Sample records for extremely high photon

  1. Optimized photonic gauge of extreme high vacuum with Petawatt lasers

    NASA Astrophysics Data System (ADS)

    Paredes, Ángel; Novoa, David; Tommasini, Daniele; Mas, Héctor

    2014-03-01

    One of the latest proposed applications of ultra-intense laser pulses is their possible use to gauge extreme high vacuum by measuring the photon radiation resulting from nonlinear Thomson scattering within a vacuum tube. Here, we provide a complete analysis of the process, computing the expected rates and spectra, both for linear and circular polarizations of the laser pulses, taking into account the effect of the time envelope in a slowly varying envelope approximation. We also design a realistic experimental configuration allowing for the implementation of the idea and compute the corresponding geometric efficiencies. Finally, we develop an optimization procedure for this photonic gauge of extreme high vacuum at high repetition rate Petawatt and multi-Petawatt laser facilities, such as VEGA, JuSPARC and ELI.

  2. 170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits.

    PubMed

    Rouvalis, E; Chtioui, M; van Dijk, F; Lelarge, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J

    2012-08-27

    We demonstrate the capability of fabricating extremely high-bandwidth Uni-Traveling Carrier Photodiodes (UTC-PDs) using techniques that are suitable for active-passive monolithic integration with Multiple Quantum Well (MQW)-based photonic devices. The devices achieved a responsivity of 0.27 A/W, a 3-dB bandwidth of 170 GHz, and an output power of -9 dBm at 200 GHz. We anticipate that this work will deliver Photonic Integrated Circuits with extremely high bandwidth for optical communications and millimetre-wave applications.

  3. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium.

    PubMed

    Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P

    2017-04-27

    High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.

  4. High-order harmonics measured by the photon statistics of the infrared driving-field exiting the atomic medium

    PubMed Central

    Tsatrafyllis, N.; Kominis, I. K.; Gonoskov, I. A.; Tzallas, P.

    2017-01-01

    High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet. PMID:28447616

  5. Propagation of monochromatic light in a hot and dense medium

    NASA Astrophysics Data System (ADS)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  6. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  7. Harmonium: A pulse preserving source of monochromatic extreme ultraviolet (30-110 eV) radiation for ultrafast photoelectron spectroscopy of liquids.

    PubMed

    Ojeda, J; Arrell, C A; Grilj, J; Frassetto, F; Mewes, L; Zhang, H; van Mourik, F; Poletto, L; Chergui, M

    2016-03-01

    A tuneable repetition rate extreme ultraviolet source (Harmonium) for time resolved photoelectron spectroscopy of liquids is presented. High harmonic generation produces 30-110 eV photons, with fluxes ranging from ∼2 × 10(11) photons/s at 36 eV to ∼2 × 10(8) photons/s at 100 eV. Four different gratings in a time-preserving grating monochromator provide either high energy resolution (0.2 eV) or high temporal resolution (40 fs) between 30 and 110 eV. Laser assisted photoemission was used to measure the temporal response of the system. Vibrational progressions in gas phase water were measured demonstrating the ∼0.2 eV energy resolution.

  8. Energy deposition in ultrathin extreme ultraviolet resist films: extreme ultraviolet photons and keV electrons

    NASA Astrophysics Data System (ADS)

    Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.

    2016-07-01

    The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.

  9. Lux in obscuro II: photon orbits of extremal AdS black holes revisited

    NASA Astrophysics Data System (ADS)

    Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin

    2017-12-01

    A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.

  10. Hybrid photonic signal processing

    NASA Astrophysics Data System (ADS)

    Ghauri, Farzan Naseer

    This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.

  11. Laser- and Particle-Beam Chemical Processes on Surfaces. Volume 129

    DTIC Science & Technology

    1989-12-26

    explosive decomposition of organometallic compounds with single pulse laser irradiation . This new... ultrashort , meaning ultra high intensity , excimer laser pulses , two-photon absorption becomes important and limits the penetration depth of the laser ...requires a higher photon load before suffering damage to its chemical structure. With extremely high light intensities , ultrashort excimer laser pulses

  12. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~10 5 photons/Å 2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  13. Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.

    2014-07-28

    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less

  14. Extreme alien light allows survival of terrestrial bacteria

    NASA Astrophysics Data System (ADS)

    Johnson, Neil; Zhao, Guannan; Caycedo, Felipe; Manrique, Pedro; Qi, Hong; Rodriguez, Ferney; Quiroga, Luis

    2013-07-01

    Photosynthetic organisms provide a crucial coupling between the Sun's energy and metabolic processes supporting life on Earth. Searches for extraterrestrial life focus on seeking planets with similar incident light intensities and environments. However the impact of abnormal photon arrival times has not been considered. Here we present the counterintuitive result that broad classes of extreme alien light could support terrestrial bacterial life whereas sources more similar to our Sun might not. Our detailed microscopic model uses state-of-the-art empirical inputs including Atomic Force Microscopy (AFM) images. It predicts a highly nonlinear survivability for the basic lifeform Rsp. Photometricum whereby toxic photon feeds get converted into a benign metabolic energy supply by an interplay between the membrane's spatial structure and temporal excitation processes. More generally, our work suggests a new handle for manipulating terrestrial photosynthesis using currently-available extreme value statistics photon sources.

  15. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    PubMed

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  16. High-Efficiency Plug-and-Play Source of Heralded Single Photons

    NASA Astrophysics Data System (ADS)

    Montaut, Nicola; Sansoni, Linda; Meyer-Scott, Evan; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-08-01

    Reliable generation of single photons is of key importance for fundamental physical experiments and to demonstrate quantum protocols. Waveguide-based photon-pair sources have shown great promise in this regard due to their large spectral tunability, high generation rates, and long temporal coherence of the photon wave packet. However, integrating such sources with fiber-optic networks often results in a strong degradation of performance. We answer this challenge by presenting an alignment-free source of photon pairs in the telecommunications band that maintains heralding efficiency >50 % even after fiber pigtailing, photon separation, and pump suppression. The source combines this outstanding performance in heralding efficiency with a compact, stable, and easy-to-use "plug-and-play" package: one simply connects a laser to the input and detectors to the output, and the source is ready to use. This high performance can be achieved even outside the lab without the need for alignment which makes the source extremely useful for any experiment or demonstration needing heralded single photons.

  17. EXTREME INTENSITY INCREASES OF HIGH-ENERGY PARTICLE RADIATION IN THE EXOSPHERE AS OBSERVED BY SPUTNIK III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knuth, R.

    1962-09-01

    Two channels in the telemetered data from Sputnik III investigated the intensity of high-energy photons over 35 kilo-electron-volt. The data from the period between May 15 and Aug. 16, 1958 (corresponding to flight altitudes between 220 and 950 kilometers) were analyzed. The extreme intensity increases observed were illustrated and are discussed. (OTS)

  18. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Pramanik, Avijit; Fan, Zhen; Chavva, Suhash Reddy; Sinha, Sudarson Sekhar; Ray, Paresh Chandra

    2014-08-01

    Multiple drug-resistance bacteria (MDRB) infection is one of the top three threats to human health according to the World Health Organization (WHO). Due to the large penetration depth and reduced photodamage, two-photon imaging is an highly promising technique for clinical MDRB diagnostics. Since most commercially available water-soluble organic dyes have low two-photon absorption cross-section and rapid photobleaching tendency, their applications in two-photon imaging is highly limited. Driven by the need, in this article we report extremely high two-photon absorption from aptamer conjugated graphene oxide (σ2PA = 50800 GM) which can be used for highly efficient two-photon fluorescent probe for MDRB imaging. Reported experimental data show that two-photon photoluminescence imaging color, as well as luminescence peak position can be tuned from deep blue to red, just by varying the excitation wavelength without changing its chemical composition and size. We have demonstrated that graphene oxide (GO) based two-photon fluorescence probe is capable of imaging of multiple antibiotics resistance MRSA in the first and second biological transparency windows using 760-1120 nm wavelength range.

  19. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  20. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    PubMed

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  1. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpeggiani, Filippo, E-mail: filippo.alpeggiani01@ateneopv.it; Andreani, Lucio Claudio; Gerace, Dario

    2015-12-28

    We introduce a confinement mechanism in photonic crystal slab cavities, which relies on the superposition of two incommensurate one-dimensional lattices in a line-defect waveguide. It is shown that the resulting photonic profile realizes an effective quasi-periodic bichromatic potential for the electromagnetic field confinement yielding extremely high quality (Q) factor nanocavities, while simultaneously keeping the mode volume close to the diffraction limit. We apply these concepts to pillar- and hole-based photonic crystal slab cavities, respectively, and a Q-factor improvement by over an order of magnitude is shown over existing designs, especially in pillar-based structures. Thanks to the generality and easy adaptationmore » of such confinement mechanism to a broad class of cavity designs and photonic lattices, this work opens interesting routes for applications where enhanced light–matter interaction in photonic crystal structures is required.« less

  2. Extremely Luminous Far-infrared Sources (ELFS)

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.

    1987-01-01

    The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.

  3. Advances in photon counting for bioluminescence

    NASA Astrophysics Data System (ADS)

    Ingle, Martin B.; Powell, Ralph

    1998-11-01

    Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.

  4. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.

    PubMed

    Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra

    2015-05-27

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.

  5. A TLD-based few-channel spectrometer for mixed photon, electron, and ion fields with high fluence rates.

    PubMed

    Behrens, R; Ambrosi, P

    2002-01-01

    A few-channel spectrometer for mixed photon, electron and ion radiation fields has been developed. It consists of a front layer of an etched-track detector foil for detecting protons and ions, a stack of PMMA with thermoluminescent detectors at different depths for gaining spectral information about electrons, and a stack of metallic filters with increasing cut-off photon energies, interspersed with thermoluminescent detectors for gaining spectral information about photons. From the reading of the TL detectors the spectral fluence of the electrons (400 keV to 9 MeV) and photons (20 keV to 2 MeV) can be determined by an unfolding procedure. The spectrometer can be used in pulsed radiation fields with extremely high momentary values of the fluence rate. Design and calibration of the spectrometer are described.

  6. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    PubMed

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  7. High-speed single-photon signaling for daytime QKD

    NASA Astrophysics Data System (ADS)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  8. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    NASA Technical Reports Server (NTRS)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  9. A Laser Cavity for a Future Photon Collider at ILC

    NASA Astrophysics Data System (ADS)

    Klemz, G.; Moenig, K.

    2006-04-01

    Within a future photon-collider based on the infrastructure of ILC the energy of near-infrared laser photons will be boosted by Compton backscattering on a high energy electron beam to well above 100 GeV. By reason of luminosity, an extremely powerful lasersystem is required that will exceed today's state-of-the-art capabilities. An auxiliary cavity for resonantly enhancing the optical peak-power can relax demands on the power output of the laser. In this paper a possible design and the static aspects of a passive cavity are discussed.

  10. Photonic nonlinearities via quantum Zeno blockade.

    PubMed

    Sun, Yu-Zhu; Huang, Yu-Ping; Kumar, Prem

    2013-05-31

    Realizing optical-nonlinear effects at a single-photon level is a highly desirable but also extremely challenging task, because of both fundamental and practical difficulties. We present an avenue to surmounting these difficulties by exploiting quantum Zeno blockade in nonlinear optical systems. Considering specifically a lithium-niobate microresonator, we find that a deterministic phase gate can be realized between single photons with near-unity fidelity. Supported by established techniques for fabricating and operating such devices, our approach can provide an enabling tool for all-optical applications in both classical and quantum domains.

  11. Direct Generation and Detection of Quantum Correlated Photons with 3.2 um Wavelength Spacing.

    PubMed

    Sua, Yong Meng; Fan, Heng; Shahverdi, Amin; Chen, Jia-Yang; Huang, Yu-Ping

    2017-12-13

    Quantum correlated, highly non-degenerate photons can be used to synthesize disparate quantum nodes and link quantum processing over incompatible wavelengths, thereby constructing heterogeneous quantum systems for otherwise unattainable superior performance. Existing techniques for correlated photons have been concentrated in the visible and near-IR domains, with the photon pairs residing within one micron. Here, we demonstrate direct generation and detection of high-purity photon pairs at room temperature with 3.2 um wavelength spacing, one at 780 nm to match the rubidium D2 line, and the other at 3950 nm that falls in a transparent, low-scattering optical window for free space applications. The pairs are created via spontaneous parametric downconversion in a lithium niobate waveguide with specially designed geometry and periodic poling. The 780 nm photons are measured with a silicon avalanche photodiode, and the 3950 nm photons are measured with an upconversion photon detector using a similar waveguide, which attains 34% internal conversion efficiency. Quantum correlation measurement yields a high coincidence-to-accidental ratio of 54, which indicates the strong correlation with the extremely non-degenerate photon pairs. Our system bridges existing quantum technology to the challenging mid-IR regime, where unprecedented applications are expected in quantum metrology and sensing, quantum communications, medical diagnostics, and so on.

  12. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells

    PubMed Central

    2016-01-01

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643

  13. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity

    NASA Astrophysics Data System (ADS)

    Supradeepa, V. R.; Long, Christopher M.; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E.; Weiner, Andrew M.

    2012-03-01

    Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.

  14. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  15. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE PAGES

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...

    2017-03-16

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  16. Photonic-Assisted mm-Wave and THz Wireless Transmission towards 100 Gbit/s Data Rate

    NASA Astrophysics Data System (ADS)

    Freire Hermelo, Maria; Chuenchom, Rattana; Rymanov, Vitaly; Kaiser, Thomas; Sheikh, Fawad; Czylwik, Andreas; Stöhr, Andreas

    2017-09-01

    This paper presents photonic-assisted 60 GHz mm-wave and 325 GHz system approaches that enable the transmission of spectral-efficient and high data rate signals over fiber and over air. First, we focus on generic channel characteristics within the mm-wave 60 GHz band and at the terahertz (THz) band around 325 GHz. Next, for generating the high data rate baseband signals, we present a technical solution for constructing an extreme bandwidth arbitrary waveform generator (AWG). We then report the development of a novel coherent photonic mixer (CPX) module for direct optic-to-RF conversion of extreme wideband optical signals, with a>5 dB higher conversion gain compared to conventional photodiodes. Finally, we experimentally demonstrate record spectral efficient wireless transmission for both bands. The achieved spectral efficiencies reach 10 bit/s/Hz for the 60 GHz band and 6 bit/s/Hz for the 325 GHz band. The maximum data rate transmitted at THz frequencies in the 325 GHz band is 59 Gbit/s using a 64-QAM-OFDM modulation format and a 10 GHz wide data signal.

  17. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE PAGES

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  18. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

    NASA Astrophysics Data System (ADS)

    Zopf, Michael; Keil, Robert; Chen, Yan; HöFer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.

    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (< 1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum repeater - among many other key enabling quantum photonic elements - can be practically implemented with this new material. Financially supported by BMBF Q.Com-H (16KIS0106) and the Euro- pean Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS).

  19. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  20. Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Hou, Yuanbin; Sun, Wei

    2015-06-01

    We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.

  1. INFRARED STUDY OF UV/EUV IRRADIATION OF NAPHTHALENE IN H2O+NH3 ICE

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Nuevo, M.; Yeh, F.-C.; Yih, T.-S.; Sun, W.-H.; Ip, W.-H.; Fung, H.-S.; Lee, Y.-Y.; Wu, C.-Y. R.

    We have carried out photon irradiation study of naphthalene (C10H8), the smallest polycyclic aromatic hydrocarbon (PAH) in water and ammonia ice mixtures. Photons provided by a synchrotron radiation light source in two broad-band energy ranges in the ultraviolet/near extreme ultraviolet (4-20 eV) and the extreme ultraviolet (13-45 eV) ranges were used for the irradiation of H2O+NH3+C10H8 = 1:1:1 ice mixtures at 15K. We could identify several photo-products, namely CH4, C2H6, C3H8, CO, CO2, HNCO, OCN-, and probably quinoline (C9H7N) and phenanthridine (C13H9N). We found that the light hydrocarbons are preferably produced for the ice mixture subjected to 4-20 eV photons. However, the production yields of CO, CO2, and OCN- species seem to be higher for the mixture subjected to EUV photons (13-45 eV). Therefore, naphthalene and its photo-products appear to be more efficiently destroyed when high energy photons (E > 20 eV) are used. This has important consequences on the photochemical evolution of PAHs in astrophysical environments.

  2. Locking the waveform with a quartz crystal

    NASA Astrophysics Data System (ADS)

    Ghimire, Shambhu

    2018-05-01

    High-order harmonics in the extreme-ultraviolet regime can be produced and a stable waveform-locked attosecond pulse can be formed when quartz is excited by a strong short-pulsed laser, providing a robust path towards attosecond photonics.

  3. Single photon energy dispersive x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signalmore » from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.« less

  4. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.

    PubMed

    Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing

    2018-06-13

    Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.

  5. Smart Microsystems with Photonic Element and Their Applications to Aerospace Platforms

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Lekki, J.; Sutter, J. K.; Sarkisov, S. S.; Curley, M. J.; Martin, C. E.

    2000-01-01

    The need to make manufacturing, operation, and support of airborne vehicles safer and more efficient forces engineers and scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EMI, fire safety, high bandwidth, and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection, and processing of the signal occurs at the peripherals that include smart structures and devices. Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators, embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the Glenn Research Center (GRC).

  6. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  7. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    PubMed

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  8. Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Li, Yu-Huai; Zou, Wen-Jie; Li, Zheng-Ping; Shen, Qi; Liao, Sheng-Kai; Ren, Ji-Gang; Yin, Juan; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2018-04-01

    Quantum entanglement was termed "spooky action at a distance" in the well-known paper by Einstein, Podolsky, and Rosen. Entanglement is expected to be distributed over longer and longer distances in both practical applications and fundamental research into the principles of nature. Here, we present a proposal for distributing entangled photon pairs between Earth and the Moon using a Lagrangian point at a distance of 1.28 light seconds. One of the most fascinating features in this long-distance distribution of entanglement is as follows. One can perform the Bell test with human supplying the random measurement settings and recording the results while still maintaining spacelike intervals. To realize a proof-of-principle experiment, we develop an entangled photon source with 1 GHz generation rate, about 2 orders of magnitude higher than previous results. Violation of Bell's inequality was observed under a total simulated loss of 103 dB with measurement settings chosen by two experimenters. This demonstrates the feasibility of such long-distance Bell test over extremely high-loss channels, paving the way for one of the ultimate tests of the foundations of quantum mechanics.

  9. Nonlinear optical and multiphoton processes for in situ manipulation and conversion of photons: applications to energy and healthcare (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prasad, Paras N.

    2017-02-01

    Chiral control of nonlinear optical functions holds a great promise for a wide range of applications including optical signal processing, bio-sensing and chiral bio-imaging. In chiral polyfluorene thin films, we demonstrated extremely large chiral nonlinearity. The physics of manipulating excitation dynamics for photon transformation will be discussed, along with nanochemistry control of upconversion in hierarchically built organic chromophore coupled-core-multiple shell nanostructures which enable introduce new, organic-inorganic energy transfer routes for broadband light harvesting and increased upconversion efficiency via multistep cascaded energy transfer. We are pursuing the applications of photon conversion technology in IR harvesting for photovoltaics, high contrast bioimaging, photoacoustic imaging, photodynamic therapy, and optogenetics. An important application is in Brain research and Neurophotonics for functional mapping and modulation of brain activities. Another new direction pursued is magnetic field control of light in in a chiral polymer nanocomposite to achieve large magneto-optic coefficient which can enable sensing of extremely weak magnetic field due to brain waves. Finally, we will consider the thought provoking concept of utilizing photons to quantify, through magneto-optics, and augment - through nanoptogenetics, the cognitive states, thus paving the path way to a quantified human paradigm.

  10. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review

    PubMed Central

    Cunningham, B.T.; Zhang, M.; Zhuo, Y.; Kwon, L.; Race, C.

    2016-01-01

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics. PMID:27642265

  11. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    PubMed Central

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin and air assemblies inside the scales as domains of a single-network diamond (Fd3m) photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scatterometry, and we reconstructed the complete photonic band structure diagram (PBSD) of the chitinous photonic crystal from reflectance spectra. Comparison with calculated PBSDs indeed showed a perfect overlap. The unique method of non-invasive hemispherical imaging of the FBZ provides key insights for the investigation of photonic crystals in the visible wavelength range. The characterized extremely large biophotonic nanostructures of E. imperialis are structurally optimized for high reflectance and may thus be well suited for use as a template for producing novel photonic devices, e.g. through biomimicry or direct infiltration from dielectric material. PMID:22188768

  12. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  13. Experimental noise-resistant Bell-inequality violations for polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan

    2006-06-15

    We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)].

  14. de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology

    NASA Astrophysics Data System (ADS)

    Cuzinatto, R. R.; de Morais, E. M.; Medeiros, L. G.; Naldoni de Souza, C.; Pimentel, B. M.

    2017-04-01

    We investigate the influence of massive photons on the evolution of the expanding universe. Two particular models for generalized electrodynamics are considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We obtain the equation of state (EOS) P=P(\\varepsilon) for each case using dispersion relations derived from both theories. The EOS are inputted into the Friedmann equations of a homogeneous and isotropic space-time to determine the cosmic scale factor a(t). It is shown that the photon non-null mass does not significantly alter the result a\\propto t1/2 valid for a massless photon gas; this is true either in de Broglie-Proca's case (where the photon mass m is extremely small) or in Bopp-Podolsky theory (for which m is extremely large).

  15. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  16. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    PubMed

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  17. High-harmonic generation in amorphous solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Yin, Yanchun; Wu, Yi

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  18. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  19. Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI

    NASA Astrophysics Data System (ADS)

    Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise

    2015-02-01

    In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.

  20. Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime

    NASA Astrophysics Data System (ADS)

    Islam, Saiful; Islam, Mohammad Rakibul; Faisal, Mohammad; Arefin, Abu Sayeed Muhammad Shamsul; Rahman, Hasan; Sultana, Jakeya; Rana, Sohel

    2016-07-01

    A porous-core octagonal photonic crystal fiber (PC-OPCF) with ultralow effective material loss (EML), high core power fraction, and ultra flattened dispersion is proposed for terahertz (THz) wave propagation. At an operating frequency of 1 THz and core diameter of 345 μm, simulation results display an extremely low EML of 0.047 cm-1, 49.1% power transmission through core air holes, decreased confinement loss with the increase of frequency, and dispersion variation of 0.15 ps/THz/cm. In addition, the proposed PCF can successfully operate in single-mode condition. All the simulations are performed with finite-element modeling package, COMSOL v4.2. The design can be fabricated using a stacking and drilling method. Thus, the proposed fiber has the potential of being an effective transmission medium of broadband THz waves.

  1. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band

    PubMed Central

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems. PMID:27225881

  2. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band.

    PubMed

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-05-26

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.

  3. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    NASA Technical Reports Server (NTRS)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  4. An Optics Free Spectrometer for the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.

    1994-01-01

    The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.

  5. Confocal Microscopy Imaging with an Optical Transition Edge Sensor

    NASA Astrophysics Data System (ADS)

    Fukuda, D.; Niwa, K.; Hattori, K.; Inoue, S.; Kobayashi, R.; Numata, T.

    2018-05-01

    Fluorescence color imaging at an extremely low excitation intensity was performed using an optical transition edge sensor (TES) embedded in a confocal microscope for the first time. Optical TES has the ability to resolve incident single photon energy; therefore, the wavelength of each photon can be measured without spectroscopic elements such as diffraction gratings. As target objects, animal cells labeled with two fluorescent dyes were irradiated with an excitation laser at an intensity below 1 μW. In our confocal system, an optical fiber-coupled TES device is used to detect photons instead of the pinhole and photomultiplier tube used in typical confocal microscopes. Photons emitted from the dyes were collected by the objective lens, and sent to the optical TES via the fiber. The TES measures the wavelength of each photon arriving in an exposure time of 70 ms, and a fluorescent photon spectrum is constructed. This measurement is repeated by scanning the target sample, and finally a two-dimensional RGB-color image is obtained. The obtained image showed that the photons emitted from the dyes of mitochondria and cytoskeletons were clearly resolved at a detection intensity level of tens of photons. TES exhibits ideal performance as a photon detector with a low dark count rate (< 1 Hz) and wavelength resolving power. In the single-mode fiber-coupled system, the confocal microscope can be operated in the super-resolution mode. These features are very promising to realize high-sensitivity and high-resolution photon spectral imaging, and would help avoid cell damage and photobleaching of fluorescence dyes.

  6. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  7. High-energy vacuum birefringence and dichroism in an ultrastrong laser field

    NASA Astrophysics Data System (ADS)

    Meuren, Sebastian; Bragin, Sergey; Keitel, Christoph H.; di Piazza, Antonino

    2017-10-01

    The interaction between real photons in vacuum is a long-standing prediction of quantum electrodynamics, which has never been observed experimentally. Upcoming 10 PW laser systems like the Extreme Light Infrastructure (ELI) will provide laser pulses with unprecedented intensities. If combined with highly energetic gamma photons - obtainable via Compton backscattering from laser-wakefield accelerated electron beams - the QED critical field becomes accessible. In we have derived how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. We put forward an experimental scheme to measure these effects in the nontrivial high-energy regime, where the QED critical field is reached and the Euler-Heisenberg approximation, valid for low-frequency electromagnetic fields, breaks down. Our results suggest the feasibility of verifying/rejecting the QED prediction for vacuum birefringence/dichroism at the 3 σ confidence level on the time scale of a few days at several upcoming laser facilities. Now at Princeton University, Princeton, NJ.

  8. Experimental demonstration of two-dimensional hybrid waveguide-integrated plasmonic crystals on silicon-on-insulator platform

    NASA Astrophysics Data System (ADS)

    Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan

    2017-07-01

    Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.

  9. Development of experimental techniques for the characterization of ultrashort photon pulses of extreme ultraviolet free-electron lasers

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; Frühling, U.; Gerasimova, N.; Gerken, N.; Gerth, C.; Golz, T.; Grebentsov, A.; Hass, E.; Honkavaara, K.; Kocharian, V.; Kurka, M.; Limberg, Th.; Mitzner, R.; Moshammer, R.; Plönjes, E.; Richter, M.; Rönsch-Schulenburg, J.; Rudenko, A.; Schlarb, H.; Schmidt, B.; Senftleben, A.; Schneidmiller, E. A.; Siemer, B.; Sorgenfrei, F.; Sorokin, A. A.; Stojanovic, N.; Tiedtke, K.; Treusch, R.; Vogt, M.; Wieland, M.; Wurth, W.; Wesch, S.; Yan, M.; Yurkov, M. V.; Zacharias, H.; Schreiber, S.

    2014-12-01

    One of the most challenging tasks for extreme ultraviolet, soft and hard x-ray free-electron laser photon diagnostics is the precise determination of the photon pulse duration, which is typically in the sub 100 fs range. Nine different methods, able to determine such ultrashort photon pulse durations, were compared experimentally at FLASH, the self-amplified spontaneous emission free-electron laser at DESY in Hamburg, in order to identify advantages and disadvantages of different methods. Radiation pulses at a wavelength of 13.5 and 24.0 nm together with the corresponding electron bunch duration were measured by indirect methods like analyzing spectral correlations, statistical fluctuations, and energy modulations of the electron bunch and also by direct methods like autocorrelation techniques, terahertz streaking, or reflectivity changes of solid state samples. In this paper, we present a comprehensive overview of the various techniques and a comparison of the individual experimental results. The information gained is of utmost importance for the future development of reliable pulse duration monitors indispensable for successful experiments with ultrashort extreme ultraviolet pulses.

  10. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    PubMed

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  11. High sensitivity microchannel plate detectors for space extreme ultraviolet missions.

    PubMed

    Yoshioka, K; Homma, T; Murakami, G; Yoshikawa, I

    2012-08-01

    Microchannel plate (MCP) detectors have been widely used as two-dimensional photon counting devices on numerous space EUV (extreme ultraviolet) missions. Although there are other choices for EUV photon detectors, the characteristic features of MCP detectors such as their light weight, low dark current, and high spatial resolution make them more desirable for space applications than any other detector. In addition, it is known that the photocathode can be tailored to increase the quantum detection efficiency (QDE) especially for longer UV wavelengths (100-150 nm). There are many types of photocathode materials available, typically alkali halides. In this study, we report on the EUV (50-150 nm) QDE evaluations for MCPs that were coated with Au, MgF(2), CsI, and KBr. We confirmed that CsI and KBr show 2-100 times higher QDEs than the bare photocathode MCPs, while Au and MgF(2) show reduced QDEs. In addition, the optimal geometrical parameters for the CsI deposition were also studied experimentally. The best CsI thickness was found to be 150 nm, and it should be deposited on the inner wall of the channels only where the EUV photons initially impinge. We will also discuss the techniques and procedures for reducing the degradation of the photocathode while it is being prepared on the ground before being deployed in space, as adopted by JAXA's EXCEED mission which will be launched in 2013.

  12. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  13. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    NASA Astrophysics Data System (ADS)

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; Lereu, Aude; Passian, Ali; Zapien, Juan Antonio; Lequime, Michel

    2018-02-01

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. We introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the bounding media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.

  14. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    NASA Astrophysics Data System (ADS)

    Sizyuk, Tatyana; Hassanein, Ahmed

    2014-08-01

    Photon sources produced by laser beams with moderate laser intensities, up to 1014 W/cm2, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5% ± 1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48 nm (La-α) and 2.88 nm (He-α) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.× nm sources.

  15. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    DOE PAGES

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; ...

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable.more » Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Here in this paper we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.« less

  16. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.

  17. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  18. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  19. Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors

    PubMed Central

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Yun, Hyeok; Yun, Sang Jae; Sung, Jae Hee; Lee, Seong Ku; Yoon, Jin Woo; Yu, Tae Jun; Jeong, Tae Moon; Nam, Chang Hee; Lee, Jongmin

    2012-01-01

    Coherent short-wavelength radiation from laser–plasma interactions is of increasing interest in disciplines including ultrafast biomolecular imaging and attosecond physics. Using solid targets instead of atomic gases could enable the generation of coherent extreme ultraviolet radiation with higher energy and more energetic photons. Here we present the generation of extreme ultraviolet radiation through coherent high-harmonic generation from self-induced oscillatory flying mirrors—a new-generation mechanism established in a long underdense plasma on a solid target. Using a 30-fs, 100-TW Ti:sapphire laser, we obtain wavelengths as short as 4.9 nm for an optimized level of amplified spontaneous emission. Particle-in-cell simulations show that oscillatory flying electron nanosheets form in a long underdense plasma, and suggest that the high-harmonic generation is caused by reflection of the laser pulse from electron nanosheets. We expect this extreme ultraviolet radiation to be valuable in realizing a compact X-ray instrument for research in biomolecular imaging and attosecond physics. PMID:23187631

  20. Enhancement of Photon Number Reflected by the Relativistic Flying Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kando, M.; Pirozhkov, A. S.; Kawase, K.

    2009-12-04

    Laser light reflection by a relativistically moving electron density modulation (flying mirror) in a wake wave generated in a plasma by a high intensity laser pulse is investigated experimentally. A counterpropagating laser pulse is reflected and upshifted in frequency with a multiplication factor of 37-66, corresponding to the extreme ultraviolet wavelength. The demonstrated flying mirror reflectivity (from 3x10{sup -6} to 2x10{sup -5}, and from 1.3x10{sup -4} to 0.6x10{sup -3}, for the photon number and pulse energy, respectively) is close to the theoretical estimate for the parameters of the experiment.

  1. Efficient coupling of starlight into single mode photonics using Adaptive Injection (AI)

    NASA Astrophysics Data System (ADS)

    Norris, Barnaby; Cvetojevic, Nick; Gross, Simon; Arriola, Alexander; Tuthill, Peter; Lawrence, Jon; Richards, Samuel; Goodwin, Michael; Zheng, Jessica

    2016-08-01

    Using single-mode fibres in astronomy enables revolutionary techniques including single-mode interferometry and spectroscopy. However, injection of seeing-limited starlight into single mode photonics is extremely difficult. One solution is Adaptive Injection (AI). The telescope pupil is segmented into a number of smaller subapertures each with size r0, such that seeing can be approximated as a single tip / tilt / piston term for each subaperture, and then injected into a separate fibre via a facet of a segmented MEMS deformable mirror. The injection problem is then reduced to a set of individual tip tilt loops, resulting in high overall coupling efficiency.

  2. Shot noise limit of chemically amplified resists with photodecomposable quenchers used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2017-06-01

    In lithography using high-energy photons such as an extreme ultraviolet (EUV) radiation, the shot noise of photons is a critical issue. The shot noise is a cause of line edge/width roughness (LER/LWR) and stochastic defect generation and limits the resist performance. In this study, the effects of photodecomposable quenchers were investigated from the viewpoint of the shot noise limit. The latent images of line-and-space patterns with 11 nm half-pitch were calculated using a Monte Carlo method. In the simulation, the effect of secondary electron blur was eliminated to clarify the shot noise limits regarding stochastic phenomena such as LER. The shot noise limit for chemically amplified resists with acid generators and photodecomposable quenchers was approximately the same as that for chemically amplified resists with acid generators and conventional quenchers when the total sensitizer concentration was the same. The effect of photodecomposable quenchers on the shot noise limit was essentially the same as that of acid generators.

  3. EGRET observations of bursts at MeV energies

    NASA Astrophysics Data System (ADS)

    Catelli, J. R.; Dingus, B. L.; Schneid, E. J.

    1998-05-01

    We present preliminary results from the analysis of 16 bright bursts that have been observed by the EGRET NaI calorimeter, or TASC. Seven bursts have been imaged in the EGRET spark chamber above 30 MeV, but in most cases the TASC data gives the highest energy spectra available for these bursts. The TASC can obtain spectral and rate information for bursts well outside the field of view of the EGRET spark chambers, and is sensitive in the energy range from 1 to 200 MeV. The spectra for these bursts are mostly consistent with a simple power law with spectral index in the range from 1.7 to 3.7, with several of the brighter bursts showing emission past 100 MeV. No high energy cutoff has been observed. These high energy photons offer important clues to the physical processes involved at the origin of burst emission. For bursts at cosmological distances extremely high bulk Lorentz factors are implied by the presence of MeV and GeV photons which have not been attenuated by pair production with the lower energy photons from the source.

  4. Comparison of 16-Channel Laser Photoreceivers for Topographic Mapping

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guangning; Sun, XiaoIi; Lu, Wei; Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Woo, Robyn; Wan, Kam; hide

    2011-01-01

    Topographic mapping lidar instruments must be able to detect extremely weak laser return signals from high altitudes including orbital distance. The signals have a wide dynamic range caused by the variability in atmospheric transmission and surface reflectance under a fast moving spacecraft. Ideally, lidar detectors should be able to detect laser signal return pulses at the single photon level and produce linear output for multiple photon events. Silicon avalanche photodiode (APO) detectors have been used in most space lidar receivers to date. Their sensitivity is typically hundreds of photons per pulse, and is limited by the quantum efficiency, APO gain noise, dark current, and preamplifier noise. NASA is pursuing three approaches for a 16-channel laser photoreceiver for use on the next generation direct-detection airborne and spacebome lidars. We present our measurement results and a comparison of their performance.

  5. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors.

    PubMed

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-08-04

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.

  6. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors

    NASA Astrophysics Data System (ADS)

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-08-01

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique.

  7. Sensing coherent phonons with two-photon interference

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Yin, Xiaobo; Li, Baowen

    2018-02-01

    Detecting coherent phonons pose different challenges compared to coherent photons due to the much stronger interaction between phonons and matter. This is especially true for high frequency heat carrying phonons, which are intrinsic lattice vibrations experiencing many decoherence events with the environment, and are thus generally assumed to be incoherent. Two photon interference techniques, especially coherent population trapping (CPT) and electromagnetically induced transparency (EIT), have led to extremely sensitive detection, spectroscopy and metrology. Here, we propose the use of two photon interference in a three-level system to sense coherent phonons. Unlike prior works which have treated phonon coupling as damping, we account for coherent phonon coupling using a full quantum-mechanical treatment. We observe strong asymmetry in absorption spectrum in CPT and negative dispersion in EIT susceptibility in the presence of coherent phonon coupling which cannot be accounted for if only pure phonon damping is considered. Our proposal has application in sensing heat carrying coherent phonons effects and understanding coherent bosonic multi-pathway interference effects in three coupled oscillator systems.

  8. Integrated polarizers based on tapered highly birefringent photonic crystal fibers.

    PubMed

    Romagnoli, Priscila; Biazoli, Claudecir R; Franco, Marcos A R; Cordeiro, Cristiano M B; de Matos, Christiano J S

    2014-07-28

    This paper proposes and demonstrates the creation of sections with a high polarization dependent loss (PDL) in a commercial highly birefringent (polarization maintaining) photonic crystal fiber (PCF), via tapering with pressure applied to the holes. The tapers had a 1-cm-long uniform section with a 66% scale reduction, in which the original microstructure aspect ratio was kept by the pressure application. The resulting waveguides show polarizing action across the entire tested wavelength range, 1510-1600 nm, with a peak PDL of 35.3 dB/cm (c.f. ~1 dB/cm for a typical commercial polarizing fiber). The resulting structure, as well as its production, is extremely simple, and enable a small section with a high PDL to be obtained in a polarization maintaining PCF, meaning that the polarization axes in the polarizing and polarization maintaining sections are automatically aligned.

  9. Self-assembled Tunable Photonic Hyper-crystals

    DTIC Science & Technology

    2014-07-16

    a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to...monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. 2 Approved for public release...assembly of photonic hyper crystals has been achieved by application of external magnetic field to a cobalt nanoparticle based ferrofluid. Unique spectral

  10. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  11. Coherent interaction of single molecules and plasmonic nanowires

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  12. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazioli, C.; Gauthier, D.; Ivanov, R.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse thatmore » generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.« less

  13. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    PubMed

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Towards roll-to-roll manufacturing of polymer photonic devices

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.

    2014-03-01

    Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.

  15. Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.

    PubMed

    Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji

    2015-09-01

    During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.

  16. Comparative lifetesting results for microchannel plates in windowless EUV photon detectors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Coburn, K. R.

    1984-01-01

    Microchannel plates (MCPs) from seven manufacturers were subjected to a series of tests to determine their suitability for the Extreme Ultraviolet Explorer satellite. Comparative data are presented for sixteen MCP tandem pairs with channel length to diameter ratios (l/d) ranging from 40:1 to 60:1 and for two saturable (curved channel) MCPs with l/d's of 80:1. Results for MCPs with funnelled channel throats are also discussed. Properties of the MCPs which were monitored include: background count rate, output charge pulse height distribution (PHD), modal gain, PHD full width half maximum (FWHM), and extreme ultraviolet (EUV) photon quantum efficiency. Five detectors were chosen for further lifetime testing consisting of a mild bake to 100 C, and charge extraction to 0.01 coulombs, repeated high voltage cycling and reexposure to one atmosphere conditions. The results of these tests and their implications for the flight detectors are discussed. Erratic events in the detector background were recorded, probably due to field emission from high voltage surfaces or the absorption of water vapor into the electrode following exposure to air. The steps taken to control the detector background are discussed.

  17. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    NASA Technical Reports Server (NTRS)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  18. Engineering quantum hyperentangled states in atomic systems

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  19. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    NASA Astrophysics Data System (ADS)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  20. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  1. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.

    PubMed

    Ibbotson, Lindsey A; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J

    2015-02-09

    Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges.

  2. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  3. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  4. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  5. Highly sensitive determination of transient generation of biophotons during hypersensitive response to cucumber mosaic virus in cowpea.

    PubMed

    Kobayashi, Masaki; Sasaki, Kensuke; Enomoto, Masaru; Ehara, Yoshio

    2007-01-01

    The hypersensitive response (HR) is one mechanism of the resistance of plants to pathogen infection. It involves the generation of reactive oxygen species (ROS) which have crucial roles in signal transduction or as toxic agents leading to cell death. Often, ROS generation is accompanied by an ultraweak photon emission resulting from radical reactions that are initiated by ROS through the oxidation of living materials such as lipids, proteins, and DNA. This photon emission, referred to as 'biophotons', is extremely weak, but, based on the technique of photon counting imaging, a system has been developed to analyse the spatiotemporal properties of photon emission. Using this system, the dynamics of photon emission which might be associated with the oxidative burst, which promotes the HR, have been determined. Here, the transient generation of biophotons is demonstrated during the HR process in cowpea elicited by cucumber mosaic virus. The distinctive dynamics in spatiotemporal properties of biophoton emission during the HR expression on macroscopic and microscopic levels are also described. This study reveals the involvement of ROS generation in biophoton emission in the process of HR through the determination of the inhibitory effect of an antioxidant (Tiron) on biophoton emission.

  6. Thue-Morse nanostructures for tunable light extraction in the visible region

    NASA Astrophysics Data System (ADS)

    Rippa, M.; Castagna, R.; Marino, A.; Tkachenko, V.; Palermo, G.; Pane, A.; Umeton, C.; Tabiryan, N.; Petti, L.

    2018-05-01

    Controlling light propagation at the nanoscale is a fascinating opportunity offered by modern photonics, more than a challenge to face off. This study is aimed at investigating a particular kind of nanocomposite and reconfigurable optical metamaterials that can be exploited for the realization of a new class of switchable photonic devices, representing a breakthrough with respect to the state of the art. Existing photonic devices exhibit, in general, a drawback in the absence of tunability; this work aims to the design and characterization of metamaterials exploiting reconfigurable media, like LCs, which enable realization of a tunable, high quality, photonic quasi-crystal based switchable mode selector. It turned out that, starting from an unpolarized white light source, through a light extraction mechanism based on the diffraction of light, the high quality structure, combined with a uniformly aligned Photo-responsive Liquid Crystal (PLC), is able to give rise to an extremely narrow (FWHM ≈5 nm) and linearly polarized single mode peak of the extracted light intensity. Moreover, we have shown that the spectral properties (switching) of the samples can be finely controlled by using both an external applied voltage and a suitable pump light source with a maximum increase of 45% of the extracted light. Finally, both Scanning Electron Microscopy (SEM) and Far Field Diffraction (FFD) analysis have shown the high quality morphology of the realized structure.

  7. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  8. Photonic sources and detectors for quantum information protocols: A trilogy in eight parts

    NASA Astrophysics Data System (ADS)

    Rangarajan, Radhika

    Quantum information processing (QIP) promises to revolutionize existing methods of manipulating data, via truly unique paradigms based on fundamental nonclassical physical phenomenon. However, the eventual success of optical QIP depends critically on the available technologies. Currently, creating multiple-photon states is extremely inefficient because almost no source thus far has been well optimized. Additionally, high-efficiency single-photon detectors can drastically improve multi-photon QIP (typical efficiencies are ˜70%). In fact, it has been shown that scalable linear optical quantum computing is possible only if the product of the source and detector efficiencies exceeds ˜67%. The research presented here focuses on developing optimized source and detector technologies for enabling scalable QIP. The goal of our source research is to develop an ideal " indistinguishable" source of ultrabright polarization-entangled but spatially- and spectrally-unentangled photon pairs. We engineer such an ideal source by first designing spatio-spectrally unentangled photons using optimized and group-velocity matched spontaneous parametric down conversion (SPDC). Next, we generate polarization-entangled photons using the engineered SPDC. Here we present solutions to the various challenges encountered during the indistinguishable source development. We demonstrate high-fidelity ultrafast pulsed and cw-diode laser-pumped sources of polarization-entangled photons, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). We also discuss the first experimental confirmation of the emission-angle dependence of the downconversion polarization (the Migdall effect), and a novel scheme for polarization-dependent focusing. The goal of our single-photon detector research is to develop a very high-efficiency detection system that can also resolve incident photon number, a feature absent from the typical detectors employed for QIP. We discuss the various cryogenic, optical and electronic challenges encountered en route to detector development and present details on detector characterization, ultra-short electronics design and photon-number-resolution studies. The source and detector technologies developed here share a common goal: to enhance the efficiency of existing quantum protocols and pave the way for new ones. Here we discuss some of the possible benefits via a popular quantum protocol---teleportation---as well as a novel quantum communication technique---hyper-fingerprinting. Taken as a whole, this dissertation explores viable technological options for enhancing optical quantum information protocols, offers a perspective on the current status and limitations of existing technologies, and highlights the possibilities enabled by optimized photonic sources and detectors.

  9. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    DOE PAGES

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien; ...

    2018-02-12

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less

  10. Energy density engineering via zero-admittance domains in all-dielectric stratified materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amra, Claude; Zerrad, Myriam; Lemarchand, Fabien

    Emerging photonic, sensing, and quantum applications require high fields and tight localization but low power consumption. Spatial, spectral, and magnitude control of electromagnetic fields is of key importance for enabling experiments in atomic, molecular, and optical physics. Here in this paper, we introduce the concept of zero-admittance domains as a mechanism for tailoring giant optical fields bound within or on the surface of dielectric media. The described mechanism permits the creation of highly localized fields of extreme amplitudes simultaneously for incident photons of multiple wavelengths and incidence angles but arbitrary polarization states. No material constraints are placed upon the boundingmore » media. Both intrinsic and extrinsic potential practical limitations of the predicted field enhancement are analyzed and applications relevant to optical sensors and microsources are briefly discussed.« less

  11. Digital communication with Rydberg atoms and amplitude-modulated microwave fields

    NASA Astrophysics Data System (ADS)

    Meyer, David H.; Cox, Kevin C.; Fatemi, Fredrik K.; Kunz, Paul D.

    2018-05-01

    Rydberg atoms, with one highly excited, nearly ionized electron, have extreme sensitivity to electric fields, including microwave fields ranging from 100 MHz to over 1 THz. Here, we show that room-temperature Rydberg atoms can be used as sensitive, high bandwidth, microwave communication antennas. We demonstrate near photon-shot-noise limited readout of data encoded in amplitude-modulated 17 GHz microwaves, using an electromagnetically induced-transparency (EIT) probing scheme. We measure a photon-shot-noise limited channel capacity of up to 8.2 Mbit s-1 and implement an 8-state phase-shift-keying digital communication protocol. The bandwidth of the EIT probing scheme is found to be limited by the available coupling laser power and the natural linewidth of the rubidium D2 transition. We discuss how atomic communication receivers offer several opportunities to surpass the capabilities of classical antennas.

  12. Photon Sail History, Engineering, and Mission Analysis. Appendix

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    This Appendix summarizes the results of a Teledyne Brown Engineering, Inc. report to the In-Space propulsion research group of the NASA Marshall Space Flight Center (MSFC) that was authored by Taylor et al. in 2003. The subject of this report is the technological maturity, readiness, and capability of the photon solar sail to support space-exploration missions. Technological maturity for solar photon sail concepts is extremely high high for rectangular (or square) solar sail configurations due to the historical development of the rectangular design by the NASA Jet Propulsion Laboratory (JPL). L'Garde Inc., ILC Dover Inc., DLR, and many other corporations and agencies. However, future missions and mission analysis may prove that the rectangular sail design is not the best architecture for achieving mission goals. Due to the historical focus on rectangular solar sail spacecraft designs, the maturity of other architectures such as hoop-supported disks, multiple small disk arrays, parachute sails, heliogyro sails, perforated sails, multiple vane sails (such as the Planetary Society's Cosmos 1), inflated pillow sails, etc., have not reached a high level of technological readiness. (Some sail architectures are shown in Fig. A.1.) The possibilities of different sail architectures and some possible mission concepts are discussed in this Appendix.

  13. Saturation of a Ce:Y 3Al 5O 12 scintillator response to ultra-short pulses of extreme ultraviolet soft X-ray and X-ray laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krzywinski, J.; Andrejczuk, A.; Bionta, R. M.

    Investigations of radioluminescence saturation in monocrystalline cerium doped yttrium aluminum garnet (Ce:YAG) exposed to intense extreme ultraviolet (XUV), soft X-ray and X-ray radiation delivered from three free-electron lasers are described in this article. The measurements were performed with wavelengths of 98, 25.6, 13.5 and 0.15 nm. We have found that saturation of the photon yield occurs at an excitation level of 2.0 x 10 20 eV/cm 3 resulting in an emission of 1.5 x 10 18 visible photons per cubic centimeter. This number is much smaller than the concentration of Ce3+ in the scintillator that was equal to 2 xmore » 10 20 cm –3. Because the internal radiance efficiency η does not depend strongly on the irradiating photon energy, i.e., η ≈0.035 ± 0.015 in the range 10 to 100 000 eV, the results presented here could be used to predict saturation effects in scintillator slabs placed in imaging systems of bright XUV, X-ray and particle beams. In conclusion, the saturation of the Ce 3+ emission is explained by mutual quenching of excitons created at high densities, preceding the stage of energy transfer to the Ce 3+ ions.« less

  14. Saturation of a Ce:Y 3Al 5O 12 scintillator response to ultra-short pulses of extreme ultraviolet soft X-ray and X-ray laser radiation

    DOE PAGES

    Krzywinski, J.; Andrejczuk, A.; Bionta, R. M.; ...

    2017-02-01

    Investigations of radioluminescence saturation in monocrystalline cerium doped yttrium aluminum garnet (Ce:YAG) exposed to intense extreme ultraviolet (XUV), soft X-ray and X-ray radiation delivered from three free-electron lasers are described in this article. The measurements were performed with wavelengths of 98, 25.6, 13.5 and 0.15 nm. We have found that saturation of the photon yield occurs at an excitation level of 2.0 x 10 20 eV/cm 3 resulting in an emission of 1.5 x 10 18 visible photons per cubic centimeter. This number is much smaller than the concentration of Ce3+ in the scintillator that was equal to 2 xmore » 10 20 cm –3. Because the internal radiance efficiency η does not depend strongly on the irradiating photon energy, i.e., η ≈0.035 ± 0.015 in the range 10 to 100 000 eV, the results presented here could be used to predict saturation effects in scintillator slabs placed in imaging systems of bright XUV, X-ray and particle beams. In conclusion, the saturation of the Ce 3+ emission is explained by mutual quenching of excitons created at high densities, preceding the stage of energy transfer to the Ce 3+ ions.« less

  15. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  16. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  17. Two-photon Lee-Goldburg nuclear magnetic resonance: Simultaneous homonuclear decoupling and signal acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michal, Carl A.; Hastings, Simon P.; Lee, Lik Hang

    2008-02-07

    We present NMR signals from a strongly coupled homonuclear spin system, {sup 1}H nuclei in adamantane, acquired with simultaneous two-photon excitation under conditions of the Lee-Goldburg experiment. Small coils, having inside diameters of 0.36 mm, are used to achieve two-photon nutation frequencies of {approx}20 kHz. The very large rf field strengths required give rise to large Bloch-Siegert shifts that cannot be neglected. These experiments are found to be extremely sensitive to inhomogeneity of the applied rf field, and due to the Bloch-Siegert shift, exhibit a large asymmetry in response between the upper and lower Lee-Goldburg offsets. Two-photon excitation has themore » potential to enhance both the sensitivity and performance of homonuclear dipolar decoupling, but is made challenging by the high rf power required and the difficulties introduced by the inhomogeneous Bloch-Siegert shift. We briefly discuss a variation of the frequency-switched Lee-Goldburg technique, called four-quadrant Lee-Goldburg (4QLG) that produces net precession in the x-y plane, with a reduced chemical shift scaling factor of 1/3.« less

  18. Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors

    PubMed Central

    Nam, Hyunmoon; Song, Kyungjun; Ha, Dogyeong; Kim, Taesung

    2016-01-01

    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit technique. PMID:27487978

  19. Significant Stability Enhancement in High-Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light.

    PubMed

    Jeong, Jaehoon; Seo, Jooyeok; Nam, Sungho; Han, Hyemi; Kim, Hwajeong; Anthopoulos, Thomas D; Bradley, Donal D C; Kim, Youngkyoo

    2016-04-01

    Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC 71 BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC 71 BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC 71 BM solar cells is significantly enhanced when UCF is attached.

  20. Living in a digital world: features and applications of FPGA in photon detection

    NASA Astrophysics Data System (ADS)

    Arnesano, Cosimo

    Optical spectroscopy and imaging outcomes rely upon many factors; one of the most critical is the photon acquisition and processing method employed. For some types of measurements it may be crucial to acquire every single photon quickly with temporal resolution, but in other cases it is important to acquire as many photons as possible, regardless of the time information about each of them. Fluorescence Lifetime Imaging Microscopy belongs to the first case, where the information of the time of arrival of every single photon in every single pixel is fundamental in obtaining the desired information. Spectral tissue imaging belongs to the second case, where high photon density is needed in order to calculate the optical parameters necessary to build the spectral image. In both cases, the current instrumentation suffers from limitations in terms of acquisition time, duty cycle, cost, and radio-frequency interference and emission. We developed the Digital Frequency-Domain approach for photon acquisition and processing purpose using new digital technology. This approach is based on the use of photon detectors in photon counting mode, and the digital heterodyning method to acquire data which is analyzed in the frequency domain to provide the information of the time of arrival of the photons . In conjunction with the use of pulsed laser sources, this method allows the determination of the time of arrival of the photons using the harmonic content of the frequency domain analysis. The parallel digital FD design is a powerful approach that others the possibility to implement a variety of different applications in fluorescence spectroscopy and microscopy. It can be applied to fluorometry, Fluorescence Lifetime Imaging (FLIM), and Fluorescence Correlation Spectroscopy (FCS), as well as multi frequency and multi wavelength tissue imaging in compact portable medical devices. It dramatically reduces the acquisition time from the several minutes scale to the seconds scale, performs signal processing in a digital fashion avoiding RF emission and it is extremely inexpensive. This development is the result of a systematic study carried on a previous design known as the FLIMBox developed as part of a thesis of another graduate student. The extensive work done in maximizing the performance of the original FLIMBox led us to develop a new hardware solution with exciting and promising results and potential that were not possible in the previous hardware realization, where the signal harmonic content was limited by the FPGA technology. The new design permits acquisition of a much larger harmonic content of the sample response when it is excited with a pulsed light source in one single measurement using the digital mixing principle that was developed in the original design. Furthermore, we used the parallel digital FD principle to perform tissue imaging through Diffuse Optical Spectroscopy (DOS) measurements. We integrated the FLIMBox in a new system that uses a supercontinuum white laser with high brightness as a single light source and photomultipliers with large detection area, both allowing a high penetration depth with extremely low power at the sample. The parallel acquisition, achieved by using the FlimBox, decreases the time required for standard serial systems that scan through all modulation frequencies. Furthermore, the all-digital acquisition avoids analog noise, removes the analog mixer of the conventional frequency domain approach, and it does not generate radio-frequencies, normally present in current analog systems. We are able to obtain a very sensitive acquisition due to the high signal to noise ratio (S/N). The successful results obtained by utilizing digital technology in photon acquisition and processing, prompted us to extend the use of FPGA to other applications, such as phosphorescence detection. Using the FPGA concept we proposed possible solutions to outstanding problems with the current technology. In this thesis I discuss new possible scenarios where new FPGA chips are applied to spectral tissue imaging.

  1. Three-dimensional femtosecond laser processing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Sugioka, Koji; Vázquez, Rebeca Martínez; Osellame, Roberto; Kelemen, Lóránd; Ormos, Pal

    2018-02-01

    The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced.

  2. Final Technical Report Project: Low-Energy Photonuclear Studies at HIGS and Lund

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Gerald

    This report summarizes a program of low-energy photonuclear studies at MAX-Lab in Lund (Sweden) and at the High Intensity Gamma Source (HIGS) at Duke University. A major emphasis has been on Compton scattering from deuterium in order to determine the electric and magnetic polarizabilities of the neutron. The studies at Lund utilized unpolarized photons at Egamma = 62-115 MeV to measure differential cross sections. The studies at HIGS utilized polarized and unpolarized photon beams (both linear and circular) at Egamma < 90 MeV. Polarization observables will be exploited to improve our understanding of the electric and magnetic polarizabilities, and inmore » particular, double-polarization observables (using polarized targets) will be measured in the future to provide new information about the spin polarizabilities of the nucleon. The MAX-Lab experiments (using unpolarized photons) focused on an approved PAC proposal for Compton scattering on the deuteron aimed at making a precise determination of the electromagnetic polarizabilities of the neutron. At MAX-Lab we had three of the largest NaI detectors in the world, each capable of ~2% energy resolution. We have completed our measurements in two separate tagged photon energy ranges which overlap each other (62-97 MeV and 90-115 MeV) and the results of these experiments have been published. The photon beam at the High Intensity Gamma Source (HIGS) has several distinct advantages that make it unique: (1) ultra-high photon flux, ultimately reaching 100 MHz, (2) 100% linearly polarized photon beam, as well as circular polarization, (3) monoenergetic beam, with ~2% energy resolution, and (4) extremely low-background beam environment. Exploiting the high flux and polarization capabilities of the HIGS photon beam is central in the series of experiments being performed at this facility. Very little data exist on Compton scattering using polarized photons. We will exploit clear sensitivities in the polarization observables to the electric and magnetic polarizabilities of the nucleon, and we will ultimately extend these studies to the investigation of the spin polarizabilities. To accomplish these objectives, a liquid hydrogen/deuterium/helium cryotarget has been constructed at HIGS, and an array of NaI detectors has been commissioned for Compton studies.« less

  3. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  4. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  5. The Bragg gap vanishing phenomena in one-dimensional photonic crystals.

    PubMed

    Zhang, Hui; Chen, Xi; Li, Youquan; Fu, Yunqi; Yuan, Naichang

    2009-05-11

    We theoretically deduce the Bragg gap vanishing conditions in one-dimensional photonic crystals and experimentally demonstrate the m=0 band-gap vanishing phenomena at microwave frequencies. In the case of mismatched impedance, the Bragg gap will vanish as long as the discrete modes appear in photonic crystals containing dispersive materials, while for the matched impedance cases, Bragg gaps will always disappear. The experimental results and the simulations agree extremely well with the theoretical expectation.

  6. A photonic crystal fiber glucose sensor filled with silver nanowires

    NASA Astrophysics Data System (ADS)

    Yang, X. C.; Lu, Y.; Wang, M. T.; Yao, J. Q.

    2016-01-01

    We report a photonic crystal fiber glucose sensor filled with silver nanowires in this paper. The proposed sensor is both analyzed by COMSOL multiphysics software and demonstrated by experiments. The extremely high average spectral sensitivity 19009.17 nm/RIU for experimental measurement is obtained, equivalent to 44.25 mg/dL of glucose in water, which is lower than 70 mg/dL for efficient detection of hypoglycemia episodes. The silver nanowires diameter which may affect the sensor's spectral sensitivity is also discussed and an optimal range of silver nanowires diameter 90-120 nm is obtained. We expect that the sensor can provide an effective platform for glucose sensing and potentially leading to a further development towards minimal-invasive glucose measurement.

  7. A solar simulator-pumped gas laser for the direct conversion of solar energy

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  8. Near unity ultraviolet absorption in graphene without patterning

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo

    2018-04-01

    Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.

  9. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  10. Detecting technology of biophotons

    NASA Astrophysics Data System (ADS)

    Ma, Junfu; Zhu, Zhaohui; Zhu, Yanbin

    2002-03-01

    A key technique of detecting the ultra-weak photon emission from biological system (UPE) is to change the light signal of an extremely weak level into electric signal of a considerable level when the photo-electric detecting system were be applied. This paper analyzed the difficult for detecting the ultra-weak photon emission from biological system (UPE) mainly is in the absence of high sensitivity detector in UV-visible-infra spectra region. An experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300 nm to 1060 nm has were tested. The test result show the UPE of living biological system exists in wide spectra region from UV- visible to infrared.

  11. Probing the origin of cosmic rays with extremely high energy neutrinos using the IceCube Observatory

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Arguelles, C.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Bruijn, R.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Clevermann, F.; Coenders, S.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Landsman, H.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.

    2013-12-01

    We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino-induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model-independent quasidifferential 90% C.L. upper limit, which amounts to E2ϕνe+νμ+ντ=1.2×10-7GeVcm-2s-1sr-1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic-ray sources such as the Fanaroff-Riley type II class of radio galaxies.

  12. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  13. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  14. Lithium Niobate Whispering Gallery Resonators: Applications and Fundamental Studies

    NASA Astrophysics Data System (ADS)

    Maleki, L.; Matsko, A. B.

    Optical whispering gallery modes (WGMs) are closed circulating electromagnetic waves undergoing total internal reflection inside an axio-symmetric body of a transparent dielectric that forms a resonator. Radiative losses are negligible in these modes if the radius of the resonator exceeds several tens of wavelengths, and surface scattering losses can be made small with surface conditioning techniques. Thus, the quality factor (Q) in crystalline WGM resonators is limited by material losses that are, nevertheless, extremely small in optical materials. WGM resonators made of LiNbO3 have been successfully used in optics and microwave photonics. The resonators are characterized by narrow bandwidth, in the hundred kilohertz to gigahertz range. A proper choice of highly transparent and/or nonlinear resonator material, like lithium niobate, allows for realization of a number of high performance devices: tunable and multi-pole filters, resonant electro-optic modulators, photonic microwave receivers, opto-electronic microwave oscillators, and parametric frequency converters, among others.

  15. Trapped atoms along nanophotonic resonators

    NASA Astrophysics Data System (ADS)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  16. Investigation of the polarization state of dual APPLE-II undulators.

    PubMed

    Hand, Matthew; Wang, Hongchang; Dhesi, Sarnjeet S; Sawhney, Kawal

    2016-01-01

    The use of an APPLE II undulator is extremely important for providing a high-brilliance X-ray beam with the capability to switch between various photon beam polarization states. A high-precision soft X-ray polarimeter has been used to systematically investigate the polarization characteristics of the two helical APPLE II undulators installed on beamline I06 at Diamond Light Source. A simple data acquisition and processing procedure has been developed to determine the Stokes polarization parameters for light polarized at arbitrary linear angles emitted from a single undulator, and for circularly polarized light emitted from both undulators in conjunction with a single-period undulator phasing unit. The purity of linear polarization is found to deteriorate as the polarization angle moves away from the horizontal and vertical modes. Importantly, a negative correlation between the degree of circular polarization and the photon flux has been found when the phasing unit is used.

  17. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey; ...

    2015-09-18

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a ≃1 μm precision and surface roughness. The compound refractive lens comprised of six lenses with a radius of curvature R=200 μm at the vertex of the parabola and a geometrical aperture A=900 μm focuses 10 keVmore » x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of ≃20×90 μm 2 with a gain factor of ≃50-100.« less

  18. Polarization control of isolated high-harmonic pulses

    NASA Astrophysics Data System (ADS)

    Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang

    2018-06-01

    High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.

  19. Power-law scaling of extreme dynamics near higher-order exceptional points

    NASA Astrophysics Data System (ADS)

    Zhong, Q.; Christodoulides, D. N.; Khajavikhan, M.; Makris, K. G.; El-Ganainy, R.

    2018-02-01

    We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other physical systems as well.

  20. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d’Appui pour la DT SIHS)

    DTIC Science & Technology

    2007-03-31

    Unlimited, Nivisys, Insight technology, Elcan, FLIR Systems, Stanford photonics Hardware Sensor fusion processors Video processing boards Image, video...Engineering The SPIE Digital Library is a resource for optics and photonics information. It contains more than 70,000 full-text papers from SPIE...conditions Top row: Stanford Photonics XR-Mega-10 Extreme 1400 x 1024 pixels ICCD detector, 33 msec exposure, no binning. Middle row: Andor EEV iXon

  1. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics.

    PubMed

    Fegadolli, William S; Kim, Se-Heon; Postigo, Pablo Aitor; Scherer, Axel

    2013-11-15

    We report on a hybrid InP/Si photonic crystal nanobeam laser emitting at 1578 nm with a low threshold power of ~14.7 μW. Laser gain is provided from a single InAsP quantum well embedded in a 155 nm InP layer bonded on a standard silicon-on-insulator wafer. This miniaturized nanolaser, with an extremely small modal volume of 0.375(λ/n)(3), is a promising and efficient light source for silicon photonics.

  2. Plasma and radiation detection via fiber interferometry

    NASA Astrophysics Data System (ADS)

    Dolan, D. H.; Bell, K.; Fox, B.; Jones, S. C.; Knapp, P.; Gomez, M. R.; Martin, M.; Porwitzky, A.; Laity, G.

    2018-01-01

    Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. These changes can diagnose extreme environments in a flexible, time-resolved manner.

  3. Plasma and radiation detection via fiber interferometry

    DOE PAGES

    Dolan, D. H.; Bell, Kate Suzanne; Fox, Brian Philip; ...

    2018-01-17

    Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.

  4. Plasma and radiation detection via fiber interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, D. H.; Bell, Kate Suzanne; Fox, Brian Philip

    Photonic Doppler velocimetry tracks motion during high-speed, single-event experiments using telecommunication fiber components. The same technology can be applied in situations where there is no actual motion, but rather a change in the optical path length. Migration of plasma into vacuum alters the refractive index near a fiber probe, while intense radiation modifies the refractive index of the fiber itself. Lastly, these changes can diagnose extreme environments in a flexible, time-resolved manner.

  5. Multiple hot-carrier collection in photo-excited graphene Moiré superlattices

    PubMed Central

    Wu, Sanfeng; Wang, Lei; Lai, You; Shan, Wen-Yu; Aivazian, Grant; Zhang, Xian; Taniguchi, Takashi; Watanabe, Kenji; Xiao, Di; Dean, Cory; Hone, James; Li, Zhiqiang; Xu, Xiaodong

    2016-01-01

    In conventional light-harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve efficiency and possibly overcome this limit. We report the observation of multiple hot-carrier collection in graphene/boron-nitride Moiré superlattice structures. A record-high zero-bias photoresponsivity of 0.3 A/W (equivalently, an external quantum efficiency exceeding 50%) is achieved using graphene’s photo-Nernst effect, which demonstrates a collection of at least five carriers per absorbed photon. We reveal that this effect arises from the enhanced Nernst coefficient through Lifshtiz transition at low-energy Van Hove singularities, which is an emergent phenomenon due to the formation of Moiré minibands. Our observation points to a new means for extremely efficient and flexible optoelectronics based on van der Waals heterostructures. PMID:27386538

  6. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials

    PubMed Central

    Ibbotson, Lindsey A.; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J.

    2015-01-01

    Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges. PMID:25660667

  7. Single photon detection and timing in the Lunar Laser Ranging Experiment.

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1972-01-01

    The goals of the Lunar Laser Ranging Experiment lead to the need for the measurement of a 2.5 sec time interval to an accuracy of a nanosecond or better. The systems analysis which included practical retroreflector arrays, available laser systems, and large telescopes led to the necessity of single photon detection. Operation under all background illumination conditions required auxiliary range gates and extremely narrow spectral and spatial filters in addition to the effective gate provided by the time resolution. Nanosecond timing precision at relatively high detection efficiency was obtained using the RCA C31000F photomultiplier and Ortec 270 constant fraction of pulse-height timing discriminator. The timing accuracy over the 2.5 sec interval was obtained using a digital interval with analog vernier ends. Both precision and accuracy are currently checked internally using a triggerable, nanosecond light pulser. Future measurements using sub-nanosecond laser pulses will be limited by the time resolution of single photon detectors.

  8. Surface-Wave Pulse Routing around Sharp Right Angles

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Xu, H.; Gao, F.; Zhang, Y.; Luo, Y.; Zhang, B.

    2018-04-01

    Surface-plasmon polaritons (SPPs), or localized electromagnetic surface waves propagating on a metal-dielectric interface, are deemed promising information carriers for future subwavelength terahertz and optical photonic circuitry. However, surface waves fundamentally suffer from scattering loss when encountering sharp corners in routing and interconnection of photonic signals. Previous approaches enabling scattering-free surface-wave guidance around sharp corners are limited to either volumetric waveguide environments or extremely narrow bandwidth, being unable to guide a surface-wave pulse (SPP wave packet) on an on-chip platform. Here, in a surface-wave band-gap crystal implemented on a single metal surface, we demonstrate in time-domain routing a surface-wave pulse around multiple sharp right angles without perceptible scattering. Our work not only offers a solution to on-chip surface-wave pulse routing along an arbitrary path, but it also provides spatiotemporal information on the interplay between surface-wave pulses and sharp corners, both of which are desirable in developing high-performance large-scale integrated photonic circuits.

  9. Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.

    PubMed

    Zhu, Hongli; Fang, Zhiqiang; Wang, Zhu; Dai, Jiaqi; Yao, Yonggang; Shen, Fei; Preston, Colin; Wu, Wenxin; Peng, Peng; Jang, Nathaniel; Yu, Qingkai; Yu, Zongfu; Hu, Liangbing

    2016-01-26

    Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics.

  10. Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides

    PubMed Central

    Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing

    2014-01-01

    We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417

  11. Highly compact circulators in square-lattice photonic crystal waveguides.

    PubMed

    Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing

    2014-01-01

    We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.

  12. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  13. VUV and XUV reflectance of optically coated mirrors for selection of high harmonics

    DOE PAGES

    Larsen, K. A.; Cryan, J. P.; Shivaram, N.; ...

    2016-08-08

    We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. Furthermore, we discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.

  14. Quantum Phenomena in High Energy Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murnane, Margaret; Kapteyn, Henry

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  15. On The Detection Of Footprints From Strong Electron Acceleration In High-Intensity Laser Fields, Including The Unruh Effect

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.

    2010-04-01

    The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under these conditions enhanced Larmor and Unruh radiation signals may be observed. Detection of the Unruh photons (together with its competing radiation components) is envisaged via Compton polarimetry in a novel highly granular 2D-segmented position-sensitive germanium detector.

  16. Studies of Avalanche Photodiodes (APDS) as Readout Devices for Scintillating Fibers for High Energy Gamma-Ray Astronomy Telescopes

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Shera, Suzanne; Shamo, Denis

    1998-01-01

    New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive area diameter) and output in the 1-5 volt range. If successful, this feasibility study will make possible the development of a scintillating fiber detector with unsurpassed sensitivity, extremely low power usage, a crucial factor of merit for space based sensors and telescopes.

  17. Single photon laser altimeter simulator and statistical signal processing

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  18. Subcycle dynamics of high-order-harmonic generation of He atoms excited by attosecond pulses and driven by near-infrared laser fields: A self-interaction-free time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2014-05-01

    In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.

  19. Note: Fully integrated time-to-amplitude converter in Si-Ge technology.

    PubMed

    Crotti, M; Rech, I; Ghioni, M

    2010-10-01

    Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting TCSPC), since it allows the analysis of extremely fast and weak light waveforms with a picoseconds resolution. Consequently, many applications exploiting TCSPC have been developed in several fields such as medicine and chemistry. Moreover, the development of multianode PMT and of single photon avalanche diode arrays led to the realization of acquisition systems with several parallel channels to employ the TCSPC technique in even more applications. Since TCSPC basically consists of the measurement of the arrival time of a photon, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity, and in order to realize multidimensional systems, it has to be integrated to reduce both cost and area. In this paper we present a fully integrated time-to-amplitude converter, built in 0.35 μm Si-Ge technology, characterized by a good time resolution (60 ps), low differential nonlinearity (better than 3% peak to peak), high counting rate (16 MHz), low and constant power dissipation (40 mW), and low area occupation (1.38×1.28 mm(2)).

  20. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  1. Critical appraisal of volumetric-modulated arc therapy compared with electrons for the radiotherapy of cutaneous Kaposi's sarcoma of lower extremities with bone sparing.

    PubMed

    Nicolini, G; Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L

    2013-03-01

    To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi's sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. V(90%) was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V(107%) was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D(2%) was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams.

  2. Control of photon storage time using phase locking.

    PubMed

    Ham, Byoung S

    2010-01-18

    A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.

  3. Microtomography with photon counting detectors: improving the quality of tomographic reconstruction by voxel-space oversampling

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.

    2017-01-01

    Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.

  4. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE PAGES

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    2017-03-17

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  5. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  6. An Extremely Low Power Quantum Optical Communication Link for Autonomous Robotic Explorers

    NASA Technical Reports Server (NTRS)

    Lekki, John; Nguyen, Quang-Viet; Bizon, Tom; Nguyen, Binh; Kojima, Jun

    2007-01-01

    One concept for planetary exploration involves using many small robotic landers that can cover more ground than a single conventional lander. In addressing this vision, NASA has been challenged in the National Nanotechnology Initiative to research the development of miniature robots built from nano-sized components. These robots have very significant challenges, such as mobility and communication, given the small size and limited power generation capability. The research presented here has been focused on developing a communications system that has the potential for providing ultra-low power communications for robots such as these. In this paper an optical communications technique that is based on transmitting recognizable sets of photons is presented. Previously pairs of photons that have an entangled quantum state have been shown to be recognizable in ambient light. The main drawback to utilizing entangled photons is that they can only be generated through a very energy inefficient nonlinear process. In this paper a new technique that generates sets of photons from pulsed sources is described and an experimental system demonstrating this technique is presented. This technique of generating photon sets from pulsed sources has the distinct advantage in that it is much more flexible and energy efficient, and is well suited to take advantage of the very high energy efficiencies that are possible when using nano scale sources. For these reasons the communication system presented in this paper is well suited for use in very small, low power landers and rovers. In this paper a very low power optical communications system for miniature robots, as small as 1 cu cm is addressed. The communication system is a variant of photon counting communications. Instead of counting individual photons the system only counts the arrival of time coincident sets of photons. Using sets of photons significantly decreases the bit error rate because they are highly identifiable in the presence of ambient light. An experiment demonstrating reliable communication over a distance of 70 meters using less than a billionth of a watt of radiated power is presented. The components used in this system were chosen so that they could in the future be integrated into a cubic centimeter device.

  7. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantopoulou, E., E-mail: esarant@eie.gr; Stefi, A.; Kollia, Z.

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance inmore » spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.« less

  8. Experimental quantum secret sharing and third-man quantum cryptography.

    PubMed

    Chen, Yu-Ao; Zhang, An-Ning; Zhao, Zhi; Zhou, Xiao-Qi; Lu, Chao-Yang; Peng, Cheng-Zhi; Yang, Tao; Pan, Jian-Wei

    2005-11-11

    Quantum secret sharing (QSS) and third-man quantum cryptography (TQC) are essential for advanced quantum communication; however, the low intensity and fragility of the multiphoton entanglement source in previous experiments have made their realization an extreme experimental challenge. Here, we develop and exploit an ultrastable high intensity source of four-photon entanglement to report an experimental realization of QSS and TQC. The technology developed in our experiment will be important for future multiparty quantum communication.

  9. SU-F-T-657: In-Room Neutron Dose From High Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christ, D; Ding, G

    Purpose: To estimate neutron dose inside the treatment room from photodisintegration events in high energy photon beams using Monte Carlo simulations and experimental measurements. Methods: The Monte Carlo code MCNP6 was used for the simulations. An Eberline ESP-1 Smart Portable Neutron Detector was used to measure neutron dose. A water phantom was centered at isocenter on the treatment couch, and the detector was placed near the phantom. A Varian 2100EX linear accelerator delivered an 18MV open field photon beam to the phantom at 400MU/min, and a camera captured the detector readings. The experimental setup was modeled in the Monte Carlomore » simulation. The source was modeled for two extreme cases: a) hemispherical photon source emitting from the target and b) cone source with an angle of the primary collimator cone. The model includes the target, primary collimator, flattening filter, secondary collimators, water phantom, detector and concrete walls. Energy deposition tallies were measured for neutrons in the detector and for photons at the center of the phantom. Results: For an 18MV beam with an open 10cm by 10cm field and the gantry at 180°, the Monte Carlo simulations predict the neutron dose in the detector to be 0.11% of the photon dose in the water phantom for case a) and 0.01% for case b). The measured neutron dose is 0.04% of the photon dose. Considering the range of neutron dose predicted by Monte Carlo simulations, the calculated results are in good agreement with measurements. Conclusion: We calculated in-room neutron dose by using Monte Carlo techniques, and the predicted neutron dose is confirmed by experimental measurements. If we remodel the source as an electron beam hitting the target for a more accurate representation of the bremsstrahlung fluence, it is feasible that the Monte Carlo simulations can be used to help in shielding designs.« less

  10. Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, Brian J.; Kuang, Ping; Hsieh, Mei-Li

    A 900 nm thick TiO 2 simple cubic photonic crystal with lattice constant 450 nm was fabricated and used to experimentally validate a newly-discovered mechanism for extreme light-bending. Absorption enhancement was observed extending 1–2 orders of magnitude over that of a reference TiO 2 film. Several enhancement peaks in the region from 600–950 nm were identified, which far exceed both the ergodic fundamental limit and the limit based on surface-gratings, with some peaks exceeding 100 times enhancement. These results are attributed to radically sharp refraction where the optical path length approaches infinity due to the Poynting vector lying nearly parallelmore » to the photonic crystal interface. The observed phenomena follow directly from the simple cubic symmetry of the photonic crystal, and can be achieved by integrating the light-trapping architecture into the absorbing volume. These results are not dependent on the material used, and can be applied to any future light trapping applications such as phosphor-converted white light generation, water-splitting, or thin-film solar cells, where increased response in areas of weak absorption is desired.« less

  11. Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping

    DOE PAGES

    Frey, Brian J.; Kuang, Ping; Hsieh, Mei-Li; ...

    2017-06-23

    A 900 nm thick TiO 2 simple cubic photonic crystal with lattice constant 450 nm was fabricated and used to experimentally validate a newly-discovered mechanism for extreme light-bending. Absorption enhancement was observed extending 1–2 orders of magnitude over that of a reference TiO 2 film. Several enhancement peaks in the region from 600–950 nm were identified, which far exceed both the ergodic fundamental limit and the limit based on surface-gratings, with some peaks exceeding 100 times enhancement. These results are attributed to radically sharp refraction where the optical path length approaches infinity due to the Poynting vector lying nearly parallelmore » to the photonic crystal interface. The observed phenomena follow directly from the simple cubic symmetry of the photonic crystal, and can be achieved by integrating the light-trapping architecture into the absorbing volume. These results are not dependent on the material used, and can be applied to any future light trapping applications such as phosphor-converted white light generation, water-splitting, or thin-film solar cells, where increased response in areas of weak absorption is desired.« less

  12. Spectral and angular distribution of photons via radiative damping in extreme ultra-intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2012-10-01

    Spectral and angular distribution of photons produced in the interaction of extremely intense laser (> 10^22,/cm^2) with dense plasma are studied with a help of a collisional particle-in-cell simulation, PICLS. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. We had developed numerical models of these processes in PICLS and study the spectrum and the angular distribution of γ-rays produced in the relativistic laser regime. Such relativistic γ-rays have wide range of frequencies and the angular distribution depends on the hot electron source. From the power loss calculation in PICLS we found that the Bremsstrahlung will get saturated at I > 10^22,/cm^2 while the radiative damping will continuously increase. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and how to catch the signature of the radiative damping in future experiments.

  13. Single-pass high harmonic generation at high repetition rate and photon flux

    NASA Astrophysics Data System (ADS)

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens

    2016-09-01

    Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and discuss the future direction and challenges of this new type of HHG source.

  14. Dose-Rate Effects in Breaking DNA Strands by Short Pulses of Extreme Ultraviolet Radiation.

    PubMed

    Vyšín, Luděk; Burian, Tomáš; Ukraintsev, Egor; Davídková, Marie; Grisham, Michael E; Heinbuch, Scott; Rocca, Jorge J; Juha, Libor

    2018-05-01

    In this study, we examined dose-rate effects on strand break formation in plasmid DNA induced by pulsed extreme ultraviolet (XUV) radiation. Dose delivered to the target molecule was controlled by attenuating the incident photon flux using aluminum filters as well as by changing the DNA/buffer-salt ratio in the irradiated sample. Irradiated samples were examined using agarose gel electrophoresis. Yields of single- and double-strand breaks (SSBs and DSBs) were determined as a function of the incident photon fluence. In addition, electrophoresis also revealed DNA cross-linking. Damaged DNA was inspected by means of atomic force microscopy (AFM). Both SSB and DSB yields decreased with dose rate increase. Quantum yields of SSBs at the highest photon fluence were comparable to yields of DSBs found after synchrotron irradiation. The average SSB/DSB ratio decreased only slightly at elevated dose rates. In conclusion, complex and/or clustered damages other than cross-links do not appear to be induced under the radiation conditions applied in this study.

  15. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less

  16. Analysis of nanoparticles using photonic nanojet

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Siegel, Michael P.; Taflove, Allen; Backman, Vadim

    2005-04-01

    A photonic nanojet is a local field enhancement generated in the vicinity of a properly chosen microsphere or microcylinder illuminated by a collimated light beam. These photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction. We investigate the properties of photonic nanojets using rigorous solutions of Maxwell"s equations. A remarkable property we have found is that they can significantly enhance the backscattering of light by nanometer-scale particles (as small as ~1 nm) located within the jets. The enhancement factor for the backscattering intensity can be as high as five to six orders of magnitude. As a result, the observed intensity of the backscattered light from the dielectric microsphere can be substantially altered due to the presence of a nanoparticle within the light jet. Furthermore, the intensity and angular distribution of the backscattered signal is extremely sensitive to the size of the nanoparticle, which may enable differentiating particles with accuracy up to 1 nm. These properties of photonic nanojets make them an ideal tool for detecting, differentiating and sorting nanoparticles, which is of immense necessity for the field of nano-biotechnology. For example, they could yield potential novel ultramicroscopy techniques using visible light for detecting proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering.

  17. Pulsed holographic system for imaging through spatially extended scattering media

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  18. Operational characteristics of Wedge and Strip image readout systems

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.

    1986-01-01

    Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.

  19. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  20. Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Levy, Miguel; Li, Rong

    2006-09-01

    Intermodal coupling in photonic band gap optical channels in magnetic garnet films is found to leverage the nonreciprocal polarization rotation. Forward fundamental-mode to high-order mode backscattering yields the largest rotations. The underlying mechanism is traced to the dependence of the grating-coupling constant on the modal refractive index and profile of the propagating beam. Large changes in polarization near the band edges are observed in first and second orders. Extreme sensitivity to linear birefringence exists in second order.

  1. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of < 5 /µm3 and extremely long lifetime of ~ 6.0 ms, both within requirements for photon-counting. To realize an optically coupled device, we are integrating these films with our on-chip spectrometer (μ-Spec) fabrication process. Using a detailed model we simulated the detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility through funding from our recently awarded ROSES-APRA grant and Roman Technology Fellowship award.

  2. Extremely weak linear electron-phonon coupling in iron-free hemeproteins studied by phase-modulated photon echo

    NASA Astrophysics Data System (ADS)

    Lin, J. W.-I.; Tada, T.; Saikan, S.; Kushida, T.; Tani, T.

    1991-10-01

    The femtosecond accumulated photon echoes in iron-free myoglobin and iron-free cytochrome-C reveal that the linear electron-phonon coupling is extremely weak in these materials. This feature also manifests itself in the absence of the Stokes shift in the fluorescence spectrum over a wide range of temperatures from liquid-helium temperatures to near room temperatures. The origin of the weak coupling is attributed to the close packing of the porphyrin chromophores into a hydrophobic environment, which is constructed out of the polypeptide chain of the protein. The present results hint at the so-called hydrophobic compartmentalization of the chromophores as one of the important factors in reducing markedly the electron-phonon coupling in dye-polymer systems.

  3. Highly sensitive optical detection of specific protein in breast cancer cells using microstructured fiber in extremely low sample volume

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Saraswathi; Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke M.; Padmanabhan, Parasuraman

    2010-01-01

    A simple optical method using hollow-core photonic crystal fiber for protein detection has been described. In this study, estrogen receptor (ER) from a MCF-7 breast carcinoma cell lysates immobilized inside a hollow-core photonic crystal fiber was detected using anti-ER primary antibody with either Alexa™ Fluor 488 (green fluorescent dye) or 555 (red Fluorescent dye) labeled Goat anti-rabbit IgG as the secondary antibody. The fluorescence fingerprints of the ERα protein were observed under fluorescence microscope, and its optical characteristics were analyzed. The ERα protein detection by this proposed method is based on immuno binding from sample volume as low as 50 nL. This method is expected to offer great potential as a biosensor for medical diagnostics and therapeutics applications.

  4. A fully-automated multiscale kernel graph cuts based particle localization scheme for temporal focusing two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei

    2017-03-01

    The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.

  5. Parabolic single-crystal diamond lenses for coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, Sergey; Blank, Vladimir; Polyakov, Sergey

    2015-09-14

    We demonstrate parabolic single-crystal diamond compound refractive lenses designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic with a similar or equal to 1 mu m precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R = 200 mu m at the vertex of the parabola and amore » geometrical aperture A = 900 mu m focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of similar or equal to 20 x 90 mu m(2) with a gain factor of similar or equal to 50 - 100. (C) 2015 Author(s).« less

  6. From Förster resonance energy transfer to coherent resonance energy transfer and back

    NASA Astrophysics Data System (ADS)

    Clegg, Robert M.; Sener, Melih; Govindjee, .

    2010-02-01

    Photosynthesis converts solar energy into chemical energy. It provides food and oxygen; and, in the future, it could directly provide bioenergy or renewable energy sources, such as bio-alcohol or hydrogen. To exploit such a highly efficient capture of energy requires an understanding of the fundamental physics. The process is initiated by photon absorption, followed by highly efficient and extremely rapid transfer and trapping of the excitation energy. We first review early fluorescence experiments on in vivo energy transfer, which were undertaken to understand the mechanism of such efficient energy capture. A historical synopsis is given of experiments and interpretations by others that dealt with the question of how energy is transferred from the original location of photon absorption in the photosynthetic antenna system into the reaction centers, where it is converted into useful chemical energy. We conclude by examining the physical basis of some current models concerning the roles of coherent excitons and incoherent hopping in the exceptionally efficient transfer of energy into the reaction center.

  7. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    PubMed

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm 2 /(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  8. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    PubMed Central

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  9. Optoelectronics in TESLA, LHC, and pi-of-the-sky experiments

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Wrochna, Grzegorz; Simrock, Stefan

    2004-09-01

    Optical and optoelectronics technologies are more and more widely used in the biggest world experiments of high energy and nuclear physics, as well as in the astronomy. The paper is a kind of a broad digest describing the usage of optoelectronics is such experiments and information about some of the involved teams. The described experiments include: TESLA linear accelerator and FEL, Compact Muon Solenoid at LHC and recently started π-of-the-sky global gamma ray bursts (with asociated optical flashes) observation experiment. Optoelectornics and photonics offer several key features which are either extending the technical parameters of existing solutions or adding quite new practical application possibilities. Some of these favorable features of photonic systems are: high selectivity of optical sensors, immunity to some kinds of noise processes, extremely broad bandwidth exchangeable for either terabit rate transmission or ultrashort pulse generation, parallel image processing capability, etc. The following groups of photonic components and systems were described: (1) discrete components applications like: LED, PD, LD, CCD and CMOS cameras, active optical crystals and optical fibers in radiation dosimetry, astronomical image processing and for building of more complex photonic systems; (2) optical fiber networks serving as very stable phase distribution, clock signal distribution, distributed dosimeters, distributed gigabit transmission for control, diagnostics and data acquisition/processing; (3) fast and stable coherent femtosecond laser systems with active optical components for electro-optical sampling and photocathode excitation in the RF electron gun for linac; The parameters of some of these systems were quoted and discussed. A number of the debated solutions seems to be competitive against the classical ones. Several future fields seem to emerge involving direct coupling between the ultrafast photonic and the VLSI FPGA based technologies.

  10. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  11. Highly efficient birefringent quarter-wave plate based on all-dielectric metasurface and graphene

    NASA Astrophysics Data System (ADS)

    Owiti, Edgar O.; Yang, Hanning; Liu, Peng; Ominde, Calvine F.; Sun, Xiudong

    2018-07-01

    All-dielectric metasurfaces offer remarkable properties including high efficiency and flexible control of the optical response. However, extreme, narrow bandwidth is a limitation that lowers applicability of these structures in photonic sensing applications. In this work, we numerically design and propose a switchable quarter-wave plate by hybridizing an all-dielectric metasurface with graphene. By using a single layer of graphene between a highly refractive index silicon and a silica substrate, the transmissive resonance is enhanced and broadened. Additionally, integrating graphene with silicon effectively modulates the Q-factor and the trapped magnetic modes in the silicon. A stable birefringence output is obtained and manipulated through the structure dimensions and the Fermi energy of graphene. A 95% polarization conversion ratio is achieved through converting linearly polarized light into circularly polarized light, and a 96% ellipticity ratio is obtained at the resonance wavelength. The structure is compact and has an ultrathin design thickness of 0 . 1 λ, in the telecommunication region. The above properties are essential for integration into photonic sensing devices and the structure has potential for compatibility with the CMOS devices.

  12. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses.

    PubMed

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process.

  13. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses

    PubMed Central

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process. PMID:24535006

  14. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.

  15. Reverse-absorbance-modulation-optical lithography for optical nanopatterning at low light levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, Apratim, E-mail: apratim.majumder@utah.edu; Wan, Xiaowen; Masid, Farhana

    2016-06-15

    Absorbance-Modulation-Optical Lithography (AMOL) has been previously demonstrated to be able to confine light to deep sub-wavelength dimensions and thereby, enable patterning of features beyond the diffraction limit. In AMOL, a thin photochromic layer that converts between two states via light exposure is placed on top of the photoresist layer. The long wavelength photons render the photochromic layer opaque, while the short-wavelength photons render it transparent. By simultaneously illuminating a ring-shaped spot at the long wavelength and a round spot at the short wavelength, the photochromic layer transmits only a highly confined beam at the short wavelength, which then exposes themore » underlying photoresist. Many photochromic molecules suffer from a giant mismatch in quantum yields for the opposing reactions such that the reaction initiated by the absorption of the short-wavelength photon is orders of magnitude more efficient than that initiated by the absorption of the long-wavelength photon. As a result, large intensities in the ring-shaped spot are required for deep sub-wavelength nanopatterning. In this article, we overcome this problem by using the long-wavelength photons to expose the photoresist, and the short-wavelength photons to confine the “exposing” beam. Thereby, we demonstrate the patterning of features as thin as λ/4.7 (137 nm for λ = 647 nm) using extremely low intensities (4-30 W/m{sup 2}, which is 34 times lower than that required in conventional AMOL). We further apply a rigorous model to explain our experiments and discuss the scope of the reverse-AMOL process.« less

  16. Molecular detection via hybrid peptide-semiconductor photonic devices

    NASA Astrophysics Data System (ADS)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (<1nm) peptide layers, hereby preserving the nanostructuration of the crystals. This is important to assure the photonic response of these tiny structures when they are functionalized by a biotinylated peptide layer and then used to capture streptavidin. Molecular detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  17. Uncovering of melanin fluorescence in human skin tissue

    NASA Astrophysics Data System (ADS)

    Scholz, Matthias; Stankovic, Goran; Seewald, Gunter; Leupold, Dieter

    2007-07-01

    Due to its extremely low fluorescence quantum yield, in the conventionally (one-photon) excited autofluorescence of skin tissue, melanin fluorescence is masked by several other endogenous and possibly also exogenous fluorophores (e.g. NADH, FAD, Porphyrins). A first step to enhance the melanin contribution had been realized by two-photon fs-pulse excitation in the red/near IR, based on the fact that melanin can be excited by stepwise two-photon absorption, whereas all other fluorophores in this spectral region allow only simultaneous two-photon excitation. Now, the next and decisive step has been realized: Using an extremely sensitive detection system, for the first time twophoton fluorescence of skin tissue excited with pulses in the ns-range could be measured. The motivation for this step was based on the fact that the population density of the fluorescent level resulting from a stepwise excitation has a different dependence of the pulse duration than that from a simultaneous excitation (Δt2 vs. Δt). Due to this strong discrimination between the fluorophores, practically pure melanin fluorescence can be obtained. Examples for in-vivo, ex-vivo as well as paraffin embedded skin tissue will be shown. The content of information with respect to early diagnosis of skin deseases will be discussed.

  18. Instrument Overview of the JEM-EUSO Mission

    NASA Technical Reports Server (NTRS)

    Kajino, F.; Yamamoto, T.; Sakata, M.; Yamamoto, Y.; Sato, H.; Ebizuka, N.; Ebisuzaki, T.; Uehara, Y.; Ohmori, H.; Kawasaki, Y.; hide

    2007-01-01

    JEM-EUSO with a large and wide-angle telescope mounted on the International Space Station (ISS) has been planned as a space mission to explore extremes of the universe through the investigation of extreme energy cosmic rays by detecting photons which accompany air showers developed in the earth's atmosphere. JEM-EUSO will be launched by Japanese H-II Transfer Vehicle (HTV) and mounted at the Exposed Facility of Japanese Experiment Module (JEM/EF) of the ISS in the second phase of utilization plan. The telescope consists of high transmittance optical Fresnel lenses with a diameter of 2.5m, 200k channels of multi anode-photomultiplier tubes, focal surface front-end, readout, trigger and system electronics. An infrared camera and a LIDAR system will be also used to monitor the earth's atmosphere.

  19. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed; Konkashbaev, Isak

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  20. The photonic device for integrated evaluation of collateral circulation of lower extremities in patients with local hypertensive-ischemic pain syndrome

    NASA Astrophysics Data System (ADS)

    Pavlov, Volodymyr S.; Bezsmernyi, Yurii O.; Zlepko, Sergey M.; Bezsmertna, Halyna V.

    2017-08-01

    The given paper analyzes principles of interaction and analysis of the reflected optical radiation from biotissue in the process of assessment of regional hemodynamics state in patients with local hypertensive- ischemic pain syndrome of amputation stumps of lower extremities, applying the method of photoplethysmography. The purpose is the evaluation of Laser photoplethysmography (LPPG) diagnostic value in examination of patients with chronic ischemia of lower extremities. Photonic device is developed to determine the level of the peripheral blood circulation, which determines the basic parameters of peripheral blood circulation and saturation level. Device consists of two sensors: infrared sensor, which contains the infrared laser radiation source and photodetector, and red sensor, which contains the red radiation source and photodetector. LPPG method allows to determined pulsatility of blood flow in different areas of the foot and lower leg, the degree of compensation and conservation perspectives limb. Surgical treatment of local hypertensive -ischemic pain syndrome of amputation stumps of lower extremities by means of semiclosed fasciotomy in combination with revasculating osteotrepanation enabled to improve considerably regional hemodynamics in the tissues of the stump and decrease pain and hypostatic disorders.

  1. Laser-ultraviolet-A-induced ultraweak photon emission in mammalian cells.

    PubMed

    Niggli, Hugo J; Tudisco, Salvatore; Privitera, Giuseppe; Applegate, Lee Ann; Scordino, Agata; Musumeci, Franco

    2005-01-01

    Photobiological research in the last 30 yr has shown the existence of ultraweak photon emission in biological tissue, which can be detected with sophisticated photomultiplier systems. Although the emission of this ultraweak radiation, often termed biophotons, is extremely low in mammalian cells, it can be efficiently increased by ultraviolet light. Most recently it was shown that UV-A (330 to 380 nm) releases such very weak cell radiation in differentiated human skin fibroblasts. Based on these findings, a new and powerful tool in the form of UV-A-laser-induced biophotonic emission of cultured cells was developed with the intention to detect biophysical changes between carcinogenic and normal cells. With suspension densities ranging from 1 to 8 x 10(6) cells/mL, it was evident that an increase of the UV-A-laser-light induced photon emission intensity could be observed in normal as well as melanoma cells. Using this new detection procedure of ultraweak light emission, photons in cell suspensions as low as 100 microL could be determined, which is a factor of 100 lower compared to previous procedures. Moreover, the detection procedure has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of 150 ms, as reported in previous procedures. This improvement leads to measurements of light bursts up 10(7) photons/s instead of several hundred as found with classical designs. Overall, we find decreasing induction ratings between normal and melanoma cells as well as cancer-prone and melanoma cells. Therefore, it turns out that this highly sensitive and noninvasive device enables us to detect high levels of ultraweak photon emission following UV-A-laser-induced light stimulation within the cells, which enables future development of new biophysical strategies in cell research. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  2. Non-thermal Gamma-Ray Emission from Delayed Pair Breakdown in a Magnetized and Photon-rich Outflow

    NASA Astrophysics Data System (ADS)

    Gill, Ramandeep; Thompson, Christopher

    2014-12-01

    We consider delayed, volumetric heating in a magnetized outflow that has broken out of a confining medium and expanded to a high Lorentz factor (Γ ~ 102-103) and low optical depth to scattering (τ T ~ 10-3-10-2). The energy flux at breakout is dominated by the magnetic field, with a modest contribution from quasi-thermal gamma rays whose spectrum was calculated in Paper I. We focus on the case of extreme baryon depletion in the magnetized material, but allow for a separate baryonic component that is entrained from a confining medium. Dissipation is driven by relativistic motion between these two components, which develops once the photon compactness drops below 4 × 103(Ye /0.5)-1. We first calculate the acceleration of the magnetized component following breakout, showing that embedded MHD turbulence provides significant inertia, the neglect of which leads to unrealistically high estimates of flow Lorentz factor. After reheating begins, the pair and photon distributions are evolved self-consistently using a one-zone kinetic code that incorporates an exact treatment of Compton scattering, pair production and annihilation, and Coulomb scattering. Heating leads to a surge in pair creation, and the scattering depth saturates at τ T ~ 1-4. The plasma maintains a very low ratio of particle to magnetic pressure, and can support strong anisotropy in the charged particle distribution, with cooling dominated by Compton scattering. High-energy power-law spectra with photon indices in the range observed in gamma-ray bursts (GRBs; -3 < β < -3/2) are obtained by varying the ratio of heat input to the seed energy in quasi-thermal photons. We contrast our results with those for continuous heating across an expanding photosphere, and show that the latter model produces soft-to-hard evolution that is inconsistent with observations of GRBs.

  3. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    NASA Technical Reports Server (NTRS)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 meV valance band offset with InAlAs, which is high enough to hinder the transport of the already cooled holes. Being stopped by the energy barrier, holes are accumulated at the junctions to shield the electric field, resulting in a decrease of the electric field in the multiplication region. Because the impact ionization rate is extremely sensitive to the magnitude of the electric field, the field-screening effect drastically reduces the impact ionization rate and quenches the output signals. After the avalanche pulse signal is self-quenched, the accumulated holes at the InGaAsP/ InAlAs interface escape the energy barrier through thermal excitation and tunneling and finally leave the device. The device is thus reset and ready for subsequent photon detection. This recovery time is controlled by the height of the energy barrier and the hole-cooling rate.

  4. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.

  5. Femtosecond laser three-dimensional micro- and nanofabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugioka, Koji, E-mail: ksugioka@riken.jp; Cheng, Ya, E-mail: ya.cheng@siom.ac.cn

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement ofmore » the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.« less

  6. Glass-based confined structures enabling light control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro

    2015-04-24

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures bymore » different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.« less

  7. A study of photon propagation in free-space based on hybrid radiosity-radiance theorem.

    PubMed

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Liang, Jimin; Wang, Lin; Yang, Da'an; Garofalakis, Anikitos; Ripoll, Jorge; Tian, Jie

    2009-08-31

    Noncontact optical imaging has attracted increasing attention in recent years due to its significant advantages on detection sensitivity, spatial resolution, image quality and system simplicity compared with contact measurement. However, photon transport simulation in free-space is still an extremely challenging topic for the complexity of the optical system. For this purpose, this paper proposes an analytical model for photon propagation in free-space based on hybrid radiosity-radiance theorem (HRRT). It combines Lambert's cosine law and the radiance theorem to handle the influence of the complicated lens and to simplify the photon transport process in the optical system. The performance of the proposed model is evaluated and validated with numerical simulations and physical experiments. Qualitative comparison results of flux distribution at the detector are presented. In particular, error analysis demonstrates the feasibility and potential of the proposed model for simulating photon propagation in free-space.

  8. Optics Communications: Special issue on Polymer Photonics and Its Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Pitwon, Richard C. A.; Feng, Jing

    2016-03-01

    In the last decade polymer photonics has witnessed a tremendous boost in research efforts and practical applications. Polymer materials can be engineered to exhibit unique optical and electrical properties. Extremely transparent and reliable passive optical polymers have been made commercially available and paved the ground for the development of various waveguide components. Advancement in the research activities regarding the synthesis of active polymers has enabled devices such as ultra-fast electro-optic modulators, efficient white light emitting diodes, broadband solar cells, flexible displays, and so on. The fabrication technology is not only fast and cost-effective, but also provides flexibility and broad compatibility with other semiconductor processing technologies. Reports show that polymers have been integrated in photonic platforms such as silicon-on-insulator (SOI), III-V semiconductors, and silica PLCs, and vice versa, photonic components made from a multitude of materials have been integrated, in a heterogeneous/hybrid manner, in polymer photonic platforms.

  9. Analysis of Quantum Information Test-Bed by Parametric Down-Converted Photons Interference Measurement

    NASA Technical Reports Server (NTRS)

    To, Wing H.

    2005-01-01

    Quantum optical experiments require all the components involved to be extremely stable relative to each other. The stability can be "measured" by using an interferometric experiment. A pair of coherent photons produced by parametric down-conversion could be chosen to be orthogonally polarized initially. By rotating the polarization of one of the wave packets, they can be recombined at a beam splitter such that interference will occur. Theoretically, the interference will create four terms in the wave function. Two terms with both photons going to the same detector, and two terms will have the photons each going to different detectors. However, the latter will cancel each other out, thus no photons will arrive at the two detectors simultaneously under ideal conditions. The stability Of the test-bed can then be inferred by the dependence of coincidence count on the rotation angle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less

  11. Critical appraisal of volumetric-modulated arc therapy compared with electrons for the radiotherapy of cutaneous Kaposi’s sarcoma of lower extremities with bone sparing

    PubMed Central

    Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L

    2013-01-01

    Objective: To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi’s sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. Methods: 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. Results: V90% was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V107% was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D2% was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. Conclusion: High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. Advances in knowledge: VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams. PMID:23392192

  12. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts.

    PubMed

    Wu, Aimin; Li, Hao; Du, Junjie; Ni, Xingjie; Ye, Ziliang; Wang, Yuan; Sheng, Zhen; Zou, Shichang; Gan, Fuwan; Zhang, Xiang; Wang, Xi

    2015-03-11

    Controlling an optical beam is fundamental in optics. Recently, unique manipulation of optical wavefronts has been successfully demonstrated by metasurfaces. However, these artificially engineered nanostructures have thus far been limited to operate on light beams propagating out-of-plane. The in-plane operation is critical for on-chip photonic applications. Here, we demonstrate an anomalous negative-angle refraction of a light beam propagating along the plane, by designing a thin dielectric array of silicon nanoposts. The circularly polarized dipoles induced by the high-permittivity nanoposts at the scattering resonance significantly shape the wavefront of the light beam and bend it anomalously. The unique capability of a thin line of the nanoposts for manipulating in-plane wavefronts makes the device extremely compact. The low loss all-dielectric structure is compatible with complementary metal-oxide semiconductor technologies, offering an effective solution for in-plane beam steering and routing for on-chip photonics.

  13. Ultrashort polarization splitter based on dual-core photonic crystal fibers with gold wire

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Zhao, Ya; Xia, Houping; Lin, Shebao; Zhang, Yani

    2018-04-01

    An ultrashort polarization splitter based on dual-core photonic crystal fibers with gold wire has been proposed. Based on the beam propagation method with anisotropic perfectly matched layers, its polarization splitter coupling length, coupling length ratio, extinction ratio (ER), and bandwidth are numerically investigated. When the gold thread is filled in the fiber, the surface of the gold wire will produce the surface plasmon polaritons, which has certain influence on the beam propagation. A polarization splitter with shorter length and greater working bandwidth can be obtained by filling the gold wire. Numerical results demonstrate that the polarization splitter possesses extremely the length of 290 μm and high ER of -56.5 dB at the wavelength of 1.55 μm. Moreover, the polarization splitter is proposed to achieve ER better than -10 dB and a bandwidth of 19.2 nm.

  14. Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Agrawal, A.; Kejalakshmy, N.; Rahman, B. M. A.; Grattan, K. T. V.

    2010-06-01

    An elliptical air-hole golden spiral photonic crystal fiber (EGS-PCF) is analyzed with the full-vectorial finite element method. The air-holes in the EGS-PCF are arranged in a spiral pattern governed by the Golden Ratio, where the design has been inspired by the optimal arrangement of seeds found in nature. The EGS-PCF exhibits extremely high birefringence (˜0.022 at operating wavelength 1550 nm) which is particularly useful for generating a polarization stable supercontinuum (SC). The fiber can also be designed to have a Zero Dispersion Wavelength (ZDW) at a suitable wavelength for only one polarization and large negative dispersion for the other, leading to a single-polarization SC. In addition, the fiber dispersion can be designed to obtain ZDWs at 800 nm and 1064 nm simultaneously, which can facilitate broadband supercontinuum generation (SCG) through multi-wavelength pumping.

  15. Slow Orbit Feedback at the ALS Using Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.

    1999-03-25

    The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less

  16. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    NASA Astrophysics Data System (ADS)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  17. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    NASA Astrophysics Data System (ADS)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate Chamber (Long-MRPC). Simulations indicate that the MTD can effectively identify mu and reject hadron backgrounds, and it can serve as a mu trigger. A beam test result of the Long-MRPC at Fermi National Accelerator Laboratory (FNAL) is also discussed.

  18. Smart Optical RAM for Fast Information Management and Analysis

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1998-01-01

    Statement of Problem Instruments for high speed and high capacity in-situ data identification, classification and storage capabilities are needed by NASA for the information management and analysis of extremely large volume of data sets in future space exploration, space habitation and utilization, in addition to the various missions to planet-earth programs. Parameters such as communication delays, limited resources, and inaccessibility of human manipulation require more intelligent, compact, low power, and light weight information management and data storage techniques. New and innovative algorithms and architecture using photonics will enable us to meet these challenges. The technology has applications for other government and public agencies.

  19. Spontaneous emission near the edge of a photonic band gap

    NASA Astrophysics Data System (ADS)

    John, Sajeev; Quang, Tran

    1994-08-01

    The spectral and dynamical features of spontaneous emission from two and three-level atoms in which one transition frequency lay near the edge of a photonic band gap (PBG) were derived. These features included temporal oscillations, fractionalized steady-state atomic population on the excited state, spectral splitting and subnatural bandwidth. The effect of N-1 unexcited atoms were also taken into account. The direct consequences of photon localization as embodied in the photon-atom bound state were observed. One feasible experimental accomplishment of these effects may ensue from laser-cooled atoms in the void regions of a PBG medium. Another option is the application of an organic impurity molecule such as pentacene. Such molecules were known to show extremely narrow linewidths when placed in fitting solid hosts.

  20. Photon-efficient super-resolution laser radar

    NASA Astrophysics Data System (ADS)

    Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.

    2017-08-01

    The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.

  1. Successful Space Flight of High-Speed InGaAs Photodiode Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Joshi, Abhay; Prasad, Narasimha; Datta, Shubbashish

    2017-01-01

    Photonic systems are required for several space applications, including satellite communication links and lidar sensors. Although such systems are ubiquitous in terrestrial applications, deployment in space requires the constituent components to withstand extreme environmental conditions, including wide operating temperature range, mechanical shock and vibration, and radiation. These conditions are significantly more stringent than alternative standards, namely Bellcore GR-468 and MIL-STD 883, which may be satisfied by typical, commercially available, photonic components. Furthermore, it is very difficult to simultaneously reproduce several aspects of space environment, including exposure to galactic cosmic rays (GCR), in a laboratory. Therefore, it is necessary to operate key photonic components in space to achieve a technology readiness level of 7 and beyond. Accordingly, the International Space Station (ISS) provides an invaluable test bed for qualifying such components for space missions. We present a fiber-pigtailed photodiode module, having a -3 dB bandwidth of 16.8 GHz, that survived 18 months on the ISS as part of the Materials International Space Station Experiment (MISSE) 7 mission. This module was launched by NASA Langley Research Center on November 16, 2009 on the Space Shuttle Atlantis (STS-129), as part of their lidar transceiver components. While orbiting on the ISS in a passive experiment container, the photodiode module was exposed to extreme temperature cycling from -157 degrees Celsius to +121 degrees Celsius 16 times a day, proton radiation from the inner Van Allen belt at the South Atlantic Anomaly, and galactic cosmic rays. The module returned to Earth on the Space Shuttle Endeavor (STS-134) on June 1, 2011 for further characterization. The post flight test of the photodiode module, shown in Fig. 1a, demonstrates no change in the module's performance, thus proving its survivability during launch and in space environment.

  2. The principle and application of new PCR Technologies

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Cao, Yue; Ji, Yubin

    2017-12-01

    Polymerase chain reaction (PCR) is essentially a selective DNA amplification technique commonlyapplied for genetic testing and molecular diagnosis because of its high specificity and sensitivity.PCR technologies as the key of molecular biology, has realized that the qualitative detection of absolute quantitative has been changed. It has produced a variety of new PCR technologies, such as extreme PCR, photonic PCR, o-amplification at lower denaturation temperature PCR, nanoparticle PCR and so on. In this paper, the principle and application of PCR technologies are reviewed, and its development is prospected too.

  3. The TESIS experiment on the CORONAS-PHOTON spacecraft

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  4. High-Rate Data-Capture for an Airborne Lidar System

    NASA Technical Reports Server (NTRS)

    Valett, Susan; Hicks, Edward; Dabney, Philip; Harding, David

    2012-01-01

    A high-rate data system was required to capture the data for an airborne lidar system. A data system was developed that achieved up to 22 million (64-bit) events per second sustained data rate (1408 million bits per second), as well as short bursts (less than 4 s) at higher rates. All hardware used for the system was off the shelf, but carefully selected to achieve these rates. The system was used to capture laser fire, single-photon detection, and GPS data for the Slope Imaging Multi-polarization Photo-counting Lidar (SIMPL). However, the system has applications for other laser altimeter systems (waveform-recording), mass spectroscopy, xray radiometry imaging, high-background- rate ranging lidar, and other similar areas where very high-speed data capture is needed. The data capture software was used for the SIMPL instrument that employs a micropulse, single-photon ranging measurement approach and has 16 data channels. The detected single photons are from two sources those reflected from the target and solar background photons. The instrument is non-gated, so background photons are acquired for a range window of 13 km and can comprise many times the number of target photons. The highest background rate occurs when the atmosphere is clear, the Sun is high, and the target is a highly reflective surface such as snow. Under these conditions, the total data rate for the 16 channels combined is expected to be approximately 22 million events per second. For each photon detection event, the data capture software reads the relative time of receipt, with respect to a one-per-second absolute time pulse from a GPS receiver, from an event timer card with 0.1-ns precision, and records that information to a RAID (Redundant Array of Independent Disks) storage device. The relative time of laser pulse firings must also be read and recorded with the same precision. Each of the four event timer cards handles the throughput from four of the channels. For each detection event, a flag is recorded that indicates the source channel. To accommodate the expected maximum count rate and also handle the other extreme of very low rates occurring during nighttime operations, the software requests a set amount of data from each of the event timer cards and buffers the data. The software notes if any of the cards did not return all the data requested and then accommodates that lower rate. The data is buffered to minimize the I/O overhead of writing the data to storage. Care was taken to optimize the reads from the cards, the speed of the I/O bus, and RAID configuration.

  5. A Penning discharge source for extreme ultraviolet calibration

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    A Penning discharge lamp for use in the calibration of instruments and components for the extreme ultraviolet has been developed. This source is sufficiently light and compact to make it suitable for mounting on the movable slit assembly of a grazing incidence Rowland circle monochromator. Because this is a continuous discharge source, it is suitable for use with photon counting detectors. Line radiation is provided both by the gas and by atoms sputtered off the interchangeable metal cathodes. Usable lines are produced by species as highly ionized as Ne IV and Al V. The wavelength coverage provided is such that a good density of emission lines is available down to wavelengths as short as 100A. This source fills the gap between 100 and 300A, which is inadequately covered by the other available compact continuous radiation sources.

  6. All-optical signal processing using dynamic Brillouin gratings

    PubMed Central

    Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc

    2013-01-01

    The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159

  7. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    NASA Astrophysics Data System (ADS)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  8. Spectrum and Angular Distribution of γ-rays from Radiative Damping in Extremely Relativistic Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko

    2013-10-01

    Effects of the radiative damping in the interaction of extremely intense laser (> 1022 W/cm2) with dense plasma is studied via a relativistic collisional particle-in-cell simulation, PICLS. When the laser intensity is getting close to 1024 W/cm2, the effect of quantum electrodynamics (QED) appears. We had calculated γ-rays from the radiative damping processes based on the classical model [1], but had taken into account the QED effect [2] in the spectrum calculation. In ultra-intense laser-plasma interaction, electrons are accelerated by the strong laser fields and emit γ-ray photons mainly via two processes, namely, Bremsstrahlung and radiative damping. Such relativistic γ-ray has wide range of frequencies and the angular distribution depends on the hot electron source. Comparing the details of γ-rays from the Bremsstrahlung and the radiative damping in simulations, we will discuss the laser parameters and the target conditions (geometry and material) to distinguish the photons from each process and also the QED effect in the γ-rays spectrum at the extremely relativistic intensity. Supported by US DOE DE-SC0008827.

  9. Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.

    2017-01-01

    MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.

  10. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  11. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  12. Radiation transport in kinetic simulations and the influence of photoemission on electron current in self-sustaining discharges

    DOE PAGES

    Fierro, Andrew S.; Moore, Christopher Hudson; Scheiner, Brett; ...

    2017-01-12

    A kinetic description for electronic excitation of helium for principal quantum number nmore » $$\\leqslant $$ 4 has been included into a particle-in-cell (PIC) simulation utilizing direct simulation Monte Carlo (DSMC) for electron-neutral interactions. The excited electronic levels radiate state-dependent photons with wavelengths from the extreme ultraviolet (EUV) to visible regimes. Photon wavelengths are chosen according to a Voigt distribution accounting for the natural, pressure, and Doppler broadened linewidths. This method allows for reconstruction of the emission spectrum for a non-thermalized electron energy distribution function (EEDF) and investigation of high energy photon effects on surfaces, specifically photoemission. A parallel plate discharge with a fixed field (i.e. space charge neglected) is used to investigate the effects of including photoemission for a Townsend discharge. When operating at a voltage near the self-sustaining discharge threshold, it is observed that the electron current into the anode is higher when including photoemission from the cathode than without even when accounting for self-absorption from ground state atoms. As a result, the photocurrent has been observed to account for as much as 20% of the total current from the cathode under steady-state conditions.« less

  13. Parabolic single-crystal diamond compound refractive lenses for coherent x-ray imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir D.; Polyakov, Sergey; Zholudev, Sergey; Snigirev, Anatoly A.; Polikarpov, Maxim; Kolodziej, Tomasz; Qian, Jun; Zhou, Hua; Shvyd'ko, Yuri V.

    2016-09-01

    We demonstrate parabolic single-crystal diamond compound refractive lenses [1] designed for coherent x-ray imaging resilient to extreme thermal and radiation loading expected from next generation light sources. To ensure the preservation of coherence and resilience, the lenses are manufactured from the highest-quality single-crystalline synthetic diamond material grown by a high-pressure high-temperature technique. Picosecond laser milling is applied to machine lenses to parabolic shapes with a 1-micron precision and surface roughness. A compound refractive lens comprised of six lenses with a radius of curvature R=200 microns at the vertex of the parabola and a geometrical aperture A=900 microns focuses 10 keV x-ray photons from an undulator source at the Advanced Photon Source facility to a focal spot size of 10x40 microns^2 with a gain factor of 100. [1] S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, and Yu. Shvyd'ko Applied Physics Letters 107, 111108 (2015); doi: 10.1063/1.4931357

  14. Flash-Bang Detector to Model the Attenuation of High-Energy Photons

    NASA Astrophysics Data System (ADS)

    Pagsanjan, N., III; Kelley, N. A.; Smith, D. M.; Sample, J. G.

    2015-12-01

    It has been known for years that lightning and thunderstorms produce gamma rays and x-rays. Terrestrial gamma-ray flashes (TGFs) are extremely bright bursts of gamma rays originating from thunderstorms. X-ray stepped leaders are bursts of x-rays coming from the lightning channel. It is known that the attenuation of these high-energy photons is a function of distance, losing energy and intensity at larger distances. To complement gamma-ray detectors on the ground it would be useful to measure the distance to the flash. Knowing the distance would allow for the true source fluence of gamma rays or x-rays to be modeled. A flash-bang detector, which uses a micro-controller, a photodiode, a microphone and temperature sensor will be able to detect the times at which lightning and thunder occurs. Knowing the speed of sound as function of temperature and the time difference between the flash and the thunder, the range to the lightning can be calculated. We will present the design of our detector as well as some preliminary laboratory test results.

  15. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  16. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  17. Multi-site recording and spectral analysis of spontaneous photon emission from human body.

    PubMed

    Wijk, Eduard P A Van; Wijk, Roeland Van

    2005-04-01

    In the past years, research on ultraweak photon emission (UPE) from human body has increased for isolated cells and tissues. However, there are only limited data on UPE from the whole body, in particular from the hands. To describe a protocol for the management of subjects that (1) avoids interference with light-induced longterm delayed luminescence, and (2) includes the time slots for recording photon emission. The protocol was utilised for multi-site recording of 4 subjects at different times of the day and different seasons, and for one subject to complete spectral analysis of emission from different body locations. An especially selected low-noise end-window photomultiplier was utilised for the detection of ultraviolet / visible light (200-650 nm) photon emission. For multi-site recording it was manipulated in three directions in a darkroom with a very low count rate. A series of cut-off filters was used for spectral analysis of UPE. 29 body sites were selected such that the distribution in UPE could be studied as right-left symmetry, dorsal-ventral symmetry, and the ratio between the central body part and extremities. Generally, the fluctuation in photon counts over the body was lower in the morning than in the afternoon. The thorax-abdomen region emitted lowest and most constantly. The upper extremities and the head region emitted most and increasingly over the day. Spectral analysis of low, intermediate and high emission from the superior frontal part of the right leg, the forehead and the palms in the sensitivity range of the photomultiplier showed the major spontaneous emission at 470-570 nm. The central palm area of hand emission showed a larger contribution of the 420-470 nm range in the spectrum of spontaneous emission from the hand in autumn/winter. The spectrum of delayed luminescence from the hand showed major emission in the same range as spontaneous emission. Examples of multi-site UPE recordings and spectral analysis revealed individual patterns and dynamics of spontaneous UPE over the body, and spectral differences over the body. The spectral data suggest that measurements might well provide quantitative data on the individual pattern of peroxidative and anti-oxidative processes in vivo. We expect that the measurements provide physiological information that can be useful in clinical examination.

  18. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  19. Enhanced attosecond pulse generation in the vacuum ultraviolet using a two-colour driving field for high harmonic generation

    NASA Astrophysics Data System (ADS)

    Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.

    2018-03-01

    High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.

  20. High-fidelity spin measurement on the nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Hanks, Michael; Trupke, Michael; Schmiedmayer, Jörg; Munro, William J.; Nemoto, Kae

    2017-10-01

    Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center’s parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.

  1. Patterning highly ordered arrays of complex nanofeatures through EUV directed polarity switching of non chemically amplified photoresist

    PubMed Central

    Ghosh, Subrata; Satyanarayana, V. S. V.; Pramanick, Bulti; Sharma, Satinder K.; Pradeep, Chullikkattil P.; Morales-Reyes, Israel; Batina, Nikola; Gonsalves, Kenneth E.

    2016-01-01

    Given the importance of complex nanofeatures in the filed of micro-/nanoelectronics particularly in the area of high-density magnetic recording, photonic crystals, information storage, micro-lens arrays, tissue engineering and catalysis, the present work demonstrates the development of new methodology for patterning complex nanofeatures using a recently developed non-chemically amplified photoresist (n-CARs) poly(4-(methacryloyloxy)phenyl)dimethylsulfoniumtriflate) (polyMAPDST) with the help of extreme ultraviolet lithography (EUVL) as patterning tool. The photosensitivity of polyMAPDST is mainly due to the presence of radiation sensitive trifluoromethanesulfonate unit (triflate group) which undergoes photodegradation upon exposure with EUV photons, and thus brings in polarity change in the polymer structure. Integration of such radiation sensitive unit into polymer network avoids the need of chemical amplification which is otherwise needed for polarity switching in the case of chemically amplified photoresists (CARs). Indeed, we successfully patterned highly ordered wide-raging dense nanofeatures that include nanodots, nanowaves, nanoboats, star-elbow etc. All these developed nanopatterns have been well characterized by FESEM and AFM techniques. Finally, the potential of polyMAPDST has been established by successful transfer of patterns into silicon substrate through adaptation of compatible etch recipes. PMID:26975782

  2. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  3. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii

    2006-07-01

    Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.

  4. Terahertz wireless communications based on photonics technologies.

    PubMed

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-07

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

  5. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  6. Cyanopyridine Based Bipolar Host Materials for Green Electrophosphorescence with Extremely Low Turn-On Voltages and High Power Efficiencies.

    PubMed

    Li, Wei; Li, Jiuyan; Liu, Di; Li, Deli; Wang, Fang

    2016-08-24

    Low driving voltage and high power efficiency are basic requirements when practical applications of organic light emitting diodes (OLEDs) in displays and lighting are considered. Two novel host materials m-PyCNmCP and 3-PyCNmCP incorporating cyanopyridine moiety as electron-transporting unit are developed for use in fac-tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) based green phosphorescent OLEDs (PhOLEDs). Extremely low turn-on voltages of 2.01 and 2.27 V are realized, which are even lower than the theoretical limit of the emitted photon energy (hv)/electron charge (e) (2.37 V) of Ir(ppy)3. High power efficiency of 101.4 lm/W (corresponding to a maximum external quantum efficiency of 18.4%) and 119.3 lm/W (24.7%) are achieved for m-PyCNmCP and 3-PyCNmCP based green PhOLEDs. The excellent EL performance benefits from the ideal parameters of host materials by combining cyano and pyridine to enhance the n-type feature. The energetic favorable alignment of HOMO/LUMO levels of hosts with adjacent layers and the dopant for easy charge injections and direct charge trapping by dopant, their bipolar feature to balance charge transportations, sufficiently high triplet energy and small singlet/triplet energy difference (0.38 and 0.43 eV) combine to be responsible for the extremely low driving voltages and high power efficiencies of the green PhOLEDs.

  7. Quantitative Evaluation of Hard X-ray Damage to Biological Samples using EUV Ptychography

    NASA Astrophysics Data System (ADS)

    Baksh, Peter; Odstrcil, Michal; Parsons, Aaron; Bailey, Jo; Deinhardt, Katrin; Chad, John E.; Brocklesby, William S.; Frey, Jeremy G.

    2017-06-01

    Coherent diffractive imaging (CDI) has become a standard method on a variety of synchrotron beam lines. The high brilliance short wavelength radiation from these sources can be used to reconstruct attenuation and relative phase of a sample with nanometre resolution via CDI methods. However, the interaction between the sample and high energy ionising radiation can cause degradation to sample structure. We demonstrate, using a laboratory based high harmonic generation (HHG) based extreme ultraviolet (EUV) source, imaging a sample of hippocampal neurons using the ptychography method. The significant increase in contrast of the sample in the EUV light allows identification of damage induced from exposure to 7.3 keV photons, without causing any damage to the sample itself.

  8. Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Ryou, Albert; Rosser, David; Saxena, Abhi; Fryett, Taylor; Majumdar, Arka

    2018-06-01

    A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for both fundamental physics and technological applications, but its realization has proved extremely challenging. Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence function. We identify several mechanisms for photon antibunching under different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics from a coherent state into a regime of strong antibunching with second-order coherence function g(2 )(0 ) ˜10-3 , opening a possible route to scalable, on-chip quantum simulations with correlated photons.

  9. Measurement of Thermal Dependencies of PBG Fiber Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouar, Rachik

    Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so calledmore » photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.« less

  10. High power Raman-converter based on H2-filled inhibited coupling HC-PCF

    NASA Astrophysics Data System (ADS)

    Benoit, A.; Beaudou, B.; Debord, B.; Gerome, F.; Benabid, F.

    2017-02-01

    We report on high power Raman-converter frequency stage based on hydrogen-filled inhibited-coupling hollow-core photonic crystal fibers pumped by an Yb-fiber picosecond laser. This fiber Raman-convertor can operate in two SRS emission regimes by simply controlling the fiber length or the gas pressure. It can set to either generate favorably single laser line or to generate an extremely wide Raman comb. Based on this we demonstrate a pico-second pulse Raman source of 9.3 W average-power at 1.8 μm, and an ultra-wide Raman comb spanning over more than five octaves from UV to mid-infrared, containing around 70 laser lines.

  11. Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.

    PubMed

    Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang

    2018-01-22

    Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.

  12. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  13. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  14. Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane; Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Feltre, Anna; Gutkin, Julia; Jones, Tucker; Mainali, Ramesh; Wofford, Aida

    2018-06-01

    Measurements of the galaxy UV luminosity function at z ≳ 6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z ˜ 6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, ξ _{ion}^\\star, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z ≳ 6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z ≳ 6. We use the new-generation BEAGLE tool to model the UV-to-optical photometry and UV/optical emission lines of these Local `analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, ξ _{ion}^\\star, based on the equivalent width of the bright [O III]49595007 line doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate ξ _{ion}^\\star from future direct measurements of the [O III]49595007 line using JWST/NIRSpec (out to z ˜ 9.5), and by exploiting the contamination by Hβ +[O III]{4959}{5007}} of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.

  15. Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae

    NASA Astrophysics Data System (ADS)

    Pratim Basumallick, Partha; Gupta, Nayantara

    2017-07-01

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.

  16. A Superconducting Dual-Channel Photonic Switch.

    PubMed

    Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan

    2018-06-05

    The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies.

    PubMed

    Zürch, M; Jung, R; Späth, C; Tümmler, J; Guggenmos, A; Attwood, D; Kleineberg, U; Stiel, H; Spielmann, C

    2017-07-13

    Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ 12 | ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.

  18. Transparency of near-critical density plasmas under extreme laser intensities

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang; Shen, Baifei; Zhang, Xiaomei

    2018-05-01

    We investigated transparency of near-critical plasma targets for highly intense incident lasers and discovered that beyond relativistic transparency, there exists an anomalous opacity regime, where the plasma target tend to be opaque at extreme light intensities. The unexpected phenomenon is found to originate from the trapping of ions under exotic conditions. We found out the propagation velocity and the amplitude of the laser-driven charge separation field in a large parameter range and derived the trapping probability of ions. The model successfully interpolates the emergence of anomalous opacity in simulations. The trend is more significant when radiation reaction comes into effect, leaving a transparency window in the intensity domain. Transparency of a plasma target defines the electron dynamics and thereby the emission mechanisms of gamma-photons in the ultra-relativistic regime. Our findings are not only of fundamental interest but also imply the proper mechanisms for generating desired electron/gamma sources.

  19. Quantifying highly efficient incoherent energy transfer in perylene-based multichromophore arrays.

    PubMed

    Webb, James E A; Chen, Kai; Prasad, Shyamal K K; Wojciechowski, Jonathan P; Falber, Alexander; Thordarson, Pall; Hodgkiss, Justin M

    2016-01-21

    Multichromophore perylene arrays were designed and synthesized to have extremely efficient resonance energy transfer. Using broadband ultrafast photoluminescence and transient absorption spectroscopies, transfer timescales of approximately 1 picosecond were resolved, corresponding to efficiencies of up to 99.98%. The broadband measurements also revealed spectra corresponding to incoherent transfer between localized states. Polarization resolved spectroscopy was used to measure the dipolar angles between donor and acceptor chromophores, thereby enabling geometric factors to be fixed when assessing the validity of Förster theory in this regime. Förster theory was found to predict the correct magnitude of transfer rates, with measured ∼2-fold deviations consistent with the breakdown of the point-dipole approximation at close approach. The materials presented, along with the novel methods for quantifying ultrahigh energy transfer efficiencies, will be valuable for applications demanding extremely efficient energy transfer, including fluorescent solar concentrators, optical gain, and photonic logic devices.

  20. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  1. Orbital angular momentum mode division filtering for photon-phonon coupling

    PubMed Central

    Zhu, Zhi-Han; Sheng, Li-Wen; Lv, Zhi-Wei; He, Wei-Ming; Gao, Wei

    2017-01-01

    Stimulated Brillouin scattering (SBS), a fundamental nonlinear interaction between light and acoustic waves occurring in any transparency material, has been broadly studied for several decades and gained rapid progress in integrated photonics recently. However, the SBS noise arising from the unwanted coupling between photons and spontaneous non-coherent phonons in media is inevitable. Here, we propose and experimentally demonstrate this obstacle can be overcome via a method called orbital angular momentum mode division filtering. Owing to the introduction of a new distinguishable degree-of-freedom, even extremely weak signals can be discriminated and separated from a strong noise produced in SBS processes. The mechanism demonstrated in this proof-of-principle work provides a practical way for quasi-noise-free photonic-phononic operation, which is still valid in waveguides supporting multi-orthogonal spatial modes, permits more flexibility and robustness for future SBS devices. PMID:28071736

  2. New dynamic silicon photonic components enabled by MEMS technology

    NASA Astrophysics Data System (ADS)

    Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.

    2018-02-01

    Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

  3. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  4. R.F Microphotonics for NASA Space Communications Applications

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Lee, Richard; Miranda, Felix; Hossein-Zadeh, Mani; Cohen, David; Levi, A. F. J.

    2007-01-01

    An RF microphotonic receiver has-been developed at Ka-band. The receiver consists of a lithium niobate micro-disk that enables RF-optical coupling to occur. The modulated optical signal (- 200 THz) is detected by the high-speed photonic signal processing electronics. When compared with an electronic approach, the microphotonic receiver technology offers 10 times smaller volume, smaller weight, and smaller power consumption; greater sensitivity; and optical isolation for use in extreme environments. The status of the technology development will be summarized, and the potential application of the receiver to NASA space communications systems will be described.

  5. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    DOE PAGES

    Sturm, F. P.; Wright, T. W.; Ray, D.; ...

    2016-06-14

    Have we present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  6. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri

    NASA Astrophysics Data System (ADS)

    Heller, René; Hippke, Michael

    2017-02-01

    At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light (c) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio (σ) similar to graphene (7.6 × 10-4 gram m-2) in orbit around Proxima is about 13,800 km s-1 (4.6% c), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s-1) to Proxima. The size of such a low-σ sail required to carry a payload of 10 grams is about 105 m2 = (316 m)2. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.

  7. ForwArd Search ExpeRiment at the LHC

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian

    2018-02-01

    New physics has traditionally been expected in the high-pT region at high-energy collider experiments. If new particles are light and weakly coupled, however, this focus may be completely misguided: light particles are typically highly concentrated within a few mrad of the beam line, allowing sensitive searches with small detectors, and even extremely weakly coupled particles may be produced in large numbers there. We propose a new experiment, forward search experiment, or FASER, which would be placed downstream of the ATLAS or CMS interaction point (IP) in the very forward region and operated concurrently there. Two representative on-axis locations are studied: a far location, 400 m from the IP and just off the beam tunnel, and a near location, just 150 m from the IP and right behind the TAN neutral particle absorber. For each location, we examine leading neutrino- and beam-induced backgrounds. As a concrete example of light, weakly coupled particles, we consider dark photons produced through light meson decay and proton bremsstrahlung. We find that even a relatively small and inexpensive cylindrical detector, with a radius of ˜10 cm and length of 5-10 m, depending on the location, can discover dark photons in a large and unprobed region of parameter space with dark photon mass mA'˜10 - 500 MeV and kinetic mixing parameter ɛ ˜10-6-10-3. FASER will clearly also be sensitive to many other forms of new physics. We conclude with a discussion of topics for further study that will be essential for understanding FASER's feasibility, optimizing its design, and realizing its discovery potential.

  8. Studying Resist Stochastics with the Multivariate Poisson Propagation Model

    DOE PAGES

    Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; ...

    2014-01-01

    Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.

  9. Feasibility study of extremity dosemeter based on polyallyldiglycolcarbonate (CR-39) for neutron exposure.

    PubMed

    Chau, Q; Bruguier, P

    2007-01-01

    In nuclear facilities, some activities such as reprocessing, recycling and production of bare fuel rods expose the workers to mixed neutron-photon fields. For several workplaces, particularly in glove boxes, some workers expose their hands to mixed fields. The mastery of the photon extremity dosimetry is relatively good, whereas the neutron dosimetry still raises difficulties. In this context, the Institute for Radiological Protection and Nuclear Safety (IRSN) has proposed a study on a passive neutron extremity dosemeter based on chemically etched CR-39 (PADC: polyallyldiglycolcarbonate), named PN-3, already used in routine practice for whole body dosimetry. This dosemeter is a chip of plastic sensitive to recoil protons. The chemical etching process amplifies the size of the impact. The reading system for tracks counting is composed of a microscope, a video camera and an image analyser. This system is combined with the dose evaluation algorithm. The performance of the dosemeter PN-3 has been largely studied and proved by several laboratories in terms of passive individual neutron dosemeter which is used in routine production by different companies. This study focuses on the sensitivity of the extremity dosemeter, as well as its performance in the function of the level of the neutron energy. The dosemeter was exposed to monoenergetic neutron fields in laboratory conditions and to mixed fields in glove boxes at workplaces.

  10. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.

    PubMed

    Clare, Richard M; Le Louarn, Miska; Béchet, Clementine

    2011-02-01

    We propose ground-layer adaptive optics (GLAO) to improve the seeing on the 42 m European Extremely Large Telescope. Shack-Hartmann wavefront sensors (WFSs) with laser guide stars (LGSs) will experience significant spot elongation due to off-axis observation. This spot elongation influences the design of the laser launch location, laser power, WFS detector, and centroiding algorithm for LGS GLAO on an extremely large telescope. We show, using end-to-end numerical simulations, that with a noise-weighted matrix-vector-multiply reconstructor, the performance in terms of 50% ensquared energy (EE) of the side and central launch of the lasers is equivalent, the matched filter and weighted center of gravity centroiding algorithms are the most promising, and approximately 10×10 undersampled pixels are optimal. Significant improvement in the 50% EE can be observed with a few tens of photons/subaperture/frame, and no significant gain is seen by adding more than 200 photons/subaperture/frame. The LGS GLAO is not particularly sensitive to the sodium profile present in the mesosphere nor to a short-timescale (less than 100 s) evolution of the sodium profile. The performance of LGS GLAO is, however, sensitive to the atmospheric turbulence profile.

  11. Wide-range narrowband multilayer mirror for selecting a single-order harmonic in the photon energy range of 40-70 eV.

    PubMed

    Hatayama, Masatoshi; Ichimaru, Satoshi; Ohcni, Tadayuki; Takahashi, Eiji J; Midorikawa, Katsumi; Oku, Satoshi

    2016-06-27

    An experimental demonstration of a wide-range narrowband multilayer mirror for selecting a single-order high-harmonic (HH) beam from multiple-order harmonics in the photon energy range between 40 eV and 70 eV was carried out. This extreme ultraviolet (XUV) mirror, based on a pair of Zr and Al0.7Si0.3 multilayers, has a reflectivity of 20-35% and contrast of more than 7 with respect to neighboring HHs at angles of incidence from 10 to 56.9 degrees, assuming HHs pumped at 1.55 eV. Thus, specific single-order harmonic beams can be arbitrarily selected from multiple-order harmonics in this photo energy range. In addition, the dispersion for input pulses of the order of 1 fs is negligible. This simple-to-align optical component is useful for the many various applications in physics, chemistry and biology that use ultrafast monochromatic HH beams.

  12. A compact tunable polarized X-ray source based on laser-plasma helical undulators

    PubMed Central

    Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126

  13. A new design of photonic crystal fiber with ultra-flattened dispersion to simultaneously minimize the dispersion and confinement loss

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Taghipour, Fahimeh

    2011-02-01

    Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.

  14. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  15. Secure communications using nonlinear silicon photonic keys.

    PubMed

    Grubel, Brian C; Bosworth, Bryan T; Kossey, Michael R; Cooper, A Brinton; Foster, Mark A; Foster, Amy C

    2018-02-19

    We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10 -5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

  16. Waveguide transport mediated by strong coupling with atoms

    NASA Astrophysics Data System (ADS)

    Cheng, Mu-Tian; Xu, Jingping; Agarwal, Girish S.

    2017-05-01

    We investigate single-photon scattering properties in a one-dimensional waveguide coupled to a quantum emitter's chain with dipole-dipole interaction (DDI). The photon transport is extremely sensitive to the location of the evanescently coupled atoms. The analytical expressions of reflection and transmission amplitudes for the chain containing two emitters with DDI are deduced by using a real-space Hamiltonian. Two cases, where the two emitters symmetrically or asymmetrically couple to the waveguide, are discussed in detail. It shows that the reflection and transmission typical spectra split into two peaks due to the DDI. The Fano minimum in the spectra can be used to estimate the strength of the DDI. Furthermore, the DDI makes spectra strongly asymmetric and creates a transmission window in the region where there was zero transmission. The scattering spectra for the chain consisting of multiple emitters are also given. Our key finding is that DDI can broaden the frequency bandwidth for high reflection when the chain consists of many emitters.

  17. Bright Linearly and Circularly Polarized Extreme Ultraviolet and Soft X-ray High Harmonics for Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Tingting

    High harmonic generation (HHG) is an extreme nonlinear optical process. When implemented in a phase-matched geometry, HHG coherent upconverts femtosecond laser light into coherent "X-ray laser" beams, while retaining excellent spatial and temporal coherence, as well as the polarization state of the driving laser. HHG has a tabletop footprint, with femtosecond to attosecond time resolution, combined with nanometer spatial resolution. As a consequence of these unique capabilities, HHG is now being widely adopted for use in molecular spectroscopy and imaging, materials science, as well as nanoimaging in general. In the first half of this thesis, I demonstrate high flux linearly polarized soft X-ray HHG, driven by a single-stage 10-mJ Ti:sapphire regenerative amplifier at a repetition rate of 1 kHz. I first down-converted the laser to 1.3 mum using an optical parametric amplifier, before up-converting it into the soft X-ray region using HHG in a high-pressure, phase-matched, hollow waveguide geometry. The resulting optimally phase-matched broadband spectrum extends to 200 eV, with a soft X-ray photon flux of > 106 photons/pulse/1% bandwidth at 1 kHz, corresponding to > 109 photons/s/1% bandwidth, or approximately a three orders-of-magnitude increase compared with past work. Using this broad bandwidth X-ray source, I demonstrated X-ray absorption spectroscopy of multiple elements and transitions in molecules in a single spectrum, with a spectral resolution of 0.25 eV, and with the ability to resolve the near edge fine structure. In the second half of this thesis, I discuss how to generate the first bright circularly polarized (CP) soft X-ray HHG and also use them to implement the first tabletop X-ray magnetic circular dichroism (XMCD) measurements. Using counter-rotating CP lasers at 1.3 mum and 0.79 mum, I generated CPHHG with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right CP peaks, with energies determined by conservation of energy and spin angular momentum. I explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase matching conditions. The first advanced propagation simulations for CPHHG reveal the influence of the finite phase matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. The first tabletop XMCD measurements at the N4,5 absorption edges of Gd using this light source validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum and temporal shape of soft X-ray HHG by manipulating the driving laser waveform. Finally, I present the first bright phase-matched CPHHG driven by lasers at wavelengths of 2 mum and 0.79 mum, which extends CPHHG to a broader wavelength combination and confirms the universal nature of this generation scheme. By analyzing the helicity dependent intensity asymmetry of CPHHG generated using different wavelengths and different gas targets, I show that the helicity dependent intensity asymmetry was mostly caused by the helicity dependent single-atom physics, which exhibits different behaviors for different gas targets. Moreover, the asymmetry can reverse and very interestingly, CPHHG from Ar exhibits a single helicity in the high-photon-energy region of the spectrum, which provide a convenient way to generate CPHHG with a single helicity and CP attosecond pulse trains. Finally, simple simulations and cutoff analysis of CPHHG provide guidance for generating CPHHG at higher photon energies.

  18. Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics

    NASA Astrophysics Data System (ADS)

    Moreno Fernández, H.; Thomasset, M.; Sauthier, G.; Rogler, D.; Dietsch, R.; Barrett, R.; Carlino, V.; Pellegrin, E.

    2017-05-01

    Boron carbide (B4C) - due to its exceptional mechanical properties - is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, B4C-coated optics are subject to ubiquitous carbon contaminations. These contaminations - that are presumably produced via cracking of CHx and CO2 molecules by photoelectrons emitted from the optical components - represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of B4C cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated B4C test samples via an inductively coupled O2/Ar and Ar/H2 remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the B4C optical coatings and surfaces before and after the plasma cleaning process are reported.

  19. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  20. Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments

    NASA Astrophysics Data System (ADS)

    Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.

    2018-02-01

    Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.

  1. Data indexing techniques for the EUVE all-sky survey

    NASA Technical Reports Server (NTRS)

    Lewis, J.; Saba, V.; Dobson, C.

    1992-01-01

    This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.

  2. Multiple multicontrol unitary operations: Implementation and applications

    NASA Astrophysics Data System (ADS)

    Lin, Qing

    2018-04-01

    The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.

  3. Development of two-photon fluorescence microscopy for quantitative imaging in turbid tissues

    NASA Astrophysics Data System (ADS)

    Coleno, Mariah Lee

    Two-photon laser scanning fluorescence microscopy (TPM) is a high resolution, non-invasive biological imaging technique that can be used to image turbid tissues both in vitro and in vivo at depths of several hundred microns. Although TPM has been widely used to image tissue structures, no one has focused on using TPM to extract quantitative information from turbid tissues at depth. As a result, this thesis addresses the quantitative characterization of two-photon signals in turbid media. Initially, a two-photon microscope system is constructed, and two-photon images that validate system performance are obtained. Then TPM is established as an imaging technique that can be used to validate theoretical observations already listed in the literature. In particular, TPM is found to validate the exponential dependence of the fluorescence intensity decay with depth in turbid tissue model systems. Results from these studies next prompted experimental investigation into whether TPM could be used to determine tissue optical properties. Comparing the exponential dependence of the decay with a Monte Carlo model involving tissue optical properties, TPM is shown to be useful for determining the optical properties (total attenuation coefficient) of thick, turbid tissues on a small spatial scale. Next, a role for TPM for studying and optimizing wound healing is demonstrated. In particular, TPM is used to study the effects of perturbations (growth factors, PDT) on extracellular matrix remodeling in artificially engineered skin tissues. Results from these studies combined with tissue contraction studies are shown to demonstrate ways to modulate tissues to optimize the wound healing immune response and reduce scarring. In the end, TPM is shown to be an extremely important quantitative biological imaging technique that can be used to optimize wound repair.

  4. Definitive Radiotherapy for Ewing Tumors of Extremities and Pelvis: Long-Term Disease Control, Limb Function, and Treatment Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indelicato, Daniel J.; Keole, Sameer R.; Shahlaee, Amir H.

    2008-11-01

    Purpose: More than 70% of Ewing tumors occur in the extremities and pelvis. This study identified factors influencing local control and functional outcomes after management with definitive radiotherapy (RT). Patients and Methods: A total of 75 patients with a localized Ewing tumor of the extremity or pelvis were treated with definitive RT at the University of Florida between 1970 and 2006 (lower extremity tumors in 30, pelvic tumors in 26, and upper extremity tumors in 19). RT was performed on a once-daily (40%) or twice-daily (60%) basis. The median dose was 55.2 Gy in 1.8-Gy daily fractions or 55.0 Gymore » in 1.2-Gy twice-daily fractions. The median observed follow-up was 4.7 years. Functional outcome was assessed using the Toronto Extremity Salvage Score. Results: The 10-year actuarial overall survival, cause-specific survival, freedom from relapse, and local control rate was 48%, 48%, 42%, and 71%, respectively. Of the 72 patients, 3 required salvage amputation. Inferior cause-specific survival was associated with larger tumors (81% for tumors <8 cm vs. 39% for tumors {>=}8 cm, p <0.05). No patient characteristics or treatment variables were predictive of local failure. No fractures occurred in patients treated with hyperfractionation or with tumors of the distal extremities. Severe late complications were more frequently associated with use of <8-MV photons and fields encompassing the entire bone or hemipelvis. A significantly better Toronto Extremity Salvage Score was associated with a late-effect biologically effective dose of <91.7 Gy{sub 3}. Conclusions: Limb preservation was effectively achieved through definitive RT. Treating limited field sizes with hyperfractionated high-energy RT could minimize long-term complications and provides superior functional outcomes.« less

  5. Enhancement of Raman scattering signal of a few molecules using photonic nanojet mediated SERS technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G. M.; Parit, M. K.; Laha, R.

    2016-05-06

    Now a days, single molecule surface enhanced Raman spectroscopy (SMSERS) has become a fascinating tool for studying the structural properties, static and dynamic events of single molecules (instead of ensemble average), with the help of efficient plasmonic nanostructures. This is extremely useful in the field of proteomics because the structural properties of protein molecules are heterogeneous. Even though, SMSERS provides wealthy information about single molecules, it demands high quality surface enhanced Raman scattering (SERS) substrates. So far, a very few researchers succeeded in demonstrating the single molecule Raman scattering using conventional SERS technique. However, the experimental S/N of the Ramanmore » signal has been found to be very poor. Recently, with the help of photonic nanojet of an optical microsphere, we were able to enhance the SERS signal of a few molecules adsorbed on the SERS substrates (gold symmetric and asymmetric nanodimers and trimers dispersed on a glass slide). Herein, we report a few details about photonic nanojet mediated SERS technique, a few experimental results and a detailed theoretical study on symmetric and asymmetric nanosphere dimers to understand the dependence of localised surface plasmon resonance (LSPR) wavelength of a nanodimer on the nanogap size and polarization of the excitation light.« less

  6. Robust Subwavelength Single-Mode Perovskite Nanocuboid Laser.

    PubMed

    Liu, Zhengzheng; Yang, Jie; Du, Juan; Hu, Zhiping; Shi, Tongchao; Zhang, Zeyu; Liu, Yanqi; Tang, Xiaosheng; Leng, Yuxin; Li, Ruxin

    2018-05-14

    On-chip photonic information processing systems require great research efforts toward miniaturization of the optical components. However, when approaching the classical diffraction limit, conventional dielectric lasers with all dimensions in nanoscale are difficult to realize due to the ultimate miniaturization limit of the cavity length and the extremely high requirement of optical gain to overcome the cavity loss. Herein, we have succeeded in reducing the laser size to subwavelength scale in three dimensions using an individual CsPbBr 3 perovskite nanocuboid. Even though the side length of the nanocuboid laser is only ∼400 nm, single-mode Fabry-Pérot lasing at room temperature with laser thresholds of 40.2 and 374 μJ/cm 2 for one- and two-photon excitation has been achieved, respectively, with the corresponding quality factors of 2075 and 1859. In addition, temperature-insensitive properties from 180 to 380 K have been demonstrated. The physical volume of a CsPbBr 3 nanocuboid laser is only ∼0.49λ 3 (where λ is the lasing wavelength in air). Its three-dimensional subwavelength size, excellent stable lasing performance at room temperature, frequency up-conversion ability, and temperature-insensitive properties may lead to a miniaturized platform for nanolasers and integrated on-chip photonic devices in nanoscale.

  7. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer-spatial-resolution, MeV, flash radiography of dense, energetic systems (NIF, JASPER), precision, photo-nuclear absorption spectroscopy (DNT, PAT), non-destructive, resonant nuclear fluorescent imaging of special nuclear materials (NAI, DHS), dynamic, micro-crack failure analysis (aerospace industry, SSP) etc. Concepts are presented for new Thomson-Radiated Extreme X-ray (T-REX) sources at LLNL. These leverage LLNL's world-leading expertise in high-intensity lasers, high average power lasers, diffractive optics, Thomson-based x-ray source development, and advanced photoguns to produce tunable, quasi-monochromatic radiation from 50-keV to several MeV. Above {approx}100 keV, T-REX would be unique in the world with respect to BOTH peak x-ray brilliance AND average x-ray brilliance. This capability would naturally compliment the x-ray capability of large-scale, synchrotron facilities currently within the DoE complex by significantly extending the x-ray energy range over which, tunable, high-brightness applications could be pursued. It would do so at a small fraction of the cost of the purely, accelerator-based facilities. It is anticipated that T-REX could provide new opportunities for interaction of LLNL with the DoE Office of Science, DARPA, DHS etc. and would place LLNL clearly at the forefront of laser-based, x-ray generation world-wide.« less

  8. High-precision Orbit Fitting and Uncertainty Analysis of (486958) 2014 MU69

    NASA Astrophysics Data System (ADS)

    Porter, Simon B.; Buie, Marc W.; Parker, Alex H.; Spencer, John R.; Benecchi, Susan; Tanga, Paolo; Verbiscer, Anne; Kavelaars, J. J.; Gwyn, Stephen D. J.; Young, Eliot F.; Weaver, H. A.; Olkin, Catherine B.; Parker, Joel W.; Stern, S. Alan

    2018-07-01

    NASA’s New Horizons spacecraft will conduct a close flyby of the cold-classical Kuiper Belt Object (KBO) designated (486958) 2014 MU69 on 2019 January 1. At a heliocentric distance of 44 au, “MU69” will be the most distant object ever visited by a spacecraft. To enable this flyby, we have developed an extremely high-precision orbit fitting and uncertainty processing pipeline, making maximal use of the Hubble Space Telescope’s Wide Field Camera 3 (WFC3) and pre-release versions of the ESA Gaia Data Release 2 (DR2) catalog. This pipeline also enabled successful predictions of a stellar occultation by MU69 in 2017 July. We describe how we process the WFC3 images to match the Gaia DR2 catalog, extract positional uncertainties for this extremely faint target (typically 140 photons per WFC3 exposure), and translate those uncertainties into probability distribution functions for MU69 at any given time. We also describe how we use these uncertainties to guide New Horizons, plan stellar occultions of MU69, and derive MU69's orbital evolution and long-term stability.

  9. Solar-pumped fiber laser with transverse-excitation geometry

    NASA Astrophysics Data System (ADS)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori

    2018-02-01

    In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.

  10. NuSTAR Detection of the Blazar B2 1023+25 at Redshift 5.3

    NASA Technical Reports Server (NTRS)

    Sbarrato, T.; Tagliaferri, G.; Ghisellini, G.; Perri, M.; Puccetti, S.; Balokovic, M.; Nardini, M.; Stern, D.; Boggs, S. E.; Brandt, W. N.; hide

    2013-01-01

    B2 1023+25 is an extremely radio-loud quasar at zeta = 5.3 that was first identified as a likely high-redshift blazar candidate in the SDSS+FIRST quasar catalog. Here, we use the Nuclear Spectroscopic Telescope Array (NuSTAR) to investigate its non-thermal jet emission, whose high-energy component we detected in the hard X-ray energy band. The X-ray flux is approximately 5.5 × 10 (exp -14) erg cm(exp -2) s(exp -1) (5-10 keV) and the photon spectral index is Gamma(x) approx. =1.3-1.6. Modeling the full spectral energy distribution, we find that the jet is oriented close to the line of sight, with a viewing angle of approximately 3deg, and has significant Doppler boosting, with a large bulk Lorentz factor approximately 13, which confirms the identification of B2 1023+25 as a blazar. B2 1023+25 is the first object at redshift larger than 5 detected by NuSTAR, demonstrating the ability of NuSTAR to investigate the early X-ray universe and to study extremely active supermassive black holes located at very high redshift.

  11. Technology Risk Mitigation Research and Development for the Matter-Radiation Interactions in Extremes (MaRIE) Project

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.; Fernández, Juan; Hartsfield, Thomas; Sandberg, Richard; Sheffield, Richard; Tapia, John P.; Wang, Zhehui

    2017-06-01

    NNSA does not have a capability to understand and test the response of materials and conditions necessary to determine the linkages between microstructure of materials and performance in extreme weapons-relevant environments. Required is an x-ray source, coherent to optimize imaging capability, brilliant and high repetition-rate to address all relevant time scales, and with high enough energy to see into and through the amount of material in the middle or mesoscale where microstructure determines materials response. The Department of Energy has determined there is a mission need for a MaRIE Project to deliver this capability. There are risks to the Project to successfully deliver all the technology needed to provide the capability for the mission need and to use those photons to control the time-dependent production and performance of materials. The present technology risk mitigation activities for the MaRIE project are: developing ultrafast high-energy x-ray detectors, combining the data from several imaging probes to obtain multi-dimensional information about the sample, and developing techniques for bulk dynamic measurements of temperature. This talk will describe these efforts and other critical technology elements requiring future investment by the project.

  12. EUV observation from the Earth-orbiting satellite, EXCEED

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yoshikawa, I.; Ueno, M.; Uemizu, K.; Yamazaki, A.

    2010-01-01

    An Earth-orbiting small satellite “EXtreme ultraviolet spectrosCope for ExosphEric Dynamics” (EXCEED) which will be launched in 2012 is under development. The mission will carry out spectroscopic and imaging observation of EUV (Extreme Ultraviolet: 60-145 nm) emissions from tenuous plasmas around the planets (Venus, Mars, Mercury, and Jupiter). It is essential for EUV observation to put on an observing site outside the Earth’s atmosphere to avoid the absorption. It is also essential that the detection efficiency must be very high in order to catch the faint signals from those targets. In this mission, we employ cesium iodide coated microchannel plate as a 2 dimensional photon counting devise which shows 1.5-50 times higher quantum detection efficiency comparing with the bared one. We coat the surface of the grating and entrance mirror with silicon carbides by the chemical vapor deposition method in order to archive the high diffraction efficiency and reflectivity. The whole spectrometer is shielded by the 2 mm thick stainless steel to prevent the contamination caused by the high energy electrons from the inner radiation belt. In this paper, we will introduce the mission overview, its instrument, and their performance.

  13. Radiation damage in charge-coupled devices.

    PubMed

    Bassler, Niels

    2010-08-01

    Due to their high sensitivity and signal-to-noise ratio, charge-coupled devices (CCDs) have been the preferred optical photon detectors of astronomers for several decades. CCDs are flown in space as the main detection instrument on several well-known missions, such as the Hubble Space Telescope, XMM-Newton or the Cassini Probe. Also, CCDs are frequently used in satellite star trackers which provide attitude information to the satellite orientation system. However, one major drawback is their extreme vulnerability to radiation, which is readily abundant in space. Here, we shall give a brief overview of the radiation effects on CCDs, and mention ways how to mitigate the effects in other ways than merely increase shielding, such as cooling and annealing. As an example, we have investigated the radiation hardness of a particular CCD, the so-called CCD47-20 from Marconi Applied Technologies (now E2V), by exposing it to radiation fields representing the radiation environment found in a highly elliptic orbit crossing the Van-Allen radiation belts. Two engineering-grade CCDs were irradiated with proton beams and photons, and effects of increased bulk dark current, surface dark current and inversion threshold voltage shifts were observed and are quantified.

  14. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    NASA Astrophysics Data System (ADS)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  15. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    PubMed Central

    Asrar, Pouya; Sucur, Marta; Hashemi, Nastaran

    2015-01-01

    We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC), with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana) were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak) for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized. PMID:26075506

  16. Line focus x-ray tubes—a new concept to produce high brilliance x-rays

    NASA Astrophysics Data System (ADS)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-11-01

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3rd generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy s-1 can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  17. High flux table-top ultrafast soft X-ray source generated by high harmonic generation

    NASA Astrophysics Data System (ADS)

    Thiré, Nicolas; Schmidt, Bruno E.; Fourmeaux, Sylvain; Beaulieu, Samuel; Cardin, Vincent; Negro, Matteo; Kieffer, Jean-Claude; Vozzi, Caterina; Legare, François

    2014-05-01

    Generation of ultrafast soft X-ray pulses is a major challenge for conventional laboratories. Using the process of HHG enables generation of such short wavelength photons. Intense laser sources in the infrared are necessary to reach the soft X-ray spectral range as the HHG cut-off scales with Iλ2. However, in the limit of the single atom response, increasing the laser wavelength leads to a significant decrease of the HHG flux. To compensate, one has to increase the number of emitters with high ionization potential. At the Advanced Laser Light Source, we have addressed this challenge by using a new gas cell design and developing a 10 mJ - 30 fs source at 1.8 μm. Using this setup, we have been able to generate harmonics in the water window spectral range for neon and helium with short time duration (<30 fs) in a conventional laboratory. A flux measurement has been performed showing ~ 2 × 105 photons/shot between 280 and 540 eV, making it possible to see the carbon k-edge at 280eV in a single shot manner. This soft X-ray beam is also extremely well collimated (0.1 mrad) making it this table-top beamline ideal for a number of applications.

  18. Random Photon Absorption Model Elucidates How Early Gain Control in Fly Photoreceptors Arises from Quantal Sampling

    PubMed Central

    Song, Zhuoyi; Zhou, Yu; Juusola, Mikko

    2016-01-01

    Many diurnal photoreceptors encode vast real-world light changes effectively, but how this performance originates from photon sampling is unclear. A 4-module biophysically-realistic fly photoreceptor model, in which information capture is limited by the number of its sampling units (microvilli) and their photon-hit recovery time (refractoriness), can accurately simulate real recordings and their information content. However, sublinear summation in quantum bump production (quantum-gain-nonlinearity) may also cause adaptation by reducing the bump/photon gain when multiple photons hit the same microvillus simultaneously. Here, we use a Random Photon Absorption Model (RandPAM), which is the 1st module of the 4-module fly photoreceptor model, to quantify the contribution of quantum-gain-nonlinearity in light adaptation. We show how quantum-gain-nonlinearity already results from photon sampling alone. In the extreme case, when two or more simultaneous photon-hits reduce to a single sublinear value, quantum-gain-nonlinearity is preset before the phototransduction reactions adapt the quantum bump waveform. However, the contribution of quantum-gain-nonlinearity in light adaptation depends upon the likelihood of multi-photon-hits, which is strictly determined by the number of microvilli and light intensity. Specifically, its contribution to light-adaptation is marginal (≤ 1%) in fly photoreceptors with many thousands of microvilli, because the probability of simultaneous multi-photon-hits on any one microvillus is low even during daylight conditions. However, in cells with fewer sampling units, the impact of quantum-gain-nonlinearity increases with brightening light. PMID:27445779

  19. Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.

  20. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands.

    PubMed

    Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun

    2015-10-15

    This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection.

  1. Repeated Solid-state Dewetting of Thin Gold Films for Nanogap-rich Plasmonic Nanoislands

    PubMed Central

    Kang, Minhee; Park, Sang-Gil; Jeong, Ki-Hun

    2015-01-01

    This work reports a facile wafer-level fabrication for nanogap-rich gold nanoislands for highly sensitive surface enhanced Raman scattering (SERS) by repeating solid-state thermal dewetting of thin gold film. The method provides enlarged gold nanoislands with small gap spacing, which increase the number of electromagnetic hotspots and thus enhance the extinction intensity as well as the tunability for plasmon resonance wavelength. The plasmonic nanoislands from repeated dewetting substantially increase SERS enhancement factor over one order-of-magnitude higher than those from a single-step dewetting process and they allow ultrasensitive SERS detection of a neurotransmitter with extremely low Raman activity. This simple method provides many opportunities for engineering plasmonics for ultrasensitive detection and highly efficient photon collection. PMID:26469768

  2. The Role of Inverse Compton Scattering in Solar Coronal Hard X-Ray and γ-Ray Sources

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.

    2012-05-01

    Coronal hard X-ray (HXR) and continuum γ-ray sources associated with the impulsive phase of solar flares have been the subject of renewed interest in recent years. They have been interpreted in terms of thin-target, non-thermal bremsstrahlung emission. This interpretation has led to rather extreme physical requirements in some cases. For example, in one case, essentially all of the electrons in the source must be accelerated to non-thermal energies to account for the coronal HXR source. In other cases, the extremely hard photon spectra of the coronal continuum γ-ray emission suggest that the low-energy cutoff of the electron energy distribution lies in the MeV energy range. Here, we consider the role of inverse Compton scattering (ICS) as an alternate emission mechanism in both the ultra- and mildly relativistic regimes. It is known that relativistic electrons are produced during powerful flares; these are capable of upscattering soft photospheric photons to HXR and γ-ray energies. Previously overlooked is the fact that mildly relativistic electrons, generally produced in much greater numbers in flares of all sizes, can upscatter extreme-ultraviolet/soft X-ray photons to HXR energies. We also explore ICS on anisotropic electron distributions and show that the resulting emission can be significantly enhanced over an isotropic electron distribution for favorable viewing geometries. We briefly review results from bremsstrahlung emission and reconsider circumstances under which non-thermal bremsstrahlung or ICS would be favored. Finally, we consider a selection of coronal HXR and γ-ray events and find that in some cases the ICS is a viable alternative emission mechanism.

  3. Terrestrial gamma-ray flash production by lightning

    NASA Astrophysics Data System (ADS)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.

  4. Science Based Stockpile Stewardship

    DTIC Science & Technology

    1994-11-01

    camera, and to do tomography from the data. This is a standard medical imaging procedure (SPECT: Single-photon emission com- puted tomography ). We do...interest remain the obser- vations of extremely rare branching ratios of the decays of muons and pions. 4. Accelerator-based Power Sources (APS). The

  5. Efficient high-harmonic generation from a stable and compact ultrafast Yb-fiber laser producing 100 μJ, 350 fs pulses based on bendable photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Feehan, James S.; Price, Jonathan H. V.; Butcher, Thomas J.; Brocklesby, William S.; Frey, Jeremy G.; Richardson, David J.

    2017-01-01

    The development of an Yb3+-fiber-based chirped-pulse amplification system and the performance in the generation of extreme ultraviolet (EUV) radiation by high-harmonic generation is reported. The fiber laser produced 100 μJ, 350 fs output pulses with diffraction-limited beam quality at a repetition rate of 16.7 kHz. The system used commercial single-mode, polarization maintaining fiber technology. This included a 40 μm core, easily packaged, bendable final amplifier fiber in order to enable a compact system, to reduce cost, and provide reliable and environmentally stable long-term performance. The system enabled the generation of 0.4 μW of EUV at wavelengths between 27 and 80 nm with a peak at 45 nm using xenon gas. The EUV flux of 1011 photons per second for a driving field power of 1.67 W represents state-of-the-art generation efficiency for single-fiber amplifier CPA systems, corresponding to a maximum calculated energy conversion efficiency of 2.4 × 10-7 from the infrared to the EUV. The potential for high average power operation at increased repetition rates and further suggested technical improvements are discussed. Future applications could include coherent diffractive imaging in the EUV, and high-harmonic spectroscopy.

  6. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  7. QED multi-dimensional vacuum polarization finite-difference solver

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  8. Extreme ultraviolet interferometry of warm dense matter in laser plasmas.

    PubMed

    Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B

    2010-11-15

    We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).

  9. Accounting for Chromatic Atmospheric Effects on Barycentric Corrections

    NASA Astrophysics Data System (ADS)

    Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.; Jurgenson, Colby A.

    2017-03-01

    Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s-1 can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380-680 nm) are required to account for this effect at the 10 cm s-1 level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).

  10. Rotational spectroscopy with an optical centrifuge.

    PubMed

    Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery

    2014-03-07

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.

  11. Long-range surface plasmon polariton detection with a graphene photodetector.

    PubMed

    Ee, Ho-Seok; No, You-Shin; Kim, Jinhyung; Park, Hong-Gyu; Seo, Min-Kyo

    2018-06-15

    We present an integration of a single Ag nanowire (NW) with a graphene photodetector and demonstrate an efficient and compact detection of long-range surface plasmon polaritons (SPPs). Atomically thin graphene provides an ideal platform to detect the evanescent electric field of SPPs extremely bound at the interface of the Ag NW and glass substrate. Scanning photocurrent microscopy directly visualizes a polarization-dependent excitation and detects the SPPs. The SPP detection responsivity is readily controlled up to ∼17  mA/W by the drain-source voltage. We believe that the graphene SPP detector will be a promising building block for highly integrated photonic and optoelectronic circuits.

  12. Efficient entanglement distribution over 200 kilometers.

    PubMed

    Dynes, J F; Takesue, H; Yuan, Z L; Sharpe, A W; Harada, K; Honjo, T; Kamada, H; Tadanaga, O; Nishida, Y; Asobe, M; Shields, A J

    2009-07-06

    Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.

  13. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, René; Hippke, Michael, E-mail: heller@mps.mpg.de, E-mail: hippke@ifda.eu

    At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light ( c ) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B,more » and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio ( σ ) similar to graphene (7.6 × 10{sup −4} gram m{sup −2}) in orbit around Proxima is about 13,800 km s{sup −1} (4.6% c ), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s{sup −1}) to Proxima. The size of such a low- σ sail required to carry a payload of 10 grams is about 10{sup 5} m{sup 2} = (316 m){sup 2}. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.« less

  14. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  15. The photons payload, G-494: A learning experience

    NASA Technical Reports Server (NTRS)

    Harris, F. R.; Gattinger, R. L.; Creutzberg, F.; Llewellyn, E. J.

    1988-01-01

    PHOTONS (Photometric Thermospheric Oxygen Nightglow Study) is an optical remote sensing payload developed for Get Away Special (GAS) flight by the National Research Council of Canada. The device is extremely sensitive and is suitable for making measurements of low intensity, aeronomically generated atmospheric emissions in the nadir and the limb and of Shuttle ram glow. The unit uses a sealed canister and UV transmitting viewing ports. During the flight of STS 61-C, PHOTONS received one hour of operation and aeronomic observations were made. Good diagnostic data were obtained and the science part of the experiment malfunctioned. Post flight inspection revealed that the payload was in perfect working order except for total failure of the photomultiplier detectors. The experiment and the payload are described and the flight results are discussed along with the cause of the malfunctions. It is shown that enough was learned from the flight diagnostic data and about the cause of the malfunction to conclude that the engineering flight was successful and that subsequent flight of the PHOTONS payload will be productive.

  16. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  17. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGES

    Faatz, B.; Plönjes, E.; Ackermann, S.; ...

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  18. Optical density and photonic efficiency of silica-supported TiO2 photocatalysts.

    PubMed

    Marugán, J; Hufschmidt, D; Sagawe, G; Selzer, V; Bahnemann, D

    2006-02-01

    Over the last years, many research groups have developed supported TiO2-based materials in order to improve the engineering applications of photocatalytic technologies. However, not many attempts have been made to evaluate the optical behavior of these materials. This work focuses on the study of the photonic efficiencies of silica-supported TiO2 photocatalysts following the photodegradation of dichloroacetic acid (DCA) as model compound. Catalysts with different types of silica support and titania loadings were tested and their activity was found to be in correlation with the results of the clusters size distribution of the TiO2 nanocrystals. The photonic efficiency of the supported photocatalysts depends extremely on the optical density of the solid suspensions. Influence of the textural properties of the support and the titania loading on the optical density as well as on the photonic efficiency of the materials are discussed. The dependence of the absorption of radiation by the suspension on the catalyst concentration is also analyzed.

  19. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  20. Thermal photons in heavy ion collisions at 158 A GeV

    NASA Astrophysics Data System (ADS)

    Dutt, Sunil

    2018-05-01

    The essence of experimental ultra-relativistic heavy ion collision physics is the production and study of strongly interacting matter at extreme energy densities, temperatures and consequent search for equation of state of nuclear matter. The focus of the analysis has been to examine pseudo-rapidity distributions obtained for the γ-like particles in pre-shower photon multiplicity detector. This allows the extension of scaled factorial moment analysis to bin sizes smaller than those accessible to other experimental techniques. Scaled factorial moments are calculated using horizontal corrected and vertical analysis. The results are compared with simulation analysis using VENUS event generator.

  1. Extreme Faint Flux Imaging with an EMCCD

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Carignan, Claude; Gach, Jean-Luc; Guillaume, Christian; Lessard, Simon; Fortin, Charles-Anthony; Blais-Ouellette, Sébastien

    2009-08-01

    An EMCCD camera, designed from the ground up for extreme faint flux imaging, is presented. CCCP, the CCD Controller for Counting Photons, has been integrated with a CCD97 EMCCD from e2v technologies into a scientific camera at the Laboratoire d’Astrophysique Expérimentale (LAE), Université de Montréal. This new camera achieves subelectron readout noise and very low clock-induced charge (CIC) levels, which are mandatory for extreme faint flux imaging. It has been characterized in laboratory and used on the Observatoire du Mont Mégantic 1.6 m telescope. The performance of the camera is discussed and experimental data with the first scientific data are presented.

  2. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C J

    A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-raymore » sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.« less

  4. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.

    PubMed

    Luo, Ye; Chamanzar, Maysamreza; Apuzzo, Aniello; Salas-Montiel, Rafael; Nguyen, Kim Ngoc; Blaize, Sylvain; Adibi, Ali

    2015-02-11

    The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.

  5. Analysis of light incident location and detector position in early diagnosis of knee osteoarthritis by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Chen, Yisha; Yan, Huangping; Wang, Xiaoling

    2017-01-01

    Early detection of knee osteoarthritis (KOA) is meaningful to delay or prevent the onset of osteoarthritis. In consideration of structural complexity of knee joint, position of light incidence and detector appears to be extremely important in optical inspection. In this paper, the propagation of 780-nm near infrared photons in three-dimensional knee joint model is simulated by Monte Carlo (MC) method. Six light incident locations are chosen in total to analyze the influence of incident and detecting location on the number of detected signal photons and signal to noise ratio (SNR). Firstly, a three-dimensional photon propagation model of knee joint is reconstructed based on CT images. Then, MC simulation is performed to study the propagation of photons in three-dimensional knee joint model. Photons which finally migrate out of knee joint surface are numerically analyzed. By analyzing the number of signal photons and SNR from the six given incident locations, the optimal incident and detecting location is defined. Finally, a series of phantom experiments are conducted to verify the simulation results. According to the simulation and phantom experiments results, the best incident location is near the right side of meniscus at the rear end of left knee joint and the detector is supposed to be set near patella, correspondingly.

  6. Photon collider: a four-channel autoguider solution

    NASA Astrophysics Data System (ADS)

    Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.

    2010-07-01

    The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.

  7. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    PubMed

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  8. Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Liu, Jin-Jin; Yin, Yan; Zhu, Xing-Long; Capdessus, Remi; Pegoraro, Francesco; Sheng, Zheng-Ming; McKenna, Paul; Shao, Fu-Qiu

    2017-12-11

    Matter can be transferred into energy and the opposite transformation is also possible by use of high-power lasers. A laser pulse in plasma can convert its energy into γ-rays and then e - e + pairs via the multi-photon Breit-Wheeler process. Production of dense positrons at GeV energies is very challenging since extremely high laser intensity ~10 24  Wcm -2 is required. Here we propose an all-optical scheme for ultra-bright γ-ray emission and dense positron production with lasers at intensity of 10 22-23  Wcm -2 . By irradiating two colliding elliptically-polarized lasers onto two diamondlike carbon foils, electrons in the focal region of one foil are rapidly accelerated by the laser radiation pressure and interact with the other intense laser pulse which penetrates through the second foil due to relativistically induced foil transparency. This symmetric configuration enables efficient Compton back-scattering and results in ultra-bright γ-photon emission with brightness of ~10 25 photons/s/mm 2 /mrad 2 /0.1%BW at 15 MeV and intensity of 5 × 10 23  Wcm -2 . Our first three-dimensional simulation with quantum-electrodynamics incorporated shows that a GeV positron beam with density of 2.5 × 10 22 cm -3 and flux of 1.6 × 10 10 /shot is achieved. Collective effects of the pair plasma may be also triggered, offering a window on investigating laboratory astrophysics at PW laser facilities.

  9. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    NASA Technical Reports Server (NTRS)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  10. Label-free optical detection of C-reactive protein by nanoimprint lithography-based 2D-photonic crystal film.

    PubMed

    Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki

    2016-06-01

    The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental violation of Bell inequalities for multi-dimensional systems

    PubMed Central

    Lo, Hsin-Pin; Li, Che-Ming; Yabushita, Atsushi; Chen, Yueh-Nan; Luo, Chih-Wei; Kobayashi, Takayoshi

    2016-01-01

    Quantum correlations between spatially separated parts of a d-dimensional bipartite system (d ≥ 2) have no classical analog. Such correlations, also called entanglements, are not only conceptually important, but also have a profound impact on information science. In theory the violation of Bell inequalities based on local realistic theories for d-dimensional systems provides evidence of quantum nonlocality. Experimental verification is required to confirm whether a quantum system of extremely large dimension can possess this feature, however it has never been performed for large dimension. Here, we report that Bell inequalities are experimentally violated for bipartite quantum systems of dimensionality d = 16 with the usual ensembles of polarization-entangled photon pairs. We also estimate that our entanglement source violates Bell inequalities for extremely high dimensionality of d > 4000. The designed scenario offers a possible new method to investigate the entanglement of multipartite systems of large dimensionality and their application in quantum information processing. PMID:26917246

  12. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

  13. Polarization control of high order harmonics in the EUV photon energy range.

    PubMed

    Vodungbo, Boris; Barszczak Sardinha, Anna; Gautier, Julien; Lambert, Guillaume; Valentin, Constance; Lozano, Magali; Iaquaniello, Grégory; Delmotte, Franck; Sebban, Stéphane; Lüning, Jan; Zeitoun, Philippe

    2011-02-28

    We report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploited.

  14. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  15. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    PubMed

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Steering attosecond electron wave packets with light.

    PubMed

    Kienberger, R; Hentschel, M; Uiberacker, M; Spielmann, Ch; Kitzler, M; Scrinzi, A; Wieland, M; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2002-08-16

    Photoelectrons excited by extreme ultraviolet or x-ray photons in the presence of a strong laser field generally suffer a spread of their energies due to the absorption and emission of laser photons. We demonstrate that if the emitted electron wave packet is temporally confined to a small fraction of the oscillation period of the interacting light wave, its energy spectrum can be up- or downshifted by many times the laser photon energy without substantial broadening. The light wave can accelerate or decelerate the electron's drift velocity, i.e., steer the electron wave packet like a classical particle. This capability strictly relies on a sub-femtosecond duration of the ionizing x-ray pulse and on its timing to the phase of the light wave with a similar accuracy, offering a simple and potentially single-shot diagnostic tool for attosecond pump-probe spectroscopy.

  17. Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli; Di, Haoran

    2017-04-01

    We explore a scenario that dark matter is a boson condensate created by the misalignment mechanism, in which a spin 0 boson (an axionlike particle) and a spin 1 boson (the dark photon) are considered, respectively. We find that although the sub-MeV dark matter boson is extremely stable, the huge number of dark matter particles in a galaxy halo makes the decaying signal detectable. A galaxy halo is a large structure bounded by gravity with a typical ˜1 012 solar mass, and the majority of its components are made of dark matter. For the axionlike particle case, it decays via ϕ →γ γ , therefore the photon spectrum is monochromatic. For the dark photon case, it is a three body decay A'→γ γ γ . However, we find that the photon spectrum is heavily peaked at M /2 and thus can facilitate observation. We also suggest a physical explanation for the three body decay spectrum by comparing the physics in the decay of orthopositronium. In addition, for both cases, the decaying photon flux can be measured for some regions of parameter space using current technologies.

  18. SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection

    NASA Technical Reports Server (NTRS)

    Yan, Feng

    2006-01-01

    A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.

  19. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.

    PubMed

    Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying

    2015-02-10

    Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.

  20. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  1. Rare-gas-cluster explosions under irradiation by intense short XUV pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K.; Murphy, B.; Kandadai, N.

    High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization ofmore » ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.« less

  2. Spectrographs for astrophotonics.

    PubMed

    Blind, N; Le Coarer, E; Kern, P; Gousset, S

    2017-10-30

    The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D 2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.

  3. Beam On Target (BOT) Produces Gamma Ray Burst (GRB) Fireballs and Afterglows

    NASA Astrophysics Data System (ADS)

    Greyber, H. D.

    1997-12-01

    Unlike the myriads of ad hoc models that have been offered to explain GRB, the BOT process is simply the very common process used worldwide in accelerator laboratories to produce gamma rays. The Strong Magnetic Field (SMF) model postulates an extremely intense, highly relativistic current ring formed during the original gravitational collapse of a distant galaxy when the plasma cloud was permeated by a primordial magnetic field. GRB occur when solid matter (asteroid, white dwarf, neutron star, planet) falls rapidly through the Storage Ring beam producing a very strongly collimated electromagnetic shower, and a huge amount of matter from the target, in the form of a giant, hot, expanding plasma cloud, or ``Fireball,'' is blown off. BOT satisfies all the ``severe constraints imposed on the source of this burst --'' concluded by the CGRO team (Sommer et al, Astrophys. J. 422 L63 (1994)) for the huge intense burst GRB930131, whereas neutron star merger models are ``difficult to reconcile.'' BOT expects the lowest energy gamma photons to arrive very slightly later than higher energy photons due to the time for the shower to penetrate the target. The millisecond spikes in bursts are due to the slender filaments of current that make up the Storage Ring beam. Delayed photons can be explained by a broken target ``rock.'' See H. Greyber in the book ``Compton Gamma Ray Observatory,'' AIP Conf. Proc. 280, 569 (1993).

  4. PEP as a synchrotron radiation source (invited)

    NASA Astrophysics Data System (ADS)

    Bienenstock, A.; Brown, G.; Wiedemann, H.; Winick, H.

    1989-07-01

    The 16-GeV storage ring PEP has characteristics which enable it to operate in modes with very low emittance and to accommodate very long undulators, producing synchrotron radiation at x-ray wavelengths with extremely high brightness and coherent power. Two beamlines, each illuminated by a 2-m long, 77-mm period undulator magnet, are now operational and others are planned. In parasitic operation during colliding-beam runs at 14.5 GeV, these beamlines provide photons above 10 keV with a peak brightness of about 1016 photons/(s mm2 mrad2 ) within a 0.1% bandwidth. In low-emittance tests at 7.1 GeV, horizontal emittances of about 5 nm rad were measured, which is about the same as that planned for the new third-generation x-ray sources. With a current of 15 mA at 7.1 GeV, the present undulators deliver photon beams from 2.7 to 14 keV with a peak brightness of about 1017 . Higher performance levels are expected with the implementation of longer undulators and shorter period undulators. In the longer term, because of its large circumference and long straight sections, PEP could be further developed to achieve even higher performance levels with an emittance below 1 nm rad, very long undulators and picosecond bunches, resulting in one to two orders of magnitude higher brightness and coherent power.

  5. USE OF A SIMPLE THERMALISED NEUTRON FIELD FOR QUALITY ACCEPTANCE OF WHOLE BODY TLDS.

    PubMed

    Gilvin, P J; Baker, S T; Eakins, J S; Tanner, R J

    2016-09-01

    The individual monitoring service of Public Health England (PHE) uses Harshaw™ whole-body and extremity thermoluminescent dosemeters (TLDs) with high-sensitivity lithium fluoride LiF:Mg,Cu,P, together with Harshaw 8800™ automated readers. The neutron-insensitive, (6)Li-depleted variety of TLD material is used by PHE because the service provides separate neutron and photon dosemeters. The neutron dosemeters are not sensitive to photons and vice versa Since insensitivity to neutrons is a supply requirement for TLDs, there is a need to test every new (annual) consignment for this. Because it is thermal neutrons that produce a response in (6)Li TLDs, a thermal field is needed. To this end, PHE has adopted the simple approach of sandwiching the TLDs between two ISO water-filled slab phantoms. In this arrangement, the fast neutrons from an Am-Be source are effectively thermalised. Details of the method are given, together with the results of supporting MCNP calculations and some typical results. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iverson, Adam; Carlson, Carl; Young, Jason

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less

  7. Biophoton research in blood reveals its holistic properties.

    PubMed

    Voeikov, V L; Asfaramov, R; Bouravleva, E V; Novikov, C N; Vilenskaya, N D

    2003-05-01

    Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.

  8. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization.

    PubMed

    Marino, Attilio; Filippeschi, Carlo; Mattoli, Virgilio; Mazzolai, Barbara; Ciofani, Gianni

    2015-02-21

    Living systems such as cells and tissues are extremely sensitive to their surrounding physico-chemical microenvironment. In the field of regenerative medicine and tissue engineering, the maintenance of culture conditions suitable for the formation of proliferation niches, for the self-renewal maintenance of stem cells, or for the promotion of a particular differentiation fate is an important issue that has been addressed using different strategies. A number of investigations suggests that a particular cell behavior can be in vitro resembled by mimicking the corresponding in vivo conditions. In this context, several biomimetic environments have been designed in order to control cell phenotypes and functions. In this review, we will analyze the most recent examples of the control of the in vitro physical micro/nano-environment by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp). The biomedical applications of this versatile and disruptive computer assisted design/manufacturing technology are very wide, and range from the fabrication of biomimetic and nanostructured scaffolds for tissue engineering and regenerative medicine, to the microfabrication of biomedical devices, like ossicular replacement prosthesis and microneedles.

  9. Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Marino, Attilio; Filippeschi, Carlo; Mattoli, Virgilio; Mazzolai, Barbara; Ciofani, Gianni

    2015-02-01

    Living systems such as cells and tissues are extremely sensitive to their surrounding physico-chemical microenvironment. In the field of regenerative medicine and tissue engineering, the maintenance of culture conditions suitable for the formation of proliferation niches, for the self-renewal maintenance of stem cells, or for the promotion of a particular differentiation fate is an important issue that has been addressed using different strategies. A number of investigations suggests that a particular cell behavior can be in vitro resembled by mimicking the corresponding in vivo conditions. In this context, several biomimetic environments have been designed in order to control cell phenotypes and functions. In this review, we will analyze the most recent examples of the control of the in vitro physical micro/nano-environment by exploiting an innovative technique of high resolution 3D photolithography, the two-photon polymerization (2pp). The biomedical applications of this versatile and disruptive computer assisted design/manufacturing technology are very wide, and range from the fabrication of biomimetic and nanostructured scaffolds for tissue engineering and regenerative medicine, to the microfabrication of biomedical devices, like ossicular replacement prosthesis and microneedles.

  10. Holographic Solar Photon Thrusters

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  11. Micro-combs: A novel generation of optical sources

    NASA Astrophysics Data System (ADS)

    Pasquazi, Alessia; Peccianti, Marco; Razzari, Luca; Moss, David J.; Coen, Stéphane; Erkintalo, Miro; Chembo, Yanne K.; Hansson, Tobias; Wabnitz, Stefan; Del'Haye, Pascal; Xue, Xiaoxiao; Weiner, Andrew M.; Morandotti, Roberto

    2018-01-01

    The quest towards the integration of ultra-fast, high-precision optical clocks is reflected in the large number of high-impact papers on the topic published in the last few years. This interest has been catalysed by the impact that high-precision optical frequency combs (OFCs) have had on metrology and spectroscopy in the last decade [1-5]. OFCs are often referred to as optical rulers: their spectra consist of a precise sequence of discrete and equally-spaced spectral lines that represent precise marks in frequency. Their importance was recognised worldwide with the 2005 Nobel Prize being awarded to T.W. Hänsch and J. Hall for their breakthrough in OFC science [5]. They demonstrated that a coherent OFC source with a large spectrum - covering at least one octave - can be stabilised with a self-referenced approach, where the frequency and the phase do not vary and are completely determined by the source physical parameters. These fully stabilised OFCs solved the challenge of directly measuring optical frequencies and are now exploited as the most accurate time references available, ready to replace the current standard for time. Very recent advancements in the fabrication technology of optical micro-cavities [6] are contributing to the development of OFC sources. These efforts may open up the way to realise ultra-fast and stable optical clocks and pulsed sources with extremely high repetition-rates, in the form of compact and integrated devices. Indeed, the fabrication of high-quality factor (high-Q) micro-resonators, capable of dramatically amplifying the optical field, can be considered a photonics breakthrough that has boosted not only the scientific investigation of OFC sources [7-13] but also of optical sensors and compact light modulators [6,14]. In this framework, the demonstration of planar high-Q resonators, compatible with silicon technology [10-14], has opened up a unique opportunity for these devices to provide entirely new capabilities for photonic-integrated technologies. Indeed, it is well acknowledged by the electronics industry that future generations of computer processing chips will inevitably require an extremely high density of copper-based interconnections, significantly increasing the chip power dissipation to beyond practical levels [15-17]; hence, conventional approaches to chip design must undergo radical changes. On-chip optical networks, or optical interconnects, can offer high speed and low energy per-transferred-bit, and micro-resonators are widely seen as a key component to interface the electronic world with photonics. Many information technology industries have recently focused on the development of integrated ring resonators to be employed for electrically-controlled light modulators [14-17], greatly advancing the maturity of micro-resonator technology as a whole. Recently [11-13], the demonstration of OFC sources in micro-resonators fabricated in electronic (i.e. in complementary metal oxide semiconductor (CMOS)) compatible platforms has given micro-cavities an additional appeal, with the possibility of exploiting them as light sources in microchips. This scenario is creating fierce competition in developing highly efficient OFC generators based on micro-cavities which can radically change the nature of information transport and processing. Even in telecommunications, perhaps a more conventional environment for optical technologies, novel time-division multiplexed optical systems will require extremely stable optical clocks at ultra-high pulse repetition-rates towards the THz scale. Furthermore, arbitrary pulse generators based on OFC [18,19] are seen as one of the most promising solutions for this next generation of high-capacity optical coherent communication systems. This review will summarise the recent exciting achievements in the field of micro-combs, namely optical frequency combs based on high-Q micro-resonators, with a perspective on both the potential of this technology, as well as the open questions and challenges that remain.

  12. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  13. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  14. Detectors in Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaj, G.; Carini, G.; Carron, S.

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less

  15. Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: application summary and recent examples

    NASA Astrophysics Data System (ADS)

    Magnusson, Robert; Yoon, Jae Woong; Amin, Mohammad Shyiq; Khaleque, Tanzina; Uddin, Mohammad Jalal

    2014-03-01

    For selected device concepts that are members of an evolving class of photonic devices enabled by guided-mode resonance (GMR) effects, we review physics of operation, design, fabrication, and characterization. We summarize the application potential of this field and provide new and emerging aspects. Our chosen examples include resonance elements with extremely wide reflection bands. Thus, in a multilevel structure with conformal germanium (Ge) films, reflectance exceeds 99% for spectral widths approaching 1100 nm. A simpler design, incorporating a partially etched single Ge layer on a glass substrate, exhibits a high-reflectance bandwidth close to 900 nm. We present a couple of interesting new device concepts enabled by GMRs coexisting with the Rayleigh anomaly. Our example Rayleigh reflector exhibits a wideband high-efficiency flattop spectrum and extremely rapid angular transitions. Moreover, we show that it is possible to fashion transmission filters by excitation of leaky resonant modes at the Rayleigh anomaly in a subwavelength nanograting. A unique transmission spectrum results, which is tightly delimited in angle and wavelength as experimentally demonstrated. We update our application list with new developments including GMR-based coherent perfect absorbers, multiparametric biosensors, and omnidirectional wideband absorbers.

  16. On the p(dis) correction factor for cylindrical chambers.

    PubMed

    Andreo, Pedro

    2010-03-07

    The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor p(dis) for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in p(dis) (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.

  17. LETTER TO THE EDITOR: On the pdis correction factor for cylindrical chambers

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2010-03-01

    The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor pdis for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in pdis (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.

  18. Emerging technologies in Si active photonics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Liu, Jifeng

    2018-06-01

    Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.

  19. Unveiling the High Energy Obscured Universe: Hunting Collapsed Objects Physics

    NASA Technical Reports Server (NTRS)

    Ubertini, P.; Bazzano, A.; Cocchi, M.; Natalucci, L.; Bassani, L.; Caroli, E.; Stephen, J. B.; Caraveo, P.; Mereghetti, S.; Villa, G.

    2005-01-01

    A large part of energy from space is coming from collapsing stars (SN, Hypernovae) and collapsed stars (black holes, neutron stars and white dwarfs). The peak of their energy release is in the hard-X and gamma-ray wavelengths where photons are insensitive to absorption and can travel from the edge the Universe or the central core of the Galaxy without loosing the primordial information of energy, time signature and polarization. The most efficient process to produce energetic photons is gravitational accretion of matter from a "normal" star onto a collapsed companion (LGxMcollxdMacc/dtx( 1Rdisc)-dMacc/dt x c2), exceeding by far the nuclear reaction capability to generate high energy quanta. Thus our natural laboratory for "in situ" investigations are collapsed objects in which matter and radiation co-exist in extreme conditions of temperature and density due to gravitationally bent geometry and magnetic fields. This is a unique opportunity to study the physics of accretion flows in stellar mass and super-massive Black Holes (SMBHs), plasmoids generated in relativistic jets in galactic microQSOs and AGNs, ionised plasma interacting at the touching point of weakly magnetized NS surface, GRB/Supernovae connection, and the mysterious origins of "dark" GRB and X-ray flash.

  20. Evaluation of a 3D diamond detector for medical radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kanxheri, K.; Servoli, L.; Oh, A.; Munoz Sanchez, F.; Forcolin, G. T.; Murphy, S. A.; Aitkenhead, A.; Moore, C. J.; Morozzi, A.; Passeri, D.; Bellini, M.; Corsi, C.; Lagomarsino, S.; Sciortino, S.

    2017-01-01

    Synthetic diamond has several properties that are particularly suited to applications in medical radiation dosimetry. It is tissue equivalent, not toxic and shows a high resistance to radiation damage, low leakage current and stability of response. It is an electrical insulator, robust and realizable in small size; due to these features there are several examples of diamond devices, mainly planar single-crystalline chemical vapor depositation (sCVD) diamond, used for relative dose measurement in photon beams. Thanks to a new emerging technology, diamond devices with 3-dimensional structures are produced by using laser pulses to create graphitic paths in the diamond bulk. The necessary bias voltage to operate such detector decreases considerably while the signal response and radiation resistance increase. In order to evaluate the suitability of this new technology for measuring the dose delivered by radiotherapy beams in oncology a 3D polycrystalline (pCVD) diamond detector designed for single charged particle detection has been tested and the photon beam profile has been studied. The good linearity and high sensitivity to the dose observed in the 3D diamond, opens the way to the possibility of realizing a finely segmented device with the potential for dose distribution measurement in a single exposure for small field dosimetry that nowadays is still extremely challenging.

  1. New concepts in ionospheric modification. Final report, 15 April 1986-30 September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, P.M.; Fraser-Smith, A.C.; Gilchrist, B.E.

    1987-04-01

    This report considers the ionospheric modification that can be produced by energetic charged-particle and photon beams, which are emitted from a platform or vehicle (spacecraft or rockets) located in the ionosphere. The various beams considered include (1) charged-particle beams composed of low-, moderate-, and high-energy electrons, (2) beams of ions and plasma, and (3) photon beams of soft x rays and extreme-ultraviolet radiation. Briefly considered, in addition to the beam topics, is the ionospheric modification produced by the release of neutral gas of high molecular weight from a rapidly moving vehicle such as the Space Shuttle Orbiter. When a rankingmore » is made in terms of the new information that may be obtained, the scale of the modification that may be produced, and the availability of beam sources, ionospheric modification by means of relativistic electron beams appears particularly promising. However, all the methods have their own distinctive features that could make their use desirable under particular circumstances. The modification produced by means of beams of soft x rays, for example, is not strongly dependent on the beam's direction relative to the earth's magnetic field, and thus modification can be produced in regions inaccessible to a charged-particle beam from the same vehicle.« less

  2. A Host-Configured Lithium-Sulfur Cell Built on 3D Nickel Photonic Crystal with Superior Electrochemical Performances.

    PubMed

    Lin, Shengxuan; Yan, Yang; Cai, Zihe; Liu, Lin; Hu, Xiaobin

    2018-04-18

    The insulator of the sulfur cathode and the easy dendrites growth of the lithium anode are the main barriers for lithium-sulfur cells in commercial application. Here, a 3D NPC@S/3D NPC@Li full cell is reported based on 3D hierarchical and continuously porous nickel photonic crystal (NPC) to solve the problems of sulfur cathode and lithium anode at the same time. In this case, the 3D NPC@S cathode can not only offer a fast transfer of electron and lithium ion, but also effectively prevent the dissolution of polysulfides and the tremendous volume change during cycling, and the 3D NPC@Li anode can efficiently inhibit the growth of lithium dendrites and volume expansion, too. As a result, the cell exhibits a high reversible capacity of 1383 mAh g -1 at 0.5 C (the current density of 837 mA g -1 ), superior rate ability (the reversible capacity of 735 mAh g -1 at the extremely high current density of 16 750 mA g -1 ) with excellent coulombic efficiency of about 100% and an excellent cycle life over 500 cycles with only about 0.026% capacity loss per cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Grapefruit photonic crystal fiber long period gratings sensor for DNT sensing application

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Li, Jingke; Zhu, Tenglong

    2016-10-01

    The detection of explosives and their residues is of great importance in public health, antiterrorism and homeland security applications. The vapor pressures of most explosive compounds are extremely low and attenuation of the available vapor is often great due to diffusion in the environment, making direct vapor detection difficult. In reality bomb dogs are still the most efficient way to quickly detect explosives on the spot. Many formulations of TNT-based explosives contain DNT residues. The use of long period gratings (LPGs) formed in grapefruit photonic crystal fiber (PCF) with thin-film overlay coated on the inner surface of air holes for gas sensing is demonstrated. A gas analyteinduced index variation of the thin-film immobilized on the inner surface of the holey region of the fiber can be observed by a shift of the resonance wavelength. We demonstrate a 2,4-dinitrotoluene (DNT) sensor using grapefruit PCF-LPGs. Coating with gas-sensitive thin-film on the inner surface of the air holes of the grapefruit PCF-LPG could provide a promising platform for rapid highly sensitive gas sensing. A rapid and highly sensitive detection of DNT has been demonstrated using the grapefruit PCF-LPG sensor to show the feasibility of the proposed approach.

  4. Simulations of ultrafast x-ray laser experiments

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Andreev, A. A.; Appel, K.; Branco, J.; Briggs, R.; Bussmann, M.; Buzmakov, A.; Garten, M.; Grund, A.; Huebl, A.; Jurek, Z.; Loh, N. D.; Nakatsutsumi, M.; Samoylova, L.; Santra, R.; Schneidmiller, E. A.; Sharma, A.; Steiniger, K.; Yakubov, S.; Yoon, C. H.; Yurkov, M. V.; Zastrau, U.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-06-01

    Simulations of experiments at modern light sources, such as optical laser laboratories, synchrotrons, and free electron lasers, become increasingly important for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of matter at extreme conditions. We have implemented a platform for complete start-to-end simulations of various types of photon science experiments, tracking the radiation from the source through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and registration in a photon detector. This tool allows researchers and facility operators to simulate their experiments and instruments under real life conditions, identify promising and unattainable regions of the parameter space and ultimately make better use of valuable beamtime. In this paper, we present an overview about status and future development of the simulation platform and discuss three applications: 1.) Single-particle imaging of biomolecules using x-ray free electron lasers and optimization of x-ray pulse properties, 2.) x-ray scattering diagnostics of hot dense plasmas in high power laser-matter interaction and identification of plasma instabilities, and 3.) x-ray absorption spectroscopy in warm dense matter created by high energy laser-matter interaction and pulse shape optimization for low-isentrope dynamic compression.

  5. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    PubMed Central

    Aad, Roy; Couteau, Christophe; Lérondel, Gilles

    2015-01-01

    We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET) on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented. PMID:28788025

  6. Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber.

    PubMed

    Londero, Pablo; Venkataraman, Vivek; Bhagwat, Amar R; Slepkov, Aaron D; Gaeta, Alexander L

    2009-07-24

    We demonstrate extremely efficient four-wave mixing with gains greater than 100 at microwatt pump powers and signal-to-idler conversion of 50% in Rb vapor confined to a hollow-core photonic band-gap fiber. We present a theoretical model that demonstrates such efficiency is consistent with the dimensions of the fiber and the optical depths attained. This is, to our knowledge, the largest four-wave mixing gain observed at such low total pump powers and the first demonstrated example of four-wave mixing in an alkali-metal vapor system with a large (approximately 30 MHz) ground state decoherence rate.

  7. Squeezing and its graphical representations in the anharmonic oscillator model

    NASA Astrophysics Data System (ADS)

    Tanaś, R.; Miranowicz, A.; Kielich, S.

    1991-04-01

    The problem of squeezing and its graphical representations in the anharmonic oscillator model is considered. Explicit formulas for squeezing, principal squeezing, and the quasiprobability distribution (QPD) function are given and illustrated graphically. Approximate analytical formulas for the variances, extremal variances, and QPD are obtained for the case of small nonlinearities and large numbers of photons. The possibility of almost perfect squeezing in the model is demonstrated and its graphical representations in the form of variance lemniscates and QPD contours are plotted. For large numbers of photons the crescent shape of the QPD contours is hardly visible and quite regular ellipses are obtained.

  8. Non-destructive imaging of fragments of historical beeswax seals using high-contrast X-ray micro-radiography and micro-tomography with large area photon-counting detector array.

    PubMed

    Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek

    2016-12-01

    Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers.

    PubMed

    Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2015-11-02

    Engaging both theory and experiment, we investigate resonant photonic lattices in which the duty cycle tends to zero. Corresponding dielectric nanowire grids are mostly empty space if operated as membranes in vacuum or air. These grids are shown to be effective wideband reflectors with impressive polarizing properties. We provide computed results predicting nearly complete reflection and attendant polarization extinction in multiple spectral regions. Experimental results with Si nanowire arrays with 10% duty cycle show ~200-nm-wide band of high reflection for one polarization state and free transmission for the orthogonal state. These results agree quantitatively with theoretical predictions. It is fundamentally extremely significant that the wideband spectral expressions presented can be generated in these minimal systems.

  10. A comparison between the processing of Titan aerosols analogs by ionizing photons and energetic cosmic rays.

    NASA Astrophysics Data System (ADS)

    De Araujo Vasconcelos, Fredson; Pilling, Sergio; Boduch, Philippe; Alexandre Souza Bergantini, M.; Ding, M. Jingjie J.; Rothard, Hermann; Robson Rocha, Will

    Titan, the largest satellite of Saturn, has an atmosphere mainly made of N_{2} and CH_{4} and includes traces of several simple organic compounds. This atmosphere also partly consists of haze and erosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over Titańs surface. In this work, we investigate the possible effects produced by ionizing photons (vacuum ultraviolet and soft X-rays) and cosmic ray analogs (15.7 MeV (16) O (+5) ) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. For photons, the experiments have been performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. For ions, the investigation was performed at the Grand Accelerateur National d’Ions Lourds (GANIL) Caen, France. In-situ sample analyses were performed by a Fourier transform infrared spectrometer at different fluences. During the sample processing, the infrared spectra have presented several new organic molecules, including nitriles, HCN and aromatic CN compounds. The processing of the sample by fast ions has enhanced the formation of daughter species in the Titan aerosol sample when compared with the products from the employing VUV and soft X-rays photons. The destruction cross section of the parent species was determined, as well as, the formation cross section for some selected daughter species. Molecular Half-lives were extrapolated to the Titańs environment. This investigation confirms previous results which showed that the organic chemistry on frozen moons inside Solar system can be very complex and extremely rich in prebiotic compounds. Authors would like to tanks the agencies FAPESP (JP-2009/18304-0), CAPES-Cofecub (569/2007), INCT-A and CNPq for the financial support.

  11. Large-scale ordering of nanoparticles using viscoelastic shear processing.

    PubMed

    Zhao, Qibin; Finlayson, Chris E; Snoswell, David R E; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P; Petukhov, Andrei V; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J

    2016-06-03

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles.

  12. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  13. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.

    PubMed

    Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V

    2014-01-01

    The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

  14. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.

    PubMed

    Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-06-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.

  15. Large-scale ordering of nanoparticles using viscoelastic shear processing

    PubMed Central

    Zhao, Qibin; Finlayson, Chris E.; Snoswell, David R. E.; Haines, Andrew; Schäfer, Christian; Spahn, Peter; Hellmann, Goetz P.; Petukhov, Andrei V.; Herrmann, Lars; Burdet, Pierre; Midgley, Paul A.; Butler, Simon; Mackley, Malcolm; Guo, Qixin; Baumberg, Jeremy J.

    2016-01-01

    Despite the availability of elaborate varieties of nanoparticles, their assembly into regular superstructures and photonic materials remains challenging. Here we show how flexible films of stacked polymer nanoparticles can be directly assembled in a roll-to-roll process using a bending-induced oscillatory shear technique. For sub-micron spherical nanoparticles, this gives elastomeric photonic crystals termed polymer opals showing extremely strong tunable structural colour. With oscillatory strain amplitudes of 300%, crystallization initiates at the wall and develops quickly across the bulk within only five oscillations. The resulting structure of random hexagonal close-packed layers is improved by shearing bidirectionally, alternating between two in-plane directions. Our theoretical framework indicates how the reduction in shear viscosity with increasing order of each layer accounts for these results, even when diffusion is totally absent. This general principle of shear ordering in viscoelastic media opens the way to manufacturable photonic materials, and forms a generic tool for ordering nanoparticles. PMID:27255808

  16. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    PubMed Central

    Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741

  17. Progress towards the development of a source of entangled photons for Space

    NASA Astrophysics Data System (ADS)

    Fedrizzi, Alessandro; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2007-03-01

    Quantum entanglement offers exciting applications like quantum computing, quantum teleportation and quantum cryptography. Ground based quantum communication schemes in optical fibres however are limited to a distance of the order of ˜100 km. In order to extend this limit to a global scale we are working on the realization of an entanglement-based quantum communication transceiver for space deployment. Here we report on a compact, extremely bright source for polarization entangled photons meeting the scientific requirements for a potential space to ground optical link. The pair production rate exceeds 4*10̂6 pairs/s at just 20mW of laser diode pump power. Furthermore, we will present the results of various experiments proving the feasibility of quantum information in space, including a weak coherent pulse single-photon downlink from a LEO satellite and the distribution of entanglement over a 144km free space link, using ESAs optical ground station.

  18. Diamond-based single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C.-H.; Greentree, A. D.; Prawer, S.

    2011-07-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  19. Micro-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-Yen, Kongpop; Ehsan, Negar; Caltado, Giuseppe; Wollock, Edward

    2012-01-01

    We describe the micro-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the micro strip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  20. Mu-Spec: A High Performance Compact Spectrometer for Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Hsieh, Wen-Ting; Moseley, Harvey; Stevenson, Thomas; Brown, Ari; Patel, Amil; U-yen, Kongpop; Ehsan, Negar; Cataldo, Giuseppe; Wollack, Ed

    2012-01-01

    We describe the Mu-Spec, an extremely compact high performance spectrometer for the submillimeter and millimeter spectral ranges. We have designed a fully integrated submillimeter spectrometer based on superconducting microstrip technology and fabricated its critical elements. Using low loss transmission lines, we can produce a fully integrated high resolution submillimeter spectrometer on a single four inch Si wafer. A resolution of 500 can readily be achieved with standard fabrication tolerance, higher with phase trimming. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using a built-in planar filter, and the light is detected using photon counting Microwave Kinetic Inductance Detectors (MKID). We will discus the design principle of the instrument, describe its technical advantages, and report the progress on the development of the instrument.

  1. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE PAGES

    Fan, D.; Huang, J. W.; Zeng, X. L.; ...

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  2. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Huang, J. W.; Zeng, X. L.

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  3. Microwave Photonics Systems Based on Whispering-gallery-mode Resonators

    PubMed Central

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.

    2013-01-01

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358

  4. Microwave photonics systems based on whispering-gallery-mode resonators.

    PubMed

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  5. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazka, Ivan, E-mail: prochiva@gmail.com; Blazej, Josef; Kodet, Jan

    2016-05-15

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stabilitymore » is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of −55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.« less

  6. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  7. Accounting for Chromatic Atmospheric Effects on Barycentric Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.

    2017-03-01

    Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s{sup −1} can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380–680 nm) are required to account for this effect at the 10 cm s{sup −1} level,more » with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).« less

  8. From Motion to Photons in 80 Microseconds: Towards Minimal Latency for Virtual and Augmented Reality.

    PubMed

    Lincoln, Peter; Blate, Alex; Singh, Montek; Whitted, Turner; State, Andrei; Lastra, Anselmo; Fuchs, Henry

    2016-04-01

    We describe an augmented reality, optical see-through display based on a DMD chip with an extremely fast (16 kHz) binary update rate. We combine the techniques of post-rendering 2-D offsets and just-in-time tracking updates with a novel modulation technique for turning binary pixels into perceived gray scale. These processing elements, implemented in an FPGA, are physically mounted along with the optical display elements in a head tracked rig through which users view synthetic imagery superimposed on their real environment. The combination of mechanical tracking at near-zero latency with reconfigurable display processing has given us a measured average of 80 µs of end-to-end latency (from head motion to change in photons from the display) and also a versatile test platform for extremely-low-latency display systems. We have used it to examine the trade-offs between image quality and cost (i.e. power and logical complexity) and have found that quality can be maintained with a fairly simple display modulation scheme.

  9. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    PubMed

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of photon escape on diagnostic diagrams for H II regions

    NASA Astrophysics Data System (ADS)

    Giammanco, C.; Beckman, J. E.; Cedrés, B.

    2005-08-01

    In this article we first outline the mounting evidence that a significant fraction of the ionizing photons emitted by OB stars within H ii regions escape from their immediate surroundings, i.e from what is normally defined as the H ii region, and explain how an H ii region structure containing high density contrast inhomogeneities facilitates this escape. Next we describe sets of models containing inhomogeneities which are used to predict tracks in the commonly used diagnostic diagrams (based on ratios of emission lines) whose only independent variable is the photon escape fraction, ξ. We show that the tracks produced by the models in two of the most cited of these diagrams conform well to the distribution of observed data points, with the models containing optically thick inhomogeneities (“CLUMPY” models) yielding somewhat better agreement than those with optically thin inhomogeneities (“FF” models). We show how variations in the ionization parameter U, derived from emission line ratios, could be due to photon escape, such that for a given region from which 50% of its ionizing photons leak out we would derive the same value of U as for a region with no photon escape but with an input ionizing flux almost an order of magnitude higher. This effect will occur whether the individual inhomogeneities are optically thick or thin. Photon escape will also lead to a change in the derived value of the radiation hardness parameter, and this change differs significantly between models with optically thin and optically thick clumps. Using a rather wide range of assumptions about the filling factor of dense clumps we find, for a selected set of regions observed in M 51 by Díaz et al. (1991) an extreme limiting range of computed photon escape fractions between near zero and 90%, but with the most plausible values ranging between 30% and 50%. We show, using oxygen as the test element, that models with different assumptions about the gas inhomogeneity will tend to give variations in the abundance values derived from diagnostic diagrams, but do not claim here to have a fully developed set of diagnostic tools to improve abundance determinations made in this way. We do present an important step towards an eventual improvement in abundance determinations: the combination of line ratios with the absolute Hα luminosity of a given H ii region, which allows us to determine the photon escape fraction, and hence resolve the degeneracy between U and ξ. We use observational data of this type show that a large set of H ii regions in M 101 observed by Cedrés & Cepa (2002) all show significant photon escape with values of ξ ranging up to 60% in the “leakiest” cases.

  11. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    PubMed

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  12. Physics at high energy photon photon colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanowitz, M.S.

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  13. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  14. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: Toward multidimensional spectroscopy involving XUV excitations

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.

    2016-11-01

    Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.

  15. High resolution, low h{nu} photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suga, S.; Sekiyama, A.; Funabashi, G.

    2010-10-15

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF{sub 2}, and LiF), which can supply three strong lines near the photon energy of hnyu h{nu}=8.4, 10.0, and 11.6 eV, with the h{nu} resolution of better than 600 {mu}eV for photoelectron spectroscopy. Its performance is demonstrated onmore » some materials by means of both angle-integrated and angle-resolved measurements.« less

  16. Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons

    PubMed Central

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; Viola, Daniele; Narita, Akimitsu; Hu, Yunbin; Feng, Xinliang; Hohenester, Ulrich; Molinari, Elisa; Prezzi, Deborah; Müllen, Klaus; Cerullo, Giulio

    2016-01-01

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics. PMID:26984281

  17. Compensation of high order harmonic long quantum-path attosecond chirp

    NASA Astrophysics Data System (ADS)

    Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.

    2017-12-01

    We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.

  18. The GKSS beamlines at PETRA III and DORIS III

    NASA Astrophysics Data System (ADS)

    Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.

    2008-08-01

    Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.

  19. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

  20. One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Lefa, E.; Dimitrakoudis, S.; Mastichiadis, A.

    2014-02-01

    Aims: We investigate the role of the second synchrotron self-Compton (SSC) photon generation to the multiwavelength emission from the compact regions of sources that are characterized as misaligned blazars. For this, we focus on the nearest high-energy emitting radio galaxy Centaurus A and we revisit the one-zone SSC model for its core emission. Methods: We have calculated analytically the peak luminosities of the first and second SSC components by first deriving the steady-state electron distribution in the presence of synchrotron and SSC cooling, and then by using appropriate expressions for the positions of the spectral peaks. We have also tested our analytical results against those derived from a numerical code where the full emissivities and cross-sections were used. Results: We show that the one-zone SSC model cannot account for the core emission of Centaurus A above a few GeV, where the peak of the second SSC component appears. We thus propose an alternative explanation for the origin of the high-energy (≳0.4 GeV) and TeV emission, where these are attributed to the radiation emitted by a relativistic proton component through photohadronic interactions with the photons produced by the primary leptonic component. We show that the required proton luminosities are not extremely high, i.e. ~1043 erg/s, provided that the injection spectra are modelled by a power law with a high value of the lower energy cutoff. Finally, we find that the contribution of the core emitting region of Cen A to the observed neutrino and ultra-high-energy cosmic-ray fluxes is negligible.

  1. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.

    PubMed

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K

    2018-06-13

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.

  2. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  3. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE PAGES

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...

    2018-05-21

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  4. New generation attosecond light sources

    NASA Astrophysics Data System (ADS)

    Chang, Zenghu

    2017-04-01

    Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers centered at 800 nm have been the workhorse for the first generation attosecond light sources in the last 16 years. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum could be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. The new generation attosecond soft X-ray sources open the door for studying electron dynamics with element specificity through core to valence transitions. NSF (1068604), ARO (W911NF-14-1-0383), AFOSR (FA9550-15-1-0037, FA9550-16-1-0013), DARPA-PULSE (W31P4Q1310017).

  5. Decoherence in attosecond photoionization.

    PubMed

    Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin

    2011-02-04

    The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy.

  6. Extremely small-core photonic crystal fiber fusion splicing with a single-mode fiber

    NASA Astrophysics Data System (ADS)

    Tiburcio, Bruno D.; Fernandes, Gil M.; Pinto, Armando N.

    2013-11-01

    We present a low-loss fusion splicing of a non-linear photonic-crystal fiber (NL-PCF) with a single-mode fiber (SMF), helped by an intermediate fiber, using a electric-arc splicer. We also analysed the splice loss between SMF and intermediate fiber, as a function of the electrical discharge duration, to achieve a low-loss transition between SMF and intermediate fiber, through a thermally expanded core splice (TEC). The NL-PCF has a external cladding diameter of 105 μm, a core diameter of 1.7 μm and mode-field diameter (MFD) of 1.5 μm. We also performed mechanical strength tests to verify the robustness of the splice joints obtained.

  7. Plotting Rates of Photosynthesis as a Function of Light Quantity.

    ERIC Educational Resources Information Center

    Dean, Rob L.

    1996-01-01

    Discusses methods for plotting rates of photosynthesis as a function of light quantity. Presents evidence that suggests that empirically derived conversion factors, which are used to convert foot candles to photon fluence rates, should be used with extreme caution. Suggests how rate data are best plotted when any kind of light meter is not…

  8. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.

    PubMed

    Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-01-15

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.

  9. Free-space quantum key distribution with a high generation rate potassium titanyl phosphate waveguide photon-pair source

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip R.; Floyd, Bertram; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.

    2016-09-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nm pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nm photons are up-converted to a single 532-nm photon in the first stage. In the second stage, the 532-nm photon is down-converted to an entangled photon-pair at 800 nm and 1600 nm which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free space QKD experiment with the B92 protocol are also presented.

  10. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; hide

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  11. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  12. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE PAGES

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...

    2017-09-26

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  13. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and transverse spatial resolution resulting from both (1) and (3). Furthermore, because of significantly lower laser pulse energies, the microaltimeter is inherently more eyesafe to observers on the ground and less prone to internal optical damage, which can terminate a space mission prematurely.

  14. A photonic chip based frequency discriminator for a high performance microwave photonic link.

    PubMed

    Marpaung, David; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel

    2010-12-20

    We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.

  15. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The JEM-EUSO Mission to Explore the Extreme Universe

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Takahashi, Y.; Kajino, F.; Mase, H.; Santangelo, A.; Teshima, M.; Parizot, E.; Gorodetzky, P.; Catalano, O.; Picozza, P.; Casolino, M.; Panasyuk, M.; Khrenov, B. A.; Park, I. H.; Peter, T.; Medina-Tanco, G.; Rodriguez-Frias, D.; Szabelski, J.; Bobik, P.

    2010-06-01

    The JEM-EUSO mission explores the origin of the extreme energy comic-rays (EECRs) above 1020 eV and challenges to the limit of the basic physics, through the observations, of their arrival directions and energies. It is designed to observe more than 1,000 events of EECRs above 7×1019 eV in its five-year operation with an exposure larger than 1 million km2.sr.year. The super-wide-field (60 degrees) telescope with a diameter of about 2.5 m looks down the atmosphere of the night-side of the earth to detect near UV photons (330-400 nm, both fluorescent and Cherenkov photons) emitted from the giant air-shower produced by an EECR. The arrival direction map with 1,000 events naturally tells us the origin of the EECRs and allows us to identify the EECR sources to known astronomical objects. The comparison among the energy spectra of the spatially resolved individual sources will clarify the acceleration/emission mechanism, and also finally confirm the Greisen-Zatse'pin-Kuzmin process for the validation of Lorentz invariance up to γ~1011. Neutral components (neutrinos and gamma rays) can also be detected as well, if their fluxes are high enough. The JEM-EUSO mission is planned to be launched by a H2B rocket about 2015 and transferred to ISS by H2 Transfer Vehicle (HTV). It will be attached to the external experiment platform of ``KIBO'' which completed July 2009 by STS-127 mission of the space shuttle. The first flight of HTV by H2B rocket was successfully done in September and October 2009.

  17. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  18. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  19. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  20. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  1. Nanostructures based on quantum dots for application in promising methods of single- and multiphoton imaging and diagnostics

    NASA Astrophysics Data System (ADS)

    Nabiev, I. R.

    2017-01-01

    Molecules recognizing biomarkers of diseases (monoclonal antibodies (monoABs)) are often too large for biomedical applications, and the conditions that are used to bind them with nanolabels lead to disordered orientation of monoABs with respect to the nanoparticle surface. Extremely small nanoprobes, designed via oriented conjugation of quantum dots (QDs) with single-domain antibodies (sdABs) derived from the immunoglobulin of llama and produced in the E. coli culture, have a hydrodynamic diameter less than 12 nm and contain equally oriented sdAB molecules on the surface of each QD. These nanoprobes exhibit excellent specificity and sensitivity in quantitative determination of a small number of cells expressing biomarkers. In addition, the higher diffusion coefficient of sdABs makes it possible to perform immunohistochemical analysis in bulk tissue, inaccessible for conventional monoABs. The necessary conditions for implementing high-quality immunofluorescence diagnostics are a high specificity of labeling and clear differences between the fluorescence of nanoprobes and the autofluorescence of tissues. Multiphoton micros-copy with excitation in the near-IR spectral range, which is remote from the range of tissue autofluorescence excitation, makes it possible to solve this problem and image deep layers in biological tissues. The two-photon absorption cross sections of CdSe/ZnS QDs conjugated with sdABs exceed the corresponding values for organic fluorophores by several orders of magnitude. These nanoprobes provide clear discrimination between the regions of tumor and normal tissues with a ratio of the sdAB fluorescence to the tissue autofluorescence upon two-photon excitation exceeding that in the case of single-photon excitation by a factor of more than 40. The data obtained indicate that the sdAB-QD conjugates used as labels provide the same, or even better, quality as the "gold standard" of immunohistochemical diagnostics. The developed nanoprobes are expected to find wide application in high-efficiency imaging of tumor and multiparameter diagnostics.

  2. From RHIC to LHC: Lessons on the QGP

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich

    2011-10-01

    Recent data from heavy-ion collisions at RHIC and LHC, together with significant advances in theory, have allowed us to make significant first steps in proceeding from a qualitative understanding of high energy collision dynamics to a quantitative characterization of the transport properties of the hot and dense QCD matter created in these collisions. The almost perfectly liquid nature of the Quark-Gluon Plasma (QGP) created at RHIC has recently also been confirmed at the much higher LHC energies, and we can now constrain the specific QGP shear viscosity (η / s) QGP to within a factor of 2.5 of its conjectured lower quantum bound. Viscous hydrodynamics, coupled to a microscopic hadron cascade at late times, has proven to be an extremely successful and highly predictive model for the QGP evolution at RHIC and LHC. The experimental discovery of higher order harmonic flow coefficients and their theoretically predicted differential sensitivity to shear viscosity promises additional gains in precision by about a factor 5 in (η / s) QGP for the very near future. The observed modification of jets and suppression of high-pT hadrons confirms the picture of the QGP as a strongly coupled colored liquid, and recent LHC data yield strong constraints on parton energy loss models, putting significant strain on some theoretical approaches, tuned to RHIC data, that are based on leading-order perturbative QCD. Thermal photon radiation provides important cross-checks on the early stages of dynamical evolution models and constrains the initial QGP temperature, but the recently measured strong photon elliptic flow challenges our present understanding of photon emission rates in the hadronic phase. Recent progress in developing a complete theoretical model for all stages of the QGP fireball expansion, from strong fluctuating gluon fields at its beginning to final hadronic freeze-out, and remaining challenges will be discussed. Work supported by DOE (grants DE-SC0004286 and DE-SC0004104 (JET Collaboration)).

  3. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition.

    PubMed

    Richmond, Amos; Cheng-Wu, Zhang; Zarmi, Yair

    2003-07-01

    The interrelationships between the optical path in flat plate reactors and photosynthetic productivity were elucidated. In preliminary works, a great surge in photosynthetic productivity was attained in flat plate photoreactors with an ultra short (e.g. 1.0 cm) optical path, in which extremely high culture density was facilitated by vigorous stirring and strong light. This surge in net photosynthetic efficiency was associated with a very significant increase in the optimal population density facilitated by the very short optical path (OP). A salient feature of these findings concerns the necessity to address growth inhibition (GI) which becomes increasingly manifested as cell concentration rises above a certain, species-specific, threshold (e.g. 1-2 billion cells of Nannochloropsis sp. ml(-1)). Indeed, ultrahigh cell density cultures may be established and sustained only if growth inhibition is continuously, or at least frequently, removed. Nannochloropsis culture from which GI was not removed, yielded 60 mg(-1) h(-1), yielding 260 mg l(-1) h(-1) when GI was removed. Two basic factors crucial for obtaining maximal photosynthetic productivity and efficiency in strong photon irradiance are defined: (1) areal cell density must be optimal, as high as possible (cell growth inhibition having been eliminated), insuring the average photon irradiance (I(av)) available per cell is falling at the end of the linear phase of the PI(av) curve, relating rate of photosynthesis to I(av), i.e. approximately photon irradiance per cell. (2) The light-dark (L-D) cycle period, which is determined by travel time of cells between the dark and the light volumes along the optical path, should be made as short as practically feasible, so as to approach, as much as possible the photosynthetic unit turnover time. This is obtainable in flat plate reactors by reducing the OP to as small a magnitude as is practically feasible.

  4. On-demand transfer of trapped photons on a chip.

    PubMed

    Konoike, Ryotaro; Nakagawa, Haruyuki; Nakadai, Masahiro; Asano, Takashi; Tanaka, Yoshinori; Noda, Susumu

    2016-05-01

    Photonic crystal nanocavities, which have modal volumes of the order of a cubic wavelength in the material, are of great interest as flexible platforms for manipulating photons. Recent developments in ultra-high quality factor nanocavities with long photon lifetimes have encouraged us to develop an ultra-compact and flexible photon manipulation technology where photons are trapped in networks of such nanocavities. The most fundamental requirement is the on-demand transfer of photons to and from the trapped states of arbitrary nanocavities. We experimentally demonstrate photon transfer between two nearly resonant nanocavities at arbitrary positions on a chip, triggered by the irradiation of a third nonresonant nanocavity using an optical control pulse. We obtain a high transfer efficiency of ~90% with a photon lifetime of ~200 ps.

  5. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  6. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  7. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    PubMed Central

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761

  8. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less

  9. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples

    DOE PAGES

    Sun, Tao; Fezzaa, Kamel

    2016-06-17

    Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less

  10. Graphene-based vertical-junction diodes and applications

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Ho

    2017-09-01

    In the last decade, graphene has received extreme attention as an intriguing building block for electronic and photonic device applications. This paper provides an overview of recent progress in the study of vertical-junction diodes based on graphene and its hybrid systems by combination of graphene and other materials. The review is especially focused on tunnelling and Schottky diodes produced by chemical doping of graphene or combination of graphene with various semiconducting/ insulating materials such as hexagonal boron nitrides, Si-quantum-dots-embedded SiO2 multilayers, Si wafers, compound semiconductors, Si nanowires, and porous Si. The uniqueness of graphene enables the application of these convergence structures in high-efficient devices including photodetectors, solar cells, resonant tunnelling diodes, and molecular/DNA sensors.

  11. Optical Spectroscopy and Photophysics of Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Brus, Louis

    2006-03-01

    We explore the fundamental nature and dynamics of excited electronic states in SWNT. Psec luminescence and photobleaching dynamics of SWNTs in micellar solution show that non-radiative Auger recombination is extremely fast. At low pH, nanotube surface endoperoxides protonate and introduce holes that quench the luminescence. At higher concentration these holes also bleach the band gap optical absorption. Near infrared two photon luminescence excitation spectra quantitatively reveal the importance of excitons. In order to characterize excited states in both metallic and semiconducting SWNTs at the single-tube level, we detect white-light Rayleigh scattering from individual tubes suspended over an open slit in a substrate. Diagnostic spectra with high signal to noise are obtained in just a few minutes.

  12. Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering.

    PubMed

    Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung

    2018-01-17

    Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

  13. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  14. Efficient and robust quantum random number generation by photon number detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, M. J.; Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE; Thomas, O.

    2015-08-17

    We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. Wemore » extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.« less

  15. Synchronization of optical photons for quantum information processing.

    PubMed

    Makino, Kenzo; Hashimoto, Yosuke; Yoshikawa, Jun-Ichi; Ohdan, Hideaki; Toyama, Takeshi; van Loock, Peter; Furusawa, Akira

    2016-05-01

    A fundamental element of quantum information processing with photonic qubits is the nonclassical quantum interference between two photons when they bunch together via the Hong-Ou-Mandel (HOM) effect. Ultimately, many such photons must be processed in complex interferometric networks. For this purpose, it is essential to synchronize the arrival times of the flying photons and to keep their purities high. On the basis of the recent experimental success of single-photon storage with high purity, we demonstrate for the first time the HOM interference of two heralded, nearly pure optical photons synchronized through two independent quantum memories. Controlled storage times of up to 1.8 μs for about 90 events per second were achieved with purities that were sufficiently high for a negative Wigner function confirmed with homodyne measurements.

  16. Synchronization of optical photons for quantum information processing

    PubMed Central

    Makino, Kenzo; Hashimoto, Yosuke; Yoshikawa, Jun-ichi; Ohdan, Hideaki; Toyama, Takeshi; van Loock, Peter; Furusawa, Akira

    2016-01-01

    A fundamental element of quantum information processing with photonic qubits is the nonclassical quantum interference between two photons when they bunch together via the Hong-Ou-Mandel (HOM) effect. Ultimately, many such photons must be processed in complex interferometric networks. For this purpose, it is essential to synchronize the arrival times of the flying photons and to keep their purities high. On the basis of the recent experimental success of single-photon storage with high purity, we demonstrate for the first time the HOM interference of two heralded, nearly pure optical photons synchronized through two independent quantum memories. Controlled storage times of up to 1.8 μs for about 90 events per second were achieved with purities that were sufficiently high for a negative Wigner function confirmed with homodyne measurements. PMID:27386536

  17. Electron heated target temperature measurements in petawatt laser experiments based on extreme ultraviolet imaging and spectroscopy.

    PubMed

    Ma, T; Beg, F N; MacPhee, A G; Chung, H-K; Key, M H; Mackinnon, A J; Patel, P K; Hatchett, S; Akli, K U; Stephens, R B; Chen, C D; Freeman, R R; Link, A; Offermann, D T; Ovchinnikov, V; Van Woerkom, L D

    2008-10-01

    Three independent methods (extreme ultraviolet spectroscopy, imaging at 68 and 256 eV) have been used to measure planar target rear surface plasma temperature due to heating by hot electrons. The hot electrons are produced by ultraintense laser-plasma interactions using the 150 J, 0.5 ps Titan laser. Soft x-ray spectroscopy in the 50-400 eV region and imaging at the 68 and 256 eV photon energies give a planar deuterated carbon target rear surface pre-expansion temperature in the 125-150 eV range, with the rear plasma plume averaging a temperature approximately 74 eV.

  18. Note: Enhancement of the extreme ultraviolet emission from a potassium plasma by dual laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Yamaguchi, Mami; Otsuka, Takamitsu

    2014-09-15

    Emission spectra from multiply charged potassium ions ranging from K{sup 3+} to K{sup 5+} have been obtained in the extreme ultraviolet (EUV) spectral region. A strong emission feature peaking around 38 nm, corresponding to a photon energy of 32.6 eV, is the dominant spectral feature at time-averaged electron temperatures in the range of 8−12 eV. The variation of this emission with laser intensity and the effects of pre-pulses on the relative conversion efficiency (CE) have been explored experimentally and indicate that an enhancement of about 30% in EUV CE is readily attainable.

  19. Transient Absorption of Attosecond Pulses by He Atoms in Presence of Near-Infrared Laser Fields: A TDDFT Analysis of Sub-Cycle Temporal Structures

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2013-05-01

    We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.

  20. THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xia; Yuan, Ding; Xia, Chun

    We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHImore » vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.« less

  1. Relation between electron- and photon-caused oxidation in EUVL optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 µA of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.

  2. Relation between electron- and photon-caused oxidation in EUVL optics

    NASA Astrophysics Data System (ADS)

    Malinowski, Michael E.; Steinhaus, Charles A.; Meeker, Donald E.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Extreme ultraviolet (EUV)-induced oxidation of silicon-capped, [Mo/Si] multilayer mirrors in the presence of background levels of water vapor is recognized as one of the most serious threats to multilayer lifetime since oxidation of the top silicon layer is an irreversible process. The current work directly compares the oxidation on a silicon-capped, [Mo/Si] multilayers caused by EUV photons with the oxidation caused by 1 keV electrons in the presence of the same water vapor environment (2 x 10-6 Torr). Similar, 4 nm, silicon-capped, [Mo/Si] multilayer mirror samples were exposed to photons (95.3 eV) + water vapor at the ALS, LBNL, and also to a 1 keV electron beam + water vapor in separate experimental systems. The results of this work showed that the oxidation produced by ~1 ´A of e-beam current was found to be equivalent to that produced by ~1 mW of EUV exposure. These results will help allow the use of 1 keV electrons beams, instead of EUV photons, to perform environmental testing of multilayers in a low-pressure water environment and to more accurately determine projected mirror lifetimes based on the electron beam exposures.

  3. Design and fabrication of nano-imprint templates using unique pattern transforms and primitives

    NASA Astrophysics Data System (ADS)

    MacDonald, Susan; Mellenthin, David; Rentzsch, Kevin; Kramer, Kenneth; Ellenson, James; Hostetler, Tim; Enck, Ron

    2005-11-01

    Increasing numbers of MEMS, photonic, and integrated circuit manufacturers are investigating the use of Nano-imprint Lithography or Step and Flash Imprint Lithography (SFIL) as a lithography choice for making various devices and products. Their main interests in using these technologies are the lack of aberrations inherent in traditional optical reduction lithography, and the relative low cost of imprint tools. Since imprint templates are at 1X scale, the small sizes of these structures have necessitated the use of high-resolution 50KeV, and 100KeV e-beam lithography tools to build these templates. For MEMS and photonic applications, the structures desired are often circles, arches, and other non-orthogonal shapes. It has long been known that both 50keV, and especially 100keV e-beam lithography tools are extremely accurate, and can produce very high resolution structures, but the trade off is long write times. The main drivers in write time are shot count and stage travel. This work will show how circles and other non-orthogonal shapes can be produced with a 50KeV Variable Shaped Beam (VSB) e-beam lithography system using unique pattern transforms and primitive shapes, while keeping the shot count and write times under control. The quality of shapes replicated into the resist on wafer using an SFIL tool will also be presented.

  4. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    NASA Technical Reports Server (NTRS)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  5. Frequency metrology using highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  6. Cryogenic fiber optic assemblies for spaceflight environments: design, manufacturing, testing, and integration

    NASA Astrophysics Data System (ADS)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-09-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat- 2); and others will be included.

  7. Bright perspectives for nuclear photonics

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.

    2014-05-01

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.

  8. Optical interconnection networks for high-performance computing systems

    NASA Astrophysics Data System (ADS)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  9. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

    NASA Astrophysics Data System (ADS)

    Li, Xu; Chen, Zhigang; Taflove, Allen; Backman, Vadim

    2005-01-01

    We report the phenomenon of ultra-enhanced backscattering of visible light by nanoparticles facilitated by the 3-D photonic nanojet a sub-diffraction light beam appearing at the shadow side of a plane-waveilluminated dielectric microsphere. Our rigorous numerical simulations show that backscattering intensity of nanoparticles can be enhanced up to eight orders of magnitude when locating in the nanojet. As a result, the enhanced backscattering from a nanoparticle with diameter on the order of 10 nm is well above the background signal generated by the dielectric microsphere itself. We also report that nanojet-enhanced backscattering is extremely sensitive to the size of the nanoparticle, permitting in principle resolving sub-nanometer size differences using visible light. Finally, we show how the position of a nanoparticle could be determined with subdiffractional accuracy by recording the angular distribution of the backscattered light. These properties of photonic nanojets promise to make this phenomenon a useful tool for optically detecting, differentiating, and sorting nanoparticles.

  10. Diffraction, chopping, and background subtraction for LDR

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.

    1988-01-01

    The Large Deployable Reflector (LDR) will be an extremely sensitive infrared telescope if the noise due to the photons in the large thermal background is the only limiting factor. For observations with a 3 arcsec aperture in a broadband at 100 micrometers, a 20-meter LDR will emit 10(exp 12) per second, while the photon noise limited sensitivity in a deep survey observation will be 3,000 photons per second. Thus the background subtraction has to work at the 1 part per billion level. Very small amounts of scattered or diffracted energy can be significant if they are modulated by the chopper. The results are presented for 1-D and 2-D diffraction calculations for the lightweight, low-cost LDR concept that uses an active chopping quaternary to correct the wavefront errors introduced by the primary. Fourier transforms were used to evaluate the diffraction of 1 mm waves through this system. Unbalanced signals due to dust and thermal gradients were also studied.

  11. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Gao, Weilu; Li, Xinwei; Bamba, Motoaki; Kono, Junichiro

    2018-06-01

    Non-perturbative coupling of photons and excitons produces hybrid particles, exciton-polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon-exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications.

  12. Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator

    PubMed Central

    Gu, Zhiyuan; Liu, Shuai; Sun, Shang; Wang, Kaiyang; Lyu, Quan; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Nanowire based hybrid plasmonic structure plays an important role in achieving nanodevices, especially for the wide band-gap materials. However, the conventional schemes of nanowire based devices such as nano-resonators are usually isolated from the integrated nano-network and have extremely low quality (Q) factors. Here we demonstrate the transmission of waves across a gap in hybrid plasmonic waveguide, which is termed as “photon hopping”. Based on the photon hopping, we show that the emissions from nanodevices can be efficiently collected and conducted by additional nanowires. The collection ratio can be higher than 50% for a wide range of separation distance, transverse shift, and tilt. Moreover, we have also explored the possibility of improving performances of individual devices by nano-manipulating the nanowire to a pseudo-ring. Our calculations show that both Q factor and Purcell factor have been increased by more than an order of magnitude. We believe that our researches will be essential to forming nanolasers and the following nano-networks.

  13. The NuSTAR view on hard-TeV BL Lacs

    NASA Astrophysics Data System (ADS)

    Costamante, L.; Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Tagliaferri, G.; Khangulyan, D.

    2018-07-01

    Hard-TeV BL Lacs are a new type of blazars characterized by a hard intrinsic TeV spectrum, locating the peak of their gamma-ray emission in the spectral energy distribution (SED) above 2-10 TeV. Such high energies are problematic for the Compton emission, using a standard one-zone leptonic model. We study six examples of this new type of BL Lacs in the hard X-ray band with NuSTAR. Together with simultaneous observations with the Neil Gehrels Swift Observatory, we fully constrain the peak of the synchrotron emission in their SED, and test the leptonic synchrotron self-Compton (SSC) model. We confirm the extreme nature of five objects also in the synchrotron emission. We do not find evidence of additional emission components in the hard X-ray band. We find that a one-zone SSC model can in principle reproduce the extreme properties of both peaks in the SED, from X-ray up to TeV energies, but at the cost of (i) extreme electron energies with very low radiative efficiency, (ii) conditions heavily out of equipartition (by three to five orders of magnitude), and (iii) not accounting for the simultaneous UV data, which then should belong to a different emission component, possibly the same as the far-IR (WISE) data. We find evidence of this separation of the UV and X-ray emission in at least two objects. In any case, the TeV electrons must not `see' the UV or lower energy photons, even if coming from different zones/populations, or the increased radiative cooling would steepen the very high energies spectrum.

  14. Scattering Tools for Nanostructure Phonon Engineering

    DTIC Science & Technology

    2013-09-25

    characterization of phonons in nanomaterials, such as Raman scattering, are sensitive only to phonon modes with wavevectors of extremely small magnitude...Fundamentally the wavevectors that can be probed by Raman scattering are limited by the small momentum of photons in the visible spectrum. Our work...serious characterization challenge because existing experimental techniques for the characterization of phonons in nanomaterials, such as Raman

  15. Test of the electric charge conservation law with Borexino detector

    NASA Astrophysics Data System (ADS)

    Vishneva, A.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D' Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schonert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    The new limit on the electron lifetime is obtained from data of the Borexino experiment. The expected signal from the e → γν decay mode is a 256 keV photon detected in liquid scintillator. Because of the extremely low radioactive background level in the Borexino detector it was possible to improve the previous measurement by two orders of magnitude.

  16. Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons

    DOE PAGES

    Soavi, Giancarlo; Dal Conte, Stefano; Manzoni, Cristian; ...

    2016-03-17

    Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron–hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton–exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈250meV, in very goodmore » agreement with theoretical results from quantum Monte Carlo simulations. As a result, these observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics.« less

  17. Broadband noise limit in the photodetection of ultralow jitter optical pulses.

    PubMed

    Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C

    2014-11-14

    Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.

  18. Tunable orbital angular momentum in high-harmonic generation

    PubMed Central

    Gauthier, D.; Ribič, P. Rebernik; Adhikary, G.; Camper, A.; Chappuis, C.; Cucini, R.; DiMauro, L. F.; Dovillaire, G.; Frassetto, F.; Géneaux, R.; Miotti, P.; Poletto, L.; Ressel, B.; Spezzani, C.; Stupar, M.; Ruchon, T.; De Ninno, G.

    2017-01-01

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light–matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms. PMID:28378741

  19. GASP-Galway astronomical Stokes polarimeter

    NASA Astrophysics Data System (ADS)

    Kyne, G.; Sheehan, B.; Collins, P.; Redfern, M.; Shearer, A.

    2010-06-01

    The Galway Astronomical Stokes Polarimeter (GASP) is an ultra-high-speed, full Stokes, astronomical imaging polarimeter based upon a Division of Amplitude Polarimeter. It has been developed to resolve extremely rapid stochastic (~ms) variations in objects such as optical pulsars, magnetars and magnetic cataclysmic variables. The polarimeter has no moving parts or modulated components so the complete Stokes vector can be measured from just one exposure - making it unique to astronomy. The time required for the determination of the full Stokes vector is limited only by detector efficiency and photon fluxes. The polarimeter utilizes a modified Fresnel rhomb that acts as a highly achromatic quarter wave plate and a beamsplitter (referred to as an RBS). We present a description of how the DOAP works, some of the optical design for the polarimeter. Calibration is an important and difficult issue with all polarimeters, but particularly in astronomical polarimeters. We give a description of calibration techniques appropriate to this type of polarimeter.

  20. Hybrid photonic-crystal fiber

    NASA Astrophysics Data System (ADS)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  1. An energy- and depth-dependent model for x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallas, Brandon D.; Boswell, Jonathan S.; Badano, Aldo

    In this paper, we model an x-ray imaging system, paying special attention to the energy- and depth-dependent characteristics of the inputs and interactions: x rays are polychromatic, interaction depth and conversion to optical photons is energy-dependent, optical scattering and the collection efficiency depend on the depth of interaction. The model we construct is a random function of the point process that begins with the distribution of x rays incident on the phosphor and ends with optical photons being detected by the active area of detector pixels to form an image. We show how the point-process representation can be used tomore » calculate the characteristic statistics of the model. We then simulate a Gd{sub 2}O{sub 2}S:Tb phosphor, estimate its characteristic statistics, and proceed with a signal-detection experiment to investigate the impact of the pixel fill factor on detecting spherical calcifications (the signal). The two extremes possible from this experiment are that SNR{sup 2} does not change with fill factor or changes in proportion to fill factor. In our results, the impact of fill factor is between these extremes, and depends on the diameter of the signal.« less

  2. Reduction of metal artifacts: beam hardening and photon starvation effects

    NASA Astrophysics Data System (ADS)

    Yadava, Girijesh K.; Pal, Debashish; Hsieh, Jiang

    2014-03-01

    The presence of metal-artifacts in CT imaging can obscure relevant anatomy and interfere with disease diagnosis. The cause and occurrence of metal-artifacts are primarily due to beam hardening, scatter, partial volume and photon starvation; however, the contribution to the artifacts from each of them depends on the type of hardware. A comparison of CT images obtained with different metallic hardware in various applications, along with acquisition and reconstruction parameters, helps understand methods for reducing or overcoming such artifacts. In this work, a metal beam hardening correction (BHC) and a projection-completion based metal artifact reduction (MAR) algorithms were developed, and applied on phantom and clinical CT scans with various metallic implants. Stainless-steel and Titanium were used to model and correct for metal beam hardening effect. In the MAR algorithm, the corrupted projection samples are replaced by the combination of original projections and in-painted data obtained by forward projecting a prior image. The data included spine fixation screws, hip-implants, dental-filling, and body extremity fixations, covering range of clinically used metal implants. Comparison of BHC and MAR on different metallic implants was used to characterize dominant source of the artifacts, and conceivable methods to overcome those. Results of the study indicate that beam hardening could be a dominant source of artifact in many spine and extremity fixations, whereas dental and hip implants could be dominant source of photon starvation. The BHC algorithm could significantly improve image quality in CT scans with metallic screws, whereas MAR algorithm could alleviate artifacts in hip-implants and dentalfillings.

  3. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  4. Blazar 3C 66A: Another extragalactic source of ultra-high-energy gamma-ray photons

    NASA Astrophysics Data System (ADS)

    Neshpor, Yu. I.; Stepanyan, A. A.; Kalekin, O. P.; Fomin, V. P.; Chalenko, N. N.; Shitov, V. G.

    1998-03-01

    he observations of the object 3C 66A which were carried out with the GT-48 gamma-ray telescope at the Crimean Astrophysical Observatory in November-December 1996 revealed a flux of ultra-high-energy (>10^12 eV) gamma-ray photons from this blazar. According to preliminary estimates, the photon flux is (31) 10^11 photons cm^-2 s^-1. The blazar 3C 66A is the third extragalactic object from which a flux of ultra- high-energy gamma-ray photons was detected. Fluxes of gamma-ray photons were previously detected from the galaxies Mk 421 and Mk 501 at the Whipple observatory. This result provides further evidence that active processes proceed in blazars which are accompanied by the generation of cosmic rays responsible for the emission of gamma-ray photons.

  5. High-order dispersion effects in two-photon interference

    NASA Astrophysics Data System (ADS)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  6. Steep Hard-X-ray Spectra Indicate Extremely High Accretion Rates in Weak Emission-Line Quasars

    NASA Astrophysics Data System (ADS)

    Marlar, Andrea; Shemmer, Ohad; Anderson, Scott F.; Brandt, W. Niel; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Luo, Bin; Plotkin, Richard; Richards, Gordon T.; Schneider, Donald P.; Wu, Jianfeng

    2018-06-01

    We present XMM-Newton imaging spectroscopy of ten weak emission-line quasars (WLQs) at 0.928 ≤ z ≤ 3.767, six of which are radio quiet and four which are radio intermediate. The new X-ray data enabled us to measure the hard-X-ray power-law photon index (Γ) in each source with relatively high accuracy. These measurements allowed us to confirm previous reports that WLQs have steeper X-ray spectra, therefore indicating higher accretion rates with respect to "typical" quasars. A comparison between the Γ values of our radio-quiet WLQs and those of a carefully-selected, uniform sample of 84 quasars shows that the first are significantly higher, at the ≥ 3σ level. Collectively, the four radio-intermediate WLQs have lower Γ values with respect to the six radio-quiet WLQs, as may be expected if the spectra of the first group are contaminated by X-ray emission from a jet. These results suggest that, in the absence of significant jet emission along our line of sight, WLQs constitute the extreme high end of the accretion rate distribution in quasars. We detect soft excess emission in our lowest-redshift radio-quiet WLQ, in agreement with previous findings suggesting that the prominence of this feature is associated with a high accretion rate. We have not detected signatures of Compton reflection, Fe Kα lines, or strong variability between two X-ray epochs in any of our WLQs.

  7. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  8. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  9. Search for Ultra-High Energy Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homola, Piotr

    One of key scientific objectives of the Pierre Auger Observatory is the search for ultra-high energy photons. Such photons could originate either in the interactions of energetic cosmic-ray nuclei with the cosmic microwave background (so-called cosmogenic photons) or in the exotic scenarios, e.g. those assuming a production and decay of some hypothetical super-massive particles. The latter category of models would imply relatively large fluxes of photons with ultra-high energies at Earth, while the former, involving interactions of cosmic-ray nuclei with the microwave background - just the contrary: very small fractions. The investigations on the data collected so far in themore » Pierre Auger Observatory led to placing very stringent limits to ultra-high energy photon fluxes: below the predictions of the most of the exotic models and nearing the predicted fluxes of the cosmogenic photons. In this paper the status of these investigations and perspectives for further studies are summarized.« less

  10. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  11. Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, O A; Iskhakov, T Sh; Penin, A N

    2006-10-31

    We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less

  12. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  13. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  14. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  15. System and method for clock synchronization and position determination using entangled photon pairs

    NASA Technical Reports Server (NTRS)

    Shih, Yanhua (Inventor)

    2010-01-01

    A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.

  16. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic-crystal reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).

  17. Spectral energy distribution of Markarian 501: Quiescent state versus extreme outburst

    DOE PAGES

    Acciari, V. A.; Arlen, T.; Aune, T.; ...

    2011-02-03

    Here, the very high energy (VHE; E > 100 GeV) blazar Markarian 501 (Mrk 501) has a well-studied history of extreme spectral variability and is an excellent laboratory for studying the physical processes within the jets of active galactic nuclei. However, there are few detailed multiwavelength studies of Mrk 501 during its quiescent state, due to its low luminosity. A short-term multiwavelength study of Mrk 501 was coordinated in 2009 March, focusing around a multi-day observation with the Suzaku X-ray satellite and including γ-ray data from VERITAS, MAGIC, and the Fermi Gamma-ray Space Telescope with the goal of providing amore » well-sampled multiwavelength baseline measurement of Mrk 501 in the quiescent state. The results of these quiescent-state observations are compared to the historically extreme outburst of 1997 April 16, with the goal of examining variability of the spectral energy distribution (SED) between the two states. The derived broadband SED shows the characteristic double-peaked profile. We find that the X-ray peak shifts by over two orders of magnitude in photon energy between the two flux states while the VHE peak varies little. The limited shift in the VHE peak can be explained by the transition to the Klein-Nishina (KN) regime. Synchrotron self-Compton models are matched to the data and the implied KN effects are explored.« less

  18. Imaging with a small number of photons

    PubMed Central

    Morris, Peter A.; Aspden, Reuben S.; Bell, Jessica E. C.; Boyd, Robert W.; Padgett, Miles J.

    2015-01-01

    Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel. PMID:25557090

  19. On-demand semiconductor single-photon source with near-unity indistinguishability.

    PubMed

    He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei

    2013-03-01

    Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

  20. Vertically Emitting Indium Phosphide Nanowire Lasers.

    PubMed

    Xu, Wei-Zong; Ren, Fang-Fang; Jevtics, Dimitars; Hurtado, Antonio; Li, Li; Gao, Qian; Ye, Jiandong; Wang, Fan; Guilhabert, Benoit; Fu, Lan; Lu, Hai; Zhang, Rong; Tan, Hark Hoe; Dawson, Martin D; Jagadish, Chennupati

    2018-06-13

    Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.

  1. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  2. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip

    PubMed Central

    Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.

    2015-01-01

    Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267

  3. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for moderate to high flux rates where dark noise and CIC are insignificant noise sources. Research into decreasing the dark count rate of GM-APDs will lead to development of imaging arrays that are competitive for low light level imaging and spectroscopy applications in the near future.

  4. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  5. New generation of Cherenkov counters

    NASA Astrophysics Data System (ADS)

    Giomataris, Y.; Charpak, G.; Peskov, V.; Sauli, F.

    1992-12-01

    Experimental results with a parallel plate avalanche chamber (PPAC) having a CsI photocathode and pad array readout are reported. High gains in excess of 10 5 have been obtained with He gas at atmospheric pressure and traces of CH 4 or CF 4 quencher. Such light gas mixtures extend the transparency for the Cherenkov light to the extreme UV region and allow detector operation with very low sensitivity to the ionization produced by minimum ionizing particles. A hadron blind detector (HBD) is discussed which exploits the broad photon energy bandwidth (≈ 10 eV) and the high Cherenkov threshold ( pπ = 15 GeV). This fast detector, since it has a good spatial resolution, can be used at the future Large Hadron Collider (LHC) or the Superconductivity Super Collider (SSC) either as an efficient electron tagger, rejecting hadrons faking electrons in the calorimeter, or as a pretracker giving fast electron and high-energy muon signature and momentum estimation. Other potential applications in the domain of Cherenkov light detection are also discussed.

  6. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.« less

  7. Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.

    2016-12-01

    The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.

  8. Projection optics box

    DOEpatents

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  9. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  10. Changing optical band structure with single photons

    NASA Astrophysics Data System (ADS)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  11. Temperature Insensitive and Radiation Hard Photonics

    DTIC Science & Technology

    2014-03-19

    M. COOK , Lt Col, USAF Deputy Chief, Spacecraft Technology Division Space Vehicles Directorate This report is published in the interest of...Approved for Public Release; distribution is unlimited. ii LIST OF FIGURES Figure 1. OTDM Pulse Multiplexer for Increasing the Output Repetition Rate...QDMLL) for use in extreme environments where ionizing radiation is a substantial threat. Mode-Locked lasers generate a train of optical pulses that have

  12. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  13. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  14. Non-Gaussian statistics of extreme events in stimulated Raman scattering: The role of coherent memory and source noise

    NASA Astrophysics Data System (ADS)

    Monfared, Yashar E.; Ponomarenko, Sergey A.

    2017-10-01

    We explore theoretically and numerically extreme event excitation in stimulated Raman scattering in gases. We consider gas-filled hollow-core photonic crystal fibers as a particular system realization. We show that moderate amplitude pump fluctuations obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian statistics as coherent seed Stokes pulses are amplified on propagation along the fiber. We reveal the crucial role that coherent memory effects play in causing non-Gaussian statistics of the system. We discover that extreme events can occur even at the initial stage of stimulated Raman scattering when one can neglect energy depletion of an intense, strongly fluctuating Gaussian pump source. Our analytical results in the undepleted pump approximation explicitly illustrate power-law probability density generation as the input pump noise is transferred to the output Stokes pulses.

  15. MaRIE 1.0: The Matter-Radiation Interactions in Extremes Project, and the Challenge of Dynamic Mesoscale Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William; Barber, John L.; Kober, Edward Martin

    The Matter-Radiation Interactions in Extremes project will build the experimental facility for the time-dependent control of dynamic material performance. An x-ray free electron laser at up to 42-keV fundamental energy and with photon pulses down to sub-nanosecond spacing, MaRIE 1.0 is designed to meet the challenges of time-dependent mesoscale materials science. Those challenges will be outlined, the techniques of coherent diffractive imaging and dynamic polycrystalline diffraction described, and the resulting requirements defined for a coherent x-ray source. The talk concludes with the role of the MaRIE project and science in the future.

  16. Classical and low-light-level detection and pulse characterization using optical-frequency mixers

    NASA Astrophysics Data System (ADS)

    Langrock, Carsten

    2007-12-01

    Classical all-optical signal processing for telecommunication applications greatly benefits from the availability of highly efficient optical frequency (OF) mixers, the optical analogue of radio-frequency mixers used in RF signal processing. The OF mixers presented in this dissertation are based on reverse-proton-exchange (RPE) periodically-poled lithium niobate (PPLN) waveguides, one of the most efficient and versatile material systems in the field of nonlinear optics to date. Taking advantage of fabrication technologies developed in Prof. Martin Fejer's group over the past two decades, we expand the range of applications for these OF mixers to low-light-level signal detection and pulse characterization. We demonstrate high-speed high-efficiency single-photon counting at telecommunication wavelengths, used for the implementation of record-breaking quantum-key distribution systems, which allow unconditionally secure data transfer. In collaboration with researchers at the MIT Lincoln Laboratory, we also show that the very same technology can be used to achieve an order of magnitude improvement in the sensitivity of classical few-photon free-space communication links based on pulse-position modulation. These extremely sensitive receivers (1 photon/bit) are being developed to facilitate deep-space communication over several hundred million kilometers between Mars and Earth. OF mixers can also be used to fully characterize, potentially weak, ultrashort pulses, as well as time-magnify segments of ultra-high-speed data streams to be detected in real time by conventional streak cameras and oscilloscopes. We will present a novel implementation of both collinear autocorrelation as well as parametric temporal imaging (in collaboration with the Lawrence Livermore National Laboratory) based on mode-multiplexing in integrated asymmetric Y-junctions in combination with linearly-chirped apodized quasi-phasematching gratings. For the first time, background-free autocorrelation, frequency-resolved optical gating, and temporal imaging can be realized in single-polarization-guiding collinear waveguide structures at sub-60-aJ (400 photons/pulse) levels. Recently, guided-wave OF mixers have also become important for precision metrology applications based on frequency-comb generation (FCG) (i.e. optical ruler) using ultrashort pulses. The most compact and energy efficient FCG systems use fiber lasers. In collaboration with IMRA America, Inc., we demonstrate that RPE PPLN waveguides can be used to implement fully integrated fiber-laser-based FCG systems taking advantage of unprecedented octave-spanning spectral broadening of the input pulses in combination with simultaneous phase sensing inside the same waveguide.

  17. Asymptotic expansion of pair production probability in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Arai, Takashi

    2015-12-01

    We study particle creation in a single pulse of an electric field in scalar quantum electrodynamics. We investigate the parameter condition for the case where the dynamical pair creation and Schwinger mechanism respectively dominate. Then, an asymptotic expansion for the particle distribution in terms of the time interval of the applied electric field is derived. We compare our result with particle creation in a constant electric field with a finite-time interval. These results coincide in an extremely strong field, however they differ in general field strength. We interpret the reason of this difference as a nonperturbative effect of high-frequency photons in external electric fields. Moreover, we find that the next-to-leading-order term in our asymptotic expansion coincides with the derivative expansion of the effective action.

  18. Nuclear astrophysics at FRANZ

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.

    2018-01-01

    The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.

  19. High spectral purity silicon ring resonator photon-pair source

    NASA Astrophysics Data System (ADS)

    Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.

    2015-05-01

    Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.

  20. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    5 Figure 2: The diagram of the counter- propagating scheme. FP: fiber port ( free - space to fiber). PBS: polarization beam splitter. LP: Linear... entangled photon -pairs using the highly nonlinear fiber in a counter- propagating scheme (CPS). With the HNLF at room temperature, we obtain a... propagating scheme for generating polarization entangled photon pairs at telecom wavelengths. We use 10 m of highly nonlinear fiber. We measure a

Top