Eilber, Fritz C; Rosen, Gerald; Nelson, Scott D; Selch, Michael; Dorey, Frederick; Eckardt, Jeffery; Eilber, Frederick R
2003-02-01
To identify patient characteristics associated with the development of local recurrence and the effect of local recurrence on subsequent morbidity and mortality in patients with intermediate- to high-grade extremity soft tissue sarcomas. Numerous studies on extremity soft tissue sarcomas have consistently shown that presentation with locally recurrent disease is associated with the development of subsequent local recurrences and that large tumor size and high histologic grade are significant factors associated with decreased survival. However, the effect of local recurrence on patient survival remains unclear. From 1975 to 1997, 753 patients with intermediate- to high-grade extremity soft tissue sarcomas were treated at UCLA. Treatment outcomes and patient characteristics were analyzed to identify factors associated with both local recurrence and survival. Patients with locally recurrent disease were at a significantly increased risk of developing a subsequent local recurrence. Local recurrence was a morbid event requiring amputation in 38% of the cases. The development of a local recurrence was the most significant factor associated with decreased survival. Once a patient developed a local recurrence, he or she was about three times more likely to die of disease compared to similar patients who had not developed a local recurrence. Local recurrence in patients with intermediate- to high-grade extremity soft tissue sarcomas is associated with the development of subsequent local recurrences, a morbid event decreasing functional outcomes and the most significant factor associated with decreased survival. Although 85% to 90% of patients with high-grade extremity soft tissue sarcomas are treatable with a limb salvage approach, patients who develop a local recurrence need aggressive treatment and should be considered for trials of adjuvant systemic therapy.
NASA Astrophysics Data System (ADS)
Kim, S. K.; Lee, J.; Zhang, C.; Ames, S.; Williams, D. N.
2017-12-01
Deep learning techniques have been successfully applied to solve many problems in climate and geoscience using massive-scaled observed and modeled data. For extreme climate event detections, several models based on deep neural networks have been recently proposed and attend superior performance that overshadows all previous handcrafted expert based method. The issue arising, though, is that accurate localization of events requires high quality of climate data. In this work, we propose framework capable of detecting and localizing extreme climate events in very coarse climate data. Our framework is based on two models using deep neural networks, (1) Convolutional Neural Networks (CNNs) to detect and localize extreme climate events, and (2) Pixel recursive recursive super resolution model to reconstruct high resolution climate data from low resolution climate data. Based on our preliminary work, we have presented two CNNs in our framework for different purposes, detection and localization. Our results using CNNs for extreme climate events detection shows that simple neural nets can capture the pattern of extreme climate events with high accuracy from very coarse reanalysis data. However, localization accuracy is relatively low due to the coarse resolution. To resolve this issue, the pixel recursive super resolution model reconstructs the resolution of input of localization CNNs. We present a best networks using pixel recursive super resolution model that synthesizes details of tropical cyclone in ground truth data while enhancing their resolution. Therefore, this approach not only dramat- ically reduces the human effort, but also suggests possibility to reduce computing cost required for downscaling process to increase resolution of data.
A maximally stable extremal region based scene text localization method
NASA Astrophysics Data System (ADS)
Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei
2015-07-01
Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.
Embedded I&C for Extreme Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A.
2016-04-01
This project uses embedded instrumentation and control (I&C) technologies to demonstrate potential performance gains of nuclear power plant components in extreme environments. Extreme environments include high temperature, radiation, high pressure, high vibration, and high EMI conditions. For extreme environments, performance gains arise from moment-to-moment sensing of local variables and immediate application of local feedback control. Planning for embedding I&C during early system design phases contrasts with the traditional, serial design approach that incorporates minimal I&C after mechanical and electrical design is complete. The demonstration application involves the development and control of a novel, proof-of-concept motor/pump design. The motor and pumpmore » combination operate within the fluid environment, eliminating the need for rotating seals. Actively controlled magnetic bearings also replace failure-prone mechanical contact bearings that typically suspend rotating components. Such as design has the potential to significantly enhance the reliability and life of the pumping system and would not be possible without embedded I&C.« less
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
NASA Astrophysics Data System (ADS)
Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun
2017-12-01
The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.
Heat Vulnerability Index Mapping for Milwaukee and Wisconsin.
Christenson, Megan; Geiger, Sarah Dee; Phillips, Jeffrey; Anderson, Ben; Losurdo, Giovanna; Anderson, Henry A
Extreme heat waves elevate the population's risk for heat-related morbidity and mortality, specifically for vulnerable groups such as older adults and young children. In this context, we developed 2 Heat Vulnerability Indices (HVIs), one for the state of Wisconsin and one for the Milwaukee metropolitan area. Through the creation of an HVI, state and local agencies will be able to use the indices as a planning tool for extreme heat events. Data used for the HVIs were grouped into 4 categories: (1) population density; (2) health factors; (3) demographic and socioeconomic factors; and (4) natural and built environment factors. These categories were mapped at the Census block group level. Unweighted z-score data were used to determine index scores, which were then mapped by quantiles ranging from "high" to "low" vulnerability. Statewide, Menominee County exhibited the highest vulnerability to extreme heat. Milwaukee HVI findings indicated high vulnerability in the city's inner core versus low vulnerability along the lakeshore. Visualization of vulnerability could help local public health agencies prepare for future extreme heat events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indelicato, Daniel J.; Keole, Sameer R.; Shahlaee, Amir H.
2008-11-01
Purpose: More than 70% of Ewing tumors occur in the extremities and pelvis. This study identified factors influencing local control and functional outcomes after management with definitive radiotherapy (RT). Patients and Methods: A total of 75 patients with a localized Ewing tumor of the extremity or pelvis were treated with definitive RT at the University of Florida between 1970 and 2006 (lower extremity tumors in 30, pelvic tumors in 26, and upper extremity tumors in 19). RT was performed on a once-daily (40%) or twice-daily (60%) basis. The median dose was 55.2 Gy in 1.8-Gy daily fractions or 55.0 Gymore » in 1.2-Gy twice-daily fractions. The median observed follow-up was 4.7 years. Functional outcome was assessed using the Toronto Extremity Salvage Score. Results: The 10-year actuarial overall survival, cause-specific survival, freedom from relapse, and local control rate was 48%, 48%, 42%, and 71%, respectively. Of the 72 patients, 3 required salvage amputation. Inferior cause-specific survival was associated with larger tumors (81% for tumors <8 cm vs. 39% for tumors {>=}8 cm, p <0.05). No patient characteristics or treatment variables were predictive of local failure. No fractures occurred in patients treated with hyperfractionation or with tumors of the distal extremities. Severe late complications were more frequently associated with use of <8-MV photons and fields encompassing the entire bone or hemipelvis. A significantly better Toronto Extremity Salvage Score was associated with a late-effect biologically effective dose of <91.7 Gy{sub 3}. Conclusions: Limb preservation was effectively achieved through definitive RT. Treating limited field sizes with hyperfractionated high-energy RT could minimize long-term complications and provides superior functional outcomes.« less
Using damage data to estimate the risk from summer convective precipitation extremes
NASA Astrophysics Data System (ADS)
Schroeer, Katharina; Tye, Mari
2017-04-01
This study explores the potential added value from including loss and damage data to understand the risks from high-intensity short-duration convective precipitation events. Projected increases in these events are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows, and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to this, not only are extreme events rare, but such small-scale events are likely to be underreported where they do not coincide with the observation network. Reports of private loss and damage on a local administrative unit scale (LAU 2 level) are used to explore the relationship between observed rainfall events and damages reportedly related to hydro-meteorological processes. With 480 Austrian municipalities located within our south-eastern Alpine study region, the damage data are available on a much smaller scale than the available rainfall data. Precipitation is recorded daily at 185 gauges and 52% of these stations additionally deliver sub-hourly rainfall information. To obtain physically plausible information, damage and rainfall data are grouped and analyzed on a catchment scale. The data indicate that rainfall intensities are higher on days that coincide with a damage claim than on days for which no damage was reported. However, approximately one third of the damages related to hydro-meteorological hazards were claimed on days for which no rainfall was recorded at any gauge in the respective catchment. Our goal is to assess whether these events indicate potential extreme events missing in the observations. Damage always is a consequence of an asset being exposed and susceptible to a hazardous process, and naturally, many factors influence whether an extreme rainfall event causes damage. We set up a statistical model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
Assessing changes in extreme convective precipitation from a damage perspective
NASA Astrophysics Data System (ADS)
Schroeer, K.; Tye, M. R.
2016-12-01
Projected increases in high-intensity short-duration convective precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the convective precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity convective precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to identify which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime convective precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to identify from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.
2009-03-01
transition fatigue regimes; however, microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue...and Socie [57] considered the affect of microplastic 14 Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base...considers the local stress state as affected by intergranular interactions and microplasticity . For the calculations given below, the volumes over which
Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping
2015-02-01
Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
NASA Astrophysics Data System (ADS)
da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.
2016-04-01
We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.
NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
Estimation of local extreme suspended sediment concentrations in California Rivers.
Tramblay, Yves; Saint-Hilaire, André; Ouarda, Taha B M J; Moatar, Florentina; Hecht, Barry
2010-09-01
The total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40-60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable. Copyright 2010 Elsevier B.V. All rights reserved.
Liu, Jason J; Huang, Ming-Chun; Xu, Wenyao; Zhang, Xiaoyi; Stevens, Luke; Alshurafa, Nabil; Sarrafzadeh, Majid
2015-09-01
The ability to continuously monitor respiration rates of patients in homecare or in clinics is an important goal. Past research showed that monitoring patient breathing can lower the associated mortality rates for long-term bedridden patients. Nowadays, in-bed sensors consisting of pressure sensitive arrays are unobtrusive and are suitable for deployment in a wide range of settings. Such systems aim to extract respiratory signals from time-series pressure sequences. However, variance of movements, such as unpredictable extremities activities, affect the quality of the extracted respiratory signals. BreathSens, a high-density pressure sensing system made of e-Textile, profiles the underbody pressure distribution and localizes torso area based on the high-resolution pressure images. With a robust bodyparts localization algorithm, respiratory signals extracted from the localized torso area are insensitive to arbitrary extremities movements. In a study of 12 subjects, BreathSens demonstrated its respiratory monitoring capability with variations of sleep postures, locations, and commonly tilted clinical bed conditions.
Deroose, Jan P; Grünhagen, Dirk J; de Wilt, Johannes H W; Eggermont, Alexander M M; Verhoef, Cornelis
2015-02-01
Tumour necrosis factor-α (TNF) and melphalan based isolated limb perfusion (TM-ILP) is an attractive treatment option for advanced extremity soft tissue sarcomas (STS). This study reports on a 20-year single centre experience and discusses the evolution and changes in methodology since the introduction of TNF in ILP. We performed 306 TM-ILPs in 275 patients with extremity STS. All patients were candidates for amputation or mutilating surgery in order to achieve local control. Clinical response evaluation consisted of clinical examination and magnetic resonance imaging. To evaluate the importance of TNF-dose, treatment results of two periods (1991-2003 high dose (3-4 mg) TNF; 2003-2012 reduced dose (1-2mg) TNF) were compared. During the study period, more femoral perfusions were done instead of iliac perfusions. Reduction of TNF dose and reduction of total ILP time did not lead to different clinical response rates (70% and 69% for periods 1 and 2 respectively) or different local recurrence rates, but was associated with less local toxicity (23% and 14% for periods 1 and 2 respectively). Hospital stay was significantly reduced during the study period. There was an improved pathological response in the high dose TNF group without consequences for clinical outcome. TM-ILP remains a very effective treatment modality for limb threatening extremity STS. Moreover, reduction of dose and the growing experience in ILP led to less local toxicity and shorter hospital stay. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characteristics of Extreme Geoelectric Fields and Their Possible Causes: Localized Peak Enhancements
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Ngwira, C. M.; Bernabeu, E.; Eichner, J.; Viljanen, A.; Crowley, G.
2015-12-01
One of the major challenges pertaining to extreme geomagnetic storms is to understand the basic processes associated with the development of dynamic magnetosphere-ionosphere currents, which generate large induced surface geoelectric fields. Previous studies point out the existence of localized peak geoelectric field enhancements during extreme storms. We examined induced global geoelectric fields derived from ground-based magnetometer recordings for 12 extreme geomagnetic storms between the years 1982--2005. However for the present study, an in-depth analysis was performed for two important extreme storms, October 29, 2003 and March 13, 1989. The primary purpose of this paper is to provide further evidence on the existence of localized peak geoelectric field enhancements, and to show that the structure of the geoelectric field during these localized extremes at single sites can differ greatly from globally and regionally averaged fields. Although the physical processes that govern the development of these localized extremes are still not clear, we discuss some possible causes.
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2016-12-01
Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute precipitation intensities. While reporting of mere percentage numbers can be misleading, scaling studies can add value to process understanding on the local scale, if the factors that influence scaling rates are considered from both a methodological and a physical perspective.
Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña
NASA Astrophysics Data System (ADS)
Evans, Jason P.; Boyer-Souchet, Irène
2012-05-01
This study examines the role played by high sea surface temperatures around northern Australia, in producing the extreme precipitation which occurred during the strong La Niña in December 2010. These extreme rains produced floods that impacted almost 1,300,000 km2, caused billions of dollars in damage, led to the evacuation of thousands of people and resulted in 35 deaths. Through the use of regional climate model simulations the contribution of the observed high sea surface temperatures to the rainfall is quantified. Results indicate that the large-scale atmospheric circulation changes associated with the La Niña event, while associated with above average rainfall in northeast Australia, were insufficient to produce the extreme rainfall and subsequent flooding observed. The presence of high sea surface temperatures around northern Australia added ˜25% of the rainfall total.
Improving the local wavenumber method by automatic DEXP transformation
NASA Astrophysics Data System (ADS)
Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni
2014-12-01
In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.
Ensemble-based evaluation of extreme water levels for the eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Eelsalu, Maris; Soomere, Tarmo
2016-04-01
The risks and damages associated with coastal flooding that are naturally associated with an increase in the magnitude of extreme storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. The relevant risks are even more contrast for semi-enclosed water bodies such as the Baltic Sea where subtidal (weekly-scale) variations in the water volume of the sea substantially contribute to the water level and lead to large spreading of projections of future extreme water levels. We explore the options for using large ensembles of projections to more reliably evaluate return periods of extreme water levels. Single projections of the ensemble are constructed by means of fitting several sets of block maxima with various extreme value distributions. The ensemble is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. A hindcast by the Rossby Centre Ocean model is sampled with a resolution of 6 h and a similar hindcast by the circulation model NEMO with a resolution of 1 h. As the annual maxima of water levels in the Baltic Sea are not always uncorrelated, we employ maxima for calendar years and for stormy seasons. As the shape parameter of the Generalised Extreme Value distribution changes its sign and substantially varies in magnitude along the eastern coast of the Baltic Sea, the use of a single distribution for the entire coast is inappropriate. The ensemble involves projections based on the Generalised Extreme Value, Gumbel and Weibull distributions. The parameters of these distributions are evaluated using three different ways: maximum likelihood method and method of moments based on both biased and unbiased estimates. The total number of projections in the ensemble is 40. As some of the resulting estimates contain limited additional information, the members of pairs of projections that are highly correlated are assigned weights 0.6. A comparison of the ensemble-based projection of extreme water levels and their return periods with similar estimates derived from local observations reveals an interesting pattern of match and mismatch. The match is almost perfect in measurement sites where local effects (e.g., wave-induced set-up or local surge in very shallow areas that are not resolved by circulation models) do not contribute to the observed values of water level. There is, however, substantial mismatch between projected and observed extreme values for most of the Estonian coast. The mismatch is largest for sections that are open to high waves and for several bays that are deeply cut into mainland but open for predominant strong wind directions. Detailed quantification of this mismatch eventually makes it possible to develop substantially improved estimates of extreme water levels in sections where local effects considerably contribute into the total water level.
NASA Astrophysics Data System (ADS)
Sayol, J. M.; Marcos, M.
2018-02-01
This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.
Hazardous thunderstorm intensification over Lake Victoria
Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.
2016-01-01
Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius–Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change. PMID:27658848
ERIC Educational Resources Information Center
Sewell, Alexandra; Hulusi, Halit
2016-01-01
Over the last five years the radicalisation of children and young people to extreme ideologies is fast developing as a new and important safeguarding issue for Local Authorities. Despite many high profile cases, there has yet to be a response from the educational psychology profession. This article seeks to explore the possible role for…
Manchikanti, Laxmaiah; Cash, Kimberly A.; Pampati, Vidyasagar; Wargo, Bradley W.; Malla, Yogesh
2012-01-01
Study Design: A randomized, double-blind, active controlled trial. Objective: To evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids in the management of chronic neck pain and upper extremity pain in patients with disc herniation and radiculitis. Summary of Background Data: Epidural injections in managing chronic neck and upper extremity pain are commonly employed interventions. However, their long-term effectiveness, indications, and medical necessity, of their use and their role in various pathologies responsible for persistent neck and upper extremity pain continue to be debated, even though, neck and upper extremity pain secondary to disc herniation and radiculitis, is described as the common indication. There is also paucity of high quality literature. Methods: One-hundred twenty patients were randomly assigned to one of 2 groups: Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL); Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL of nonparticulate betamethasone. Primary outcome measure was ≥ 50 improvement in pain and function. Outcome assessments included Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), opioid intake, employment, and changes in weight. Results: Significant pain relief and functional status improvement (≥ 50%) was demonstrated in 72% of patients who received local anesthetic only and 68% who received local anesthetic and steroids. In the successful group of participants, significant improvement was illustrated in 77% in local anesthetic group and 82% in local anesthetic with steroid group. Conclusions: Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and function for patients with cervical disc herniation and radiculitis. PMID:22859902
Manchikanti, Laxmaiah; Cash, Kimberly A; Pampati, Vidyasagar; Wargo, Bradley W; Malla, Yogesh
2012-01-01
A randomized, double-blind, active controlled trial. To evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids in the management of chronic neck pain and upper extremity pain in patients with disc herniation and radiculitis. Epidural injections in managing chronic neck and upper extremity pain are commonly employed interventions. However, their long-term effectiveness, indications, and medical necessity, of their use and their role in various pathologies responsible for persistent neck and upper extremity pain continue to be debated, even though, neck and upper extremity pain secondary to disc herniation and radiculitis, is described as the common indication. There is also paucity of high quality literature. One-hundred twenty patients were randomly assigned to one of 2 groups: Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL); Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL of nonparticulate betamethasone. Primary outcome measure was ≥ 50 improvement in pain and function. Outcome assessments included Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), opioid intake, employment, and changes in weight. Significant pain relief and functional status improvement (≥ 50%) was demonstrated in 72% of patients who received local anesthetic only and 68% who received local anesthetic and steroids. In the successful group of participants, significant improvement was illustrated in 77% in local anesthetic group and 82% in local anesthetic with steroid group. Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and function for patients with cervical disc herniation and radiculitis.
Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography
Stearns, Daniel G [Los Altos, CA; Sweeney, Donald W [San Ramon, CA; Mirkarimi, Paul B [Sunol, CA
2004-11-23
A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish
NASA Astrophysics Data System (ADS)
Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin
2007-05-01
Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.
Combining local search with co-evolution in a remarkably simple way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettcher, S.; Percus, A.
2000-05-01
The authors explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problem. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. In contrast to genetic algorithms, which operate on an entire gene-pool of possible solutions, extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations, or avalanches, ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements heuristics inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Phase transitions are found in many combinatorial optimization problems, and have been conjectured to occur in the region of parameter space containing the hardest instances. We demonstrate how extremal optimization can be implemented for a variety of hard optimization problems. We believe that this will be a useful tool in the investigation of phase transitions in combinatorial optimization, thereby helping to elucidate the origin of computational complexity.« less
Performance of Improved High-Order Filter Schemes for Turbulent Flows with Shocks
NASA Technical Reports Server (NTRS)
Kotov, Dmitry Vladimirovich; Yee, Helen M C.
2013-01-01
The performance of the filter scheme with improved dissipation control ? has been demonstrated for different flow types. The scheme with local ? is shown to obtain more accurate results than its counterparts with global or constant ?. At the same time no additional tuning is needed to achieve high accuracy of the method when using the local ? technique. However, further improvement of the method might be needed for even more complex and/or extreme flows.
2012-04-01
extremely lightweight metal , weighing 30% less than aluminum, and 70% less than steel, it also has the highest strength-to-weight ratio among any of the...commonly used non- ferrous and ferrous metallic materials [2]. As magnesium is used more often in structural components, there is an increasing...mechanism of deformation in metals has been shown to be shear localization [6] [7]. The shear localization seen in high strain rate deformation is
Ban, Jie; Huang, Lei; Chen, Chen; Guo, Yuming; He, Mike Z; Li, Tiantian
2017-02-01
The public's risk perception of local extreme heat or cold plays a critical role in community health and prevention under climate change. However, there is limited evidence on such issues in China where extreme weather is occurring more frequently due to climate change. Here, a total of 2500 residents were selected using a three-step sampling method and investigated by a questionnaire in two representative cities. We investigated risk perception of extreme heat in Beijing and extreme cold in Harbin in 2013, aiming to examine their possible correlations with multiple epidemiological factors. We found that exposure, vulnerability, and adaptive ability were significant predictors in shaping public risk perceptions of local extreme temperature. In particular, a 1°C increase in daily temperature resulted in an increased odds of perceiving serious extreme heat in Beijing (OR=1.091; 95% CI: 1.032, 1.153), while a 1°C increase in daily temperature resulted in a decreased odds of perceiving serious extreme cold in Harbin (OR=0.965; 95% CI: 0.939, 0.992). Therefore for both extreme heat and cold, frequent local extreme temperature exposure may amplify a stronger communication. Health interventions for extreme temperature should consider exposure, vulnerability, and adaptive ability factors. This will help improve the public's perception of climatic changes and their willingness to balance adaption and mitigation appropriately. Copyright © 2016 Elsevier B.V. All rights reserved.
Complex Socio-Ecological Dynamics driven by extreme events in the Amazon
NASA Astrophysics Data System (ADS)
Pinho, P. F.
2015-12-01
Several years with extreme floods or droughts in the past decade have caused human suffering in remote communities of the Brazilian Amazon. Despite documented local knowledge and practices for coping with the high seasonal variability characteristic of the region's hydrology (e.g. 10m change in river levels between dry and flood seasons), and despite 'civil Defense' interventions by various levels of government, the more extreme years seem to have exceeded the coping capacity of the community. In this paper, we explore whether there is a real increase in variability, whether the community perceives that recent extreme events are outside the experience which shapes their responses to 'normal' levels of variability, and what science-based policy could contribute to greater local resilience. Hydrological analyses suggest that variability is indeed increasing, in line with expectations from future climate change. However, current measures of hydrological regimes do not predict years with social hardship very well. Interviewees in two regions are able to express their strategies for dealing with 'normal' variability very well, but also identify ways in which abnormal years exceed their ability to cope. Current Civil Defense arrangements struggle to deliver emergency assistance in a sufficiently timely and locally appropriate fashion. Combining these insights in the context of social-ecological change, we suggest how better integration of science, policy and local knowledge could improve resilience to future trends, and identify some contributions science could make into such an arrangement.
NASA Astrophysics Data System (ADS)
Cooley, D. S.; Castillo, F.; Thibaud, E.
2017-12-01
A 2015 heatwave in Pakistan is blamed for over a thousand deaths. This event consisted of several days of very high temperatures and unusually high humidity for this region. However, none of these days exceeded the threshold for "extreme danger" in terms of the heat index. The heat index is a univariate function of both temperature and humidity which is universally applied at all locations regardless of local climate. Understanding extremes which arise from multiple factors is challenging. In this paper we will present a tool for examining bivariate extreme behavior. The tool, developed in the statistical software R, draws isolines of equal exceedance probability. These isolines can be understood as bivariate "return levels". The tool is based on a dependence framework specific for extremes, is semiparametric, and is able to extrapolate isolines beyond the range of the data. We illustrate this tool using the Pakistan heat wave data and other bivariate data.
NASA Astrophysics Data System (ADS)
Nissen, Katrin; Ulbrich, Uwe
2016-04-01
An event based detection algorithm for extreme precipitation is applied to a multi-model ensemble of regional climate model simulations. The algorithm determines extent, location, duration and severity of extreme precipitation events. We assume that precipitation in excess of the local present-day 10-year return value will potentially exceed the capacity of the drainage systems that protect critical infrastructure elements. This assumption is based on legislation for the design of drainage systems which is in place in many European countries. Thus, events exceeding the local 10-year return value are detected. In this study we distinguish between sub-daily events (3 hourly) with high precipitation intensities and long-duration events (1-3 days) with high precipitation amounts. The climate change simulations investigated here were conducted within the EURO-CORDEX framework and exhibit a horizontal resolution of approximately 12.5 km. The period between 1971-2100 forced with observed and scenario (RCP 8.5 and RCP 4.5) greenhouse gas concentrations was analysed. Examined are changes in event frequency, event duration and size. The simulations show an increase in the number of extreme precipitation events for the future climate period over most of the area, which is strongest in Northern Europe. Strength and statistical significance of the signal increase with increasing greenhouse gas concentrations. This work has been conducted within the EU project RAIN (Risk Analysis of Infrastructure Networks in response to extreme weather).
Impacts of climate extremes on gross primary production under global warming
Williams, I. N.; Torn, M. S.; Riley, W. J.; ...
2014-09-24
The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less
Impacts of climate extremes on gross primary production under global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, I. N.; Torn, M. S.; Riley, W. J.
The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less
The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe
NASA Technical Reports Server (NTRS)
Dwek, Eli
2008-01-01
Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy
DayRec: An Interface for Exploring United States Record-Maximum/Minimum Daily Temperatures
Kaiser, Dale [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-01-01
Like politics, you might say that all climate is local. As researchers seek to help the public better understand climate and climate change, a sensible approach would include helping people know more about changes in their own backyards. High and low temperatures are something that all of us pay attention to each day; when they are extreme (flirting with or setting records) they generate tremendous interest, largely because of the potential for significant impacts on human health, the environment, and built infrastructure. Changes through time in record high and low temperatures (extremes) are also an important manifestation of climate change (Sect. 3.8 in Trenberth et al. 2007; Peterson et al. 2008; Peterson et al. 2012). Meehl et al. (2009) found that currently, about twice as many high temperature records are being set as low temperature records over the conterminous U.S. (lower 48 states) as a whole. As the climate warms further, this ratio is expected to multiply, mainly because when the whole temperature distribution for a location or region shifts, it changes the "tails" of the distribution (in the case of warming this means fewer extreme cold temperatures and more extreme hot temperatures; see Page 2, Figure ES.1 of Karl et al. 2008). The Meehl et al. (2009) findings were covered pretty well by the online media, but, as is the case for all types of scientifc studies, it's safe to say that most of the public are not aware of these basic findings, and they would benefit from additional ways to get climate extremes information for their own areas and assess it. One such way is the National Climatic Data Center's (NCDC) U.S. Records Look-Up page. But how do most people typically hear about their area's high and low temperature records? Likely via the evening news, when their local on-air meteorologist notes the high/low for the day at a nearby airport then gives the years when the all-time high and low for the date were set (perhaps not at that same airport). The year of the record is an interesting bit of information on its own but it doesn't do much to place things in context. What about the local history of record temperatures and how things may be changing? Here we present a daily temperature records data product that we hope will serve the scientist and non-scientist alike in exploring and analyzing high and low temperature records and trends at hundreds of locations across the U.S.
Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall
NASA Astrophysics Data System (ADS)
Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik
2016-02-01
Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.
Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William
2016-01-01
Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.
NASA Astrophysics Data System (ADS)
Abaurrea, J.; Asín, J.; Cebrián, A. C.
2018-02-01
The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.
Okada, Kyoji; Hasegawa, Tadashi; Kawai, Akira; Ogose, Akira; Nishida, Jun; Yanagisawa, Michiro; Morita, Tetsuro; Tajino, Takahiro; Tsuchiya, Takashi
2011-09-01
Dedifferentiated liposarcomas usually occur in the retroperitoneal space and relatively rarely in the extremities. We identified 18 patients with primary dedifferentiated liposarcoma in the extremities from the files of Tohoku Musculoskeletal Tumor Society and analyzed demographics, histologic findings, treatments and prognostic factors. The average follow-up period was 58 months. The subjects were 12 men and 6 women with a mean age of 65 years. All tumors were in the thigh. Nine patients noticed a rapid enlargement of the long-standing tumor. Histologic subtypes of the dedifferentiated area were undifferentiated pleomorphic sarcoma (n = 12), osteosarcoma (n = 2), rhabdomyosarcoma (n = 2), leiomyosarcoma (n = 1) and malignant peripheral nerve sheath tumor (n = 1). In the patient with rhabdomyosarcoma-like dedifferentiated area, extensive necrosis was observed after the preoperative chemotherapy. One patient who underwent marginal excision developed a local recurrence, but inadequate surgical margin was not associated with a risk of local recurrence. Three patients had lung metastasis at initial presentation, and four other patients developed lung metastases during the follow-up period. The overall survival rate was 61.1% at 5 years. On univariate analyses, large size of the dedifferentiated area (>8 cm), high MIB-1-labeling index (>30%) for the dedifferentiated area and lung metastasis at initial presentation were significantly associated with poor prognosis. Primary dedifferentiated liposarcoma in the extremities predominantly occurred in the thigh and a rapid enlargement of long-standing tumors was a characteristic symptom. Although the local behavior of these tumors was less aggressive than that of retroperitoneal dedifferentiated liposarcomas, they had a relatively high metastatic potential.
An Assessment of Direct and Indirect Economic Losses of Climatic Extreme Events
NASA Astrophysics Data System (ADS)
Otto, C.; Willner, S. N.; Wenz, L.; Levermann, A.
2015-12-01
Risk of extreme weather events like storms, heat extremes, and floods has already risen due to anthropogenic climate change and is likely to increase further under future global warming. Additionally, the structure of the global economy has changed importantly in the last decades. In the process of globalization, local economies have become more and more interwoven forming a complex network. Together with a trend towards lean production, this has resulted in a strong dependency of local manufacturers on global supply and value added chains, which may render the economic network more vulnerable to climatic extremes; outages of local manufacturers trigger indirect losses, which spread along supply chains and can even outstrip direct losses. Accordingly, in a comprehensive climate risk assessment these inter-linkages should be considered. Here, we present acclimate, an agent based dynamic damage propagation model. Its agents are production and consumption sites, which are interlinked by economic flows accounting for the complexity as well as the heterogeneity of the global supply network. Assessing the economic response on the timescale of the adverse event, the model permits to study temporal and spatial evolution of indirect production losses during the disaster and in the subsequent recovery phase of the economy. In this study, we focus on the dynamic economic resilience defined here as the ratio of direct to total losses. This implies that the resilience of the system under consideration is low if the high indirect losses are high. We find and assess a nonlinear dependence of the resilience on the disaster size. Further, we analyze the influence of the network structure upon resilience and discuss the potential of warehousing as an adaptation option.
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
Prognostic Factors and Expression of MDM2 in Patients with Primary Extremity Liposarcoma
Júnior, Rosalvo Zósimo Bispo; de Camargo, Olavo Pires; de Oliveira, Cláudia Regina G. C. M.; Filippi, Renée Zon; Baptista, André Mathias; Caiero, Marcelo Tadeu
2008-01-01
OBJECTIVE The objective of this study was to investigate MDM2 (murine double minute 2) protein expression and evaluate its relationship with some anatomical and pathological aspects, aiming also to identify prognostic factors concerning local recurrence-free survival, metastasis-free survival and overall survival in patients with primary liposarcomas of the extremities. MATERIALS AND METHODS Of 50 patients with primary liposarcomas of the extremities admitted to a Reference Service, between 1968 and 2004, 25 were enrolled in the study, following eligibility and exclusion criteria. RESULTS The adverse factors that influenced the risk for local recurrence in the univariant analysis included male sex (P = 0.023), pleomorphic histological subtype (P = 0.027), and high histological grade (P = 0.007). Concerning metastasis-free survival, age less than 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003) had a worse prognosis. Adverse factors for overall survival were age under 50 years (P = 0.040), male sex (P = 0.040), pleomorphic subtype (P < 0.001), and high histological grade (P = 0.003). CONCLUSIONS There was no correlation between immunohistochemically observed MDM2 protein expressions and the anatomical and pathological variables studied. The immunohistochemical expression of MDM2 protein was not considered to have a prognostic value for any of the surviving patients in this study (local recurrence-free survival, metastasis-free survival, or overall survival). The immunoexpression of MDM2 protein was a frequent event in the different subtypes of liposarcomas. PMID:18438568
Method to determine thermal profiles of nanoscale circuitry
Zettl, Alexander K; Begtrup, Gavi E
2013-04-30
A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.
The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsyu, Tiffany; Prochaska, J. Xavier; Bolte, Michael
We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O iii] λ 4363 Å emissionmore » line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way–like galaxy.« less
The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe
NASA Astrophysics Data System (ADS)
Hsyu, Tiffany; Cooke, Ryan J.; Prochaska, J. Xavier; Bolte, Michael
2017-08-01
We report the discovery of the Little Cub, an extremely metal-poor star-forming galaxy in the local universe, found in the constellation Ursa Major (a.k.a. the Great Bear). We first identified the Little Cub as a candidate metal-poor galaxy based on its Sloan Digital Sky Survey photometric colors, combined with spectroscopy using the Kast spectrograph on the Shane 3 m telescope at Lick Observatory. In this Letter, we present high-quality spectroscopic data taken with the Low Resolution Imaging Spectrometer at Keck Observatory, which confirm the extremely metal-poor nature of this galaxy. Based on the weak [O III] λ4363 Å emission line, we estimate a direct oxygen abundance of 12 + log(O/H) = 7.13 ± 0.08, making the Little Cub one of the lowest-metallicity star-forming galaxies currently known in the local universe. The Little Cub appears to be a companion of the spiral galaxy NGC 3359 and shows evidence of gas stripping. We may therefore be witnessing the quenching of a near-pristine galaxy as it makes its first passage about a Milky Way-like galaxy.
Impacts of extreme events of drought and flood on local communities of Amazon basin
NASA Astrophysics Data System (ADS)
Borma, L. D.; Roballo, S.; Zauner, M.; Nascimento, V. F.
2013-05-01
The analysis of drought events of 1997/98, 2005 and 2010 in terms of discharge anomalies in the Amazon region confirmed previous findings, such as: a) the influence of the El Niño in more than one hydrological year; b) the increase of the influence of the Atlantic Multidecadal Oscillation of 1998, 2005 and 2010 drought events; c) the low levels of discharge observed in the 2010 drought are attributed to the association of discharge anomalies of the northern and southern tributaries of the Amazon river, and d) the 2010 drought lasted around 1 month (August to November) more than the other drought events analized here. The riverine communities located along the river banks of Solimões/Amazonas suit their economic activities to the oscillation of the water level. In general, low water periods favor the access to important sources of food such as fish and livestock, still allowing crop cultivation on fertile agricultural areas of the floodplain. Conversely, periods of drought increases the difficulties of transport and drinking water supply. During the high water, access to the main food supply (described above) are greatly hampered. However, the floods are recognized as an importance process of natural fertilization. Thus, despite the political, social and economic shortcomings, the local community has, since the pre-colonial period, learned to get the best of each season, providing local, regional and national markets with varzea products. During periods of extreme weather, however, the advantages of each season appear to be reduced, and the drawbacks increased. In fact, during flooding extremes, the access to primary sources of food is hampered by a long period of time and families find themselves forced to leave their homes, eventually losing them. Analysis of flow data to the extreme flooding of 2009, indicate a period of about 6 months of positive anomalies discharge (occurring mainly during high water). At the same time, Civil Defense data points to a contingent of about 50% of rural homeless during this event. On the ther side, during the extreme droughts, crops and cattle are likely to perish due to drought. The prolonged dry season threatens local ichthyofauna, promoting an increase in fish mortality. In 1997/98 and 2005 episodes were recorded about 3 months of negative anomalies of discharge, while in 2010, there were about 4 months of negative anomalies during the low water period. According to the data obtained from the Civil Defense, flood events would be more impactful to the local community than the drought ones. However, the absence of quantitative indicators hinders a more precise analysis of the real impacts of drought and flood events in the region. In fact, during the dry season two aspects of extreme importance need to be better addressed: i) the fact that the population of one of the wettest regions of the planet does not have a good water supply for human being, and ii) what are the impacts of extreme drought on the cycle of reproduction of species of local fish fauna?
Brillouin scattering-induced rogue waves in self-pulsing fiber lasers
Hanzard, Pierre-Henry; Talbi, Mohamed; Mallek, Djouher; Kellou, Abdelhamid; Leblond, Hervé; Sanchez, François; Godin, Thomas; Hideur, Ammar
2017-01-01
We report the experimental observation of extreme instabilities in a self-pulsing fiber laser under the influence of stimulated Brillouin scattering (SBS). Specifically, we observe temporally localized structures with high intensities that can be referred to as rogue events through their statistical behaviour with highly-skewed intensity distributions. The emergence of these SBS-induced rogue waves is attributed to the interplay between laser operation and resonant Stokes orders. As this behaviour is not accounted for by existing models, we also present numerical simulations showing that such instabilities can be observed in chaotic laser operation. This study opens up new possibilities towards harnessing extreme events in highly-dissipative systems through adapted laser cavity configurations. PMID:28374840
Brillouin scattering-induced rogue waves in self-pulsing fiber lasers.
Hanzard, Pierre-Henry; Talbi, Mohamed; Mallek, Djouher; Kellou, Abdelhamid; Leblond, Hervé; Sanchez, François; Godin, Thomas; Hideur, Ammar
2017-04-04
We report the experimental observation of extreme instabilities in a self-pulsing fiber laser under the influence of stimulated Brillouin scattering (SBS). Specifically, we observe temporally localized structures with high intensities that can be referred to as rogue events through their statistical behaviour with highly-skewed intensity distributions. The emergence of these SBS-induced rogue waves is attributed to the interplay between laser operation and resonant Stokes orders. As this behaviour is not accounted for by existing models, we also present numerical simulations showing that such instabilities can be observed in chaotic laser operation. This study opens up new possibilities towards harnessing extreme events in highly-dissipative systems through adapted laser cavity configurations.
Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros
2017-01-01
Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83 μg/m 3 , whereas during LSI it varied from 14 to 67 μg/m 3 . This paper examines the occurrence and nature of extreme PM 10 pollution episodes (EEs) in Greece during a 3-yr period (2009-2011). Fourteen EEs were found of 49 days total duration, classified into two main categories: Local Source Impact (53%) and African Dust Impact (47%). All the above extreme PM 10 air pollution episodes were the result of specific synoptic prevailing conditions. Specific information on the linkages between the synoptic weather patterns and PM 10 concentrations could be used in the development of weather/health-warning system to alert the public that a synoptic episode is imminent.
Nonparametric Regression Subject to a Given Number of Local Extreme Value
2001-07-01
compilation report: ADP013708 thru ADP013761 UNCLASSIFIED Nonparametric regression subject to a given number of local extreme value Ali Majidi and Laurie...locations of the local extremes for the smoothing algorithm. 280 A. Majidi and L. Davies 3 The smoothing problem We make the smoothing problem precise...is the solution of QP3. k--oo 282 A. Majidi and L. Davies FiG. 2. The captions top-left, top-right, bottom-left, bottom-right show the result of the
NASA Astrophysics Data System (ADS)
Platonov, Vladimir S.; Kislov, Alexander V.
2016-11-01
A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.
Defense AT&L Magazine. Volume 43, Number 5. September-October 2014
2014-10-01
Air Warfare Center Weapons Atlas V launches third Advanced Extremely High Frequency Satellite for the U.S. Air Force in September 2013. United...nanoparticles have been extensively studied for their unique optical properties which arise from localized surface plasmon resonance (LSPR). This... resonance results in a very strong attenuation of light in the visible and near-infrared regions due to the strong enhancement of the local electric
NASA Astrophysics Data System (ADS)
Cox, D. T.; Wang, H.; Cramer, L.; Mostafizi, A.; Park, H.
2016-12-01
A 2015 heatwave in Pakistan is blamed for over a thousand deaths. This event consisted of several days of very high temperatures and unusually high humidity for this region. However, none of these days exceeded the threshold for "extreme danger" in terms of the heat index. The heat index is a univariate function of both temperature and humidity which is universally applied at all locations regardless of local climate. Understanding extremes which arise from multiple factors is challenging. In this paper we will present a tool for examining bivariate extreme behavior. The tool, developed in the statistical software R, draws isolines of equal exceedance probability. These isolines can be understood as bivariate "return levels". The tool is based on a dependence framework specific for extremes, is semiparametric, and is able to extrapolate isolines beyond the range of the data. We illustrate this tool using the Pakistan heat wave data and other bivariate data.
TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments
NASA Technical Reports Server (NTRS)
Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.
2016-01-01
"Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment
Buckley, Lauren B; Huey, Raymond B
2016-12-01
Extreme temperatures can injure or kill organisms and can drive evolutionary patterns. Many indices of extremes have been proposed, but few attempts have been made to establish geographic patterns of extremes and to evaluate whether they align with geographic patterns in biological vulnerability and diversity. To examine these issues, we adopt the CLIMDEX indices of thermal extremes. We compute scores for each index on a geographic grid during a baseline period (1961-1990) and separately for the recent period (1991-2010). Heat extremes (temperatures above the 90th percentile during the baseline period) have become substantially more common during the recent period, particularly in the tropics. Importantly, the various indices show weak geographic concordance, implying that organisms in different regions will face different forms of thermal stress. The magnitude of recent shifts in indices is largely uncorrelated with baseline scores in those indices, suggesting that organisms are likely to face novel thermal stresses. Organismal tolerances correlate roughly with absolute metrics (mainly for cold), but poorly with metrics defined relative to local conditions. Regions with high extreme scores do not correlate closely with regions with high species diversity, human population density, or agricultural production. Even though frequency and intensity of extreme temperature events have - and are likely to have - major impacts on organisms, the impacts are likely to be geographically and taxonomically idiosyncratic and difficult to predict. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Micu, Dana; Balteanu, Dan; Sima, Mihaela; Dumitrascu, Monica; Chendes, Viorel; Grigorescu, Ines; Dragota, Carmen; Dogaru, Diana; Costache, Andra
2015-04-01
The study aims to identify local communities perception and awareness in terms of hydro-meteorological extreme events in order to better understand the local context of vulnerability and communities resilience to flash floods as well as the mitigation measures undertaken by local authorities to cope with these phenomena. The study-area is located in the Bend Subcarpathians, Romania, a region well known for high tectonic mobility and dynamics of hydro-geomorphic processes (e.g. floods and flash floods, landslides). The study was conducted in the framework of VULMIN project (PN-II-PT-PCCA-2011-3.1-1587), funded by the Ministry of National Education for the period 2012-2016 (http://www.igar-vulmin.ro). The previous analyses conducted in the project showed a high exposure to flash floods of small river catchments (generally below 200 km2 ) located in the study-area (Teleajen-Buzau hydrographic area). Some of the most recent events (2005, 2008, 2010 and 2014) had a high impact on local communities in terms of important losses to their assets and psychological effects. Thus, in the summer 2014, a questionnaire-based survey was addressed to over 50 households (from 5 villages), significantly affected by flash floods and structured interviews were held with local authorities (local municipalities, county Civil Protection Inspectorates). The questionnaire was focused on the perception of human vulnerability to environmental change and extreme events, mainly floods, aiming to outline the personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding. The flash flood events are of major concern for local community, due to their high return period (1-5 years) and magnitude in the recent years. This influences also the population response and adaptive capacity to these events, which is limited to individual measures (e.g. buildings consolidations and relocations). The survey showed a discrepancy between the people's perception on the local authorities reaction during and post-event and the local authorities' perception on their response and preparedness measures. It was noticed a high interest of local authorities to access scientific data (flash flood hazard and risk maps, climate change projections) to support the development of adequate mitigation measures. However, the lack of funds is still limiting their implementation as well as the development of a long-term strategy.
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Kil-Byoung; Bellan, Paul M.
2013-12-15
An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.
NASA Astrophysics Data System (ADS)
McCarthy, M.; Kenneston, A.; Wall, T. U.; Brown, T. J.; Redmond, K. T.
2014-12-01
Effective climate resiliency planning at the regional level requires extensive interactive dialogue among climate scientists, emergency managers, public health officials, urban planners, social scientists, and policy makers. Engaging federal, tribal, state, local governments and private sector business and infrastructure owners/operators in defining, assessing and characterizing the impacts of extreme events allows communities to understand how different events "break the system" forcing local communities to seek support and resources from state/federal governments and/or the private sector and what actions can be taken proactively to mitigate consequences and accelerate recovery. The Washoe County Regional Resiliency Study was prepared in response to potential climate variability related impacts specific to the Northern Nevada Region. The last several decades have seen dramatic growth in the region, coupled with increased resource demands that have forced local governments to consider how those impacts will affect the region and may, in turn, impact the region's ability to provide essential services. The Western Regional Climate Center of the Desert Research Institute provided a synthesis of climate studies with predictions regarding plausible changes in the local climate of Northern California and Nevada for the next 50 years. In general, these predictions indicate that the region's climate is undergoing a gradual shift, which will primarily affect the frequency, amount, and form of precipitation in the Sierra Nevada and Great Basin. Changes in water availability and other extreme events may have serious and long lasting effects in the Northern Nevada Region, and create a variety of social, environmental and economic concerns. A range of extreme events were considered including Adverse Air Quality, Droughts, Floods, Heat Waves, High Wind, Structure Fires, Wildland Fires, and Major Winter Storms. Due to the complexity of our climate systems, and the difficulty in specifying how severe the climate effects may be or how those impacts compound existing hazards in the system, the Resiliency Study focused on identifying a variety of 'no regrets' policy options that can help the local communities anticipate, respond and recover faster and more efficiently to climate extremes.
Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, C.
2017-12-01
Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.
NASA Astrophysics Data System (ADS)
Bedsworth, L. W.; Ekstrom, J.
2017-12-01
As the climate continues to shift, projections show amplified and more frequent extreme events, including coastal and inland flooding, wildfires, prolonged droughts, and heatwaves. Vital public goods, both air quality and water quality, can be critically affected by such extreme events. Climate change will make it increasingly difficult for managers to achieve public health targets for air and water quality. Successfully preparing governance structures developed to maintain and improve air and water quality may benefit from preventative strategies to avoid public health impacts and costs of climate change locally. Perceptions of climate change and its risks, actions taken so far, and perceived barriers to adaptation give insight into the needs of managers for preparing for climate change impacts. This paper compares results of two surveys that looked at local level management of air quality and water quality in California. Air quality managers consistently reported to recognize the risks of climate change on their sector, where water quality managers' perceptions varied between no concern to high concern. We explore the differences in governance, capacity influence the ill-defined responsibility and assumed roles of water and air districts in adaptation to extreme events increasing with climate change. The chain and network of managing air quality is compared with that of water quality - laying out similarities and differences. Then we compare how the survey respondents differed in terms of extreme weather-influenced threats to environmental quality. We end with a discussion of responsibility - where in the chain of managing these life-critical ecosystem services, is the need greatest for adapting to climate change and what does this mean for the other levels in the chain beyond the local management.
NASA Astrophysics Data System (ADS)
Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.
2012-12-01
Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to extreme localization, and potentially earthquakes in quartz-absent hardened lithologies. Cora Lake shearing represents the culmination of a deformation trend of increasing strength, strain partitioning, and localization within a polydeformed, strengthened lower continental crust.
The role of local heating in the 2015 Indian Heat Wave.
Ghatak, Debjani; Zaitchik, Benjamin; Hain, Christopher; Anderson, Martha
2017-08-09
India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface models, we find that the heat wave included two distinct peaks: one in late May, and a second in early June. During the first peak we find that clear skies led to a positive net radiation anomaly at the surface, but there is no significant sensible heat flux anomaly within the core of the heat wave affected region. By the time of the second peak, however, soil moisture had dropped to anomalously low levels in the core heat wave region, net surface radiation was anomalously high, and a significant positive sensible heat flux anomaly developed. This led to a substantial local forcing on air temperature that contributed to the intensity of the event. The analysis indicates that the highly agricultural landscape of North and Central India can reinforce heat extremes under dry conditions.
Extreme pressure differences at 0900 NZST and winds across New Zealand
NASA Astrophysics Data System (ADS)
Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita
2005-07-01
Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.
Mummichogs (Fundulus heteroclitus) indigenous to an urban estuarine Superfund site in New Bedford Harbor (NBH, MA, USA) contain extremely high concentrations of the local contaminants, polychlorinated biphenyls (PCBs). These fish populations apparently persist due to an inherited...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sailing Series Boston; Boston Harbor; Boston, MA. 100.T01-0103 Section 100.T01-0103 Navigation and... NAVIGABLE WATERS § 100.T01-0103 Special Local Regulation; Extreme Sailing Series Boston; Boston Harbor... special local regulation area is designed to restrict vessel traffic, including all non-motorized vessels...
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
Public Perception of Extreme Cold Weather-Related Health Risk in a Cold Area of Northeast China.
Ban, Jie; Lan, Li; Yang, Chao; Wang, Jian; Chen, Chen; Huang, Ganlin; Li, Tiantian
2017-08-01
A need exists for public health strategies regarding extreme weather disasters, which in recent years have become more frequent. This study aimed to understand the public's perception of extreme cold and its related health risks, which may provide detailed information for public health preparedness during an extreme cold weather event. To evaluate public perceptions of cold-related health risk and to identify vulnerable groups, we collected responses from 891 participants in a face-to-face survey in Harbin, China. Public perception was measured by calculating the score for each perception question. Locals perceived that extreme cold weather and related health risks were serious, but thought they could not avoid these risks. The significant difference in perceived acceptance level between age groups suggested that the elderly are a "high health risk, low risk perception" group, meaning that they are relatively more vulnerable owing to their high susceptibility and low awareness of the health risks associated with extreme cold weather. The elderly should be a priority in risk communication and health protective interventions. This study demonstrated that introducing risk perception into the public health field can identify vulnerable groups with greater needs, which may improve the decision-making of public health intervention strategies. (Disaster Med Public Health Preparedness. 2017;11:417-421).
NASA Technical Reports Server (NTRS)
Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.
1993-01-01
During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.
Functional genomics of physiological plasticity and local adaptation in killifish.
Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish
Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107
Reply to Stone Et Al.: Human-Made Role in Local Temperature Extremes
NASA Technical Reports Server (NTRS)
Hansen, James; Sato, Makiko; Ruedy, Reto A.
2013-01-01
Stone et al. find that their analysis is unable to show a causal relation of local temperature anomalies, such as in Texas in 2011, with global warming. It was because of limitations in such local analyses that we reframed the problem in our report, separating the task of attribution of the causes of global warming from the task of quantifying changes in the likelihood of extreme local temperature anomalies.
Future changes in precipitation patterns and extremes: a model-based approach
NASA Astrophysics Data System (ADS)
Mitsakis, Evangelos; Stamos, Iraklis; Anastassiadou, Kalliopi; Kammerer, Harald; Kaundinya, Ingo; Kohl, Bernhard; Kapsomenakis, John; Zerefos, Christos; Aifadopoulou, Georfia
2016-04-01
In recent decades, the Earth has experienced abrupt climate changes, including changes of mean precipitation heights as well as precipitation extremes. It is very likely that the abrupt climate changes which are result of the increase of the greenhouse gases (GHG) concentration (IPCC 2007) will continue with an accelerate magnitude in the coming decades. The modern tool used to project the future climate change is General Circulation Models (GCMs). Due to computational resources limitations, the horizontal resolution of present day GCMs is quite low, usually in the order of hundreds of kilometers. In such a crude resolution many local aspects of the climate are unable to be represented. In addition, the topographical input is equally crude, thus excluding important local features of the topographic forcing. For these reasons downscaling methods have been developed, which input the GCM results producing high resolution localized climate information. Dynamical downscaling is achieved using Regional Climate Models (RCMs) that increase the resolution of the GCMs to even less than 10 km. In that direction, future changes in the mean precipitation as well as precipitation extremes due to the anthropogenic climate change over the area of Greece are examined for various emission scenarios in the framework of this paper (e.g. RCP 8.5, SRES A1B, etc.). Regarding Greece, future changes are based on daily precipitation data from 18 Region Climate Models simulations (6 for RCP 8.5 and 12 for SRES A1B). The changes in precipitation extremes are defined by calculating the changes of nine extreme precipitation indices which are divided in three categories: percentile (R75p, R95p, R99p), absolute threshold (Rmax, R10, R20, R50, RX5day) and duration (CDD) indices, as defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). Taking into account all the results that are discussed explicitly in the following sections we conclude that the mean precipitation as well as the number of moderate rainy days is projected to decrease over Greece especially in the end of 21th century. Nevertheless the frequency as well as the strength of individual extremely high precipitation events will be increased over the largest part of Greece.
Kito, Munehisa; Yoshimura, Yasuo; Isobe, Ken'ichi; Aoki, Kaoru; Suzuki, Shuichiro; Tanaka, Atsushi; Okamoto, Masanori; Sano, Kenji; Kato, Hiroyuki
2016-09-01
Wide resection is the generally recommended surgical treatment for dedifferentiated liposarcoma (DDLPS) in the extremities. However, it may be appropriate to distinguish the surgical margin of low-grade atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDLPS) area from the high-grade dedifferentiated area, because the low- and high-grade areas can be clearly separated, both radiologically and histologically. This study re-evaluated the details of surgical margin of DDLPS in the extremities, and aimed to investigate the optimal surgical margin and the usefulness of adjuvant therapy for DDLPS in the extremities. Seven patients diagnosed with DDLPS in the extremities and treated between 1995 and 2013 were analyzed. The use of adjuvant therapy before and after surgery was assessed, and the surgical margins for the ALT/WDLPS and dedifferentiated areas were re-evaluated by using the specimens resected at surgery. Subsequently, the recurrence rates, metastatic rates, and oncological outcomes were examined. Four and three patients had wide (adequate wide margin, n = 3; inadequate wide margin, n = 1) and marginal margins for the dedifferentiated area, respectively, while three and four patients had wide (adequate wide margin, n = 2; inadequate wide margin, n = 1) and marginal margins for the ALT/WDLPS area, respectively. Postoperative radiotherapy was performed in three patients with an inadequate wide margin or a marginal margin for the dedifferentiated area. No patient had local recurrence. Distant metastases occurred in two patients. These patients died of their disease. The other five patients were disease-free. The ALT/WDLPS and dedifferentiated areas in the tumor margin may be better to be considered separately in determining the appropriate resection extent for DDLPS in the extremities. Postoperative radiotherapy may provide good local control for cases with a narrow surgical margin. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Status of Pituophis ruthveni (Louisiana pine snake)
D. Craig Rudolph; Shirley J. Burgdorf; Richard R. Schaefer; Richard N. Conner; Ricky W. Maxey
2006-01-01
Extensive trapping surveys across the historical range of Pituophis ruthveni (Louisiana Pine Snake) suggest that extant populations are extremely small and limited to remnant patches of suitable habitat in a highly fragmented landscape. Evaluation of habitat at all known historical localities of P. ruthveni documents the widespread...
Hierarchical extreme learning machine based reinforcement learning for goal localization
NASA Astrophysics Data System (ADS)
AlDahoul, Nouar; Zaw Htike, Zaw; Akmeliawati, Rini
2017-03-01
The objective of goal localization is to find the location of goals in noisy environments. Simple actions are performed to move the agent towards the goal. The goal detector should be capable of minimizing the error between the predicted locations and the true ones. Few regions need to be processed by the agent to reduce the computational effort and increase the speed of convergence. In this paper, reinforcement learning (RL) method was utilized to find optimal series of actions to localize the goal region. The visual data, a set of images, is high dimensional unstructured data and needs to be represented efficiently to get a robust detector. Different deep Reinforcement models have already been used to localize a goal but most of them take long time to learn the model. This long learning time results from the weights fine tuning stage that is applied iteratively to find an accurate model. Hierarchical Extreme Learning Machine (H-ELM) was used as a fast deep model that doesn’t fine tune the weights. In other words, hidden weights are generated randomly and output weights are calculated analytically. H-ELM algorithm was used in this work to find good features for effective representation. This paper proposes a combination of Hierarchical Extreme learning machine and Reinforcement learning to find an optimal policy directly from visual input. This combination outperforms other methods in terms of accuracy and learning speed. The simulations and results were analysed by using MATLAB.
Implementing extreme weather event advice and guidance in English public health systems.
Wistow, Jonathan; Curtis, Sarah; Bone, Angie
2017-09-01
Extreme weather events (EWEs) can significantly impact on mortality and morbidity in the UK. How EWE guidance is disseminated and applied across health and social care systems, at the local, operational level, is not well understood. This exploratory study develops tools and resources to assist local stakeholders to cascade national 'all weather' EWE guidance across local systems. These resources are also used to evaluate the local interpretation and implementation of this advice and guidance within three local authority areas. In total, five discussion group meetings were held and 45 practitioners took part in the study. A thematic analysis was conducted. The main themes emerging from the analysis related to awareness of PHE guidance for EWE preparedness, data sharing feasibility, community engagement, specific conditions in remote rural areas and capacity of frontline staff. The relative difficulty in finding where the study 'best fits' on local stakeholders' agendas suggests that year-round and preparedness planning for EWEs may not have been considered a high priority in participating areas. This study adds to the relatively limited evidence internationally concerning the practical implementation at local level of national adaptation advice and guidance and potential barriers to achieving this. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
The Extreme Universe Space Observatory
NASA Technical Reports Server (NTRS)
Adams, Jim; Six, N. Frank (Technical Monitor)
2002-01-01
This talk will describe the Extreme Universe Space Observatory (EUSO) mission. EUSO is an ESA mission to explore the most powerful energy sources in the universe. The mission objectives of EUSO are to investigate EECRs, those with energies above 3x10(exp 19) eV, and very high-energy cosmic neutrinos. These objectives are directly related to extreme conditions in the physical world and possibly involve the early history of the big bang and the framework of GUTs. EUSO tackles the basic problem posed by the existence of these extreme-energy events. The solution could have a unique impact on fundamental physics, cosmology, and/or astrophysics. At these energies, magnetic deflection is thought to be so small that the EECR component would serve as the particle channel for astronomy. EUSO will make the first measurements of EAS from space by observing atmospheric fluorescence in the Earth's night sky. With measurements of the airshower track, EUSO will determine the energy and arrival direction of these extreme-energy events. EUSO will make high statistics observations of CRs beyond the predicted GZK cutoff energy and widen the channel for high-energy neutrino astronomy. The energy spectra, arrival directions, and shower profiles will be analyzed to distinguish the nature of these events and search for their sources. With EUSO data, we will have the possibility to discover a local EECR source, test Z-burst scenarios and other theories, and look for evidence of the breakdown of the relativity principle at extreme Lorentz factors.
NASA Astrophysics Data System (ADS)
Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.
2017-05-01
The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected and present-day climate extremes are affected to a lesser extent by the applied constraint, i.e. projected changes are reduced locally by around 0.5 to 1 °C - but this remains a local effect in regions that are highly sensitive to land-atmosphere coupling. In summary, our approach offers a physically consistent, diagnostic-based avenue to evaluate multi-model ensembles and subsequently reduce model biases in simulated and projected extreme temperatures.
Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News
NASA Astrophysics Data System (ADS)
Woods, M.; Cullen, H. M.
2015-12-01
Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.
Extreme Events in Urban Streams Leading to Extreme Temperatures in Birmingham, UK
NASA Astrophysics Data System (ADS)
Rangecroft, S.; Croghan, D.; Van Loon, A.; Sadler, J. P.; Hannah, D. M.
2016-12-01
Extreme flows and high water temperature events act as critical stressors on the ecological health of rivers. Urban headwater streams are considered particularly vulnerable to the effects of these extreme events. Despite this, such catchments remain poorly characterised and the effect of differences in land use is rarely quantified, especially in relation to water temperature. Thus a key research gap has emerged in understanding the patterns of water temperature during extreme events within contrasting urban, headwater catchments. We studied the headwaters of two bordering urban catchments of contrasting land use within Birmingham, UK. To characterise response to extreme events, precipitation and flow were analysed for the period of 1970-2016. To analyse the effects of extreme events on water temperature, 10 temperature loggers recording at 15 minute intervals were placed within each catchment covering a range of land use for the period May 2016 - present. During peak over threshold flood events higher average peaks were observed in the less urbanised catchment; however highest maximum flow peaks took place in the more densely urbanised catchment. Very similar average drought durations were observed between the two catchments with average flow drought durations of 27 days in the most urbanised catchment, and 29 in the less urbanised catchment. Flashier water temperature regimes were observed within the more urbanised catchment and increases of up to 5 degrees were apparent within 30 minutes during certain storms at the most upstream sites. Only in the most extreme events did the more densely urban stream appear more susceptible to both extreme high flows and extreme water temperature events, possibly resultant from overland flow emerging as the dominant flow pathway during intense precipitation events. Water temperature surges tended to be highly spatially variable indicating the importance of local land use. During smaller events, water temperature was less changeable and spatially variable, suggesting that overland flow may not the dominant flow pathway in such events. During drought events, the effect of catchment land use on water temperature was less apparent.
The influence of tree stands and a noise barrier on near-roadway air quality
Prediction of air pollution exposure levels of people living near or commuting on roadways is still very problematic due to the highly localized nature of traffic intensity, fleet composition, and extremely complex air flow patterns in urban areas. Both modelling and field studie...
Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity
Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...
Ultrasound-guided supraclavicular block: outcome of 510 consecutive cases.
Perlas, Anahi; Lobo, Giovanni; Lo, Nick; Brull, Richard; Chan, Vincent W S; Karkhanis, Reena
2009-01-01
Supraclavicular brachial plexus block provides consistently effective anesthesia to the upper extremity. However, traditional nerve localization techniques may be associated with a high risk of pneumothorax. In the present study, we report block success and clinical outcome data from 510 consecutive patients who received an ultrasound-guided supraclavicular block for upper extremity surgery. After institutional review board approval, the outcome of 510 consecutive patients who received an ultrasound-guided supraclavicular block for upper extremity surgery was reviewed. Real-time ultrasound guidance was used with a high-frequency linear probe. The neurovascular structures were imaged on short axis, and the needle was inserted using an in-plane technique with either a medial-to-lateral or lateral-to-medial orientation. Five hundred ten ultrasound-guided supraclavicular blocks were performed (50 inpatients, 460 outpatients) by 47 different operators at different levels of training over a 24-month period. Successful surgical anesthesia was achieved in 94.6% of patients after a single attempt; 2.8% required local anesthetic supplementation of a single peripheral nerve territory; and 2.6% received an unplanned general anesthetic. No cases of clinically symptomatic pneumothorax developed. Complications included symptomatic hemidiaphragmatic paresis (1%), Horner syndrome (1%), unintended vascular punctures (0.4%), and transient sensory deficits (0.4%). Ultrasound-guided supraclavicular block is associated with a high rate of successful surgical anesthesia and a low rate of complications and thus may be a safe alternative for both inpatients and outpatients. Severe underlying respiratory disease and coagulopathy should remain a contraindication for this brachial plexus approach.
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2018-06-01
Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.
Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)
NASA Astrophysics Data System (ADS)
Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.
2016-04-01
Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.
2006-07-01
related to patient demographics and characteristics, treatment dosimetry (including a means for quality assurance evaluation), and capture of follow-up... dosimetry commonly includes a 10-30 percent higher central dose within the target. While wedges and other methods of modulation (including IMRT) may be...untoward toxicity owing to the extremely localized high dose dosimetry . 1.4 Who Would Benefit from this Treatment? As noted above, there are several
Low-Cost Deposition Methods for Transparent Thin-Film Transistors
2003-09-26
theoretical limit is estimated to be ∼10 cm2/V s. [9] The largest organic TFT mobility reported is 2.7 cm2/V s for pentacene which is approaching the...refractory materials require the use of an electron beam. A directed electron beam is capable of locally heating source material to extremely high...Haboeck, M. Stassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffman, and C. Thomsen, “Nitrogen-related local vibrational modes in ZnO:N,” Appl. Phys
Effect of regional slopes on local structure and exploration of tilted paleo-highs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazarov, D.A.; Chernobrov, B.S.
1986-06-01
Prospects for discovering local highs in old petroleum-producing regions have by now been substantially exhausted. Hence it is of great importance at this stage to seek non-anticlinal accumulations of hydrocarbons, including those in traps genetically associated with tilted paleo-highs, often represented in the modern structural plan by structural noses and terraces. Appropriate exploration for such types of deposits may soon become important in Ciscaucasia and other old petroleum-producing regions. Consequently, problems of the scientific basis for prospecting paleo-highs tilted in the modern structural plan, and developing procedures both for revealing and also for assessing their expression in the structural planmore » during different stages of geological history, and establishing the time and depth of changes in aspect, will become extremely topical. In order to discover possible local highs and to study their features within the margins of the platformal basins and the platformal edges of the marginal troughs, the authors use the method of removing the effect of the regional slope on the local structural plan. This paper describes this method. 13 references.« less
NASA Astrophysics Data System (ADS)
Mehmood, S.; Ashfaq, M.; Evans, K. J.; Black, R. X.; Hsu, H. H.
2017-12-01
Extreme precipitation during summer season has shown an increasing trend across South Asia in recent decades, causing an exponential increase in weather related losses. Here we combine a cluster analyses technique (Agglomerative Hierarchical Clustering) with a Lagrangian based moisture analyses technique to investigate potential commonalities in the characteristics of the large scale meteorological patterns (LSMP) and moisture anomalies associated with the observed extreme precipitation events, and their representation in the Department of Energy model ACME. Using precipitation observations from the Indian Meteorological Department (IMD) and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE), and atmospheric variables from Era-Interim Reanalysis, we first identify LSMP both in upper and lower troposphere that are responsible for wide spread precipitation extreme events during 1980-2015 period. For each of the selected extreme event, we perform moisture source analyses to identify major evaporative sources that sustain anomalous moisture supply during the course of the event, with a particular focus on local terrestrial moisture recycling. Further, we perform similar analyses on two sets of five-member ensemble of ACME model (1-degree and ¼ degree) to investigate the ability of ACME model in simulating precipitation extremes associated with each of the LSMP patterns and associated anomalous moisture sourcing from each of the terrestrial and oceanic evaporative region. Comparison of low and high-resolution model configurations provides insight about the influence of horizontal grid spacing in the simulation of extreme precipitation and the governing mechanisms.
NASA Technical Reports Server (NTRS)
Naghipour, P.; Pineda, E. J.; Arnold, S.
2014-01-01
Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.
Economic Geology of the Moon: Some Considerations
NASA Technical Reports Server (NTRS)
Gillett, Stephen L.
1992-01-01
Supporting any but the smallest lunar facility will require indigenous resources due to the extremely high cost of bringing material from Earth. The Moon has also attracted interest as a resource base to help support near-Earth space activities, because of the potential lower cost once the necessary infrastructure has been amortized. Obviously, initial lunar products will be high-volume, bulk commodities, as they are the only ones for which the economics of lunar production are conceivably attractive. Certain rarer elements, such as the halogens, C, and H, would also be extremely useful (for propellant, life support, and/or reagents), and indeed local sources of such elements would vastly improve the economics of lunar resource extraction. The economic geology of the Moon is discussed.
Magnetism of europium under extreme pressures
Bi, W.; Lim, J.; Fabbris, G.; ...
2016-05-19
Using synchrotron-based Mossbauer and x-ray emission spectroscopies, we explore the evolution of magnetism in elemental (divalent) europium as it gives way to superconductivity at extreme pressures. Magnetic order in Eu is observed to collapse just above 80 GPa as superconductivity emerges, even though Eu cations retain their strong local 4f(7) magnetic moments up to 119 GPa with no evidence for an increase in valence. We speculate that superconductivity in Eu may be unconventional and have its origin in magnetic fluctuations, as has been suggested for high-T-c cuprates, heavy fermions, and iron-pnictides.
High Energy Interactions in Massive Binaries: An Application to a Most Mysterious Binary
NASA Technical Reports Server (NTRS)
Corcoran, Michael
2013-01-01
Extremely massive stars (50M and above) are exceedingly rare in the local Universe but are believed to have composed the entire first generation of stars, which lived fast, died young and left behind the first generation of black holes and set the stage for the formation of lower mass stars suitable to support life. There are significant uncertainties about how this happened (and how it still happens), mostly due to our poor knowledge of how stars change mass as they evolve. Extremely massive stars give mass back to the ISM via strong radiatively-driven winds and sometimes through sporadic eruptions of the most massive and brightest stars. Such mass loss plays an important role in the chemical and dynamical evolution of the local interstellar medium prior to the supernova explosion. Below we discuss how high energy thermal (and, in some cases, non-thermal) emission, along with modern simulations in 2 and 3 dimensions, can be used to help determine a physically realistic picture of mass loss in a well-studied, mysterious system.
NASA Astrophysics Data System (ADS)
Goehring, E. C.; Carlsen, W.; Larsen, J.; Simms, E.; Smith, M.
2007-12-01
From Local to EXtreme Environments (FLEXE) is an innovative new project of the GLOBE Program that involves middle and high school students in systematic, facilitated analyses and comparisons of real environmental data. Through FLEXE, students collect and analyze data from various sources, including the multi-year GLOBE database, deep-sea scientific research projects, and direct measurements of the local environment collected by students using GLOBE sampling protocols. Initial FLEXE materials and training have focused on student understanding of energy transfer through components of the Earth system, including a comparison of how local environmental conditions differ from those found at deep-sea hydrothermal vent communities. While the importance of data acquisition, accuracy and replication is emphasized, FLEXE is also uniquely structured to deepen students' understanding of multiple aspects of the process and nature of science, including written communication of results and on-line peer review. Analyses of data are facilitated through structured, web-based interactions and culminating activities with at-sea scientists through an online forum. The project benefits from the involvement of a professional evaluator, and as the model is tested and refined, it may serve as a template for the inclusion of additional "extreme" earth systems. FLEXE is a partnership of the international GLOBE web- based education program and the NSF Ridge 2000 mid-ocean ridge and hydrothermal vent research program, and includes the expertise of the Center for Science and the Schools at Penn State University. International collaborators also include the InterRidge and ChEss international research programs.
Mishchenko, Michael I; Rosenbush, Vera K; Kiselev, Nikolai N
2006-06-20
The totality of new and previous optical observations of a class of high-albedo solar system objects at small phase angles reveals a unique combination of extremely narrow brightness and polarization features centered at exactly the opposition. The specific morphological parameters of these features provide an almost unequivocal evidence that they are caused by the renowned effect of coherent backscattering.
Anderson Localization in Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Kovács, Tamás G.; Pittler, Ferenc
2010-11-01
At low temperature the low end of the QCD Dirac spectrum is well described by chiral random matrix theory. In contrast, at high temperature there is no similar statistical description of the spectrum. We show that at high temperature the lowest part of the spectrum consists of a band of statistically uncorrelated eigenvalues obeying essentially Poisson statistics and the corresponding eigenvectors are extremely localized. Going up in the spectrum the spectral density rapidly increases and the eigenvectors become more and more delocalized. At the same time the spectral statistics gradually crosses over to the bulk statistics expected from the corresponding random matrix ensemble. This phenomenon is reminiscent of Anderson localization in disordered conductors. Our findings are based on staggered Dirac spectra in quenched lattice simulations with the SU(2) gauge group.
Localization of Narrowband Single Photon Emitters in Nanodiamonds.
Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor
2016-03-23
Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.
Gapeev, A B; Mikhaĭlik, E N; Rubanik, A V; Cheremis, N K
2007-01-01
A pronounced anti-inflammatory effect of high peak-power pulsed electromagnetic radiation of extremely high frequency was shown for the first time in a model of zymosan-induced footpad edema in mice. Exposure to radiation of specific parameters (35, 27 GHz, peak power 20 kW, pulse widths 400-600 ns, pulse repetition frequency 5-500 Hz) decreased the exudative edema and local hyperthermia by 20% compared to the control. The kinetics and the magnitude of the anti-inflammatory effect were comparable with those induced by sodium diclofenac at a dose of 3 mg/kg. It was found that the anti-inflammatory effect linearly increased with increasing pulse width at a fixed pulse repetition frequency and had threshold dependence on the average incident power density of the radiation at a fixed pulse width. When animals were whole-body exposed in the far-field zone of radiator, the optimal exposure duration was 20 min. Increasing the average incident power density upon local exposure of the inflamed paw accelerated both the development of the anti-inflammatory effect and the reactivation time. The results obtained will undoubtedly be of great importance in the hygienic standardization of pulsed electromagnetic radiation and in further studies of the mechanisms of its biological action.
Invited Article: Visualisation of extreme value events in optical communications
NASA Astrophysics Data System (ADS)
Derevyanko, Stanislav; Redyuk, Alexey; Vergeles, Sergey; Turitsyn, Sergei
2018-06-01
Fluctuations of a temporal signal propagating along long-haul transoceanic scale fiber links can be visualised in the spatio-temporal domain drawing visual analogy with ocean waves. Substantial overlapping of information symbols or use of multi-frequency signals leads to strong statistical deviations of local peak power from an average signal power level. We consider long-haul optical communication systems from this unusual angle, treating them as physical systems with a huge number of random statistical events, including extreme value fluctuations that potentially might affect the quality of data transmission. We apply the well-established concepts of adaptive wavefront shaping used in imaging through turbid medium to detect the detrimental phase modulated sequences in optical communications that can cause extreme power outages (rare optical waves of ultra-high amplitude) during propagation down the ultra-long fiber line. We illustrate the concept by a theoretical analysis of rare events of high-intensity fluctuations—optical freak waves, taking as an example an increasingly popular optical frequency division multiplexing data format where the problem of high peak to average power ratio is the most acute. We also show how such short living extreme value spikes in the optical data streams are affected by nonlinearity and demonstrate the negative impact of such events on the system performance.
C III] Emission in Star-forming Galaxies Near and Far
NASA Astrophysics Data System (ADS)
Rigby, J. R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Peña-Guerrero, M.
2015-11-01
We measure [C iii] 1907, C iii] 1909 Å emission lines in 11 gravitationally lensed star-forming galaxies at z ˜ 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies. While it is not yet clear what causes some galaxies to be strong C iii] emitters, C iii] emission is not a universal property of distant star-forming galaxies. We also examine C iii] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST and IUE. Twenty percent of these local galaxies show strong C iii] emission, with equivalent widths < -5 Å. Three nearby galaxies show C iii] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C iii] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C iii] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.
C III] Emission in Star-Forming Galaxies Near and Far
NASA Technical Reports Server (NTRS)
Rigby, J, R.; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.; Johnson, T.; Pena-Guerrero, M.
2015-01-01
We measure C III Lambda Lambda 1907, 1909 Angstrom emission lines in eleven gravitationally-lensed star-forming galaxies at zeta at approximately 1.6-3, finding much lower equivalent widths than previously reported for fainter lensed galaxies (Stark et al. 2014). While it is not yet clear what causes some galaxies to be strong C III] emitters, C III] emission is not a universal property of distant star-forming galaxies. We also examine C III] emission in 46 star-forming galaxies in the local universe, using archival spectra from GHRS, FOS, and STIS on HST, and IUE. Twenty percent of these local galaxies show strong C III] emission, with equivalent widths less than -5 Angstrom. Three nearby galaxies show C III] emission equivalent widths as large as the most extreme emitters yet observed in the distant universe; all three are Wolf-Rayet galaxies. At all redshifts, strong C III] emission may pick out low-metallicity galaxies experiencing intense bursts of star formation. Such local C III] emitters may shed light on the conditions of star formation in certain extreme high-redshift galaxies.
Alektiar, Kaled M; Brennan, Murray F; Singer, Samuel
2005-09-01
The ultimate goal of adjuvant radiotherapy (RT) in soft-tissue sarcoma of the extremity is to improve the therapeutic ratio by increasing local control while minimizing morbidity. Most efforts in trying to improve this ratio have focused on the sequencing of RT and surgery, with little attention to the potential influence of the tumor site. The purpose of this study was to determine the influence of tumor site on local control and complications in a group of patients with primary high-grade soft-tissue sarcoma of the extremity treated at a single institution with postoperative RT. Between July 1982 and December 2000, 369 adult patients with primary high-grade soft-tissue sarcoma of the extremity were treated with limb-sparing surgery and postoperative RT. Patients who underwent surgery or RT outside our institution were excluded. The tumor site was the upper extremity (UE) in 103 (28%) and the lower extremity (LE) in 266 (72%). The tumor was < or = 5 cm in 98 patients (27%), and the microscopic margins were positive in 44 (12%). Of the 369 patients, 104 (28%) underwent postoperative external beam RT (EBRT), 233 (63%) postoperative brachytherapy (BRT), and 32 underwent a combination (9%); 325 (88%) received a "conventional" radiation dose, defined as 60-70 Gy for EBRT, 45 Gy for BRT, and 45-50 Gy plus 15-20 Gy for EBRT plus BRT. Complications were assessed in terms of wound complications requiring repeat surgery, fracture, joint stiffness, edema, and Grade 3 or worse peripheral nerve damage. The UE and LE groups were balanced with regard to age, depth, margin status, and type of RT (EBRT vs. BRT +/- EBRT). However, more patients in the UE group had tumors < or = 5 cm and more received a conventional radiation dose (p = 0.01 and P = 0.03, respectively). With a median follow-up of 50 months, the 5-year actuarial rate of local control, distant relapse-free survival, and overall survival for the whole population was 82% (95% confidence interval [CI], 77-86%), 61% (95% CI, 56-66%), and 71% (95% CI, 66-76%), respectively. The 5-year local control rate in patients with UE STS was 70% (95% CI, 60-80%) compared with 86% (95% CI, 81-91%) for LE STS (p = 0.0004). On multivariate analysis, an UE site (p = 0.001; relative risk [RR], 3; 95% CI, 2-5) and positive resection margins (p = 0.02; RR, 2; 95% CI, 1-4) were significant predictors of poor local control. The RT type or radiation dose, age, tumor depth, and size were not significant predictors of local control. The 5-year wound reoperation rate was 1% (95% CI, 0-3) in the UE compared with 11% (95% CI, 7-15) in the LE (p = 0.002). On multivariate analysis, the UE site retained its significance as a predictor of low wound complications (p = 0.001; RR, 0.08; 95% CI, 0.01-0.7). The site did not significantly influence the incidence of fracture (p = 0.7), joint stiffness (p = 0.2), edema (p = 0.5), or Grade 3 or worse peripheral nerve damage (p = 0.3). The UE site is associated with a greater rate of local recurrence compared with the LE. This difference was independent of other variables and could not be accounted for by an imbalance between the two groups. With a lower wound complication rate associated with an UE site, it would be of interest to determine whether preoperative RT and/or intensity-modulated RT can increase the local control in UE sarcomas, thus improving the therapeutic ratio.
O'Neill, Andrea; Erikson, Li; Barnard, Patrick
2017-01-01
While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.
Stigall, Landon E; Brodland, David G; Zitelli, John A
2016-11-01
Evaluation of the entire surgical margin results in high rates of complete excision, low local recurrence rates, and maximal tissue conservation. Although well recognized for melanoma of the head and neck, few studies have focused exclusively on the trunk and proximal extremities. We sought to evaluate the efficacy of Mohs micrographic surgery for melanoma in situ (MIS) of the trunk and proximal extremities, and determine adequate excision margins for MIS when total margin evaluation is not used. Long-term outcomes in 882 cases of MIS treated with Mohs micrographic surgery were analyzed and compared with historical controls. Rates of complete excision were determined for increasing surgical margin intervals. One local recurrence occurred in our cohort (0.1%). Only 83% of MIS were excised with a 6-mm margin. Margins of 9 mm were needed to excise 97% of MIS, statistically equivalent to thin melanomas. We used a nonrandomized, single-institution, retrospective design. Mohs micrographic surgery may cure the 17% of MIS that exceed traditional excision margins of 5 mm and is a valuable option for these patients. Surgical margins of at least 0.9 cm should be considered for MIS of the trunk and extremities when total margin evaluation is not used. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Yeo, Desmond TB; Wang, Zhangwei; Loew, Wolfgang; Vogel, Mika W; Hancu, Ileana
2011-01-01
Purpose To use EM simulations to study the effects of body type, landmark position, and RF body coil type on peak local SAR in 3T MRI. Materials and Methods Numerically computed peak local SAR for four human body models (HBMs) in three landmark positions (head, heart, pelvic) were compared for a high-pass birdcage and a transverse electromagnetic 3T body coil. Local SAR values were normalized to the IEC whole-body average SAR limit of 2.0 W/kg for normal scan mode. Results Local SAR distributions were highly variable. Consistent with previous reports, the peak local SAR values generally occurred in the neck-shoulder area, near rungs, or between tissues of greatly differing electrical properties. The HBM type significantly influenced the peak local SAR, with stockier HBMs, extending extremities towards rungs, displaying the highest SAR. There was also a trend for higher peak SAR in the head-centric and heart-centric positions. The impact of the coil-types studied was not statistically significant. Conclusion The large variability in peak local SAR indicates the need to include more than one HBM or landmark position when evaluating safety of body coils. It is recommended that a HBM with arms near the rungs be included, to create physically realizable high-SAR scenarios. PMID:21509880
Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin
2015-09-01
Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.
NASA Astrophysics Data System (ADS)
Liu, Meixian; Xu, Xianli; Sun, Alex
2015-07-01
Climate extremes can cause devastating damage to human society and ecosystems. Recent studies have drawn many conclusions about trends in climate extremes, but few have focused on quantitative analysis of their spatial variability and underlying mechanisms. By using the techniques of overlapping moving windows, the Mann-Kendall trend test, correlation, and stepwise regression, this study examined the spatial-temporal variation of precipitation extremes and investigated the potential key factors influencing this variation in southwestern (SW) China, a globally important biodiversity hot spot and climate-sensitive region. Results showed that the changing trends of precipitation extremes were not spatially uniform, but the spatial variability of these precipitation extremes decreased from 1959 to 2012. Further analysis found that atmospheric circulations rather than local factors (land cover, topographic conditions, etc.) were the main cause of such precipitation extremes. This study suggests that droughts or floods may become more homogenously widespread throughout SW China. Hence, region-wide assessments and coordination are needed to help mitigate the economic and ecological impacts.
Is climate change modifying precipitation extremes?
NASA Astrophysics Data System (ADS)
Montanari, Alberto; Papalexiou, Simon Michael
2016-04-01
The title of the present contribution is a relevant question that is frequently posed to scientists, technicians and managers of local authorities. Although several research efforts were recently dedicated to rainfall observation, analysis and modelling, the above question remains essentially unanswered. The question comes from the awareness that the frequency of floods and the related socio-economic impacts are increasing in many countries, and climate change is deemed to be the main trigger. Indeed, identifying the real reasons for the observed increase of flood risk is necessary in order to plan effective mitigation and adaptation strategies. While mitigation of climate change is an extremely important issue at the global level, at small spatial scales several other triggers may interact with it, therefore requiring different mitigation strategies. Similarly, the responsibilities of administrators are radically different at local and global scales. This talk aims to provide insights and information to address the question expressed by its title. High resolution and long term rainfall data will be presented, as well as an analysis of the frequency of their extremes and its progress in time. The results will provide pragmatic indications for the sake of better planning flood risk mitigation policies.
NASA Astrophysics Data System (ADS)
Bach, Kiehunn
2017-01-01
Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.
Data informatics for the Detection, Characterization, and Attribution of Climate Extremes
NASA Astrophysics Data System (ADS)
Collins, W.; Wehner, M. F.; O'Brien, T. A.; Paciorek, C. J.; Krishnan, H.; Johnson, J. N.; Prabhat, M.
2015-12-01
The potential for increasing frequency and intensity of extremephenomena including downpours, heat waves, and tropical cyclonesconstitutes one of the primary risks of climate change for society andthe environment. The challenge of characterizing these risks is thatextremes represent the "tails" of distributions of atmosphericphenomena and are, by definition, highly localized and typicallyrelatively transient. Therefore very large volumes of observationaldata and projections of future climate are required to quantify theirproperties in a robust manner. Massive data analytics are required inorder to detect individual extremes, accumulate statistics on theirproperties, quantify how these statistics are changing with time, andattribute the effects of anthropogenic global warming on thesestatistics. We describe examples of the suite of techniques the climate communityis developing to address these analytical challenges. The techniquesinclude massively parallel methods for detecting and trackingatmospheric rivers and cyclones; data-intensive extensions togeneralized extreme value theory to summarize the properties ofextremes; and multi-model ensembles of hindcasts to quantify theattributable risk of anthropogenic influence on individual extremes.We conclude by highlighting examples of these methods developed by ourCASCADE (Calibrated and Systematic Characterization, Attribution, andDetection of Extremes) project.
OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. BOETTCHER; A. PERCUS
2000-08-01
We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.« less
Ultrasonographic identification of the anatomical landmarks that define cervical lymph nodes spaces.
Lenghel, Lavinia Manuela; Baciuţ, Grigore; Botar-Jid, Carolina; Vasilescu, Dan; Bojan, Anca; Dudea, Sorin M
2013-03-01
The localization of cervical lymph nodes is extremely important in practice for the positive and differential diagnosis as well as the staging of cervical lymphadenopathies. Ultrasonography represents the first line imaging method in the diagnosis of cervical lymphadenopathies due to its excellent resolution and high diagnosis accuracy. The present paper aims to illustrate the ultrasonographic identification of the anatomical landmarks used for the definition of cervical lymphatic spaces. The application of standardized views allows a delineation of clear anatomical landmarks and an accurate localization of the cervical lymph nodes.
Davies, Grace I.; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol
2014-01-01
Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia. PMID:25546280
Characterization of extreme precipitation within atmospheric river events over California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, S.; Prabhat,; Byna, S.
Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less
Characterization of extreme precipitation within atmospheric river events over California
Jeon, S.; Prabhat,; Byna, S.; ...
2015-11-17
Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less
Davies, Grace I; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol
2014-12-23
Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.
The waviness of the extratropical jet and daily weather extremes
NASA Astrophysics Data System (ADS)
Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan
2016-04-01
In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.
NASA Astrophysics Data System (ADS)
Vanderlinden, J. P.; Fellmer, M.; Capellini, N.; Meinke, I.; Remvikos, Y.; Bray, D.; Pacteau, C.; Von Storch, H.
2014-12-01
Attribution of extreme weather events has recently generated a lot of interest simultaneously within the general public, the scientific community, and stakeholders affected by meteorological extremes. This interest calls for the need to explore the potential convergence of the current atttribution science with the desire and needs of stakeholders. Such an euiry contributes to the development of climate services aiming at quantifying the human responsibility for particular events. Through interviews with climate scientists, through the analysis of the press coverage of extreme meteorological events, and through stakeholder (private sector, covernment services and local and regional government) focus groups, we analyze how social representations of the concepts associated with extreme event attribution are theorized. From the corpuses generated in the course of this enquiry, we build up a grounded, bottom-up, theorization of extreme weather event attribution. This bottom-up theorization allows for a framing of the potential climate services in a way that is attuned to the needs and expectations of the stakeholders. From apparently simple formulations: "what is an extreme event?", "what makes it extreme?", "what is meant by attribution of extreme weather events?", "what do we want to attribute?", "what is a climate service?", we demonstrate the polysemy of these terms and propose ways to address the challenges associated with the juxtaposition of four highly loaded concepts: extreme - event - attribution - climate services.
Is extreme climate or moderate climate more conducive to longevity in China?
NASA Astrophysics Data System (ADS)
Huang, Yi; Rosenberg, Mark; Wang, Yingli
2018-02-01
Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.
Is extreme climate or moderate climate more conducive to longevity in China?
Huang, Yi; Rosenberg, Mark; Wang, Yingli
2018-06-01
Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.
Is extreme climate or moderate climate more conducive to longevity in China?
NASA Astrophysics Data System (ADS)
Huang, Yi; Rosenberg, Mark; Wang, Yingli
2018-06-01
Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.
Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2010-01-01
Because high-energy gamma rays are produced by powerful sources, the Fermi Gamma-ray Space Telescope provides a window on extreme conditions in the Universe. Some key observations of the constantly changing gamma-ray sky include: (1) Gamma-rays from pulsars appear to come from a region well above the surface of the neutron star; (2) Multiwavelength studies of blazars show that simple models of jet emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can constrain models of quantum gravity; (4) Cosmic-ray electrons at energies approaching 1 TeV suggest a local source for some of these particles.
Scanning in situ Spectroscopy platform for imaging surgical breast tissue specimens
Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2013-01-01
A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1x1cm2 square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the standard knife-edge technique and were found to be within ~8% of the theoretical predictions. Highly localized sampling offered inherent insensitivity to variations in background absorption allowing direct imaging of local scattering parameters, which was validated using a matrix of varying concentrations of Intralipid and blood in phantoms. Four representative, pathologically distinct lumpectomy tissue specimens were imaged, capturing natural variations in tissue scattering response within a given pathology. Variations as high as 60% were observed in the average reflectance and relative scattering power images, which must be taken into account for robust classification performance. Despite this variation, the preliminary data indicates discernible scatter power contrast between the benign vs malignant groups, but reliable discrimination of pathologies within these groups would require investigation into additional contrast mechanisms. PMID:23389199
Observation of Anderson localization in disordered nanophotonic structures
NASA Astrophysics Data System (ADS)
Sheinfux, Hanan Herzig; Lumer, Yaakov; Ankonina, Guy; Genack, Azriel Z.; Bartal, Guy; Segev, Mordechai
2017-06-01
Anderson localization is an interference effect crucial to the understanding of waves in disordered media. However, localization is expected to become negligible when the features of the disordered structure are much smaller than the wavelength. Here we experimentally demonstrate the localization of light in a disordered dielectric multilayer with an average layer thickness of 15 nanometers, deep into the subwavelength regime. We observe strong disorder-induced reflections that show that the interplay of localization and evanescence can lead to a substantial decrease in transmission, or the opposite feature of enhanced transmission. This deep-subwavelength Anderson localization exhibits extreme sensitivity: Varying the thickness of a single layer by 2 nanometers changes the reflection appreciably. This sensitivity, approaching the atomic scale, holds the promise of extreme subwavelength sensing.
Musculoskeletal MRI findings of juvenile localized scleroderma.
Eutsler, Eric P; Horton, Daniel B; Epelman, Monica; Finkel, Terri; Averill, Lauren W
2017-04-01
Juvenile localized scleroderma comprises a group of autoimmune conditions often characterized clinically by an area of skin hardening. In addition to superficial changes in the skin and subcutaneous tissues, juvenile localized scleroderma may involve the deep soft tissues, bones and joints, possibly resulting in functional impairment and pain in addition to cosmetic changes. There is literature documenting the spectrum of findings for deep involvement of localized scleroderma (fascia, muscles, tendons, bones and joints) in adults, but there is limited literature for the condition in children. We aimed to document the spectrum of musculoskeletal magnetic resonance imaging (MRI) findings of both superficial and deep juvenile localized scleroderma involvement in children and to evaluate the utility of various MRI sequences for detecting those findings. Two radiologists retrospectively evaluated 20 MRI studies of the extremities in 14 children with juvenile localized scleroderma. Each imaging sequence was also given a subjective score of 0 (not useful), 1 (somewhat useful) or 2 (most useful for detecting the findings). Deep tissue involvement was detected in 65% of the imaged extremities. Fascial thickening and enhancement were seen in 50% of imaged extremities. Axial T1, axial T1 fat-suppressed (FS) contrast-enhanced and axial fluid-sensitive sequences were rated most useful. Fascial thickening and enhancement were the most commonly encountered deep tissue findings in extremity MRIs of children with juvenile localized scleroderma. Because abnormalities of the skin, subcutaneous tissues and fascia tend to run longitudinally in an affected limb, axial T1, axial fluid-sensitive and axial T1-FS contrast-enhanced sequences should be included in the imaging protocol.
Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment
NASA Astrophysics Data System (ADS)
Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.
2017-12-01
We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.
Radiation therapy for Bowen's disease of the skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukas VanderSpek, Lauren A.; Pond, Gregory R.; Wells, Woodrow
2005-10-01
Purpose: To assess the clinical outcome in the radiation therapy (RT) of squamous carcinoma in situ of the skin (Bowen's disease). We focused on the local control rate and the toxicity according to the biologically effective dose (BED). Methods and Materials: A retrospective review was performed on 44 patients with Bowen's disease treated at Princess Margaret Hospital from April 1985 to November 2000. RT was the primary treatment for 32 patients, whereas 12 received RT for residual disease after local ablative therapy. Lesions were located as follows: scalp, 9 patients (20%); face, 12 (27%); trunk, 6 (14%), extremity, 12 (27%),more » perianal, 3 (7%), and penis, 2 (5%). Orthovoltage X-rays were used in the majority (39 of 44, 89%). There was no standard fractionation regimen: some physicians prescribed high doses, as for invasive skin cancer, whereas others prescribed lower doses because of the noninvasive nature of the disease, a sensitive anatomic location (e.g., extremity), or large treatment area. Because of the variations in fractionation regimens, BED was used as a common metric for biologic effect in the comparison of different regimens and analyzed for correlation with recurrence and toxicity. Local control was defined as the lack of persistent or recurrent disease at the treated site for the follow-up period. Grade 4 toxicity was defined as necrosis (cartilage/bone damage) and/or ulceration for a duration of >3 months. Results: The mean patient age was 67.7 years, and the male/female ratio was 29:15. The median pretreatment lesion size was 2.65 cm{sup 2} (range, 0.07-34.56 cm{sup 2}). Complete remission was achieved in 42 patients, with follow-up unavailable for the remaining 2 patients. Subsequently, 3 patients experienced recurrences at 0.2, 1.1, and 1-1.5 years after complete remission. One recurrence was Bowen's disease (local); the others were squamous cell carcinoma (one local, one marginal). Four patients experienced a new squamous lesion at a distant cutaneous site. As of last follow-up, 32 patients (73%) were known to be alive. Median follow-up was 2.6 years (range, 0-11.8 years). All but 3 patients were disease-free at last follow-up, 1 of whom died with distant, but not local disease. The 5-year overall survival rate was 68%. Biologically effective dose was not associated with recurrence. The crude local control rate was 93%. There was a trend toward higher radiation doses for smaller pretreatment tumor and field sizes. The BED did not correlate with Grade 4 toxicity; however, the three cases of Grade 4 toxicity occurred in patients treated with hypofractionated regimens (dose per fraction >4 Gy) for extremity lesions. Conclusions: Radiation therapy is an effective treatment option for Bowen's disease of the skin. Local recurrences seem to be equally low in patients treated with high- and low-dose regimens. Avoiding hypofractionated regimens (dose per fraction >4 Gy) in extremity locations might reduce the risk of Grade 4 toxicity.« less
Reflection type metasurface designed for high efficiency vectorial field generation
NASA Astrophysics Data System (ADS)
Wang, Shiyi; Zhan, Qiwen
2016-07-01
We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid nano-antennas for comprehensive spatial engineering of the properties of optical fields. The capability of such structure is illustrated in the design of a device that can be used to produce a radially polarized vectorial beam for optical needle field generation. This device consists of uniformly segmented sectors of high efficiency MIM metasurface. With each of the segment sector functioning as a local quarter-wave-plate (QWP), the device is designed to convert circularly polarized incidence into local linear polarization to create an overall radial polarization with corresponding binary phases and extremely high dynamic range amplitude modulation. The capability of such devices enables the generation of nearly arbitrarily complex optical fields that may find broad applications that transcend disciplinary boundaries.
Lehnhardt, M; Hirche, C; Daigeler, A; Goertz, O; Ring, A; Hirsch, T; Drücke, D; Hauser, J; Steinau, H U
2012-02-01
Soft tissue sarcomas (STS) are a rare entity with reduced prognosis due to their aggressive biology. For an optimal treatment of STS identification of independent prognostic factors is crucial in order to reduce tumor-related mortality and recurrence rates. The surgical oncological concept includes wide excisions with resection safety margins >1 cm which enables acceptable functional results and reduced rates of amputation of the lower extremities. In contrast, individual anatomy of the upper extremities, in particular of the hand, leads to an intentional reduction of resection margins in order to preserve the extremity and its function with the main intention of tumor-free resection margins. In this study, the oncological safety and outcome as well as functional results were validated by a retrospective analysis of survival rate, recurrence rate and potential prognostic factors. A total of 160 patients who had been treated for STS of the upper extremities were retrospectively included. Independent prognostic factors were analyzed (primary versus recurrent tumor, tumor size, resection status, grade of malignancy, additional therapy, localization in the upper extremity). Kaplan-Meier analyses for survival rate and local control were calculated. Further outcome measures were functional results validated by the DASH score and rate of amputation. In 130 patients (81%) wide tumor excision (R0) was performed and in 19 patients (12%) an amputation was necessary. The 5-year overall survival rate was 70% and the 5-year survival rate in primary tumors was 81% whereas in recurrences 55% relapsed locally. The 10-year overall survival rate was 45% and the 5-year recurrence rate was 18% for primary STS and 43% for recurrent STS. Variance analysis revealed primary versus recurrent tumor, tumor size, resection status and grade of malignancy as independent prognostic factors. Analysis of functional results showed a median DASH score of 37 (0-100; 0=contralateral extremity). The 5-year survival and local recurrence rates are comparable to STS wide resections with safety margins >1 cm for the lower extremities and the trunk. Analysis of prognostic factors revealed resection status and the tumor-free resection margins to be the main goals in STS resection of upper extremity.
Large-scale drivers of local precipitation extremes in convection-permitting climate simulations
NASA Astrophysics Data System (ADS)
Chan, Steven C.; Kendon, Elizabeth J.; Roberts, Nigel M.; Fowler, Hayley J.; Blenkinsop, Stephen
2016-04-01
The Met Office 1.5-km UKV convective-permitting models (CPM) is used to downscale present-climate and RCP8.5 60-km HadGEM3 GCM simulations. Extreme UK hourly precipitation intensities increase with local near-surface temperatures and humidity; for temperature, the simulated increase rate for the present-climate simulation is about 6.5% K**-1, which is consistent with observations and theoretical expectations. While extreme intensities are higher in the RCP8.5 simulation as higher temperatures are sampled, there is a decline at the highest temperatures due to circulation and relative humidity changes. Extending the analysis to the broader synoptic scale, it is found that circulation patterns, as diagnosed by MSLP or circulation type, play an increased role in the probability of extreme precipitation in the RCP8.5 simulation. Nevertheless for both CPM simulations, vertical instability is the principal driver for extreme precipitation.
Synoptic and meteorological drivers of extreme ozone concentrations over Europe
NASA Astrophysics Data System (ADS)
Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim
2016-04-01
The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.
NASA Astrophysics Data System (ADS)
Parodi, Antonio; Boni, Giorgio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco
2017-04-01
Recent studies show that highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapor content. Analyses of available historical records do not provide a univocal answer, since these may be likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria (Italy): The San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs, as they are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the Reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Liguria Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to Reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers and even photographs can be very valuable sources of knowledge in the reconstruction of past extreme events.
NASA Astrophysics Data System (ADS)
Dubuc, Alexia; Waltham, Nathan; Malerba, Martino; Sheaves, Marcus
2017-11-01
Little is known about levels of dissolved oxygen fish are exposed to daily in typical urbanised tropical wetlands found along the Great Barrier Reef coastline. This study investigates diel dissolved oxygen (DO) dynamics in one of these typical urbanised wetlands, in tropical North Queensland, Australia. High frequency data loggers (DO, temperature, depth) were deployed for several days over the summer months in different tidal pools and channels that fish use as temporal or permanent refuges. DO was extremely variable over a 24 h cycle, and across the small-scale wetland. The high spatial and temporal DO variability measured was affected by time of day and tidal factors, namely water depth, tidal range and tidal direction (flood vs ebb). For the duration of the logging time, DO was mainly above the adopted threshold for hypoxia (50% saturation), however, for around 11% of the time, and on almost every logging day, DO values fell below the threshold, including a severe hypoxic event (<5% saturation) that continued for several hours. Fish still use this wetland intensively, so must be able to cope with low DO periods. Despite the ability of fish to tolerate extreme conditions, continuing urban expansion is likely to lead to further water quality degradation and so potential loss of nursery ground value. There is a substantial discontinuity between the recommended DO values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality and the values observed in this wetland, highlighting the limited value of these guidelines for management purposes. Local and regional high frequency data monitoring programs, in conjunction with local exposure risk studies are needed to underpin the development of the management that will ensure the sustainability of coastal wetlands.
NASA Astrophysics Data System (ADS)
Zhang, Hongqin; Tian, Xiangjun
2018-04-01
Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.
Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels
NASA Astrophysics Data System (ADS)
Mason, Paul A.; Biermann, Peter L.
2016-01-01
Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
NASA Astrophysics Data System (ADS)
Luchetti, Ana Carolina F.; Nardy, Antonio J. R.; Madeira, José
2018-04-01
The Cretaceous trachydacites and dacites of Chapecó type (ATC) and dacites and rhyolites of Palmas type (ATP) make up 2.5% of the 800.000 km3 of volcanic pile in the Paraná Magmatic Province (PMP), emplaced at the onset of Gondwana breakup. Together they cover extensive areas in southern Brazil, overlapping volcanic sequences of tholeiitic basalts and andesites; occasional mafic units are also found within the silicic sequence. In the central region of the PMP silicic volcanism comprises porphyritic ATC-type, trachydacite high-grade ignimbrites (strongly welded) overlying aphyric ATP-type, rhyolite high- to extremely high-grade ignimbrites (strongly welded to lava-like). In the southwestern region strongly welded to lava-like high-grade ignimbrites overlie ATP lava domes, while in the southeast lava domes are found intercalated within the ignimbrite sequence. Characteristics of these ignimbrites are: widespread sheet-like deposits (tens to hundreds of km across); absence of basal breccias and basal fallout layers; ubiquitous horizontal to sub-horizontal sheet jointing; massive, structureless to horizontally banded-laminated rock bodies locally presenting flow folding; thoroughly homogeneous vitrophyres or with flow banding-lamination; phenocryst abundance presenting upward and lateral decrease; welded glass blobs in an 'eutaxitic'-like texture; negligible phenocryst breakage; vitroclastic texture locally preserved; scarcity of lithic fragments. These features, combined with high eruption temperatures (≥ 1000 °C), low water content (≤ 2%) and low viscosities (104-7 Pa s) suggest that the eruptions were characterized by low fountaining, little heat loss during collapse, and high mass fluxes producing extensive deposits.
Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL
Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...
2015-06-18
The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less
Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.
Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G
2015-06-18
The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.
A comprehensive dose assessment of irradiated hand by iridium-192 source in industrial radiography.
Hosseini Pooya, S M; Dashtipour, M R; Paydar, R; Mianji, F; Pourshahab, B
2017-09-01
Among the various incidents in industrial radiography, inadvertent handling of sources by hands is one of the most frequent incidents in which some parts of the hands may be locally exposed to high doses. An accurate assessment of extremity dose assists medical doctors in selecting appropriate treatments, preventing the injury expansion in the region. In this study, a phantom was designed to simulate a fisted hand of a radiographer when the worker holds a radioactive source in their hands. The local doses were measured using implanted TLDs in the phantom at different distances from a source. Furthermore, skin dose distribution was measured by Gaf-chromic films in the palm region of the phantom. The reliability of the measurements has been studied via analytical as well as Monte-Carlo simulation methods. The results showed that the new phantom design can be used reliably in extremity dose assessments, particularly at the points next to the source.
Levanič, Tom; Popa, Ionel; Poljanšek, Simon; Nechita, Constantin
2013-09-01
Increase in temperature and decrease in precipitation pose a major future challenge for sustainable ecosystem management in Romania. To understand ecosystem response and the wider social consequences of environmental change, we constructed a 396-year long (1615-2010) drought sensitive tree-ring width chronology (TRW) of Pinus nigra var. banatica (Georg. et Ion.) growing on steep slopes and shallow organic soil. We established a statistical relationship between TRW and two meteorological parameters-monthly sum of precipitation (PP) and standardised precipitation index (SPI). PP and SPI correlate significantly with TRW (r = 0.54 and 0.58) and are stable in time. Rigorous statistical tests, which measure the accuracy and prediction ability of the model, were all significant. SPI was eventually reconstructed back to 1688, with extreme dry and wet years identified using the percentile method. By means of reconstruction, we identified two so far unknown extremely dry years in Romania--1725 and 1782. Those 2 years are almost as dry as 1946, which was known as the "year of great famine." Since no historical documents for these 2 years were available in local archives, we compared the results with those from neighbouring countries and discovered that both years were extremely dry in the wider region (Slovakia, Hungary, Anatolia, Syria, and Turkey). While the 1800-1900 period was relatively mild, with only two moderately extreme years as far as weather is concerned, the 1900-2009 period was highly salient owing to the very high number of wet and dry extremes--five extremely wet and three extremely dry events (one of them in 1946) were identified.
Three decades of high-resolution coastal sea surface temperatures reveal more than warming.
Lima, Fernando P; Wethey, David S
2012-02-28
Understanding and forecasting current and future consequences of coastal warming require a fine-scale assessment of the near-shore temperature changes. Here we show that despite the fact that 71% of the world's coastlines are significantly warming, rates of change have been highly heterogeneous both spatially and seasonally. We demonstrate that 46% of the coastlines have experienced a significant decrease in the frequency of extremely cold events, while extremely hot days are becoming more common in 38% of the area. Also, we show that the onset of the warm season is significantly advancing earlier in the year in 36% of the temperate coastal regions. More importantly, it is now possible to analyse local patterns within the global context, which is useful for a broad array of scientific fields, policy makers and general public.
High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N
NASA Astrophysics Data System (ADS)
Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.
2011-12-01
The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.
NASA Astrophysics Data System (ADS)
Loikith, Paul C.; Detzer, Judah; Mechoso, Carlos R.; Lee, Huikyo; Barkhordarian, Armineh
2017-10-01
The associations between extreme temperature months and four prominent modes of recurrent climate variability are examined over South America. Associations are computed as the percent of extreme temperature months concurrent with the upper and lower quartiles of the El Niño-Southern Oscillation (ENSO), the Atlantic Niño, the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM) index distributions, stratified by season. The relationship is strongest for ENSO, with nearly every extreme temperature month concurrent with the upper or lower quartiles of its distribution in portions of northwestern South America during some seasons. The likelihood of extreme warm temperatures is enhanced over parts of northern South America when the Atlantic Niño index is in the upper quartile, while cold extremes are often association with the lowest quartile. Concurrent precipitation anomalies may contribute to these relations. The PDO shows weak associations during December, January, and February, while in June, July, and August its relationship with extreme warm temperatures closely matches that of ENSO. This may be due to the positive relationship between the PDO and ENSO, rather than the PDO acting as an independent physical mechanism. Over Patagonia, the SAM is highly influential during spring and fall, with warm and cold extremes being associated with positive and negative phases of the SAM, respectively. Composites of sea level pressure anomalies for extreme temperature months over Patagonia suggest an important role of local synoptic scale weather variability in addition to a favorable SAM for the occurrence of these extremes.
Probing star formation relations of mergers and normal galaxies across the CO ladder
NASA Astrophysics Data System (ADS)
Greve, Thomas R.
We examine integrated luminosity relations between the IR continuum and the CO rotational ladder observed for local (ultra) luminous infra-red galaxies ((U)LIRGs, L IR >= 1011 M⊙) and normal star forming galaxies in the context of radiation pressure regulated star formation proposed by Andrews & Thompson (2011). This can account for the normalization and linear slopes of the luminosity relations (log L IR = α log L'CO + β) of both low- and high-J CO lines observed for normal galaxies. Super-linear slopes occur for galaxy samples with significantly different dense gas fractions. Local (U)LIRGs are observed to have sub-linear high-J (J up > 6) slopes or, equivalently, increasing L COhigh-J /L IR with L IR. In the extreme ISM conditions of local (U)LIRGs, the high-J CO lines no longer trace individual hot spots of star formation (which gave rise to the linear slopes for normal galaxies) but a more widespread warm and dense gas phase mechanically heated by powerful supernovae-driven turbulence and shocks.
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
Zhang, Chaosheng; Luo, Lin; Xu, Weilin; Ledwith, Valerie
2008-07-15
Pollution hotspots in urban soils need to be identified for better environmental management. It is important to know if there are hotspots and if the hotspots are statistically significant. In this study identification of pollution hotspots was investigated using Pb concentrations in urban soils of Galway City in Ireland as an example, and the influencing factors on results of hotspot identification were investigated. The index of local Moran's I is a useful tool for identifying pollution hotspots of Pb pollution in urban soils, and for classifying them into spatial clusters and spatial outliers. The results were affected by the definition of weight function, data transformation and existence of extreme values. Compared with the results for the positively skewed raw data, the transformed data and data with extreme values excluded revealed a larger area for the high value spatial clusters in the city centre. While it is hard to decide the best way of using this index, it is suggested that all these influencing factors should be considered until reasonable and reliable results are obtained. GIS mapping can be applied to help evaluate the results via visualization of the spatial patterns. Meanwhile, selected pollution hotspots (extreme values) in this study were confirmed by re-analyses and re-sampling.
Evidence of population resistance to extreme low flows in a fluvial-dependent fish species
Katz, Rachel A.; Freeman, Mary C.
2015-01-01
Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival
Jakubietz, Rafael G; Jakubietz, Michael G; Kloss, Danni F; Gruenert, Joerg G
2009-02-01
After massive upper extremity injuries, prosthetic use might be complicated by the formation of pressure ulcerations. Especially the coverage with insensate free flaps may predispose the patient for developing chronic ulcerations when using an upper extremity prosthesis. This complication may be reduced when sensate local flaps are used to cover bony prominences. A new operative technique is described. Immediate sensate soft tissue coverage improves prosthetic fitting. Successful manipulation of the prosthesis can be quickly achieved with a decreased risk for pressure ulceration. This challenging procedure helps to achieve durable and sensate coverage of bony prominences. The use of local sensate tissue to cover bony prominences reduces the risk for pressure ulceration when wearing a prosthesis. Areas where prosthetic use causes only low pressure and shearing forces are adequately covered with free flaps. Immediate sensibility of local flaps allows prosthetic fitting and use as soon as wound healing has occurred. Return to work is thus expedited.
Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko
2006-04-01
To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress.
Estimating the extreme low-temperature event using nonparametric methods
NASA Astrophysics Data System (ADS)
D'Silva, Anisha
This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
NASA Astrophysics Data System (ADS)
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; Lereu, Aude; Passian, Ali; Zapien, Juan Antonio; Lequime, Michel
2018-02-01
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. We introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the bounding media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.
Up-date on the NeoVitaA Trial: Obstacles, challenges, perspectives, and local experiences.
Meyer, Sascha; Gortner, Ludwig
2017-09-01
The aim of the NeoVitaA Trial is to assess the role of postnatal additional high-dose oral vitamin A supplementation for 28 days in reducing Bronchopulmonary dysplasia (BPD) or death in extremely low birth weight (ELBW) infants at 36 weeks postmenstrual age (PMA). All infants (both intervention and control group) will be provided with basic vitamin A (1000 IU/kg/day) in addition to trial intervention.In this short communication, we will give an up-date on obstacles, challenges as well as perspectives and potential solutions when putting into place a multicenter, double-blind, randomized trial in this cohort of extremely susceptible infants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel
2006-12-15
We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.
NASA Astrophysics Data System (ADS)
Skansi, María de los Milagros; Brunet, Manola; Sigró, Javier; Aguilar, Enric; Arevalo Groening, Juan Andrés; Bentancur, Oscar J.; Castellón Geier, Yaruska Rosa; Correa Amaya, Ruth Leonor; Jácome, Homero; Malheiros Ramos, Andrea; Oria Rojas, Clara; Pasten, Alejandro Max; Sallons Mitro, Sukarni; Villaroel Jiménez, Claudia; Martínez, Rodney; Alexander, Lisa V.; Jones, P. D.
2013-01-01
Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA. Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures. Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41 mm/decade) and Amazonia (16.09 mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA.
Shariat, M H; Gazor, S; Redfearn, D
2015-08-01
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is an extremely costly public health problem. Catheter-based ablation is a common minimally invasive procedure to treat AF. Contemporary mapping methods are highly dependent on the accuracy of anatomic localization of rotor sources within the atria. In this paper, using simulated atrial intracardiac electrograms (IEGMs) during AF, we propose a computationally efficient method for localizing the tip of the electrical rotor with an Archimedean/arithmetic spiral wavefront. The proposed method deploys the locations of electrodes of a catheter and their IEGMs activation times to estimate the unknown parameters of the spiral wavefront including its tip location. The proposed method is able to localize the spiral as soon as the wave hits three electrodes of the catheter. Our simulation results show that the method can efficiently localize the spiral wavefront that rotates either clockwise or counterclockwise.
Foehn-induced effects on dust pollution, frontal clouds and solar radiation in the Dead Sea valley
NASA Astrophysics Data System (ADS)
Kishcha, Pavel; Starobinets, Boris; Alpert, Pinhas; Kaplan, Michael
2017-04-01
The significant drying up of the Dead Sea over the past 40 years has led to an increase in an exposed area contributing to local dust pollution. Measurements show that, sometimes, in the Dead Sea valley, dust pollution can reach extreme concentrations up to several thousands of micrograms per cubic meters. Our analysis of a meteorological situation shows that a foehn phenomenon can be a causal factor for the aforementioned extreme local dust concentration. This foehn phenomenon creates strong warm and dry winds, which are accompanied by air turbulence and temperature inversion. In our study, foehn-induced effects on dust pollution, frontal clouds and solar radiation were analyzed over the Judean Mountains ( 1000 m) and over the Dead Sea valley (-420 m), using high-resolution numerical simulations and in-situ observations at meteorological stations located across the mountain ridge. An extreme dust episode occurring on March 22, 2013, was analyzed, which was characterized by measured surface dust concentrations of up to 7000 µg m-3 in the Dead Sea valley. We simulated this foehn phenomenon with the 3-km resolution COSMO-ART model. Our analysis has shown that the foehn phenomenon could be observed even over the relatively low Judean Mountains. This analysis was based on various meteorological, pyranometer, radar, and aerosol measurements together with high-resolution model data. In the Dead Sea valley, the maximum aerosol optical depth (AOD) did not coincide with the maximum surface dust concentration. This lack of coincidence indicates difficulties in using satellite-based AOD for initializing dust concentration within numerical forecast systems over this region with complex terrain. In the western Dead Sea valley, strong foehn winds of over 20 m/s were accompanied by maximal air turbulence leading to maximal local dust emissions. Thus, the model showed that, by creating significant turbulence, the foehn phenomenon intensified the saltation (bombardment) mechanism of local dust generation in the western Dead Sea valley. In addition, the foehn-induced pronounced temperature inversion trapped dust particles beneath this inversion. These two factors caused the measured extreme surface dust concentration in the Dead Sea valley on the specified day. Radar data on March 22 showed a passage of multi-layer frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The strong descending airflow over the downwind side of the Judean Mountains significantly influenced the frontal cloudiness leading to the formation of a cloud-free band over the Dead Sea valley.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji
2015-02-20
XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species.more » To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the nuclear localization of N326L but only partially reverses radiosensitivity. • Other N326 mutants (N326A, N326D and N326Q) are functionally deficient in terms of survival after irradiation.« less
NASA Astrophysics Data System (ADS)
Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid
2018-03-01
We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.
Achieving high aspect ratio wrinkles by modifying material network stress.
Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J
2017-06-07
Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.
M. Terry; D. Price; J. Poole
2007-01-01
Astrophytum asterias, commonly called star cactus, is a federally listed endangered cactus endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas, USA, and Tamaulipas and Nuevo Leon, Mexico. Only three metapopulations totaling less than 4000 plants are presently known in Texas. Star cactus, known locally as âstar peyoteâ, is highly...
Impact Assessments and Projections in Microclimates: Working with End-Users
NASA Astrophysics Data System (ADS)
Outten, S.; Wolf, T.
2015-12-01
Local impacts of meteorological events are often shaped by the microclimates in which they occur and only by including understanding of these microclimates can robust assessments and projections of such events be made. However, co-production of knowledge with end users is also required in order to make the assessments useful for decision makers and for society as a whole. This work presents two studies working with end users around the European city of Bergen, Norway. The first study is on extreme winds assessment for larger-scale construction. While such an assessment is usually based on historical observations when the climate was more stationary, under a changing climate, infrastructure built to last for the next fifty years or more may experience events not seen in the observational period. The case study is presented for the newly completed Hardanger Bridge in Norway and demonstrates a novel method for incorporating estimates of future changes in extreme winds into the design process (figure 1). Given the close collaboration with the engineers involved in the bridge's construction, the method was tailored to fit with existing practices and standards. The second study focuses on air pollution events within the city that are favoured by persistent wintertime temperature inversions in the narrow Bergen valley. Using a temperature profile radiometer, these temperature inversions have been characterized and related to the local circulation in- and above the valley. There has been the assumption that the many large ships in Bergen harbour had a major contribution to high pollution events within the city. Results from this study however indicate that temperature inversions are mostly connected to down-valley winds. These should remove the ship-emissions from the city, giving the ships a much smaller impact on high air pollution events than previously assumed, something that is under further evaluation and of high interest for the local harbour authority. Figure 1. Extreme wind speed distributions at the Utsira meteorological station from observations (black), with future estimates based on multiple regional climate models (red and blue). Vertical lines indicate the 50-year return event.
On exact correlation functions of chiral ring operators in 2 d N=(2, 2) SCFTs via localization
NASA Astrophysics Data System (ADS)
Chen, Jin
2018-03-01
We study the extremal correlation functions of (twisted) chiral ring operators via superlocalization in N=(2, 2) superconformal field theories (SCFTs) with central charge c ≥ 3, especially for SCFTs with Calabi-Yau geometric phases. We extend the method in arXiv: 1602.05971 with mild modifications, so that it is applicable to disentangle operators mixing on S 2 in nilpotent (twisted) chiral rings of 2 d SCFTs. With the extended algorithm and technique of localization, we compute exactly the extremal correlators in 2 d N=(2, 2) (twisted) chiral rings as non-holomorphic functions of marginal parameters of the theories. Especially in the context of Calabi-Yau geometries, we give an explicit geometric interpretation to our algorithm as the Griffiths transversality with projection on the Hodge bundle over Calabi-Yau complex moduli. We also apply the method to compute extremal correlators in Kähler moduli, or say twisted chiral rings, of several interesting Calabi-Yau manifolds. In the case of complete intersections in toric varieties, we provide an alternative formalism for extremal correlators via localization onto Higgs branch. In addition, as a spinoff we find that, from the extremal correlators of the top element in twisted chiral rings, one can extract chiral correlators in A-twisted topological theories.
Williams, Susan; Bi, Peng; Newbury, Jonathan; Robinson, Guy; Pisaniello, Dino; Saniotis, Arthur; Hansen, Alana
2013-01-01
Among the challenges for rural communities and health services in Australia, climate change and increasing extreme heat are emerging as additional stressors. Effective public health responses to extreme heat require an understanding of the impact on health and well-being, and the risk or protective factors within communities. This study draws on lived experiences to explore these issues in eleven rural and remote communities across South Australia, framing these within a socio-ecological model. Semi-structured interviews with health service providers (n = 13), and a thematic analysis of these data, has identified particular challenges for rural communities and their health services during extreme heat. The findings draw attention to the social impacts of extreme heat in rural communities, the protective factors (independence, social support, education, community safety), and challenges for adaptation (vulnerabilities, infrastructure, community demographics, housing and local industries). With temperatures increasing across South Australia, there is a need for local planning and low-cost strategies to address heat-exacerbating factors in rural communities, to minimise the impact of extreme heat in the future. PMID:24173140
A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32
NASA Technical Reports Server (NTRS)
Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.
2014-01-01
We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.
The structure and large-scale organization of extreme cold waves over the conterminous United States
NASA Astrophysics Data System (ADS)
Xie, Zuowei; Black, Robert X.; Deng, Yi
2017-12-01
Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
NASA Astrophysics Data System (ADS)
Rasmussen, Roy; Ikeda, Kyoko; Liu, Changhai; Gutmann, Ethan; Gochis, David
2016-04-01
Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize the large moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of the landform can significantly impact vertical velocity profiles and cloud moisture entrainment rates. This study presents results for high resolution regional climate modeling study of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model run at 4 km horizontal resolution and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF modeling system can produce credible depictions of winter orographic precipitation over the Colorado Rockies if run at horizontal resolutions < 6 km. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March 2003. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. The results show using the Pseudo Global Warming technique that intense precipitation rates significantly increased during the event and a significant fraction of the snowfall converts to rain which significantly amplifies the runoff response from one where runoff is produced gradually to one in which runoff is rapidly translated into streamflow values that approach significant flooding risks. Results from a new, CONUS scale high resolution climate simulation of extreme events in a current and future climate will be presented as time permits.
Shifting patterns of mild weather in response to projected radiative forcing
NASA Astrophysics Data System (ADS)
van der Wiel, Karin; Kapnick, Sarah; Vecchi, Gabriel
2017-04-01
Traditionally, climate change research has focused on changes in mean climate (e.g. global mean temperature, sea level rise, glacier melt) or change in extreme events (e.g. hurricanes, extreme precipitation, droughts, heat waves, wild fires). Though extreme events have the potential to disrupt society, extreme conditions are rare by definition. In contrast, mild weather occurs frequently and many human activities are built around it. Examples of such activities include football games, dog walks, bike rides, and outdoor weddings, but also activities of direct economic impact, e.g. construction work, infrastructure projects, road or rail transportation, air travel, and landscaping projects. Absence of mild weather impacts society in various way, understanding current and future mild weather is therefore of high scientific interest. We present a global analysis of mild weather based on simple and relatable criteria and we explore changes in mild weather occurrence in response to radiative forcing. A high-resolution global climate model, GFDL HiFLOR, is used to allow for investigation of local features and changes. In response to RCP4.5, we find a slight global mean decrease in the annual number of mild days projected both in the near future (-4 d/yr, 2016-2035) and at the end of this century (-10 d/yr, 2081-2100). Projected regional and seasonal redistributions of mild days are substantially greater. Tropical regions are projected to see large decreases, in the mid-latitudes small increases in the number of mild days are projected. Mediterranean climates are projected to see a shift of mild weather away from the local summer to the shoulder seasons. These changes are larger than the interannual variability of mild weather caused by El Niño-Southern Oscillation. Finally, we use reanalysis data to show an observed global decrease in the recent past, and we verify that these observed regional changes in mild weather resemble the projections.
Growing hair on the extremal BTZ black hole
NASA Astrophysics Data System (ADS)
Harms, B.; Stern, A.
2017-06-01
We show that the nonlinear σ-model in an asymptotically AdS3 space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear σ-model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear σ-model fields and changes the space-time metric, and it can be used to map the extremal BTZ black hole to infinitely many hairy black hole solutions.
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
Extremal optimization for Sherrington-Kirkpatrick spin glasses
NASA Astrophysics Data System (ADS)
Boettcher, S.
2005-08-01
Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient accuracy and with statistical significance are obtained for systems with more than N=1000 variables using ±J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less than 1% accuracy rational values of ω=2/3 for the finite-size correction exponent, and of ρ=3/4 for the fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet. The probability density function for ground state energies is highly skewed and identical within numerical error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity shows that the skewness is connectivity-dependent.
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio
1986-01-01
Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.
Optimal regionalization of extreme value distributions for flood estimation
NASA Astrophysics Data System (ADS)
Asadi, Peiman; Engelke, Sebastian; Davison, Anthony C.
2018-01-01
Regionalization methods have long been used to estimate high return levels of river discharges at ungauged locations on a river network. In these methods, discharge measurements from a homogeneous group of similar, gauged, stations are used to estimate high quantiles at a target location that has no observations. The similarity of this group to the ungauged location is measured in terms of a hydrological distance measuring differences in physical and meteorological catchment attributes. We develop a statistical method for estimation of high return levels based on regionalizing the parameters of a generalized extreme value distribution. The group of stations is chosen by optimizing over the attribute weights of the hydrological distance, ensuring similarity and in-group homogeneity. Our method is applied to discharge data from the Rhine basin in Switzerland, and its performance at ungauged locations is compared to that of other regionalization methods. For gauged locations we show how our approach improves the estimation uncertainty for long return periods by combining local measurements with those from the chosen group.
Bilateral macrodystrophia lipomatosa of the upper extremities with syndactyly and multiple lipomas.
van der Meer, Saskia; Nicolai, Jean-Philippe A; Schut, Simone M; Meek, Marcel F
2011-12-01
Macrodystrophia lipomatosa is a rare disease that causes congenital local gigantism of part of an extremity, which is characterised by an increase in all mesenchymal elements, particularly fibroadipose tissue. This is the first report to our knowledge of a case of histologically confirmed bilateral macrodystrophia lipomatosa of the upper extremities with syndactyly and multiple lipomas.
NASA Astrophysics Data System (ADS)
Wintoft, Peter; Viljanen, Ari; Wik, Magnus
2016-05-01
High-frequency ( ≈ minutes) variability of ground magnetic fields is caused by ionospheric and magnetospheric processes driven by the changing solar wind. The varying magnetic fields induce electrical fields that cause currents to flow in man-made conductors like power grids and pipelines. Under extreme conditions the geomagnetically induced currents (GIC) may be harmful to the power grids. Increasing our understanding of the extreme events is thus important for solar-terrestrial science and space weather. In this work 1-min resolution of the time derivative of measured local magnetic fields (|dBh/dt|) and computed electrical fields (Eh), for locations in Europe, have been analysed with extreme value analysis (EVA). The EVA results in an estimate of the generalized extreme value probability distribution that is described by three parameters: location, width, and shape. The shape parameter controls the extreme behaviour. The stations cover geomagnetic latitudes from 40 to 70° N. All stations included in the study have contiguous coverage of 18 years or more with 1-min resolution data. As expected, the EVA shows that the higher latitude stations have higher probability of large |dBh/dt| and |Eh| compared to stations further south. However, the EVA also shows that the shape of the distribution changes with magnetic latitude. The high latitudes have distributions that fall off faster to zero than the low latitudes, and upward bounded distributions can not be ruled out. The transition occurs around 59-61° N magnetic latitudes. Thus, the EVA shows that the observed series north of ≈ 60° N have already measured values that are close to the expected maxima values, while stations south of ≈ ° N will measure larger values in the future.
Local intensity adaptive image coding
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1989-01-01
The objective of preprocessing for machine vision is to extract intrinsic target properties. The most important properties ordinarily are structure and reflectance. Illumination in space, however, is a significant problem as the extreme range of light intensity, stretching from deep shadow to highly reflective surfaces in direct sunlight, impairs the effectiveness of standard approaches to machine vision. To overcome this critical constraint, an image coding scheme is being investigated which combines local intensity adaptivity, image enhancement, and data compression. It is very effective under the highly variant illumination that can exist within a single frame or field of view, and it is very robust to noise at low illuminations. Some of the theory and salient features of the coding scheme are reviewed. Its performance is characterized in a simulated space application, the research and development activities are described.
Luminous Blue Compact Galaxies: Probes of galaxy assembly
NASA Astrophysics Data System (ADS)
Newton, Cassidy Louann
The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.
[Juvenile angiofibroma originating from the sphenoid sinus: a case report].
Keskin, Ibrahim Gürkan; Ila, Kadri
2013-01-01
Angiofibromas are histologically benign, but unencapsulated and highly vascular tumors with a potential of local destructive effect. Angiofibromas predominantly originate from the posterolateral wall of the nasopharynx. Extranasopharyngeal angiofibromas are extremely rare and mostly seen in maxillary sinus and ethmoid sinus. In this article, we report a 21-year-old male case who was admitted with headache and diagnosed with an angiofibroma originating from the sphenoid sinus.
Mock, Jack J.; Hill, Ryan T.; Tsai, Yu-Ju; Chilkoti, Ashutosh; Smith, David R.
2012-01-01
The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nano-gap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer, and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with Angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity. PMID:22429053
NASA Astrophysics Data System (ADS)
Humphreys, Roberta M.; Davidson, Kris; Ruch, Gerald; Wallerstein, George
2005-01-01
High spatial and spectral resolution spectroscopy of the OH/IR supergiant VY CMa and its circumstellar ejecta reveals evidence for high mass loss events from localized regions on the star occurring over the past 1000 yr. The reflected absorption lines and the extremely strong K I emission lines show a complex pattern of velocities in the ejecta. We show that the large, dusty northwest arc, expanding at ~50 km s-1 with respect to the embedded star, is kinematically distinct from the surrounding nebulosity and was ejected about 400 yr ago. Other large, more filamentary loops were probably expelled as much as 800-1000 yr ago, whereas knots and small arcs close to the star resulted from more recent events 100-200 yr ago. The more diffuse, uniformly distributed gas and dust is surprisingly stationary, with little or no velocity relative to the star. This is not what we would expect for the circumstellar material from an evolved red supergiant with a long history of mass loss. We therefore suggest that the high mass loss rate for VY CMa is a measure of the mass carried out by these specific ejections accompanied by streams or flows of gas through low-density regions in the dust envelope. VY CMa may thus be our most extreme example of stellar activity, but our results also bring into question the evolutionary state of this famous star. In a separate appendix, we discuss the origin of the very strong K I and other rare emission lines in its spectrum.
Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Lu, Jian; Burrows, Alex D.
Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependencemore » in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.« less
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Attema, Jisk
2015-08-01
Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.
Source localization of brain activity using helium-free interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard
2014-05-26
To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localizationmore » of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.« less
Mitigating Climate Change with Earth Orbital Sunshades
NASA Technical Reports Server (NTRS)
Coverstone, Victoria; Johnson, Les
2015-01-01
An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.
NASA Astrophysics Data System (ADS)
Pavlov, Volodymyr S.; Bezsmernyi, Yurii O.; Zlepko, Sergey M.; Bezsmertna, Halyna V.
2017-08-01
The given paper analyzes principles of interaction and analysis of the reflected optical radiation from biotissue in the process of assessment of regional hemodynamics state in patients with local hypertensive- ischemic pain syndrome of amputation stumps of lower extremities, applying the method of photoplethysmography. The purpose is the evaluation of Laser photoplethysmography (LPPG) diagnostic value in examination of patients with chronic ischemia of lower extremities. Photonic device is developed to determine the level of the peripheral blood circulation, which determines the basic parameters of peripheral blood circulation and saturation level. Device consists of two sensors: infrared sensor, which contains the infrared laser radiation source and photodetector, and red sensor, which contains the red radiation source and photodetector. LPPG method allows to determined pulsatility of blood flow in different areas of the foot and lower leg, the degree of compensation and conservation perspectives limb. Surgical treatment of local hypertensive -ischemic pain syndrome of amputation stumps of lower extremities by means of semiclosed fasciotomy in combination with revasculating osteotrepanation enabled to improve considerably regional hemodynamics in the tissues of the stump and decrease pain and hypostatic disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jian; Xue, Daokai; Gao, Yang
Understanding how regional hydrological extremes would respond to warming is a grand challenge to the community of climate change research. To address this challenge, we construct an analysis framework based on column integrated water vapor (CWV) wave activity to diagnose the wave component of the hydrological cycle that contributes to hydrological extremes. By applying the analysis to the historical and future climate projections from the CMIP5 models, we found that the wet-versus-dry disparity of daily net precipitation along a zonal band can increase at a super Clausius-Clapeyron rate due to the enhanced stirring length of wave activity at the polewardmore » flank of the mean storm track. The local variant of CWV wave activity reveals the unique characteristics of atmospheric rivers (ARs) in terms of their transport function, enhanced mixing and hydrological cycling rate (HC). Under RCP8.5, the local moist wave activity increases by ~40% over the northeastern Pacific by the end of the 21st century, indicating more ARs hitting the west coast, giving rise to a ~20% increase in the related hydrological extremes - $ despite a weakening of the local HC.« less
Convergent local adaptation to climate in distantly related conifers.
Yeaman, Sam; Hodgins, Kathryn A; Lotterhos, Katie E; Suren, Haktan; Nadeau, Simon; Degner, Jon C; Nurkowski, Kristin A; Smets, Pia; Wang, Tongli; Gray, Laura K; Liepe, Katharina J; Hamann, Andreas; Holliday, Jason A; Whitlock, Michael C; Rieseberg, Loren H; Aitken, Sally N
2016-09-23
When confronted with an adaptive challenge, such as extreme temperature, closely related species frequently evolve similar phenotypes using the same genes. Although such repeated evolution is thought to be less likely in highly polygenic traits and distantly related species, this has not been tested at the genome scale. We performed a population genomic study of convergent local adaptation among two distantly related species, lodgepole pine and interior spruce. We identified a suite of 47 genes, enriched for duplicated genes, with variants associated with spatial variation in temperature or cold hardiness in both species, providing evidence of convergent local adaptation despite 140 million years of separate evolution. These results show that adaptation to climate can be genetically constrained, with certain key genes playing nonredundant roles. Copyright © 2016, American Association for the Advancement of Science.
Effect of Dual Sensory Loss on Auditory Localization: Implications for Intervention
Simon, Helen J.; Levitt, Harry
2007-01-01
Our sensory systems are remarkable in several respects. They are extremely sensitive, they each perform more than one function, and they interact in a complementary way, thereby providing a high degree of redundancy that is particularly helpful should one or more sensory systems be impaired. In this article, the problem of dual hearing and vision loss is addressed. A brief description is provided on the use of auditory cues in vision loss, the use of visual cues in hearing loss, and the additional difficulties encountered when both sensory systems are impaired. A major focus of this article is the use of sound localization by normal hearing, hearing impaired, and blind individuals and the special problem of sound localization in people with dual sensory loss. PMID:18003869
A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies
NASA Astrophysics Data System (ADS)
Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho
2015-08-01
Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1
Suzuki, Atsushi C; Kagoshima, Hiroshi; Chilton, Glen; Grothman, Gary T; Johansson, Carl; Tsujimoto, Megumu
2017-02-01
Extreme environments sometimes support surprisingly high meiofaunal diversity. We sampled runoff from the acidic hot springs of Unzen, Japan. This is the type locality of Thermozodium esakii Rahm, 1937, the only tardigrade in the class Mesotardigrada, which remains contentious in the absence of corroboration or supporting specimens. Our sampling revealed at least three species of arthropods, four rotifers, and five nematodes living in the hot (ca. 40°C) and acidic (ca. pH 2.5) water, but no tardigrades.
Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil.
Eugenio, Fernando Coelho; dos Santos, Alexandre Rosa; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; dos Santos, Áureo Banhos; Paneto, Greiciane Gaburro; Schettino, Vitor Roberto
2016-05-15
A forest fire risk map is a basic element for planning and protecting forested areas. The main goal of this study was to develop a statistical model for preparing a forest fire risk map using GIS. Such model is based on assigning weights to nine variables divided into two classes: physical factors of the site (terrain slope, land-use/occupation, proximity to roads, terrain orientation, and altitude) and climatic factors (precipitation, temperature, water deficit, and evapotranspiration). In regions where the climate is different from the conditions of this study, the model will require an adjustment of the variables weights according to the local climate. The study area, Espírito Santo State, exhibited approximately 3.81% low risk, 21.18% moderate risk, 30.10% high risk, 41.50% very high risk, and 3.40% extreme risk of forest fire. The areas classified as high risk, very high and extreme, contemplated a total of 78.92% of heat spots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere
2017-12-13
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
Dissipation, intermittency, and singularities in incompressible turbulent flows
NASA Astrophysics Data System (ADS)
Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.
2018-05-01
We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.
Petrilli, A S; Kechichian, R; Broniscer, A; Garcia, R J; Tanaka, C; Francisco, J; Lederman, H; Odone Filho, V; Camargo, O P; Bruniera, P; Pericles, P; Consentino, E; Ortega, J A
1999-08-01
Chemotherapy has dramatically improved the rates of cure and survival of patients with localized and metastatic osteosarcoma. Nonetheless, the number of chemotherapeutic agents active against osteosarcoma is limited to doxorubicin, cisplatin, high-dose methotrexate, and ifosfamide. Carboplatin, a cisplatin analogue, has been tested as a single agent in patients with recurrent osteosarcoma or as part of multiagent chemotherapy in newly diagnosed patients. We tested the activity and toxicity of two cycles of intraarterial carboplatin as a "window therapy" (600 mg/m2 per cycle) in 33 consecutive patients with extremity osteosarcoma before the start of multiagent chemotherapy. Response was based on clinical (tumor diameter, local inflammatory signs, and range of motion) and radiological parameters (plain local films and arteriographic studies prior to drug administration). Patients' age ranged between 8 and 18 years (median age 13 years). Primary tumor originated from the femur (15 patients), tibia (10 patients), fibula (4 patients), humerus (3 patients), and calcaneus (1 patient). Only 7 patients (21%) had metastatic disease at diagnosis (5 in the lung and 2 in other bones). A favorable clinical and radiological response was documented in 81% and 73% of the patients, respectively. Clinical and radiological progression occurred in 12% and 9% of the patients, respectively. Seventeen of the patients remain alive and disease-free. Survival and event-free survival at 3 years for nonmetastatic patients are 71% (SE = 9%) and 65% (SE = 9%), respectively; for metastatic patients, the figures are 17% (SE = 15%) and 14% (SE = 13%), respectively. We conclude that carboplatin is an active agent in the treatment of newly diagnosed extremity osteosarcoma. Copyright 1999 Wiley-Liss, Inc.
Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong
2010-05-14
This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.
Factors associated with the deposition of Cladophora on Lake Michigan beaches in 2012
Riley, Stephen C.; Tucker, Taaja R.; Adams, Jean V.; Fogarty, Lisa R.; Lafrancois, Brenda Moraska
2015-01-01
Deposition of the macroalgae Cladophora spp. was monitored on 18 beaches around Lake Michigan during 2012 at a high temporal frequency. We observed a high degree of spatial variability in Cladophora deposition among beaches on Lake Michigan, even within local regions, with no clear regional pattern in the intensity of Cladophora deposition. A strong seasonal pattern in Cladophora deposition was observed, with the heaviest deposition occurring during mid-summer. Several beaches exhibited high temporal variability in Cladophora deposition over short time scales, suggesting that drifting algal mats may be extremely dynamic in nearshore environments of the Great Lakes. Cladophora deposition on Lake Michigan beaches was primarily related to the presence of nearshore structures, local population density, and nearshore bathymetry. There was relatively little evidence that waves, winds, or currents were associated with Cladophora deposition on beaches, but this may be due to the relatively poor resolution of existing nearshore hydrodynamic data. Developing a predictive understanding of beach-cast Cladophora dynamics in Great Lakes environments may require both intensive Cladophora monitoring and fine-scale local hydrodynamic modeling efforts.
Processes and mechanisms of persistent extreme precipitation events in East China
NASA Astrophysics Data System (ADS)
Zhai, Panmao; Chen, Yang
2014-11-01
This study mainly presents recent progresses on persistent extreme precipitation events (PEPEs) in East China. A definition focusing both persistence and extremity of daily precipitation is firstly proposed. An identification method for quasi-stationary regional PEPEs is then designed. By utilizing the identified PEPEs in East China, typical circulation configurations from the lower to the upper troposphere are confirmed, followed by investigations of synoptic precursors for key components with lead time of 1-2 weeks. Two characteristic circulation patterns responsible for PEPEs in East China are identified: a double blocking high type and a single blocking high type. They may account for occurrence of nearly 80% PEPEs during last 60 years. For double blocking high type, about two weeks prior to PEPEs, two blockings developed and progressed towards the Ural Mountains and the Sea of Okhotsk, respectively. A northwestward progressive anomalous anticyclone conveying abundant moisture and eastward-extended South Asia High favoring divergence can be detected about one week in advance. A dominant summertime teleconnection over East Asia, East Asia/ Pacific (EAP) pattern, is deemed as another typical regime inducing PEPEs in the East China. Key elements of the EAP pattern initiated westward movement since one week prior to PEPEs. Eastward energy dispersion and poleward energy dispersion contributed to early development and subsequent maintenance of this teleconnection pattern, respectively. These typical circulation patterns and significant precursors may offer local forecasters some useful clues in identifying and predicting such high-impact precipitation events about 1-2 weeks in advance.
Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl
2014-03-01
Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.
NASA Astrophysics Data System (ADS)
Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.
2014-12-01
Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.
NASA Astrophysics Data System (ADS)
Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.
2015-12-01
Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and potential impacts on crop yield. This information is extremely useful in local decision support for agricultural management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jianmin
Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less
NASA Astrophysics Data System (ADS)
Spry, Christina
In British Columbia, Pineapple Express storms can lead to flooding, slope failures and negative impacts to water quality. Mitigating the impacts of extreme weather events in a changing climate requires an understanding of how local climate responds to regional-toglobal climate forcing patterns. In this study, I use historical and proxy data to identify the distinguishing characteristics of Pineapple Express storms and to develop a tree ring oxygen isotope record (1960--1995) of local climate conditions in the Lower Mainland of British Columbia. I found that high magnitude Pineapple Express storms have significantly higher precipitation and streamflow than other storms types, which result in relatively high contributions of Pineapple Express storms to the annual water budget. As well, Pineapple Express precipitation is characterized by an enriched delta18O isotopic signature when compared to precipitation originating from the North Pacific Ocean. However, differences in source water do not appear to be driving the variability in tree ring delta18O ratios. Instead, tree ring isotopic values exhibit a regional climate pattern that is strongly driven by latitudinal temperature gradients and the Rayleigh distillation effect. Therefore, future warmer conditions may decrease the temperature gradient between the equator and the poles, which can be recorded in the tree ring isotope record. The results also suggest that warmer temperatures due to climate change could result in more active Pineapple Express storm seasons, with multiple PE storms happening over a short period of time. Concurrent storms significantly increase the risk to society because the resulting antecedent saturated soil conditions can trigger precipitationinduced natural hazards. Keywords: extreme weather; stable isotopes; Pineapple Express; British Columbia; climate change; tree rings.
NASA Astrophysics Data System (ADS)
Zamuriano, Marcelo; Brönnimann, Stefan
2017-04-01
It's known that some extremes such as heavy rainfalls, flood events, heatwaves and droughts depend largely on the atmospheric circulation and local features. Bolivia is no exception and while the large scale dynamics over the Amazon has been largely investigated, the local features driven by the Andes Cordillera and the Altiplano is still poorly documented. New insights on the regional atmospheric dynamics preceding heavy precipitation and flood events over the complex topography of the Andes-Amazon interface are added through numerical investigations of several case events: flash flood episodes over La Paz city and the extreme 2014 flood in south-western Amazon basin. Large scale atmospheric water transport is dynamically downscaled in order to take into account the complex topography forcing and local features as modulators of these events. For this purpose, a series of high resolution numerical experiments with the WRF-ARW model is conducted using various global datasets and parameterizations. While several mechanisms have been suggested to explain the dynamics of these episodes, they have not been tested yet through numerical modelling experiments. The simulations captures realistically the local water transport and the terrain influence over atmospheric circulation, even though the precipitation intensity is in general unrealistic. Nevertheless, the results show that Dynamical Downscaling over the tropical Andes' complex terrain provides useful meteorological data for a variety of studies and contributes to a better understanding of physical processes involved in the configuration of these events.
NASA Astrophysics Data System (ADS)
Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.
2017-12-01
Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.
NASA Astrophysics Data System (ADS)
Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.
2014-12-01
The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.
Multi-element stochastic spectral projection for high quantile estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Jordan, E-mail: jordan.ko@mac.com; Garnier, Josselin
2013-06-15
We investigate quantile estimation by multi-element generalized Polynomial Chaos (gPC) metamodel where the exact numerical model is approximated by complementary metamodels in overlapping domains that mimic the model’s exact response. The gPC metamodel is constructed by the non-intrusive stochastic spectral projection approach and function evaluation on the gPC metamodel can be considered as essentially free. Thus, large number of Monte Carlo samples from the metamodel can be used to estimate α-quantile, for moderate values of α. As the gPC metamodel is an expansion about the means of the inputs, its accuracy may worsen away from these mean values where themore » extreme events may occur. By increasing the approximation accuracy of the metamodel, we may eventually improve accuracy of quantile estimation but it is very expensive. A multi-element approach is therefore proposed by combining a global metamodel in the standard normal space with supplementary local metamodels constructed in bounded domains about the design points corresponding to the extreme events. To improve the accuracy and to minimize the sampling cost, sparse-tensor and anisotropic-tensor quadratures are tested in addition to the full-tensor Gauss quadrature in the construction of local metamodels; different bounds of the gPC expansion are also examined. The global and local metamodels are combined in the multi-element gPC (MEgPC) approach and it is shown that MEgPC can be more accurate than Monte Carlo or importance sampling methods for high quantile estimations for input dimensions roughly below N=8, a limit that is very much case- and α-dependent.« less
Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Chen, Shuru; Zhao, Wengao
Sodium (Na) metal is a promising anode for Na ion batteries. However, the high reactivity of Na metal with electrolytes and the low Na metal cycling efficiency have limited its practical application in rechargeable Na metal batteries. High concentration electrolytes (HCE, ≥4 M) consisting of sodium bis(fluorosulfonyl)imide (NaFSI) and ether solvent could ensure the stable cycling of Na metal with high coulombic efficiency, but suffer from high viscosity, poor wetting ability, and high salt cost. Here, we report that the salt concentration could be significantly reduced (≤ 1.5 M) by diluting with a hydrofluoroether (HFE) as ‘inert’ diluent, which maintainsmore » the solvation structures of HCE, thereby forming a localized high concentration electrolyte (LHCE). A LHCE (2.1 M NaFSI/DME-BTFE (solvent molar ratio 1:2)) has been demonstrated to enable the dendrite-free Na deposition with high coulombic efficiency of > 99%, fast-charging (20C) and stable cycling (90.8% retention after 40,000 cycles) of Na||Na3V2(PO4)3 batteries.« less
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
Extreme heat changes post-heat wave community reassembly
Seifert, Linda I; Weithoff, Guntram; Vos, Matthijs
2015-01-01
Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29°C and 39°C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39°C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29°C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes. PMID:26078851
2008-05-01
Autogenic training exercise; A treatment for airsickness in military pilots. International Journal of Aviation Psychology, 2005; 15(4): 395-412...flying during training , humanitarian, and operational missions can be extremely taxing. Flight surgeons often observe or hear of changes in the...health care is to ease and resolve the emotional or behavioral difficulties of an aviator while attempting to preserve a highly trained USAF asset
NASA Astrophysics Data System (ADS)
Pindsoo, Katri; Soomere, Tarmo
2016-04-01
The water level time series and particularly temporal variations in water level extremes usually do not follow any simple rule. Still, the analysis of linear trends in extreme values of surge levels is a convenient tool to obtain a first approximation of the future projections of the risks associated with coastal floodings. We demonstrate how this tool can be used to extract essential information about concealed changes in the forcing factors of seas and oceans. A specific feature of the Baltic Sea is that sequences of even moderate storms may raise the average sea level by almost 1 m for a few weeks. Such events occur once in a few years. They substantially contribute to the extreme water levels in the eastern Baltic Sea: the most devastating coastal floodings occur when a strong storm from unfortunate direction arrives during such an event. We focus on the separation of subtidal (weekly-scale) processes from those which are caused by a single storm and on establishing how much these two kinds of events have contributed to the increase in the extreme water levels in the eastern Baltic Sea. The analysis relies on numerically reconstructed sea levels produced by the RCO (Rossby Center, Swedish Meteorological and Hydrological Institute) ocean model for 1961-2005. The reaction of sea surface to single storm events is isolated from the local water level time series using a running average over a fixed interval. The distribution of average water levels has an almost Gaussian shape for averaging lengths from a few days to a few months. The residual (total water level minus the average) can be interpreted as a proxy of the local storm surges. Interestingly, for the 8-day average this residual almost exactly follows the exponential distribution. Therefore, for this averaging length the heights of local storm surges reflect an underlying Poisson process. This feature is universal for the entire eastern Baltic Sea coast. The slopes of the exponential distribution for low and high water levels are different, vary markedly along the coast and provide a useful quantification of the vulnerability of single coastal segments with respect to coastal flooding. The formal linear trends in the extreme values of these water level components exhibit radically different spatial variations. The slopes of the trends in the weekly average are almost constant (~4 cm/decade for 8-day running average) along the entire eastern Baltic Sea coast. This first of all indicates that the duration of storm sequences has increased. The trends for maxima of local storm surge heights represent almost the entire spatial variability in the water level extremes. Their slopes are almost zero at the open Baltic Proper coasts of the Western Estonian archipelago. Therefore, an increase in wind speed in strong storms is unlikely in this area. In contrast, the slopes in question reach 5-7 cm/decade in the eastern Gulf of Finland and Gulf of Riga. This feature suggests that wind direction in strongest storms may have rotated in the northern Baltic Sea.
NASA Astrophysics Data System (ADS)
Pineda, Luis E.; Willems, Patrick
2017-04-01
Weather and climatic characterization of rainfall extremes is both of scientific and societal value for hydrometeorogical risk management, yet discrimination of local and large-scale forcing remains challenging in data-scarce and complex terrain environments. Here, we present an analysis framework that separate weather (seasonal) regimes and climate (inter-annual) influences using data-driven process identification. The approach is based on signal-to-noise separation methods and extreme value (EV) modeling of multisite rainfall extremes. The EV models use a semi-automatic parameter learning [1] for model identification across temporal scales. At weather scale, the EV models are combined with a state-based hidden Markov model [2] to represent the spatio-temporal structure of rainfall as persistent weather states. At climatic scale, the EV models are used to decode the drivers leading to the shift of weather patterns. The decoding is performed into a climate-to-weather signal subspace, built via dimension reduction of climate model proxies (e.g. sea surface temperature and atmospheric circulation) We apply the framework to the Western Andean Ridge (WAR) in Ecuador and Peru (0-6°S) using ground data from the second half of the 20th century. We find that the meridional component of winds is what matters for the in-year and inter-annual variability of high rainfall intensities alongside the northern WAR (0-2.5°S). There, low-level southerly winds are found as advection drivers for oceanic moist of the normal-rainy season and weak/moderate the El Niño (EN) type; but, the strong EN type and its unique moisture surplus is locally advected at lowlands in the central WAR. Moreover, the coastal ridges, south of 3°S dampen meridional airflows, leaving local hygrothermal gradients to control the in-year distribution of rainfall extremes and their anomalies. Overall, we show that the framework, which does not make any prior assumption on the explanatory power of the weather and climate drivers, allows identification of well-known features of the regional climate in a purely data-driven fashion. Thus, this approach shows potential for characterization of precipitation extremes in data-scarce and orographically complex regions in which model reconstructions are the only climate proxies References [1] Mínguez, R., F.J. Méndez, C. Izaguirre, M. Menéndez, and I.J. Losada (2010), Pseudooptimal parameter selection of non-stationary generalized extreme value models for environmental variables, Environ. Modell. Softw. 25, 1592-1607. [2] Pineda, L., P. Willems (2016), Multisite Downscaling of Seasonal Predictions to Daily Rainfall Characteristics over Pacific-Andean River Basins in Ecuador and Peru using a non-homogenous hidden Markov model, J. Hydrometeor, 17(2), 481-498, doi:10.1175/JHM-D-15-0040.1, http://journals.ametsoc.org/doi/full/10.1175/JHM-D-15-0040.1
Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions
Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan
2015-01-01
Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. PMID:26551357
Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions.
Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan
2015-01-01
Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change.
Conservation at a slow pace: terrestrial gastropods facing fast-changing climate
Ansart, Armelle
2017-01-01
Abstract The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity. PMID:28852510
Conservation at a slow pace: terrestrial gastropods facing fast-changing climate.
Nicolai, Annegret; Ansart, Armelle
2017-01-01
The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity.
Experience of 14 years of emergency reconstruction of electrical injuries.
Zhu, Zhi-Xiang; Xu, Xiao-Guang; Li, Wei-Ping; Wang, Dao-Xin; Zhang, Li-Yong; Chen, Li-Ying; Liu, Tian-yi
2003-02-01
Although there have been great advances in the treatment of electrical injuries in the last 20 years, the extremity loss ratio in electrical injuries remains at an unacceptably high level. The primary cause is due to the progressive tissue necrosis which results in the continuous extension of necrosis in the wound, leading to loss of the whole injured extremity. This study reports attempts to break the dangerous tissue necrosis circle and save the form and function of damaged extremities. After 14 years of systematic experimental and clinical studies a successful comprehensive urgent reconstruction alternative (CURA) for electrical injuries is proposed. CURA includes: debriding the wound as early as possible after injury; preserving the vital tissue structures as much as possible, such as nerves, vessels, joints, tendons, bone, even though they have undergone devitalization or local necrosis; repairing these vital tissues during the first surgery if functional reconstruction requires it; protecting the wound bed by covering with tissue flaps of rich blood supply; improving flap survival through moist dressings supported by continuous irrigation beneath the flaps for a 24-72h period after surgery with measures to control local infection; and last, giving general systemic treatment with vasoactive agents and antibiotics. Four hundred and fifty nine wounds in 155 patients suffering from electrical injuries have been successfully treated with this technique between 1986 and 2000 and are reported in this paper. Satisfactory results were obtained with the extremity loss proportion reduced to less than 9% compared with 41.5% during the 10 years before 1984 in the same hospital. The authors suggest that CURA is an effective and workable method for treatment of electrical injuries.
Diagnosing causes of extreme aerosol optical depth events
NASA Astrophysics Data System (ADS)
Bernstein, D. N.; Sullivan, R.; Crippa, P.; Thota, A.; Pryor, S. C.
2017-12-01
Aerosol burdens and optical properties exhibit substantial spatiotemporal variability, and simulation of current and possible future aerosol burdens and characteristics exhibits relatively high uncertainty due to uncertainties in emission estimates and in chemical and physical processes associated with aerosol formation, dynamics and removal. We report research designed to improve understanding of the causes and characteristics of extreme aerosol optical depth (AOD) at the regional scale, and diagnose and attribute model skill in simulating these events. Extreme AOD events over the US Midwest are selected by identifying all dates on which AOD in a MERRA-2 reanalysis grid cell exceeds the local seasonally computed 90th percentile (p90) value during 2004-2016 and then finding the dates on which the highest number of grid cells exceed their local p90. MODIS AOD data are subsequently used to exclude events dominated by wildfires. MERRA-2 data are also analyzed within a synoptic classification to determine in what ways the extreme AOD events are atypical and to identify possible meteorological `finger-prints' that can be detected in regional climate model simulations of future climate states to project possible changes in the occurrence of extreme AOD. Then WRF-Chem v3.6 is applied at 12-km resolution and regridded to the MERRA-2 resolution over eastern North America to quantify model performance, and also evaluated using in situ measurements of columnar AOD (AERONET) and near-surface PM2.5 (US EPA). Finally the sensitivity to (i) spin-up time (including procedure used to spin-up the chemistry), (ii) modal versus sectional aerosol schemes, (iii) meteorological nudging, (iv) chemistry initial and boundary conditions, and (v) anthropogenic emissions is quantified. Despite recent declines in mean AOD, supraregional (> 1000 km) extreme AOD events continue to occur. During these events AOD exceeds 0.6 in many Midwestern grid cells for multiple consecutive days. In all seasons WRF-Chem exhibits some skill in reproducing the intensity of these events, but not the precise location of the AOD maximum. Model skill is generally (but not uniformly) highest for simulations employing MOZART LBC/IBC, modal aerosol description, meteorological nudging and a 3 day spin-up, with little or no sensitivity to longer spin up times.
Mapping Dependence Between Extreme Rainfall and Storm Surge
NASA Astrophysics Data System (ADS)
Wu, Wenyan; McInnes, Kathleen; O'Grady, Julian; Hoeke, Ron; Leonard, Michael; Westra, Seth
2018-04-01
Dependence between extreme storm surge and rainfall can have significant implications for flood risk in coastal and estuarine regions. To supplement limited observational records, we use reanalysis surge data from a hydrodynamic model as the basis for dependence mapping, providing information at a resolution of approximately 30 km along the Australian coastline. We evaluated this approach by comparing the dependence estimates from modeled surge to that calculated using historical surge records from 79 tide gauges around Australia. The results show reasonable agreement between the two sets of dependence values, with the exception of lower seasonal variation in the modeled dependence values compared to the observed data, especially at locations where there are multiple processes driving extreme storm surge. This is due to the combined impact of local bathymetry as well as the resolution of the hydrodynamic model and its meteorological inputs. Meteorological drivers were also investigated for different combinations of extreme rainfall and surge—namely rain-only, surge-only, and coincident extremes—finding that different synoptic patterns are responsible for each combination. The ability to supplement observational records with high-resolution modeled surge data enables a much more precise quantification of dependence along the coastline, strengthening the physical basis for assessments of flood risk in coastal regions.
Extreme ultraviolet probing of nonequilibrium dynamics in high energy density germanium
NASA Astrophysics Data System (ADS)
Principi, E.; Giangrisostomi, E.; Mincigrucci, R.; Beye, M.; Kurdi, G.; Cucini, R.; Gessini, A.; Bencivenga, F.; Masciovecchio, C.
2018-05-01
Intense femtosecond infrared laser pulses induce a nonequilibrium between thousands of Kelvin hot valence electrons and room-temperature ions in a germanium sample foil. The evolution of this exotic state of matter is monitored with time-resolved extreme ultraviolet absorption spectroscopy across the Ge M2 ,3 edge (≃30 eV ) using the FERMI free-electron laser. We analyze two distinct regimes in the ultrafast dynamics in laser-excited Ge: First, on a subpicosecond time scale, the electron energy distribution thermalizes to an extreme temperature unreachable in equilibrium solid germanium; then, during the following picoseconds, the lattice reacts strongly altering the electronic structure and resulting in melting to a metallic state alongside a breakdown of the local atomic order. Data analysis, based on a hybrid approach including both numerical and analytical calculations, provides an estimation of the electron and ion temperatures, the electron density of states, the carrier-phonon relaxation time, as well as the carrier density and lattice heat capacity under those extreme nonequilibrium conditions. Related structural anomalies, such as the occurrence of a transient low-density liquid phase and the possible drop in lattice heat capacity are discussed.
NASA Technical Reports Server (NTRS)
Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi
2016-01-01
Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, John S.; Lekawa-Raus, Agnieszka; Rickel, Dwight G.
We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classicalmore » MR involving electronic mobility. Subtracting high-field fits from the aligned fiber’s MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber’s room temperature resistance, appears to lack MR field dependence.« less
NASA Astrophysics Data System (ADS)
Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro
2016-07-01
Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.
Bulmer, John S; Lekawa-Raus, Agnieszka; Rickel, Dwight G; Balakirev, Fedor F; Koziol, Krzysztof K
2017-09-22
We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classical MR involving electronic mobility. Subtracting high-field fits from the aligned fiber's MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber's room temperature resistance, appears to lack MR field dependence.
Bulmer, John S.; Lekawa-Raus, Agnieszka; Rickel, Dwight G.; ...
2017-09-22
We explored high-field (60 T) magneto-resistance (MR) with two carbon nanotube (CNT) material classes: (1) unaligned single-wall CNTs (SWCNT) films with controlled metallic SWCNT concentrations and doping degree and (2) CNT fiber with aligned, long-length microstructure. All unaligned SWCNT films showed localized hopping transport where high-field MR saturation definitively supports spin polarization instead of a more prevalent wave function shrinking mechanism. Nitric acid exposure induced an insulator to metal transition and reduced the positive MR component. Aligned CNT fiber, already on the metal side of the insulator to metal transition, had positive MR without saturation and was assigned to classicalmore » MR involving electronic mobility. Subtracting high-field fits from the aligned fiber’s MR yielded an unconfounded negative MR, which was assigned to weak localization. It is concluded that fluctuation induced tunnelling, an extrinsic transport model accounting for most of the aligned fiber’s room temperature resistance, appears to lack MR field dependence.« less
Interplay of Anderson localization and quench dynamics
NASA Astrophysics Data System (ADS)
Rahmani, Armin; Vishveshwara, Smitha
2018-06-01
In the context of an isolated three-dimensional noninteracting fermionic lattice system, we study the effects of a sudden quantum quench between a disorder-free situation and one in which disorder results in a mobility edge and associated Anderson localization. Salient post-quench features hinge upon the overlap between momentum states and post-quench eigenstates and whether these latter states are extended or localized. We find that the post-quench momentum distribution directly reflects these overlaps. For the local density, we show that disorder generically prevents the equilibration of quantum expectation values to a steady state and that the persistent fluctuations have a nonmonotonic dependence on the strength of disorder. We identify two distinct types of fluctuations, namely, temporal fluctuations describing the time-dependent fluctuations of the local density around its time average and sample-to-sample fluctuations characterizing the variations of these time averages from one realization of disorder to another. We demonstrate that both of these fluctuations vanish for extremely extended as well as extremely localized states, peaking at some intermediate value.
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; ...
2018-02-12
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less
Energy density engineering via zero-admittance domains in all-dielectric stratified materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien
Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less
NASA Astrophysics Data System (ADS)
Chen, Liang; Dirmeyer, Paul A.
2018-05-01
Land use/land cover change (LULCC) exerts significant influence on regional climate extremes, but its relative importance compared with other anthropogenic climate forcings has not been thoroughly investigated. This study compares land use forcing with other forcing agents in explaining the simulated historical temperature extreme changes since preindustrial times in the CESM-Last Millennium Ensemble (LME) project. CESM-LME suggests that the land use forcing has caused an overall cooling in both warm and cold extremes, and has significantly decreased diurnal temperature range (DTR). Due to the competing effects of the GHG and aerosol forcings, the spatial pattern of changes in 1850-2005 climatology of temperature extremes in CESM-LME can be largely explained by the land use forcing, especially for hot extremes and DTR. The dominance of land use forcing is particularly evident over Europe, eastern China, and the central and eastern US. Temporally, the land-use cooling is relatively stable throughout the historical period, while the warming of temperature extremes is mainly influenced by the enhanced GHG forcing, which has gradually dampened the local dominance of the land use effects. Results from the suite of CMIP5 experiments partially agree with the local dominance of the land use forcing in CESM-LME, but inter-model discrepancies exist in the distribution and sign of the LULCC-induced temperature changes. Our results underline the overall importance of LULCC in historical temperature extreme changes, implying land use forcing should be highlighted in future climate projections.
Changes in extreme events and the potential impacts on human health.
Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher
2018-04-01
Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.
Farmers' perceptions of goat kid mortality under communal farming in Eastern Cape, South Africa.
Slayi, Mhlangabezi; Maphosa, Viola; Fayemi, Olutope Peter; Mapfumo, Lizwell
2014-10-01
Rearing of goats under communal farming conditions is characterised by high kid mortality and low weaning percentages. A survey was conducted to determine farmers' perceptions on the causes of kid mortality during summer under the communal farming system in Nkonkobe Local Municipality in the Eastern Cape, South Africa. This was done by administering questionnaires to a total of 162 respondents in 14 villages around Nkonkobe Local Municipality. The study showed that majority of farmers (75 %) keep flock sizes of less than 10 goats and kids, and this indicates that goat production in Nkonkobe Local Municipality is suppressed. According to the farmers, diseases (89 %), endo-parasites (72 %) and ecto-parasites (68 %) were perceived as the major causes of kid mortality. Other causes reported include starvation (15 %), extreme weather conditions (28 %), abortion (7 %), theft (35 %), diarrhoea (43 %), accidents (10 %) and wounds (9 %). The low number of goats could be attributed to high mortalities. It was also found that all causes reported by farmers played a role in high kid mortality in Nkonkobe Local Municipality. However, the causes which require more emphasis to formulate extension support were tick-borne diseases and parasites. This study provided baseline information on possible causes of kid mortalities in Nkonkobe Local Municipality. There is, however, a need to conduct further studies to determine actual causes of high kid mortalities so as to develop preventive strategies that would minimize kid mortality for good economic returns.
NASA Astrophysics Data System (ADS)
Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita
2015-04-01
Extreme events of Tmax can threaten maize production on Andalusia (Ruiz-Ramos et al., 2011). The objective of this work is to attempt a quantification of the effects of Tmax extreme events on the previously identified (Gabaldón et al., 2013) local adaptation strategies to climate change of irrigated maize crop in Andalusia for the first half of the 21st century. This study is focused on five Andalusia locations. Local adaptation strategies identified consisted on combinations of changes on sowing dates and choice of cultivar (Gabaldón et al., 2013). Modified cultivar features were the duration of phenological phases and the grain filling rate. The phenological and yield simulations with the adaptative changes were obtained from a modelling chain: current simulated climate and future climate scenarios (2013-2050) were taken from a group of regional climate models at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). After bias correcting these data for temperature and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) crop simulations were generated by the CERES-maize model (Jones and Kiniry, 1986) under DSSAT platform, previously calibrated and validated. Quantification of the effects of extreme Tmax on maize yield was computed for different phenological stages following Teixeira et al. (2013). A heat stress index was computed; this index assumes that yield-damage intensity due to heat stress increases linearly from 0.0 at a critical temperature to a maximum of 1.0 at a limit temperature. The decrease of crop yield is then computed by a normalized production damage index which combines attainable yield and heat stress index for each location. Selection of the most suitable adaptation strategy will be reviewed and discussed in light of the quantified effect on crop yield of the projected change of Tmax extreme events. This study will contribute to MACSUR knowledge Hub within the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Gabaldón C, Lorite IJ, Mínguez MI, Dosio A, Sánchez-Sánchez E and Ruiz-Ramos M, 2013. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century. Geophysical Research Abstracts. Vol. 15, EGU2013-13625, 2013. EGU General Assembly 2013, April 2013, Vienna, Austria. Jones C.A. and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Ruiz-Ramos M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol. 2013;170(15):206-215.
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-05-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.
The extreme ultraviolet spectrum of G191 - B2B and the ionization of the local interstellar medium
NASA Technical Reports Server (NTRS)
Green, James; Jelinsky, Patrick; Bowyer, Stuart
1990-01-01
The measurement of the extreme ultraviolet spectrum of the nearby hot white dwarf G191 - B2B is reported. The results are used to derive interstellar neutral column densities of 1.6 + or - 0.2 x 10 to the 18th/sq cm and 9.8 + 2.8 or - 2.6 x 10 to the 16th/sq cm for H I and He I, respectively. This ratio of neutral hydrogen to neutral helium indicates that the ionization of hydrogen along the line of sight is less than about 30 percent unless significant helium ionization is present. The scenario in which the hydrogen is highly ionized and the helium is neutral is ruled out by this observation.
Searching for intermediate-mass black holes in extremely-metal poor galaxies
NASA Astrophysics Data System (ADS)
Mezcua, Mar
2016-09-01
Extremely metal-poor dwarf galaxies (XMPs) are star-forming, low-mass galaxies with metallicites highly sub-solar. Their regions of star formation could be triggered by the accretion of pristine gas from the cosmic web and harbour Population III stars. XMPs are thus ideal laboratories for searching for the seed black holes or intermediate-mass black holes (IMBHs) that populated the early Universe. The combination of X-ray, radio and optical observations offer the best tool for detecting such IMBHs in the local Universe. We propose Chandra observations of a sample of XMPs whose optical spectra indicate the possible presence of an active black hole of 1e4 - 1e6 Msun. The Chandra data could confirm this and yield the first detection of an IMBH in these type of galaxies.
Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates
2013-01-01
Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes. PMID:23522305
Local reconstruction in computed tomography of diffraction enhanced imaging
NASA Astrophysics Data System (ADS)
Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia
2007-07-01
Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.
2014-01-01
Background Discerning the traits evolving under neutral conditions from those traits evolving rapidly because of various selection pressures is a great challenge. We propose a new method, composite selection signals (CSS), which unifies the multiple pieces of selection evidence from the rank distribution of its diverse constituent tests. The extreme CSS scores capture highly differentiated loci and underlying common variants hauling excess haplotype homozygosity in the samples of a target population. Results The data on high-density genotypes were analyzed for evidence of an association with either polledness or double muscling in various cohorts of cattle and sheep. In cattle, extreme CSS scores were found in the candidate regions on autosome BTA-1 and BTA-2, flanking the POLL locus and MSTN gene, for polledness and double muscling, respectively. In sheep, the regions with extreme scores were localized on autosome OAR-2 harbouring the MSTN gene for double muscling and on OAR-10 harbouring the RXFP2 gene for polledness. In comparison to the constituent tests, there was a partial agreement between the signals at the four candidate loci; however, they consistently identified additional genomic regions harbouring no known genes. Persuasively, our list of all the additional significant CSS regions contains genes that have been successfully implicated to secondary phenotypic diversity among several subpopulations in our data. For example, the method identified a strong selection signature for stature in cattle capturing selective sweeps harbouring UQCC-GDF5 and PLAG1-CHCHD7 gene regions on BTA-13 and BTA-14, respectively. Both gene pairs have been previously associated with height in humans, while PLAG1-CHCHD7 has also been reported for stature in cattle. In the additional analysis, CSS identified significant regions harbouring multiple genes for various traits under selection in European cattle including polledness, adaptation, metabolism, growth rate, stature, immunity, reproduction traits and some other candidate genes for dairy and beef production. Conclusions CSS successfully localized the candidate regions in validation datasets as well as identified previously known and novel regions for various traits experiencing selection pressure. Together, the results demonstrate the utility of CSS by its improved power, reduced false positives and high-resolution of selection signals as compared to individual constituent tests. PMID:24636660
Laser immunotherapy for metastatic pancreatic cancer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhou, Feifan
2017-02-01
Pancreatic cancer is an extremely malignant disease with high mortality rate. Currently there is no effective therapeutic strategy for highly metastatic pancreatic cancers. Laser immunotherapy (LIT) is a combination therapeutic approach of targeted phototherapy and immunotherapy, which could destroy treated primary tumors with elimination of untreated metastases. LIT affords a remarkable efficacy in suppressing tumor growth in pancreatic tumors in mice, and results in complete tumor regression in many cases. LIT could synergize targeted phototherapy and immunological effects of immunoadjuvant, which represent a promising treatment modality to induce systemic antitumor response through a local intervention, paving the way for the treatment of highly metastatic pancreatic cancers.
Localized surface plasmons in vibrating graphene nanodisks
NASA Astrophysics Data System (ADS)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan
2016-02-01
Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.
NASA Astrophysics Data System (ADS)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
Knowles, Martyn; Nation, David A; Timaran, David E; Gomez, Luis F; Baig, M Shadman; Valentine, R James; Timaran, Carlos H
2015-01-01
Fenestrated endovascular aortic aneurysm repair (FEVAR) is an alternative to open repair in patients with complex abdominal aortic aneurysms who are neither fit nor suitable for standard open or endovascular repair. Chimney and snorkel grafts are other endovascular alternatives but frequently require bilateral upper extremity access that has been associated with a 3% to 10% risk of stroke. However, upper extremity access is also frequently required for FEVAR because of the caudal orientation of the visceral vessels. The purpose of this study was to assess the use of upper extremity access for FEVAR and the associated morbidity. During a 5-year period, 148 patients underwent FEVAR, and upper extremity access for FEVAR was used in 98 (66%). Outcomes were compared between those who underwent upper extremity access and those who underwent femoral access alone. The primary end point was a cerebrovascular accident or transient ischemic attack, and the secondary end point was local access site complications. The mean number of fenestrated vessels was 3.07 ± 0.81 (median, 3) for a total of 457 vessels stented. Percutaneous upper extremity access was used in 12 patients (12%) and open access in 86 (88%). All patients who required a sheath size >7F underwent high brachial open access, with the exception of one patient who underwent percutaneous axillary access with a 12F sheath. The mean sheath size was 10.59F ± 2.51F (median, 12F), which was advanced into the descending thoracic aorta, allowing multiple wire and catheter exchanges. One hemorrhagic stroke (one of 98 [1%]) occurred in the upper extremity access group, and one ischemic stroke (one of 54 [2%]) occurred in the femoral-only access group (P = .67). The stroke in the upper extremity access group occurred 5 days after FEVAR and was related to uncontrolled hypertension, whereas the stroke in the femoral group occurred on postoperative day 3. Neither patient had signs or symptoms of a stroke immediately after FEVAR. The right upper extremity was accessed six times without a stroke (0%) compared with the left being accessed 92 times with one stroke (1%; P = .8). Four patients (4%) had local complications related to upper extremity access. One (1%) required exploration for an expanding hematoma after manual compression for a 7F sheath, one (1%) required exploration for hematoma and neurologic symptoms after open access for a 12F sheath, and two patients (2%) with small hematomas did not require intervention. Two (two of 12 [17%]) of these complications were in the percutaneous access group, which were significantly more frequent than in the open group (two of 86 [2%]; P = .02). Upper extremity access appears to be a safe and feasible approach for patients undergoing FEVAR. Open exposure in the upper extremity may be safer than percutaneous access during FEVAR. Unlike chimney and snorkel grafts, upper extremity access during FEVAR is not associated with an increased risk of stroke, despite the need for multiple visceral vessel stenting. Copyright © 2015 Society for Vascular Surgery. All rights reserved.
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
16 CFR 1207.4 - Recommended standards for materials of manufacture.
Code of Federal Regulations, 2011 CFR
2011-01-01
... exposure to rain, snow, ice, sunlight, local, normal temperature extremes, local normal wind variations... be toxic to man or harmful to the environment under intended use and reasonably foreseeable abuse or...
16 CFR 1207.4 - Recommended standards for materials of manufacture.
Code of Federal Regulations, 2012 CFR
2012-01-01
... exposure to rain, snow, ice, sunlight, local, normal temperature extremes, local normal wind variations... be toxic to man or harmful to the environment under intended use and reasonably foreseeable abuse or...
16 CFR 1207.4 - Recommended standards for materials of manufacture.
Code of Federal Regulations, 2014 CFR
2014-01-01
... exposure to rain, snow, ice, sunlight, local, normal temperature extremes, local normal wind variations... be toxic to man or harmful to the environment under intended use and reasonably foreseeable abuse or...
16 CFR 1207.4 - Recommended standards for materials of manufacture.
Code of Federal Regulations, 2010 CFR
2010-01-01
... exposure to rain, snow, ice, sunlight, local, normal temperature extremes, local normal wind variations... be toxic to man or harmful to the environment under intended use and reasonably foreseeable abuse or...
Shear melting and high temperature embrittlement: theory and application to machining titanium.
Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J
2015-04-24
We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.
Local adaptation along an environmental cline in a species with an inversion polymorphism.
Wellenreuther, M; Rosenquist, H; Jaksons, P; Larson, K W
2017-06-01
Polymorphic inversions are ubiquitous across the animal kingdom and are frequently associated with clines in inversion frequencies across environmental gradients. Such clines are thought to result from selection favouring local adaptation; however, empirical tests are scarce. The seaweed fly Coelopa frigida has an α/β inversion polymorphism, and previous work demonstrated that the α inversion frequency declines from the North Sea to the Baltic Sea and is correlated with changes in tidal range, salinity, algal composition and wrackbed stability. Here, we explicitly test the hypothesis that populations of C. frigida along this cline are locally adapted by conducting a reciprocal transplant experiment of four populations along this cline to quantify survival. We found that survival varied significantly across treatments and detected a significant Location x Substrate interaction, indicating local adaptation. Survival models showed that flies from locations at both extremes had highest survival on their native substrates, demonstrating that local adaptation is present at the extremes of the cline. Survival at the two intermediate locations was, however, not elevated at the native substrates, suggesting that gene flow in intermediate habitats may override selection. Together, our results support the notion that population extremes of species with polymorphic inversions are often locally adapted, even when spatially close, consistent with the growing view that inversions can have direct and strong effects on the fitness of species. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Rychlik, Igor; Mao, Wengang
2018-02-01
The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.
Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.
Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V
2017-08-04
Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin
2014-01-01
The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities. PMID:25083351
Jourdan, Jonas; Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin
2014-01-01
The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sole, Claudio V., E-mail: cvsole@uc.cl; School of Medicine, Complutense University, Madrid; Service of Radiation Oncology, Instituto de Radiomedicina, Santiago
Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up ofmore » 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results.« less
Changes in extremes due to half a degree warming in observations and models
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.
2017-12-01
Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Matsumine, Akihiko; Tsujii, Masaya; Nakamura, Tomoki; Asanuma, Kunihiro; Matsubara, Takao; Kakimoto, Takuya; Yada, Yuki; Takada, Akinori; Ii, Noriko; Nomoto, Yoshihito; Sudo, Akihiro
2016-08-12
When a soft tissue sarcoma (STS) is located at the distal part of an extremity and involves the tendon, a wide excision usually causes severe functional disability. We therefore developed a minimally invasive surgical technique using intraoperative electron-beam radiotherapy (IOERT) to reduce the incidence of post-operative functional disability in patients with peri-/intra-tendinous STS. We assessed the clinical outcomes of the novel minimally invasive surgery. The study population included five patients who received treatment for distal extremity STSs. After elevating the tumor mass, including the tendon and nerve from the tumor bed with a wide margin, a lead board was inserted beneath the tumor mass to shield the normal tissue. IOERT (25-50 Gy) was then applied, and the tumor excised with care taken to maintain the continuity of the tendon. In a desmoid patient, local recurrence was observed outside the irradiated field. No cases of neuropathy or bone necrosis were observed. The mean limb function score was excellent in all patients. None of the high-grade sarcoma patients had local recurrence or distant metastasis. Although the current study is only a pilot study with a small number of patients, it shows that this minimally invasive procedure has the potential to become a standard treatment option for selected patients. H17-250 (registered 2 November 2005) and H25-250 (modified from H17-250, registered 5 December 2013).
NASA Astrophysics Data System (ADS)
Zonneveld, Karin; Clotten, Caroline; Chen, Liang
2015-04-01
Sediments of a tephra-dated marine sediment core located at the distal part of the Po-river discharge plume (southern Italy) have been studied with a three annual resolution. Based on the variability in the dinoflagellate cyst content detailed reconstructions have been established of variability in precipitation related river discharge rates and local air temperature. Furthermore about the variability in distort water quality has been reconstructed. We show that both precipitation and temperature signals vary in tune with cyclic changes in solar insolation. On top of these cyclic changes, short term extremes in temperature and precipitation can be observed that can be interpreted to reflect periods of local weather extremes. Comparison of our reconstructions with historical information suggest that times of high temperatures and maximal precipitation corresponds to the period of maximal expansion of the Roman Empire. We have strong indications that at this time discharge waters might have contained higher nutrient concentrations compared to previous and later time intervals suggesting anthropogenic influence of the water quality. First pilot-results suggest that the decrease in temperature reconstructed just after the "Roman Optimum" corresponds to an increase in numbers of armored conflicts between the Roman and German cultures. Furthermore we observe a resemblance in timing of short-term intervals with cold weather spells during the early so called "Dark-Age-Period" to correspond to epidemic/pandemic events in Europe.
Liu, Zirui; Wang, Yuesi; Hu, Bo; Ji, Dongsheng; Zhang, Junke; Wu, Fangkun; Wan, Xin; Wang, Yonghong
2016-04-01
Extreme haze episodes repeatedly shrouded Beijing during the winter of 2012-2013, causing major environmental and health problems. To better understand these extreme events, particle number size distribution (PNSD) and particle chemical composition (PCC) data collected in an intensive winter campaign in an urban site of Beijing were used to investigate the sources of ambient fine particles. Positive matrix factorization (PMF) analysis resolved a total of eight factors: two traffic factors, combustion factors, secondary aerosol, two accumulation mode aerosol factors, road dust, and long-range transported (LRT) dust. Traffic emissions (54%) and combustion aerosol (27%) were found to be the most important sources for particle number concentration, whereas combustion aerosol (33%) and accumulation mode aerosol (37%) dominated particle volume concentrations. Chemical compositions and sources of fine particles changed dynamically in the haze episodes. An enhanced role of secondary inorganic species was observed in the formation of haze pollution. Regional transport played an important role for high particles, contribution of which was on average up to 24-49% during the haze episodes. Secondary aerosols from urban background presented the largest contributions (45%) for the rapid increase of fine particles in the severest haze episode. In addition, the invasion of LRT dust aerosols further elevated the fine particles during the extreme haze episode. Our results showed a clear impact of regional transport on the local air pollution, suggesting the importance of regional-scale emission control measures in the local air quality management of Beijing.
NASA Astrophysics Data System (ADS)
Munoz-Arriola, Francisco; Sharma, Ashutosh; Werner, Katherine; Chacon, Juan-Carlos; Corzo, Gerald; Goyal, Manish-Kumar
2017-04-01
An increasing incidence of Hydrometeorological and Climate Extreme Events (EHCEs) is challenging food, water, and ecosystem services security at local to global contexts. This study aims to understand how a large-scale representation of agroecosystems and ecosystems respond to EHCE in the Northern Highplains, US. To track such responses the Variable Infiltration Capacity model (VIC) Land Surface Hydrology model was used and two experiments were implemented. The first experiment uses the LAI MODIS15A2 product to capture dynamic responses of vegetation with a time span from 2000 to 2013. The second experiment used a climatological fixed seasonal cycle calculated as the average from the 2000-2013 dynamic MODIS15A2 product to isolate vegetation from soil physical responses. Based on the analyses of multiple hydrological variables and state variables and high-level organization of agroecosystems and ecosystems, we evidence how the influence of droughts and anomalously wet conditions affect hydrological resilience at large scale.
Patterns of change in high frequency precipitation variability over North America.
Roque-Malo, Susana; Kumar, Praveen
2017-09-18
Precipitation variability encompasses attributes associated with the sequencing and duration of events of the full range of magnitudes. However, climate change studies have largely focused on extreme events. Using analyses of long-term weather station data, we show that high frequency events, such as fraction of wet days in a year and average duration of wet and dry periods, are undergoing significant changes across North America. Further, these changes are more prevalent and larger than those associated with extremes. Such trends also exist for events of a range of magnitudes. Existence of localized clusters with opposing trend to that of broader geographic variation illustrates the role of microclimate and other drivers of trends. Such hitherto unknown patterns over the entire North American continent have the potential to significantly inform our characterization of the resilience and vulnerability of a broad range of ecosystems and agricultural and socio-economic systems. They can also set new benchmarks for climate model assessments.
A nonstationary analysis for the Northern Adriatic extreme sea levels
NASA Astrophysics Data System (ADS)
Masina, Marinella; Lamberti, Alberto
2013-09-01
The historical data from the Trieste, Venice, Porto Corsini, and Rimini tide gauges have been used to investigate the spatial and temporal changes in extreme high water levels in the Northern Adriatic. A detailed analysis of annual mean sea level evolution at the three longest operating stations shows a coherent behavior both on a regional and global scale. A slight increase in magnitude of extreme water elevations, after the removal of the regularized annual mean sea level necessary to eliminate the effect of local subsidence and sea level rise, is found at the Venice and Porto Corsini stations. It seems to be mainly associated with a wind regime change occurred in the 1990s, due to an intensification of Bora wind events after their decrease in frequency and intensity during the second half of the 20th century. The extreme values, adjusted for the annual mean sea level trend, are modeled using a time-dependent GEV distribution. The inclusion of seasonality in the GEV parameters considerably improves the data fitting. The interannual fluctuations of the detrended monthly maxima exhibit a significant correlation with the variability of the large-scale atmospheric circulation represented by the North Atlantic Oscillation and Arctic Oscillation indices. The different coast exposure to the Bora and Sirocco winds and their seasonal character explain the various seasonal patterns of extreme sea levels observed at the tide gauges considered in the present analysis.
Hung, Man; Hon, Shirley D; Cheng, Christine; Franklin, Jeremy D; Aoki, Stephen K; Anderson, Mike B; Kapron, Ashley L; Peters, Christopher L; Pelt, Christopher E
2014-12-01
The applicability and validity of many patient-reported outcome measures in the high-functioning population are not well understood. To compare the psychometric properties of the modified Harris Hip Score (mHHS), the Hip Outcome Score activities of daily living subscale (HOS-ADL) and sports (HOS-sports), and the Lower Extremity Computerized Adaptive Test (LE CAT). The hypotheses was that all instruments would perform well but that the LE CAT would show superiority psychometrically because a combination of CAT and a large item bank allows for a high degree of measurement precision. Cohort study (diagnosis); Level of evidence, 2. Data were collected from 472 advanced-age, active participants from the Huntsman World Senior Games in 2012. Validity evidences were examined through item fit, dimensionality, monotonicity, local independence, differential item functioning, person raw score to measure correlation, and instrument coverage (ie, ceiling and floor effects), and reliability evidences were examined through Cronbach alpha and person separation index. All instruments demonstrated good item fit, unidimensionality, monotonicity, local independence, and person raw score to measure correlations. The HOS-ADL had high ceiling effects of 36.02%, and the mHHS had ceiling effects of 27.54%. The LE CAT had ceiling effects of 8.47%, and the HOS-sports had no ceiling effects. None of the instruments had any floor effects. The mHHS had a very low Cronbach alpha of 0.41 and an extremely low person separation index of 0.08. Reliabilities for the LE CAT were excellent and for the HOS-ADL and HOS-sports were good. The LE CAT showed better psychometric properties overall than the HOS-ADL, HOS-sports, and mHHS for the senior population. The mHHS demonstrated pronounced ceiling effects and poor reliabilities that should be of concern. The high ceiling effects for the HOS-ADL were also of concern. The LE CAT was superior in all psychometric aspects examined in this study. Future research should investigate the LE CAT for wider use in different populations.
Hung, Man; Hon, Shirley D.; Cheng, Christine; Franklin, Jeremy D.; Aoki, Stephen K.; Anderson, Mike B.; Kapron, Ashley L.; Peters, Christopher L.; Pelt, Christopher E.
2014-01-01
Background: The applicability and validity of many patient-reported outcome measures in the high-functioning population are not well understood. Purpose: To compare the psychometric properties of the modified Harris Hip Score (mHHS), the Hip Outcome Score activities of daily living subscale (HOS-ADL) and sports (HOS-sports), and the Lower Extremity Computerized Adaptive Test (LE CAT). The hypotheses was that all instruments would perform well but that the LE CAT would show superiority psychometrically because a combination of CAT and a large item bank allows for a high degree of measurement precision. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Data were collected from 472 advanced-age, active participants from the Huntsman World Senior Games in 2012. Validity evidences were examined through item fit, dimensionality, monotonicity, local independence, differential item functioning, person raw score to measure correlation, and instrument coverage (ie, ceiling and floor effects), and reliability evidences were examined through Cronbach alpha and person separation index. Results: All instruments demonstrated good item fit, unidimensionality, monotonicity, local independence, and person raw score to measure correlations. The HOS-ADL had high ceiling effects of 36.02%, and the mHHS had ceiling effects of 27.54%. The LE CAT had ceiling effects of 8.47%, and the HOS-sports had no ceiling effects. None of the instruments had any floor effects. The mHHS had a very low Cronbach alpha of 0.41 and an extremely low person separation index of 0.08. Reliabilities for the LE CAT were excellent and for the HOS-ADL and HOS-sports were good. Conclusion: The LE CAT showed better psychometric properties overall than the HOS-ADL, HOS-sports, and mHHS for the senior population. The mHHS demonstrated pronounced ceiling effects and poor reliabilities that should be of concern. The high ceiling effects for the HOS-ADL were also of concern. The LE CAT was superior in all psychometric aspects examined in this study. Future research should investigate the LE CAT for wider use in different populations. PMID:26535291
NASA Astrophysics Data System (ADS)
Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.
2015-10-01
The extreme sea levels and waves experienced around the UK's coast during the 2013/14 winter caused extensive coastal flooding and damage. Coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. This paper provides these levels for the winter storms, and discusses their application to the given data sets for two UK case study sites: Sefton, northwest England, and Suffolk, east England. Tide gauge records and wave buoy data were used to compare the 2013/14 storms with return periods from a national data set, and also joint probabilities of sea level and wave heights were generated, incorporating the recent events. The 2013/14 high waters and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a high return period at both case study sites. The national-scale impact of this event was due to its coincidence with spring high tide at multiple locations. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment could in the future be recorded alongside defence performance and upgrade. Ideally other variables (e.g. river levels at estuarine locations) would also be included, and with appropriate offsetting for local trends (e.g. mean sea-level rise) so that the storm-driven component of coastal flood events can be determined. This could allow long-term comparison of storm severity, and an assessment of how sea-level rise influences return levels over time, which is important for consideration of coastal resilience in strategic management plans.
NASA Astrophysics Data System (ADS)
Ambrosetti, Alberto; Silvestrelli, Pier Luigi
2018-04-01
Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.
Ambrosetti, Alberto; Silvestrelli, Pier Luigi
2018-04-07
Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ∼10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.
16 CFR § 1207.4 - Recommended standards for materials of manufacture.
Code of Federal Regulations, 2013 CFR
2013-01-01
... exposure to rain, snow, ice, sunlight, local, normal temperature extremes, local normal wind variations... be toxic to man or harmful to the environment under intended use and reasonably foreseeable abuse or...
NASA Astrophysics Data System (ADS)
Arenas, Felipe A.; Pugin, Benoit; Henríquez, Nicole A.; Arenas-Salinas, Mauricio A.; Díaz-Vásquez, Waldo A.; Pozo, María F.; Muñoz, Claudia M.; Chasteen, Thomas G.; Pérez-Donoso, José M.; Vásquez, Claudio C.
2014-03-01
The tellurium oxyanion, tellurite, is extremely noxious to most living organisms. Its toxicity has been mainly related to the generation of reactive oxygen species (ROS) as well as to an unbalancing of the thiol:redox buffering system. Nevertheless, a few bacteria are capable of thriving at high tellurite concentrations. One mechanism of resistance is the enzymatic and non-enzymatic reduction of tellurite to the less toxic elemental tellurium. This reduction generates nano- to micrometric tellurium crystals that display different shapes and sizes. To date, a very limited number of highly tellurite-resistant and tellurite-reducing bacterial species are available from international culture collections. In this work, we decided to look for tellurite-reducing bacteria from an extreme environment, Antarctica. This environment exhibits a combination of several extreme factors such as high UV-radiation and desiccation and freezing conditions that impact directly on the local biodiversity. Since, as does, all these factors induce ROS formation, we hypothesized that Antarctic bacteria could also exhibit tellurite-resistance. In this context, we isolated 123 tellurite-resistant bacteria, and characterized six new tellurite-resistant and tellurite-reducing bacterial strains from samples collected in Antarctica. These strains were identified according to their 16S rRNA gene sequence as Staphylococcus hameolyticus, Staphylococcus sciuri, Acinetobacter haemolyticus, Pseudomonas lini, and two strains of Psychrobacter immobilis. The isolates display tellurite-resistance about 35- to 500-fold higher than Escherichia coli (Te-sensitive organism), and a high level of tellurite reduction which might be interesting for an application in the field of bioremediation or nanoparticle biosynthesis.
Roles of prices, poverty, and health in Medicare and private spending in Texas.
White, Chapin; Taychakhoonavudh, Suthira; Parikh, Rohan; Franzini, Luisa
2015-05-01
To investigate the roles of prices, poverty, and health in divergences between Medicare and private spending in Texas. Retrospective observational design using 2011 Blue Cross Blue Shield of Texas claims data and publicly available Medicare data. We measured market-level spending per enrollee among the privately insured. Variation in Medicare and private spending per person are decomposed into prices and quantities, and their associations with poverty are measured. Markets are divided into 4 groups and are compared based on the ratio of Medicare to private spending: "high-private," "proportional," "high-Medicare," and "extremely high-Medicare." Among the privately insured, poverty appears to have large spillover effects; it is strongly associated with lower prices, quantities, and spending. Among Medicare beneficiaries, health status is a key driver of spending variation. The 2 markets with extremely high Medicare-to-private spending ratios (Harlingen and McAllen) are predominantly Hispanic communities with markedly higher rates of poverty and lack of insurance and also extremely low physician supply. The markets with relatively high private spending stand out for having good health-system performance and health outcomes, and higher than average hospital prices. Variation in private spending appears to reflect the ability of the local population to pay for healthcare, whereas variation in Medicare is more heavily driven by health status, and presumably, by clinical need. These findings highlight the inadvisability of using Medicare spending as a proxy for systemwide spending, and the need for comprehensive market-level spending data that allow comparisons among populations with different sources of insurance coverage.
Impact of the 1997-1998 El-Nino of Regional Hydrology
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman; Susskind, Joel
1998-01-01
The 1997-1998 El-Nino brought with it a range of severe local-regional hydrological phenomena. Record high temperatures and extremely dry soil conditions in Texas is an example of this regional effect. The El-Nino and La-Nina change the continental weather patterns considerably. However, connections between continental weather anomalies and regional or local anomalies have not been established to a high degree of confidence. There are several unique features of the recent El-Nino and La-Nina. Due to the recognition of the present El-Nino well in advance, there have been several coupled model studies on global and regional scales. Secondly, there is a near real-time monitoring of the situation using data from satellite sensors, namely, SeaWIFS, TOVS, AVHRR and GOES. Both observations and modeling characterize the large scale features of this El-Nino fairly well. However the connection to the local and regional hydrological phenomenon still needs to be made. This paper will use satellite observations and analysis data to establish a relation between local hydrology and large scale weather patterns. This will be the first step in using satellite data to perform regional hydrological simulations of surface temperature and soil moisture.
The Effects of Cryotherapy on Proprioception System
Furmanek, Mariusz Paweł; Słomka, Kajetan; Juras, Grzegorz
2014-01-01
Proprioception plays an important role in the complex mechanism of joint control. Contemporary sport activities impose extremely high physical demands on athletes. Winter sports are played in areas with excessively low temperatures. Moreover, many athletes are subjected to treatments that involve local lowering of the body temperature before, during, and after physical activity. This work reviews the current knowledge regarding the influence of local cryotherapy on the proprioception system. The reviewed literature identified several tests that evaluate different aspects of proprioception. There is no universally agreed protocol, or clear set of criteria for test conditions. The outcomes of different tests and assessments of cryotherapy procedures using different cold modalities are poorly correlated. In general, the published results on the mechanism of cryotherapy effects on proprioception are not uniquely conclusive and are frequently contradictory. Additional high-quality research is required to explicitly answer the following questions: (1) whether local cryotherapy influences all aspects of proprioception; (2) whether the current methods of evaluation are adequate for the exploration of the relationship between cryotherapy and proprioception; and (3) whether the application of local cryotherapy is safe for athletes regarding proprioception. The review clearly showed that there is no comprehensive model relating cryotherapy and proprioception. PMID:25478573
The effects of cryotherapy on proprioception system.
Furmanek, Mariusz Paweł; Słomka, Kajetan; Juras, Grzegorz
2014-01-01
Proprioception plays an important role in the complex mechanism of joint control. Contemporary sport activities impose extremely high physical demands on athletes. Winter sports are played in areas with excessively low temperatures. Moreover, many athletes are subjected to treatments that involve local lowering of the body temperature before, during, and after physical activity. This work reviews the current knowledge regarding the influence of local cryotherapy on the proprioception system. The reviewed literature identified several tests that evaluate different aspects of proprioception. There is no universally agreed protocol, or clear set of criteria for test conditions. The outcomes of different tests and assessments of cryotherapy procedures using different cold modalities are poorly correlated. In general, the published results on the mechanism of cryotherapy effects on proprioception are not uniquely conclusive and are frequently contradictory. Additional high-quality research is required to explicitly answer the following questions: (1) whether local cryotherapy influences all aspects of proprioception; (2) whether the current methods of evaluation are adequate for the exploration of the relationship between cryotherapy and proprioception; and (3) whether the application of local cryotherapy is safe for athletes regarding proprioception. The review clearly showed that there is no comprehensive model relating cryotherapy and proprioception.
Trace metals in the hair of habitants of the Ok Tedi region, Papua New Guinea.
Jones, G L; Willy, D; Lumsden, B; Taufa, T; Lourie, J
1987-01-01
It has long been known that mining activity can markedly change the level and distribution of certain heavy metals in the adjacent environment. This pollution can be quite widespread and long lasting and often has deleterious effects on the health of local populations. In the present study scalp hair was used as the biopsy material because of its ease of collection and long history of use in this connection. Hair was collected from all the local villages in the vicinity of the mine site, as well as from Papua New Guinean nationals from other provinces, and European expatriates who were employed by the mining company and who were resident in the area. Hair from local people showed a remarkably high iron content by comparison with previously studied populations. The extreme variations in hair iron levels were reflected in the differential distribution of levels according to location, age and sex. Hair cadmium was also high in the population studied. Hair copper, lead, zinc and mercury all appeared to be within 'normal' limits by comparison with other general populations. These results are discussed in the context of the environmental and social impact of the mining operations on the local people.
Exploring Citizen Infrastructure and Environmental Priorities in Mumbai, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperling, Joshua; Romero-Lankao, Patricia; Beig, Gufran
Many cities worldwide seek to understand local policy priorities among their general populations. This study explores how differences in local conditions and among citizens within and across Mumbai, India shape local infrastructure (e.g. energy, water, transport) and environmental (e.g. managing pollution, climate-related extreme weather events) policy priorities for change that may or may not be aligned with local government action or global environmental sustainability concerns such as low-carbon development. In this rapidly urbanizing city, multiple issues compete for prominence, ranging from improved management of pollution and extreme weather to energy and other infrastructure services. To inform a broader perspective ofmore » policy priorities for urban development and risk mitigation, a survey was conducted among over 1200 citizens. The survey explored the state of local conditions, the challenges citizens face, and the ways in which differences in local conditions (socio-institutional, infrastructure, and health-related) demonstrate inequities and influence how citizens perceive risks and rank priorities for the future design and implementation of local planning, policy, and community-based efforts. With growing discussion and tensions surrounding the new urban sustainable development goal, announced by the UN in late September 2015, and a new global urban agenda document to be agreed upon at 'Habitat III', issues on whether sustainable urbanization priorities should be set at the international, national or local level remain controversial. As such, this study aims to first understand determinants of and variations in local priorities across one city, with implications discussed for local-to-global urban sustainability. Findings from survey results indicate the determinants and variation in conditions such as age, assets, levels of participation in residential action groups, the health outcome of chronic asthma, and the infrastructure service of piped water provision to homes are significant in shaping the top infrastructure and environmental policy priorities that include water supply and sanitation, air pollution, waste, and extreme heat.« less
Attribution of extreme rainfall from Hurricane Harvey, August 2017
NASA Astrophysics Data System (ADS)
van der Wiel, K.; van Oldenborgh, G. J.; Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F. E. L.; Haustein, K.; Li, S.; Vecchi, G.; Cullen, H. M.
2017-12-01
During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation over Houston and the surrounding area, particularly on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. Using observational datasets and high-resolution global climate model experiments we investigate the return period of this event and to what extent anthropogenic climate change influenced the likelihood and intensity of this type of events. The event definition for the attribution is set by the main impact, flooding in the city of Houston. Most rivers crested on August 28 or 29, driven by intensive rainfall on August 26-28. We therefore use the annual maximum of three-day average precipitation as the event definition. Station data (GHCN-D) and a gridded precipitation product (CPC unified analysis) are used to find the return period of the event and changes in the observed record. To attribute changes to anthropogenic climate change we use time-slice experiments from two high-resolution global climate models (EC-Earth 2.3 and GFDL HiFLOR, both integrated at approximately 25 km). A regional model (HadRM3P) was rejected because of unrealistic modelled extremes. Finally we put the attribution results in context, given local vulnerability and exposure.
V474 Car: A RARE HALO RS CVn BINARY IN RETROGRADE GALACTIC ORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bubar, Eric J.; Mamajek, Eric E.; Jensen, Eric L. N.
We report the discovery that the star V474 Car is an extremely active, high velocity halo RS CVn system. The star was originally identified as a possible pre-main-sequence star in Carina, given its enhanced stellar activity, rapid rotation (10.3 days), enhanced Li, and absolute magnitude which places it above the main sequence (MS). However, its extreme radial velocity (264 km s{sup -1}) suggested that this system was unlike any previously known pre-MS system. Our detailed spectroscopic analysis of echelle spectra taken with the CTIO 4 m finds that V474 Car is both a spectroscopic binary with an orbital period similarmore » to the photometric rotation period and metal-poor ([Fe/H] {approx_equal}-0.99). The star's Galactic orbit is extremely eccentric (e {approx_equal} 0.93) with a perigalacticon of only {approx}0.3 kpc of the Galactic center-and the eccentricity and smallness of its perigalacticon are surpassed by only {approx}0.05% of local F/G-type field stars. The observed characteristics are consistent with V474 Car being a high-velocity, metal-poor, tidally locked, chromospherically active binary, i.e., a halo RS CVn binary, and one of only a few such specimens known.« less
Spatio-Temporal Changes In Non-Extreme Precipitation Variability Over North America
NASA Astrophysics Data System (ADS)
Roque, S.
2016-12-01
Precipitation variability encompasses attributes associated with the sequencing and duration of events of the full range of magnitudes. However, climate change studies have largely focused on extreme events. Using analyses of long-term weather station data we show that high frequency events, such as fraction of wet days in a year and average duration of wet and dry periods, are undergoing significant changes across North America. The median increase in fraction of wet days in a year indicates that in 2010, North America experienced an additional 11 days of precipitation compared to 1960 (when the median number of wet days was 96), and wet periods that were 0.14 days longer than those in 1960 (when the median was 1.78 days). Further, these changes in high-frequency precipitation are more prevalent and larger than those associated with extremes. Such trends also exist for events of a range of magnitudes. Results reveal the existence of localized clusters with opposing trends to that of broader geographic variation, which illustrates the role of microclimate and other drivers of trends. Such hitherto unknown patterns have the potential to significantly inform our characterization of the resilience and vulnerability of a broad range of ecosystems, and agricultural and socio-economic systems. They can also set new benchmarks for climate model assessments.
ALFALFA DISCOVERY OF THE MOST METAL-POOR GAS-RICH GALAXY KNOWN: AGC 198691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirschauer, Alec S.; Salzer, John J.; Rhode, Katherine L., E-mail: ash@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: krhode@indiana.edu
We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 10{sup 6}–10{sup 7.2} M {sub ⊙}, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enablemore » the measurement of the temperature-sensitive [O iii] λ 4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.« less
Does the anatomical localization of lower extremity venous diseases affect the quality of life?
Sadikoglu, Ganime; Ozcakir, Alis; Ercan, Ilker; Yildiz, Caner; Sadikoglu, Yurtkuran
2006-11-01
To investigate the effects of venous diseases at different anatomical localizations on the qualities of life of patients with varicose veins. The study included 354 cases, which was referred to a private vascular and interventional radiology center in Bursa, Turkey between January 2005 to January 2006. The cases were diagnosed with visual inspection and were clinically indicative of varicose veins. Color Doppler ultrasonography was used to radiologically examine the varicose veins. All cases were accepted as class II criteria according to the Clinical, Etiologic, Anatomic, Pathophysiologic classification. The generic Short Form Health Survey-36 (SF-36) was used to measure physical and mental quality of life (QOL). High scores indicated good QOL. The Statistical Package for Social Sciences version 13.0 program was used for the statistical evaluation. When the life SF-36 quality parameters of cases with different anatomical localizations of the varicose veins were examined, only the mental health scores were found to differ in different groups (p<0.01). In females and males with superficial venous disease, significant differences were found in physical function, physical role and pain among the physical health scale components, and in vitality and emotional role scores among the mental state determinants. When females and males with deep vein disease were compared, significant differences were found among both physical and mental health determinants. Anatomical localization of lower extremity varicose veins can be accepted as a predictive factor in determining the life qualities of patients with varicosities in their lower limb, and should be used to regulate their therapy and follow up protocols.
NASA Astrophysics Data System (ADS)
Davidovich, Hadar; Louzoun, Yoram
2013-05-01
The globalization of modern markets has led to the emergence of competition between producers in ever growing distances. This opens the interesting question in population dynamics of the effect of long-range competition. We here study a model of non-local competition to test the effect of the competition radius on the wealth distribution, using the framework of a stochastic birth-death process, with non-local interactions. We show that this model leads to non-trivial dynamics that can have implications in other domains of physics. Competition is studied in the context of the catalyst induced growth of autocatalytic agents, representing the growth of capital in the presence of investment opportunities. These agents are competing with all other agents in a given radius on growth possibilities. We show that a large scale competition leads to an extreme localization of the agents, where typically a single aggregate of agents can survive within a given competition radius. The survival of these aggregates is determined by the diffusion rates of the agents and the catalysts. For high and low agent diffusion rates, the agent population is always annihilated, while for intermediate diffusion rates, a finite agent population persists. Increasing the catalyst diffusion rate always leads to a decrease in the average agent population density. The extreme localization of the agents leads to the emergence of intermittent fluctuations, when a large aggregate of agents disappear. As the competition radius increases, so does the average agent density and its spatial variance as well as the volatility.
NASA Astrophysics Data System (ADS)
Gannon, C.
2016-12-01
Climate change will have many impacts on human health, perhaps most directly through extreme heat. High temperature and humidity combinations inhibit the body's ability to cool through physiological responses such as sweating. In conjunction with extended periods of extreme heat and shifted seasonality, these conditions are particularly dangerous. Current research and literature can be used to show where dangerous heat and humidity conditions are likely to be most prevalent, or where populations vulnerable to heat stress reside. To provide a better assessment of overall heat vulnerability, however, many complex factors, such as relative changes in temperature patterns or local socioeconomic conditions, must also be considered. Here, we utilize a multivariate approach to establish county-level risk scores by combining the most relevant indicators for heat vulnerability with climate model projections of wet bulb globe temperature, a metric useful for understanding how the human body will respond to conditions of high heat and humidity. We present our findings as an ESRI ArcOnline Story Map with data aggregated at the county-level in the continental United States. This format allows users to access maps showing each county's score in four categories related to heat vulnerability: heat and humidity hazards, population vulnerability, medical access, and physical infrastructure. A final map showcases a composite heat vulnerability score for each county, with comparisons to state and national averages. Our tool, part of the White House's Climate Data Initiative, is presented as a series of maps with a normalized scoring system to provide clear and easy access to the indicators most relevant to evaluating heat vulnerability at a local level. Ultimately, this readily available tool with general indices helps community decision makers communicate heat vulnerability and identify which resilience factors are most critical to improving local resilience.
Numerical investigation of freak waves
NASA Astrophysics Data System (ADS)
Chalikov, D.
2009-04-01
Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent of wave energy. It is naive to expect that high order moments such as skewness and kurtosis can serve as predictors or even indicators of freak waves. Firstly, the above characteristics cannot be calculated with the use of spectrum usually determined with low accuracy. Such calculations are definitely unstable to a slight perturbation of spectrum. Secondly, even if spectrum is determined with high accuracy (for example calculated with the use of exact model), the high order moments cannot serve as the predictors, since they change synchronically with variations of extreme wave heights. Appearance of freak waves occurs simultaneously with increase of the local kurtosis, hence, kurtosis is simply a passive indicator of the same local geometrical properties of a wave field. This effect disappears completely, if spectrum is calculated over a very wide ensemble of waves. In this case existence of a freak wave is just disguised by other, non freak waves. Thirdly, all high order moments are dependant of spectral presentation - they increase with increasing of spectral resolution and cut-frequency. Statistics of non-dimensional waves as well as emergence of extreme waves is the innate property of a nonlinear wave field. Probability function for steep waves has been constructed. Such type function can be used for development of operational forecast of freak waves based on a standard forecast provided by the 3-d generation wave prediction model (WAVEWATCH or WAM).
TRMM- and GPM-based precipitation analysis and modelling in the Tropical Andes
NASA Astrophysics Data System (ADS)
Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Onof, Christian
2016-04-01
Despite wide-spread applications of satellite-based precipitation products (SPPs) throughout the TRMM-era, the scarcity of ground-based in-situ data (high density gauge networks, rainfall radar) in many hydro-meteorologically important regions, such as tropical mountain environments, has limited our ability to evaluate both SPPs and individual satellite-based sensors as well as accurately model or merge rainfall at high spatial resolutions, particularly with respect to extremes. This has restricted both the understanding of sensor behaviour and performance controls in such regions as well as the accuracy of precipitation estimates and respective hydrological applications ranging from water resources management to early warning systems. Here we report on our recent research into precipitation analysis and modelling using various TRMM and GPM products (2A25, 3B42 and IMERG) in the tropical Andes. In an initial study, 78 high-frequency (10-min) recording gauges in Colombia and Ecuador are used to generate a ground-based validation dataset for evaluation of instantaneous TRMM Precipitation Radar (TPR) overpasses from the 2A25 product. Detection ability, precipitation time-series, empirical distributions and statistical moments are evaluated with respect to regional climatological differences, seasonal behaviour, rainfall types and detection thresholds. Results confirmed previous findings from extra-tropical regions of over-estimation of low rainfall intensities and under-estimation of the highest 10% of rainfall intensities by the TPR. However, in spite of evident regionalised performance differences as a function of local climatological regimes, the TPR provides an accurate estimate of climatological annual and seasonal rainfall means. On this basis, high-resolution (5 km) climatological maps are derived for the entire tropical Andes. The second objective of this work is to improve the local precipitation estimation accuracy and representation of spatial patterns of extreme rainfall probabilities over the region. For this purpose, an ensemble of high-resolution rainfall fields is generated by stochastic simulation using space-time averaged, coarse-scale (daily, 0.25°) satellite-based rainfall inputs (TRMM 3B42/ -RT) and the high-resolution climatological information derived from the TPR as spatial disaggregation proxies. For evaluation and merging, gridded ground-based rainfall fields are generated from gauge data using sequential simulation. Satellite and ground-based ensembles are subsequently merged using an inverse error weighting scheme. The model was tested over a case study in the Colombian Andes with optional coarse-scale bias correction prior to disaggregation and merging. The resulting outputs were assessed in the context of Generalized Extreme Value theory and showed improved estimation of extreme rainfall probabilities compared to the original TMPA inputs. Initial findings using GPM-IMERG inputs are also presented.
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael K.; Parish, Chad M.; Bei, Hongbin
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
Miller, Michael K.; Parish, Chad M.; Bei, Hongbin
2014-12-18
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti–Y–O-enriched nanoclusters and solute clusters, which drives themore » mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. Furthermore, the result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.« less
Controlling diffusion for a self-healing radiation tolerant nanostructured ferritic alloy
NASA Astrophysics Data System (ADS)
Miller, M. K.; Parish, C. M.; Bei, H.
2015-07-01
Diffusion plays a major role in the stability of microstructures to extreme conditions of high temperature and high doses of irradiation. In nanostructured ferritic alloys, first principle calculations indicate that the binding energy of vacancies is reduced by the presence of oxygen, titanium and yttrium atoms. Therefore, the number of free vacancies available for diffusion can be greatly reduced. The mechanical properties of these alloys, compared to traditional wrought alloys of similar composition and grain structure, is distinctly different, and the ultrafine grained alloy is distinguished by a high number density of Ti-Y-O-enriched nanoclusters and solute clusters, which drives the mechanical response. When a displacement cascade interacts with a nanocluster, the solute atoms are locally dispersed into the matrix by ballistic collisions, but immediately a new nanocluster reforms due to the local supersaturation of solutes and vacancies until the excess vacancies are consumed. The result of these processes is a structural material for advanced energy systems with a microstructure that is self-healing and tolerant to high doses of radiation and high temperatures.
Bland, Michael T.; McKinnon, William B; Schenk, Paul M.
2015-01-01
The Cassini spacecraft’s Composite Infrared Spectrometer (CIRS) has observed at least 5 GW of thermal emission at Enceladus’ south pole. The vast majority of this emission is localized on the four long, parallel, evenly-spaced fractures dubbed tiger stripes. However, the thermal emission from regions between the tiger stripes has not been determined. These spatially localized regions have a unique morphology consisting of short-wavelength (∼1 km) ridges and troughs with topographic amplitudes of ∼100 m, and a generally ropy appearance that has led to them being referred to as “funiscular terrain.” Previous analysis pursued the hypothesis that the funiscular terrain formed via thin-skinned folding, analogous to that occurring on a pahoehoe flow top (Barr, A.C., Preuss, L.J. [2010]. Icarus 208, 499–503). Here we use finite element modeling of lithospheric shortening to further explore this hypothesis. Our best-case simulations reproduce funiscular-like morphologies, although our simulated fold wavelengths after 10% shortening are 30% longer than those observed. Reproducing short-wavelength folds requires high effective surface temperatures (∼185 K), an ice lithosphere (or high-viscosity layer) with a low thermal conductivity (one-half to one-third that of intact ice or lower), and very high heat fluxes (perhaps as great as 400 mW m−2). These conditions are driven by the requirement that the high-viscosity layer remain extremely thin (≲200 m). Whereas the required conditions are extreme, they can be met if a layer of fine grained plume material 1–10 m thick, or a highly fractured ice layer >50 m thick insulates the surface, and the lithosphere is fractured throughout as well. The source of the necessary heat flux (a factor of two greater than previous estimates) is less obvious. We also present evidence for an unusual color/spectral character of the ropy terrain, possibly related to its unique surface texture. Our simulations demonstrate that producing the funiscular ridges via folding remains plausible, but the relatively extreme conditions required to do so leaves their origin open to further investigation. The high heat fluxes required to produce the terrain by folding, which equate to an endogenic blackbody temperature near 50 K, should be observable by future nighttime CIRS observations, if funiscular deformation is occurring today.
Okada, Mitsuhiro; Miyauchi, Yuhei; Matsuda, Kazunari; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Kitaura, Ryo
2017-03-23
Monolayer transition metal dichalcogenides (TMDCs) including WS 2 , MoS 2 , WSe 2 and WS 2 , are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS 2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm 2 ) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.
NASA Astrophysics Data System (ADS)
Barker, J. R.; Martinez, A.; Aldegunde, M.
2012-05-01
The modelling of spatially inhomogeneous silicon nanowire field-effect transistors has benefited from powerful simulation tools built around the Keldysh formulation of non-equilibrium Green function (NEGF) theory. The methodology is highly efficient for situations where the self-energies are diagonal (local) in space coordinates. It has thus been common practice to adopt diagonality (locality) approximations. We demonstrate here that the scattering kernel that controls the self-energies for electron-phonon interactions is generally non-local on the scale of at least a few lattice spacings (and thus within the spatial scale of features in extreme nano-transistors) and for polar optical phonon-electron interactions may be very much longer. It is shown that the diagonality approximation strongly under-estimates the scattering rates for scattering on polar optical phonons. This is an unexpected problem in silicon devices but occurs due to strong polar SO phonon-electron interactions extending into a narrow silicon channel surrounded by high kappa dielectric in wrap-round gate devices. Since dissipative inelastic scattering is already a serious problem for highly confined devices it is concluded that new algorithms need to be forthcoming to provide appropriate and efficient NEGF tools.
Houghton, Adele; Austin, Jessica; Beerman, Abby; Horton, Clayton
2017-01-01
Climate change represents a significant and growing threat to population health. Rural areas face unique challenges, such as high rates of vulnerable populations; economic uncertainty due to their reliance on industries that are vulnerable to climate change; less resilient infrastructure; and lower levels of access to community and emergency services than urban areas. This article fills a gap in public health practice by developing climate and health environmental public health indicators for a local public health department in a rural area. We adapted the National Environmental Public Health Tracking Network's framework for climate and health indicators to a seven-county health department in Western Kentucky. Using a three-step review process, we identified primary climate-related environmental public health hazards for the region (extreme heat, drought, and flooding) and a suite of related exposure, health outcome, population vulnerability, and environmental vulnerability indicators. Indicators that performed more poorly at the county level than at the state and national level were defined as "high vulnerability." Six to eight high vulnerability indicators were identified for each county. The local health department plans to use the results to enhance three key areas of existing services: epidemiology, public health preparedness, and community health assessment.
2013-01-01
Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130
A stable compound of helium and sodium at high pressure
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...
2017-02-06
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
A stable compound of helium and sodium at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.
Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less
Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D
2001-01-01
Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686
Environmental Consequences of Rapid Urbanization in Zhejiang Province, East China
Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue
2014-01-01
Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government. PMID:25019266
Environmental consequences of rapid urbanization in zhejiang province, East china.
Yang, Xuchao; Yue, Wenze; Xu, Honghui; Wu, Jingsheng; He, Yue
2014-07-11
Since reforms carried out in the late 1970s, China has experienced unprecedented rates of urban growth. Remote sensing data and surface observational data are used to investigate the urbanization process and related environmental consequences, focusing on extreme heat events and air pollution, in Zhejiang Province (ZJP, East China). Examination of satellite-measured nighttime light data indicates rapid urbanization in ZJP during the past decade, initially forming three urban clusters. With rapid urban sprawl, a significant Urban Heat Island (UHI) effect has emerged. During extreme heat events in summer, the UHI effect significantly exacerbates nocturnal heat stress in highly urbanized areas. Taking a long-term view, urbanization also causes additional hot days and hot degree days in urban areas. Urbanization also imposes a heavy burden on local and regional air quality in ZJP. Degraded visibility and an increase in haze days are observed at most meteorological stations, especially in the three urban clusters. The results show that urbanization has led to serious environmental problems in ZJP, not only on the city scale, but also on the regional scale. Maintaining a balance between the continuing process of urbanization and environmental sustainability is a major issue facing the local government.
Hamouda, Hazem M; Witsø, Eivind; Moghani, Nedal K E; Shahwan, Ahmed; Nygaard, Oystein P
2007-01-01
Patients with soft tissue injuries caused by missile attacks during wartime have been treated with radical debridement and delayed closure. In a study in Gaza City, the rate of infection of missile injuries to the extremities when treated with minimal surgical intervention, was measured. Patients with severe soft tissue damage, compound fractures, and injuries to major blood vessels and/or nerves were excluded from the study. One hundred fourteen patients were treated according to a standardized regime that included a superficial, minor surgery revision of the inlet and the outlet opening, and antibiotic treatment. Local soft tissue infection was defined as the presence of at least two signs of local infection. A total of 109 out of 114 patients attended the first follow-up visit. Eleven (10%) of these patients had an infected wound. A total of 105 of the patients (92%) attended a second follow-up. None of these patients had an infected wound. Under conditions with a high number of casualties, minimal surgical treatment followed by the administration of antibiotics is a safe procedure for patients with penetrating missile injuries and less severe soft tissue damage.
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten
2013-03-01
This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.
Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten
2013-03-01
This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.
A new framework for estimating return levels using regional frequency analysis
NASA Astrophysics Data System (ADS)
Winter, Hugo; Bernardara, Pietro; Clegg, Georgina
2017-04-01
We propose a new framework for incorporating more spatial and temporal information into the estimation of extreme return levels. Currently, most studies use extreme value models applied to data from a single site; an approach which is inefficient statistically and leads to return level estimates that are less physically realistic. We aim to highlight the benefits that could be obtained by using methodology based upon regional frequency analysis as opposed to classic single site extreme value analysis. This motivates a shift in thinking, which permits the evaluation of local and regional effects and makes use of the wide variety of data that are now available on high temporal and spatial resolutions. The recent winter storms over the UK during the winters of 2013-14 and 2015-16, which have caused wide-ranging disruption and damaged important infrastructure, provide the main motivation for the current work. One of the most impactful natural hazards is flooding, which is often initiated by extreme precipitation. In this presentation, we focus on extreme rainfall, but shall discuss other meteorological variables alongside potentially damaging hazard combinations. To understand the risks posed by extreme precipitation, we need reliable statistical models which can be used to estimate quantities such as the T-year return level, i.e. the level which is expected to be exceeded once every T-years. Extreme value theory provides the main collection of statistical models that can be used to estimate the risks posed by extreme precipitation events. Broadly, at a single site, a statistical model is fitted to exceedances of a high threshold and the model is used to extrapolate to levels beyond the range of the observed data. However, when we have data at many sites over a spatial domain, fitting a separate model for each separate site makes little sense and it would be better if we could incorporate all this information to improve the reliability of return level estimates. Here, we use the regional frequency analysis approach to define homogeneous regions which are affected by the same storms. Extreme value models are then fitted to the data pooled from across a region. We find that this approach leads to more spatially consistent return level estimates with reduced uncertainty bounds.
NASA Astrophysics Data System (ADS)
Vincenti, Henri; Vay, Jean-Luc
2018-07-01
The advent of massively parallel supercomputers, with their distributed-memory technology using many processing units, has favored the development of highly-scalable local low-order solvers at the expense of harder-to-scale global very high-order spectral methods. Indeed, FFT-based methods, which were very popular on shared memory computers, have been largely replaced by finite-difference (FD) methods for the solution of many problems, including plasmas simulations with electromagnetic Particle-In-Cell methods. For some problems, such as the modeling of so-called "plasma mirrors" for the generation of high-energy particles and ultra-short radiations, we have shown that the inaccuracies of standard FD-based PIC methods prevent the modeling on present supercomputers at sufficient accuracy. We demonstrate here that a new method, based on the use of local FFTs, enables ultrahigh-order accuracy with unprecedented scalability, and thus for the first time the accurate modeling of plasma mirrors in 3D.
Moreno-Sánchez, Rocío del Pilar; Maldonado, Jorge Higinio
2013-12-01
Departing from a theoretical methodology, we estimate empirically an index of adaptive capacity (IAC) of a fishing community to the establishment of marine protected areas (MPAs). We carried out household surveys, designed to obtain information for indicators and sub-indicators, and calculated the IAC. Moreover, we performed a sensitivity analysis to check for robustness of the results. Our findings show that, despite being located between two MPAs, the fishing community of Bazán in the Colombian Pacific is highly vulnerable and that the socioeconomic dimension of the IAC constitutes the most binding dimension for building adaptive capacity. Bazán is characterized by extreme poverty, high dependence on resources, and lack of basic public infrastructure. Notwithstanding, social capital and local awareness about ecological conditions may act as enhancers of adaptive capacity. The establishment of MPAs should consider the development of strategies to confer adaptive capacity to local communities highly dependent on resource extraction.
The evolving local social contract for managing climate and disaster risk in Vietnam.
Christoplos, Ian; Ngoan, Le Duc; Sen, Le Thi Hoa; Huong, Nguyen Thi Thanh; Lindegaard, Lily Salloum
2017-07-01
How do disasters shape local government legitimacy in relation to managing climate- and disaster-related risks? This paper looks at how local authorities in Central Vietnam perceive their social contract for risk reduction, including the partial merging of responsibilities for disaster risk management with new plans for and investments in climate change adaptation and broader socioeconomic development. The findings indicate that extreme floods and storms constitute critical junctures that stimulate genuine institutional change. Local officials are proud of their strengthened role in disaster response and they are eager to boost investment in infrastructure. They have struggled to reinforce their legitimacy among their constituents, but given the shifting roles of the state, private sector, and civil society, and the undiminished emphasis on high-risk development models, their responsibilities for responding to emerging climate change scenarios are increasingly nebulous. The past basis for legitimacy is no longer valid, but tomorrow's social contract is not yet defined. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.
NASA Astrophysics Data System (ADS)
Defelice, Thomas Peter
The decline of forests has long been attributed to various natural (e.g. drought), man-made (e.g. logging), and perhaps, combinations of these (eg. fires caused by loggers) causes. A new type of forest decline (attributed to the deposition of air pollutants and other natural causes) has become apparent at high elevation sites in western Europe and North America; especially for above cloudbase forests like those in the Mt. Mitchell State Park. Investigations of air pollutant deposition are plentiful and laboratory studies have shown extreme deposition of these pollutants to be potentially harmful to forests. However, no field study has concentrated on these events. The primary objective of this study is to characterize (i.e., meterologically, microphysically, chemically) extreme episodes of air pollutant deposition. This study defines extreme aqueous events as having a pH < 3.1. pH's of this order are known to reduce laboratory tree growth depending on their age and species. On the average, one out of three aqueous events, sampled in the park during the 1986-1988 growing seasons (mid-May through mid-September), was extreme. Their occurrence over time may lead to the death of infant and 'old' trees, and to the reduced vigor of trees in their prime, as a result of triggering the decline mechanisms of these trees. These events usually last ~ 4.0 h, form during extended periods of high atmospheric pressure, have a liquid water content of ~ 0.10 gm^{-3}, and near typical cloud droplet sizes (~ 8.0 μm). Extreme aqueous events deposit most of their acid at their end. The deposition from the infrequent occurrences of very high ozone ( >=q100 ppb) and sulfur dioxide (>=q 5 ppb) concentrations in conjunction with these cloud events may be even more detrimental to the canopy, then that by extreme aqueous events alone. The physical characteristics of these combined events appear to include those of mature, precipitating clouds. Their occurrence may provide a clue as to how very low pH clouds might be deacidified. That is, base gases (eg. ammonia) locally introduced into such clouds at the proper time may render them harmless upon impact with the forest canopy, and beneficial to regional water supply users.
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
Johansson, Daniel; Pereyra, Ricardo T; Rafajlović, Marina; Johannesson, Kerstin
2017-04-05
Establishing populations in ecologically marginal habitats may require substantial phenotypic changes that come about through phenotypic plasticity, local adaptation, or both. West-Eberhard's "plasticity-first" model suggests that plasticity allows for rapid colonisation of a new environment, followed by directional selection that develops local adaptation. Two predictions from this model are that (i) individuals of the original population have high enough plasticity to survive and reproduce in the marginal environment, and (ii) individuals of the marginal population show evidence of local adaptation. Individuals of the macroalga Fucus vesiculosus from the North Sea colonised the hyposaline (≥2-3‰) Baltic Sea less than 8000 years ago. The colonisation involved a switch from fully sexual to facultative asexual recruitment with release of adventitious branches that grow rhizoids and attach to the substratum. To test the predictions from the plasticity-first model we reciprocally transplanted F. vesiculosus from the original population (ambient salinity 24‰) and from the marginal population inside the Baltic Sea (ambient salinity 4‰). We also transplanted individuals of the Baltic endemic sister species F. radicans from 4 to 24‰. We assessed the degree of plasticity and local adaptation in growth and reproductive traits after 6 months by comparing the performance of individuals in 4 and 24‰. Branches of all individuals survived the 6 months period in both salinities, but grew better in their native salinity. Baltic Sea individuals more frequently developed asexual traits while North Sea individuals initiated formation of receptacles for sexual reproduction. Marine individuals of F. vesiculosus are highly plastic with respect to salinity and North Sea populations can survive the extreme hyposaline conditions of the Baltic Sea without selective mortality. Plasticity alone would thus allow for an initial establishment of this species inside the postglacial Baltic Sea at salinities where reproduction remains functional. Since establishment, the Baltic Sea populations have evolved adaptations to extreme hyposaline waters and have in addition evolved asexual recruitment that, however, tends to impede local adaptation. Overall, our results support the "plasticity-first" model for the initial colonisation of the Baltic Sea by Fucus vesiculosus.
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Ankit, Agarwal; Berry, Boessenkool; Madlen, Fischer; Maik, Heistermann; Lisei, Köhn-Reich; Thomas, Moran; Dadiyorto, Wendi
2017-04-01
The flash-flood at 29th May 2016 in the vicinity of the village of Braunsbach in Southwestern Germany, State of Baden-Wuerttemberg, has been a particularly concise event of the floods occurring in southern Germany at the end of May / early June 2016. This extreme event was triggered by a convective high intensity rain storm, causing extreme discharge rates and subsequent debris flow in the local creek. This led to severe flooding of the village with immense damages. Besides its extreme nature, the event is characterized by very local and short term scales, i.e. the catchment of the creek covers an area of only six km2 and the whole event lasted only two hours. This contribution presents a retrospective analysis with regard to meteorology and hydrology to obtain a quantitative assessment of the governing processes and their development. We term this a "forensic analysis" because due to the very local and sudden feature of this flashflood event, the processes cannot be directly measured during the event and/or at the site. Instead, they need to be reconstructed and estimated after the event from a variety of rather different information sources and "soft" data. Using these types of post event observations and analysis, we aim at obtaining a rather comprehensive picture of the event and its consequences. Regarding rainfall, both station data from the surroundings of the catchment and radar data from the German Weather Service were analyzed, including the analysis of different errors types and dynamic features of the convective system. The flood hydrograph, including the maximum discharge rate during the event, was estimated by three different approaches, which were compared to obtain an idea of the associated uncertainty. The overall results of this forensic analysis show that it was a very rare rainfall event with extreme rainfall intensities, e.g. return period exceeding 100 years. Catalyzed by catchment properties, this lead to extreme runoff, severe soil erosion, and subsequent debris flow processes. Due to the complex and interacting processes, the hazard must not be attributed to a single cause, since only the interplay of the different processes and catchment conditions can lead to such an event. The people in the region say that such an event "has never happened before". However, from some first geomorphological analysis we got some indications that such events, including debris flow, might have happened before during previous times (time scale of millennia). Therefore, it would be more appropriate to state that "nobody can remember of such an event".
An extremely simple thermocouple made of a single layer of metal.
Liu, Haixiao; Sun, Weiqiang; Xu, Shengyong
2012-06-26
A novel temperature sensor consisting of a single layer of metal (Ni, Pd, W, or Pt) is constructed. Its configuration challenges a long-established concept and may lead to development of a new category of devices. Reliable two-dimensional mapping of local temperatures is demonstrated using an array of these sensors. These single-metal thermocouples (SMTCs) can be readily applied on flexible substrates or at high temperatures. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
15N Fractionation in Star-Forming Regions and Solar System Objects
NASA Technical Reports Server (NTRS)
Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin
2015-01-01
A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.
Meshless Local Petrov-Galerkin Method for Solving Contact, Impact and Penetration Problems
2006-11-30
Crack Growth 3 point of view, this approach makes the full use of the ex- isting FE models to avoid any model regeneration , which is extremely high in...process, at point C, the pressure reduces to zero, but the volumet- ric strain does not go to zero due to the collapsed void volume. 2.2 Damage...lease rate to go beyond the critical strain energy release rate. Thus, the micro-cracks begin to growth inside these areas. At 10 micro-seconds, these
Chowdhary, Mudit; Sen, Neilayan; Jeans, Elizabeth B; Miller, Luke; Batus, Marta; Gitelis, Steven; Wang, Dian; Abrams, Ross A
2018-05-18
Patients with large, high-grade extremity soft tissue sarcoma (STS) are at high risk for both local and distant recurrence. RTOG 95-14, using a regimen of neoadjuvant interdigitated chemoradiotherapy with mesna, doxorubicin, ifosfamide, and dacarbazine followed by surgery and 3 cycles of adjuvant mesna, doxorubicin, ifosfamide, and dacarbazine, demonstrated high rates of disease control at the cost of significant toxicity (83% grade 4, 5% grade 5). As such, this regimen has not been widely adopted. Herein, we report our institutional outcomes utilizing a modified interdigitated chemoradiotherapy regimen, without dacarbazine, and current radiotherapy planning and delivery techniques for high-risk STS. Adults with large (≥5 cm; median, 12.9 cm), grade 3 extremity STS who were prospectively treated as part of our institutional standard of care from 2008 to 2016 are included. Neoadjuvant chemoradiotherapy consisted of 3 cycles of mesna, doxorubicin, and ifosfamide (MAI) and 44 Gy (22 Gy in 11 fractions between cycles of MAI) after which patients underwent surgical resection and received 3 additional cycles of MAI. Twenty-six patients received the MAI treatment protocol. At a median follow-up of 47.3 months, 23 (88.5%) patients are still alive. Three year locoregional recurrence-free survival, disease-free survival, and overall survival are 95.0%, 64.0%, and 95.0%, respectively. There have been no therapy-related deaths or secondary malignancies. The nonhematologic grade 4 toxicity rate was 7.7%. Neoadjuvant interdigitated MAI radiotherapy followed by resection and 3 cycles of adjuvant MAI has resulted in acceptable and manageable toxicity and highly favorable survival in patients at greatest risk for treatment failure.
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu
2017-01-01
We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.
The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events
NASA Astrophysics Data System (ADS)
Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.
2018-02-01
The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.
NASA Technical Reports Server (NTRS)
Milesi, Cristina; Costa-Cabral, Mariza; Rath, John; Mills, William; Roy, Sujoy; Thrasher, Bridget; Wang, Weile; Chiang, Felicia; Loewenstein, Max; Podolske, James
2014-01-01
Water resource managers planning for the adaptation to future events of extreme precipitation now have access to high resolution downscaled daily projections derived from statistical bias correction and constructed analogs. We also show that along the Pacific Coast the Northern Oscillation Index (NOI) is a reliable predictor of storm likelihood, and therefore a predictor of seasonal precipitation totals and likelihood of extremely intense precipitation. Such time series can be used to project intensity duration curves into the future or input into stormwater models. However, few climate projection studies have explored the impact of the type of downscaling method used on the range and uncertainty of predictions for local flood protection studies. Here we present a study of the future climate flood risk at NASA Ames Research Center, located in South Bay Area, by comparing the range of predictions in extreme precipitation events calculated from three sets of time series downscaled from CMIP5 data: 1) the Bias Correction Constructed Analogs method dataset downscaled to a 1/8 degree grid (12km); 2) the Bias Correction Spatial Disaggregation method downscaled to a 1km grid; 3) a statistical model of extreme daily precipitation events and projected NOI from CMIP5 models. In addition, predicted years of extreme precipitation are used to estimate the risk of overtopping of the retention pond located on the site through simulations of the EPA SWMM hydrologic model. Preliminary results indicate that the intensity of extreme precipitation events is expected to increase and flood the NASA Ames retention pond. The results from these estimations will assist flood protection managers in planning for infrastructure adaptations.
Klein, Jason; Ghasem, Alex; Huntley, Samuel; Donaldson, Nathan; Keisch, Martin; Conway, Sheila
2018-03-01
High-dose-rate brachytherapy (HDR-BT) and external-beam radiation therapy (EBRT) are two modalities used in the treatment of soft tissue sarcoma. Previous work at our institution showed early complications and outcomes for patients treated with HDR-BT, EBRT, or a combination of both radiation therapy modalities. As the general indications for each of these approaches to radiation therapy differ, it is important to evaluate the use of each in an algorithmic way, reflecting how they are used in contemporary practice at sites that use these treatments. QUESTION/PURPOSES: (1) To determine the proportions of intermediate- and long-term complications associated with the use of brachytherapy in the treatment of primary high-grade extremity soft tissue sarcomas; (2), to characterize the long-term morbidity of the three radiation treatment groups using the Radiation Therapy Oncology Group/ European Organization for Research and Treatment of Cancer (RTOG/EORTC) Late Radiation Morbidity Scoring Scheme; (3) to determine whether treatment with HDR-BT, EBRT, and HDR-BT+EBRT therapy, in combination with limb-salvage surgery, results in acceptable local control in this high-risk group of sarcomas. We retrospectively studied data from 171 patients with a diagnosis of high-grade extremity soft tissue sarcoma treated with limb-sparing surgery and radiation therapy between 1990 and 2012 at our institution, with a mean followup of 72 months. Of the 171 patients, 33 (20%) were treated with HDR-BT, 128 (75%) with EBRT, and 10 (6%) with HDR-BT+EBRT. We excluded 265 patients with soft tissue sarcomas owing to axial tumor location, previous radiation to the affected extremity, incomplete patient records, patients receiving primary amputation, recurrent tumors, pediatric patients, low- and intermediate-grade tumors, and rhabdoid histology. Fifteen patients (9%) were lost to followup for any reason including died of disease or other causes during the first 12 months postoperatively. This included four patients who received HDR-BT (12%), 11 who received EBRT (9%), and none who received HDR-BT+EBRT (0%) with less than 12 months followup. Determination of radiation therapy technique for each patient was individualized in a multidisciplinary forum of sarcoma specialists. Anticipated close or positive surgical margins and a low likelihood of complex soft tissue procedures were factors that encouraged use of brachytherapy, whereas the anticipated need for secondary procedures and/or soft tissue coverage encouraged use of EBRT alone. Combination therapy was used when the treatment volume exceeded the treatment field of the brachytherapy catheters or when the catheters were used to boost a close or positive surgical margin. Local recurrence, complications, and morbidity outcomes scores (RTOG) were calculated based on chart review. Between-group comparisons pertaining to the proportion of patients experiencing complications, morbidity outcomes scores, and local recurrence rates were not performed because of dissimilarities among the patients in each group at baseline. The HDR-BT treatment group showed a high incidence of intermediate-term complications, with the three most common being: deep infection (33%, 11 of 33); dehiscence and delayed wound healing (24%, eight of 33); and seroma and hematoma (21%, seven of 33). The EBRT group showed a high incidence of intermediate- and long-term complications with the three most common being: chronic radiation dermatitis (35%, 45 of 128); fibrosis (27%, 35 of 128); and chronic pain and neuritis (13%, 16 of 128). The RTOG scores for each treatment group were: HDR-BT 0.8 ± SD 1.2; EBRT 1.9 ± 2.0; and HDR-BT+EBRT 1.7 ± 1.7. Overall, 142 of 169 (84%) patients were free from local recurrence: 27 (82%) in the HDR-BT group, 108 (86%) in the EBRT group, and seven (70%) in the combination therapy group. In this single-institution study, an algorithmic approach to using HDR-BT and EBRT in the treatment of patients with high-grade soft tissue sarcomas can yield acceptable complication rates, good morbidity outcome scores, and a high degree of local control. Based on these results, we believe HDR-BT is best for patients with an anticipated close margin, a positive surgical margin, and for patients who are unlikely to receive a complex soft tissue procedure. Conversely, if a secondary procedure and/or soft tissue coverage are likely to be used, EBRT alone may be reasonable. Finally, combination therapy might be considered when the treatment volume exceeded the treatment field capacity for HDR-BT or when the catheters were used to boost a close or positive surgical margin. Level IV, therapeutic study.
Tuyet-Hanh, Tran Thi; Minh, Nguyen Hung; Vu-Anh, Le; Dunne, Michael; Toms, Leisa-Maree; Tenkate, Thomas; Thi, Minh-Hue Nguyen; Harden, Fiona
2015-07-01
Bien Hoa and Da Nang airbases were bulk storages for Agent Orange during the Vietnam War and currently are the two most severe dioxin hot spots. This study assesses the health risk of exposure to dioxin through foods for local residents living in seven wards surrounding these airbases. This study follows the Australian Environmental Health Risk Assessment Framework to assess the health risk of exposure to dioxin in foods. Forty-six pooled samples of commonly consumed local foods were collected and analyzed for dioxin/furans. A food frequency and Knowledge-Attitude-Practice survey was also undertaken at 1000 local households, various stakeholders were involved and related publications were reviewed. Total dioxin/furan concentrations in samples of local "high-risk" foods (e.g. free range chicken meat and eggs, ducks, freshwater fish, snail and beef) ranged from 3.8 pg TEQ/g to 95 pg TEQ/g, while in "low-risk" foods (e.g. caged chicken meat and eggs, seafoods, pork, leafy vegetables, fruits, and rice) concentrations ranged from 0.03 pg TEQ/g to 6.1 pg TEQ/g. Estimated daily intake of dioxin if people who did not consume local high risk foods ranged from 3.2 pg TEQ/kg bw/day to 6.2 pg TEQ/kg bw/day (Bien Hoa) and from 1.2 pg TEQ/kg bw/day to 4.3 pg TEQ/kg bw/day (Da Nang). Consumption of local high risk foods resulted in extremely high dioxin daily intakes (60.4-102.8 pg TEQ/kg bw/day in Bien Hoa; 27.0-148.0 pg TEQ/kg bw/day in Da Nang). Consumption of local "high-risk" foods increases dioxin daily intakes far above the WHO recommended TDI (1-4 pg TEQ/kg bw/day). Practicing appropriate preventive measures is necessary to significantly reduce exposure and health risk. Copyright © 2015 Elsevier GmbH. All rights reserved.
New strategies for local treatment of vaginal infections.
Palmeira-de-Oliveira, Rita; Palmeira-de-Oliveira, Ana; Martinez-de-Oliveira, José
2015-09-15
Vaginal infections are extremely prevalent, particularly among women of reproductive age. Although they do not result in high mortality rates, these infections are associated with high levels of anxiety and reduction of quality of life. In most cases, topical treatment of vaginal infections has been shown to be at least as effective as oral treatment, resulting in higher local drug concentrations, with fewer drug interactions and adverse effects. Furthermore, the emergence of microbial resistance to chemotherapeutics and the difficulties in managing infection recurrences sustain the need for more effective local treatments. However, conventional dosage forms have been associated with low retention in the vagina and discomfort. Formulation strategies such as the development of bioadhesive, thermogelling systems and microtechnological or nanotechnological approaches have been proposed to improve delivery of traditional drugs, and other treatment modalities such as new drugs, plant extracts, and probiotics are being studied. This article reviews the recent strategies studied to improve the treatment and prevention of the commonest vaginal infections-namely, vaginal bacteriosis, aerobic vaginitis, vulvovaginal candidosis, and trichomoniasis-through the intravaginal route. Copyright © 2015 Elsevier B.V. All rights reserved.
Kang, Da-yeong; Kim, Gee-Bum; Choi, Byung-Seok; Seo, Jun-won; Lim, Hyun-Jong; Hong, Ran; Park, Sang-Gon
2016-03-31
Extramedullary plasmacytoma is a plasma cell neoplasm that presents as a solitary lesion in soft tissue. Most extramedullary plasmacytomas involve the nasopharynx or upper respiratory tract. Primary plasmacytoma of the stomach is extremely rare. A 78-year-old Korean woman presented with epigastric pain for 3 months. She had a history of an intractable gastric ulcer despite repeated endoscopic biopsies and appropriate medical therapy for the ulcer. She underwent another endoscopy and a biopsy was performed for multiple large and deep specimens. Ultimately, primary gastric plasmacytoma was confirmed. However, she and her attendant refused standard local radiotherapy or surgical resection. She came to our emergency room 3 months later with hematemesis due to a large gastric ulcer, despite management with medication for over 3 months at a local clinic. We again recommended local radiation or surgical resection. However, as she was willing to undergo only medical therapy, she was prescribed high-dose dexamethasone. Surprisingly, her ulcer completely regressed and remission was maintained for over 1 year. We report successful treatment of a rare primary gastric plasmacytoma mimicking intractable ulcer by using high-dose dexamethasone. To the best of our knowledge, this is the first reported case successfully treated with only high-dose dexamethasone.
[Multiple recurrent eccrine porocarcinoma with inguinal metastasis. A case report].
Acosta-Arencibia, Aida; Abrante-Expósito, Begoña; Ramos-Gordillo, Matilde
2016-01-01
Eccrine porocarcinoma, first described in 1963, is a rare malignant lesion arising from the eccrine sweat glands. It is usually a primary tumour, or even more common, a malignant degeneration of an eccrine poroma. It usually affects older persons and is located most commonly on the lower extremities. About 20% of eccrine porocarcinoma will recur after treatment. The treatment is wide local excision of the primary lesion. This uncommon skin tumour has a locally aggressive behaviour and a high recurrence rate. An 82 year-old man presenting with multiple recurrent eccrine porocarcinoma with inguinal metastasis. The treatment was a radical excision and inguinal lymphadenectomy. There were no postoperative complications, but there was local recurrence after six months. Early diagnosis and wide excision is the best way to achieve a good prognosis, due to the aggressiveness of this tumour. Copyright © 2015. Published by Masson Doyma México S.A.
Purification and biochemical characterization of a novel ecto-apyrase, MP67, from Mimosa pudica.
Okuhata, Riku; Takishima, Takeshi; Nishimura, Naoaki; Ueda, Shogo; Tsuchiya, Takahide; Kanzawa, Nobuyuki
2011-09-01
We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP.
Okuhata, Riku; Takishima, Takeshi; Nishimura, Naoaki; Ueda, Shogo; Tsuchiya, Takahide; Kanzawa, Nobuyuki
2011-01-01
We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP. PMID:21788364
Technologies for distributed defense
NASA Astrophysics Data System (ADS)
Seiders, Barbara; Rybka, Anthony
2002-07-01
For Americans, the nature of warfare changed on September 11, 2001. Our national security henceforth will require distributed defense. One extreme of distributed defense is represented by fully deployed military troops responding to a threat from a hostile nation state. At the other extreme is a country of 'citizen soldiers', with families and communities securing their common defense through heightened awareness, engagement as good neighbors, and local support of and cooperation with local law enforcement, emergency and health care providers. Technologies - for information exploitation, biological agent detection, health care surveillance, and security - will be critical to ensuring success in distributed defense.
Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A
2016-10-01
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Local instability driving extreme events in a pair of coupled chaotic electronic circuits
NASA Astrophysics Data System (ADS)
de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza
2016-06-01
For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.
Capability of insulator study by photoemission electron microscopy at SPring-8.
Ohkochi, Takuo; Kotsugi, Masato; Yamada, Keisuke; Kawano, Kenji; Horiba, Koji; Kitajima, Fumio; Oura, Masaki; Shiraki, Susumu; Hitosugi, Taro; Oshima, Masaharu; Ono, Teruo; Kinoshita, Toyohiko; Muro, Takayuki; Watanabe, Yoshio
2013-07-01
The observation method of photoemission electron microscopy (PEEM) on insulating samples has been established in an extremely simple way. Surface conductivity is induced locally on an insulating surface by continuous radiation of soft X-rays, and Au films close to the area of interest allow the accumulated charges on the insulated area to be released to ground level. Magnetic domain observations of a NiZn ferrite, local X-ray absorption spectroscopy of sapphire, high-resolution imaging of a poorly conducting Li0.9CoO2 film surface, and Au pattern evaporation on a fine rock particle are demonstrated. Using this technique, all users' experiments on poorly conducting samples have been performed successfully at the PEEM experimental station of SPring-8.
Many-body localization in a long range XXZ model with random-field
NASA Astrophysics Data System (ADS)
Li, Bo
2016-12-01
Many-body localization (MBL) in a long range interaction XXZ model with random field are investigated. Using the exact diagonal method, the MBL phase diagram with different tuning parameters and interaction range is obtained. It is found that the phase diagram of finite size results supplies strong evidence to confirm that the threshold interaction exponent α = 2. The tuning parameter Δ can efficiently change the MBL edge in high energy density stats, thus the system can be controlled to transfer from thermal phase to MBL phase by changing Δ. The energy level statistics data are consistent with result of the MBL phase diagram. However energy level statistics data cannot detect the thermal phase correctly in extreme long range case.
Violent Extremism, Community-Based Violence Prevention, and Mental Health Professionals.
Weine, Stevan M; Stone, Andrew; Saeed, Aliya; Shanfield, Stephen; Beahrs, John; Gutman, Alisa; Mihajlovic, Aida
2017-01-01
New community-based initiatives being developed to address violent extremism in the United States are utilizing mental health services and leadership. This article reviews current approaches to preventing violent extremism, the contribution that mental illness and psychosocial problems can make to violent extremism, and the rationale for integrating mental health strategies into preventing violent extremism. The authors describe a community-based targeted violence prevention model and the potential roles of mental health professionals. This model consists of a multidisciplinary team that assesses at-risk individuals with comprehensive threat and behavioral evaluations, arranges for ongoing support and treatment, conducts follow-up evaluations, and offers outreach, education, and resources for communities. This model would enable mental health professionals in local communities to play key roles in preventing violent extremism through their practice and leadership.
Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram
2013-03-01
Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.
NASA Astrophysics Data System (ADS)
Luiza Coelho Netto, Ana; Facadio, Ana Carolina; Pereira, Roberta; Lima, Pedro Henrique
2017-04-01
Paleo-environmental studies point out an alternation of wet and dry periods during the Holocene in southeastern Brazil, marked by the expansion and retraction of the humid tropical rainforest in alternation with the campos de altitude vegetation ('high altitude grassland'); successive episodes of natural fire were recorded from 10,000 to 4,000 years BP in the mountainous region of SE-Brazil, reflecting warm-dry conditions. Present seasonal climatic variability is indicated by an increasing dry spell frequency throughout the XX and early XXI centuries together with an increasing rainfall concentration in the summer when extreme daily totals (above 100 mm) become progressively more frequent. Historical land use changes, at both regional and local scales, are mostly related to this climatic variability. Therefore extreme rainfall induced landslides have been responsible for severe disasters as recorded along the Atlantic slopes of Serra do Mar. The extreme one occurred in January 2011, affecting the municipalities of Nova Friburgo, Teresópolis and Petrópolis. Studies in Nova Friburgo shown the occurrence of 3.622 landslides scars within an area of 421 km2; this rainfall event reached the expected average monthly rainfall (300 mm) in less than 10 hours. The D'Antas creek basin (53 km2) was the most affected area by landslides; 86% of 326 scars where associated with shallow translational mechanisms among which 67% occurred within shallow concave up topographic hollows of 32° slope angle in average. Most of these landslide scars occurred in granite rocks and degraded vegetation due to historical land use changes (last 200 years) including secondary forest (64%) and grasslands (25%). The present-day association between extreme rainfall induced landslides and human induced vegetation changes seem to reflect similar geomorphic responses to natural Holocene bioclimatic changes; a common phenomenon between the two periods is fire (natural fire in the past time and man-induced fire nowadays). Despite all field evidences on the relevance of landslides on hillslope evolution in the mountainous domain, local communities at risk and governmental institutions are not yet ready to face the next extreme rain event. Since November 2014 a new governance and risk management model has been developed in the Córrego D'Antas basin, through a multi-institutional network integrating local communities, university and governmental institutions as will be presented in this paper.
Dust-obscured Galaxies in the Local Universe
NASA Astrophysics Data System (ADS)
Hwang, Ho Seong; Geller, Margaret J.
2013-06-01
We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ~ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S 12 μm/S 0.22 μm >= 892 and S 12 μm > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 1010 (L ⊙) <~ L IR <~ 7.0 × 1011 (L ⊙) with a median L IR of 2.1 × 1011 (L ⊙). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S 12 μm/S 0.22 μm but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ~50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
Extreme sea levels on the rise along Europe's coasts
NASA Astrophysics Data System (ADS)
Vousdoukas, Michalis I.; Mentaschi, Lorenzo; Voukouvalas, Evangelos; Verlaan, Martin; Feyen, Luc
2017-03-01
Future extreme sea levels (ESLs) and flood risk along European coasts will be strongly impacted by global warming. Yet, comprehensive projections of ESL that include mean sea level (MSL), tides, waves, and storm surges do not exist. Here, we show changes in all components of ESLs until 2100 in view of climate change. We find that by the end of this century, the 100-year ESL along Europe's coastlines is on average projected to increase by 57 cm for Representative Concentration Pathways (RCP)4.5 and 81 cm for RCP8.5. The North Sea region is projected to face the highest increase in ESLs, amounting to nearly 1 m under RCP8.5 by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Relative sea level rise (RSLR) is shown to be the main driver of the projected rise in ESL, with increasing dominance toward the end of the century and for the high-concentration pathway. Changes in storm surges and waves enhance the effects of RSLR along the majority of northern European coasts, locally with contributions up to 40%. In southern Europe, episodic extreme events tend to stay stable, except along the Portuguese coast and the Gulf of Cadiz where reductions in surge and wave extremes offset RSLR by 20-30%. By the end of this century, 5 million Europeans currently under threat of a 100-year ESL could be annually at risk from coastal flooding under high-end warming. The presented dataset is available through this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
Yamamoto, Takumi; Yamamoto, Nana; Yoshimatsu, Hidehiko
2017-10-01
Volume measurement is a common evaluation for upper extremity lymphedema. However, volume comparison between different patients with different body types may be inappropriate, and it is difficult to evaluate localized limb volume change using arm volume. Localized arm volumes (Vk, k = 1-5) and localized arm volume indices (LAVIk) at 5 points (1, upper arm; 2, elbow; 3, forearm; 4, wrist; 5, hand) of 106 arms of 53 examinees with no arm edema were calculated based on physical measurements (arm circumferences and lengths and body mass index [BMI]). Interrater and intrarater reliabilities of LAVIk were assessed, and Vk and LAVIk were compared between lower BMI (BMI, <22 kg/m) group and higher BMI (BMI, ≥22 kg/m) group. Interrater and intrarater reliabilities of LAVIk were all high (all, r > 0.98). Between lower and higher BMI groups, significant differences were observed in all Vk (V1 [P = 6.8 × 10], V2 [P = 3.1 × 10], V3 [P = 1.1 × 10], V4 [P = 8.3 × 10], and V5 [P = 3.0 × 10]). Regarding localized arm volume index (LAVI) between groups, significant differences were seen in LAVI1 (P = 9.7 × 10) and LAVI5 (P = 1.2 × 10); there was no significant difference in LAVI2 (P = 0.60), LAVI3 (P = 0.61), or LAVI4 (P = 0.22). Localized arm volume index is a convenient and highly reproducible method for evaluation of localized arm volume change, which is less affected by body physique compared with arm volumetry.
Interstellar absorption of the extreme ultraviolet flux from two hot white dwarfs
NASA Technical Reports Server (NTRS)
Cash, W.; Bowyer, S.; Lampton, M.
1979-01-01
Photometric upper limits on the 300 A flux from the hot white dwarfs Feige 24 and G191-B2B are presented. The limits, which were obtained with a rocket-borne extreme ultraviolet imaging telescope, are interpreted as lower limits on the density of the intervening interstellar matter. The limits are used to investigate the state of interstellar gas within 100 pc. A local clumpiness factor, which is of value in planning future extreme ultraviolet observations, is derived.
NASA Astrophysics Data System (ADS)
Schaap, D.
1996-05-01
Plans for a high speed rail line in Holland generate concerns about the impact on the living environment. Residents living near the planned track have an extremely negative attitude towards the high speed rail line. Most of them do not see the need for the line and they expect a great deal of noise annoyance. There is a disparity between the expectations of the residents and those of the government: the residents expect much more noise that the government does, on the basis of scientific research. The image that residents have of the noise of a high speed train is probably too negative. Therefore the government should supply the residents with better and more detailed information about the noise and the possible annoyance. Furthermore, for a positive attitude, it is important that residents not only recognize the disadvantages of the rail line, but that they recognize some local advantages too. For instances, the government can guarantee compensation for the affected green space, or that other noise sources will be removed. Finally, the residents have the feeling they cannot influence the decision-making process. To reduce this feeling of powerlessness, the government can involve the residents; for example, in the decision-making about the local plans for the high speed rail line.
Recent and future warm extreme events and high-mountain slope stability.
Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R
2010-05-28
The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.
King, Gary M
2015-04-07
Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.
King, Gary M.
2015-01-01
Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars’ atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (−41 MPa to −117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of −39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of −11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (−19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars’ history. PMID:25831529
McKay, Brian J; Bir, Cynthia A
2009-11-01
Anti-vehicular (AV) landmines and improvised explosive devices (IED) have accounted for more than half of the United States military hostile casualties and wounded in Operation Iraqi Freedom (OIF) (Department of Defense Personnel & Procurement Statistics, 2009). The lower extremity is the predominantly injured body region following an AV mine or IED blast accounting for 26 percent of all combat injuries in OIF (Owens et al., 2007). Detonations occurring under the vehicle transmit high amplitude and short duration axial loads onto the foot-ankle-tibia region of the occupant causing injuries to the lower leg. The current effort was initiated to develop lower extremity injury criteria for occupants involved in underbelly blast impacts. Eighteen lower extremity post mortem human specimens (PMHS) were instrumented with an implantable load cell and strain gages and impacted at one of three incrementally severe AV axial loading conditions. Twelve of the 18 PMHS specimens sustained fractures of the calcaneus, talus, fibula and/or tibia. The initiation of skeletal injury was precisely detected by strain gages and corresponded with local peak axial tibia force. Survival analysis identified peak axial tibia force and impactor velocity as the two best predictors of incapacitating injury. A tibia axial force of 5,931 N and impactor velocity of 10.8 m/s corresponds with a 50 percent risk of an incapacitating injury. The criteria may be utilized to predict the probability of lower extremity incapacitating injury in underbelly blast impacts.
Investigation of the relationship between hurricane waves and extreme runup
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Stockdon, H. F.
2006-12-01
In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.
Extreme air-sea surface turbulent fluxes in mid latitudes - estimation, origins and mechanisms
NASA Astrophysics Data System (ADS)
Gulev, Sergey; Natalia, Tilinina
2014-05-01
Extreme turbulent heat fluxes in the North Atlantic and North Pacific mid latitudes were estimated from the modern era and first generation reanalyses (NCEP-DOE, ERA-Interim, MERRA NCEP-CFSR, JRA-25) for the period from 1979 onwards. We used direct surface turbulent flux output as well as reanalysis state variables from which fluxes have been computed using COARE-3 bulk algorithm. For estimation of extreme flux values we analyzed surface flux probability density distribution which was approximated by Modified Fisher-Tippett distribution. In all reanalyses extreme turbulent heat fluxes amount to 1500-2000 W/m2 (for the 99th percentile) and can exceed 2000 W/m2 for higher percentiles in the western boundary current extension (WBCE) regions. Different reanalyses show significantly different shape of MFT distribution, implying considerable differences in the estimates of extreme fluxes. The highest extreme turbulent latent heat fluxes are diagnosed in NCEP-DOE, ERA-Interim and NCEP-CFSR reanalyses with the smallest being in MERRA. These differences may not necessarily reflect the differences in mean values. Analysis shows that differences in statistical properties of the state variables are the major source of differences in the shape of PDF of fluxes and in the estimates of extreme fluxes while the contribution of computational schemes used in different reanalyses is minor. The strongest differences in the characteristics of probability distributions of surface fluxes and extreme surface flux values between different reanalyses are found in the WBCE extension regions and high latitudes. In the next instance we analyzed the mechanisms responsible for forming surface turbulent fluxes and their potential role in changes of midlatitudinal heat balance. Midlatitudinal cyclones were considered as the major mechanism responsible for extreme turbulent fluxes which are typically occur during the cold air outbreaks in the rear parts of cyclones when atmospheric conditions provide locally high winds and air-sea temperature gradients. For this purpose we linked characteristics of cyclone activity over the midlatitudinal oceans with the extreme surface turbulent heat fluxes. Cyclone tracks and parameters of cyclone life cycle (deepening rates, propagation velocities, life time and clustering) were derived from the same reanalyses using state of the art numerical tracking algorithm. The main questions addressed in this study are (i) through which mechanisms extreme surface fluxes are associated with cyclone activity? and (ii) which types of cyclones are responsible for forming extreme turbulent fluxes? Our analysis shows that extreme surface fluxes are typically associated not with cyclones themselves but rather with cyclone-anticyclone interaction zones. This implies that North Atlantic and North Pacific series of intense cyclones do not result in the anomalous surface fluxes. Alternatively, extreme fluxes are most frequently associated with blocking situations, particularly with the intensification of the Siberian and North American Anticyclones providing cold-air outbreaks over WBC regions.
Reconstructing the 20th century high-resolution climate of the southeastern United States
NASA Astrophysics Data System (ADS)
Dinapoli, Steven M.; Misra, Vasubandhu
2012-10-01
We dynamically downscale the 20th Century Reanalysis (20CR) to a 10-km grid resolution from 1901 to 2008 over the southeastern United States and the Gulf of Mexico using the Regional Spectral Model. The downscaled data set, which we call theFlorida Climate Institute-Florida State University Land-Atmosphere Reanalysis for theSoutheastern United States at 10-km resolution (FLAReS1.0), will facilitate the study of the effects of low-frequency climate variability and major historical climate events on local hydrology and agriculture. To determine the suitability of the FLAReS1.0 downscaled data set for any subsequent applied climate studies, we compare the annual, seasonal, and diurnal variability of temperature and precipitation in the model to various observation data sets. In addition, we examine the model's depiction of several meteorological phenomena that affect the climate of the region, including extreme cold waves, summer sea breezes and associated convective activity, tropical cyclone landfalls, and midlatitude frontal systems. Our results show that temperature and precipitation variability are well-represented by FLAReS1.0 on most time scales, although systematic biases do exist in the data. FLAReS1.0 accurately portrays some of the major weather phenomena in the region, but the severity of extreme weather events is generally underestimated. The high resolution of FLAReS1.0 makes it more suitable for local climate studies than the coarser 20CR.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102
NASA Astrophysics Data System (ADS)
Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.
2018-01-01
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102.
Michilli, D; Seymour, A; Hessels, J W T; Spitler, L G; Gajjar, V; Archibald, A M; Bower, G C; Chatterjee, S; Cordes, J M; Gourdji, K; Heald, G H; Kaspi, V M; Law, C J; Sobey, C; Adams, E A K; Bassa, C G; Bogdanov, S; Brinkman, C; Demorest, P; Fernandez, F; Hellbourg, G; Lazio, T J W; Lynch, R S; Maddox, N; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Scholz, P; Siemion, A P V; Tendulkar, S P; Van Rooy, P; Wharton, R S; Whitlow, D
2018-01-10
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 10 5 radians per square metre to +1.33 × 10 5 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling
NASA Astrophysics Data System (ADS)
Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.
2017-12-01
The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.
Changes in Extreme Events and the Potential Impacts on National Security
NASA Astrophysics Data System (ADS)
Bell, J.
2017-12-01
Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socio-economic impacts. Climate change has caused changes in extreme event frequency, intensity and geographic distribution, and will continue to be a driver for changes in the future. Some of the extreme events that have already changed are heat waves, droughts, wildfires, flooding rains, coastal flooding, storm surge, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local intricacies of societal and environmental factors that influences the level of exposure. The goal of this presentation is to discuss the national security implications of changes in extreme weather events and demonstrate how changes in extremes can lead to a host cascading issues. To illustrate this point, this presentation will provide examples of the various pathways that extreme events can increase disease burden and cause economic stress.
NASA Astrophysics Data System (ADS)
Aguilar, E.; Aziz Barry, A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; Do Nascimento, D. J.; Peterson, T. C.; Thamba Umba, O.; Tomou, M.; Zhang, X.
2009-01-01
Understanding how extremes are changing globally, regionally, and locally is an important first step for planning appropriate adaptation measures, as changes in extremes have major impacts. The Intergovernmental Panel on Climate Change's synthesis of global extremes was not able to say anything about western central Africa, as no analysis of the region was available nor was there an adequate internationally exchanged long-term daily data set available to use for analysis of extremes. This paper presents the first analysis of extremes in this climatically important region along with analysis of Guinea Conakry and Zimbabwe. As per many other parts of the world, the analysis shows a decrease in cold extremes and an increase in warm extremes. However, while the majority of the analyzed world has shown an increase in heavy precipitation over the last half century, central Africa showed a decrease. Furthermore, the companion analysis of Guinea Conakry and Zimbabwe showed no significant increases.
Impacts of Irrigation on Daily Extremes in the Coupled Climate System
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide
2014-01-01
Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.
Science Objectives of the JEM EUSO Mission on International Space Station
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki
2007-01-01
JEM-EUSO space observatory is planned with a very large exposure factor which will exceed the critical exposure factor required for observing the most of the sources within the propagational horizon of about one hundred Mpc. The main science objective of JEM-EUSO is the source-identifying astronomy in particle channel with extremey-high-energy particles. Quasi-linear tracking of the source objects through galactic magnetic field should become feasible at energy > 10(exp 20) eV for all-sky. The individual GZK profile in high statistics experiments should differ from source to source due to different distance unless Lorentz invariance is somehow limited. hi addition, JEM-EUSO has three exploratory test observations: (i), extremely high energy neutrinos beginning at E > 10(exp 19) eV: neutrinos as being expected to have a slowly increasing cross section in the Standard Model, and in particular, hundreds of times more in the extra-dimension models. (ii). fundamental physics at extreme Super LHC (Large Hadronic Collider) energies with the hierarchical unified energy much below the GUT scale, and (iii). global atmospheric observation, including large-scale and local plasma discharges, night-glow, meteorites, and others..
NASA Astrophysics Data System (ADS)
Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying
2011-12-01
Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.
The smoke episode in Buenos Aires, 15-20 April 2008
NASA Astrophysics Data System (ADS)
Berbery, Ernesto Hugo; Ciappesoni, Hector C.; Kalnay, Eugenia
2008-11-01
The smoke that affected the city of Buenos Aires and its suburbs (approximate population, 13M) in mid April 2008 was an extreme event without historical precedent. The episode resulted in an increase of health problems among the population (respiratory problems, eye irritation) and, due to poor visibility, led to hazardous driving conditions and accidents that forced the intermittent closure of major highways. The origin of the smoke was traced to pasture burning in the La Plata River delta, to the northwest of Buenos Aires. Unfortunately, the increased shifting of livestock to the La Plata River delta may result in more common smoke episodes due to associated biomass burning practices. We clarify the mechanisms that resulted in this extreme episode, including the contribution of the La Plata River local circulations to the intensity of the event. We further show its high predictability using high resolution regional model simulations and forecasts. Our results suggest that a high resolution regional model could be used to monitor and predict several days in advance the atmospheric transport of smoke. These results could have policy implications, as preventive measures on biomass burning could be put in effect when smoke from the fires is predicted to affect a densely populated area.
Regional Climate Change across North America in 2030 Projected from RCP6.0
NASA Astrophysics Data System (ADS)
Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.
Hincapié, Cesar A; Cassidy, J David; Côté, Pierre; Carroll, Linda J; Guzmán, Jaime
2010-04-01
To describe the distribution of bodily pain and identify common patterns of pain localization after traffic injury. Cross-sectional analysis of a population-based cohort of 6481 Saskatchewan residents who were treated or filed an auto insurance claim within 30 days of traffic injury or both. The prevalence of pain in each of 13 body areas was calculated and compared with pain confined exclusively to each of these areas. Principal component analysis was used to identify the main patterns of pain localization after traffic injury. Irrespective of pain in other areas, 86% of respondents reported posterior neck pain, 72% indicated head pain, and 60% noted lumbar back pain. Ninety-five percent of claimants reported some pain within the posterior trunk region, comprising the posterior neck, shoulder, mid-back, lumbar, and buttock areas. Only 0.4% of respondents reported posterior neck pain only. Four main patterns accounted for 60% of the variance in pain localization: 1) upper anterior trunk and upper extremity pain; 2) head, posterior neck, and upper posterior trunk pain; 3) low back pain; and 4) lower anterior trunk and lower extremity pain. Pain after traffic injury is most commonly reported in multiple body areas; isolated neck pain is extremely rare. These results have implications for clinical management of traffic injuries and interpretation of whiplash-related trials.
NASA Astrophysics Data System (ADS)
Bernal, G.; Osorio, A. F.; Urrego, L.; Peláez, D.; Molina, E.; Zea, S.; Montoya, R. D.; Villegas, N.
2016-12-01
Above-normal meteorological and oceanographic conditions that generate damage on coastal ecosystems and associated human communities are called extreme oceanic events. Accurate data are needed to predict their occurrence and to understand their effects. We analyzed available data from four localities in the Colombian Caribbean to study the effect of wave-related extreme events (hurricanes, surges) in three coastal ecosystems, i.e., mangroves, beaches, and reefs. Three localities were continental (Portete Bay mangroves at the Guajira Peninsula, Bocagrande Public Beach at Cartagena City, Tayrona Natural Park reefs near Santa Marta City), and one was oceanic (Old Providence Island reefs in the San Andres and Old Providence Archipelago, SW Caribbean). We gathered data on ocean surface winds (1978-2011) for the four locations, then modeled significant wave heights, then identified extreme events, and finally tried to identify effects on the ecosystems, directly or from published literature. Wave-related extreme surges were also compiled from Colombian press news (1970-2008). Modeled wave maximums (> 5 m significant wave height) and press-reported events coincided with hurricanes, extreme dry season, mid-summer drought and northern hemisphere winter cold fronts, with neither a relationship to ENSO events, nor a temporal trend of increase, excepting Portete Bay, with a marked increase after 1995. Changes in Portete Bay mangroves were analyzed from aerial photographs before and after Tropical Storm Cesar (1996). In the 38 years before Cesar there was mangrove inland colonization, with some loss associated to beach erosion, while during the 8 years following the storm there were localized retreats and important changes in vegetation composition related to the falling of large trees and subsequent recolonization by species that are faster colonizers, and changes in soil composition brought about by inundation. Cartagena's Bocagrande Beach was followed between 2009 and 2011 by video, and two events of strong retreat were observed in 2010, one associated to the arriving of cold fronts in March, and the other to the passing of Hurricane Tomas in November-December. Together, they produced > 90 m beach retreat. We identified modeled wave maximums during Hurricane Lenny (1999) at Santa Marta city, and hurricane Beta (2005) at Old Providence Island, both of which, according to the literature, had transient minor effects on local coral reefs, which had been more affected by diseases and bleaching.
ERIC Educational Resources Information Center
Haverkort-Yeh, Roxanne Dominique; Tamaru, Clyde S.; Gorospe, Kelvin Dalauta; Rivera, Malia Ana J.
2013-01-01
As a result of shifting marine environmental conditions caused by global climate change and localized water pollution, marine organisms are becoming increasingly exposed to changing water quality conditions. For example, they are exposed to more extreme salinity fluctuations as a result of heavier rainfall, melting polar caps, or extreme droughts.…
Collection Development "Southwest Gardening": The Desert Shall Bloom
ERIC Educational Resources Information Center
Charles, John; Mosley, Shelley; Van Winkle, Sandra
2008-01-01
Gardening in the American Southwest (SW) is an extreme sport. Not only are gardeners challenged by geographic extremes from tropical deserts to subalpine locales, they must also deal with a wide range of climates. Winter in the mountains and higher regions means heavy snows, frozen soils, and temperatures that can dip below zero. In contrast,…
ERIC Educational Resources Information Center
Bartlett, Alice
2011-01-01
This paper draws on my own recent experience of local artistic engagement with the British government's counter-terrorism strategy, Prevent(ing Violent Extremism). "Not in My Name" uses verbatim theatre techniques to negotiate dialogue within and across communities around a controversial agenda, and has received national acclaim for its…
Local atomic order of a metallic glass made visible by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Luo, Yuansu; Samwer, Konrad
2018-06-01
Exploring the atomic level structure in amorphous materials by STM becomes extremely difficult due to the localized electronic states. Here we carried out STM studies on a quasi-low-dimensional film of metallic glass Zr65Cu27.5Al7.5 which is ‘ultrathin’ compared with the localization length and/or the length scale of short range order. The local electronic structure must appear more inherent, having states at E f available for tip-sample tunneling current. To enhance imaging contrasts between long-range and short-range orders, the highly oriented pyrolytic graphite was chosen as substrate, so that the structural heterogeneity arising from competition between the glass former ability and the epitaxy can be ascertained. A chemical order predicted for this system was observed in atomic ordered regimes (1–2 monolayers), accompanied with a superstructure with the period Zr–Cu(Al)–Zr along three hexagonal axes. The result implies a chemical short range order in disordered regimes, where polyhedral clusters are dominant with the solute atom Cu(Al) in the center. An attempt for the structural modelling was made based on high resolution STM images, giving icosahedral order on the surface and different Voronoi clusters in 3D space.
NASA Astrophysics Data System (ADS)
Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.
2017-04-01
The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1
upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.
General Population Knowledge about Extreme Heat: A Cross-Sectional Survey in Lisbon and Madrid.
Gil Cuesta, Julita; van Loenhout, Joris Adriaan Frank; Colaço, Maria da Conceição; Guha-Sapir, Debarati
2017-01-28
Extreme heat is associated with an increased mortality and morbidity. National heat plans have been implemented to minimize the effect of extreme heat. The population's awareness and knowledge of national heat plans and extreme heat is essential to improve the community's behavior and adaptation. A general population survey was conducted in Lisbon and in Madrid to assess this knowledge. We used a questionnaire to interview passers-by. Results were compared between Lisbon and Madrid and between locals and foreigners, using Pearson Chi-square tests and Fisher's exact test. We conducted 260 interviews in six locations of different socio-economic backgrounds in each city. The most frequently mentioned extreme heat-related risk groups were the elderly (79.2%), children (49.6%) and babies (21.5%). The most frequently reported protective measures were increased fluid intake (73.1%) and avoiding exposure to the sun (50.8%). Knowledge about the heat plan was higher in Lisbon (37.2%) than in Madrid (25.2%) ( p -value = 0.03). Foreigners had less knowledge of risk groups compared to locals. Heat plans were not widely known in Madrid and Lisbon. Nonetheless, knowledge of practical concepts to face extreme heat, such as certain risk groups and protective measures, was found. Our results were similar to comparable surveys where specific respondents' groups were identified as less knowledgeable. This highlighted the importance of addressing these groups when communicating public health messages on heat. Foreigners should be specifically targeted to increase their awareness.
Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.
2015-01-01
Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827
ENVIRONMENTAL SCIENCE. Profiling risk and sustainability in coastal deltas of the world.
Tessler, Z D; Vörösmarty, C J; Grossberg, M; Gladkova, I; Aizenman, H; Syvitski, J P M; Foufoula-Georgiou, E
2015-08-07
Deltas are highly sensitive to increasing risks arising from local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We quantified changing flood risk due to extreme events using an integrated set of global environmental, geophysical, and social indicators. Although risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product-enabled infrastructure and coastal defense investments. In an energy-constrained future, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term. Copyright © 2015, American Association for the Advancement of Science.
Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.
Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M
2016-01-21
Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.
NASA Astrophysics Data System (ADS)
Silvestro, Francesco; Parodi, Antonio; Campo, Lorenzo
2017-04-01
The characterization of the hydrometeorological extremes, both in terms of rainfall and streamflow, in a given region plays a key role in the environmental monitoring provided by the flood alert services. In last years meteorological simulations (both near real-time and historical reanalysis) were available at increasing spatial and temporal resolutions, making possible long-period hydrological reanalysis in which the meteo dataset is used as input in distributed hydrological models. In this work, a very high resolution meteorological reanalysis dataset, namely Express-Hydro (CIMA, ISAC-CNR, GAUSS Special Project PR45DE), was employed as input in the hydrological model Continuum in order to produce long time series of streamflows in the Liguria territory, located in the Northern part of Italy. The original dataset covers the whole Europe territory in the 1979-2008 period, at 4 km of spatial resolution and 3 hours of time resolution. Analyses in terms of comparison between the rainfall estimated by the dataset and the observations (available from the local raingauges network) were carried out, and a bias correction was also performed in order to better match the observed climatology. An extreme analysis was eventually carried on the streamflows time series obtained by the simulations, by comparing them with the results of the same hydrological model fed with the observed time series of rainfall. The results of the analysis are shown and discussed.
Modeling Compound Flood Hazards in Coastal Embayments
NASA Astrophysics Data System (ADS)
Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.
2017-12-01
Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the strengths/weaknesses of each approach and helps modelers choose the appropriate scenario that best fit to the needs of their project. The proposed risk assessment approach can help flood hazard modeling practitioners achieve a more reliable estimate of risk, by cautiously reducing the dimensionality of the hazard analysis.
Statistical lamb wave localization based on extreme value theory
NASA Astrophysics Data System (ADS)
Harley, Joel B.
2018-04-01
Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.
Generating Localized Nonlinear Excitations in the Fermi-Pasta-Ulam-Tsingou chains
NASA Astrophysics Data System (ADS)
Westley, Alexandra; Sen, Surajit
Here, we will discuss properties of energy trapping in the decorated Fermi-Pasta-Ulam-Tsingou (FPUT) mass-spring chains with quadratic and quartic coupling terms. It is well-known that the FPUT system admits highly localized nonlinear excitations (LNE) which are stable for long periods of time. We seek to generate these LNEs at will by creating regions in the chain of stiffer or softer springs, or by placing mass impurities throughout. We will show that NLEs tend to coalesce in regions of stiff springs from random perturbations throughout the system. These locations may serve as extremely powerful energy traps or heat sinks in certain materials. Furthermore, we will demonstrate that this process occurs by means of trapping solitary (or anti-solitary) waves into tight spaces.
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1988-01-01
This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.
van Tienderen, Kaj M.; van der Meij, Sancia E. T.
2017-01-01
The effectiveness of migration in marine species exhibiting a pelagic larval stage is determined by various factors, such as ocean currents, pelagic larval stage duration and active habitat selection. Direct measurement of larval movements is difficult and, consequently, factors determining the gene flow patterns remain poorly understood for many species. Patterns of gene flow play a key role in maintaining genetic homogeneity in a species by dampening the effects of local adaptation. Coral-dwelling gall crabs (Cryptochiridae) are obligate symbionts of stony corals (Scleractinia). Preliminary data showed high genetic diversity on the COI gene for 19 Opecarcinus hypostegus specimens collected off Curaçao. In this study, an additional 176 specimens were sequenced and used to characterize the population structure along the leeward side of Curaçao. Extremely high COI genetic variation was observed, with 146 polymorphic sites and 187 unique haplotypes. To determine the cause of this high genetic diversity, various gene flow scenarios (geographical distance along the coast, genetic partitioning over depth, and genetic differentiation by coral host) were examined. Adaptive genetic divergence across Agariciidae host species is suggested to be the main cause for the observed high intra-specific variance, hypothesised as early signs of speciation in O. hypostegus. PMID:28079106
2017-01-01
Climate change represents a significant and growing threat to population health. Rural areas face unique challenges, such as high rates of vulnerable populations; economic uncertainty due to their reliance on industries that are vulnerable to climate change; less resilient infrastructure; and lower levels of access to community and emergency services than urban areas. This article fills a gap in public health practice by developing climate and health environmental public health indicators for a local public health department in a rural area. We adapted the National Environmental Public Health Tracking Network's framework for climate and health indicators to a seven-county health department in Western Kentucky. Using a three-step review process, we identified primary climate-related environmental public health hazards for the region (extreme heat, drought, and flooding) and a suite of related exposure, health outcome, population vulnerability, and environmental vulnerability indicators. Indicators that performed more poorly at the county level than at the state and national level were defined as “high vulnerability.” Six to eight high vulnerability indicators were identified for each county. The local health department plans to use the results to enhance three key areas of existing services: epidemiology, public health preparedness, and community health assessment. PMID:28352286
Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years.
Hirose, Katsumi
2016-06-01
The Fukushima Daiichi Nuclear Plant (FDNPP) accident resulted in huge environmental and socioeconomic impacts to Japan. To document the actual environmental and socioeconomic effects of the FDNPP accident, we describe here atmospheric and marine contamination due to radionuclides released from the FDNPP accident using papers published during past five years, in which temporal and spatial variations of FDNPP-derived radionuclides in air, deposition and seawater and their mapping are recorded by local, regional and global monitoring activities. High radioactivity-contaminated area in land were formed by the dispersion of the radioactive cloud and precipitation, depending on land topography and local meteorological conditions, whereas extremely high concentrations of (131)I and radiocesium in seawater occurred due to direct release of radioactivity-contaminated stagnant water in addition to atmospheric deposition. For both of atmosphere and ocean, numerical model simulations, including local, regional and global-scale modeling, were extensively employed to evaluate source terms of the FDNPP-derived radionuclides from the monitoring data. These models also provided predictions of the dispersion and high deposition areas of the FDNPP-derived radionuclides. However, there are significant differences between the observed and simulated values. Then, the monitoring data would give a good opportunity to improve numerical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nutrition security under extreme events
NASA Astrophysics Data System (ADS)
Martinez, A.
2017-12-01
Nutrition security under extreme events. Zero hunger being one of the Sustainable Development Goal from the United Nations, food security has become a trending research topic. However extreme events impact on global food security is not yet 100% understood and there is a lack of comprehension of the underlying mechanisms of global food trade and nutrition security to improve countries resilience to extreme events. In a globalized world, food is still a highly regulated commodity and a strategic resource. A drought happening in a net food-exporter will have little to no effect on its own population but the repercussion on net food-importers can be extreme. In this project, we propose a methodology to describe and quantify the impact of a local drought to human health at a global scale. For this purpose, nutrition supply and global trade data from FAOSTAT have been used with domestic food production from national agencies and FAOSTAT, global precipitation from the Climate Research Unit and health data from the World Health Organization. A modified Herfindahl-Hirschman Index (HHI) has been developed to measure the level of resilience of one country to a drought happening in another country. This index describes how a country is dependent of importation and how diverse are its importation. Losses of production and exportation due to extreme events have been calculated using yield data and a simple food balance at country scale. Results show that countries the most affected by global droughts are the one with the highest dependency to one exporting country. Changes induced by droughts also disturbed their domestic proteins, fat and calories supply resulting most of the time in a higher intake of calories or fat over proteins.
NASA Astrophysics Data System (ADS)
Mauger, G. S.; Lorente-Plazas, R.; Salathe, E. P., Jr.; Mitchell, T. P.; Simmonds, J.; Lee, S. Y.; Hegewisch, K.; Warner, M.; Won, J.
2017-12-01
King County has experienced 12 federally declared flood disasters since 1990, and tens of thousands of county residents commute through, live, and work in floodplains. In addition to flooding, stormwater is a critical management challenge, exacerbated by aging infrastructure, combined sewer and drainage systems, and continued development. Even absent the effects of climate change these are challenging management issues. Recent studies clearly point to an increase in precipitation extremes for the Pacific Northwest (e.g., Warner et al. 2015). Yet very little information is available on the magnitude and spatial distribution of this change. Others clearly show that local-scale changes in extreme precipitation can only be accurately quantified with dynamical downscaling, i.e.: using a regional climate model. This talk will describe a suite of research and adaptation efforts developed in a close collaboration between King County and the UW Climate Impacts Group. Building on past collaborations, research efforts were defined in collaboration with King County managers, addressing three key science questions: (1) How are the mesoscale variations in extreme precipitation modulated by changes in large-scale weather conditions? (2) How will precipitation extremes change? This was assessed via two new high-resolution regional model projections using the Weather Research and Forecasting (WRF) mesoscale model (Skamarock et al. 2005). (3) What are the implications for stormwater and flooding in King County? This was assessed by both exploring the statistics of hourly precipitation extremes in the new projections, as well as new hydrologic modeling to assess the implications for river flooding. The talk will present results from these efforts, review the implications for King County planning and infrastructure, and synthesize lessons learned and opportunities for additional work.
Carbone, Marianna; Gavagnin, Margherita; Haber, Markus; Guo, Yue-Wei; Fontana, Angelo; Manzo, Emiliano; Genta-Jouve, Gregory; Tsoukatou, Maria; Rudman, William B; Cimino, Guido; Ghiselin, Michael T; Mollo, Ernesto
2013-01-01
Storage of secondary metabolites with a putative defensive role occurs in the so-called mantle dermal formations (MDFs) that are located in the more exposed parts of the body of most and very likely all members of an entire family of marine mollusks, the chromodorid nudibranchs (Gastropoda: Opisthobranchia). Given that these structures usually lack a duct system, the mechanism for exudation of their contents remains unclear, as does their adaptive significance. One possible explanation could be that they are adapted so as to be preferentially attacked by predators. The nudibranchs might offer packages containing highly repugnant chemicals along with parts of their bodies to the predators, as a defensive variant of the strategic theme of the Trojan horse. We detected, by quantitative (1)H-NMR, extremely high local concentrations of secondary metabolites in the MDFs of six species belonging to five chromodorid genera. The compounds were purified by chromatographic methods and subsequently evaluated for their feeding deterrent properties, obtaining dose-response curves. We found that only distasteful compounds are accumulated in the reservoirs at concentrations that far exceed the values corresponding to maximum deterrent activity in the feeding assays. Other basic evidence, both field and experimental, has been acquired to elucidate the kind of damage that the predators can produce on both the nudibranchs' mantles and the MDFs. As a result of a long evolutionary process that has progressively led to the accumulation of defensive chemical weapons in localized anatomical structures, the extant chromodorid nudibranchs remain in place when molested, retracting respiratory and chemosensory organs, but offering readily accessible parts of their body to predators. When these parts are masticated or wounded by predators, breakage of the MDFs results in the release of distasteful compounds at extremely high concentration in a way that maximizes their repugnant impact.
NASA Astrophysics Data System (ADS)
Wilhelm, Bruno; Vogel, Hendrik; Crouzet, Christian; Etienne, David; Anselmetti, Flavio S.
2016-04-01
The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (meso-scale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both, the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in course of 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar/volcanic eruptions).
NASA Astrophysics Data System (ADS)
Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F. S.
2016-02-01
Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (mesoscale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in the course of the 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar and/or volcanic eruptions).
The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar
NASA Astrophysics Data System (ADS)
Côté-Laurin, Marie-Claude; Benbow, Sophie; Erzini, Karim
2017-04-01
Cyclones are large-scale disturbances with highly destructive potential in coastal ecosystems. On February 22, 2013, a powerful tropical cyclone made landfall on the southwest coast of Madagascar, a region which is infrequently hit by such extreme weather events coming from the Mozambique Channel. Seagrass ecosystems, which provide valuable ecosystems services to local communities, are especially vulnerable because they thrive in shallow waters. The impact of Cyclone Haruna on seagrass diversity, height and coverage and associated fish diversity, abundance and biomass was assessed in 3 sites near Andavadoaka (22°07‧S, 43°23‧E) before and after the event using fish underwater visual census, video-transects, and seagrass quadrats. The cyclone caused a significant loss in seagrass cover at all 3 sites. Thalassia hemprichii and Syringodium isoetifolium were the most affected species. Andavadoaka beach, the most exposed site, which was also subject to human use and was most fragmented, suffered the largest negative effects of the cyclone. Cyclone Haruna was not found to significantly affect fish assemblages, which are highly mobile organisms able to use a diversity of niches and adjacent habitats after seagrass fragmentation. Extensive sampling and longer time-scale studies would be needed to fully evaluate the cyclone impact on communities of seagrass and fish, and track potential recovery in seagrass coverage. The intensity and destructive potential of cyclones is expected to increase with global warming, which is of concern for developing countries that encompass most of the world's seagrass beds. This study provided a unique and key opportunity to monitor immediate impacts of an extreme disturbance in a region where cyclones rarely hit coastal ecosystems and where local populations remain highly dependent on seagrass meadows.
NASA Astrophysics Data System (ADS)
Odenweller, Adrian; Donner, Reik V.
2017-04-01
Over the last decade, complex network methods have been frequently used for characterizing spatio-temporal patterns of climate variability from a complex systems perspective, yielding new insights into time-dependent teleconnectivity patterns and couplings between different components of the Earth climate. Among the foremost results reported, network analyses of the synchronicity of extreme events as captured by the so-called event synchronization have been proposed to be powerful tools for disentangling the spatio-temporal organization of particularly extreme rainfall events and anticipating the timing of monsoon onsets or extreme floodings. Rooted in the analysis of spike train synchrony analysis in the neurosciences, event synchronization has the great advantage of automatically classifying pairs of events arising at two distinct spatial locations as temporally close (and, thus, possibly statistically - or even dynamically - interrelated) or not without the necessity of selecting an additional parameter in terms of a maximally tolerable delay between these events. This consideration is conceptually justified in case of the original application to spike trains in electroencephalogram (EEG) recordings, where the inter-spike intervals show relatively narrow distributions at high temporal sampling rates. However, in case of climate studies, precipitation extremes defined by daily precipitation sums exceeding a certain empirical percentile of their local distribution exhibit a distinctively different type of distribution of waiting times between subsequent events. This raises conceptual concerns if event synchronization is still appropriate for detecting interlinkages between spatially distributed precipitation extremes. In order to study this problem in more detail, we employ event synchronization together with an alternative similarity measure for event sequences, event coincidence rates, which requires a manual setting of the tolerable maximum delay between two events to be considered potentially related. Both measures are then used to generate climate networks from parts of the satellite-based TRMM precipitation data set at daily resolution covering the Indian and East Asian monsoon domains, respectively, thereby reanalysing previously published results. The obtained spatial patterns of degree densities and local clustering coefficients exhibit marked differences between both similarity measures. Specifically, we demonstrate that there exists a strong relationship between the fraction of extremes occurring at subsequent days and the degree density in the event synchronization based networks, suggesting that the spatial patterns obtained using this approach are strongly affected by the presence of serial dependencies between events. Given that a manual selection of the maximally tolerable delay between two events can be guided by a priori climatological knowledge and even used for systematic testing of different hypotheses on climatic processes underlying the emergence of spatio-temporal patterns of extreme precipitation, our results provide evidence that event coincidence rates are a more appropriate statistical characteristic for similarity assessment and network construction for climate extremes, while results based on event synchronization need to be interpreted with great caution.
Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.
Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying
2017-08-30
The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.
Groundwater flood of a river terrace in southwest Wisconsin, USA
NASA Astrophysics Data System (ADS)
Gotkowitz, Madeline B.; Attig, John W.; McDermott, Thomas
2014-09-01
Intense rainstorms in 2008 resulted in wide-spread flooding across the Midwestern United States. In Wisconsin, floodwater inundated a 17.7-km2 area on an outwash terrace, 7.5 m above the mapped floodplain of the Wisconsin River. Surface-water runoff initiated the flooding, but results of field investigation and modeling indicate that rapid water-table rise and groundwater inundation caused the long-lasting flood far from the riparian floodplain. Local geologic and geomorphic features of the landscape lead to spatial variability in runoff and recharge to the unconfined sand and gravel aquifer, and regional hydrogeologic conditions increased groundwater discharge from the deep bedrock aquifer to the river valley. Although reports of extreme cases of groundwater flooding are uncommon, this occurrence had significant economic and social costs. Local, state and federal officials required hydrologic analysis to support emergency management and long-term flood mitigation strategies. Rapid, sustained water-table rise and the resultant flooding of this high-permeability aquifer illustrate a significant aspect of groundwater system response to an extreme precipitation event. Comprehensive land-use planning should encompass the potential for water-table rise and groundwater flooding in a variety of hydrogeologic settings, as future changes in climate may impact recharge and the water-table elevation.
NASA Astrophysics Data System (ADS)
Brown, Ryan; Khegai, Oleksandr; Parasoglou, Prodromos
2016-07-01
Magnetic resonance imaging (MRI) provides the unique ability to study metabolic and microvasculature functions in skeletal muscle using phosphorus and proton measurements. However, the low sensitivity of these techniques can make it difficult to capture dynamic muscle activity due to the temporal resolution required for kinetic measurements during and after exercise tasks. Here, we report the design of a dual-nuclei coil array that enables proton and phosphorus MRI of the human lower extremities with high spatial and temporal resolution. We developed an array with whole-volume coverage of the calf and a phosphorus signal-to-noise ratio of more than double that of a birdcage coil in the gastrocnemius muscles. This enabled the local assessment of phosphocreatine recovery kinetics following a plantar flexion exercise using an efficient sampling scheme with a 6 s temporal resolution. The integrated proton array demonstrated image quality approximately equal to that of a clinical state-of-the-art knee coil, which enabled fat quantification and dynamic blood oxygen level-dependent measurements that reflect microvasculature function. The developed array and time-efficient pulse sequences were combined to create a localized assessment of calf metabolism using phosphorus measurements and vasculature function using proton measurements, which could provide new insights into muscle function.
MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
Evaluating average and atypical response in radiation effects simulations
NASA Astrophysics Data System (ADS)
Weller, R. A.; Sternberg, A. L.; Massengill, L. W.; Schrimpf, R. D.; Fleetwood, D. M.
2003-12-01
We examine the limits of performing single-event simulations using pre-averaged radiation events. Geant4 simulations show the necessity, for future devices, to supplement current methods with ensemble averaging of device-level responses to physically realistic radiation events. Initial Monte Carlo simulations have generated a significant number of extremal events in local energy deposition. These simulations strongly suggest that proton strikes of sufficient energy, even those that initiate purely electronic interactions, can initiate device response capable in principle of producing single event upset or microdose damage in highly scaled devices.
NASA Technical Reports Server (NTRS)
Ochoa, Ozden O.
2004-01-01
Accurate determination of the transverse properties of carbon fibers is important for assessment and prediction of local material as well as global structural response of composite components. However the measurements are extremely difficult due to the very small diameters of the fibers (few microns only) and must be conducted within a microscope. In this work, environmental scanning electron microscope (ESEM) and transmission electron microscope (TEM) are used to determine the transverse coefficient of thermal expansion of different carbon fibers as a function of temperature.
Hsu, Cary; McCloskey, Susan A; Peddi, Parvin F
2016-10-01
Breast sarcomas are exceptionally rare mesenchymal neoplasms composed of many histologic subtypes. Therapy is guided by principles established in the management of extremity sarcomas. The anatomic site does influence treatment decisions, particularly the surgical management. Surgery should be undertaken with the aim of achieving a widely negative margin. Selected patients can be managed with breast-conserving surgery. Breast reconstruction is increasingly being undertaken for selected patients. Radiation therapy and chemotherapy are used selectively for large, high-grade sarcomas for which there is significant concern for local and distant recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.
Manchikanti, Laxmaiah; Singh, Vijay; Cash, Kimberly A; Pampati, Vidyasagar; Damron, Kim S; Boswell, Mark V
2011-11-01
A randomized, controlled, double-blind trial. To assess the effectiveness of fluoroscopically directed caudal epidural injections in managing chronic low back and lower extremity pain in patients with disc herniation and radiculitis with local anesthetic with or without steroids. The available literature on the effectiveness of epidural injections in managing chronic low back pain secondary to disc herniation is highly variable. One hundred twenty patients suffering with low back and lower extremity pain with disc herniation and radiculitis were randomized to one of the two groups: group I received caudal epidural injections with an injection of local anesthetic, lidocaine 0.5%, 10 mL; group II patients received caudal epidural injections with 0.5% lidocaine, 9 mL, mixed with 1 mL of steroid. The Numeric Rating Scale (NRS), the Oswestry Disability Index 2.0 (ODI), employment status, and opioid intake were utilized with assessment at 3, 6, and 12 months posttreatment. The percentage of patients with significant pain relief of 50% or greater and/or improvement in functional status with 50% or more reduction in ODI scores was seen in 70% and 67% in group I and 77% and 75% in group II with average procedures per year of 3.8 ± 1.4 in group I and 3.6 + 1.1 in group II. However, the relief with first and second procedures was significantly higher in the steroid group. The number of injections performed was also higher in local anesthetic group even though overall relief was without any significant difference among the groups. There was no difference among the patients receiving steroids. Caudal epidural injection with local anesthetic with or without steroids might be effective in patients with disc herniation or radiculitis. The present evidence illustrates potential superiority of steroids compared with local anesthetic at 1-year follow-up.
NASA Astrophysics Data System (ADS)
Shaw, C.
2016-12-01
Globally, higher daily peak temperatures and longer, more intense heat waves are becoming increasingly frequent due to climate change. India, with relatively low GDP per capita, high population density, and tropical climate, is particularly vulnerable to these trends. In May 2015, one of the worst heat waves in world history hit the country, culminating in at least 2,300 officially-reported deaths as temperatures in some regions reached 48°C. As a result of climate change, heat waves in this region will last longer, be more extreme, and occur with greater frequency in the coming years. Impacts will be felt most acutely by vulnerable populations, which include not only those with frail health, but also populations otherwise considered healthy whose livelihood involves working under exposure to high temperatures. The problem is exacerbated by low levels of economic development, particularly in the under-provision of medical services, a higher proportion of weather-reliant income sources, and the inability to recover quickly from shocks. Responding to these challenges requires collaboration among the disciplines of climate science, public health, economics, and public policy. This project, presented as an online web application using Esri's ArcGIS Story Map, covers 1) the impact of extreme heat on human mortality, 2) the impact of combined heat and humidity (as measured by wet bulb globe temperature) on labor productivity, and 3) emerging best practices in adaptation planning by local municipalities and NGOs. The work is presented in a format that is designed to allow policymakers to take a deeper dive into the literature linking extreme temperature to human health and labor productivity, combined with interactive mapping tools that allow planners to drill down to data at the district level across the country of India. Further, the work presents a case study of heat adaptation planning efforts that have already been implemented in the city of Ahmedabad, allowing planners to understand what adaptations options might be available to mitigate the risk. Taken together, the tool provides a means to stimulate adaptation efforts, helping society's ability to prepare and cope with extreme heat events.
A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P
2013-12-01
We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.
Malinowska, Agnieszka H; van Strien, Arco J; Verboom, Jana; WallisdeVries, Michiel F; Opdam, Paul
2014-01-01
Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.
Malinowska, Agnieszka H.; van Strien, Arco J.; Verboom, Jana; WallisdeVries, Michiel F.; Opdam, Paul
2014-01-01
Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest. PMID:25330414
NASA Astrophysics Data System (ADS)
Dean, S.; Loikith, P. C.
2017-12-01
Although the Pacific Northwest has some of the highest wintertime precipitation in the United States, most urban areas receive little in the way of snow. While 37 inches of wintertime rain fall in Portland on average annually, the city only receives four inches of snow on average. Although wintertime extreme snowstorm events are rare in Portland, in the last century they have occurred about once every ten years. On January 10-12th, 2017, winter storm Jupiter brought 11 inches of snow to downtown Portland within a 12-hour period, making it the largest snowstorm for the city in twenty years. The city declared a state of emergency, over 30,000 citizens lost power, and thousands of businesses were forced to shut down. The anomalously cold air and high amounts of snowfall in a short amount of time made the storm different from others in recent years. This study aims to discover the meteorological drivers behind the January 2017 snowstorm in Portland, Oregon. We also aim to understand how this storm compared with other local storms in the past, and assess the likelihood of a similar event occurring in the future. To do this, reanalysis data were used to display the synoptic evolution of the January 2017 storm. We compared this storm with two other extreme snowfall events from December 2008 and January 1980, assessing meteorological similarities and differences between storms. Results show that the 2017 event was associated with a slow moving, strong low-pressure system accompanied by a 500 hPa trough. These large-scale features helped drive slow moving, locally heavy snow bands over the city of Portland. At the same time, an unusually strong Arctic high-pressure system moved into the interior Pacific Northwest allowing for strong cold air advection west through the Cascade Mountain Range and Columbia River Gorge. Temperature trends show warming of 1-2 °C in the Pacific Northwest since the middle of the last century. Because of this, uncertainty associated with occurrence and magnitude of extreme snowfall events with respect to climate change must also be assessed. Understanding essential questions about the synoptic evolution of extreme snowfall events will better equip meteorologists and city planners to understand how this event occurred, and what to look for to better prepare Pacific Northwest cities for future storms.
Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes
NASA Astrophysics Data System (ADS)
Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin
2013-04-01
The Baia Mare Urban System is located in the north-western part of Romania, with around 200,000 inhabitants and represents one of the most important former mining areas in the country, whose socioeconomic profile and environmental conditions have greatly changed over the last 20 years during the transition and post-transition period. Currently the mining is closed in the area, but the historical legacy of this activity has implications in terms of economic growth, social and cultural developments and environmental quality. Baia Mare city lies in an extended depression, particularly sheltered by the mountain and hilly regions located in the north and respectively, in the south-south-eastern part of it, which explains the high frequency of calm conditions and low airstream channeling occurrences. This urban system has a typically moderate temperate-continental climate, subject to frequent westerly airflows (moist), which moderate the thermal regime (without depicting severe extremes, both positive and negative) and enhance the precipitation one (entailing a greater frequency of wet extremes). During the reference period (1971-2000), the climate change signal in the area is rather weak and not statistically significant. However, since the mid 1980s, the warming signal became more evident from the observational data (Baia Mare station), showing a higher frequency of dry spells and positive extremes. The modelling experiments covering the 2021-2050 time horizon using regional (RM5.1/HadRM3Q0/RCA3) and global (ARPEGE/HadCM3Q0/BCM/ECHAM5) circulation models carried out within the ECLISE FP7 project suggest an ongoing temperature rise, associated to an intensification of temperature and precipitation extremes. In this context, the aim of this study was to evaluate how the local authorities consider and include climate change in their activity, as well as in the development plans (e.g. territorial, economic and social development plans). Individual interviews have been undertaken with key institutions focusing on environmental, health and urban development issues. The survey was conducted in order to identify the local authorities' perception and needs on climate change information and the importance of climate services for the city and institution's activity. Generally, the results suggest that the selected institutions are poorly aware of the potential impacts of climate change and associated extremes in the area, but they showed a real interest for future climate estimations necessary to undertake reliable adaptation measures. At institutional level, do not exist specialized departments (job positions) to tackle or manage climate information and climate-related aspects, this not being a pressing or priority issue for the city. The climate services aspects are seen with interest mainly in supplying climate scenarios and models for a relatively short term (next 10 or 15 years), the climate information being in this way included in the local planning strategies.
Identifying Patterns in Extreme Precipitation Risk and the Related Impacts
NASA Astrophysics Data System (ADS)
Schroeer, K.; Tye, M. R.
2017-12-01
Extreme precipitation can harm human life and assets through flooding, hail, landslides, or debris flows. Flood risk assessments typically concentrate on river or mountain torrent channels, using water depth, flow velocity, and/or sediment deposition to quantify the risk. In addition, extreme events with high recurrence intervals are often the main focus. However, damages from short-term and localized convective showers often occur away from watercourses. Also, damages from more frequent small scale extremes, although usually less disastrous, can accumulate to considerable financial burdens. Extreme convective precipitation is expected to intensify in a warmer climate, and vulnerability patterns might change in tandem with changes in the character of precipitation and flood types. This has consequences for adaptation planners who want to establish effective protection measures and reduce the cost from natural hazards. Here we merge hydrological and exposure data to identify patterns of risk under varying synoptic conditions. Exposure is calculated from a database of 76k damage claims reported to the national disaster fund in 480 municipalities in south eastern Austria from 1990-2015. Hydrological data comprise sub-daily precipitation (59 gauges) and streamflow (62 gauges) observations. We use synoptic circulation types to identify typical precipitation patterns. They indicate the character of precipitation even if a gauge is not in close proximity, facilitating potential future research with regional climate model data. Results show that more claims are reported under synoptic conditions favouring convective precipitation (on average 1.5-3 times more than on other days). For agrarian municipalities, convective precipitation damages are among the costliest after long low-intensity precipitation events. In contrast, Alpine communities are particularly vulnerable to convective high-intensity rainfall. In addition to possible observational error, uncertainty is present in damage reporting errors, claims from private insurers and adaptation effects after damaging events. As for the latter, preliminary results indicate that investments regularly occur after big events, which may skew subsequent damage claims. Their effectiveness, though, needs to be analyzed in future research.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
Precipitation trends in the Canary Islands
NASA Astrophysics Data System (ADS)
García-Herrera, Ricardo; Gallego, David; Hernández, Emiliano; Gimeno, Luis; Ribera, Pedro; Calvo, Natalia
2003-02-01
A strong decreasing trend in the Canary Islands' precipitation is detected by studying daily rainfall time series for the second half of the 20th century. An analysis of the extreme events shows that this trend is due mainly to a decrease in the upper percentiles of the precipitation distribution. The results suggest that local factors play a fundamental role on extreme event behaviour.
Satellite-Enhanced Dynamical Downscaling of Extreme Events
NASA Astrophysics Data System (ADS)
Nunes, A.
2015-12-01
Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.
The diagnostic management of upper extremity deep vein thrombosis: A review of the literature.
Kraaijpoel, Noémie; van Es, Nick; Porreca, Ettore; Büller, Harry R; Di Nisio, Marcello
2017-08-01
Upper extremity deep vein thrombosis (UEDVT) accounts for 4% to 10% of all cases of deep vein thrombosis. UEDVT may present with localized pain, erythema, and swelling of the arm, but may also be detected incidentally by diagnostic imaging tests performed for other reasons. Prompt and accurate diagnosis is crucial to prevent pulmonary embolism and long-term complications as the post-thrombotic syndrome of the arm. Unlike the diagnostic management of deep vein thrombosis (DVT) of the lower extremities, which is well established, the work-up of patients with clinically suspected UEDVT remains uncertain with limited evidence from studies of small size and poor methodological quality. Currently, only one prospective study evaluated the use of an algorithm, similar to the one used for DVT of the lower extremities, for the diagnostic workup of clinically suspected UEDVT. The algorithm combined clinical probability assessment, D-dimer testing and ultrasonography and appeared to safely and effectively exclude UEDVT. However, before recommending its use in routine clinical practice, external validation of this strategy and improvements of the efficiency are needed, especially in high-risk subgroups in whom the performance of the algorithm appeared to be suboptimal, such as hospitalized or cancer patients. In this review, we critically assess the accuracy and efficacy of current diagnostic tools and provide clinical guidance for the diagnostic management of clinically suspected UEDVT. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Chennai extreme rainfall event in 2015: The Bay of Bengal connection
NASA Astrophysics Data System (ADS)
Boyaj, Alugula; Ashok, Karumuri; Ghosh, Subimal; Devanand, Anjana; Dandu, Govardhan
2018-04-01
Southeast India experienced a heavy rainfall during 30 Nov-2 Dec 2015. Particularly, the Chennai city, the fourth major metropolitan city in India with a population of 5 million, experienced extreme flooding and causalities. Using various observed/reanalysed datasets, we find that the concurrent southern Bay of Bengal (BoB) sea surface temperatures (SST) were anomalously warm. Our analysis shows that BoB sea surface temperature anomalies (SSTA) are indeed positively, and significantly, correlated with the northeastern Indian monsoonal rainfall during this season. Our sensitivity experiments carried out with the Weather Research and Forecasting (WRF) model at 25 km resolution suggest that, while the strong concurrent El Niño conditions contributed to about 21.5% of the intensity of the extreme Chennai rainfall through its signals in the local SST mentioned above, the warming trend in BoB SST also contributed equally to the extremity of the event. Further, the El Niño southern oscillation (ENSO) impacts on the intensity of the synoptic events in the BoB during the northeast monsoon are manifested largely through the local SST in the BoB as compared through its signature in the atmospheric circulations over the BoB.
Zhang, Jiangshe; Ding, Weifu
2017-01-01
With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard, Patrick, E-mail: patrjr@uw.edu; Phillips, Mark; Smith, Wade
Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with themore » largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.« less
Dynamical systems proxies of atmospheric predictability and mid-latitude extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal
2017-04-01
Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.
NASA Astrophysics Data System (ADS)
Dolan, James; Beck, Christian; Ogawa, Yujiro
1989-11-01
Terrigenous silt and sand turbidites recovered from the crest of the Tiburon Rise in the west-central Atlantic represent an unprecedented example of upslope turbidite deposition in an extremely distal setting. These Eocene-Oligocene beds, which were derived from South America more than 1000 km to the southeast, were probably deposited by extremely thick (>1500 m) turbidity currents that flowed parallel to the southern margin of the rise. We suggest that flow thickness was the dominant control on deposition of these beds, rather than true upslope flow. This interpretation points out the importance of local bathymetry on the behavior of even extremely distal turbidity currents.
Inferring the anthropogenic contribution to local temperature extremes
Stone, Dáithí A.; Paciorek, Christopher J.; Prabhat, .; ...
2013-03-19
Here, in PNAS, Hansen et al. document an observed planet-wide increase in the frequency of extremely hot months and a decrease in the frequency of extremely cold months, consistent with earlier studies. This analysis is achieved through aggregation of gridded monthly temperature measurements from all over the planet. Such aggregation is advantageous in achieving statistical sampling power; however, it sacrifices regional specificity. Lastly, in that light, we find the conclusion of Hansen et al. that “the extreme summer climate anomalies in Texas in 2011, in Moscow in 2010, and in France in 2003 almost certainly would not have occurred inmore » the absence of global warming” to be unsubstantiated by their analysis.« less
Gorey, Kevin M.; Luginaah, Isaac N.; Hamm, Caroline; Fung, Karen Y.; Holowaty, Eric J.
2010-01-01
This study examined the differential effect of extreme impoverishment on breast cancer care in urban Canada and the United States. Ontario and California registry-based samples diagnosed between 1998 and 2000 were followed until 2006. Extremely poor and affluent neighborhoods were compared. Poverty was associated with non-localized disease, surgical and radiation therapy (RT) waits, nonreceipt of breast conserving surgery, RT and hormonal therapy, and shorter survival in California, but not in Ontario. Extremely poor Ontario women were consistently advantaged on care indices over their California counterparts. More inclusive health insurance coverage in Canada seems the most plausible explanation for such Canadian breast cancer care advantages. PMID:19840902
Inferring the anthropogenic contribution to local temperature extremes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Dáithí A.; Paciorek, Christopher J.; Prabhat, .
Here, in PNAS, Hansen et al. document an observed planet-wide increase in the frequency of extremely hot months and a decrease in the frequency of extremely cold months, consistent with earlier studies. This analysis is achieved through aggregation of gridded monthly temperature measurements from all over the planet. Such aggregation is advantageous in achieving statistical sampling power; however, it sacrifices regional specificity. Lastly, in that light, we find the conclusion of Hansen et al. that “the extreme summer climate anomalies in Texas in 2011, in Moscow in 2010, and in France in 2003 almost certainly would not have occurred inmore » the absence of global warming” to be unsubstantiated by their analysis.« less
Assessment of spatial variation of risks in small populations.
Riggan, W B; Manton, K G; Creason, J P; Woodbury, M A; Stallard, E
1991-01-01
Often environmental hazards are assessed by examining the spatial variation of disease-specific mortality or morbidity rates. These rates, when estimated for small local populations, can have a high degree of random variation or uncertainty associated with them. If those rate estimates are used to prioritize environmental clean-up actions or to allocate resources, then those decisions may be influenced by this high degree of uncertainty. Unfortunately, the effect of this uncertainty is not to add "random noise" into the decision-making process, but to systematically bias action toward the smallest populations where uncertainty is greatest and where extreme high and low rate deviations are most likely to be manifest by chance. We present a statistical procedure for adjusting rate estimates for differences in variability due to differentials in local area population sizes. Such adjustments produce rate estimates for areas that have better properties than the unadjusted rates for use in making statistically based decisions about the entire set of areas. Examples are provided for county variation in bladder, stomach, and lung cancer mortality rates for U.S. white males for the period 1970 to 1979. PMID:1820268
Infrared nano-sensor based on doubly splited optomechanical cavity
NASA Astrophysics Data System (ADS)
Zhang, Yeping; Ai, Jie; Xiang, Yanjun; Ma, Liehua; Li, Tao; Ma, Jingfang
2017-10-01
Optomechanical crystal (OMC) cavities are simultaneous have photonic and phononic bandgaps. The strong interaction between high co-localized optical mode and mechanical mode are excellent candidates for precision measurements due to their simplicity, sensitivity and all optical operation. Here, we investigate OMC nanobeam cavities in silicon operating at the near-infrared wavelengths to achieve high optomechanical coupling rate and ultra-small motion mass. Numerical simulation results show that the optical Q-factor reached to 1.2×105 , which possesses an optical mode resonating at the wavelength of 1181 nm and the extremely localized mechanical mode vibrating at 9.2GHz. Moreover, a novel type of doubly splited nanocavity tailored to sensitively measure torques and mass. In the nanomechanical resonator central hollow area suspended low-mass elements (<100fg) are sensitive to environmental stimulate. By changing the split width, an ultra-small effective motion mass of only 4fg with a mechanical frequency as high as 11.9GHz can be achieved, while the coupling rate up to 1.58MHz. Potential applications on these devices include sensing mass, acceleration, displacement, and magnetic probing the quantum properties of nanoscale systems.
Chronic spinal cord injury in the cervical spine of a young soccer player.
Kato, Yoshihiko; Koga, Michiaki; Taguchi, Toshihiko
2010-05-12
A 17-year-old male soccer player presented with numbness in the upper- and lower-left extremities of 6 months' duration. He had no apparent history of trauma but experienced neck pain during heading of the ball 5 years prior. A high-signal intensity area was seen on T2-weighted magnetic resonance imaging (MRI) of the cervical spine. No muscle weakness was observed. Hypoesthesia was observed in bilateral forearms, hands, and extremities below the inguinal region. Plain radiographs in the neutral position showed local kyphosis at C3/4. A small protrusion of the C3/4 disk was observed on T1-weighted MRI. A high-signal area in the spinal cord at the C3/4 level was observed on T2-weighted MRI, but this was not enhanced by gadolinium. Multiple sclerosis, intramedullary spinal cord tumor, sarcoidosis and malignant lymphoma, and spinal cord injury were all considered in the differential diagnosis. However, in view of the clinical, laboratory, and radiological investigations, we concluded that repeated impacts to the neck caused by heading of the ball during soccer induced a chronic, minor spinal cord injury. This contributed to the high-signal intensity change of the spinal cord in T2-weighted MRI. The present case demonstrates that repeated impact may cause chronic spinal cord injury. Soccer, American football, or rugby players presenting with neck or extremity symptoms should not be overlooked for the possibility of latent spinal cord injury, as this could present later development of more severe or unrecoverable spinal cord injuries. Copyright 2010, SLACK Incorporated.
Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era
NASA Astrophysics Data System (ADS)
Stark, Daniel
2017-08-01
The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.
Global Warming Denial: The Human Brain on Extremes
NASA Astrophysics Data System (ADS)
Marrouch, N.; Johnson, B. T.; Slawinska, J. M.
2016-12-01
Future assessments of climate change rely on multi-model intercomparisons, and projections of the extreme events frequency are of particular interest as associated with significant economic costs and social threats. Notably, systematically simulated increases in the number of extreme weather events agree well with observational data over the last decade. At the same time, as the climate grows more volatile, widespread denial of climate change and its anthropocentric causes continues to proliferate (based on nationally representative U.S. polls). Simultaneous increases in both high-impact exposure and its denial is in stark contrast with our knowledge of socio-natural dynamics and its models. Disentangling this paradox requires an understanding of the origins of global warming denial at an individual level, and how subsequently it propagates across social networks of many scales, shaping global policies. However, as the real world and its dynamical models are complex (high-dimensional and coupled), separating the particular feedback of interest remains a challenge. Here, we demonstrate this feedback in a controlled experiment, where increasing unpredictability using helplessness-training paradigms induces changes in global warming denial, and the endorsement of conservative ideology. We explain these results in the context of evolutionary theory framing self-deception and denial as remnants of evolutionary processes that shaped and facilitated the survival of the human species. Further we link these findings to changes in neural and higher-level cognitive processes in response to unpredictable stimuli. We argue that climate change denial is an example of an extreme belief system that carries the potential to threaten the wellbeing of both humans and other species alike. It is therefore crucial to better quantify climate denial using social informatics tools that provide the means to improve its representations in coupled socio-geophysical models to mitigate its effects on global and local policies.
Sacks, Laura A.; Lee, Terrie M.; Swancar, Amy
2013-01-01
Groundwater inflow to a subtropical seepage lake was estimated using a transient isotope-balance approach for a decade (2001–2011) with wet and dry climatic extremes. Lake water δ18O ranged from +0.80 to +3.48 ‰, reflecting the 4 m range in stage. The transient δ18O analysis discerned large differences in semiannual groundwater inflow, and the overall patterns of low and high groundwater inflow were consistent with an independent water budget. Despite simplifying assumptions that the isotopic composition of precipitation (δP), groundwater inflow, and atmospheric moisture (δA) were constant, groundwater inflow was within the water-budget error for 12 of the 19 semiannual calculation periods. The magnitude of inflow was over or under predicted during periods of climatic extreme. During periods of high net precipitation from tropical cyclones and El Niño conditions, δP values were considerably more depleted in 18O than assumed. During an extreme dry period, δA values were likely more enriched in 18O than assumed due to the influence of local lake evaporate. Isotope balance results were most sensitive to uncertainties in relative humidity, evaporation, and δ18O of lake water, which can limit precise quantification of groundwater inflow. Nonetheless, the consistency between isotope-balance and water-budget results indicates that this is a viable approach for lakes in similar settings, allowing the magnitude of groundwater inflow to be estimated over less-than-annual time periods. Because lake-water δ18O is a good indicator of climatic conditions, these data could be useful in ground-truthing paleoclimatic reconstructions using isotopic data from lake cores in similar settings.
Global coastal flood hazard mapping
NASA Astrophysics Data System (ADS)
Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi
2017-04-01
Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.
NASA Astrophysics Data System (ADS)
Oga, Y.; Noguchi, S.; Igarashi, H.
When a temperature rise occurs at a local area inside a coil of toroidal HTS-SMES by any reason, a temperature hotspot which results in a thermal runaway appears at the local area. Subsequently, after appearing the local normal zone in the HTS coil, the transport current of the HTS coil decrease since the resistance of HTS coil appears and the current partially flows into a parallel-connecting shunt resistance. However, if the transport current of the normal-transitioned HTS coil is hardly changed, the temperature on the hotspot would rise more and then the normal zone would spread rapidly. It may cause a serious accident due to high stored energy. Therefore, using the numerical simulation, we have investigated the behaviors of the coil current, the critical current, and the temperature in the superconducting element coils of HTS-SMES. Consequently, the temperature of the superconducting element coils rises up extremely when a large heat is generated at a certain area of one of them by any reason. Moreover, there is a possibility that the shunt resister hardly functions for protection since the coil is burned out due to high inductances and low resistance of the superconducting element coil.
Isotope analyses to explore diet and mobility in a medieval Muslim population at Tauste (NE Spain)
Guede, Iranzu; Zuluaga, Maria Cruz; Alonso-Olazabal, Ainhoa; Murelaga, Xabier; Pina, Miriam; Gutierrez, Francisco Javier; Iacumin, Paola
2017-01-01
The Islamic necropolis discovered in Tauste (Zaragoza, Spain) is the only evidence that a large Muslim community lived in the area between the 8th and 10th centuries. A multi-isotope approach has been used to investigate the mobility and diet of this medieval Muslim population living in a shifting frontier region. Thirty-one individuals were analyzed to determine δ15N, δ13C, δ18O and 87Sr/86Sr composition. A combination of strontium and oxygen isotope analysis indicated that most individuals were of local origin although three females and two males were non-local. The non-local males would be from a warmer zone whereas two of the females would be from a more mountainous geographical region and the third from a geologically-different area. The extremely high δ15N baseline at Tauste was due to bedrock composition (gypsum and salt). High individual δ15N values were related to the manuring effect and consumption of fish. Adult males were the most privileged members of society in the medieval Muslim world and, as isotope data reflected, consumed more animal proteins than females and young males. PMID:28472159
Melin, B; Savourey, G
2001-06-30
During ultra-endurance exercise, both increase in body temperature and dehydration due to sweat losses, lead to a decrease in central blood volume. The heart rate drift allows maintaining appropriate cardiac output, in order to satisfy both muscle perfusion and heat transfer requirements by increasing skin blood flow. The resulting dehydration can impair thermal regulation and increase the risks of serious accidents as heat stroke. Endurance events, lasting more than 8 hours, result in large sweat sodium chloride losses. Thus, ingestion of large amounts of water with poor salt intake can induce symptomatic hyponatremia (plasma sodium < 130 mEq/L) which is also a serious accident. Heat environment increases the thermal constraint and when the air humidity is high, evaporation of sweat is compromise. Thus, thermal stress becomes uncompensable which increases the risk of cardiovascular collapse. Cold exposure induces physiological responses to maintain internal temperature by both limiting thermal losses and increasing metabolic heat production. Cold can induce accidental hypothermia and local frost-bites; moreover, it increases the risk of arrhythmia during exercise. Some guidelines (cardiovascular fitness, water and electrolyte intakes, protective clothing) are given for each extreme condition.
Huang, Weilin; Wang, Runqiu; Li, Huijian; Chen, Yangkang
2017-09-20
Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.
NASA Astrophysics Data System (ADS)
Dosio, Alessandro; Fischer, Erich M.
2018-01-01
Based on high-resolution models, we investigate the change in climate extremes and impact-relevant indicators over Europe under different levels of global warming. We specifically assess the robustness of the changes and the benefits of limiting warming to 1.5°C instead of 2°C. Compared to 1.5°C world, a further 0.5°C warming results in a robust change of minimum summer temperature indices (mean, Tn10p, and Tn900p) over more than 70% of Europe. Robust changes (more than 0.5°C) in maximum temperature affect smaller areas (usually less than 20%). There is a substantial nonlinear change of fixed-threshold indices, with more than 60% increase of the number of tropical nights over southern Europe and more than 50% decrease in the number of frost days over central Europe. The change in mean precipitation due to 0.5°C warming is mostly nonsignificant at the grid point level, but, locally, it is accompanied by a more marked change in extreme rainfall.
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; ...
2016-12-27
The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald
The interactions of two extremely halophilic archaea with uranium were investigated in this paper at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, themore » involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Finally, our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization.« less
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Drobot, Björn; Schmidt, Matthias; Musat, Niculina; Swanson, Juliet S; Reed, Donald T; Stumpf, Thorsten; Cherkouk, Andrea
2017-04-05
The interactions of two extremely halophilic archaea with uranium were investigated at high ionic strength as a function of time, pH and uranium concentration. Halobacterium noricense DSM-15987 and Halobacterium sp. putatively noricense, isolated from the Waste Isolation Pilot Plant repository, were used for these investigations. The kinetics of U(VI) bioassociation with both strains showed an atypical multistage behavior, meaning that after an initial phase of U(VI) sorption, an unexpected interim period of U(VI) release was observed, followed by a slow reassociation of uranium with the cells. By applying in situ attenuated total reflection Fourier-transform infrared spectroscopy, the involvement of phosphoryl and carboxylate groups in U(VI) complexation during the first biosorption phase was shown. Differences in cell morphology and uranium localization become visible at different stages of the bioassociation process, as shown with scanning electron microscopy in combination with energy dispersive X-ray spectroscopy. Our results demonstrate for the first time that association of uranium with the extremely halophilic archaeon is a multistage process, beginning with sorption and followed by another process, probably biomineralization. Copyright © 2016. Published by Elsevier B.V.
Assessment of floodplain vulnerability during extreme Mississippi River flood 2011
Goodwell, Allison E.; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A.; Kumar, Praveen; Garcia, Marcelo H.; Rhoads, Bruce L.; Holmes, Robert R.; Parker, Gary; Berretta, David P.; Jacobson, Robert B.
2014-01-01
Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km2 agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.
Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.
Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B
2014-01-01
Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Wade, G. A.; Shulyak, D.
2012-04-01
Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and extrapolations, as well as methodological flaws and inconsistencies of their analysis. Our discussion proves that published magnetic inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presence of small-scale magnetic field structures on the surfaces of Ap stars is indeed real. Incorporating horizontal variations of atmospheric structure in Doppler imaging can marginally improve reconstruction of abundance distributions for stars showing very large iron overabundances. But this costly technique is unnecessary for magnetic mapping with high-resolution polarization spectra.
Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs. 2 °C warming scenarios
NASA Astrophysics Data System (ADS)
Barcikowska, Monika J.; Weaver, Scott J.; Feser, Frauke; Russo, Simone; Schenk, Frederik; Stone, Dáithí A.; Wehner, Michael F.; Zahn, Matthias
2018-06-01
Severe winter storms in combination with precipitation extremes pose a serious threat to Europe. Located at the southeastern exit of the North Atlantic's storm track, European coastlines are directly exposed to impacts by high wind speeds, storm floods and coastal erosion. In this study we analyze potential changes in simulated winter storminess and extreme precipitation, which may occur under 1.5 or 2 °C warming scenarios. Here we focus on a first simulation suite of the atmospheric model CAM5 performed within the HAPPI project and evaluate how changes of the horizontal model resolution impact the results regarding atmospheric pressure, storm tracks, wind speed and precipitation extremes. The comparison of CAM5 simulations with different resolutions indicates that an increased horizontal resolution to 0.25° not only refines regional-scale information but also improves large-scale atmospheric circulation features over the Euro-Atlantic region. The zonal bias in monthly pressure at mean sea level and wind fields, which is typically found in low-resolution models, is considerably reduced. This allows us to analyze potential changes in regional- to local-scale extreme wind speeds and precipitation in a more realistic way. Our analysis of the future response for the 2 °C warming scenario generally confirms previous model simulations suggesting a poleward shift and intensification of the meridional circulation in the Euro-Atlantic region. Additional analysis suggests that this shift occurs mainly after exceeding the 1.5 °C global warming level, when the midlatitude jet stream manifests a strengthening northeastward. At the same time, this northeastern shift of the storm tracks allows an intensification and northeastern expansion of the Azores high, leading to a tendency of less precipitation across the Bay of Biscay and North Sea. Regions impacted by the strengthening of the midlatitude jet, such as the northwestern coasts of the British Isles, Scandinavia and the Norwegian Sea, and over the North Atlantic east of Newfoundland, experience an increase in the mean as well as daily and sub-daily precipitation, wind extremes and storminess, suggesting an important influence of increasing storm activity in these regions in response to global warming.
Interstellar medium conditions in z 0.2 Lyman-break analogs
NASA Astrophysics Data System (ADS)
Contursi, A.; Baker, A. J.; Berta, S.; Magnelli, B.; Lutz, D.; Fischer, J.; Verma, A.; Nielbock, M.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Davies, R.; Genzel, R.; Hailey-Dunsheath, S.; Herrera-Camus, R.; Janssen, A.; Poglitsch, A.; Sternberg, A.; Tacconi, L. J.
2017-10-01
We present an analysis of far-infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with Herschel/PACS, and 12CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman-break analogs (LBAs) at z 0.2. The principal aim of this work is to determine the typical interstellar medium (ISM) properties of z 1-2 main sequence (MS) galaxies, with stellar masses between 109.5 and 1011M⊙, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different infared diagnostics to derive the main physical parameters of the far-infrared (FIR)-emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature and high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.
NASA Astrophysics Data System (ADS)
Branciforte, R.; Weiss, S. B.; Schaefer, N.
2008-12-01
Climate change threatens California's vast and unique biodiversity. The Bay Area Upland Habitat Goals is a comprehensive regional biodiversity assessment of the 9 counties surrounding San Francisco Bay, and is designing conservation land networks that will serve to protect, manage, and restore that biodiversity. Conservation goals for vegetation, rare plants, mammals, birds, fish, amphibians, reptiles, and invertebrates are set, and those goals are met using the optimization algorithm MARXAN. Climate change issues are being considered in the assessment and network design in several ways. The high spatial variability at mesoclimatic and topoclimatic scales in California creates high local biodiversity, and provides some degree of local resiliency to macroclimatic change. Mesoclimatic variability from 800 m scale PRISM climatic norms is used to assess "mesoclimate spaces" in distinct mountain ranges, so that high mesoclimatic variability, especially local extremes that likely support range limits of species and potential climatic refugia, can be captured in the network. Quantitative measures of network resiliency to climate change include the spatial range of key temperature and precipitation variables within planning units. Topoclimatic variability provides a finer-grained spatial patterning. Downscaling to the topoclimatic scale (10-50 m scale) includes modeling solar radiation across DEMs for predicting maximum temperature differentials, and topographic position indices for modeling minimum temperature differentials. PRISM data are also used to differentiate grasslands into distinct warm and cool types. The overall conservation strategy includes local and regional connectivity so that range shifts can be accommodated.
NASA Astrophysics Data System (ADS)
Lyddon, Charlotte; Plater, Andy, ,, Prof.; Brown, Jenny, ,, Dr.; Leonardi, Nicoletta, ,, Dr.
2017-04-01
Coastal zones worldwide are subject to short term, local variations in sea-level, particularly communities and industries developed on estuaries. Astronomical high tides, meteorological storm surges and increased river flow present a combined flood hazard. This can elevate water level at the coast above predicted levels, generating extreme water levels. These contributions can also interact to alter the phase and amplitude of tides and surges, and thus cause significant mismatches between the predicted and observed water level. The combined effect of tide, surge, river flow and their interactions are the key to understanding and assessing flood risk in estuarine environments for design purposes. Delft3D-FLOW, a hydrodynamic model which solves the unsteady shallow-water equation, is used to access spatial variability in extreme water levels for a range of historical events of different severity within the Severn Estuary, southwest England. Long-term tide gauge records from Ilfracombe and Mumbles and river level data from Sandhurst are analysed to generate a series of extreme water level events, representing the 90th, 95th and 99th percentile conditions, to force the model boundaries. To separate out the time-varying contributions of tidal, fluvial, meteorological processes and their interactions the model is run with different physical forcing. A low pass filter is applied to "de-tide" the residual water elevation, to separate out the time-varying meteorological residual and the tide-surge interactions within the surge. The filtered surge is recombined with the predicted tide so the peak occurs at different times relative to high water. The resulting time series are used to force the model boundary to identify how the interactive processes influence the timing of extreme water level across the estuarine domain. This methodology is first validated using the most extreme event on record to ensure that modelled extreme water levels can be predicted with confidence. Changes in maximum water level are observed in areas where nuclear assets are located (Hinkley, Oldbury & Berkeley) and further upstream, e.g., close to the tidal limit of the Severn Estuary at Epney. Change in crest shape (area and duration above the MSHW) are analysed to understand changes to flood hazard around the peak of the tide. The work concludes that changes in maximum water level can be attributed to the change in time of the peak of the surge relative to high water, the surge shape (classified by skew and kurtosis) and severity of the event. The results can be used to understand the spatial variability in extreme water levels relative to a tide gauge location, which can then be applied to other management needs in hypertidal estuaries worldwide.
EPA’s Office of Research and Development (ORD) has been developing tools and illustrative case studies for decision makers in local and regional authorities who are facing challenges of establishing resilience to extreme weather events, aging built environment and infrastru...
The role of local heating in the 2015 Indian heat wave
USDA-ARS?s Scientific Manuscript database
India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examina...
Promoting Equalization and Local Control in Financing Colorado's Schools.
ERIC Educational Resources Information Center
Mathers, Judith K.; King, Richard A.
1997-01-01
Per-pupil property valuation extremes among Colorado school districts are as varied as the landscape. A foundation plan levels funding disparities for school operations, but financing of major capital outlay projects still depends on local property taxation. Funds are needed to finance classroom technologies and Internet connections. (MLH)
Rural Education in Bangladesh - Problems and Prospects. IIEP Seminar Paper: 23.
ERIC Educational Resources Information Center
Haque, M.
As a land of extreme rural poverty and illiteracy, Bangladesh needs to consciously promote, develop, and support local institutions and participatory leadership, involving local people in the planning, development, and implementation of developmental policies. Begun in 1959, the Comilla experiment constitutes the rationale for institutional…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because ofmore » error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent, fit 1.0 the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress 'overfitting'.« less
NASA Astrophysics Data System (ADS)
Pleskachevsky, Andrey L.; Lehner, Susanne; Rosenthal, Wolfgang
2012-09-01
The impact of the gustiness on surface waves under storm conditions is investigated with focus on the appearance of wave groups with extreme high amplitude and wavelength in the North Sea. During many storms characterized by extremely high individual waves measured near the German coast, especially in cold air outbreaks, the moving atmospheric open cells are observed by optical and radar satellites. According to measurements, the footprint of the cell produces a local increase in the wind field at sea surface, moving as a consistent system with a propagation speed near to swell wave-traveling speed. The optical and microwave satellite data are used to connect mesoscale atmospheric turbulences and the extreme waves measured. The parameters of open cells observed are used for numerical spectral wave modeling. The North Sea with horizontal resolution of 2.5 km and with focus on the German Bight was simulated. The wind field "storm in storm," including moving organized mesoscale eddies with increased wind speed, was generated. To take into account the rapid moving gust structure, the input wind field was updated each 5 min. The test cases idealized with one, two, and four open individual cells and, respectively, with groups of open cells, with and without preexisting sea state, as well the real storm conditions, are simulated. The model results confirm that an individual-moving open cell can cause the local significant wave height increase in order of meters within the cell area and especially in a narrow area of 1-2 km at the footprint center of a cell (the cell's diameter is 40-90 km). In a case of a traveling individual open cell with 15 m·s-1 over a sea surface with a preexisting wind sea of and swell, a local significant wave height increase of 3.5 m is produced. A group of cells for a real storm condition produces a local increase of significant wave height of more than 6 m during a short time window of 10-20 min (cell passing). The sea surface simulation from modeled wave spectra points out the appearance of wave groups including extreme individual waves with a period of about 25 s and a wavelength of more than 350 m under the cell's footprint. This corresponds well with measurement of a rogue wave group with length of about 400 m and a period of near 25 s. This has been registered at FiNO-1 research platform in the North Sea during Britta storm on November 1, 2006 at 04:00 UTC. The results can explain the appearance of rogue waves in the German Bight and can be used for ship safety and coastal protection. Presently, the considered mesoscale gustiness cannot be incorporated in present operational wave forecasting systems, since it needs an update of the wind field at spatial and temporal scales, which is still not available for such applications. However, the scenario simulations for cell structures with appropriate travel speed, observed by optical and radar satellites, can be done and applied for warning messages.
Ionization-induced annealing of pre-existing defects in silicon carbide
Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; ...
2015-08-12
A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less
Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states
NASA Astrophysics Data System (ADS)
Girolami, Davide; Paternostro, Mauro; Adesso, Gerardo
2011-09-01
The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.
Clear cell hidradenocarcinoma of the breast: a very rare breast skin tumor.
Mezzabotta, Maurizio; Declich, Paolo; Cardarelli, Mery; Bellone, Stefano; Pacilli, Paolo; Riggio, Eliana; Pallino, Antonio
2012-01-01
Hidradenocarcinoma is an uncommon malignant intradermal tumor of sweat gland origin with a predilection for the face and extremities. It is encountered equally in males and females, usually in the second half of life. These tumors tend to be locally aggressive. In our case, the tumor was located relatively superficially but without any apparent connection to the overlying skin. The typical disease course includes local and sometimes multiple recurrences, and some patients develop regional lymph node and distant metastases. These type of tumors in the parenchyma of the breast are extremely rare. We report a case of hidradenocarcinoma in a 77-year-old woman who presented with a palpable inflammatory nodule in the right breast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y., E-mail: liu.yang@nifs.ac.jp; Zhang, H. M.; Morita, S.
Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.
Perspective—Localized Corrosion: Passive Film Breakdown vs Pit Growth Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, G. S.; Li, Tianshu; Scully, J. R.
2017-02-24
A debate about the critical step in localized corrosion has raged for decades. Some researchers focus on the composition and structure of the passive film associated with the initial breakdown of the film, whereas others consider that the susceptibility to pitting is controlled by the pit growth kinetics and the stabilization of pit growth. The basis for a unified theory of pitting is presented here in which pit stability considerations are controlling under aggressive conditions (harsh electrolytes and extreme environments and/or susceptible microstructures) and the passive film properties and protectiveness are the critical factors in less extreme environments and/or formore » less susceptible alloys.« less
Ehl, Stefan; Dalstein, Vivian; Tull, Fabienne; Gros, Patrick; Schmitt, Thomas
2018-02-01
High mountain ecosystems are a challenge for the survival of animal and plant species, which have to evolve specific adaptations to cope with the prevailing extreme conditions. The strategies to survive may reach from opportunistic to highly adapted traits. One species successfully surviving under these conditions is the here studied butterfly Erebia nivalis. In a mark-release-recapture study performed in the Hohe Tauern National Park (Austria) from 22 July to 26 August 2013, we marked 1386 individuals and recaptured 342 of these. For each capture event, we recorded the exact point of capture and various other traits (wing conditions, behavior, nectar sources). The population showed a partial protandrous demography with the minority of males emerging prior to the females, but the majority being synchronized with them. Males and females differed significantly in their behavior with males being more flight active and females nectaring and resting more. Both sexes showed preferences for the same plant species as nectar sources, but this specialization apparently is the result of a rapid individual adaptation to the locally available flowers. Estimates of the realized dispersal distances predicted a comparatively high amount of long-distance flights, especially for females. Therefore, the adaptation of Erebia nivalis to the unpredictable high mountain conditions might be a mixture of opportunism and specialized traits. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Lower Extremity Reconstruction with Free Gracilis Flaps
Nicoson, Michael C; Parikh, Rajiv P; Tung, Thomas H
2017-01-01
Background There have been significant advancements in lower extremity reconstruction over the last several decades, and the plastic surgeon’s armamentarium has grown to include free muscle and fasciocutaneous flaps along with local perforator and propeller flaps. While we have found a use for a variety of techniques for lower extremity reconstruction, the free gracilis has been our workhorse flap due to the ease of harvest, reliability, and low donor site morbidity. Methods This is a retrospective review of a single surgeon’s series of free gracilis flaps utilized for lower extremity reconstruction. Demographic information, comorbidities, outcomes and secondary procedures were analyzed. Results We identified 24 free gracilis flaps. The duration from injury to free flap coverage was 7 days or less in 6 patients, 8–30 days in 11 patients, 31–90 days in 4 patients, and > 90 days in 3 patients. There were 22 (92%) successful flaps and an overall limb salvage rate of 92%. There was one partial flap loss. Two flaps underwent incision and drainage in the operating room for infection. Two patients developed donor site hematomas. Four patients underwent secondary procedures for contouring. Our subset of pediatric patients had 100% flap survival and no secondary procedures at a mean 30 month follow up. Conclusions This study demonstrates the utility of the free gracilis flap in reconstruction of small to medium sized defects of the lower extremity. This flap has a high success rate and low donor site morbidity. Atrophy of the denervated muscle over time allows for good shoe fit, often obviating the need for secondary contouring procedures. PMID:28024305
NASA Astrophysics Data System (ADS)
Nassiri, Ali; Vivek, Anupam; Abke, Tim; Liu, Bert; Lee, Taeseon; Daehn, Glenn
2017-06-01
Numerical simulations of high-velocity impact welding are extremely challenging due to the coupled physics and highly dynamic nature of the process. Thus, conventional mesh-based numerical methodologies are not able to accurately model the process owing to the excessive mesh distortion close to the interface of two welded materials. A simulation platform was developed using smoothed particle hydrodynamics, implemented in a parallel architecture on a supercomputer. Then, the numerical simulations were compared to experimental tests conducted by vaporizing foil actuator welding. The close correspondence of the experiment and modeling in terms of interface characteristics allows the prediction of local temperature and strain distributions, which are not easily measured.
NASA Astrophysics Data System (ADS)
Zigler, A.; Palchan, T.; Bruner, N.; Schleifer, E.; Eisenmann, S.; Botton, M.; Henis, Z.; Pikuz, S. A.; Faenov, A. Y., Jr.; Gordon, D.; Sprangle, P.
2011-04-01
We report on the first generation of 5.5-7.5 MeV protons by a moderate-intensity short-pulse laser (˜5×1017W/cm2, 40 fsec) interacting with frozen H2O nanometer-size structure droplets (snow nanowires) deposited on a sapphire substrate. In this setup, the laser intensity is locally enhanced by the snow nanowire, leading to high spatial gradients. Accordingly, the nanoplasma is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.
Informed peg-in-hole insertion using optical sensors
NASA Astrophysics Data System (ADS)
Paulos, Eric; Canny, John F.
1993-08-01
Peg-in-hole insertion is not only a longstanding problem in robotics but the most common automated mechanical assembly task. In this paper we present a high precision, self-calibrating peg-in-hole insertion strategy using several very simple, inexpensive, and accurate optical sensors. The self-calibrating feature allows us to achieve successful dead-reckoning insertions with tolerances of 25 microns without any accurate initial position information for the robot, pegs, or holes. The program we implemented works for any cylindrical peg, and the sensing steps do not depend on the peg diameter, which the program does not know. The key to the strategy is the use of a fixed sensor to localize both a mobile sensor and the peg, while the mobile sensor localizes the hole. Our strategy is extremely fast, localizing pegs as they are in route to their insertion location without pausing. The result is that insertion times are dominated by the transport time between pick and place operations.
Current management approach to hidradenocarcinoma: a comprehensive review of the literature
Soni, Abhishek; Bansal, Nupur; Kaushal, Vivek; Chauhan, Ashok Kr
2015-01-01
Hidradenocarcinoma is a rare malignant adnexal tumour which arises from the intradermal duct of eccrine sweat glands. The head and neck are the most common sites of hidradenocarcinoma, but rarely it can occur on the extremities. As it is an aggressive tumour, regional lymph nodes and distant viscera are the most common sites of metastasis. Diagnosis is confirmed by histopathology and immunohistochemistry. Hidradenocarcinoma should be differentiated from benign and malignant adnexal tumours. Being an aggressive and rare tumour, no uniform treatment guidelines have been documented so far for metastatic hidradenocarcinoma. Wide local excision is the mainstay of the treatment, but because of high local recurrence, radiotherapy in a dose of 50Gy–70Gy and/or 5-fluorouracil and capecitabine-based combination chemotherapy may be given to further improve local control. Other treatment strategies are targeted therapies like trastuzumab, EGFR inhibitors, PI3K/Akt/mTOR pathway inhibitors, hormonal agents like antiandrogens, electrochemotherapy, or clinical trials. PMID:25815059
Current management approach to hidradenocarcinoma: a comprehensive review of the literature.
Soni, Abhishek; Bansal, Nupur; Kaushal, Vivek; Chauhan, Ashok Kr
2015-01-01
Hidradenocarcinoma is a rare malignant adnexal tumour which arises from the intradermal duct of eccrine sweat glands. The head and neck are the most common sites of hidradenocarcinoma, but rarely it can occur on the extremities. As it is an aggressive tumour, regional lymph nodes and distant viscera are the most common sites of metastasis. Diagnosis is confirmed by histopathology and immunohistochemistry. Hidradenocarcinoma should be differentiated from benign and malignant adnexal tumours. Being an aggressive and rare tumour, no uniform treatment guidelines have been documented so far for metastatic hidradenocarcinoma. Wide local excision is the mainstay of the treatment, but because of high local recurrence, radiotherapy in a dose of 50Gy-70Gy and/or 5-fluorouracil and capecitabine-based combination chemotherapy may be given to further improve local control. Other treatment strategies are targeted therapies like trastuzumab, EGFR inhibitors, PI3K/Akt/mTOR pathway inhibitors, hormonal agents like antiandrogens, electrochemotherapy, or clinical trials.
The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings.
Wu, Judy I; Pühlhofer, Frank G; Schleyer, Paul von Ragué; Puchta, Ralph; Kiran, Boggavarapu; Mauksch, Michael; Hommes, Nico J R van Eikema; Alkorta, Ibon; Elguero, José
2009-06-18
Despite having six highly electronegative F's, perfluorobenzene C(6)F(6) is as aromatic as benzene. Ab initio block-localized wave function (BLW) computations reveal that both C(6)F(6) and benzene have essentially the same extra cyclic resonance energies (ECREs). Localized molecular orbital (LMO)-nucleus-independent chemical shifts (NICS) grids demonstrates that the F's induce only local paratropic contributions that are not related to aromaticity. Thus, all of the fluorinated benzenes (C(6)F(n)H((6-n)), n = 1-6) have similar ring-LMO-NICS(pi zz) values. However, 1,3-difluorobenzene 2b and 1,3,5-trifluorobenzene 3c are slightly less aromatic than their isomers due to a greater degree of ring charge alternation. Isoelectronic C(5)H(5)Y heterocycles (Y = BH(-), N, NH(+)) are as aromatic as benzene, based on their ring-LMO-NICS(pi zz) and ECRE values, unless extremely electronegative heteroatoms (e.g., Y = O(+)) are involved.
Assessing the features of extreme smog in China and the differentiated treatment strategy
NASA Astrophysics Data System (ADS)
Deng, Lu; Zhang, Zhengjun
2018-01-01
Extreme smog can have potentially harmful effects on human health, the economy and daily life. However, the average (mean) values do not provide strategically useful information on the hazard analysis and control of extreme smog. This article investigates China's smog extremes by applying extreme value analysis to hourly PM2.5 data from 2014 to 2016 obtained from monitoring stations across China. By fitting a generalized extreme value (GEV) distribution to exceedances over a station-specific extreme smog level at each monitoring location, all study stations are grouped into eight different categories based on the estimated mean and shape parameter values of fitted GEV distributions. The extreme features characterized by the mean of the fitted extreme value distribution, the maximum frequency and the tail index of extreme smog at each location are analysed. These features can provide useful information for central/local government to conduct differentiated treatments in cities within different categories and conduct similar prevention goals and control strategies among those cities belonging to the same category in a range of areas. Furthermore, hazardous hours, breaking probability and the 1-year return level of each station are demonstrated by category, based on which the future control and reduction targets of extreme smog are proposed for the cities of Beijing, Tianjin and Hebei as an example.
Talking Climate Science in a Changing Media Landscape
NASA Astrophysics Data System (ADS)
Cullen, H. M.
2014-12-01
Founded in 2008 by leading scientists and communications experts at Princeton, Yale and Stanford, Climate Central brings together award-winning journalists and internationally recognized scientists to report the science and impacts of climate change through its research and journalism programs. Climate Central works to tackle the misperception that climate change is a distant thing - affecting other people and other places - by demonstrating the local and personal impacts of global warming. This talk will focus on describing three important Climate Central initiatives. First, our Climate Matters program delivers localized climate information at the regional and local level to weathercasters around the U.S., providing ready-to-use, broadcast quality graphics and analyses that put climate change in a local context. After three years, the program has grown from a pilot with just one TV meteorologist in Columbia, South Carolina to a network of more than 150 weathercasters across the country. Climate Central was also closely involved in the development and production of Years of Living Dangerously - a 9-part global warming documentary that premiered in April 2014. Finally, the World Weather Attribution project is a new initiative that aims to identify the human fingerprint in certain types of extreme weather events, including sea level rise and its contribution to storm surges, extreme heat events, heavy rainfall events/flooding, and drought. Our goal is to objectively and transparently assess certain extreme events and equip journalists and scientists with the tools to provide the larger global warming context in real-time while there is still media interest.
Losing your edge: climate change and the conservation value of range-edge populations.
Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J
2015-10-01
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.
The [CII]/[NII] far-infrared line ratio at z>5: extreme conditions for “normal” galaxies
NASA Astrophysics Data System (ADS)
Pavesi, Riccardo; Riechers, Dominik; Capak, Peter L.; Carilli, Chris Luke; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas; Smolcic, Vernesa
2017-01-01
Thanks to the Atacama Large (sub-)Millimeter Array (ALMA), observations of atomic far-infrared fine structure lines are a very productive way of measuring physical properties of the interstellar medium (ISM) in galaxies at high redshift, because they provide an unobscured view into the physical conditions of star formation. While the bright [CII] line has become a routine probe of the dynamical properties of the gas, its intensity needs to be compared to other lines in order to establish the physical origin of the emission. [NII] selectively traces the emission coming from the ionized fraction of the [CII]-emitting gas, offering insight into the phase structure of the ISM. Here we present ALMA measurements of [NII] 205 μm fine structure line emission from a representative sample of galaxies at z=5-6 spanning two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized gas properties for galaxies in the first billion years of cosmic time, separated by their L[CII]/L[NII] ratio. First, we find extremely low [NII] emission compared to [CII] from a “typical” Lyman Break Galaxy (LBG-1), likely due to low dust content and reminiscent of local dwarfs. Second, the dusty Lyman Break Galaxy HZ10 and the extreme starburst AzTEC-3 show ionized gas fractions typical of local star-forming galaxies and show hints of spatial variations in their [CII]/[NII] line ratio. These observations of far-infrared lines in “normal” galaxies at z>5 yield some of the first constraints on ISM models for young galaxies in the first billion years of cosmic time and shed light on the observed evolution of the dust and gas properties.
Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A H
2015-01-01
Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal.
Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings
Huang, Longbin; Li, Xiaofang; Nguyen, Tuan A. H.
2015-01-01
Elevated inorganic phosphate (Pi) concentrations in pore water of amended tailings under direct revegetation may cause toxicity in some native woody species but not native forbs or herb species, all of which are key constituents in target native plant communities for phytostabilizing base metal mine tailings. As a result, Pi sorption capacity has been quantified by a conventional batch procedure in three types of base metal mine tailings sampled from two copper (Cu)-lead (Pb)-zinc (Zn) mines, as the basis for Pi-fertiliser addition. It was found that the Pi-sorption capacity in the tailings and local soil was extremely high, far higher than highly weathered agricultural soils in literature, but similar to those of volcanic ash soils. The Langmuir P-sorption maximum was up to 7.72, 4.12, 4.02 and 3.62 mg P g-1 tailings, in the fresh tailings of mixed Cu-Pb-Zn streams (MIMTD7), the weathered tailings of mixed Cu-Pb-Zn streams (MIMTD5), EHM-TD (fresh Cu-stream, high magnetite content) and local soil (weathered shale and schist), respectively. Physicochemical factors highly correlated with the high Pi-sorption in the tailings were fine particle distribution, oxalate and dithionite-citrate-bicarbonate extractable Fe (FeO and Fed), oxalate-extractable Al and Mn, and the levels of soluble Cd and Zn, and total S and Fe. Large amounts of amorphous Fe oxides and oxyhydroxides may have been formed from the oxidation of pyritic materials and redox cycles of Fe-minerals (such as pyrite (FeS2), ankerite (Ca(Fe Mg)(CO3)2 and siderite (FeCO3), as indicated by the extractable FeO values. The likely formation of sparingly soluble Zn-phosphate in the Pb-Zn tailings containing high levels of Zn (from sphalerite ((Zn,Fe)S, ZnS, (Zn,Cd)S)) may substantially lower soluble Zn levels in the tailings through high rates of Pi-fertiliser addition. As a result, the possibility of P-toxicity in native plant species caused by the addition of soluble phosphate fertilizers would be minimal. PMID:26295582
Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D
2012-09-10
Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.
Vargas-Hernández, Víctor Manuel; Tovar-Rodríguez, José María; Moreno-Eutimio, Mario Adán; Acosta-Altamirano, Gustavo
2014-01-01
Lymphangiomas are congenital malformations or acquired (secondary to trauma, infection or neoplasia) in the mammary gland, are extremely rare. These lesions tend to infiltrate surrounding tissues and malignant degeneration is extremely rare. Clinically manifests as benign masses, slow growing; diagnosed clinically and by imaging studies. Suegery with removal of the mass is performed for aesthetic reasons and to make differential diagnosis with other common injuries. Women 45 years of age with progressive increase in size of the left breast, breast trauma concerns and has no other symptoms.The histologic diagnosis was cystic lymphangioma giant left mammary gland. Lymphangiomas are uncommon lesions and extremely rare in the mammary gland, locally aggresive behavior and are benign, where abnormal lymphatic tissue has some ability to proliferate and accumulate large amounts of liquid, representing cystic appearance, as presented in our case. Local surgical excision is the treatment. In this first case of giant breast cystic lymphangioma reported in Mexico, which corroborates the benignity of the lesion.
Manchikanti, Laxmaiah; Singh, Vijay; Cash, Kimberly A; Pampati, Vidyasagar; Damron, Kim S; Boswell, Mark V
2012-01-01
Lumbar disc herniation and radiculitis are common elements of low back and lower extremity pain. Among minimally invasive treatments, epidural injections are one of the most commonly performed interventions. However, the literature is mixed about their effectiveness in managing low back and lower extremity pain. In general, individual studies and systematic reviews of epidural steroid injections have been hampered by their study design, baseline differences between treatment groups, inadequate sample sizes, highly controlled settings, lack of validated outcome measures, and the inability to confirm the injectate location because fluoroscopy was not used. A randomized, controlled, double blind, active control trial. A private, interventional pain management practice, specialty referral center in the United States. To assess the effectiveness of fluoroscopically directed caudal epidural injections with local anesthetic with or without steroids in managing chronic low back and lower extremity pain in patients with disc herniation and radiculitis. One hundred twenty patients were randomized to two groups: Group I received 10 mL caudal epidural injections of local anesthetic, lidocaine 0.5%; Group II patients received caudal epidural injections of 0.5% lidocaine, 9 mL, mixed with 1 mL of steroid. Multiple outcome measures were utilized. The primary outcome measures were Numeric Rating Scale (NRS) and the Oswestry Disability Index 2.0 (ODI). Secondary outcome measures were employment status and opioid intake. Significant pain relief improvement was defined as 50% or more improvement in NRS and ODI scores. In the successful category, 77% of Group I had significant pain relief of >/= 50% and functional status improvement of >/= 50% reduction in ODI scores; in Group II it was 76%, whereas overall it was 60% and 65% in Groups I and II. Over the two years, Group I had an average number of procedures of 5.5 ± 2.8; Group II was 5.3 ± 2.4. Even though there was no significant difference in overall relief between the two groups, the average relief for each procedure was superior for steroids. Presumed limitations of this evaluation include lack of a placebo group. Caudal epidural injections of local anesthetic with or without steroids might be an effective therapy for patients with disc herniation or radiculitis. The present evidence illustrates the potential superiority of steroids compared with local anesthetic at two year follow up based on average relief per procedure. NCT00370799.
NASA Astrophysics Data System (ADS)
Vautard, Robert; Christidis, Nikolaos; Ciavarella, Andrew; Alvarez-Castro, Carmen; Bellprat, Omar; Christiansen, Bo; Colfescu, Ioana; Cowan, Tim; Doblas-Reyes, Francisco; Eden, Jonathan; Hauser, Mathias; Hegerl, Gabriele; Hempelmann, Nils; Klehmet, Katharina; Lott, Fraser; Nangini, Cathy; Orth, René; Radanovics, Sabine; Seneviratne, Sonia I.; van Oldenborgh, Geert Jan; Stott, Peter; Tett, Simon; Wilcox, Laura; Yiou, Pascal
2018-04-01
A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed sea surface temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution.
NASA Astrophysics Data System (ADS)
Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.
2013-12-01
The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes, and the emergence of risks that are place-based vs. systemic.
Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin
2016-01-01
Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.
Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia.
Tu, Chengyi; Das, Subhamoy; Baker, Aaron B; Zoldan, Janeta; Suggs, Laura J
2015-01-01
Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.
Genoni, Alessandro
2013-07-09
Following the X-ray constrained wave function approach proposed by Jayatilaka, we have devised a new technique that allows to extract molecular orbitals strictly localized on small molecular fragments from sets of experimental X-ray structure factors amplitudes. Since the novel strategy enables to obtain electron distributions that have quantum mechanical features and that can be easily interpreted in terms of traditional chemical concepts, the method can be also considered as a new useful tool for the determination and the analysis of charge densities from high-resolution X-ray experiments. In this paper, we describe in detail the theory of the new technique, which, in comparison to our preliminary work, has been improved both treating the effects of isotropic secondary extinctions and introducing a new protocol to halt the fitting procedure against the experimental X-ray scattering data. The performances of the novel strategy have been studied both in function of the basis-sets flexibility and in function of the quality of the considered crystallographic data. The tests performed on four different systems (α-glycine, l-cysteine, (aminomethyl)phosphonic acid and N-(trifluoromethyl)formamide) have shown that the achievement of good statistical agreements with the experimental measures mainly depends on the quality of the crystal structures (i.e., geometry positions and thermal parameters) used in the X-ray constrained calculations. Finally, given the reliable transferability of the obtained Extremely Localized Molecular Orbitals (ELMOs), we envisage to exploit the novel approach to construct new ELMOs databases suited to the development of linear-scaling methods for the refinement of macromolecular crystal structures.
NASA Astrophysics Data System (ADS)
Leta, O. T.; El-Kadi, A. I.; Dulaiova, H.
2016-12-01
Extreme events, such as flooding and drought, are expected to occur at increased frequencies worldwide due to climate change influencing the water cycle. This is particularly critical for tropical islands where the local freshwater resources are very sensitive to climate. This study examined the impact of climate change on extreme streamflow, reservoir water volume and outflow for the Nuuanu watershed, using the Soil and Water Assessment Tool (SWAT) model. Based on the sensitive parameters screened by the Latin Hypercube-One-factor-At-a-Time (LH-OAT) method, SWAT was calibrated and validated to daily streamflow using the SWAT Calibration and Uncertainty Program (SWAT-CUP) at three streamflow gauging stations. Results showed that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. This was verified with Nash-Sutcliffe Efficiency that resulted in acceptable values of 0.58 to 0.88, whereby more than 90% of observations were bracketed within 95% model prediction uncertainty interval for both calibration and validation periods, signifying the potential applicability of SWAT for future prediction. The climate change impact on extreme flows, reservoir water volume and outflow was assessed under the Representative Concentration Pathways of 4.5 and 8.5 scenarios. We found wide changes in extreme peak and low flows ranging from -44% to 20% and -50% to -2%, respectively, compared to baseline. Consequently, the amount of water stored in Nuuanu reservoir will be decreased up to 27% while the corresponding outflow rates are expected to decrease up to 37% relative to the baseline. In addition, the stored water and extreme flows are highly sensitive to rainfall change when compared to temperature and solar radiation changes. It is concluded that the decrease in extreme low and peak flows can have serious consequences, such as flooding, drought, with detrimental effects on riparian ecological functioning. This study's results are expected to aid in reservoir operation as well as in identifying appropriate climate change adaptation strategies.
Dust-obscured galaxies in the local universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ho Seong; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu
We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z ∼ 2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S {sub 12μm}/S {sub 0.22μm} ≥ 892 and S {sub 12μm} > 20 mJy at 0.05 < z < 0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4 × 10{sup 10} (L {sub ☉}) ≲ L {sub IR} ≲ 7.0 × 10{sup 11} (L {sub ☉}) with a median L {sub IR} of 2.1more » × 10{sup 11} (L {sub ☉}). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S {sub 12μm}/S {sub 0.22μm} but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12 μm and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36% ± 7% have small axis ratios in the optical (i.e., b/a < 0.6), larger than the fraction among the control sample (17% ± 3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ∼50 kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.« less
NASA Astrophysics Data System (ADS)
Fonseca, P. A. M.
2015-12-01
Bacterial diarrheal diseases have a high incidence rate during and after flooding episodes. In the Brazilian Amazon, flood extreme events have become more frequent, leading to high incidence rates for infant diarrhea. In this study we aimed to find a statistical association between rainfall, river levels and diarrheal diseases in children under 5, in the river Acre basin, in the State of Acre (Brazil). We also aimed to identify the time-lag and annual season of extreme rainfall and flooding in different cities in the water basin. The results using Tropical Rainfall Measuring Mission (TRMM) Satellite rainfall data show robustness of these estimates against observational stations on-ground. The Pearson coefficient correlation results (highest 0.35) indicate a time-lag, up to 4 days in three of the cities in the water-basin. In addition, a correlation was also tested between monthly accumulated rainfall and the diarrheal incidence during the rainy season (DJF). Correlation results were higher, especially in Acrelândia (0.7) and Brasiléia and Epitaciolândia (0.5). The correlation between water level monthly averages and diarrheal diseases incidence was 0.3 and 0.5 in Brasiléia and Epitaciolândia. The time-lag evidence found in this paper is critical to inform stakeholders, local populations and civil defense authorities about the time available for preventive and adaptation measures between extreme rainfall and flooding events in vulnerable cities. This study was part of a pilot application in the state of Acre of the PULSE-Brazil project (http://www.pulse-brasil.org/tool/), an interface of climate, environmental and health data to support climate adaptation. The next step of this research is to expand the analysis to other climate variables on diarrheal diseases across the whole Brazilian Amazon Basin and estimate the relative risk (RR) of a child getting sick. A statistical model will estimate RR based on the observed values and seasonal forecasts (higher accuracy for the Amazon region) will be used so the government can be prepared for extreme climate events forecasted. It is expected that these results can be helpful during and post extreme events to improve health surveillance preparedness and better allocate available results in adapting vulnerable cities to climate extreme events.
NASA Astrophysics Data System (ADS)
Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.
2012-04-01
In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry
Gamell, Marc; Teranishi, Keita; Mayo, Jackson; ...
2017-04-24
By obtaining multi-process hard failure resilience at the application level is a key challenge that must be overcome before the promise of exascale can be fully realized. Some previous work has shown that online global recovery can dramatically reduce the overhead of failures when compared to the more traditional approach of terminating the job and restarting it from the last stored checkpoint. If online recovery is performed in a local manner further scalability is enabled, not only due to the intrinsic lower costs of recovering locally, but also due to derived effects when using some application types. In this papermore » we model one such effect, namely multiple failure masking, that manifests when running Stencil parallel computations on an environment when failures are recovered locally. First, the delay propagation shape of one or multiple failures recovered locally is modeled to enable several analyses of the probability of different levels of failure masking under certain Stencil application behaviors. These results indicate that failure masking is an extremely desirable effect at scale which manifestation is more evident and beneficial as the machine size or the failure rate increase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamell, Marc; Teranishi, Keita; Mayo, Jackson
By obtaining multi-process hard failure resilience at the application level is a key challenge that must be overcome before the promise of exascale can be fully realized. Some previous work has shown that online global recovery can dramatically reduce the overhead of failures when compared to the more traditional approach of terminating the job and restarting it from the last stored checkpoint. If online recovery is performed in a local manner further scalability is enabled, not only due to the intrinsic lower costs of recovering locally, but also due to derived effects when using some application types. In this papermore » we model one such effect, namely multiple failure masking, that manifests when running Stencil parallel computations on an environment when failures are recovered locally. First, the delay propagation shape of one or multiple failures recovered locally is modeled to enable several analyses of the probability of different levels of failure masking under certain Stencil application behaviors. These results indicate that failure masking is an extremely desirable effect at scale which manifestation is more evident and beneficial as the machine size or the failure rate increase.« less
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
ERIC Educational Resources Information Center
Baisagatova, Diana B.; Kemelbekov, Saken T.; Smagulova, Diana A.; Kozhamberdiyeva, Aigul S.
2016-01-01
The main threats to world order are terrorist and extremist activities. On the world stage, countries unite into a coalition with the aim to increase the efficiency of the fight against terrorism. At the local level, the terrorist threat is fought by the security services. In order to prevent global human victims, which may arise as a result of…
Projected changes to precipitation extremes over the Canadian Prairies using multi-RCM ensemble
NASA Astrophysics Data System (ADS)
Masud, M. B.; Khaliq, M. N.; Wheater, H. S.
2016-12-01
Information on projected changes to precipitation extremes is needed for future planning of urban drainage infrastructure and storm water management systems and to sustain socio-economic activities and ecosystems at local, regional and other scales of interest. This study explores the projected changes to seasonal (April-October) precipitation extremes at daily, hourly and sub-hourly scales over the Canadian Prairie Provinces of Alberta, Saskatchewan, and Manitoba, based on the North American Regional Climate Change Assessment Program multi-Regional Climate Model (RCM) ensemble and regional frequency analysis. The performance of each RCM is evaluated regarding boundary and performance errors to study various sources of uncertainties and the impact of large-scale driving fields. In the absence of RCM-simulated short-duration extremes, a framework is developed to derive changes to extremes of these durations. Results from this research reveal that the relative changes in sub-hourly extremes are higher than those in the hourly and daily extremes. Overall, projected changes in precipitation extremes are larger for southeastern parts of this region than southern and northern areas, and smaller for southwestern and western parts of the study area. Keywords: climate change, precipitation extremes, regional frequency analysis, NARCCAP, Canadian Prairie provinces
The Relationships Between the Trends of Mean and Extreme Precipitation
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Lau, William K.-M.
2017-01-01
This study provides a better understanding of the relationships between the trends of mean and extreme precipitation in two observed precipitation data sets: the Climate Prediction Center Unified daily precipitation data set and the Global Precipitation Climatology Program (GPCP) pentad data set. The study employs three kinds of definitions of extreme precipitation: (1) percentile, (2) standard deviation and (3) generalize extreme value (GEV) distribution analysis for extreme events based on local statistics. Relationship between trends in the mean and extreme precipitation is identified with a novel metric, i.e. area aggregated matching ratio (AAMR) computed on regional and global scales. Generally, more (less) extreme events are likely to occur in regions with a positive (negative) mean trend. The match between the mean and extreme trends deteriorates for increasingly heavy precipitation events. The AAMR is higher in regions with negative mean trends than in regions with positive mean trends, suggesting a higher likelihood of severe dry events, compared with heavy rain events in a warming climate. AAMR is found to be higher in tropics and oceans than in the extratropics and land regions, reflecting a higher degree of randomness and more important dynamical rather than thermodynamical contributions of extreme events in the latter regions.
New localized/delocalized emitting state of Eu 2+ in orange-emitting hexagonal EuAl 2O 4
Liu, Feng; Meltzer, Richard S.; Li, Xufan; ...
2014-11-18
Eu 2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu 2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu 2+ ions in a new hexagonal EuAl 2O 4 phosphor whose Eu 2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emissionmore » exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f 65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu 2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less
NASA Astrophysics Data System (ADS)
Vicari, Rosa; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2014-05-01
The frequency and damages caused by pluvial floods in European cities are expected to increase as a consequence of climate change and urban development. New solutions are needed at local level to cope with extreme storm events and to reduce risks and costs on populations and infrastructures, in particular in disadvantaged urban areas. The HM&Co team (LEESU & Chair 'Hydrology for Resilient Cities' sponsored by Veolia) aims to develop resilient urban systems with the help of innovative technologies, tools and practices based in particular on the use of high-resolution data, simulations, forecasts and management. Indeed, the availability of fine-scale rainfall data, due to the improved reliability of recent low-cost weather radars, opens up prospects for new forms of local urban flood risk management, which requires exchange of information with local actors and their full cooperation with researchers. This demands a large collaboration ranging from regional to international levels, e.g. the RadX@IdF project (Regional Council of Paris Region), the RainGain project (EU Interreg programme) and Blue Green Dream project (Climate-KIC programme), TOMACS (World Meteorological Organisation). These research projects and programmes include awareness raising and capacity building activities aimed to stimulate cooperation between scientists, professionals (e.g. water managers, urban planners) and beneficiaries (e.g. concerned citizens, policy makers). A dialogue between these actors is indeed needed to bring together the know-how from different countries and areas of expertise, avoid fragmentation and link it to the needs of the local stakeholders. Without this "conductive environment", research results risk to remain unexploited. After a general description of the background communication needs, this presentation will illustrate the outreach practices that are carried out by the HM&Co team. The major challenges will be also discussed, some examples are: narrating research uncertainty and its open issues as a virtuous process, aligning diverging objectives and approaches in a common vision, making an innovative technology visible to the public and managing rumours on security issues, bridging the gap between scientific discourses from an international academic community and operational discourses from local communities.
Local short-duration precipitation extremes in Sweden: observations, forecasts and projections
NASA Astrophysics Data System (ADS)
Olsson, Jonas; Berg, Peter; Simonsson, Lennart
2015-04-01
Local short-duration precipitation extremes (LSPEs) are a key driver of hydrological hazards, notably in steep catchments with thin soils and in urban environments. The triggered floodings, landslides, etc., have large consequences for society in terms of both economy and health. Accurate estimations of LSPEs on both climatological time-scales (past, present, future) and in real-time is thus of great importance for improved hydrological predictions as well as design of constructions and infrastructure affected by hydrological fluxes. Analysis of LSPEs is, however, associated with various limitations and uncertainties. These are to a large degree associated with the small-scale nature of the meteorological processes behind LSPEs and the associated requirements on observation sensors as well as model descriptions. Some examples of causes for the limitations involved are given in the following. - Observations: High-resolution data sets available for LSPE analyses are often limited to either relatively long series from one or a few stations or relatively short series from larger station networks. Radar data have excellent resolutions in both time and space but the estimated local precipitation intensity is still highly uncertain. New and promising techniques (e.g. microwave links) are still in their infancy. - Weather forecasts (short-range): Although forecasts with the required spatial resolution for potential generation of LSPEs (around 2-4 km) are becoming operationally available, the actual forecast precision of LSPEs is largely unknown. Forecasted LSPEs may be displaced in time or, more critically, in space which strongly affects the possibility to assess hydrological risk. - Climate projections: The spatial resolution of the current RCM generation (around 25 km) is not sufficient for proper description of LSPEs. Statistical post-processing (i.e. downscaling) is required which adds substantial uncertainty to the final result. Ensemble generation of sufficiently high-resolution RCM projections is not yet computationally feasible. In this presentation, examples of recent research in Sweden related to these aspects will be given with some main findings shown and discussed. Finally, some ongoing and future research directions will be outlined (the former hopefully accompanied by some brand-new results).
NASA Astrophysics Data System (ADS)
Halperin, A.; Walton, P.
2015-12-01
As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.
Fast novel nonlinear optical NLC system with local response
NASA Astrophysics Data System (ADS)
Iljin, Andrey; Residori, Stefania; Bortolozzo, Umberto
2017-06-01
Nonlinear optical performance of a novel liquid crystalline (LC) cell has been studied in two-wave mixing experiments revealing high diffraction efficiency within extremely wide intensity range, fast recording times and spatial resolution. Photo-induced modulation of the LC order parameter resulting from trans-cis isomerisation of dye molecules causes consequent changes of refractive indices of the medium (Light-Induced Order Modification, LIOM-mechanism) and is proved to be the main mechanism of optical nonlinearity. The proposed arrangement of the electric-field-stabilised homeotropic alignment hinders the LC director reorientation, prevents appearance of surface effects and ensures the optical cell quality. The LIOM-type nonlinearity, characterised with the substantially local nonlinear optical response, could also be extended for the recording of arbitrary phase profiles as requested in several applications for light-beam manipulation, recording of dynamic volume holograms and photonic lattices.
Negative local resistance caused by viscous electron backflow in graphene.
Bandurin, D A; Torre, I; Krishna Kumar, R; Ben Shalom, M; Tomadin, A; Principi, A; Auton, G H; Khestanova, E; Novoselov, K S; Grigorieva, I V; Ponomarenko, L A; Geim, A K; Polini, M
2016-03-04
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We found that doped graphene exhibits an anomalous (negative) voltage drop near current-injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene's electron liquid is found to be ~0.1 square meters per second, an order of magnitude higher than that of honey, in agreement with many-body theory. Our work demonstrates the possibility of studying electron hydrodynamics using high-quality graphene. Copyright © 2016, American Association for the Advancement of Science.
Multimodality management of soft tissue tumors in the extremity
Crago, Aimee M.; Lee, Ann Y.
2016-01-01
Most extremity soft tissue sarcomas present as a painless mass. Workup should generally involve cross-sectional imaging with MRI, as well as a core biopsy for pathologic diagnosis. Limb-sparing surgery is the standard of care, and may be supplemented with radiation for histologic subtypes at higher risk for local recurrence and chemotherapy for those at higher risk for distant metastases. This article reviews the work-up and surgical approach to extremity soft tissue sarcomas, as well as the role for radiation and chemotherapy, with particular attention given to the distinguishing characteristics of some of the most common subtypes. PMID:27542637
Chen, Fu-hong; Chen, Ze; Duan, Heng-qiong; Wan, Zhong-xian
2008-10-01
To observe the influence of earthquake crush injury on postoperative wound healing of extremity fractures. The study involved 85 patients with extremities fracture underwent internal fixation operation in 3 group, including 28 earthquake casualties with crush injuries in observation group, 27 earthquake casualties without crush injuries in control I group and 30 local patients during the same period in control II group. Urine routine, blood creatine kinase (CK) and wound conditions of patients in 3 groups were observed respectively. There was no significant difference in Urine routine and blood CK between 3 groups and was significant difference in wound conditions between observation group and each control group. Earthquake crush injuries can influence the postoperative wound healing of extremity fractures.
Measures of Wealth in Pennsylvania
ERIC Educational Resources Information Center
Dady, Kenneth J., Jr.
2010-01-01
The measure of district wealth used by a state is a critical factor in reducing the potential extremes in available resources that may occur across districts. To be effective, the state definition of wealth should correlate closely with the local tax structure that is available to school districts to raise local revenues. Conversely, if wealth is…
ERIC Educational Resources Information Center
Russell-Smith, Suzanna N.; Maybery, Murray T.; Bayliss, Donna M.
2010-01-01
Crespi and Badcock (2008) proposed that autism and psychosis represent two extremes on a cognitive spectrum with normality at its center. Their specific claim that autistic and positive schizophrenia traits contrastingly affect preference for local versus global processing was investigated by examining Embedded Figures Test performance in two…
Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter
2016-11-01
To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).
GRB 170817A: a short GRB seen off-axis
NASA Astrophysics Data System (ADS)
He, Xin-Bo; Tam, Pak-Hin Thomas; Shen, Rong-Feng
2018-04-01
The angular distribution of gamma-ray burst (GRB) jets is not yet clear. The observed luminosity of GRB 170817A is the lowest among all known short GRBs, which is best explained by the fact that our line of sight is outside of the jet opening angle, θ obs > θ j , where θ obs is the angle between our line of sight and the jet axis. As inferred by gravitational wave observations, as well as radio and X-ray afterglow modeling of GRB 170817A, it is likely that θ obs ∼ 20° – 28°. In this work, we quantitatively consider two scenarios of angular energy distribution of GRB ejecta: a top-hat jet and a structured jet with a power law index s. For the top-hat jet model, we get a large θ j (e.g., θ j > 10°), a rather high local (i.e., z < 0.01) short GRB rate ∼8–15×103, Gpc‑3, yr‑1 (estimated to be 90∼1850 Gpc‑3, yr‑1 in Fong et al.) and an extremely high E peak,0 (on-axis, rest-frame) > 7.5 × 104, keV (∼500, keV for a typical short GRB). For the structured jet model, we use θ obs to give limits on s and θj for typical on-axis luminosity of a short GRB (e.g., 1049 erg s‑1 ∼ 1051 erg s‑1), and a low on-axis luminosity case (e.g., 1049 erg s‑1) gives more reasonable values of s. The structured jet model is more feasible for GRB 170817A than the top-hat jet model due to the rather high local short GRB rate, and the extremely high on-axis E peak,0 almost rules out the top-hat jet model. GRB 170817A is likely a low on-axis luminosity GRB (1049 erg s‑1) with a structured jet.
Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia.
Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara
2012-11-01
We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m(3)) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m(3). Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.
Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia
NASA Astrophysics Data System (ADS)
Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara
2012-11-01
We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.
NASA Astrophysics Data System (ADS)
Schüepp, M.; Schiesser, H. H.; Huntrieser, H.; Scherrer, H. U.; Schmidtke, H.
1994-09-01
During the months January and February 1990 a series of severe cyclones were responsible for enormous wind-induced damage in Europe. The final of this series, on 27 February 1990, cyclone “Vivian” mainly affected the alpine valleys of Switzerland. 5 Millions m3 of timber were felled by the severe winds, a record number in this century. A complete damage survey of the deforested areas offers in combination with meteorological data an unique data set for a detailed case study of this extreme event. This paper describes the general meteorological development from the synoptic scale down to the mesoscale of Switzerland and presents a general overview of the damage situation. The main results show that a rare situation of a straight frontal zone stretching over the whole Atlantic Ocean and showing a strong gradient in temperature pointed directly toward Central-Europe. Two waves formed along this elongated polar front and deepend rapidly to depressions. The first low travelled on the southernmost trajectory of the whole storm series and affected Switzerland most. North of the Alps the prefrontal warm air was blocked to the east by the arriving coldfront and had to escape into the complex terrain of the alpine valleys. There, the stormy winds were strengthened by channelizing and “Föhn” effects. The large temperature gradient between the prefrontal and the incoming air masses induced thunderstorm activity which vortices and downdrafts might have enhanced locally. As a result most of the damaged forested areas were found between 1200 and 1600 m MSL on slopes, which were mainly exposed toward the prevailing NW-winds. A comparison of extreme wind speeds for the period 1978 1992 revealed that this event's extreme high speed of 74.5 m/s, measured at a high elevated pass station in the mountains, was exceptional. For lower elevated stations the wind speeds were high but in the range of other observed extreme values. In addition to the severe wind forces the duration of sustained high wind speed was exceptionally long during February 1990.
Exploring local perceptions and attributions of 'extreme' wildfire impacts in Rural Montana
NASA Astrophysics Data System (ADS)
Carroll, M.; Paveglio, T.; Kallman, D.
2013-12-01
To date there have been few systematic efforts to uncover the criteria that local stakeholders use to perceive of and make judgments about the severity of wildfire impacts to the social-ecological systems they are a part of. The study presented here sought to uncover expanded understandings of perceived social and ecological impacts from a wildfire in rural Montana and the underlying causes for those perceived impacts. Such efforts could lead to more comprehensive social impact assessment concerning wildfires or other hazards and help better understand how local perceptions might influence residents' ongoing attitudes toward fire risk or mitigation efforts. The study presented here explored local perceptions of impact from the 2012 Dahl fire near Roundup, MT. The Dahl Fire burned 73 permanent structures, 150 outbuilding and 22,000 acres of predominantly private lands in the rural Bull Mountains. Members of the project team interviewed approximately 50 stakeholders impacted by or involved in the management for the Dahl Fire. Interviews took place in the summer of 2013 and included a variety of residents, emergency personnel, firefighters, local community officials and land management professionals. Results suggest that residents considered the Dahl fire especially impactful given the number of private residences and structures that were burned and the number of people displaced or disrupted by the event (either directly, through efforts to help those affected, or through indirect impacts to community function). The extremity of the firefighting conditions (e.g. wind, relative humidity, terrain), the rapidity of fire spread through populated areas and the damages sustained given previous fires in the area all surprised stakeholders and contributed to their perceptions of impact severity. Conflicts over access to properties during and immediately following the fire, and the variable perception that personal wildfire mitigations did little to reduce damages from the fire also contributed to perceptions about the level of wildfire impact. Many respondents felt that impacts from the Dahl Fire were the result of historic development patterns that allowed for mid-sized, rural subdivisions in heavily forested draws and along rough roads. Residents in these areas often moved to the Bull Mountains for privacy and to exercise significant property rights. Other residents felt the fire was not attacked quickly enough. Resident response to the impacts was almost universally perceived as well organized and effective. It was predicated on the collaborative capacity of local groups, community ties and experience with historic floods the year prior to the fire. Unexpected longer-term impacts such as high levels of erosion and flash-flooding have kept the fire in the minds of residents and contributed to their perceptions of impact. Respondents (including those with homes that burned) indicated that a significant portion of those whose property was damaged did not intend to return or rebuild. This is somewhat unique in response to wildfires and should be explored in future fires perceived by locals as extreme in order to test for emerging trends.
High Performance Materials Applications to Moon/Mars Missions and Bases
NASA Technical Reports Server (NTRS)
Noever, David A.; Smith, David D.; Sibille, Laurent; Brown, Scott C.; Cronise, Raymond J.; Lehoczky, Sandor L.
1998-01-01
Two classes of material processing scenarios will feature prominently in future interplanetary exploration- in situ production using locally available materials in lunar or planetary landings and high performance structural materials which carve out a set of properties for uniquely hostile space environments. To be competitive, high performance materials must typically offer orders of magnitude improvements in thermal conductivity or insulation, deliver high strength-to-weight ratios, or provide superior durability (low corrosion and/or ablative character, e.g. in heat shields). The space-related environmental parameters of high radiation flux, low weight and superior reliability limits many typical aerospace materials to a short list comprising high performance alloys, nanocomposites and thin-layer metal laminates (Al-Cu, Al-Ag) with typical dimensions less than the Frank-Reed-type dislocation source. Extremely light weight carbon-carbon composites and car on aerogels will be presented as novel examples which define broadened material parameters, particularly owing to their extreme thermal insulation (R-32-64) and low densities (less than 0.01 g/cc) approaching that of air itself. Even with these low weight payload additions, rocket thrust limits and transport costs will always place a premium on assembling as much structural and life support resources upon interplanetary, lunar or asteroid arrival. As an example for in situ lunar glass manufacture, solar furnaces reaching 1700 C for pure silica glass manufacture in situ are compared with sol-gel technology and acid-leached ultrapure (less than 0.1% FeO) silica aerogel precursors.