these events, several simulations are performed to estimate the input model parameters such as soil roughness and average width of rivers in case of surface runoff. Following the same procedure, the parameters used in the underground flow simulation are also estimated indirectly, since direct underground flow and exfiltration measurements are difficult to obtain. A sensitivity analysis of the parameters is performed at the first step to define more precisely the boundary and initial conditions. The results for the two alpine basins, validated with the Nash equation, show a good correlation between the simulated and observed flows. This good correlation shows that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type.
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy
2014-01-01
Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes with a sampling of investigations or tests that have been requested or expected.
Stone, Patrick A; Flaherty, Sarah K; Aburahma, Ali F; Hass, Stephen M; Jackson, J Michelle; Hayes, J David; Hofeldt, Matthew J; Hager, Casey S; Elmore, Michael S
2006-03-01
Major lower extremity amputations continue to be associated with significant morbidity and mortality, yet few recent large series have evaluated factors associated with perioperative mortality and wound complications. The purpose of this study was to examine factors affecting perioperative mortality and wound-related complications following major lower extremity amputation. A retrospective review was conducted of all adult patients who underwent nontraumatic major lower extremity amputations over a 5-year period at a single tertiary-care center in southern West Virginia. Demographic and clinical data, perioperative data, and outcomes were collected and analyzed to identify any relationship with perioperative mortality, as well as wound complications and early revisions (within 90 days) to a more proximal level. Variables were examined using chi-squared, two-tailed t-tests, and logistic regression. Three hundred eighty patients (61% male) underwent 412 major lower extremity amputations during 1999-2003. The initial level of amputation included 230 below-knee (BKA), 149 above-knee (AKA), and one hip disarticulation. Perioperative mortality was 15.5% (n = 59). From a regression model, age, albumin level, AKA, and lack of a previous coronary artery bypass graft (CABG) were independently related to mortality. Patients who did not have a previous CABG were nearly three times more likely to die than those who did (p = 0.038). Overall early wound complications were noted in 13.4% (n = 51). Four factors were independently related to experiencing a 90-day wound complication: BKA, community (rather than care facility) living, type of anesthesia, and preoperative hematocrit >30%. Major lower extremity amputation in patients with peripheral vascular disease continues to be associated with considerable perioperative morbidity and mortality. Even though the surgical procedure itself may not be challenging from a technical standpoint, underlying medical conditions put this group at high risk for perioperative death. Wound-healing problems are frequently encountered and must be minimized to facilitate early mobilization and hospital discharge.
Zbijewski, W; De Jean, P; Prakash, P; Ding, Y; Stayman, J W; Packard, N; Senn, R; Yang, D; Yorkston, J; Machado, A; Carrino, J A; Siewerdsen, J H
2011-08-01
This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a -55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm3 field of view); total acquisition arc of -240 degrees. The system MTF declines to 50% at -1.3 mm(-1) and to 10% at -2.7 mm(-1), consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from -500 projections at less than -0.5 kW power, implying -6.4 mGy (0.064 mSv) for low-dose protocols and -15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.
Zbijewski, W.; De Jean, P.; Prakash, P.; Ding, Y.; Stayman, J. W.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Machado, A.; Carrino, J. A.; Siewerdsen, J. H.
2011-01-01
Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a ∼55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 × 20 × 20 cm3 field of view); total acquisition arc of ∼240°. The system MTF declines to 50% at ∼1.3 mm−1 and to 10% at ∼2.7 mm−1, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from ∼500 projections at less than ∼0.5 kW power, implying ∼6.4 mGy (0.064 mSv) for low-dose protocols and ∼15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10–20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography. PMID:21928644
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zbijewski, W.; De Jean, P.; Prakash, P.
2011-08-15
Purpose: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. Methods: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified themore » following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. Results: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a {approx}55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm{sup 3} field of view); total acquisition arc of {approx}240 deg. The system MTF declines to 50% at {approx}1.3 mm{sup -1} and to 10% at {approx}2.7 mm{sup -1}, consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from {approx}500 projections at less than {approx}0.5 kW power, implying {approx}6.4 mGy (0.064 mSv) for low-dose protocols and {approx}15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). Conclusions: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gounelle, Matthieu; Chaussidon, Marc; Rollion-Bard, Claire, E-mail: gounelle@mnhn.fr
2013-02-01
A search for short-lived {sup 10}Be in 21 calcium-aluminum-rich inclusions (CAIs) from Isheyevo, a rare CB/CH chondrite, showed that only 5 CAIs had {sup 10}B/{sup 11}B ratios higher than chondritic correlating with the elemental ratio {sup 9}Be/{sup 11}B, suggestive of in situ decay of this key short-lived radionuclide. The initial ({sup 10}Be/{sup 9}Be){sub 0} ratios vary between {approx}10{sup -3} and {approx}10{sup -2} for CAI 411. The initial ratio of CAI 411 is one order of magnitude higher than the highest ratio found in CV3 CAIs, suggesting that the more likely origin of CAI 411 {sup 10}Be is early solar systemmore » irradiation. The low ({sup 26}Al/{sup 27}Al){sub 0} [{<=} 8.9 Multiplication-Sign 10{sup -7}] with which CAI 411 formed indicates that it was exposed to gradual flares with a proton fluence of a few 10{sup 19} protons cm{sup -2}, during the earliest phases of the solar system, possibly the infrared class 0. The irradiation conditions for other CAIs are less well constrained, with calculated fluences ranging between a few 10{sup 19} and 10{sup 20} protons cm{sup -2}. The variable and extreme value of the initial {sup 10}Be/{sup 9}Be ratios in carbonaceous chondrite CAIs is the reflection of the variable and extreme magnetic activity in young stars observed in the X-ray domain.« less
Proliferating Myositis: An Inflammatory Lesion often Misdiagnosed as A Malignant Tumor.
Binesh, Fariba; Sobhanardekani, Mohammad; Zabihi, Somayeh; Behniafard, Nasim
2016-12-01
Proliferative myositis (PM) is a rare inflammatory disease. Most commonly, the lesion occurs in the extremities. Regarding its fast growth and bizarre shape of the cellular components this entity commonly misdiagnosed and the patients undergo improper therapeutic approaches. In other words, it is often misdiagnosed as sarcoma. The diagnosis can only be made by the microscopic examination, so biopsy is mandatory. Here the authors report a patient with PM who was initially misdiagnosed as pleomorphic sarcoma of the lower extremity and explain this rare entity. Proliferative myositis should be taken into account if a fast growing, intramuscular mass occurs in the extremities.
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Blakely, Martin L.; Lally, Kevin P.; McDonald, Scott; Brown, Rebeccah L.; Barnhart, Douglas C.; Ricketts, Richard R.; Thompson, W Raleigh; Scherer, L R.; Klein, Michael D.; Letton, Robert W.; Chwals, Walter J.; Touloukian, Robert J.; Kurkchubasche, Arlett G.; Skinner, Michael A.; Moss, R Lawrence; Hilfiker, Mary L.
2005-01-01
Objective: Purposes of this study were: 1) to compare mortality and postoperative morbidities (intra-abdominal abscess, wound dehiscence, and intestinal stricture) in extremely low birth weight (ELBW) infants who underwent initial laparotomy or drainage for necrotizing enterocolitis (NEC) or isolated intestinal perforation (IP); 2) to determine the ability to distinguish NEC from IP preoperatively and the importance of this distinction on outcome measures; and 3) to evaluate the association between extent of intestinal disease determined at operation and outcome measures. Background: ELBW infants who undergo operation for NEC or IP have a postoperative, in-hospital mortality rate of approximately 50%. Whether to perform laparotomy or drainage initially is controversial. Also unknown is the importance of distinguishing NEC from IP and the current ability to make this distinction based on objective data available prior to operation. Methods: A prospective, multicenter cohort study of 156 ELBW infants at 16 neonatal intensive care units (NICU) within the NICHD Neonatal Research Network. Results: Among the 156 enrolled infants, 80 underwent initial peritoneal drainage and 76 initial laparotomy. Mortality rate was 49% (76 of 156). Ninety-six patients had a preoperative diagnosis of NEC and 60 had presumed IP. There was a high level of agreement between the presumed preoperative diagnosis and intraoperative diagnosis in patients undergoing initial laparotomy (kappa = 0.85). The relative risk for death with a preoperative diagnosis of NEC (versus IP) was 1.4 (95% confidence interval, 0.99–2.1, P = 0.052). The overall incidence of postoperative intestinal stricture was 10.3%, wound dehiscence 4.4%, and intra-abdominal abscess 5.8%, and did not significantly differ between groups undergoing initial laparotomy versus initial drainage. Conclusions: Survival to hospital discharge after operation for NEC or IP in ELBW neonates remains poor (51%). Patients with a preoperative diagnosis of NEC have a relative risk for death of 1.4 compared with those with a preoperative diagnosis of IP. A distinction can be made preoperatively between NEC and IP based on abdominal radiographic findings and the patient's age at operation. Future randomized trials that compare laparotomy versus drainage would likely benefit from stratification of treatment assignment based on preoperative diagnosis. PMID:15912048
The Socialization into Criminality: On Becoming a Prisoner and a Guard.
1974-02-15
findings are not unlike those of more contemporary researchers who have found even the most extreme 6 adult behavior like violence and aggression to...tremendous potency of the sit- uation or environmental setting in the control of behavior . It suggests that the causes of even markedly deviant behavior are...impotence, we turn initially to some of the most extreme and regretable forms of behavior which have resulted from institutional socialization outside
Evaluation of Military Trauma System Practices Related to Complications After Injury
2012-01-01
and ventilator- associated pneumonia (VAP).3Y5 This current analysis illustrates three key examples of trauma system PI initiatives related to...the Abbreviated Injury Scale (AIS) body re- gion of 7 (upper extremity) or 8 (lower extremity). Compartment syndrome patients were identified in the...queried met the inclusion criteria for the VAP evaluation study. Of the total study popu- lation, 1.7% of patients (n = 107) acquired VAP, whereas
ERIC Educational Resources Information Center
Pons, Ferran; Albareda-Castellot, Barbara; Sebastian-Galles, Nuria
2012-01-01
Vowels with extreme articulatory-acoustic properties act as natural referents. Infant perceptual asymmetries point to an underlying bias favoring these referent vowels. However, as language experience is gathered, distributional frequency of speech sounds could modify this initial bias. The perception of the /i/-/e/ contrast was explored in 144…
ERIC Educational Resources Information Center
Doscher, Stephanie Paul
2012-01-01
Higher education institutions across the United States have developed global learning initiatives to support student achievement of global awareness and global perspective, but assessment options for these outcomes are extremely limited. A review of research for a global learning initiative at a large, Hispanic-serving, urban, public, research…
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
Arctic daily temperature and precipitation extremes: Observed and simulated physical behavior
NASA Astrophysics Data System (ADS)
Glisan, Justin Michael
Simulations using a six-member ensemble of Pan-Arctic WRF (PAW) were produced on two Arctic domains with 50-km resolution to analyze precipitation and temperature extremes for various periods. The first study used a domain developed for the Regional Arctic Climate Model (RACM). Initial simulations revealed deep atmospheric circulation biases over the northern Pacific Ocean, manifested in pressure, geopotential height, and temperature fields. Possible remedies to correct these large biases, such as modifying the physical domain or using different initial/boundary conditions, were unsuccessful. Spectral (interior) nudging was introduced as a way of constraining the model to be more consistent with observed behavior. However, such control over numerical model behavior raises concerns over how much nudging may affect unforced variability and extremes. Strong nudging may reduce or filter out extreme events, since the nudging pushes the model toward a relatively smooth, large-scale state. The question then becomes---what is the minimum spectral nudging needed to correct biases while not limiting the simulation of extreme events? To determine this, we use varying degrees of spectral nudging, using WRF's standard nudging as a reference point during January and July 2007. Results suggest that there is a marked lack of sensitivity to varying degrees of nudging. Moreover, given that nudging is an artificial forcing applied in the model, an important outcome of this work is that nudging strength apparently can be considerably smaller than WRF's standard strength and still produce reliable simulations. In the remaining studies, we used the same PAW setup to analyze daily precipitation extremes simulated over a 19-year period on the CORDEX Arctic domain for winter and summer. We defined these seasons as the three-month period leading up to and including the climatological sea ice maximum and minimum, respectively. Analysis focused on four North American regions defined using climatological records, regional weather patterns, and geographical/topographical features. We compared simulated extremes with those occurring at corresponding observing stations in the U.S. National Climate Data Center's (NCDC's) Global Summary of the Day. Our analysis focused on variations in features of the extremes such as magnitudes, spatial scales, and temporal regimes. Using composites of extreme events, we also analyzed the processes producing these extremes, comparing circulation, pressure, temperature and humidity fields from the ERA-Interim reanalysis and the model output. The analysis revealed the importance of atmospheric convection in the Arctic for some extreme precipitation events and the overall importance of topographic precipitation. The analysis established the physical credibility of the simulations for extreme behavior, laying a foundation for examining projected changes in extreme precipitation. It also highlighted the utility of the model for extracting behavior that one cannot discern directly from the observations, such as summer convective precipitation.
Polarization control of high order harmonics in the EUV photon energy range.
Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe
2011-02-28
We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.
Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa
NASA Astrophysics Data System (ADS)
Guo, Jing; Wang, Honghong; von Rohr, Fabian; Wang, Zhe; Cai, Shu; Zhou, Yazhou; Yang, Ke; Li, Aiguo; Jiang, Sheng; Wu, Qi; Cava, Robert J.; Sun, Liling
2017-12-01
We report the observation of extraordinarily robust zero-resistance superconductivity in the pressurized (TaNb)0.67(HfZrTi)0.33 high-entropy alloy--a material with a body-centered-cubic crystal structure made from five randomly distributed transition-metal elements. The transition to superconductivity (TC) increases from an initial temperature of 7.7 K at ambient pressure to 10 K at ˜60 GPa, and then slowly decreases to 9 K by 190.6 GPa, a pressure that falls within that of the outer core of the earth. We infer that the continuous existence of the zero-resistance superconductivity from 1 atm up to such a high pressure requires a special combination of electronic and mechanical characteristics. This high-entropy alloy superconductor thus may have a bright future for applications under extreme conditions, and also poses a challenge for understanding the underlying quantum physics.
Achieving high aspect ratio wrinkles by modifying material network stress.
Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J
2017-06-07
Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.
High Misalignment Carbon Seals for the Fan Drive Gear System Technologies
NASA Technical Reports Server (NTRS)
Shaughnessy, Dennis; Dobek, Lou
2006-01-01
Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.
Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa
Guo, Jing; Wang, Honghong; von Rohr, Fabian; Wang, Zhe; Cai, Shu; Zhou, Yazhou; Yang, Ke; Li, Aiguo; Jiang, Sheng; Wu, Qi; Cava, Robert J.; Sun, Liling
2017-01-01
We report the observation of extraordinarily robust zero-resistance superconductivity in the pressurized (TaNb)0.67(HfZrTi)0.33 high-entropy alloy––a material with a body-centered-cubic crystal structure made from five randomly distributed transition-metal elements. The transition to superconductivity (TC) increases from an initial temperature of 7.7 K at ambient pressure to 10 K at ∼60 GPa, and then slowly decreases to 9 K by 190.6 GPa, a pressure that falls within that of the outer core of the earth. We infer that the continuous existence of the zero-resistance superconductivity from 1 atm up to such a high pressure requires a special combination of electronic and mechanical characteristics. This high-entropy alloy superconductor thus may have a bright future for applications under extreme conditions, and also poses a challenge for understanding the underlying quantum physics. PMID:29183981
Feng, Biao; Levitas, Valery I
2017-04-21
The main principles of producing a region near the center of a sample, compressed in a diamond anvil cell (DAC), with a very high pressure gradient and, consequently, with high pressure are predicted theoretically. The revealed phenomenon of generating extremely high pressure gradient is called the pressure self-focusing effect. Initial analytical predictions utilized generalization of a simplified equilibrium equation. Then, the results are refined using our recent advanced model for elastoplastic material under high pressures in finite element method (FEM) simulations. The main points in producing the pressure self-focusing effect are to use beveled anvils and reach a very thin sample thickness at the center. We find that the superposition of torsion in a rotational DAC (RDAC) offers drastic enhancement of the pressure self-focusing effect and allows one to reach the same pressure under a much lower force and deformation of anvils.
U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks.
NASA Technical Reports Server (NTRS)
Tera, F.; Wasserburg, G. J.
1972-01-01
The isotopic composition of Pb and the elemental concentration of U, Th and Pb were measured on 'total' rock samples 14053, 14073 and 14310 and on mineral separates of 14310 and 14053. These are the first Pb-U isochrons obtained for lunar basalts and indicate a reasonable solution to the previous discrepancy between the different methods of 'absolute' age determination. The resulting U-Pb isochron ages are compatible with the Rb-Sr and K-Ar ages on the same rocks. However, it is not possible to establish a precise time of 'crystallization' from the Pb-U data because of the small angle of intersection between the linear arrays and the concordia curve. These data show that total rock model ages do not in general yield crystallization ages. The data on 14310 and 14053 show that these rocks were formed containing a highly radiogenic initial lead which accounts for the excessively high total rock model ages by the U-Th-Pb method. The data prove that at the time of extrusion of some basalts, unsupported lead with extremely high Pb-207/Pb-206 ratios was added to the lunar surface.
Quantifying the relationship between extreme air pollution events and extreme weather events
NASA Astrophysics Data System (ADS)
Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi
2017-05-01
Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.
Abbey, Antonia; Wegner, Rhiana; Pierce, Jennifer; Jacques-Tiura, Angela J.
2012-01-01
Objective The goal of this study is to distinguish risk factors associated with young men's self-reports of continuing (persistence), stopping (desistance), and starting (initiation) sexual aggression against women over a one year time period. This study fills gaps in the literature not addressed in other studies by examining a wide range of predictor variables prospectively in a community sample. Method Single men age 18 to 35 were recruited through telephone sampling in a large metropolitan region. In person audio computer-assisted self interviews were completed at baseline and one year later (n = 423). Results By the follow-up interview, half of the participants reported engaging in some type of sexual activity with a woman when they knew she was unwilling. Discriminant function and analysis of variance demonstrated that persistent sexual aggressors had the most extreme scores on many baseline and follow-up measures including childhood victimization, social deviance, personality traits, frequency of misperception of women's sexual intent, and expectancies about alcohol's effects. At follow-up, desisters had fewer sexual partners than did persisters. Also at follow-up, initiators misperceived more women's sexual intentions, had stronger alcohol expectancies, drank more alcohol in sexual situations, and were with women who drank more alcohol as compared to nonperpetrators. Conclusions Given the extremely high rates of self-reported sexual aggression, universal prevention programs are needed. Targeted interventions should focus on youth who were victimized in childhood, engage in delinquent behavior, are narcissistic and unconcerned about others, enjoy impersonal sex, drink heavily, and believe that alcohol enhances sexuality. PMID:22272382
A pilot study of inhaled methoxyflurane for procedural analgesia in children.
Babl, Franz; Barnett, Peter; Palmer, Greta; Oakley, Ed; Davidson, Andrew
2007-02-01
Methoxyflurane (MF), a potent volatile anesthetic, can be used as an analgesic in subanesthetic concentrations. In Australia, MF is extensively used in children and adults as an analgesic in the prehospital setting via a hand-held inhaler device. We conducted a pilot study to explore its use as a patient controlled analgesic for painful procedures in children in the emergency department (ED). This is a prospective observational case series of children aged 5 years and older requiring procedural analgesia for brief painful procedures. Pain scores, depth of sedation, adverse events and patient, parent and staff satisfaction were assessed as well as consumption of MF measured. Fourteen patients (aged 6-13 years) received MF mainly for extremity injuries. Amount of MF consumed ranged from 0.36 to 3.06 g per patient inhaled over 4-25 min. There were no serious adverse events. No patient was deeply sedated. Five patients had mild brief self-resolving adverse events including agitation, euphoria, blurry vision, dizziness and cough. Four patients with fractures with initial high pain scores (> or =6) received MF for bridging analgesia with large drops in pain scores. Four patients who required fracture reductions with initial low scores did not achieve adequate analgesia. The remaining six patients had painful procedures undertaken with satisfactory analgesia. On the basis of this small pilot study of MF use in children in the ED, this agent appears to be a powerful analgesic. MF seems most useful as a self-titrated bridging analgesic agent in patients after extremity trauma. It appears less useful as a procedural agent when patients are unable to anticipate and achieve a sufficient level of analgesia before painful stimulus infliction. Pre- and intraprocedure coaching is an important aspect of its use especially if initial pain scores are low.
Kassamali, Rahil Hussein; Hoey, Edward T D; Ganeshan, Arul; Littlehales, Tracey
2013-01-01
This feasibility study aimed to obtain initial data to assess the performance of a novel noncontrast spoiled magnetic resonance (MR) angiography technique (fresh-blood imaging [FBI]) compared to gadolinium-enhanced MR (Gd-MR) angiography for evaluation of the aorto-iliac and lower extremity arteries. Thirteen patients with suspected lower extremity arterial disease that had undergone Gd-MR angiography and FBI at the same session were randomly included in the study. FBI was performed using an ECG-gated ow-spoiled T2-weighted half-Fourier fast spin-echo sequence. For analysis, the aortoiliac and lower limb arteries were divided into 18 anatomical segments. Two blinded readers individually graded image quality of FBI and also assessed the presence and severity of any stenotic lesions. A similar analysis was performed for the Gd-MR angiography images. A total of 385 arterial segments were analyzed; 34 segments were excluded due to degraded image quality (1.3% of Gd- MR vs. 8% of FBI-MR angiography images). FBI-MR angiography had comparable accuracy to Gd-MR angiography for assessment of the above knee vessels with high kappa statistics (large arteries, 0.91; small arteries, 0.86) and high sensitivity (large arteries, 98.1%; small arteries, 88.6%) and specificity (large arteries, 97.2%; small arteries, 97.6%) using Gd-MR angiography as the gold standard. Initial results show good agreement between FBI-MR angiography and Gd-MR angiography in the diagnosis of peripheral arterial disease, making FBI a potential alternative in patients with renal impairment. FBI showed highest accuracy in the above knee vessels. Technological refinements are required to improve accuracy for assessing the calf and pedal vessels.
Teng, P S P; Kong, P W; Leong, K F
2017-06-01
Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such as knee valgus. The position of the foot at landing may influence the transmission of forces from the ankle to the knee. Using an experimental approach to manipulate foot rotation positions, this study aimed to provide new insights on how knee valgus during single-leg landing may be influenced by foot positions. Eleven male recreational basketball players performed single-leg drop landings from a 30-cm high platform in three foot rotation positions (toe-in, toe-forward and toe-out) at initial contact. A motion capture system and a force plate were used to measure lower extremity kinematics and kinetics. Knee valgus angles at initial contact (KVA) and maximum knee valgus moments (KVM), which were known risk factors associated with ACL injury, were measured. A one-way repeated measures Analysis of Variance was conducted (α=0.05) to compare among the three foot positions. Foot rotation positions were found to have a significant effect on KVA (p<0.001, η 2 =0.66) but the difference between conditions (about 1°) was small and not clinically meaningful. There was a significant effect of foot position on KVM (p<0.001, η 2 =0.55), with increased moment observed in the toe-out position as compared to toe-forward (p=0.012) or toe-in positions (p=0.002). When landing with one leg, athletes should avoid extreme toe-out foot rotation positions to minimise undesirable knee valgus loading associated with non-contact ACL injury risks. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Faridatussafura, Nurzaka; Wandala, Agie
2018-05-01
The meteorological model WRF-ARW version 3.8.1 is used for simulating the heavy rainfall in Semarang that occurred on February 12th, 2015. Two different convective schemes and two different microphysics scheme in a nested configuration were chosen. The sensitivity of those schemes in capturing the extreme weather event has been tested. GFS data were used for the initial and boundary condition. Verification on the twenty-four hours accumulated rainfall using GSMaPsatellite data shows that Kain-Fritsch convective scheme and Lin microphysics scheme is the best combination scheme among the others. The combination also gives the highest success ratio value in placing high intensity rainfall area. Based on the ROC diagram, KF-Lin shows the best performance in detecting high intensity rainfall. However, the combination still has high bias value.
A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan
2015-04-01
The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.
NASA Technical Reports Server (NTRS)
Chaudhuri, Dilip K.; Slifka, Andrew J.; Siegwarth, James D.
1993-01-01
Unlubricated sliding friction and wear of 440C steels in an oxygen environment have been studied under a variety of load, speed, and temperature ranging from approximately -185 to 675 deg C. A specially designed test apparatus with a ball-on-flat geometry has been used for this purpose. The observed dependencies of the initial coefficient of friction, the average dynamic coefficient of friction, and the wear rate on load, speed, and test temperatures have been examined from the standpoint of existing theories of friction and wear. High contact temperatures are generated during the sliding friction, causing rapid oxidation and localized surface melting. A combination of fatigue, delamination, and loss of hardness due to tempering of the martensitic structure is responsible for the high wear rate observed and the coefficient of friction.
Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K
2016-04-01
Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
A Perspective on the Use of Storable Propellants for Future Space Vehicle Propulsion
NASA Technical Reports Server (NTRS)
Boyd, William C.; Brasher, Warren L.
1989-01-01
Propulsion system configurations for future NASA and DOD space initiatives are driven by the continually emerging new mission requirements. These initiatives cover an extremely wide range of mission scenarios, from unmanned planetary programs, to manned lunar and planetary programs, to earth-oriented (Mission to Planet Earth) programs, and they are in addition to existing and future requirements for near-earth missions such as to geosynchronous earth orbit (GEO). Increasing space transportation costs, and anticipated high costs associated with space-basing of future vehicles, necessitate consideration of cost-effective and easily maintainable configurations which maximize the use of existing technologies and assets, and use budgetary resources effectively. System design considerations associated with the use of storable propellants to fill these needs are presented. Comparisons in areas such as complexity, performance, flexibility, maintainability, and technology status are made for earth and space storable propellants, including nitrogen tetroxide/monomethylhydrazine and LOX/monomethylhydrazine.
NASA Technical Reports Server (NTRS)
Gorham, P. W.; Liewer, K. M.; Naudet, C. J.
2000-01-01
Using the NASA Goldstone 70m antenna DSS 14 both singly and in coincidence with the 34 m antenna DSS 13 (21.7 km to the southeast), we have acquired approximately 12 hrs of livetime in a search for predicted pulsed radio emission from extremely-high energy cascades induced by neutrinos or cosmic rays in the lunar regolith. In about 4 hrs of single antenna observations, we reduced our sensitivity to impulsive terrestrial interference to a negligible level by use of a veto afforded by the unique capability of DSS 14. In the 8 hrs of dual-antenna observations, terrestrial interference is eliminated as a background. In both observing modes the thermal noise floor limits the sensitivity. We detected no events above statistical background. We report here initial limits based on these data which begin to constrain several predictions of the flux of EHE neutrinos.
2006-12-01
models attempted to bracket the extremes of the conditions of interest. These conditions were Mach 2 and Mach 3 shocks , with initial medium...later, but all traces have been expanded to the area of interest. Pressure readings were primarily used to measure shock speeds, and initially used...results for the clean tube configuration. The characteristics of the initial shock are similar, and are comparable for all configurations tested
Investigating NWP initialization sensitivities in heavy precipitation events
NASA Astrophysics Data System (ADS)
Frediani, M. E. B.; Anagnostou, E. N.; Papadopoulos, A.
2010-09-01
This study aims to investigate the effect of different types of model initialization applied to extreme storms simulations. Storms with extreme precipitation can usually produce flash floods that cause several damages to the society. Lives and property are destroyed from the landslides when they could be speared if forecasted a few hours in advance. The forecasts depend on several factors; among them the initialization fields play an important role. These fields are the starting point for the simulation and therefore it controls the quality of the forecast. This study evaluates the sensitivities of WRF to the initialization from two perspectives, (1) resolution and (2) initial atmospheric fields. Two storms that lead to flash flood are simulated. The first one happened in Northeast Italy in 04/09/2009 (NI), and the second in Germany, in 02/06/2008 (GE). These storms present contrasting characteristics, NI was a maritime originated storm enhanced by local orography while GE was a typical summer convection. Three different sources of atmospheric fields defining the initial conditions are applied: (a) ECMWF operational analysis at resolution of 0.25 deg, (b) GFS operational analysis at 0.5deg and (c) LAPS analysis at ~15km, produced operationally at HCMR. The rainfall forecasted is compared against in situ ground radar and surface rain gauges observations through a set of quantitative precipitation forecast scores.
Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players.
Dubose, Dominique F; Herman, Daniel C; Jones, Deborah L; Tillman, Susan M; Clugston, James R; Pass, Anthony; Hernandez, Jorge A; Vasilopoulos, Terrie; Horodyski, Marybeth; Chmielewski, Terese L
2017-01-01
Recent research indicates that a concussion increases the risk of musculoskeletal injury. Neuromuscular changes after concussion might contribute to the increased risk of injury. Many studies have examined gait postconcussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Division I football players (13 CONC and 26 UNINJ) were tested pre- and postseason. A motion capture system recorded subjects jumping on one limb from a 25.4-cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus the joint angle plots. Leg stiffness was (peak vertical ground reaction force [PVGRF]/lower extremity vertical displacement) from initial contact to peak vertical ground reaction force. All stiffness values were normalized to body weight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and postseason stiffness values. Average time from concussion to postseason testing was 49.9 d. The CONC group showed an increase in hip stiffness (P = 0.03), a decrease in knee (P = 0.03) and leg stiffness (P = 0.03), but no change in ankle stiffness (P = 0.65) from pre- to postseason. Lower extremity stiffness is altered after concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion.
Lower Extremity Stiffness Changes following Concussion in Collegiate Football Players
DuBose, Dominique F.; Herman, Daniel C.; Jones, Debi L.; Tillman, Susan M.; Clugston, James R.; Pass, Anthony; Hernandez, Jorge A.; Vasilopoulos, Terrie; Horodyski, MaryBeth; Chmielewski, Terese L.
2016-01-01
Purpose Recent research indicates that a concussion increases risk of musculoskeletal injury. Neuromuscular changes following concussion might contribute to the increased risk of injury. Many studies have examined gait post-concussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Methods Division I football players (13 CONC, 26 UNINJ) were tested pre- and post-season. A motion-capture system recorded subjects jumping on one limb from a 25.4 cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus joint angle plots. Leg stiffness was (peak vertical ground reaction force (PVGRF)/lower extremity vertical displacement) from initial contact to PVGRF. All stiffness values were normalized to bodyweight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and post-season stiffness values. Results Average time from concussion to post-season testing was 49.9 days. The CONC group showed an increase in hip stiffness (p=0.03), a decrease in knee (p=0.03) and leg stiffness (p=0.03), but no change in ankle stiffness (p=0.65) from pre- to post-season. Conclusion Lower extremity stiffness is altered following concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion. PMID:27501359
Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.
Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen
2016-12-01
Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.
The DAQ needle in the big-data haystack
NASA Astrophysics Data System (ADS)
Meschi, E.
2015-12-01
In the last three decades, HEP experiments have faced the challenge of manipulating larger and larger masses of data from increasingly complex, heterogeneous detectors with millions and then tens of millions of electronic channels. LHC experiments abandoned the monolithic architectures of the nineties in favor of a distributed approach, leveraging the appearence of high speed switched networks developed for digital telecommunication and the internet, and the corresponding increase of memory bandwidth available in off-the-shelf consumer equipment. This led to a generation of experiments where custom electronics triggers, analysing coarser-granularity “fast” data, are confined to the first phase of selection, where predictable latency and real time processing for a modest initial rate reduction are “a necessary evil”. Ever more sophisticated algorithms are projected for use in HL- LHC upgrades, using tracker data in the low-level selection in high multiplicity environments, and requiring extremely complex data interconnects. These systems are quickly obsolete and inflexible but must nonetheless survive and be maintained across the extremely long life span of current detectors. New high-bandwidth bidirectional links could make high-speed low-power full readout at the crossing rate a possibility already in the next decade. At the same time, massively parallel and distributed analysis of unstructured data produced by loosely connected, “intelligent” sources has become ubiquitous in commercial applications, while the mass of persistent data produced by e.g. the LHC experiments has made multiple pass, systematic, end-to-end offline processing increasingly burdensome. A possible evolution of DAQ and trigger architectures could lead to detectors with extremely deep asynchronous or even virtual pipelines, where data streams from the various detector channels are analysed and indexed in situ quasi-real-time using intelligent, pattern-driven data organization, and the final selection is operated as a distributed “search for interesting event parts”. A holistic approach is required to study the potential impact of these different developments on the design of detector readout, trigger and data acquisition systems in the next decades.
Physiological monitoring and analysis of a manned stratospheric balloon test program.
Garbino, Alejandro; Blue, Rebecca S; Pattarini, James M; Law, Jennifer; Clark, Jonathan B
2014-02-01
The Red Bull Stratos Project consisted of incremental high altitude parachute jumps [maximum altitude 127,852 ft (38,969 m)] from a pressurized capsule suspended from a stratospheric helium-filled balloon. A physiological monitoring system was worn by the parachutist to provide operational medical and acceleration data and to record a unique set of data in a supersonic environment. Various physiological parameters, including heart rate (HR), respiratory rate (RR), skin temperature, and triaxial acceleration, were collected during the ascent, high altitude float, free fall, and parachute opening and descent stages of multiple low- and high altitude jumps. Physiologic data were synchronized with global positioning system (GPS) and audiovisual data for a comprehensive understanding of the environmental stressors experienced. HR reached maximum during capsule egress and remained elevated throughout free fall and landing. RR reached its maximum during free fall. Temperature data were unreliable and did not provide useful results. The highest accelerations parameters were recorded during parachute opening and during landing. During each high altitude jump, immediately after capsule egress, the parachutist experienced a few seconds of microgravity during which some instability occurred. Control was regained as the parachutist entered denser atmosphere. The high altitude environment resulted in extremely high vertical speeds due to little air resistance in comparison to lower altitude jumps with similar equipment. The risk for tumbling was highest at initial step-off. Physiological responses included elevated HR and RR throughout critical phases of free fall. The monitoring unit performed well despite the austere environment and extreme human performance activities.
Social networking among upper extremity patients.
Rozental, Tamara D; George, Tina M; Chacko, Aron T
2010-05-01
Despite their rising popularity, the health care profession has been slow to embrace social networking sites. These are Web-based initiatives, designed to bring people with common interests or activities under a common umbrella. The purpose of this study is to evaluate social networking patterns among upper extremity patients. A total of 742 anonymous questionnaires were distributed among upper extremity outpatients, with a 62% response rate (462 were completed). Demographic characteristics (gender, age, level of education, employment, type of health insurance, and income stratification) were defined, and data on computer ownership and frequency of social networking use were collected. Social network users and nonusers were compared according to their demographic and socioeconomic characteristics. Our patient cohort consisted of 450 patients. Of those 450 patients, 418 had a high school education or higher, and 293 reported a college or graduate degree. The majority of patients (282) were employed at the time of the survey, and income was evenly distributed among U.S. Census Bureau quintiles. A total of 349 patients reported computer ownership, and 170 reported using social networking sites. When compared to nonusers, social networking users were younger (p<.001), more educated (p<.001), and more likely to be employed (p = .013). Users also had higher income levels (p=0.028) and had high rates of computer ownership (p<.001). Multivariate regression revealed that younger age (p<.001), computer ownership (p<.001), and higher education (p<.001) were independent predictors of social networking use. Most users (n = 114) regularly visit a single site. Facebook was the most popular site visited (n=142), followed by MySpace (n=28) and Twitter (n=16). Of the 450 upper extremity patients in our sample, 170 use social networking sites. Younger age, higher level of education, and computer ownership were associated with social networking use. Physicians should consider expanding their use of social networking sites to reach their online patient populations. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Li, Jing; Tian, Yinsheng; Ding, Li; Zou, Huijuan; Ren, Zhaosheng; Shi, Liyong; Feathers, David; Wang, Ning
2015-06-05
High-temperatures in the cockpit environment can adversely influence pilot behavior and performance. To investigate the impact of high thermal environments on Chinese pilot performance in a simulated cockpit environment. Ten subjects volunteered to participate in the tests under 40°C and 45°C high-temperature simulations in an environmentally controlled chamber. Measures such as grip strength, perception, dexterity, somatic sense reaction, and analytical reasoning were taken. The results were compared to the Combined Index of Heat Stress (CIHS). CIHS exceeded the heat stress safety limit after 45 min under 40°C, grip strength decreased by 12% and somatic perception became 2.89 times larger than the initial value. In the case of 45°C, CIHS exceeded the safety limit after only 20 min, while the grip strength decreased just by 3.2% and somatic perception increased to 4.36 times larger than the initial value. Reaction and finger dexterity were not statistically different from baseline measurements, but the error rate of analytical reasoning test rose remarkably. Somatic perception was the most sensitive index to high-temperature, followed by grip strength. Results of this paper may help to improve environmental control design of new fighter cockpit and for pilot physiology and cockpit environment ergonomics research for Chinese pilots.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
Weinstein, A; Bordwell, B; Stone, B; Tibbetts, C; Rothfield, N F
1983-02-01
The sensitivity and specificity of the presence of antibodies to native DNA and low serum C3 levels were investigated in a prospective study in 98 patients with systemic lupus erythematosus who were followed for a mean of 38.4 months. Hospitalized patients, patients with other connective tissue diseases, and subjects without any disease served as the control group. Seventy-two percent of the patients with systemic lupus erythematosus had a high DNA-binding value (more than 33 percent) initially, and an additional 20 percent had a high DNA-binding value later in the course of the illness. Similarly, C3 levels were low (less than 81 mg/100 ml) in 38 percent of the patients with systemic lupus erythematosus initially and in 66 percent of the patients at any time during the study. High DNA-binding and low C3 levels each showed extremely high predictive value (94 percent) for the diagnosis of systemic lupus erythematosus when applied in a patient population in which that diagnosis was considered. The presence of both abnormalities was 100 percent correct in predicting the diagnosis os systemic lupus erythematosus. Both tests should be included in future criteria for the diagnosis and classification of systemic lupus erythematosus.
NASA Astrophysics Data System (ADS)
Horton, R. M.; Coffel, E.; Kushnir, Y.
2014-12-01
Recent years have seen an increasing focus on extreme high temperature events, as our understanding of societal vulnerability to such extremes has grown. Less climate research has been devoted to heat indices that consider the joint hazard posed by high temperatures and high humidity, even though heat indices are being prioritized by utility providers and public health officials. This paper evaluates how well CMIP5 models are able to reproduce the large-scale features and surface conditions associated with joint high heat and humidity events in the Northeast U.S. Projected changes in heat indices are also shown both for the full set of CMIP5 models and for a subset of models that best reproduce the statistics of historical high heat index events. The importance of considering the relationship between 1) temperature and humidity extremes and 2) projected changes in extreme temperature and humidity extremes, rather than investigating each variable independently, will be emphasized. Potential impacts of the findings on human mortality and energy consumption will be briefly discussed.
Is soil moisture initialization important for seasonal to decadal predictions?
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan
2014-05-01
The state of soil moisture can can have a significant impact on regional climate conditions for short time scales up to several months. However, focusing on seasonal to decadal time scales, it is not clear whether the predictive skill of global a Earth System Model might be enhanced by assimilating soil moisture data or improving the initial soil moisture conditions with respect to observations. As a first attempt to provide answers to this question, we set up an experiment to investigate the life time (memory) of extreme soil moisture states in the coupled land-atmosphere model ECHAM6-JSBACH, which is part of the Max Planck Institute for Meteorology's Earth System Model (MPI-ESM). This experiment consists of an ensemble of 3 years simulations which are initialized with extreme wet and dry soil moisture states for different seasons and years. Instead of using common thresholds like wilting point or critical soil moisture, the extreme states were extracted from a reference simulation to ensure that they are within the range of simulated climate variability. As a prerequisite for this experiment, the soil hydrology in JSBACH was improved by replacing the bucket-type soil hydrology scheme with a multi-layer scheme. This new scheme is a more realistic representation of the soil, including percolation and diffusion fluxes between up to five separate layers, the limitation of bare soil evaporation to the uppermost soil layer and the addition of a long term water storage below the root zone in regions with deep soil. While the hydrological cycle is not strongly affected by this new scheme, it has some impact on the simulated soil moisture memory which is mostly strengthened due to the additional deep layer water storage. Ensemble statistics of the initialization experiment indicate perturbation lengths between just a few days up to several seasons for some regions. In general, the strongest effects are seen for wet initialization during northern winter over cold and humid regions, while the shortest memory is found during northern spring. For most regions, the soil moisture memory is either sensitive to wet or to dry perturbations, indicating that soil moisture anomalies interact with the respective weather pattern for a given year and might be able to enhance or dampen extreme conditions. To further investigate this effect, the simulations will be repeated using JSBACH with prescribed meteorological forcing to better disentangle the direct effects of soil moisture initialization and the atmospheric response.
On the Nature of Severe Orographic Thunderstorms near the Andes in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, Kristen Lani Emi
Identifying common features and differences between the mechanisms producing extreme convection near major mountain ranges of the world is an essential step toward a general understanding of orographic precipitation on a global scale. The overarching objective of this dissertation is to understand and examine orographic convective processes in general, while specifically focusing on systems in the lee of the Andes Mountains. Diagnosing the key ingredients necessary for generating high impact weather near extreme topography is crucial to our understanding of orographic precipitating systems. An investigation of the most intense storms in 11 years of TRMM Precipitation Radar (PR) data has shown a tendency for squall lines to initiate and develop east of the Andes with a mesoscale organization similar to storms in the U.S. Great Plains (Rasmussen and Houze 2011). In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the mesoscale convective systems (MCSs) is unique. The Andes and other mountainous terrain of Argentina focus deep convective initiation in the foothills of western Argentina (Romatschke and Houze 2010; Rasmussen and Houze 2011). Subsequent to initiation, the convection often evolves into propagating MCSs similar to those seen over the U.S. Great Plains sometimes producing damaging tornadoes, hail and floods across a wide agricultural region (Rasmussen and Houze 2011; Rasmussen et al. 2014b). The TRMM satellite was designed to determine the spatial and temporal variation of tropical and subtropical rainfall amounts and storm structures around the globe with the goal of understanding the factors controlling the precipitation. However, the TRMM PR algorithm significantly underestimates surface rainfall in deep convection over land (Nesbitt et al. 2004; Iguchi et al. 2009; Kozu et al. 2009). When the algorithm rates are compared to a range of conventional Z-R relations, the rain bias tends to be worse in storms with significant mixed phase hydrometeors, such as graupel and hail, that are similarly affected by assumptions in the TRMM PR algorithm (Rasmussen et al. 2013). A quantitative approach that mitigates this bias using TRMM PR data was developed and employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America (Rasmussen et al. 2014c). Results from this study indicate that ~95% of the accumulated warm season precipitation in La Plata Basin in subtropical South America is contributed by echoes structurally related to MCSs and their life cycle. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and precipitation reaching the surface, and has broad implications for the hydrological cycle in this region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) model extends the observational analysis and provides an objective dynamical evaluation of storm initiation, development mechanisms, dynamics (Rasmussen and Houze 2014), and microphysics (Rasmussen et al. 2014d). The capping inversion in the lee of the Andes (Rasmussen and Houze 2011) is important in preventing premature triggering in the simulations. The impingement of the South American Low Level Jet on foothills and low mountains to the east of the main Andes range triggers extremely deep and intense convection. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM satellite as well as the overall shape and character of the storms shown in GOES satellite data (Rasmussen and Houze 2014; Rasmussen et al. 2014d). Sensitivity studies removing and/or reducing various topographic features have shown the profound influence of the terrain on the initiation and upscale growth of the subsequent MCSs. The extreme vertical extent of the Andes tends to keep the South American storms tied to the topography during upscale organization and development longer than similar storms east of the Rocky Mountains in the U.S. and is related to enhanced lee cyclogenesis, flow deformation, and wake effects (Rasmussen and Houze 2014). From this research, an original conceptual model for convective storm environments leading to convective initiation was developed for subtropical South America.
Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images
NASA Astrophysics Data System (ADS)
Su, Yang; Veronig, Astrid M.; Hannah, Iain G.; Cheung, Mark C. M.; Dennis, Brian R.; Holman, Gordon D.; Gan, Weiqun; Li, Youping
2018-03-01
The Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) has been providing high-cadence, high-resolution, full-disk UV-visible/extreme ultraviolet (EUV) images since 2010, with the best time coverage among all the solar missions. A number of codes have been developed to extract plasma differential emission measures (DEMs) from AIA images. Although widely used, they cannot effectively constrain the DEM at flaring temperatures with AIA data alone. This often results in much higher X-ray fluxes than observed. One way to solve the problem is by adding more constraint from other data sets (such as soft X-ray images and fluxes). However, the spatial information of plasma DEMs are lost in many cases. In this Letter, we present a different approach to constrain the DEMs. We tested the sparse inversion code and show that the default settings reproduce X-ray fluxes that could be too high. Based on the tests with both simulated and observed AIA data, we provided recommended settings of basis functions and tolerances. The new DEM solutions derived from AIA images alone are much more consistent with (thermal) X-ray observations, and provide valuable information by mapping the thermal plasma from ∼0.3 to ∼30 MK. Such improvement is a key step in understanding the nature of individual X-ray sources, and particularly important for studies of flare initiation.
A role of high impact weather events in waterborne disease outbreaks in Canada, 1975 - 2001.
Thomas, Kate M; Charron, Dominique F; Waltner-Toews, David; Schuster, Corinne; Maarouf, Abdel R; Holt, John D
2006-06-01
Recent outbreaks of Escherichia coli O157:H7, Campylobacter, and Cryptosporidium have heightened awareness of risks associated with contaminated water supply. The objectives of this research were to describe the incidence and distribution of waterborne disease outbreaks in Canada in relation to preceding weather conditions and to test the association between high impact weather events and waterborne disease outbreaks. We examined extreme rainfall and spring snowmelt in association with 92 Canadian waterborne disease outbreaks between 1975 and 2001, using case-crossover methodology. Explanatory variables including accumulated rainfall, air temperature, and peak stream flow were used to determine the relationship between high impact weather events and the occurrence of waterborne disease outbreaks. Total maximum degree-days above 0 degrees C and accumulated rainfall percentile were associated with outbreak risk. For each degree-day above 0 degrees C the relative odds of an outbreak increased by a factor of 1.007 (95% confidence interval [CI] = 1.002 - 1.012). Accumulated rainfall percentile was dichotomized at the 93rd percentile. For rainfall events greater than the 93rd percentile the relative odds of an outbreak increased by a factor of 2.283 (95% [CI] = 1.216 - 4.285). These results suggest that warmer temperatures and extreme rainfall are contributing factors to waterborne disease outbreaks in Canada. This could have implications for water management and public health initiatives.
High maternal mortality in Jigawa State, Northern Nigeria estimated using the sisterhood method.
Sharma, Vandana; Brown, Willa; Kainuwa, Muhammad Abdullahi; Leight, Jessica; Nyqvist, Martina Bjorkman
2017-06-02
Maternal mortality is extremely high in Nigeria. Accurate estimation of maternal mortality is challenging in low-income settings such as Nigeria where vital registration is incomplete. The objective of this study was to estimate the lifetime risk (LTR) of maternal death and the maternal mortality ratio (MMR) in Jigawa State, Northern Nigeria using the Sisterhood Method. Interviews with 7,069 women aged 15-49 in 96 randomly selected clusters of communities in 24 Local Government Areas (LGAs) across Jigawa state were conducted. A retrospective cohort of their sisters of reproductive age was constructed to calculate the lifetime risk of maternal mortality. Using most recent estimates of total fertility for the state, the MMR was estimated. The 7,069 respondents reported 10,957 sisters who reached reproductive age. Of the 1,026 deaths in these sisters, 300 (29.2%) occurred during pregnancy, childbirth or within 42 days after delivery. This corresponds to a LTR of 6.6% and an estimated MMR for the study areas of 1,012 maternal deaths per 100,000 live births (95% CI: 898-1,126) with a time reference of 2001. Jigawa State has an extremely high maternal mortality ratio underscoring the urgent need for health systems improvement and interventions to accelerate reductions in MMR. The trial is registered at clinicaltrials.gov ( NCT01487707 ). Initially registered on December 6, 2011.
Questioning the current public health approach to countering violent extremism.
Aggarwal, Neil Krishan
2018-05-11
Since the start of the global War on Terror, governments have used the mental health system for counterintelligence purposes. A recent manifestation of this trend is the call from policymakers and mental health researchers to screen individuals at risk for violent extremism through the public health system. Civil rights organisations have raised alarms that Muslims are being disproportionately referred to law enforcement agencies and that Muslim communities are being selected for surveillance despite government assurances that violent extremism is not exclusive to any ideology. This commentary critically analyzes American policies and calls from mental health professionals to use the public health system for implementing initiatives that counter violent extremism. A close reading of such texts demonstrates a persistent concern with treating communities as vulnerable to extremism, prioritising law enforcement over scientific evidence in crafting policies, and breaking medical confidentiality of patients while not assuring immunity for mental health professionals involved in screening. A genuine engagement with public health provides alternatives that question the assumptions of such policies.
Modeling Hydrological Extremes in the Anthropocene
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Martinez, Fabian; Kalantari, Zahra; Viglione, Alberto
2017-04-01
Hydrological studies have investigated human impacts on hydrological extremes, i.e. droughts and floods, while social studies have explored human responses and adaptation to them. Yet, there is still little understanding about the dynamics resulting from two-way feedbacks, i.e. both impacts and responses. Traditional risk assessment methods therefore fail to assess future dynamics, and thus risk reduction strategies built on these methods can lead to unintended consequences in the medium-long term. Here we review the dynamics resulting from the reciprocal links between society and hydrological extremes, and describe initial efforts to model floods and droughts in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both hydrological extremes, and then present a stylized model simulating the reciprocal effects between droughts, foods and reservoir operation rules. Unprecedented opportunities offered by the growing availability of global data and worldwide archives to uncover the mutual shaping of hydrological extremes and society across places and scales are also discussed.
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-01-01
Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-12-21
Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.
Dudek, Dominika; Siwek, Marcin; Jaeschke, Rafał; Drozdowicz, Katarzyna; Styczeń, Krzysztof; Arciszewska, Aleksandra; Chrobak, Adrian A; Rybakowski, Janusz K
2016-06-01
We hypothesised that men and women who engage in extreme or high-risk sports would score higher on standardised measures of bipolarity and impulsivity compared to age and gender matched controls. Four-hundred and eighty extreme or high-risk athletes (255 males and 225 females) and 235 age-matched control persons (107 males and 128 females) were enrolled into the web-based case-control study. The Mood Disorder Questionnaire (MDQ) and Barratt Impulsiveness Scale (BIS-11) were administered to screen for bipolarity and impulsive behaviours, respectively. Results indicated that extreme or high-risk athletes had significantly higher scores of bipolarity and impulsivity, and lower scores on cognitive complexity of the BIS-11, compared to controls. Further, there were positive correlations between the MDQ and BIS-11 scores. These results showed greater rates of bipolarity and impulsivity, in the extreme or high-risk athletes, suggesting these measures are sensitive to high-risk behaviours.
The Power to Detect Linkage Disequilibrium with Quantitative Traits in Selected Samples
Abecasis, Gonçalo R.; Cookson, William O. C.; Cardon, Lon R.
2001-01-01
Results from power studies for linkage detection have led to many ongoing and planned collections of phenotypically extreme nuclear families. Given the great expense of collecting these families and the imminent availability of a dense diallelic marker map, the families are likely to be used in allelic-association as well as linkage studies. However, optimal selection strategies for linkage may not be equally powerful for association. We examine the power to detect linkage disequilibrium for quantitative traits after phenotypic selection. The results encompass six selection strategies that are in widespread use, including single selection (two designs), affected sib pairs, concordant and discordant pairs, and the extreme-concordant and -discordant design. Selection of sibships on the basis of one extreme proband with high or low trait scores provides as much power as discordant sib pairs but requires the screening and phenotyping of substantially fewer initial families from which to select. Analysis of the role of allele frequencies within each selection design indicates that common trait alleles generally offer the most power, but similarities between the marker- and trait-allele frequencies are much more important than the trait-locus frequency alone. Some of the most widespread selection designs, such as single selection, yield power gains only when both the marker and quantitative trait loci (QTL) are relatively rare in the population. In contrast, discordant pairs and the extreme-proband design provide power for the broadest range of QTL–marker-allele frequency differences. Overall, proband selection from either tail provides the best balance of power, robustness, and simplicity of ascertainment for family-based association analysis. PMID:11349228
SCARANO, FABIO R.
2002-01-01
The Brazilian Atlantic rainforest consists of a typical tropical rainforest on mountain slopes, and stands out as a biodiversity hotspot for its high species richness and high level of species endemism. This forest is bordered by plant communities with lower species diversity, due mostly to more extreme environmental conditions than those found in the mesic rainforest. Between the mountain slopes and the sea, the coastal plains have swamp forests, dry semi‐deciduous forests and open thicket vegetation on marine sand deposits. At the other extreme, on top of the mountains (>2000 m a.s.l.), the rainforest is substituted by high altitude fields and open thicket vegetation on rocky outcrops. Thus, the plant communities that are marginal to the rainforest are subjected either to flooding, drought, oceanicity or cold winter temperatures. It was found that positive interactions among plants play an important role in the structuring and functioning of a swamp forest, a coastal sandy vegetation and a cold, high altitude vegetation in the state of Rio de Janeiro. Moreover, only a few species seem to adopt this positive role and, therefore, the functioning of these entire systems may rely on them. Curiously, these nurse plants are often epiphytes in the rainforest, and at the study sites are typically terrestrial. Many exhibit crassulacean acid metabolism. Conservation initiatives must treat the Atlantic coastal vegetation as a complex rather than a rainforest alone. PMID:12324276
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
A Dual Power Law Distribution for the Stellar Initial Mass Function
NASA Astrophysics Data System (ADS)
Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett
2018-05-01
We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.
Using Space Weather for Enhanced, Extreme Terrestrial Weather Predictions.
NASA Astrophysics Data System (ADS)
McKenna, M. H.; Lee, T. A., III
2017-12-01
Considering the complexities of the Sun-Earth system, the impacts of space weather to weather here on Earth are not fully understood. This study attempts to analyze this interrelationship by providing a theoretical framework for studying the varied modalities of solar inclination and explores the extent to which they contribute, both in formation and intensity, to extreme terrestrial weather. Using basic topologic and ontology engineering concepts (TOEC), the transdisciplinary syntaxes of space physics, geophysics, and meteorology are analyzed as a seamless interrelated system. This paper reports this investigation's initial findings and examines the validity of the question "Does space weather contribute to extreme weather on Earth, and if so, to what degree?"
NASA Astrophysics Data System (ADS)
Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun
2017-12-01
The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.
Lakewide monitoring of suspended solids using satellite data. [Lake Superior water reclamation
NASA Technical Reports Server (NTRS)
Sydor, M. (Principal Investigator)
1981-01-01
In anticipation of using LANDSAT and Nimbus 7 coastal zone color scanner data to observe the decrease in suspended solids in Lake Superior following cessation of the dumping of taconite tailings, a series of lakewide sampling cruises was conducted to make radiometric measurements at a lake level. A means for identifying particulates and measuring their concentration from LANDSAT data was developed. The initial distribution of chemical parameters in the extreme western arm of the lake, where the concentration gradients are high, is to be based on the LANDSAT data. Subsequent lakewide dispersal and distribution is to be based on the coastal zone color scanner data.
Flexible displays as key for high-value and unique automotive design
NASA Astrophysics Data System (ADS)
Isele, Robert
2011-03-01
Within the last few years' car industry changed very fast. Information and Communication became more important and displays are now standard in nearly every car. But this is not the only trend which could be recognized in this industry. CO2 emission, fuel price as well as the increasing traffic inside the Mega Cities initialized a big change in the behavior of the customers. The big battle for the car industry will enter the interior extremely fast, and the premium cars need ore innovative design icons. Flexible Displays are one big step that enables totally different designs and a new value of the driver experience.
Clusters of poverty and disease emerge from feedbacks on an epidemiological network.
Pluciński, Mateusz M; Ngonghala, Calistus N; Getz, Wayne M; Bonds, Matthew H
2013-03-06
The distribution of health conditions is characterized by extreme inequality. These disparities have been alternately attributed to disease ecology and the economics of poverty. Here, we provide a novel framework that integrates epidemiological and economic growth theory on an individual-based hierarchically structured network. Our model indicates that, under certain parameter regimes, feedbacks between disease ecology and economics create clusters of low income and high disease that can stably persist in populations that become otherwise predominantly rich and free of disease. Surprisingly, unlike traditional poverty trap models, these localized disease-driven poverty traps can arise despite homogeneity of parameters and evenly distributed initial economic conditions.
Vector dark energy and high-z massive clusters
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.
2011-12-01
The detection of extremely massive clusters at z > 1 such as SPT-CL J0546-5345, SPT-CL J2106-5844 and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard Λ cold dark matter cosmology. In fact, assuming Gaussian initial conditions, the theoretical expectation of detecting such objects is as low as ≤1 per cent. In this paper we discuss the probability of the existence of such objects in the light of the vector dark energy paradigm, showing by means of a series of N-body simulations that chances of detection are substantially enhanced in this non-standard framework.
Global issues and opportunities for optimized retinoblastoma care.
Gallie, Brenda L; Zhao, Junyang; Vandezande, Kirk; White, Abigail; Chan, Helen S L
2007-12-01
The RB1 gene is important in all human cancers. Studies of human retinoblastoma point to a rare retinal cell with extreme dependency on RB1 for initiation but not progression to full malignancy. In developed countries, genetic testing within affected families can predict children at high risk of retinoblastoma before birth; chemotherapy with local therapy often saves eyes and vision; and mortality is 4%. In less developed countries where 92% of children with retinoblastoma are born, mortality reaches 90%. Global collaboration is building for the dramatic change in mortality that awareness, simple expertise and therapies could achieve in less developed countries. Copyright 2007 Wiley-Liss, Inc.
Improved lower extremity pedaling mechanics in individuals with stroke under maximal workloads.
Linder, Susan M; Rosenfeldt, Anson B; Bazyk, Andrew S; Koop, Mandy Miller; Ozinga, Sarah; Alberts, Jay L
2018-05-01
Background Individuals with stroke present with motor control deficits resulting in the abnormal activation and timing of agonist and antagonist muscles and inefficient movement patterns. The analysis of pedaling biomechanics provides a window into understanding motor control deficits, which vary as a function of workload. Understanding the relationship between workload and motor control is critical when considering exercise prescription during stroke rehabilitation. Objectives To characterize pedaling kinematics and motor control processes under conditions in which workload was systematically increased to an eventual patient-specific maximum. Methods A cohort study was conducted in which 18 individuals with chronic stroke underwent a maximal exertion cardiopulmonary exercise test on a stationary cycle ergometer, during which pedaling torque was continuously recorded. Measures of force production, pedaling symmetry, and pedaling smoothness were obtained. Results Mean Torque increased significantly (p < 0.05) for both legs from initial to terminal workloads. Mean torque Symmetry Index, calculated for down and upstroke portions of the pedaling action, improved from 0.37(0.29) to 0.29(0.35) during downstroke (p = 0.007), and worsened during the upstroke: -0.37(0.38) to -0.62(0.46) (p < 0.001) from initial to terminal workloads. Low Torque Duration improved from initial to terminal workloads, decreasing from 121.1(52.9) to 58.1(39.6) degrees (p < 0.001), respectively. Smoothness of pedaling improved significantly from initial to terminal workloads (p < 0.001). Conclusions Improved pedaling kinematics at terminal workloads indicate that individuals with stroke demonstrate improved motor control with respect to the timing, sequencing, and activation of hemiparetic lower extremity musculature compared to lower workloads. Therapeutic prescription involving higher resistance may be necessary to sufficiently engage and activate the paretic lower extremity.
Complete major amputation of the upper extremity: Early results and initial treatment algorithm.
Märdian, Sven; Krapohl, Björn D; Roffeis, Jana; Disch, Alexander C; Schaser, Klaus-Dieter; Schwabe, Philipp
2015-03-01
Traumatic major amputations of the upper extremity are devastating injuries. These injuries have a profound impact on patient's quality of life and pose a burden on social economy. The aims of the current study were to report about the initial management of isolated traumatic major upper limb amputation from the time of admission to definitive soft tissue closure and to establish a distinct initial management algorithm. We recorded data concerning the initial management of the patient and the amputated body part in the emergency department (ED) (time from admission to the operation, Injury Severity Score [ISS], cold ischemia time from injury to ED, and total cold ischemia time). The duration, amount of surgical procedures, the time to definitive soft tissue coverage, and the choice of flap were part of the documentation. All intraoperative and postoperative complications were recorded. All patients were successfully replanted (time from injury to ED, 59 ± 4 minutes; ISS16; time from admission to operating room 57 ± 10 minutes; total cold ischemia time 203 ± 20 minutes; total number of procedures 7.3 ± 2.5); definitive soft tissue coverage could be achieved 23 ± 14 days after injury. Two thromboembolic complications occurred, which could be treated by embolectomy during revision surgery, and we saw one early infection, which could be successfully managed by serial debridements in our series. The management of complete major amputations of the upper extremity should be reserved for large trauma centers with enough resources concerning technical, structural, and personnel infrastructure to meet the demands of surgical reconstruction as well as the postoperative care. Following a distinct treatment algorithm is mandatory to increase the rate of successful major replantations, thus laying the foundation for promising secondary functional reconstructive efforts. Therapeutic study, level V.
Microbial diversity of extreme habitats in human homes.
Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R
2016-01-01
High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
The development and production of thermo-mechanically forged tool steel spur gears
NASA Technical Reports Server (NTRS)
Bamberger, E. N.
1973-01-01
A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.
[Vancomycin-resistant enterococcus--chronicle of a foretold problem].
Bonten, Marc J M; Willems, Rob J
2012-01-01
There have recently been 12 outbreaks of infection caused by vancomycin-resistant enterococci (VRE) in Dutch hospitals. Although the first VRE outbreaks were reported almost 12 years ago, such outbreaks remained uncommon and the question is why they are occurring now. Based on molecular epidemiological studies we have learned that a subpopulation of Enterococcus faecium, resistant to amoxicillin but susceptible to vancomycin, has become highly endemic in Dutch hospitals in the past 12 years. Initial analyses suggest that several transposons containing vancomycin-resistance genes have been introduced into this population, followed by nosocomial spread. We recommend that hospitals without detected VRE outbreaks screen high-risk patients for the presence of VRE. If transmission has already occurred in many hospitals, it will be extremely difficult (and costly) to eradicate VRE.
NASA Astrophysics Data System (ADS)
Cadoni, Ezio
2018-03-01
The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.
NASA Astrophysics Data System (ADS)
Kiefer, T.
2006-12-01
Regional high-resolution multi-proxy climate reconstructions and associated uncertainties for the last ca. 1000 years is a priority area of future research within the Past Global Changes project of the International Geosphere Biosphere Programme (IGBP-PAGES). Considerable progress has been made in the reconstruction techniques, in the handling of a wide range of high- and low-frequency proxy data, and in the quantity and quality of proxy data sets available at continental and northern hemispheric or global scale. Regional reconstructions are particularly important since regional climate change and extremes exhibit much larger amplitudes than hemispherical and global reconstructions. LOTRED-SA (Long-Term climate REconstruction and Dynamics of southern South America is a new collaborative long-term initiative under the umbrella of PAGES and will involve many research groups from different countries. The initiative seeks (i) to collate the large number of disperse already existing and new paleoclimate data sets (documentary data, early instrumental data, data from tree rings, glaciers and ice cores, high resolution marine and lake sediments, pollen data of peat cores etc.) for the last ca. 1000 years available for South America, and (ii) to use the Mann et al. (1998, Nature), Luterbacher et al. (2004, Science) and Moberg et al. (2005, Nature) methodologies to work towards a regional reconstruction at different temporal and spatial resolution with associated uncertainties for southern South America. This contribution reports on the state-of-the-art and the scientific highlights of the first LOTRED-SA science conference (October 2006 in Mendoza, Argentina).
Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei
2018-03-01
Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, S. R.; Rolph, J.; Briggs, K.; Elya, J. L.; Bourassa, M. A.
2016-02-01
The authors will describe the successes and lessons learned from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative. Over the past decade, SAMOS has acquired, quality controlled, and distributed underway surface meteorological and oceanographic observations from nearly 40 oceanographic research vessels. Research vessels provide underway observations at high-temporal frequency (1-minute sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf, around Hawaii and the islands of the tropical Pacific, and frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans) desired by the air-sea exchange, modeling, and satellite remote sensing communities. The presentation will highlight the data stewardship practices of the SAMOS initiative. Activities include routine automated and visual data quality evaluation, feedback to vessel technicians and operators regarding instrumentation errors, best practices for instrument siting and exposure on research vessels, and professional development activities for research vessel technicians. Best practices for data, metadata, and quality evaluation will be presented. We will discuss ongoing efforts to expand data services to enhance interoperability between marine data centers. Data access and archival protocols will also be presented, including how these data may be referenced and accessed via NCEI.
Impacts on the deep-sea ecosystem by a severe coastal storm.
Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa
2012-01-01
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments
NASA Astrophysics Data System (ADS)
Islam, Md Mahbubul; Strachan, Alejandro
2017-06-01
A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.
Carstensen, Linn; Zoldák, Gabriel; Schmid, Franz-Xaver; Sterner, Reinhard
2012-04-24
HisF, the cyclase subunit of imidazole glycerol phosphate synthase (ImGPS) from Thermotoga maritima, is an extremely thermostable (βα)(8)-barrel protein. We elucidated the unfolding and refolding mechanism of HisF. Its unfolding transition is reversible and adequately described by the two-state model, but 6 weeks is necessary to reach equilibrium (at 25 °C). During refolding, initially a burst-phase off-pathway intermediate is formed. The subsequent productive folding occurs in two kinetic phases with time constants of ~3 and ~20 s. They reflect a sequential process via an on-pathway intermediate, as revealed by stopped-flow double-mixing experiments. The final step leads to native HisF, which associates with the glutaminase subunit HisH to form the functional ImGPS complex. The conversion of the on-pathway intermediate to the native protein results in a 10(6)-fold increase of the time constant for unfolding from 89 ms to 35 h (at 4.0 M GdmCl) and thus establishes a high energy barrier to denaturation. We conclude that the extra stability of HisF is used for kinetic protection against unfolding. In its refolding mechanism, HisF resembles other (βα)(8)-barrel proteins.
An extremely young massive clump forming by gravitational collapse in a primordial galaxy.
Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C
2015-05-07
When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.
Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm
Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa
2012-01-01
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084
Use of virtual reality to promote hand therapy post-stroke
NASA Astrophysics Data System (ADS)
Tsoupikova, Daria; Stoykov, Nikolay; Vick, Randy; Li, Yu; Kamper, Derek; Listenberger, Molly
2013-03-01
A novel artistic virtual reality (VR) environment was developed and tested for use as a rehabilitation protocol for post-stroke hand rehabilitation therapy. The system was developed by an interdisciplinary team of engineers, art therapists, occupational therapists, and VR artists to improve patients' motivation and engagement. Specific exercises were developed to explicitly promote the practice of therapeutic tasks requiring hand and arm coordination for upper extremity rehabilitation. Here we describe system design, development, and user testing for efficiency, subject's satisfaction and clinical feasibility. We report results of the completed qualitative, pre-clinical pilot study of the system effectiveness for therapy. Fourteen stroke survivors with chronic hemiparesis participated in a single training session within the environment to gauge user response to the protocol through a custom survey. Results indicate that users found the system comfortable, enjoyable, tiring; instructions clear, and reported a high level of satisfaction with the VR environment and rehabilitation task variety and difficulty. Most patients reported very positive impressions of the VR environment and rated it highly, appreciating its engagement and motivation. We are currently conducting a longitudinal intervention study over 6 weeks in stroke survivors with chronic hemiparesis. Initial results following use of the system on the first subjects demonstrate that the system is operational and can facilitate therapy for post stroke patients with upper extremity impairment.
Inertial Confinement Fusion as an Extreme Example of Dynamic Compression
NASA Astrophysics Data System (ADS)
Moses, E.
2013-06-01
Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
Crossed asymmetry in Russell-Silver syndrome.
Qazi, Q H; Kassner, E G; Ganapathy, C
1977-01-01
Since the initial report by Silver et al (1953), more than 50 examples of the Russell-Silver syndrome have been reported. Unilateral congenital asymmetry of the extremities has been considered one of the major features of this disorder (Silver, 1964). We recently observed a child with otherwise typical features of the Russell-Silver syndrome who had enlargement of the right hand and of the left lower extremity. We know of no other recorded example of crossed asymmetry in this clinical entity. Images PMID:839508
Increasing low birth weight rates: deliveries in a tertiary hospital in istanbul.
Akin, Yasemin; Cömert, Serdar; Turan, Cem; Unal, Orhan; Piçak, Abdülkadir; Ger, Lale; Telatar, Berrin
2010-09-01
Prevalence of low birth weight deliveries may vary across different environments. The necessity of determination of regional data prompted this study. Information of all deliveries from January 2004 to December 2008 was obtained from delivery registry records retrospectively. Initial data including birth weight, vital status, sex, maternal age and mode of delivery were recorded using medical files. The frequency of low birth weight, very low birth weight, extremely low birth weight and stillbirth deliveries were determined. Among 19,533 total births, there were 450 (23.04 per 1000) stillbirths. Low birth weight rate was 10.61%. A significant increase in yearly distribution of low birth weight deliveries was observed (P<0.001). Very low birth weight and extremely low birth weight delivery rates were 3.14% and 1.58% respectively. Among 2073 low birth weight infants, 333 (16.06%) were stillbirths. The stillbirth delivery rate and the birth of a female infant among low birth weight deliveries were significantly higher than infants with birth weight ≥2500g (P<0.001, OR=28.37), (P<0.001) retrospectively. There was no statistical difference between low birth weight and maternal age. The rate of cesarean section among low birth weight infants was 49.4%. High low birth weight and stillbirth rates, as well as the increase in low birth weight deliveries over the past five years in this study are striking. For reduction of increased low birth weight rates, appropriate intervention methods should be initiated.
NASA Astrophysics Data System (ADS)
Li, Donghuan; Zhou, Tianjun; Zou, Liwei; Zhang, Wenxia; Zhang, Lixia
2018-02-01
Extreme high-temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high-temperature events in this region under different climate change scenarios. The Community Earth System Model low-warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer-lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%-46% of the increases in extreme high-temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%-49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.
DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W., E-mail: Augusto_Carballido@baylor.edu
We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking andmore » compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.« less
Johansson, Daniel; Pereyra, Ricardo T; Rafajlović, Marina; Johannesson, Kerstin
2017-04-05
Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard's "plasticity-first" model suggests that plasticity allows for rapid colonisation of a new environment, followed by directional selection that develops local adaptation. Two predictions from this model are that (i) individuals of the original population have high enough plasticity to survive and reproduce in the marginal environment, and (ii) individuals of the marginal population show evidence of local adaptation. Individuals of the macroalga Fucus vesiculosus from the North Sea colonised the hyposaline (≥2-3‰) Baltic Sea less than 8000 years ago. The colonisation involved a switch from fully sexual to facultative asexual recruitment with release of adventitious branches that grow rhizoids and attach to the substratum. To test the predictions from the plasticity-first model we reciprocally transplanted F. vesiculosus from the original population (ambient salinity 24‰) and from the marginal population inside the Baltic Sea (ambient salinity 4‰). We also transplanted individuals of the Baltic endemic sister species F. radicans from 4 to 24‰. We assessed the degree of plasticity and local adaptation in growth and reproductive traits after 6 months by comparing the performance of individuals in 4 and 24‰. Branches of all individuals survived the 6 months period in both salinities, but grew better in their native salinity. Baltic Sea individuals more frequently developed asexual traits while North Sea individuals initiated formation of receptacles for sexual reproduction. Marine individuals of F. vesiculosus are highly plastic with respect to salinity and North Sea populations can survive the extreme hyposaline conditions of the Baltic Sea without selective mortality. Plasticity alone would thus allow for an initial establishment of this species inside the postglacial Baltic Sea at salinities where reproduction remains functional. Since establishment, the Baltic Sea populations have evolved adaptations to extreme hyposaline waters and have in addition evolved asexual recruitment that, however, tends to impede local adaptation. Overall, our results support the "plasticity-first" model for the initial colonisation of the Baltic Sea by Fucus vesiculosus.
Gapeev, A B; Lushnikov, K V; Shumilina, Iu V; Chemeris, N K
2006-01-01
The anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was compared with the action of the known anti-inflammatory drug sodium diclofenac and the antihistamine clemastine on acute inflammatory reaction in NMRI mice. The local inflammatory reaction was induced by intraplantar injection of zymosan into the left hind paw. Sodium diclofenac in doses of 2, 3, 5, 10, and 20 mg/kg or clemastine in doses of 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg were injected intraperitoneally 30 min after the initiation of inflammation. The animals were whole-body exposed to EHF EMR for 20 min at 1 h after the initiation of inflammation. The inflammatory reaction was assessed over 3 - 8 h after the initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac in doses of 5 - 20 mg/kg reduced the exudative edema on the average by 26% as compared to the control. Hyperthermia of the inflamed paw decreased to 60% as the dose of was increased diclofenac up to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by about 20%, which was comparable with the effect of a single therapeutic dose of diclofenac (3 - 5 mg/kg). The combined action of diclofenac and the exposure to the EHF EMR caused a partial additive effect. Clemastine in doses of 0.02-0.4 mg/kg it did not cause any significant effects on the exudative edema, but in a dose of 0.6 mg/kg it reduced edema by 14 - 22% by 5 - 8 h after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses of 0.02-0.2 mg/kg and did not affect the hyperthermia at doses of 0.4 and 0.6 mg/kg. The combined action of clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that both arachidonic acid metabolites and histamine are involved in the realization of anti-inflammatory effects of low-intensity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex
We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less
Recent Observations on the Performance of Hybrid Ceramic Tribo-Contacts
NASA Astrophysics Data System (ADS)
Buttery, M.; Cropper, M.; Wardzinski, B.; Lewis, S.; McLaren, S.; Kreuser, J.
2015-09-01
Hybrid ceramic ball bearings offer great promise in space applications but have not been rapidly adopted by industry perhaps partly due to the relatively low amount of published data on specific in-vacuum performance. Such bearings, having, typically, silicon nitride balls and 440C or high nitrogen steel (e.g. X30) raceways offer the potential for long life and low torque noise due a combination of chemical inertness, high hardness and the extremely smooth surfaces produced in ceramic balls. Though initial benefits were foreseen for high speed applications, the potential for reduced adhesive forces and wear in conditions of marginal lubrication, and for improvements in lubricant lifetime in long life applications limited by oil tribo-degradation render hybrid ceramic bearings more generally attractive.This paper draws together a number of experimental studies carried out at Pin-on-Disc (POD), Spiral Orbit Tribometer (SOT) and bearing-level recently at ESTL.
Know thy enemy: Education about terrorism improves social attitudes toward terrorists.
Theriault, Jordan; Krause, Peter; Young, Liane
2017-03-01
Hatred of terrorists is an obstacle to the implementation of effective counterterrorism policies-it invites indiscriminate retaliation, whereas many of the greatest successes in counterterrorism have come from understanding terrorists' personal and political motivations. Drawing from psychological research, traditional prejudice reduction strategies are generally not well suited to the task of reducing hatred of terrorists. Instead, in 2 studies, we explored education's potential ability to reduce extreme negative attitudes toward terrorists. Study 1 compared students in a college course on terrorism (treatment) with wait-listed students, measuring prosocial attitudes toward a hypothetical terrorist. Initially, all students reported extremely negative attitudes; however, at the end of the semester, treatment students' attitudes were significantly improved. Study 2 replicated the effect within a sample of treatment and control classes drawn from universities across the United States. The present work was part of an ongoing research project, focusing on foreign policy and the perceived threat of terrorism; thus classes did not explicitly aim to reduce prejudice, making the effect of treatment somewhat surprising. One possibility is that learning about terrorists "crowds out" the initial pejorative associations-that is, the label terrorism may ultimately call more information to mind, diluting its initial negative associative links. Alternatively, students may learn to challenge how the label terrorist is being applied. In either case, learning about terrorism can decrease the extreme negative reactions it evokes, which is desirable if one wishes to implement effective counterterrorism policies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Future summer mega-heatwave and record-breaking temperatures in a warmer France climate
NASA Astrophysics Data System (ADS)
Bador, Margot; Terray, Laurent; Boé, Julien; Somot, Samuel; Alias, Antoinette; Gibelin, Anne-Laure; Dubuisson, Brigitte
2017-07-01
This study focuses on future very hot summers associated with severe heatwaves and record-breaking temperatures in France. Daily temperature observations and a pair of historical and scenario (greenhouse gas radiative concentration pathway 8.5) simulations with the high-resolution (∼12.5 km) ALADIN regional climate model provide a robust framework to examine the spatial distribution of these extreme events and their 21st century evolution. Five regions are identified with an extreme event spatial clustering algorithm applied to observed temperatures. They are used to diagnose the 21st century heatwave spatial patterns. In the 2070s, we find a simulated mega-heatwave as severe as the 2003 observed heatwave relative to its contemporaneous climate. A 20-member initial condition ensemble is used to assess the sensitivity of this future heatwave to the internal variability in the regional climate model and to pre-existing land surface conditions. Even in a much warmer and drier climate in France, late spring dry land conditions may lead to a significant amplification of summer extreme temperatures and heatwave intensity through limitations in evapotranspiration. By 2100, the increase in summer temperature maxima exhibits a range from 6 °C to almost 13 °C in the five regions in France, relative to historical maxima. These projections are comparable with the estimates given by a large number of global climate models.
NASA Astrophysics Data System (ADS)
Nousiainen, O.; Putaala, J.; Kangasvieri, T.; Rautioaho, R.; Vähäkangas, J.
2007-03-01
The thermal fatigue endurance of completely lead-free 95.5Sn4Ag0.7Cu/plastic core solder ball (PCSB) composite joint structures in low-temperature Co-fired ceramic/printed wiring board (LTCC/PWB) assemblies was investigated using thermal cycling tests over the temperature ranges of -40°C 125°C and 0°C 100°C. Two separate creep/fatigue failures initiated and propagated in the joints during the tests: (1) a crack along the intermetallic compound (IMC)/solder interface on the LTCC side of the joint, which formed at the high-temperature extremes; and (2) a crack in the solder near the LTCC solder land, which formed at the low-temperature extremes. Moreover, localized recrystallization was detected at the outer edge of the joints that were tested in the harsh (-40°C 125°C) test conditions. The failure mechanism was creep/fatigue-induced mixed intergranular and transgranular cracking in the recrystallized zone, but it was dominated by transgranular thermal fatigue failure beyond the recrystallized zone. The change in the failure mechanism increased the rate of crack growth. When the lower temperature extreme was raised from -40°C to 0°C, no recrystallized zone was detected and the failure was due to intergranular cracks.
Evaluation of Probable Maximum Precipitation and Flood under Climate Change in the 21st Century
NASA Astrophysics Data System (ADS)
Gangrade, S.; Kao, S. C.; Rastogi, D.; Ashfaq, M.; Naz, B. S.; Kabela, E.; Anantharaj, V. G.; Singh, N.; Preston, B. L.; Mei, R.
2016-12-01
Critical infrastructures are potentially vulnerable to extreme hydro-climatic events. Under a warming environment, the magnitude and frequency of extreme precipitation and flood are likely to increase enhancing the needs to more accurately quantify the risks due to climate change. In this study, we utilized an integrated modeling framework that includes the Weather Research Forecasting (WRF) model and a high resolution distributed hydrology soil vegetation model (DHSVM) to simulate probable maximum precipitation (PMP) and flood (PMF) events over Alabama-Coosa-Tallapoosa River Basin. A total of 120 storms were selected to simulate moisture maximized PMP under different meteorological forcings, including historical storms driven by Climate Forecast System Reanalysis (CFSR) and baseline (1981-2010), near term future (2021-2050) and long term future (2071-2100) storms driven by Community Climate System Model version 4 (CCSM4) under Representative Concentrations Pathway 8.5 emission scenario. We also analyzed the sensitivity of PMF to various antecedent hydrologic conditions such as initial soil moisture conditions and tested different compulsive approaches. Overall, a statistical significant increase is projected for future PMP and PMF, mainly attributed to the increase of background air temperature. The ensemble of simulated PMP and PMF along with their sensitivity allows us to better quantify the potential risks associated with hydro-climatic extreme events on critical energy-water infrastructures such as major hydropower dams and nuclear power plants.
Generalist genes and high cognitive abilities.
Haworth, Claire M A; Dale, Philip S; Plomin, Robert
2009-07-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4,000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities.
Generalist genes and high cognitive abilities
Haworth, Claire M.A.; Dale, Philip S.; Plomin, Robert
2014-01-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities. PMID:19377870
Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea
NASA Astrophysics Data System (ADS)
Park, Taewon; Jeong, Jeehoon; Choi, Jahyun
2017-04-01
The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO
Production of citrinin-free Monascus pigments by submerged culture at low pH.
Kang, Biyu; Zhang, Xuehong; Wu, Zhenqiang; Wang, Zhilong; Park, Sunghoon
2014-02-05
Microbial fermentation of citrinin-free Monascus pigments is of great interest to meet the demand of food safety. In the present work, the effect of various nitrogen sources, such as monosodium glutamate (MSG), cornmeal, (NH4)₂SO₄, and NaNO₃, on Monascus fermentation was examined under different initial pH conditions. The composition of Monascus pigments and the final pH of fermentation broth after Monascus fermentation were determined. It was found that nitrogen source was directly related to the final pH and the final pH regulated the composition of Monascus pigments and the biosynthesis of citrinin. Thus, an ideal nitrogen source can be selected to control the final pH and then the citrinin biosynthesis. Citrinin-free orange pigments were produced at extremely low initial pH in the medium with (NH4)₂SO₄ or MSG as nitrogen source. No citrinin biosynthesis at extremely low pH was further confirmed by extractive fermentation of intracellular pigments in the nonionic surfactant Triton X-100 micelle aqueous solution. This is the first report about the production of citrinin-free Monascus pigments at extremely low pH. Copyright © 2013 Elsevier Inc. All rights reserved.
Development and Testing of an Ultracapacitor Based Uninterruptible Power Supply (UPS) System
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2010-01-01
The NASA Glenn Research Center (GRC) initiated the development and testing of an ultracapacitor based uninterruptible power supply (UPS) system as a means to provide backup power for the many critical NASA applications. A UPS system typically utilizes batteries for energy storage. The battery is the most vulnerable part of the UPS system, requiring regular maintenance and replacement. Battery performance is also extremely temperature dependent. Ultracapacitors are ideal for UPS systems where long life, maintenance free operation, and excellent low temperature performance is essential. State of the art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance, and to provide voltage balancing. Ultracapacitors can be charged extremely rapidly and supply high current, which are essential characteristics for an effective UPS system. Charging ultracapacitors is significantly less complex than charging batteries since there is no chemical reaction occurring while charging ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in a UPS system can provide significant improvements in power system performance and reliability.
Improving diversity in cultures of bacteria from an extreme environment.
Vester, Jan Kjølhede; Glaring, Mikkel Andreas; Stougaard, Peter
2013-08-01
The ikaite columns in the Ikka Fjord in Greenland represent one of the few permanently cold and alkaline environments on Earth, and the interior of the columns is home to a bacterial community adapted to these extreme conditions. The community is characterized by low cell numbers imbedded in a calcium carbonate matrix, making extraction of bacterial cells and DNA a challenge and limiting molecular and genomic studies of this environment. To utilize this genetic resource, cultivation at high pH and low temperature was studied as a method for obtaining biomass and DNA from the fraction of this community that would not otherwise be amenable to genetic analyses. The diversity and community dynamics in mixed cultures of bacteria from ikaite columns was investigated using denaturing gradient gel electrophoresis and pyrosequencing of 16S rDNA. Both medium composition and incubation time influenced the diversity of the culture and many hitherto uncharacterized genera could be brought into culture by extended incubation time. Extended incubation time also gave rise to a more diverse community with a significant number of rare species not detected in the initial community.
Higgins, Johanne; Finch, Lois E; Kopec, Jacek; Mayo, Nancy E
2010-02-01
To create and illustrate the development of a method to parsimoniously and hierarchically assess upper extremity function in persons after stroke. Data were analyzed using Rasch analysis. Re-analysis of data from 8 studies involving persons after stroke. Over 4000 patients with stroke who participated in various studies in Montreal and elsewhere in Canada. Data comprised 17 tests or indices of upper extremity function and health-related quality of life, for a total of 99 items related to upper extremity function. Tests and indices included, among others, the Box and Block Test, the Nine-Hole Peg Test and the Stroke Impact Scale. Data were collected at various times post-stroke from 3 days to 1 year. Once the data fit the model, a bank of items measuring upper extremity function with persons and items organized hierarchically by difficulty and ability in log units was produced. This bank forms the basis for eventual computer adaptive testing. The calibration of the items should be tested further psychometrically, as should the interpretation of the metric arising from using the item calibration to measure the upper extremity of individuals.
Unusual primary HIV infection with colonic ulcer complicated by hemorrhagic shock: a case report
2010-01-01
Introduction Timely diagnosis of primary HIV infection is important to prevent further transmission of HIV. Primary HIV infection may take place without symptoms or may be associated with fever, pharyngitis or headache. Sometimes, the clinical presentation includes aseptic meningitis or cutaneous lesions. Intestinal ulceration due to opportunistic pathogens (cytomegalovirus, Epstein-Barr virus, Toxoplasma gondii) has been described in patients with AIDS. However, although invasion of intestinal lymphoid tissue is a prominent feature of human and simian lentivirus infections, colonic ulceration has not been reported in acute HIV infection. Case description A 42-year-old Caucasian man was treated with amoxicillin-clavulanate for pharyngitis. He did not improve, and a rash developed. History taking revealed a negative HIV antibody test five months previously and unprotected sex with a male partner the month before admission. Repeated tests revealed primary HIV infection with an exceptionally high HIV-1 RNA plasma concentration (3.6 × 107 copies/mL) and a low CD4 count (101 cells/mm3, seven percent of total lymphocytes). While being investigated, the patient had a life-threatening hematochezia. After angiographic occlusion of a branch of the ileocaecal artery and initiation of antiretroviral therapy, the patient became rapidly asymptomatic and could be discharged. Colonoscopy revealed a bleeding colonic ulcer. We were unable to identify an etiology other than HIV for this ulcer. Conclusion This case adds to the known protean manifestation of primary HIV infection. The lack of an alternative etiology, despite extensive investigations, suggests that this ulcer was directly caused by primary HIV infection. This conclusion is supported by the well-described extensive loss of intestinal mucosal CD4+ T cells associated with primary HIV infection, the extremely high HIV viral load observed in our patient, and the rapid improvement of the ulcer after initiation of highly active antiretroviral therapy. This case also adds to the debate on treatment for primary HIV infection, especially in the context of severe symptoms and an extremely high viral load. PMID:20727146
Duplex sonography for detection of deep vein thrombosis of upper extremities: a 13-year experience.
Chung, Amy S Y; Luk, W H; Lo, Adrian X N; Lo, C F
2015-04-01
To determine the prevalence and characteristics of sonographically evident upper-extremity deep vein thrombosis in symptomatic Chinese patients and identify its associated risk factors. Regional hospital, Hong Kong. Data on patients undergoing upper-extremity venous sonography examinations during a 13-year period from November 1999 to October 2012 were retrieved. Variables including age, sex, history of smoking, history of lower-extremity deep vein thrombosis, major surgery within 30 days, immobilisation within 30 days, cancer (history of malignancy), associated central venous or indwelling catheter, hypertension, diabetes mellitus, sepsis within 30 days, and stroke within 30 days were tested using binary logistic regression to understand the risk factors for upper-extremity deep vein thrombosis. The presence of upper-extremity deep vein thrombosis identified. Overall, 213 patients with upper-extremity sonography were identified. Of these patients, 29 (13.6%) had upper-extremity deep vein thrombosis. The proportion of upper-extremity deep vein thrombosis using initial ultrasound was 0.26% of all deep vein thrombosis ultrasound requests. Upper limb swelling was the most common presentation seen in a total of 206 (96.7%) patients. Smoking (37.9%), history of cancer (65.5%), and hypertension (27.6%) were the more prevalent conditions among patients in the upper-extremity deep vein thrombosis-positive group. No statistically significant predictor of upper-extremity deep vein thrombosis was noted if all variables were included. After backward stepwise logistic regression, the final model was left with only age (P=0.119), female gender (P=0.114), and history of malignancy (P=0.024) as independent variables. History of malignancy remained predictive of upper-extremity deep vein thrombosis. Upper-extremity deep vein thrombosis is uncommon among symptomatic Chinese population. The most common sign is swelling and the major risk factor for upper-extremity deep vein thrombosis identified in this study is malignancy.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
Taha, Dalal K; Kornhauser, Michael; Greenspan, Jay S; Dysart, Kevin C; Aghai, Zubair H
2016-06-01
To determine differences in the incidence of bronchopulmonary dysplasia (BPD) or death in extremely low birth weight infants managed on high flow nasal cannula (HFNC) vs continuous positive airway pressure (CPAP). This is a retrospective data analysis from the Alere Neonatal Database for infants born between January 2008 and July 2013, weighing ≤1000 g at birth, and received HFNC or CPAP. Baseline demographics, clinical characteristics, and neonatal outcomes were compared between the infants who received CPAP and HFNC, or HFNC ± CPAP. Multivariable regression analysis was performed to control for the variables that differ in bivariate analysis. A total of 2487 infants met the inclusion criteria (941 CPAP group, 333 HFNC group, and 1546 HFNC ± CPAP group). The primary outcome of BPD or death was significantly higher in the HFNC group (56.8%) compared with the CPAP group (50.4%, P < .05). Similarly, adjusted odds of developing BPD or death was greater in the HFNC ± CPAP group compared with the CPAP group (OR 1.085, 95% CI 1.035-1.137, P = .001). The number of ventilator days, postnatal steroid use, days to room air, days to initiate or reach full oral feeds, and length of hospitalization were significantly higher in the HFNC and HFNC ± CPAP groups compared with the CPAP group. In this retrospective study, use of HFNC in extremely low birth weight infants is associated with a higher risk of death or BPD, increased respiratory morbidities, delayed oral feeding, and prolonged hospitalization. A large clinical trial is needed to evaluate long-term safety and efficacy of HFNC in preterm infants. Copyright © 2016 Elsevier Inc. All rights reserved.
Taha, Dalal K.; Kornhauser, Michael; Greenspan, Jay S.; Dysart, Kevin C.; Aghai, Zubair H.
2017-01-01
Objective To determine differences in the incidence of bronchopulmonary dysplasia (BPD) or death in extremely low birth weight infants managed on high flow nasal cannula (HFNC) vs continuous positive airway pressure (CPAP). Study design This is aretrospective data analysis from the Alere Neonatal Database for infants born between January 2008 and July 2013, weighing ≤ 1000 g at birth, and received HFNC or CPAP. Baseline demographics, clinical characteristics, and neonatal outcomes were compared between the infants who received CPAP and HFNC, or HFNC ± CPAP. Multivariable regression analysis was performed to control for the variables that differ in bivariate analysis. Results A total of 2487 infants met the inclusion criteria (941 CPAP group, 333 HFNC group, and 1546 HFNC ± CPAP group). The primary outcome of BPD or death was significantly higher in the HFNC group (56.8%) compared with the CPAP group (50.4%, P < .05). Similarly, adjusted odds of developing BPD or death was greater in the HFNC ± CPAP group compared with the CPAP group (OR 1.085, 95% CI 1.035–1.137, P = .001). The number of ventilator days, postnatal steroid use, days to room air, days to initiate or reach full oral feeds, and length of hospitalization were significantly higher in the HFNC and HFNC ± CPAP groups compared with the CPAP group. Conclusions In this retrospective study, use of HFNC in extremely low birth weight infants is associated with a higher risk of death or BPD, increased respiratory morbidities, delayed oral feeding, and prolonged hospitalization. A large clinical trial is needed to evaluate long-term safety and efficacy of HFNC in preterm infants. PMID:27004673
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro; Sakashita, Tetsuya; Mukae, Kyosuke
2012-07-01
Life in extreme or drastically changing environments in many cases leads to evolutionary evolvement of mechanisms of cross-resistance to different abiotic stresses, often never actually faced by the organism in its natural habitat. Larvae of the sleeping chironomidPolypedilum vanderplanki (Diptera) are able to resist complete desiccation and in the dry form survive under excess of various abiotic stresses, including exposure to space environment. One of the most intriguing features of the anhydrobiotic larvae is resistance to extremely high doses of different types of ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We find that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated after anhydrobiosis larvae were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He+). In comparison, low-LET radiation (gamma rays) of the same dose causes less initial damage to the larvae, and recovery of DNA repair is complete within 24 h. Genome-wide analysis of mRNA expression in the larvae revealed that a large group of genes (including antioxidants, anhydrobiosis-specific biomolecules and protein-reparation enzymes) showed a similar patterns of activity in response to both desiccation and ionizing radiation. We conclude that t one of the factors explaining the relationship between the resistance to ionizing radiation and the ability to undergo anhydrobiosis in the sleeping chironomid would be an adaptation to desiccation-inflicted proteins and nuclear DNA damage.
Liegl, Gregor; Rose, Matthias; Correia, Helena; Fischer, H Felix; Kanlidere, Sibel; Mierke, Annett; Obbarius, Alexander; Nolte, Sandra
2018-01-01
To translate the PROMIS Physical Function (PF) item bank version 1.2 into German and to investigate psychometric properties of resulting full bank and seven derived short forms. Cross-sectional psychometric study. Inpatient and outpatient clinics of the Department of Psychosomatic Medicine at Charité-Universitätsmedizin Berlin, Germany. A total of 10 adult patients with various chronic diseases participated in cognitive debriefing interviews. The final item bank was administered to n = 266 adult patients with a broad range of medical conditions. Patient-reported outcome assessment as part of routine care. PROMIS v1.2 PF bank; MOS SF-36 PF scale (PF-10). Cross-cultural adaptation of the item bank followed established guidelines. For the final German translation, the corrected item-total correlations ranged from 0.44 to 0.84. Cronbach's alpha was high for each PROMIS PF short form ( α = 0.88-0.96). The full PROMIS PF bank and most short forms correlated highly with the SF-36 PF-10 ( r = 0.85-0.90), with the exception of PROMIS Upper Extremity ( r = 0.64). PROMIS Upper Extremity showed ceiling effects and lower agreement with the full bank than other short forms. Unidimensionality was supported for all PROMIS PF measures using traditional factor analysis and nonparametric item response theory. The German PROMIS PF bank was found to be conceptually equivalent to the English version and fulfilled the psychometric requirements for use of short forms in clinical practice. Future studies should pay particular attention to samples with upper extremity functional limitations to further investigate the dimensional structure of PF as conceptualized according to PROMIS.
Fletcher, Simon P; Ali, Iraj K; Kaminski, Ann; Digard, Paul; Jackson, Richard J
2002-01-01
Classical swine fever virus (CSFV) is a member of the pestivirus family, which shares many features in common with hepatitis C virus (HCV). It is shown here that CSFV has an exceptionally efficient cis-acting internal ribosome entry segment (IRES), which, like that of HCV, is strongly influenced by the sequences immediately downstream of the initiation codon, and is optimal with viral coding sequences in this position. Constructs that retained 17 or more codons of viral coding sequence exhibited full IRES activity, but with only 12 codons, activity was approximately 66% of maximum in vitro (though close to maximum in transfected BHK cells), whereas with just 3 codons or fewer, the activity was only approximately 15% of maximum. The minimal coding region elements required for high activity were exchanged between HCV and CSFV. Although maximum activity was observed in each case with the homologous combination of coding region and 5' UTR, the heterologous combinations were sufficiently active to rule out a highly specific functional interplay between the 5' UTR and coding sequences. On the other hand, inversion of the coding sequences resulted in low IRES activity, particularly with the HCV coding sequences. RNA structure probing showed that the efficiency of internal initiation of these chimeric constructs correlated most closely with the degree of single-strandedness of the region around and immediately downstream of the initiation codon. The low activity IRESs could not be rescued by addition of supplementary eIF4A (the initiation factor with ATP-dependent RNA helicase activity). The extreme sensitivity to secondary structure around the initiation codon is likely to be due to the fact that the eIF4F complex (which has eIF4A as one of its subunits) is not required for and does not participate in initiation on these IRESs. PMID:12515388
Carrer, Marco; Brunetti, Michele; Castagneri, Daniele
2016-01-01
Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees, but further investigations are needed to improve our comprehension of the critical role of such elusive events in forest ecosystems. PMID:27242880
NASA Astrophysics Data System (ADS)
Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.
2018-04-01
In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.
Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.
Tan, Xuezhi; Gan, Thian Yew; Horton, Daniel E
2018-05-26
Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact-relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude-, frequency-, and severity-based extreme temperature (10) and precipitation (8) indices using both multimodel and single-model multirealization ensembles. Under a high-emission scenario, we find that the signal of frequency- and severity-based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude-based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity-based indices first emerging over midlatitudes, and magnitude- and frequency-based indices emerging earliest in low and high latitudes. Applied to impact-relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well-before 2030 for the 590 most populous urban centers. Elucidating extreme-metric and domain-type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty-first century radiative forcing. © 2018 John Wiley & Sons Ltd.
Effect of Footwear on Joint Pain and Function in Older Adults With Lower Extremity Osteoarthritis.
Wagner, Amy; Luna, Sarah
Lower extremity osteoarthritis (OA) is a common condition among older adults; given the risks of surgical and pharmaceutical interventions, conservative, lower-cost management options such as footwear warrant further investigation. This systematic review investigated the effects of footwear, including shoe inserts, in reducing lower extremity joint pain and improving gait, mobility, and quality of life in older adults with OA. The CINAHL, SPORTDiscus, PubMed, RECAL, and Web of Knowledge databases were searched for publications from January 1990 to September 2014, using the terms "footwear," "shoes," "gait," "pain," and "older adult." Participants who were 50 years or older and those who had OA in at least one lower extremity joint narrowed the results. Outcomes of interest included measures of pain, comfort, function, gait, or quality of life. Exclusion criteria applied to participants with rheumatoid arthritis, amputation, diabetes, multiple sclerosis, use of modified footwear or custom orthotics, purely biomechanical studies, and outcomes of balance or falls only. Single-case studies, qualitative narrative descriptions, and expert opinions were also excluded. The initial search resulted in a total of 417 citations. Eleven articles met inclusion criteria. Two randomized controlled trials and 3 quasiexperimental studies reported lateral wedge insoles may have at least some pain-relieving effects and improved functional mobility in older adults at 4 weeks to 2 years' follow-up, particularly when used with subtalar and ankle strapping. Three randomized controlled trials with large sample sizes reported that lateral wedges provided no knee pain relief compared with flat insoles. Hardness of shoe soles did not significantly affect joint comfort in the foot in a quasiexperimental study. A quasiexperimental designed study investigating shock-absorbing insoles showed reduction in knee joint pain with 1 month of wear. Finally, a cross-sectional prognostic study indicated poor footwear at early ages exhibits an association with hindfoot pain later in life. Because of the limited number of randomized control trials, it is not possible to make a definitive conclusion about the long-term effects of footwear on lower extremity joint pain caused by OA. There is mounting evidence that shock-absorbing insoles, subtalar strapping, and avoidance of high heels and sandals early in life may prevent lower extremity joint pain in older adults, but no conclusive evidence exists to show that lateral wedge insoles will provide long-term relief from knee joint pain and improved mobility in older adults with OA. More high-quality randomized control trials are needed to study the effectiveness of footwear and shoe inserts on joint pain and function in older adults with OA.
Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K
2010-10-01
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts. Copyright © Physiologia Plantarum 2010.
NASA Astrophysics Data System (ADS)
Wada, Y.
2017-12-01
Increased occurrence of extreme climate events is one of the most damaging consequences of global climate change today and in the future. Estimating the impacts of such extreme events on global and regional water resources is therefore crucial for quantifying increasing risks from climate change. The quest for water security has been a struggle throughout human history. Only in recent years has the scale of this quest moved beyond the local, to the national and regional scales and to the planet itself. Absent or unreliable water supply, sanitation and irrigation services, unmitigated floods and droughts, and degraded water environments severely impact half of the planet's population. The scale and complexity of the water challenges faced by society, particularly but not only in the world's poorest regions, are now recognized, as is the imperative of overcoming these challenges for a stable and equitable world. IIASA's Water Futures and Solutions Initiative (WFAS) is an unprecedented inter-disciplinary scientific initiative to identify robust and adaptive portfolios of optional solutions across different economic sectors, including agriculture, energy and industry, and to test these solution-portfolios with multi-model ensembles of hydrologic and sector models to obtain a clearer picture of the trade-offs, risks, and opportunities. The results of WFaS scenarios and models provide a basis for long-term strategic planning of water resource development under changing environments and increasing climate extremes. And given the complexity of the water system, WFaS uniquely provides policy makers with optional sets of solutions that work together and that can be easily adapted as circumstances change in the future. As WFaS progresses, it will establish a network involving information exchange, mutual learning and horizontal cooperation across teams of researchers, public and private decision makers and practitioners exploring solutions at regional, national and local scales. The initiative includes a major stakeholder consultation component, to inform and guide the science and to test and refine policy and business outcome.
Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry
Meyer, Andrew J.; Patten, Carolynn
2017-01-01
Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient’s lower extremity muscle excitations contribute to the patient’s lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that with appropriate experimental data, joint moment predictions for walking generated by an EMG-driven model can be improved significantly when automated adjustment of musculoskeletal geometry is included in the model calibration process. PMID:28700708
Masini, Brendan D; Waterman, Scott M; Wenke, Joseph C; Owens, Brett D; Hsu, Joseph R; Ficke, James R
2009-04-01
Injuries are common during combat operations. The high costs of extremity injuries both in resource utilization and disability are well known in the civilian sector. We hypothesized that, similarly, combat-related extremity injuries, when compared with other injures from the current conflicts in Iraq and Afghanistan, require the largest percentage of medical resources, account for the greatest number of disabled soldiers, and have greater costs of disability benefits. Descriptive epidemiologic study and cost analysis. The Department of Defense Medical Metrics (M2) database was queried for the hospital admissions and billing data of a previously published cohort of soldiers injured in Iraq and Afghanistan between October 2001 and January 2005 and identified from the Joint Theater Trauma Registry. The US Army Physical Disability Administration database was also queried for Physical Evaluation Board outcomes for these soldiers, allowing calculation of disability benefit cost. Primary body region injured was assigned using billing records that gave a primary diagnosis International Classification of Diseases Ninth Edition code, which was corroborated with Joint Theater Trauma Registry injury mechanisms and descriptions for accuracy. A total of 1333 soldiers had complete admission data and were included from 1566 battle injuries not returned to duty of 3102 total casualties. Extremity-injured patients had the longest average inpatient stay at 10.7 days, accounting for 65% of the $65.3-million total inpatient resource utilization, 64% of the 464 patients found "unfit for duty," and 64% of the $170-million total projected disability benefit costs. Extrapolation of data yields total disability costs for this conflict, approaching $2 billion. Combat-related extremity injuries require the greatest utilization of resources for inpatient treatment in the initial postinjury period, cause the greatest number of disabled soldiers, and have the greatest projected disability benefit costs. This study highlights the need for continued or increased funding and support for military orthopaedic surgeons and extremity trauma research efforts.
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges
Nielsen, Travis B.; Bonomo, Robert A.; Pantapalangkoor, Paul; Luna, Brian; Spellberg, Brad
2016-01-01
SUMMARY Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)–Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed. PMID:27974412
The Initial Mass Function of the Arches Cluster
NASA Astrophysics Data System (ADS)
Hosek, Matthew; Lu, Jessica; Anderson, Jay; Ghez, Andrea; Morris, Mark; Do, Tuan; Clarkson, William; Albers, Saundra; Weisz, Daniel
2018-01-01
The Arches star cluster is only 26 pc (in projection) from Sgr A*, the supermassive black hole at the Galactic Center. This young massive cluster allows us to examine the impact of the extreme Galactic Center environment on the stellar Initial Mass Function (IMF). However, measuring the IMF of the Arches is challenging due to the highly variable extinction along the line of sight, which makes it difficult to separate cluster members from the field stars. We use high-precision proper motion and photometric measurements obtained with the Hubble Space Telescope to calculate cluster membership probabilities for stars down to ~2 M_sun out to the outskirts of the cluster (3 pc). In addition, we measure the effective temperatures of a small sample of cluster members in order to calibrate the mass-luminosity relationship using using Keck OSIRS K-band spectroscopy. We forward model these observations to simultaneously constrain the cluster IMF, age, distance, and extinction. We obtain an IMF that is shallower than what is observed locally, with a higher fraction of high-mass stars to low mass stars (i.e., “top-heavy”). We will compare the IMF of the Arches to similar clusters in the Galactic disk and quantify the effect of the GC environment on the star formation process.
ZINGRS: Understanding Hot DOGs via the resolved radio continuum of W2246-0526
NASA Astrophysics Data System (ADS)
Hershey, Deborah; Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Brisbin, Drew; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.
2018-06-01
We present new high-resolution (~0.5”) radio-continuum images of the high-redshift galaxy W2246-0526 obtained with the Jansky Very Large Array. W2246 at z~4.6 is a hot dust obscured galaxy (Hot DOG) that have extreme luminosities, LIR > 1014 L⊙ produced by hot T~450 K dust. It hosts both an active galactic nucleus and significant star formation. Having observed the [OIII] 88 micron line from W2246 with our ZEUS spectrometer, the source is part of our ZEUS INvestigate Galaxy Reference Sample (ZINGRS). The radio images are initial observations from the ZINGRS Radio Survey where we observe the free-free and non-thermal emissions of high-z galaxies. Combining the radio emission with ALMA and ZEUS observations of the [CII] 158 micron, [OIII] 88 micron and [NII] 122 micron lines we probe the metallicity, age of stellar population, and ionization parameter. For W2246 we pay special attention to gradients of the stellar age and metallicity to determine the impact of the AGN on the host galaxy. Our work here is our initial analysis. When complete for all of ZINGRS ours findings will improve our understanding of early galaxies, including helping to explain Hot DOGs like W2246.
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
Frank, Barnett S.; Gilsdorf, Christine M.; Goerger, Benjamin M.; Prentice, William E.; Padua, Darin A.
2014-01-01
Background: Females with history of anterior cruciate ligament (ACL) injury and subsequent ligament reconstruction are at high risk for future ACL injury. Fatigue may influence the increased risk of future injury in females by altering lower extremity biomechanics and postural control. Hypothesis: Fatigue will promote lower extremity biomechanics and postural control deficits associated with ACL injury. Study Design: Descriptive laboratory study. Methods: Fourteen physically active females with ACL reconstruction (mean age, 19.64 ± 1.5 years; mean height, 163.52 ± 6.18 cm; mean mass, 62.6 ± 13.97 kg) volunteered for this study. Postural control and lower extremity biomechanics were assessed in the surgical limb during single-leg balance and jump-landing tasks before and after a fatigue protocol. Main outcome measures were 3-dimensional hip and knee joint angles at initial contact, peak angles, joint angular displacements and peak net joint moments, anterior tibial shear force, and vertical ground reaction force during the first 50% of the loading phase of the jump-landing task. During the single-leg stance task, the main outcome measure was center of pressure sway speed. Results: Initial contact hip flexion angle decreased (t = −2.82, P = 0.01; prefatigue, 40.98° ± 9.79°; postfatigue, 36.75° ± 8.61°) from pre- to postfatigue. Hip flexion displacement (t = 2.23, P = 0.04; prefatigue, 45.19° ± 14.1°; postfatigue, 47.48° ± 14.21°) and center of pressure sway speed (t = 3.95, P < 0.05; prefatigue, 5.18 ± 0.96 cm/s; postfatigue, 6.20 ± 1.72 cm/s) increased from pre- to postfatigue. There was a trending increase in hip flexion moment (t = 2.14, P = 0.05; prefatigue, 1.66 ± 0.68 Nm/kg/m; postfatigue, 1.91 ± 0.62 Nm/kg/m) from pre- to postfatigue. Conclusion: Fatigue may induce lower extremity biomechanics and postural control deficits that may be associated with ACL injury in physically active females with ACL reconstruction. Clinical Relevance: Rehabilitation and maintenance programs should incorporate activities that aim to improve muscular endurance and improve the neuromuscular system’s tolerance to fatiguing exercise in efforts to maintain stability and safe landing technique during subsequent physical activity. PMID:24982701
Haigh, Ivan D.; Wadey, Matthew P.; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J.; Brown, Jennifer M.; Horsburgh, Kevin; Gouldby, Ben
2016-01-01
In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective. PMID:27922630
Can test fields destroy the event horizon in the Kerr–Taub–NUT spacetime?
NASA Astrophysics Data System (ADS)
Düztaş, Koray
2018-02-01
In this work we investigate if the interaction of the Kerr–Taub–NUT spacetime with test scalar and neutrino fields can lead to the destruction of the event horizon. It turns out that both extremal and nearly extremal black holes can be destroyed by scalar and neutrino fields if the initial angular momentum of the spacetime is sufficiently large relative to its mass and NUT charge. This is the first example in which a classical field satisfying the null energy condition can actually destroy an extremal black hole. For scalar fields, the modes that can lead to the destruction of the horizon are restricted to a narrow range due to superradiance. Since superradiance does not occur for neutrino fields, the destruction of the horizon by neutrino fields is generic, and it cannot be fixed by backreaction effects. We also show that the extremal black holes that can be destroyed by scalar fields correspond to naked singularities in the Kerr limit, in accord with the previous results which imply that extremal Kerr black holes cannot be destroyed by scalar test fields.
NASA Astrophysics Data System (ADS)
Li, Zhanling; Li, Zhanjie; Li, Chengcheng
2014-05-01
Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.
Amputation: Not a failure for severe lower extremity combat injury.
van Dongen, Thijs T C F; Huizinga, Eelco P; de Kruijff, Loes G M; van der Krans, Arie C; Hoogendoorn, Jochem M; Leenen, Luke P H; Hoencamp, Rigo
2017-02-01
The use of improvised explosive devices is a frequent method of insurgents to inflict harm on deployed military personnel. Consequently, lower extremity injuries make up the majority of combat related trauma. The wounding pattern of an explosion is not often encountered in a civilian population and can lead to substantial disability. It is therefore important to study the impact of these lower extremity injuries and their treatment (limb salvage versus amputation) on functional outcome and quality of life. All Dutch repatriated service members receiving treatment for wounds on the lower extremity sustained in the Afghan theater between august 2005 and August 2014, were invited to participate in this observational cohort study. We conducted a survey regarding their physical and mental health using the Short Form health survey 36, EuroQoL 6 dimensions and Lower Extremity Functional Scale questionnaires. Results were collated in a specifically designed electronic database combined with epidemiology and hospital statistics gathered from the archive of the Central Military Hospital. Statistical analyses were performed to identify differences between combat and non-combat related injuries and between limb salvage treatment and amputation. In comparison with non-battle injury patients, battle casualties were significantly younger of age, sustained more severe injuries, needed more frequent operations and clinical rehabilitation. Their long-term outcome scores in areas concerning well-being, social and cognitive functioning, were significantly lower. Regarding treatment, amputees experienced higher physical well-being and less pain compared to those treated with limb salvage surgery. Sustaining a combat injury to the lower extremity can lead to partial or permanent dysfunction. However, wounded service members, amputees included, are able to achieve high levels of activity and participation in society, proving a remarkable resilience. These long-term results demonstrate that amputation is not a failure for casualty and surgeon, and strengthen a life before limb (damage control surgery) mindset in the initial phase. For future research, we recommend the use of adequate coding and injury scoring systems to predict outcome and give insight in the attributes that are supportive for the resilience that is needed to cope with a serious battle injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diagnosing causes of extreme aerosol optical depth events
NASA Astrophysics Data System (ADS)
Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.
2017-12-01
Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all seasons WRF-Chem exhibits some skill in reproducing the intensity of these events, but not the precise location of the AOD maximum. Model skill is generally (but not uniformly) highest for simulations employing MOZART LBC/IBC, modal aerosol description, meteorological nudging and a 3 day spin-up, with little or no sensitivity to longer spin up times.
How are the wetlands over tropical basins impacted by the extreme hydrological events?
NASA Astrophysics Data System (ADS)
Al-Bitar, A.; Parrens, M.; Frappart, F.; Papa, F.; Kerr, Y. H.; Cretaux, J. F.; Wigneron, J. P.
2016-12-01
Wetlands play a crucial role in tropical basins and still many questions remain unanswered on how extreme events (like El-Nino) impacts them. Answering these questions is challenging as monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. Several microwave based products have been elaborated to monitor these surfaces (Papa et al. 2010). In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA to derive water storage maps at relatively high (7days) temporal frequency. The area of interest concerns the Amazon, Congo and GBH basins A first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS mission at coarse resolution (25 km x 25 km) and 7-days frequency. An initial investigation of the use of the SMAP mission for the same purpose will be also presented. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from SWAPS. It is then combined to the altimetric data to derive water storage maps. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets, ground water storage change from GRACE and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong influence of EL-Nino on the time shift of the different components showing that the hydrological regime of wetlands is highly impacted by these extreme events. This can have dramatic impacts on the ecosystem as the wetlands are vulnerable with a high biodiversity.
New Methods for Strategic Analysis: Automating the Wargame,
1982-04-01
reproducibility.[lJ CONCEPTUAL APPROACH The conceptual approach started with the structure of a game but replaced the free - play teams with programmed...solely by a desire to codify behavior. It sprang in equal measure from some of the perceived shortcomings of free - play political- military gaming. In...some actions that teams will just not initiate. For example, free - play teams exhibit extreme reluctance (amounting to refusal) to initiate nuclear
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
Modeling of the chemistry in oxidation flow reactors with high initial NO
NASA Astrophysics Data System (ADS)
Peng, Zhe; Jimenez, Jose L.
2017-10-01
Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO2) react preferentially with HO2) because NO is very rapidly oxidized by the high concentrations of O3, HO2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO2 + NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO2 reacted with NO than with HO2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHRext), and initial NO concentration (NOin) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHRext and NOin several orders of magnitude higher. Due to extremely high OHRext and NOin, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO2 chemistry due to peroxynitrate formation, VOC reactions with NO3 dominating over those with OH, and faster reactions of OH-aromatic adducts with NO2 than those with O2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid undesired chemistry, vehicle emissions generally need to be diluted by a factor of > 100 before being injected into an OFR. However, sufficiently diluted vehicle emissions generally do not lead to high-NO chemistry in OFRs but are rather dominated by the low-NO RO2 + HO2 pathway. To ensure high-NO conditions without substantial atmospherically irrelevant chemistry in a more controlled fashion, new techniques are needed.
Modeling of the chemistry in oxidation flow reactors with high initial NO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Zhe; Jimenez, Jose L.
Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO 2) react preferentially with HO 2) because NO is very rapidly oxidized by the high concentrations of O 3, HO 2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO 2 +more » NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO 2 reacted with NO than with HO 2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHR ext), and initial NO concentration (NO in) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHR ext and NO in several orders of magnitude higher. Due to extremely high OHR ext and NO in, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO 2 chemistry due to peroxynitrate formation, VOC reactions with NO 3 dominating over those with OH, and faster reactions of OH–aromatic adducts with NO 2 than those with O 2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid undesired chemistry, vehicle emissions generally need to be diluted by a factor of >100 before being injected into an OFR. However, sufficiently diluted vehicle emissions generally do not lead to high-NO chemistry in OFRs but are rather dominated by the low-NO RO 2 + HO 2 pathway. To ensure high-NO conditions without substantial atmospherically irrelevant chemistry in a more controlled fashion, new techniques are needed.« less
Modeling of the chemistry in oxidation flow reactors with high initial NO
Peng, Zhe; Jimenez, Jose L.
2017-10-10
Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO 2) react preferentially with HO 2) because NO is very rapidly oxidized by the high concentrations of O 3, HO 2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO 2 +more » NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO 2 reacted with NO than with HO 2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHR ext), and initial NO concentration (NO in) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHR ext and NO in several orders of magnitude higher. Due to extremely high OHR ext and NO in, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO 2 chemistry due to peroxynitrate formation, VOC reactions with NO 3 dominating over those with OH, and faster reactions of OH–aromatic adducts with NO 2 than those with O 2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid undesired chemistry, vehicle emissions generally need to be diluted by a factor of >100 before being injected into an OFR. However, sufficiently diluted vehicle emissions generally do not lead to high-NO chemistry in OFRs but are rather dominated by the low-NO RO 2 + HO 2 pathway. To ensure high-NO conditions without substantial atmospherically irrelevant chemistry in a more controlled fashion, new techniques are needed.« less
Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies
NASA Astrophysics Data System (ADS)
Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.
2006-08-01
It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.
NASA Astrophysics Data System (ADS)
Cheng, L.; Du, J.
2015-12-01
The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.
You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing
2013-01-01
Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.
Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol
2016-12-01
Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
NASA Astrophysics Data System (ADS)
Dunn, R. J. H.; Willett, K. M.; Thorne, P. W.; Woolley, E. V.; Durre, I.; Dai, A.; Parker, D. E.; Vose, R. S.
2012-10-01
This paper describes the creation of HadISD: an automatically quality-controlled synoptic resolution dataset of temperature, dewpoint temperature, sea-level pressure, wind speed, wind direction and cloud cover from global weather stations for 1973-2011. The full dataset consists of over 6000 stations, with 3427 long-term stations deemed to have sufficient sampling and quality for climate applications requiring sub-daily resolution. As with other surface datasets, coverage is heavily skewed towards Northern Hemisphere mid-latitudes. The dataset is constructed from a large pre-existing ASCII flatfile data bank that represents over a decade of substantial effort at data retrieval, reformatting and provision. These raw data have had varying levels of quality control applied to them by individual data providers. The work proceeded in several steps: merging stations with multiple reporting identifiers; reformatting to netCDF; quality control; and then filtering to form a final dataset. Particular attention has been paid to maintaining true extreme values where possible within an automated, objective process. Detailed validation has been performed on a subset of global stations and also on UK data using known extreme events to help finalise the QC tests. Further validation was performed on a selection of extreme events world-wide (Hurricane Katrina in 2005, the cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Some very initial analyses are performed to illustrate some of the types of problems to which the final data could be applied. Although the filtering has removed the poorest station records, no attempt has been made to homogenise the data thus far, due to the complexity of retaining the true distribution of high-resolution data when applying adjustments. Hence non-climatic, time-varying errors may still exist in many of the individual station records and care is needed in inferring long-term trends from these data. This dataset will allow the study of high frequency variations of temperature, pressure and humidity on a global basis over the last four decades. Both individual extremes and the overall population of extreme events could be investigated in detail to allow for comparison with past and projected climate. A version-control system has been constructed for this dataset to allow for the clear documentation of any updates and corrections in the future.
Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV
Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.
2015-01-01
Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922
NASA Astrophysics Data System (ADS)
Fix, Miranda J.; Cooley, Daniel; Hodzic, Alma; Gilleland, Eric; Russell, Brook T.; Porter, William C.; Pfister, Gabriele G.
2018-03-01
We conduct a case study of observed and simulated maximum daily 8-h average (MDA8) ozone (O3) in three US cities for summers during 1996-2005. The purpose of this study is to evaluate the ability of a high resolution atmospheric chemistry model to reproduce observed relationships between meteorology and high or extreme O3. We employ regional coupled chemistry-transport model simulations to make three types of comparisons between simulated and observational data, comparing (1) tails of the O3 response variable, (2) distributions of meteorological predictor variables, and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison is made using two methods: quantile regression, for the 0.95 quantile of O3, and tail dependence optimization, which is used to investigate even higher O3 extremes. Across all three locations, we find substantial differences between simulations and observational data in both meteorology and meteorological sensitivities of high and extreme O3.
Modelling Discharge Inception in Thunderstorms
NASA Astrophysics Data System (ADS)
Rutjes, C.; Dubinova, A.; Ebert, U.; Buitink, S.; Scholten, O.; Trinh, G. T. N.
2014-12-01
The electric fields in thunderstorms can exceed the breakdown value locally near hydrometeors. But are fields high enough and the regions large enough to initiate a streamer discharge? And where would a sufficient density of free electrons come from to start the discharge in the humid air that rapidly binds electrons in water-clusters? To analyse these questions, we investigate the interaction of extensive air showers (created by high energy cosmic particles) with the hydrometeors in a thunderstorm. The extensive air showers are modelled in full detail with CORSIKA (https://web.ikp.kit.edu/corsika/). As extensive air showers are occurring with a frequency that strongly depends on their size, proper stochastics are derived to cope with the large number of random variables in the system, such as: occurrence, primary energy, altitude of first interaction and inclination. These variables are important factors that determine the extremes of the high energy particle flux passing through a hydrometeor at a given altitude. In addition, the interaction of the high energy particle flux with the hydrometeor is modelled with EGS5 (http://rcwww.kek.jp/research/egs/egs5.html). Finally the streamer initiation and evolution is modelled by our 2.5D streamer fluid code that now can include dielectric bodies; here we used the frequency dependent dielectric permittivity of ice, accounting for the fact that ice can not polarise instantaneously.
Multicolor Photometry and Time-resolved Spectroscopy of Two sdBV Stars
NASA Astrophysics Data System (ADS)
Reed, M. D.; O'Toole, S. J.; Telting, J. H.; Østensen, R. H.; Heber, U.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; LaCluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Bean, J.
2012-03-01
Observational mode constraints have mostly been lacking for short period pulsating sdB stars, yet such identifications are vital to constrain models. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining radial velocity (RV) and multicolor measurements has also been shown as an effective means of constraining mode identifications. We present preliminary results for Feige 48 and EC 01541-1409 using both time-resolved spectroscopy and multicolor photometry and an initial examination of their pulsation modes using the atmospheric codes BRUCE and KYLIE.
Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A
2015-06-23
Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body.
Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.
Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J
2013-01-01
The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.
2009-05-01
Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.
Ion beam sputter coatings for laser technology
NASA Astrophysics Data System (ADS)
Ristau, Detlev; Gross, Tobias
2005-09-01
The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sliwa, Kazimierz; Wilson, Christine D.; Aalto, Susanne
We present ALMA {sup 12}CO (J = 1-0, 3-2 and 6-5), {sup 13}CO (J = 1-0), and C{sup 18}O (J = 1-0) observations of the local ultraluminous infrared galaxy (ULIRG) IRAS 13120-5453. The morphologies of the three isotopic species differ, as {sup 13}CO shows a hole in emission toward the center. We measure integrated brightness temperature line ratios of {sup 12}CO/{sup 13}CO ≥ 60 (exceeding 200) and {sup 13}CO/C{sup 18}O ≤ 1 in the central region. Assuming optical thin emission, C{sup 18}O is more abundant than {sup 13}CO in several regions. The abundances within the central 500 pc are consistentmore » with the enrichment of the interstellar medium via a young starburst (<7 Myr), a top-heavy initial mass function, or a combination of both.« less
Torres-Cuevas, Isabel; Cernada, Maria; Nuñez, Antonio; Escobar, Javier; Kuligowski, Julia; Chafer-Pericas, Consuelo; Vento, Maximo
2016-01-01
Fetal life elapses in a relatively low oxygen environment. Immediately after birth with the initiation of breathing, the lung expands and oxygen availability to tissue rises by twofold, generating a physiologic oxidative stress. However, both lung anatomy and function and the antioxidant defense system do not mature until late in gestation, and therefore, very preterm infants often need respiratory support and oxygen supplementation in the delivery room to achieve postnatal stabilization. Notably, interventions in the first minutes of life can have long-lasting consequences. Recent trials have aimed to assess what initial inspiratory fraction of oxygen and what oxygen targets during this transitional period are best for extremely preterm infants based on the available nomogram. However, oxygen saturation nomogram informs only of term and late preterm infants but not on extremely preterm infants. Therefore, the solution to this conundrum may still have to wait before a satisfactory answer is available.
NASA Astrophysics Data System (ADS)
Dibike, Y. B.; Eum, H. I.; Prowse, T. D.
2017-12-01
Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.
Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.
Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min
2016-07-01
River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.
Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.
2018-05-01
Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.
Itzchakov, Guy; Kluger, Avraham N; Castro, Dotan R
2017-01-01
We examined how listeners characterized by empathy and a non-judgmental approach affect speakers' attitude structure. We hypothesized that high quality listening decreases speakers' social anxiety, which in turn reduces defensive processing. This reduction in defensive processing was hypothesized to result in an awareness of contradictions (increased objective-attitude ambivalence), and decreased attitude extremity. Moreover, we hypothesized that experiencing high quality listening would enable speakers to tolerate contradictory responses, such that listening would attenuate the association between objective- and subjective-attitude ambivalence. We obtained consistent support for our hypotheses across four laboratory experiments that manipulated listening experience in different ways on a range of attitude topics. The effects of listening on objective-attitude ambivalence were stronger for higher dispositional social anxiety and initial objective-attitude ambivalence (Study 4). Overall, the results suggest that speakers' attitude structure can be changed by a heretofore unexplored interpersonal variable: merely providing high quality listening.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin
2016-12-01
Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.
Oka, Takeshi
2006-01-01
Protonated molecular hydrogen, H3+, is the simplest polyatomic molecule. It is the most abundantly produced interstellar molecule, next only to H2, although its steady state concentration is low because of its extremely high chemical reactivity. H3+ is a strong acid (proton donor) and initiates chains of ion-molecule reactions in interstellar space thus leading to formation of complex molecules. Here, I summarize the understandings on this fundamental species in interstellar space obtained from our infrared observations since its discovery in 1996 and discuss the recent observations and analyses of H3+ in the Central Molecular Zone near the Galatic center that led to a revelation of a vast amount of warm and diffuse gas existing in the region. PMID:16894171
A Review of Brachial Plexus Birth Palsy: Injury and Rehabilitation.
Raducha, Jeremy E; Cohen, Brian; Blood, Travis; Katarincic, Julia
2017-11-01
Brachial plexus injuries during the birthing process can leave infants with upper extremity deficits corresponding to the location of the lesion within the complex plexus anatomy. Manifestations can range from mild injuries with complete resolution to severe and permanent disability. Overall, patients have a high rate of spontaneous recovery (66-92%).1,2 Initially, all lesions are managed with passive range motion and observation. Prevention and/or correction of contractures with occupational therapy and serial splinting/casting along with encouraging normal development are the main goals of non-operative treatment. Surgical intervention may be war- ranted, depending on functional recovery. [Full article available at http://rimed.org/rimedicaljournal-2017-11.asp].
Uniformly high-order accurate non-oscillatory schemes, 1
NASA Technical Reports Server (NTRS)
Harten, A.; Osher, S.
1985-01-01
The construction and the analysis of nonoscillatory shock capturing methods for the approximation of hyperbolic conservation laws was begun. These schemes share many desirable properties with total variation diminishing schemes (TVD), but TVD schemes have at most first order accuracy, in the sense of truncation error, at extreme of the solution. A uniformly second order approximation was constucted, which is nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time. This is achieved via a nonoscillatory piecewise linear reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell.
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Naqvi, GA; Malik, SA; Jan, W
2009-01-01
Necrotizing fasciitis is a severe soft tissue infection characterized by rapidly progressing necrosis, involving subcutaneous tissues. This rare condition carries high mortality rate and require prompt diagnosis and urgent treatment with radical debridement and antibiotics. We describe a case of 21-year old man who presented with the history of trivial injury to the knee. Initially he was admitted and treated for septic arthritis but later was diagnosed as necrotizing fasciitis which was successfully treated with no ill effects what so ever from this devastating condition. This rare condition has been reported in literature but still early diagnosis, which is a key for successful treatment, remains a challenge. PMID:19527519
Application of laser-wakefield-based x-ray source to global food security issues
NASA Astrophysics Data System (ADS)
Kieffer, J. C.; Fourmaux, S.; Hallin, E.; Arnison, P.; Brereton, N.; Pitre, F.; Dixon, M.; Tran, N.
2017-05-01
We present the development of a high throughput phase contrast screening system based on LWFA Xray sources for plant imaging. We upgraded the INRS laser-betatron beam line and we illustrate its imaging potential through the innovative development of new tools for addressing issues relevant to global food security. This initiative, led by the Global Institute of Food Security (GIFS) at the U of Saskatchewan, aims to elucidate that part of the function that maps environmental inputs onto specific plant phenotypes. The prospect of correlating phenotypic expression with adaptation to environmental stresses will provide researchers with a new tool to assess breeding programs for crops meant to thrive under the climate extremes.
Unilateral RS3PE in a Patient of Seronegative Rheumatoid Arthritis.
Varshney, Ankur Nandan; Kumar, Nilesh; Tiwari, Ashutosh; Anand, Ravi; Prasad, Sashi Ranjan; Anand, Arvind; Mishra, Abhinandan; Singh, N K
2013-01-01
Remitting seronegative symmetrical synovitis with pitting edema (RS3PE) is a rare but well-reported clinical entity. It is classically described as symmetrical involvement of both upper extremities. Asymmetrical involvement had also been reported, but unilateral presentation is very rare. We hereby report a case of unilateral RS3PE in a patient of seronegative rheumatoid arthritis which was initially misdiagnosed as cellulitis and was given high dose antibiotics without any significant improvement. Later a rheumatologic consultation leads to a prompt diagnosis, and treatment with steroids leads to dramatic reversal of symptoms. This case demonstrates the rare presentation of this rare clinical entity and highlights the necessity of awareness regarding unilateral disease to clinicians.
Sueta, Daisuke; Akahoshi, Rika; Okamura, Yoshinori; Kojima, Sunao; Ikemoto, Tomokazu; Yamamoto, Eiichiro; Izumiya, Yasuhiro; Tsujita, Kenichi; Kaikita, Koichi; Katabuchi, Hidetaka; Hokimoto, Seiji
2017-01-01
A 40-year-old woman experiencing sudden dyspnea went to her personal doctor for advice. She was previously diagnosed with endometriosis and prescribed oral contraceptives for treatment. During earthquakes, she spent 7 nights sleeping in a vehicle. The patient had swelling and pain in her left leg and high D-dimer concentration levels. A contrast-enhanced computed tomography scan revealed a contrast deficit in the bilateral pulmonary artery and in the left lower extremity. She was diagnosed with pulmonary thromboembolism (PTE), and anticoagulation therapy was initiated. This present case is the first report of PTE attributed to the use of oral contraceptives after earthquakes.
Biaxial deformation in high purity aluminum
Livescu, V.; Bingert, J. F.; Liu, C.; ...
2015-09-25
The convergence of multiple characterization tools has been applied to investigate the relationship of microstructure on damage evolution in high purity aluminum. The extremely coarse grain size of the disc-shaped sample provided a quasi-two dimensional structure from which the location of surface-measured features could be inferred. In particular, the role of pre-existing defects on damage growth was accessible due to the presence of casting porosity in the aluminum. Micro tomography, electron backscatter diffraction, and digital image correlation were applied to interrogate the sample in three dimensions. Recently micro-bulge testing apparatus was used to deform the pre-characterized disc of aluminum inmore » biaxial tension, and related analysis techniques were applied to map local strain fields. Subsequent post-mortem characterization of the failed sample was performed to correlate structure to damaged regions. We determined that strain localization and associated damage was most strongly correlated with grain boundary intersections and plastic anisotropy gradients between grains. Pre-existing voids played less of an apparent role than was perhaps initially expected. Finally, these combined techniques provide insight to the mechanism of damage initiation, propagation, and failure, along with a test bed for predictive damage models incorporating anisotropic microstructural effects.« less
NASA Astrophysics Data System (ADS)
Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.
2017-05-01
We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.
WEI, GUANGQUAN; KANG, XIAOWEI; LIU, XIANPING; TANG, XING; LI, QINLONG; HAN, JUNTAO; YIN, HONG
2015-01-01
Regardless of the controversial pathogenesis, intracranial meningeal hemangiopericytoma (M-HPC) is a rare, highly cellular and vascularized mesenchymal tumor that is characterized by a high tendency for recurrence and extraneural metastasis, despite radical excision and postoperative radiotherapy. M-HPC shares similar clinical manifestations and radiological findings with meningioma, which causes difficulty in differentiation of this entity from those prognostically favorable mimics prior to surgery. Treatment of M-HPC, particularly in metastatic settings, remains a challenge. A case is described of primary M-HPC with recurrence at the initial and distant intracranial sites and extraneural multiple-organ metastases in a 36-year-old female. The metastasis of M-HPC was extremely extensive, and to the best of our knowledge this is the first case of M-HPC with delayed metastasis to the bilateral kidneys. The data suggests that preoperative computed tomography and magnetic resonance imaging could provide certain diagnostic clues and useful information for more optimal treatment planning. The results may imply that novel drugs, such as temozolomide and bevacizumab, as a component of multimodality therapy of M-HPC may deserve further investigation. PMID:26171177
Asner, Gregory P; Joseph, Shijo
2015-01-01
Conservation and monitoring of tropical forests requires accurate information on their extent and change dynamics. Cloud cover, sensor errors and technical barriers associated with satellite remote sensing data continue to prevent many national and sub-national REDD+ initiatives from developing their reference deforestation and forest degradation emission levels. Here we present a framework for large-scale historical forest cover change analysis using free multispectral satellite imagery in an extremely cloudy tropical forest region. The CLASlite approach provided highly automated mapping of tropical forest cover, deforestation and degradation from Landsat satellite imagery. Critically, the fractional cover of forest photosynthetic vegetation, non-photosynthetic vegetation, and bare substrates calculated by CLASlite provided scene-invariant quantities for forest cover, allowing for systematic mosaicking of incomplete satellite data coverage. A synthesized satellite-based data set of forest cover was thereby created, reducing image incompleteness caused by clouds, shadows or sensor errors. This approach can readily be implemented by single operators with highly constrained budgets. We test this framework on tropical forests of the Colombian Pacific Coast (Chocó) – one of the cloudiest regions on Earth, with successful comparison to the Colombian government’s deforestation map and a global deforestation map. PMID:25678933
Highly Dispersed and Active ReOx on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration
DOE Office of Scientific and Technical Information (OSTI.GOV)
She, Xiaoyan; Kwak, Ja Hun; Sun, Junming
2012-05-23
SBA-15 silica supported rhenium catalysts were synthesized using solution-based atomic layer deposition method, and their activity and stability were studied in the acid-catalyzed 2-butanol dehydration. We find that ReOx/SBA-15 exhibited an extremely high initial activity but a fast deactivation for 2-butanol dehydration at 90-105 C. Fast deactivation was likely due to the sintering, sublimation, and reduction of rhenia as confirmed by TEM, elemental analysis, and in situ UV vis (DRS) measurements. To overcome these issues, ReOx/AlOx/SBA-15 catalysts with significantly improved stability were prepared by first modifying the surface identity of SBA-15 with alumina followed by dispersion of rhenia using atomicmore » layer deposition. The AlOx phase stabilizes the dispersion of small and uniform rhenia clusters (<2 nm) as as confirmed by TEM, STEM and UV-vis (DRS) characterizations. Additional 27Al MAS NMR characterization revealed that modification of the SBA-15 surface with alumina introduces a strong interaction between rhenia and alumina, which consequently improves the stability of supported rhenia catalysts by suppressing the sintering, sublimation, and reduction of rhenia albeit at a moderately reduced initial catalytic dehydration activity« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.; Cohen, M.O.
1975-02-01
The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less
Predictability and possible earlier awareness of extreme precipitation across Europe
NASA Astrophysics Data System (ADS)
Lavers, David; Pappenberger, Florian; Richardson, David; Zsoter, Ervin
2017-04-01
Extreme hydrological events can cause large socioeconomic damages in Europe. In winter, a large proportion of these flood episodes are associated with atmospheric rivers, a region of intense water vapour transport within the warm sector of extratropical cyclones. When preparing for such extreme events, forecasts of precipitation from numerical weather prediction models or river discharge forecasts from hydrological models are generally used. Given the strong link between water vapour transport (integrated vapour transport IVT) and heavy precipitation, it is possible that IVT could be used to warn of extreme events. Furthermore, as IVT is located in extratropical cyclones, it is hypothesized to be a more predictable variable due to its link with synoptic-scale atmospheric dynamics. In this research, we firstly provide an overview of the predictability of IVT and precipitation forecasts, and secondly introduce and evaluate the ECMWF Extreme Forecast Index (EFI) for IVT. The EFI is a tool that has been developed to evaluate how ensemble forecasts differ from the model climate, thus revealing the extremeness of the forecast. The ability of the IVT EFI to capture extreme precipitation across Europe during winter 2013/14, 2014/15, and 2015/16 is presented. The results show that the IVT EFI is more capable than the precipitation EFI of identifying extreme precipitation in forecast week 2 during forecasts initialized in a positive North Atlantic Oscillation (NAO) phase. However, the precipitation EFI is superior during the negative NAO phase and at shorter lead times. An IVT EFI example is shown for storm Desmond in December 2015 highlighting its potential to identify upcoming hydrometeorological extremes.
NASA Astrophysics Data System (ADS)
Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.
2017-02-01
This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.
The Erdős-Hajnal problem of hypergraph colouring, its generalizations, and related problems
NASA Astrophysics Data System (ADS)
Raigorodskii, Andrei M.; Shabanov, Dmitrii A.
2011-10-01
Extremal problems concerned with hypergraph colouring first arose in connection with classical investigations in the 1920-30s which gave rise to Ramsey theory. Since then, this area has assumed a central position in extremal combinatorics. This survey is devoted to one well-known problem of hypergraph colouring, the Erdős-Hajnal problem, initially posed in 1961. It opened a line of research in hypergraph theory whose methods and results are widely used in various domains of discrete mathematics. Bibliography: 109 titles.
NASA Astrophysics Data System (ADS)
Pántano, V. C.; Penalba, O. C.
2013-05-01
Extreme events of temperature and rainfall have a socio-economic impact in the rainfed agriculture production region in Argentina. The magnitude of the impact can be analyzed through the water balance which integrates the characteristics of the soil and climate conditions. Changes observed in climate variables during the last decades affected the components of the water balance. As a result, a displacement of the agriculture border towards the west was produced, improving the agricultural production of the region. The objective of this work is to analyze how the variability of rainfall and temperature leads the hydric condition of the soil, with special focus on extreme events. The hydric conditions of the soil (HC= Excess- Deficit) were estimated from the monthly water balance (Thornthwaite and Mather method, 1957), using monthly potential evapotranspiration (PET) and monthly accumulated rainfall (R) for 33 stations (period 1970-2006). Information of temperature and rainfall was provided by National Weather Service and the effective capacity of soil water was considered from Forte Lay and Spescha (2001). An agricultural extreme condition occurs when soil moisture and rainfall are inadequate or excessive for the development of the crops. In this study, we define an extreme event when the variable is less (greater) than its 20% and 10% (80% and 90%) percentile. In order to evaluate how sensitive is the HC to water and heat stress in the region, different conditional probabilities were evaluated. There is a weaker response of HC to extreme low PET while extreme low R leads high values of HC. However, this behavior is not always observed, especially in the western region where extreme high and low PET show a stronger influence over the HC. Finally, to analyze the temporal variability of extreme PET and R, leading hydric condition of the soil, the number of stations presenting extreme conditions was computed for each month. As an example, interesting results were observed for April. During this month, the water recharge of the soil is crucial to let the winter crops manage with the scarce rainfalls occurring in the following months. In 1970, 1974, 1977, 1978 and 1997 more than 50% of the stations were under extreme high PET; while 1970, 1974, 1978 and 1988 presented more than 40% under extreme low R. Thus, the 70s was the more threatened decade of the period. Since the 80s (except for 1997), extreme dry events due to one variable or the other are mostly presented separately, over smaller areas. The response of the spatial distribution of HC is stronger when both variables present extreme conditions. In particular, during 1997 the region presents extreme low values of HC as a consequence of extreme low R and high PET. Communities dependent on agriculture are highly sensitive to climate variability and its extremes. In the studied region, it was shown that scarce water and heat stress contribute to the resulting hydric condition, producing strong impact over different productive activities. Extreme temperature seems to have a stronger influence over extreme unfavorable hydric conditions.
NASA Astrophysics Data System (ADS)
Schoof, J. T.
2017-12-01
Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.
The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project
NASA Technical Reports Server (NTRS)
House, P. R.; Lapenta, W.; Schiffer, R.
2008-01-01
Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).
[Spirograph for small laboratory animals].
Daniiarov, S B; Lanskiĭ, Iu M; Bebinov, E M
1986-10-01
A design of dry spirograph is described. It is characterized by greater precision, lack of inertia, high reliability, absence of respiration resistance, adequate form of recording, rapid resetting to any respiratory rate. The device consists of two similar injection syringes, photoelectric sensor for the identification of the initial moments of respiration stages, electromagnetic valves, two photoelectric converters of the air volume into the impulse signal, vacuum micro-pump, microcompressor and a system of air-driving tubes. In the initial position of pistons and valves the microcompressor pumps air into the inhalation cylinder and lifts the piston to the upper extreme position. With the signal marking the beginning of inspiration, the valves switch over and the piston lowers, pushing out the air, which moves into the animals' respiratory organs. Simultaneously, the signals of the inhaled air volume from the photoelectric transducer reach the recorder. During expiration the air pushes the piston down into the second cylinder and photoelectric transducer gives the information on the volume of the expired air.
Unusual fentanyl patch administration.
Thomas, Sandra; Winecker, Ruth; Pestaner, Joseph P
2008-06-01
Fentanyl is an extremely potent narcotic analgesic that is becoming more popular as a drug of abuse. Because of the unique way in which the drug is packaged and delivered, the potential for unusual methods of abuse exists. We report the first case of true fentanyl patch ingestion in the medical literature. Initially, though unusual, cases of fentanyl ingestion were thought to have been reported, but further investigation of the literature revealed that in other case reports the patches had been held in the mouth and chewed. Because no reports of swallowing the patch had been published, suicide was initially a strong consideration in this case; however, further investigation showed that the decedent and his brother enjoyed swallowing the patches for quick "highs." Cases such as these serve to remind medical examiners and law enforcement officials of the value of performing thorough death investigations by performing complete autopsies with toxicological testing and correlating with investigation information to form an opinion with regard to the cause and manner of death.
An aggressive primary orbital natural killer/T-cell lymphoma case: poor response to chemotherapy.
Marchino, Tizana; Ibáñez, Núria; Prieto, Sebastián; Novelli, Silvana; Szafranska, Justyna; Mozos, Anna; Graell, Xavier; Buil, José A
2014-01-01
Natural killer/T-cell lymphoma (NKTCL) and its presentation with extranodal orbital involvement as a single lesion are extremely rare. The aim of this article was to describe the presentation, diagnosis, and systemic treatment of a primary orbital NKTCL. A 67-year-old Caucasian woman presented with left exophthalmos, pain, periorbital swelling, and limited extrinsic ocular motility. Orbital cellulitis was suspected, but finally orbital biopsy was performed due to no response to initial antibiotic and anti-inflammatory standard treatment. The pathologic diagnosis was NKTCL. Systemic evaluations were negative. CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy was initiated, but after 2 cycles of treatment, tumoral progression was observed. SMILE (dexamethasone, methotrexate, ifosfamide, L-asparaginase, etoposide) rescue chemotherapy was then administered. Lymphoma progression was inevitable. She died 10 months later. Although more nasal NKTCL cases have been described, the nonnasal primary orbital NKTCL is an uncommon neoplasm with high mortality rate, despite the recent use of more potent chemotherapy regimens.
NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
Gerard, Macda; Chimowitz, Hannah; Fossa, Alan; Bourgeois, Fabienne; Fernandez, Leonor
2018-01-01
Background OpenNotes, a national initiative to share clinicians’ visit notes with patients, can improve patient engagement, but effects on vulnerable populations are not known very well. Objective Our aim is to examine the importance of visit notes to nonwhite and less educated patients. Methods Patients at an urban academic medical center with an active patient portal account and ≥1 available ambulatory visit note over the prior year were surveyed during June 2016 until September 2016. The survey was designed with patients and families and assessed importance of reading notes (scale 0-10) for (1) understanding health conditions, (2) feeling informed about care, (3) understanding the provider’s thought process, (4) remembering the plan of care, and (5) making decisions about care. We compared the proportion of patients reporting 9-10 (extremely important) for each item stratified by education level, race/ethnicity, and self-reported health. Principal component analysis and correlation measures supported a summary score for the 5 items (Cronbach alpha=.93). We examined factors associated with rating notes as extremely important to engage in care using logistic regression. Results Of 24,722 patients, 6913 (27.96%) completed the survey. The majority (6736/6913, 97.44%) read at least one note. Among note readers, 74.0% (727/982) of patients with ≤high school education, 70.7% (130/184) of black patients, and 69.9% (153/219) of Hispanic/Latino patients reported that notes are extremely important to feel informed about their care. The majority of less educated and nonwhite patients reported notes as extremely important to remember the care plan (62.4%, 613/982 ≤high school education; 62.0%, 114/184 black patients; and 61.6%, 135/219 Hispanic/Latino patients) and to make care decisions (62.3%, 612/982; 59.8%, 110/184; and 58.5%, 128/219, respectively, and P<.003 for all comparisons to more educated and white patients, respectively). Among patients with the poorest self-reported health, 65.9% (499/757) found notes extremely important to be informed and to understand the provider. On multivariable modeling, less educated patients were nearly three times as likely to report notes were extremely important to engage in care compared with the most educated patients (odds ratio [OR] 2.9, 95% CI 2.4-3.3). Nonwhite patients were twice as likely to report the same compared with white patients (OR 2.0, 95% CI 1.5-2.7 [black] and OR 2.2, 95% CI 1.6-2.9 [Hispanic/Latino and Asian], P<.001 for each comparison). Healthier patients, women, older patients, and those who read more notes were more likely to find notes extremely important to engage in care. Conclusions Less educated and nonwhite patients using the portal each assigned higher importance to reading notes for several health behaviors than highly educated and white patients, and may find transparent notes especially valuable for understanding their health and engaging in their care. Facilitating access to notes may improve engagement in health care for some vulnerable populations who have historically been more challenging to reach. PMID:29793900
NASA Astrophysics Data System (ADS)
Caporali, E.; Chiarello, V.; Galeati, G.
2014-12-01
Peak discharges estimates for a given return period are of primary importance in engineering practice for risk assessment and hydraulic structure design. Different statistical methods are chosen here for the assessment of flood frequency curve: one indirect technique based on the extreme rainfall event analysis, the Peak Over Threshold (POT) model and the Annual Maxima approach as direct techniques using river discharge data. In the framework of the indirect method, a Monte Carlo simulation approach is adopted to determine a derived frequency distribution of peak runoff using a probabilistic formulation of the SCS-CN method as stochastic rainfall-runoff model. A Monte Carlo simulation is used to generate a sample of different runoff events from different stochastic combination of rainfall depth, storm duration, and initial loss inputs. The distribution of the rainfall storm events is assumed to follow the GP law whose parameters are estimated through GEV's parameters of annual maximum data. The evaluation of the initial abstraction ratio is investigated since it is one of the most questionable assumption in the SCS-CN model and plays a key role in river basin characterized by high-permeability soils, mainly governed by infiltration excess mechanism. In order to take into account the uncertainty of the model parameters, this modified approach, that is able to revise and re-evaluate the original value of the initial abstraction ratio, is implemented. In the POT model the choice of the threshold has been an essential issue, mainly based on a compromise between bias and variance. The Generalized Extreme Value (GEV) distribution fitted to the annual maxima discharges is therefore compared with the Pareto distributed peaks to check the suitability of the frequency of occurrence representation. The methodology is applied to a large dam in the Serchio river basin, located in the Tuscany Region. The application has shown as Monte Carlo simulation technique can be a useful tool to provide more robust estimation of the results obtained by direct statistical methods.
Gao, Xiaoning; Li, Jie; Wang, Lili; Lin, Ji; Jin, Hongshi; Xu, Yihan; Wang, Nan; Zhao, Yu; Liu, Daihong; Yu, Li; Wang, Quanshun
2016-01-01
Patient: Male, 49 Final Diagnosis: T-lymphoid/myeloid bilineal blastic transformation of CML Symptoms: Rapidly enlarging mass in left neck Medication: — Clinical Procedure: Biopsy of the left submandibular lymph nodes Specialty: Hematology Objective: Rare co-existance of disease or pathology Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the Philadelphia chromosome generated by the reciprocal translocation t(9: 22)(q34;q11). CML is usually diagnosed in the chronic phase. Blast crisis represents an advanced phase of CML. Extramedullary blast crisis as the initial presentation of CML with bone marrow remaining in chronic phase is an unusual event. Further, extramedullary blast crisis with T lymphoid/myeloid bilineal phenotype as an initial presentation for CML is extremely unusual. Case Report: Here, we report the case of a 49-year-old male with rapidly enlarged submandibular lymph nodes. Biopsy specimen from the nodes revealed a characteristic appearance with morphologically and immunohistochemically distinct myeloblasts and T lymphoblasts co-localized in 2 adjacent regions, accompanied by chronic phase of the disease in bone marrow. The presence of the BCR/ABL1 fusion gene within both cellular populations in this case confirmed the extramedullary disease represented a localized T lymphoid/myeloid bilineal blastic transformation of CML. After 3 courses of combined chemotherapy plus tyrosine kinase inhibitor treatment, the mass was completely regressed with a 3-log decrease in BCR/ABL1 transcript from baseline. Five months after the diagnosis, the patient showed diminished vision, hand tremors, and weakness of lower extremities. Flow cytometric immunophenotyping of cerebrospinal fluid revealed the presence of myeloid blasts. An isolated central nervous system relapse of leukemia was identified. Following high-dose systemic and intrathecal chemotherapy, the patient continued to do well. Conclusions: The possibility of extramedullary blast crisis as an initial presentation in patients with CML should be considered. Further, an isolated central nervous system blast crisis should be considered if neurological symptoms evolve in patients who have shown a good response to therapy. PMID:27784881
Parallel methodology to capture cyclic variability in motored engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M.; Yang, Xiaofeng; Kuo, Tang-Wei
2016-07-28
Numerical prediction of of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are require to accurately capture the in-cylinder turbulent flowfield, and (ii) CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. In this study, a new methodology is proposed to dissociate this long time-scale problem into several shorter time-scale problems, which can considerably reduce the computational time without sacrificing the fidelity of the simulations. The strategy is to perform multiple single-cycle simulations in parallel bymore » effectively perturbing the simulation parameters such as the initial and boundary conditions. It is shown that by perturbing the initial velocity field effectively based on the intensity of the in-cylinder turbulence, the mean and variance of the in-cylinder flowfield is captured reasonably well. Adding perturbations in the initial pressure field and the boundary pressure improves the predictions. It is shown that this new approach is able to give accurate predictions of the flowfield statistics in less than one-tenth of time required for the conventional approach of simulating consecutive engine cycles.« less
A new method for solving reachable domain of spacecraft with a single impulse
NASA Astrophysics Data System (ADS)
Chen, Qi; Qiao, Dong; Shang, Haibin; Liu, Xinfu
2018-04-01
This paper develops a new approach to solve the reachable domain of a spacecraft with a single maximum available impulse. First, the distance in a chosen direction, started from a given position on the initial orbit, is formulated. Then, its extreme value is solved to obtain the maximum reachable distance in this direction. The envelop of the reachable domain in three-dimensional space is determined by solving the maximum reachable distance in all directions. Four scenarios are analyzed, including three typical scenarios (either the maneuver position or impulse direction is fixed, or both are arbitrary) and a new extended scenario (the maneuver position is restricted to an interval and the impulse direction is arbitrary). Moreover, the symmetry and the boundedness of the reachable domain are discussed in detail. The former is helpful to reduce the numerical computation, while the latter decides the maximum eccentricity of the initial orbit for a maximum available impulse. The numerical simulations verify the effectiveness of the proposed method for solving the reachable domain in all four scenarios. Especially, the reachable domain with a highly elliptical initial orbit can be determined successfully, which remains unsolved in the existing papers.
Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu
2014-07-01
The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.
Fine resolution chronology based on initial Sr-87/Sr-86
NASA Technical Reports Server (NTRS)
Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.
1993-01-01
It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.
NASA Astrophysics Data System (ADS)
Martin, E.; Sigmarsson, O.
2007-11-01
Segregation veins are common in lava sheets and result from internal differentiation during lava emplacement and degassing. They consist of evolved liquid, most likely replaced by gas-filter pressing from a ˜50% crystallised host lava. Pairs of samples, host lavas and associated segregation veins from the Reykjanes Peninsula (Iceland), Lanzarote (Canary Islands) and the Masaya volcano (Nicaragua) show extreme mineralogical and compositional variations (MgO in host lava, segregation veins and interstitial glass ranges from 8-10 wt%, 3-6 wt%, and to less than 0.01 wt%, respectively). These samples allow the assessment of the internal lava flow differentiation mechanism, since both the parental and derived liquid are known in addition to the last magma drops in the form of late interstitial glasses. The mineralogical variation, mass-balance calculated from major- and trace element composition, and transitional metal partition between crystals and melts are all consistent with fractional crystallisation as the dominant differentiation mechanism. The interstitial glasses are highly silicic (SiO2 = 70-80 wt%) and represent a final product of high-degree (75-97%) fractional crystallisation of olivine tholeiite at a pressure close to one atmosphere. The tholeiitic liquid-line-of-decent and the composition of the residual melts are governed by the K2O/Na2O of the initial basaltic magma. The granitic minimum is reached if the initial liquid has a high K2O/Na2O whereas trondhjemitic composition is the final product of magma with low initial K2O/Na2O.
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
ERIC Educational Resources Information Center
Spano, Richard; Pridemore, William Alex; Bolland, John
2012-01-01
Two waves of longitudinal data from 1,049 African American youth living in extreme poverty are used to examine the impact of exposure to violence (Time 1) and violent behavior (Time 1) on first time gun carrying (Time 2). Multivariate logistic regression results indicate that (a) violent behavior (Time 1) increased the likelihood of initiation of…
ERIC Educational Resources Information Center
Farley, Chelsea; McClanahan, Wendy S.
2007-01-01
This issue of "P/PV In Brief" provides updated data from the Ready4Work prisoner reentry initiative, with a focus on the prison crisis occurring in many cities and states. While much more research is needed to understand the true, long-term impact of prisoner reentry initiatives, outcomes from Ready4Work were extremely promising in terms of…
Lower extremity control during turns initiated with and without hip external rotation.
Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L
2017-02-08
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of diurnal temperature range on mortality in Hefei city, China
NASA Astrophysics Data System (ADS)
Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia
2017-12-01
Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.
Effects of diurnal temperature range on mortality in Hefei city, China
NASA Astrophysics Data System (ADS)
Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia
2018-05-01
Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.
Haines, Sara; Baker, Tricia
2013-01-01
Purpose/Background: To develop a consensus on the critical constructs necessary to be included in a physical performance assessment checklist (PPAC) to assess an athlete's ability for return to sport following a lower extremity injury. Methods: The study used a 3‐round Delphi method to finalize the PPAI originally developed by a panel of experts. Fourteen Delphi representative sample participants were randomly derived from the authors of peer‐reviewed publications of lower extremity injuries. Nine participants completed all 3 rounds. Results: Throughout the 3 rounds, the 10 initial constructs were modified and revised to produce the finalized PPAC consisting of 12 constructs necessary to consider for an athlete's return to sport after a lower extremity injury. Conclusions: This instrument can be used as a checklist to advocate for prospective batteries of physical performance tests to incorporate the elements identified by this study. Level of Evidence: 5 PMID:23439809