The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed
Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling
2013-01-01
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898
Post-disturbance sediment recovery: Implications for watershed resilience
NASA Astrophysics Data System (ADS)
Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.
2018-03-01
Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.
Earth's portfolio of extreme sediment transport events
NASA Astrophysics Data System (ADS)
Korup, Oliver
2012-05-01
Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage for fuelling rather than buffering high sediment transport rates.
NASA Astrophysics Data System (ADS)
Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.
2010-12-01
A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).
Temporal variability in the suspended sediment load and streamflow of the Doce River
NASA Astrophysics Data System (ADS)
Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva
2017-10-01
Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.
Kim, Sung-Han; Lee, Jae Seong; Hyun, Jung-Ho
2017-07-15
We investigated environmental impact of large-scale dyke on the sediment geochemistry, sulfate reduction rates (SRRs), sediment oxygen demand (SOD) and potential contribution of benthic nutrient flux (BNF) to primary production in the Yeongsan River estuary, Yellow Sea. The sediment near the dyke (YE1) with high organic carbon (C org ) content (>4%, dry wt.) was characterized by extremely high SOD (327mmolm -2 d -1 ) and SRRs (91-140mmolm -2 d -1 ). The sulfate reduction accounted for 73% of C org oxidation, and was responsible for strikingly high concentrations of NH 4 + (7.7mM), PO 4 3- (67μM) and HS - (487μM) in pore water. The BNF at YE1 accounted for approximately 200% of N and P required for primary production in the water column. The results present one of the most extreme cases that the construction of an artificial dyke may have profound impacts on the biogeochemical and ecological processes in coastal ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Botavin, D.; Golosov, V.; Konoplev, A.; Wakiyama, Y.
2018-01-01
Detailed study of different sections of floodplain was undertaken in the Niida River basin (Fukushima Prefecture) after an extreme flood event which occurred in the middle of September 2015. The upstream part of the basin is located in the area with very high level of radionuclide contamination after the accident at Fukushima Dai-ichi NPP. Field and GIS methods were used, including direct measurement of the depth of fresh sediment and its area, with soil descriptions for the typical floodplain sections, measurement of dose rates, interpretation of space images for a few time intervals (before and after flood event) with the following evaluation of spatial changes in deposition for different floodplain sections. In addition, results of quantitative assessment of sedimentation rates and soil radionuclide contamination were applied for understanding the effect of extreme flood on alluvial soils of the different sections. It was established that the maximum sedimentation rates (20-50 cm/event) occurred in the middle part of the lower reach of the Niida River and in some locations of the upper reaches. Dose rates had reduced considerably for all the areas with high sedimentation because the top soil layers with high radionuclide contamination were buried under fresh sediments produced mostly due to bank erosion and mass movements.
Role of storms and forest practices in sedimentation of an Oregon Coast Range lake
NASA Astrophysics Data System (ADS)
Richardson, K.; Hatten, J. A.; Wheatcroft, R. A.; Guerrero, F. J.
2014-12-01
The design of better management practices in forested watersheds to face climate change and the associated increase in the frequency of extreme events requires a better understanding of watershed responses to extreme events in the past and also under management regimes. One of the most sensitive watershed processes affected is sediment yield. Lake sediments record events which occur in a watershed and provide an opportunity to examine the interaction of storms and forest management practices in the layers of the stratigraphy. We hypothesize that timber harvesting and road building since the 1900s has resulted in increases in sedimentation; however, the passage of the Oregon Forest Practices Act (OFPA) in 1972 has led to a decrease in sedimentation. Sediment cores were taken at Loon Lake in the Oregon Coast Range. The 32-m deep lake captures sediment from a catchment highly impacted by recent land use and episodic Pacific storms. We can use sedimentological tools to measure changes in sediment production as motivated by extreme floods before settlement, during a major timber harvesting period, and after installation of forestry Best Management Practices. Quantification of changes in particle size and elemental composition (C, N, C/N) throughout the cores can elucidate changes in watershed response to extreme events, as can changes in layer thickness. Age control in the cores is being established by Cesium-137 and radiocarbon dating. Given the instrumental meteorological data and decadal climate reconstructions, we will disentangle climate driven signals from changes in land use practices. The sediment shows distinct laminations and varying thickness of layers throughout the cores. Background deposition is composed of thin layers (<0.5 cm) of fine silts and clays, punctuated by thicker layers (3-25 cm) every 10 to 75 cm. These thick layers consist of distinctly textured units, generally fining upward. We interpret the thick layers in Loon Lake to be deposited by sediment-producing floods throughout much of the 1500-year lifespan of this lake. We will explore the relationship between sedimentation, land use, and climate forcing events to determine if the OFPA is having an effect on reducing sedimentation rates as a result of extreme magnitude storm events.
Can Concentration - Discharge Relationships Diagnose Material Source During Extreme Events?
NASA Astrophysics Data System (ADS)
Karwan, D. L.; Godsey, S.; Rose, L.
2017-12-01
Floods can carry >90% of the basin material exported in a given year as well as alter flow pathways and material sources. In turn, sediment and solute fluxes can increase flood damages and negatively impact water quality and integrate physical and chemical weathering of landscapes and channels. Concentration-discharge (C-Q) relationships are used to both describe export patterns as well as compute them. Metrics for describing C-Q patterns and inferring their controls are vulnerable to infrequent sampling that affects how C-Q relationships are interpolated and interpreted. C-Q relationships are typically evaluated from multiple samples, but because hydrological extremes are rare, data are often unavailable for extreme events. Because solute and sediment C-Q relationships likely respond to changes in hydrologic extremes in different ways, there is a pressing need to define their behavior under extreme conditions, including how to properly sample to capture these patterns. In the absence of such knowledge, improving load estimates in extreme floods will likely remain difficult. Here we explore the use of C-Q relationships to determine when an event alters a watershed system such that it enters a new material source/transport regime. We focus on watersheds with sediment and discharge time series include low-frequency and/or extreme events. For example, we compare solute and sediment patterns in White Clay Creek in southeastern Pennsylvania across a range of flows inclusive of multiple hurricanes for which we have ample ancillary hydrochemical data. TSS is consistently mobilized during high flow events, even during extreme floods associated with hurricanes, and sediment fingerprinting indicates different sediment sources, including in-channel remobilization and landscape erosion, are active at different times. In other words, TSS mobilization in C-Q space is not sensitive to the source of material being mobilized. Unlike sediments, weathering solutes in this watershed tend to exhibit a relatively chemostatic C-Q pattern, except during the runoff-dominated Hurricane Irene, when they exhibit a diluting C-Q pattern. Finally, we summarize the vulnerability of these observations to shifts in sampling effort to highlight the utility and limitations of C-Q-derived export patterns.
Estimation of local extreme suspended sediment concentrations in California Rivers.
Tramblay, Yves; Saint-Hilaire, André; Ouarda, Taha B M J; Moatar, Florentina; Hecht, Barry
2010-09-01
The total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40-60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable. Copyright 2010 Elsevier B.V. All rights reserved.
Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K
2016-09-01
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Microbial communities and their predicted metabolic functions in a desiccating acid salt lake.
Zaikova, Elena; Benison, Kathleen C; Mormile, Melanie R; Johnson, Sarah Stewart
2018-05-01
The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.
Suspended sediment transport in the freshwater reach of the Hudson river estuary in eastern New York
Wall, G.R.; Nystrom, E.A.; Litten, S.
2008-01-01
Deposition of Hudson River sediment into New York Harbor interferes with navigation lanes and requires continuous dredging. Sediment dynamics at the Hudson estuary turbidity maximum (ETM) have received considerable study, but delivery of sediment to the ETM through the freshwater reach of the estuary has received relatively little attention and few direct measurements. An acoustic Doppler current profiler was positioned at the approximate limit of continuous freshwater to develop a 4-year time series of water velocity, discharge, suspended sediment concentration, and suspended sediment discharge. This data set was compared with suspended sediment discharge data collected during the same period at two sites just above the Hudson head-of-tide (the Federal Dam at Troy) that together represent the single largest source of sediment entering the estuary. The mean annual suspended sediment-discharge from the freshwater reach of the estuary was 737,000 metric tons. Unexpectedly, the total suspended sediment discharge at the study site in November and December slightly exceeded that observed during March and April, the months during which rain and snowmelt typically result in the largest sediment discharge to the estuary. Suspended sediment discharge at the study site exceeded that from the Federal Dam, even though the intervening reach appears to store significant amounts of sediment, suggesting that 30-40% of sediment discharge observed at the study site is derived from tributaries to the estuary between the Federal Dam and study site. A simple model of sediment entering and passing through the freshwater reach on a timescale of weeks appears reasonable during normal hydrologic conditions in adjoining watersheds; however, this simple model may dramatically overestimate sediment delivery during extreme tributary high flows, especially those at the end of, or after, the "flushing season" (October through April). Previous estimates of annual or seasonal sediment delivery from tributaries and the Federal Dam to the ETM and harbor may be high for those years with extreme tributary high-flow events. ?? 2008 Coastal and Estuarine Research Federation.
NASA Astrophysics Data System (ADS)
Abbott, Samantha; Julian, Jason P.; Kamarinas, Ioannis; Meitzen, Kimberly M.; Fuller, Ian C.; McColl, Samuel T.; Dymond, John R.
2018-03-01
The interaction of climate, geomorphology, and land use dictates catchment sediment production and associated river sediment loads. Accordingly, the resilience of catchments to disturbances can be assessed with suspended sediment regimes. This case study in the hill country of the lower North Island of New Zealand was a decade-long examination of the short- and long-term effects of an extreme storm event on sediment supply and exhaustion in the Oroua and Pohangina catchments, two catchments that have experienced intense land use changes and frequent broad-scale landslides. Indicators of Hydrologic Alteration, a program developed to characterize hydrologic regimes, was used to analyze daily suspended sediment records over a period of a decade in order to characterize sediment regimes of the Oroua and Pohangina. An aggregated data set of sediment-bearing events for the period of record was analyzed to examine the suspended sediment response of individual storms relative to runoff magnitudes. The findings of this study demonstrate that large storms that generate extreme landsliding and flooding have the ability to produce enough sediment to temporarily convert catchments from a supply-limited state to a transport-limited state. Landsliding and thus sediment supply was disproportionately high in locations where livestock grazing occurred on steep hillslopes. The timing and intensity of previous storms, or the antecedent catchment condition, was also shown to influence the response of the catchments. In both catchments, suspended sediment loads were elevated for a period of 4 years following the landslide-generating February 2004 storm. The methods and findings we present are useful for assessing the resilience of catchments exposed to frequent disturbances such as land use changes and landslides.
NASA Astrophysics Data System (ADS)
Affouri, Aida; Dezileau, Laurent; Kallel, Nejib
2017-06-01
Climate models project that rising atmospheric carbon dioxide concentrations will increase the frequency and the severity of some extreme weather events. The flood events represent a major risk for populations and infrastructures settled on coastal lowlands. Recent studies of lagoon sediments have enhanced our knowledge on extreme hydrological events such as palaeo-storms and on their relation with climate change over the last millennium. However, few studies have been undertaken to reconstruct past flood events from lagoon sediments. Here, the past flood activity was investigated using a multi-proxy approach combining sedimentological and geochemical analysis of surfaces sediments from a southeastern Tunisian catchment in order to trace the origin of sediment deposits in the El Bibane Lagoon. Three sediment sources were identified: marine, fluvial and aeolian. When applying this multi-proxy approach on core BL12-10, recovered from the El Bibane Lagoon, we can see that finer material, a high content of the clay and silt, and a high content of the elemental ratios (Fe / Ca and Ti / Ca) characterise the sedimentological signature of the palaeo-flood levels identified in the lagoonal sequence. For the last century, which is the period covered by the BL12-10 short core, three palaeo-flood events were identified. The age of these flood events have been determined by 210Pb and 137Cs chronology and give ages of AD 1995 ± 6, 1970 ± 9 and 1945 ± 9. These results show a good temporal correlation with historical flood events recorded in southern Tunisia in the last century (AD 1932, 1969, 1979 and 1995). Our finding suggests that reconstruction of the history of the hydrological extreme events during the upper Holocene is possible in this location through the use of the sedimentary archives.
Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments
NASA Astrophysics Data System (ADS)
de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.
2013-02-01
This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulphate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed to emanate from the sediments, and the pH reached approximately 4.5 in a sediment depth >6 cm, as determined in situ by microsensors. Methane and sulphate co-occurred in most sediment samples from the vicinity of the vents down to a depth of at least 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulphate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), through the ensuing high H2CO3 levels (approx. 1-2 mM) uncouples the proton-motive-force (PMF) and thus inhibits biological energy conservation by ATPase-driven phosphorylation. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.
Sediment Characterization in St. Alban's Bay, VT
NASA Astrophysics Data System (ADS)
Nethercutt, S.; Manley, T.; Manley, P.
2017-12-01
St. Alban's Bay within Lake Champlain is plagued with harmful algal blooms. With future intensification due to climate change, a multidisciplinary program (BREE-Basin Resilience to Extreme Events) was initiated in 2016. In order to assess the mobilization of harmful nutrients from sediment resuspension events and riverine input, 74 sediment samples were collected in a grid fashion throughout St. Alban's Bay. Sediments were deflocculated and analyzed using a LA920 Horiba laser scattering particle size distribution analyzer to define the frequency of sediment sizes from clay to sand. Gridded surfaces of mean sortable silt percentage, silt percentage, sand percentage, and clay percentage were used to represent the sediment distribution of the region. A plot of diameter versus frequency showed the bimodal nature of some of the sediments, with one peak at about 10 microns diameter (silt) and the second at about 525 microns diameter (sand). The data showed an extremely low percentage of clay relative to that of sand and silt. The highest frequencies of sortable silt, which represents the most easily mobilized particle size, are found in the deepest areas of the bay, suggesting that these regions are where dominant bottom flow occurs. The high occurrence of sortable silt in the St. Alban's Bay does suggest that sediment mobilization, and therefore nutrient mobilization has the potential to occur. These data combined with high-resolution multibeam and hydrodynamic data will allow for future models of water flow and remobilization studies in the future.
NASA Astrophysics Data System (ADS)
Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.
2017-08-01
The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.
NASA Astrophysics Data System (ADS)
Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.
2017-12-01
The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking
Dispersal and deposition of river sediments in coastal seas: Models from Asia and the tropics
NASA Astrophysics Data System (ADS)
Wright, L. D.
The diverse mechanisms by which river-borne sediments are dispersed into coastal oceans and the associated patterns of deposition are considered for some tropical and Asian river mouth dispersal systems: the Huanghe (Yellow River), which enters the Bohai Gulf (China), the Purari River which enters the Gulf of Papua (Papua New Guinea) and the Jaba River, which enters Empress Augusta Bay (Bougainville, Papua New Guinea). These models contrast sharply with 'conventional' models such as that of the Mississippi, although in different respects. Extremely high suspended sediment concentrations off the Huanghe mouth cause sinking, gravity-driven plumes which produce rapid deposition very near the mouth; extremely rapid seaward growth of the subaqueous delta results. Although the average water discharge of the Purari exceeds that of the Huanghe, the average sediment discharge from the Purari is an order of magnitude less than that of the Huanghe. Suspended sediments transported via buoyant plumes from the Purari mouth are trapped inshore by the southeasterly trades and have their ultimate sink in the tidal estuaries to the west of the mouths rather than offshore. The Jaba is a small river with a very steep gradient and an extremely high bed load relative to water discharge. It has constructed a protruding and rapidly evolving delta. Literature on the Indonesian rivers Solo and Porong dispersal systems suggests that those systems may, at different times, be subject to processes similar to those which operate off the mouths of the Huanghe, Purari and Jaba although no single, direct analogies can be made.
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970-1989) and a recent stage (1990-2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0-99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe.
Temporal pattern and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo
2015-04-01
In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.
NASA Astrophysics Data System (ADS)
al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.
2017-12-01
Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.
NASA Astrophysics Data System (ADS)
Schneider, Bastian; Hoffmann, Gösta
2017-04-01
The shores of the Northern Indian Ocean were exposed to extreme wave inundation in the past. Two relevant hazards, storm surges triggered by tropical cyclones and tsunamis, are known to occur in the region but are rarely instrumentally recorded. Various sediment deposits along the coast are the only remnants of those past events. A profound understanding of return periods and magnitudes of past events is essential for developing land-use planning and risk mitigation measures in Oman and neighboring countries. A detailed investigation of these deposits, in this case primarily blocks and boulder trains but also fine grained sediments, provides insight on parameters such as wave height and inundation distance. These parameters can then be used for modeling inundation scenarios superimposed on modern infrastructure. We are investigating the spatial 3D-distribution of the extreme wave event sediments along the coastline through a high-precision survey of the event deposits using a Faro Focus 3D X330 TLS. A TLS is capable of recording high-detail and colored point clouds, which allows detailed measurements and has proved to be a powerful tool in geosciences. These multi-parameter point clouds in combination with dating results serve as a base for extreme wave event return period and magnitude estimations. Relevant parameters on large sediments are size, shape, volume, mass as well as relative arrangement, sorting and orientation. Furthermore, the TLS data is used to distinguish between the various boulder lithologies using a multi-scale supervised classification. Surface roughness as a result of weathering can serve as an indicator for exposure time of boulders and hint on various generations of extreme wave events. The distribution of the boulders relative to the site they were quarried from indicates on the flow direction of the waves and consequently might help to distinguish between storm and tsunami waves.
Sediment transport dynamics in steep, tropical volcanic catchments
NASA Astrophysics Data System (ADS)
Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie
2017-04-01
How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (< years) over which they transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre-event rainfall intensity thresholds takes only about two to three months. We conclude that the study catchment geomorphologically represents a low-resistance, but highly resilient catchment that quickly recovers after the impact of extreme rainfall-runoff events. The latter was indicated by a different pre and post-event hysteretic pattern of sediment-runoff dynamics and associated different material properties. The combined use of high-temporal resolution monitoring with spatially distributed surveys provided new insights into the fluvial geomorphology of steep, volcanic headwater catchments with potential to establish more complete sediment budgets and time-scales of land-forming processes of such highly dynamic environments in the humid tropics.
Schoonover, Jon E; Crim, Jackie F; Williard, Karl W J; Groninger, John W; Zaczek, James J; Pattumma, Klairoong
2015-09-01
Sedimentation dynamics were assessed in sinkholes within training areas at Ft. Knox Military Installation, a karst landscape subjected to decades of tracked vehicle use and extreme soil disturbance. Sinkholes sampled were sediment-laden and behaved as intermittent ponds. Dendrogeomorphic analyses were conducted using willow trees (Salix spp.) located around the edge of 18 sinkholes to estimate historical sedimentation rates, and buried bottles were installed in 20 sinkholes at the center, outer edge, and at the midpoint between the center and edge to estimate annual sedimentation rates. Sedimentation data were coupled with vegetation characteristics of sinkhole buffers to determine relationships among these variables. The dendrogeomorphic method estimated an average accumulation rate of 1.27 cm year(-1) translating to a sediment loss rate of 46.1 metric ton year(-1) from the training areas. However, sediment export to sinkholes was estimated to be much greater (118.6 metric ton year(-1)) via the bottle method. These data suggest that the latter method provided a more accurate estimate since accumulation was greater in the center of sinkholes compared to the periphery where dendrogeomorphic data were collected. Vegetation data were not tightly correlated with sedimentation rates, suggesting that further research is needed to identify a viable proxy for direct measures of sediment accumulation in this extreme deposition environment. Mitigation activities for the sinkholes at Ft. Knox's tank training area, and other heavily disturbed karst environments where extreme sedimentation exists, should consider focusing on flow path and splay area management.
Zessner, M; Postolache, C; Clement, A; Kovacs, A; Strauss, P
2005-01-01
In this paper, results from rivers of different sizes in Romania, Hungary and Austria are presented. The paper shows the dynamics of extreme events and their contribution to the total P and suspended solids transported in these rivers. Special attention is paid to the influence of the size of the catchment and the event probability on the relative contribution of a single event to the total loads transported in the river. Further, the development of phosphorus loads along the Danube River at a flood event is shown. From the results it can be concluded that there is no immediate influence of high flow and flood events in upstream parts of the Basin on the transport of phosphorus from the catchment to the receiving Sea. Particle-bound phosphorus is mobilised from the catchment (through erosion) and the river bottom to a high extent at high flow events and transported at peak discharges to downstream, where retention by sedimentation of particles takes place. On the one hand this retention is a transport to flooded areas. In this case it can be considered as more or less long term retention. On the other hand sedimentation takes place in the riverbed, in case the tractive effort of the river is reduced. In this second case the P-pool in the sediments of the sedimentation area will be increased. If anaerobic conditions in the sediment appear, part of the phosphorus will be transformed to soluble ortho-phosphate and will continuously contribute to the phosphorus transport to the receiving sea. Part of the P-retained in the river sediment will be mobilised by resuspension at the next biggest high flow event. Altogether, these alternating processes of suspension, transport, export to flooded areas or sedimentation in the river bed with partly solution and partly resuspension at the next event decrease the share of the phosphorus transport during high flow events on the total loads transported in the more downstream parts of a catchments as compared to the more upstream parts. In the year of occurrence of an extreme flood event the P-transport of this year is dominated by the flood event. As an average over many years the contribution of high flow events to the total P-transport still may be between 7 and 20% in smaller catchments (around 1,000 km2). In a big catchment (e.g. river Danube) much smaller contributions of flood events on the total P-transport can be expected as an average over many years.
Lee, Tsung-Yu; Huang, Jr-Chuan; Lee, Jun-Yi; Jien, Shih-Hao; Zehetner, Franz; Kao, Shuh-Ji
2015-01-01
Fluvial sediment export from small mountainous rivers in Oceania has global biogeochemical significance affecting the turnover rate and export of terrestrial carbon, which might be speeding up at the recognized conditions of increased rainfall intensity. In this study, the historical runoff and sediment export from 16 major rivers in Taiwan are investigated and separated into an early stage (1970–1989) and a recent stage (1990–2010) to illustrate the changes of both runoff and sediment export. The mean daily sediment export from Taiwan Island in the recent stage significantly increased by >80% with subtle increase in daily runoff, indicating more sediment being delivered to the ocean per unit of runoff in the recent stage. The medians of the runoff depth and sediment yield extremes (99.0–99.9 percentiles) among the 16 rivers increased by 6.5%-37% and 62%-94%, respectively, reflecting the disproportionately magnified response of sediment export to the increased runoff. Taiwan is facing increasing event rainfall intensity which has resulted in chain reactions on magnified runoff and sediment export responses. As the globe is warming, rainfall extremes, which are proved to be temperature-dependent, very likely intensify runoff and trigger more sediment associated hazards. Such impacts might occur globally because significant increases of high-intensity precipitation have been observed not only in Taiwan but over most land areas of the globe. PMID:26372356
NASA Astrophysics Data System (ADS)
Liermann, S.; Beylich, A. A.
2012-04-01
A combination of different process monitoring, lake sediment coring and sediment analysis methods and techniques were applied in order (i) to ascertain the hydro-meteorological controls of runoff generation, suspended sediment transport and sediment accumulation on the delta and in Lake Sætrevatnet and (ii) to define the role of the small proglacial lake Sætrevatnet within the basin-wide catchment routing system of the Bødalen valley-fjord system (Nordfjord area, western Norway). Within the Bødalen valley investigations of sediment transfer and sediment accumulation processes were focused on the small proglacial Sætrevatnet area in upper Bødalen. The proglacial Sætrevatnet valley segment shows the characteristic seasonal weather-depended runoff variation for glacierized drainage basins. Suspended sediment concentration varied closely related to water discharge. Hence, significant suspended sediment transport is associated to high runoff conditions during thermally induced summer glacier melt (when 61.9% of the annual suspended sediment yield was recorded in 2010) as well as to single extreme rainfall events (19.8% of the annual suspended sediment yield was recorded during a single extreme rainfall event in 2010). Solar radiation and the magnitude and frequency of extreme rainfall events were found to be crucial for the rate of sediment transport within the Sætrevatnet sub-catchment. Altogether, the annual suspended sediment yield is with 24.2 t km-2 notable lower as compared to other glacierized basins worldwide. Delta accumulation rates at the inlet of Lake Sætrevatnet of 4 cm yr-1 in 2009 and 3.5 cm yr-1 in 2010 as well as a mean annual delta advance of about 3 - 4 m as calculated from comparisons of aerial photographs point to an ongoing and rapid sediment infill of the Sætrevatnet valley basin. Lacustrine sediment sequence analysis and 210-Pb and 137-Cs dating of samples taken from the Lake Sætrevatnet confirm high annual accumulation rates. Based on a basic CSR model (with the assumption of a constant rate of 210-Pb supply) and additionally validated by 137-Cs activity an annual lake sedimentation rate of 1.7cm was calculated. Both the low suspended sediment yields and the high accumulation rates emphasize the importance of bedload and nearly to the channel beds transported sediments for the Sætrevatnet lake system. As a result, Lake Sætrevatnet currently traps about 80-85 % of the sediments delivered from the upstream located glacial and proglacial system highlighting the importance of small ephemeral lakes within larger valley-fjord sediment routing systems. As a next step the potential yearly pattern of laminations (varves) is discussed in association with the calculated sedimentation rates within the Sætrevatnet valley segment. ITRAX (XRF) analysis, magnetic susceptibility measurements and the interpretation of the potential varve/lamination thickness and composition enable the identification of different sedimentary processes and related discharge mechanisms within the Saetrevatnet sub-catchment. Rhythmites are tentatively associated to regional meteorological variables (temperature; precipitation, e.g. heavy rainfall events). Analysis of grain size composition, density and carbon (TOC, inorganic carbon using LECO) are carried out to characterize the laminated structure and to identify possible sediment sources.
NASA Astrophysics Data System (ADS)
Dethier, E.; Magilligan, F. J.; Renshaw, C. E.; Sinclair, D.
2014-12-01
Tropical Storm Irene generated devastating floods in New England in 2011, causing more than $500 million of damage. In intervening years, many geomorphic signs of disturbance have attenuated, suggesting that impacts may be ephemeral. Yet persistent impact continues: channel-proximal landslide scars linger as point sources of fine sediment 3 yrs post-Irene. We evaluate the legacy of this major disturbance while also testing conceptual models of hillslope-channel connectivity and subsequent downstream sediment routing. We measure sustained landslide erosion by comparing DEMs generated by a Terrestrial Laser Scanner and trace sediment mobility using in-channel measurements of embeddedness, sediment concentration, and fallout radionuclide activity. We augmented detailed temporal sampling of an 850 m2 landslide along a 2nd-order stream with a spatially robust summer 2014 field campaign, scanning an additional 12 landslides. The initially sampled landslide eroded 250 m3 of sediment between fall 2013 and May 2014, averaging 0.3 m of erosion with nearly all erosion occurring during a two-week spring snowmelt. Landslide sediments had high measured 7Be activity (t1/2=53.4 d), caused by subaerial exposure; sediment collected downstream of the landslide had higher 7Be activity than that collected upstream, suggesting landslide provenance. Channel sediment upstream of the landslide had remained in the channel long enough for 7Be to decay below detectable activity. Embeddedness, a measure of fine sediment on a channel bed, was higher downstream of the landslide than upstream. Remote sensing reveals >50 similar landslides within the White River alone, and hundreds more in Vermont. Thus, landslide scar inputs may continue to influence the regional fine sediment budget. Ongoing successive scans in multiple watersheds show erosion continues in summer, an observation corroborated by elevated suspended sediment concentrations downstream of landslides after rain events. Summertime erosion has generally been low, but one extreme storm triggered >4000 m3 of erosion on a 3500 m2 landslide along the 5th-order Williams River, averaging 1.3 m erosion across the landslide. Understanding the loci of affected reaches and the magnitude of the continued effect is critical in assessing the long-term legacy of extreme events.
Development and Validation of an Aquatic Fine Sediment Biotic Index
NASA Astrophysics Data System (ADS)
Relyea, Christina D.; Minshall, G. Wayne; Danehy, Robert J.
2012-01-01
The Fine Sediment Biotic Index (FSBI) is a regional, stressor-specific biomonitoring index to assess fine sediment (<2 mm) impacts on macroinvertebrate communities in northwestern US streams. We examined previously collected data of benthic macroinvertebrate assemblages and substrate particle sizes for 1,139 streams spanning 16 western US Level III Ecoregions to determine macroinvertebrate sensitivity (mostly at species level) to fine sediment. We developed FSBI for four ecoregion groupings that include nine of the ecoregions. The grouping were: the Coast (Coast Range ecoregion) (136 streams), Northern Mountains (Cascades, N. Rockies, ID Batholith ecoregions) (428 streams), Rockies (Middle Rockies, Southern Rockies ecoregions) (199 streams), and Basin and Plains (Columbia Plateau, Snake River Basin, Northern Basin and Range ecoregions) (262 streams). We excluded rare taxa and taxa identified at coarse taxonomic levels, including Chironomidae. This reduced the 685 taxa from all data sets to 206. Of these 93 exhibited some sensitivity to fine sediment which we classified into four categories: extremely, very, moderately, and slightly sensitive; containing 11, 22, 30, and 30 taxa, respectively. Categories were weighted and a FSBI score calculated by summing the sensitive taxa found in a stream. There were no orders or families that were solely sensitive or resistant to fine sediment. Although, among the three orders commonly regarded as indicators of high water quality, the Plecoptera (5), Trichoptera (3), and Ephemeroptera (2) contained all but one of the species or species groups classified as extremely sensitive. Index validation with an independent data set of 255 streams found FSBI scores to accurately predict both high and low levels of measured fine sediment.
Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA
Yellen, Brian; Woodruff, Jon D.; Kratz, Laura N.; Mabee, Steven B.; Morrison, Jonathan; Martini, Anna M.
2014-01-01
Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10–40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.
Source, conveyance and fate of suspended sediments following Hurricane Irene. New England, USA
NASA Astrophysics Data System (ADS)
Yellen, B.; Woodruff, J. D.; Kratz, L. N.; Mabee, S. B.; Morrison, J.; Martini, A. M.
2014-12-01
Hurricane Irene passed directly over the Connecticut River valley in late August, 2011. Intense precipitation and high antecedent soil moisture resulted in record flooding, mass wasting and fluvial erosion, allowing for observations of how these rare but significant extreme events affect a landscape still responding to Pleistocene glaciation and associated sediment emplacement. Clays and silts from upland glacial deposits, once suspended in the stream network, were routed directly to the mouth of the Connecticut River, resulting in record-breaking sediment loads fifteen-times greater than predicted from the pre-existing rating curve. Denudation was particularly extensive in mountainous areas. We calculate that sediment yield during the event from the Deerfield River, a steep tributary comprising 5% of the entire Connecticut River watershed, exceeded at minimum 10-40 years of routine sediment discharge and accounted for approximately 40% of the total event sediment discharge from the Connecticut River. A series of surface sediment cores taken in floodplain ponds adjacent to the tidal section of the Connecticut River before and after the event provides insight into differences in sediment sourcing and routing for the Irene event compared to periods of more routine flooding. Relative to routine conditions, sedimentation from Irene was anomalously inorganic, fine grained, and enriched in elements commonly found in chemically immature glacial tills and glaciolacustrine material. These unique sedimentary characteristics document the crucial role played by extreme precipitation from tropical disturbances in denuding this landscape.
NASA Astrophysics Data System (ADS)
Herguera, J.; Paull, C. K.; Anderson, K.; Gwiazda, R.; Lundsten, E. M.; Kundz, L.; Edwards, B. D.; McGann, M. L.
2012-12-01
New observations and cores obtained with the ROV Doc Ricketts operated from the RV/Western Flyer provide a glimpse into a macrofauna barren sea-floor where laminated sediments are known to accumulate on the sea-floor of Alfonso Basin. This basin, located north of La Paz Bay, Baja California, is known to be an important repository of laminated sediments due to a combination of the relatively high input of terrigenous sediments brought in by summer rains, a moderate to high export productivity from its surface waters, and the very low oxygen concentrations at depth bathed by tropical subsurface waters. These laminated sediments are unique repositories of paleoceanographic and paleoclimatic information for its very high resolution records of past conditions comparable to ice core, tree ring, coral and cave records although spanning continuously much further back in time. However, the paleoceanographic community rarely has had the opportunity to visualize the seafloor surface where these sediments are accumulating and examine the biological abundance patterns in these extreme environments. Here we will show results from ROV Doc Ricketts quantitative video transects providing benthic faunal abundance patterns on the seafloor in these highly oxygen depleted bottom waters. These observations are further compared with the underlying stratigraphy. A coring system carried on the ROV allowed us to replicate cores and to collect a transect of 5 closely spaced cores to evaluate the horizontal extent of the observed variability down-core. We will also show some preliminary results from x-radiographs showing the nature of the laminations and its sediment composition based on elemental analysis on organic carbon, carbonate and biogenic opal analysis. New XRF results from a box core will be used to calibrate its terrigenous components with the historical rainfall record and evaluate its potential to reconstruct summer precipitation patterns in this region.
NASA Astrophysics Data System (ADS)
Hudson, P. H.; Heitmuller, F. T.; Kesel, R. H.
2012-04-01
The geomorphic effectiveness of extreme events has long been a fundamental topic within Earth sciences. The 2011 flood along the lower Mississippi River (3.2 x 10-6 km2) was an extreme event and presented an ideal opportunity to consider controls on the magnitude and pattern of floodplain sedimentation. The study reach was located between Natchez, Mississippi and St. Francisville, Louisiana, the lowermost reaches of the alluvial valley, and the same location utilized in a well documented sedimentation study from a comparable flood event in 1973. Thus, the 2011 field study provided a rare opportunity to directly compare floodplain sedimentation from two extreme events on Earth's third largest fluvial system. Although flood stage along the Lower Mississippi River is influenced by an extensive levee system the field setting is distinctive because it is not embanked by main-line levees. The field site was flooded for nearly two months, from early May to late June 2011. The flood crest exceeded long standing (> 100 yr) stage heights, including the infamous 1927, 1937, and 1973 events. The maximum discharge at Vicksburg, Mississippi, upstream of the study sites, was 65,695 m3/s, one of the larger discharge events along the Lower Mississippi River. Field work was conducted soon after flood waters receded and before bioturbation disrupted the integrity of the flood deposits. We sampled flood deposits at fifty-five locations within a range of floodplain depositional environments to quantify and qualify the sedimentary, hydrologic, and hydraulic characteristics of the flood, and to make explicit comparison with the 1973 study. The average thickness of flood deposits ranged from < 1 mm to 650 mm, but was highly variable. Although natural levees had the thickest flood deposits several reaches along natural levees had no measureable deposits, despite being inundated by ~4 m of flood water. In such cases the angle of the upstream channel relative to the downstream cutbank is suggested as a possible control on the pattern of sedimentation. Despite the magnitude and duration of the 2011 flood, the overall thickness of flood deposits was not very high and the geologic legacy of the event is likely to be unimpressive. Most sediment samples was < 10 mm in thickness, which could be due to the timing of the flood event superimposed upon an overall declining trend in suspended sediment load. The peak discharge was associated with a suspended sediment load of 727,400 tonnes/day. This is notably lower than the maximum suspended sediment load of 1,046,000 tonnes/day, which likely caused sediment exhaustion because of occurring about two months prior to inundation. The thickness of the 2011 flood deposits were about an order of magnitude less than the 1973 flood deposits (11 to 530 mm). Since the early 1900s the sediment budget of the Lower Mississippi has been fundamentally altered. Suspended sediment loads have declined by more than fifty percent, and could contribute to the overall low amount of sedimentation.
Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.
1997-01-14
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.
Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.
1997-01-01
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.
Categorization of erosion control matting.
DOT National Transportation Integrated Search
2012-05-29
Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...
The ongoing saga surrounding the velocity fluctuations in sedimentation
NASA Astrophysics Data System (ADS)
Brenner, Michael P.
2002-11-01
Particles moving through a viscous fluid interact with each other, because each individual particle drags fluid along with it, which then pulls on other particles. In a low Reynolds number sediment, such hydrodynamic interactions are extremely strong, even when the particles are well separated. Despite more than a century of research, the character of the particle motions in a dilute suspension of heavy particles is highly controversial: In 1985, Caflisch and Luke presented an extremely simple argument indicating that the velocity fluctuations in such a sediment should diverge with the system size. Experiments have mainly contradicted this conclusion, leading to the hope that there is a (perhaps universal) ''screening mechanism'' controlling the size of the fluctuations. In this lecture I will review the history of this problem, and then present the results of our recent research which indicates that the velocity fluctuations are highly nonuniversal and system size dependent, depending subtley on both the shape of the container holding the sediment and any particle stratification that develops during an experiment. Experiments, numerical simulations and theory are presented that quantitatively support this point of view. This work is in collaboration with P. J. Mucha and the experimental group of D. A. Weitz: (S. Tee, S. Manley and L. Cippelletti).
NASA Astrophysics Data System (ADS)
Smith, D. P.; Kvitek, R.; Quan, S.; Iampietro, P.; Paddock, E.; Richmond, S. F.; Gomez, K.; Aiello, I. W.; Consulo, P.
2009-12-01
Models of watershed sediment yield are complicated by spatial and temporal variability of geologic substrate, land cover, and precipitation parameters. Episodic events such as ENSO cycles and severe wildfire are frequent enough to matter in the long-term average yield, and they can produce short-lived, extreme geomorphic responses. The sediment yield from extreme events is difficult to accurately capture because of the obvious dangers associated with field measurements during flood conditions, but it is critical to include extreme values for developing realistic models of rainfall-sediment yield relations, and for calculating long term average denudation rates. Dammed rivers provide a time-honored natural laboratory for quantifying average annual sediment yield and extreme-event sediment yield. While lead-line surveys of the past provided crude estimates of reservoir sediment trapping, recent advances in geospatial technology now provide unprecedented opportunities to improve volume change measurements. High-precision digital elevation models surveyed on an annual basis, or before-and-after specific rainfall-runoff events can be used to quantify relations between rainfall and sediment yield as a function of landscape parameters, including spatially explicit fire intensity. The Basin-Complex Fire of June and July 2008 resulted in moderate to severe burns in the 114 km^2 portion of the Carmel River watershed above Los Padres Dam. The US Geological Survey produced a debris flow probability/volume model for the region indicating that the reservoir could lose considerable capacity if intense enough precipitation occurred in the 2009-10 winter. Loss of Los Padres reservoir capacity has implications for endangered steelhead and red-legged frogs, and groundwater on municipal water supply. In anticipation of potentially catastrophic erosion, we produced an accurate volume calculation of the Los Padres reservoir in fall 2009, and locally monitored hillslope and fluvial processes during winter months. The pre-runoff reservoir volume was developed by collecting and merging sonar and LiDAR data from a small research skiff equipped with a high-precision positioning and attitude-correcting system. The terrestrial LiDAR data were augmented with shore-based total station positioning. Watershed monitoring included benchmarked serial stream surveys and semi-quantitative assessment of a variety of near-channel colluvial processes. Rainfall in the 2009-10 water year was not intense enough to trigger widespread debris flows of slope failure in the burned watershed, but dry ravel was apparently accelerated. The geomorphic analysis showed that sediment yield was not significantly higher during this low-rainfall year, despite the wide-spread presence of very steep, fire-impacted slopes. Because there was little to no increase in sediment yield this year, we have postponed our second reservoir survey. A predicted ENSO event that might bring very intense rains to the watershed is currently predicted for winter 2009-10.
Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo
Hayes, S.K.; Montgomery, D.R.; Newhall, C.G.
2002-01-01
The 1991 eruption of Mount Pinatubo generated extreme sediment yields from watersheds heavily impacted by pyroclastic flows. Bedload sampling in the Pasig-Potrero River, one of the most heavily impacted rivers, revealed negligible critical shear stress and very high transport rates that reflected an essentially unlimited sediment supply and the enhanced mobility of particles moving over a smooth, fine-grained bed. Dimensionless bedload transport rates in the Pasig-Potrero River differed substantially from those previously reported for rivers in temperate regions for the same dimensionless shear stress, but were similar to rates identified in rivers on other volcanoes and ephemeral streams in arid environments. The similarity between volcanically disturbed and arid rivers appears to arise from the lack of an armored bed surface due to very high relative sediment supply; in arid rivers, this is attributed to a flashy hydrograph, whereas volcanically disturbed rivers lack armoring due to sustained high rates of sediment delivery. This work suggests that the increases in sediment supply accompanying massive disturbance induce morphologic and hydrologic changes that temporarily enhance transport efficiency until the watershed recovers and sediment supply is reduced. ?? 2002 Elsevier Science B.V. All rights reserved.
Oceanographic controls over sediment water content: northern Bermuda rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M.; Laine, E.P.
1985-01-01
Cores taken from the plateaus of Northern Bermuda Rise show that the region is underlain at depths of 1-5 m by a 1-3 m thick layer of hemipelagic lutites with anomalously high water contents. The lack of visually apparent textural and lithological changes in this extremely fine grained sediment rule out these common causes for variation in water content. The water content averages 175% within this layer and 100% immediately above and below it. This is an increase of 9.5% in porosity. The high water content sediment is confined to a period between 12 and 16 ka. Current work onmore » the mineralogy of the sediments which comprise this layer suggest two oceanographic factors that may have influenced its formation. A meltwater spike associated with deglaciation may have altered the ecological conditions above the thermocline sufficiently to promote the increased production of radiolaria, resulting in the deposition of silica enriched sediment on the sea floor. A combination of textural and perhaps chemical factors caused by the silica enrichment may have influenced the increase in water content. Intensified bottom currents at this time also may have eroded smectite rich sediments from exposures of Neogene age and deposited them on the plateaus. An increase in smectite would increase the water content due to the extremely fine grain size and the chemistry of the clay. Thus, the lateral continuity and isochroniety of this layer, combined with its mineralogical characteristics suggests that oceanographic changes can influence water content and perhaps other geotechnical properties on a regional scale.« less
Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John
2017-12-31
Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Anthropogenic effects on sedimentary facies in Lake Baldeney, West Germany
NASA Astrophysics Data System (ADS)
Neumann-Mahlkau, Peter; Niehaus, Heinz Theo
1983-12-01
Analysis of well logs of Lake Baldeney, a reservoir of the Ruhr River, yields four facies factors that reflect the effect of anthropogenic processes on the sediment. First, the sedimentation rate is directly related to the subsidence caused by mining. The extent of the subsidence was such that the sediment load of the river could not compensate for the sinking of the lake bottom. Discharged sediment filled about one-fifth of the basin within 40 years. In certain areas of the basin the sedimentation rate reached up to 10 cm per year. Second, the grain-size distribution of the sediment was influenced by long-term and short-term events. During the subsidence, grain-size distribution remained relatively constant. The destruction of the Möhne River dam during World War II resulted in the presence of an extremely large grain size as evidenced by the so-called Möhnelage. The filling of the lake after 1961 was accompanied by a continual increase in medium grain size. Third, until 1975, the mode of the lake sediment reflects the effect of mining in the vicinity of the lake. High coal content can be traced to its origin. The introduction of modern production processes, modernization of coal dressing, and hydraulic hauling is documented in the sediment. Finally, the heavy metal content of the sediment corresponds to the industrial development in the drainage area the Ruhr River. The accumulation of Cd reached an extreme concentration, exceeding the natural content by a thousand times. Variation in concentration reflects an increase in industrial production, as well as measures undertaken to restore water quality.
Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong
2017-09-12
Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.
Categorization of erosion control matting for slope applications.
DOT National Transportation Integrated Search
2013-12-25
Erosion control is an important aspect of any Georgia Department of Transportation (GDOT) construction project, with the extreme negative impacts of high sediment loads in natural waterways having been well documented. Selection of a proper erosion c...
The influence of a semi-arid sub-catchment on suspended sediments in the Mara River, Kenya
2018-01-01
The Mara River Basin in East Africa is a trans-boundary basin of international significance experiencing excessive levels of sediment loads. Sediment levels in this river are extremely high (turbidities as high as 6,000 NTU) and appear to be increasing over time. Large wildlife populations, unregulated livestock grazing, and agricultural land conversion are all potential factors increasing sediment loads in the semi-arid portion of the basin. The basin is well-known for its annual wildebeest (Connochaetes taurinus) migration of approximately 1.3 million individuals, but it also has a growing population of hippopotami (Hippopotamus amphibius), which reside within the river and may contribute to the flux of suspended sediments. We used in situ pressure transducers and turbidity sensors to quantify the sediment flux at two sites for the Mara River and investigate the origin of riverine suspended sediment. We found that the combined Middle Mara—Talek catchment, a relatively flat but semi-arid region with large populations of wildlife and domestic cattle, is responsible for 2/3 of the sediment flux. The sediment yield from the combined Middle Mara–Talek catchment is approximately the same as the headwaters, despite receiving less rainfall. There was high monthly variability in suspended sediment fluxes. Although hippopotamus pools are not a major source of suspended sediments under baseflow, they do contribute to short-term variability in suspended sediments. This research identified sources of suspended sediments in the Mara River and important regions of the catchment to target for conservation, and suggests hippopotami may influence riverine sediment dynamics. PMID:29420624
NASA Astrophysics Data System (ADS)
Aalto, R. E.
2009-12-01
Application of a new geochronological method for high-resolution 210-Pb dating over the past 5 years has facilitated the identification of individual floodplain sedimentation events across disparate large river basins: three examples from ongoing research include a pristine 720,000 km2 basin in northern Bolivia, a 36,000 km2 basin in Papua New Guinea, and the 70,000 km2 Sacramento River Basin in California. Published and new research suggests that large, rapid-rise, cold-phase ENSO floods account for the preponderance of sediment accumulation within the two tropical systems, and that extreme floods associated with ENSO similarly correspond to transport and deposition of material within the extensive floodways along the Sacramento River. The vast scale of these temporally discrete deposits within such large river systems (typically 10s to 100s of millions of tonnes) begs the question: where did all this material come from? Huge deposits require similarly massive episodic supply and transport of material from upstream, often specifically within the very short timescale of a single large flood event. What data and techniques are available to track and balance such enormous mass budgets? This presentation explores this general theme with new data from the three iconic systems identified above. New daily discharge data are coupled with 210-Pb concentrations and particle size distribution in sediment to elucidate the considerable inter-annual variation of sediment supply from the Andes, resulting from the interaction of Andean erosion, anthropogenic effects, and the dynamics of extreme climate. Biogeochemical and/or geochemical tracers can be employed for all three study basins to track sediment from source to sink (or alternatively, working from the well-defined sink to the less-constrained source), providing insight into the geomorphic processes that modulate the efflux, transport, intermediate channel/floodplain storage, and downstream delivery of sediment during extreme flooding events. Landslide in the Bolivian Andes: Does episodic erosion correlate with episodic deposition?
Rosenbaum, J.G.; Reynolds, R.L.
2004-01-01
Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.
NASA Astrophysics Data System (ADS)
Hooke, Janet
2017-04-01
Flow and sediment processes in ephemeral channels are highly dynamic and spatially variable. The connectivity characteristics in a range of events are examined for several semi-arid catchments in Southeast Spain. Rainfall thresholds for runoff generation on slopes and for flow generation in channels have been identified at various scales. In many events, flow is not continuous down the channel system due partly to localised rainfall and to transmission losses but also to structural and morphological conditions. One extreme flow event with high sediment supply produced very high flow and sediment connectivity throughout the system. Results of spatial analysis of variation in hydraulics and sediment processes are presented and the effects are analysed. Amounts and locations of sediment storage were identified from repeat surveys. The overall contribution of such an event to morphological and sedimentological changes in the channel and longer-term landscape evolution is assessed. Land use and management are demonstrated to have a profound influence on the sediment delivery and connectivity functioning. The implications for land, channel and flood management in such an environment, together with the impacts of longer-term variations in flow regime due to land use and climate change, are considered.
Kim, Nam Sook; Hong, Sang Hee; An, Joon Geon; Shin, Kyung-Hoon; Shim, Won Joon
2015-06-15
The occurrence and distribution of tributyltin (TBT) and alternative biocides were investigated in sediment from semi-enclosed bays, fishing ports, and large commercial harbors in Korea. Extremely high concentration of TBT (55,264ngSn/g) was detected near a large shipyard, even after a total ban on its use in Korea. Diuron was the biocide with the highest detection frequency and concentration levels, followed by Irgarol 1051. Sea-Nine 211 was detected at 3 of 32 stations surveyed. Dichlofluanid, zinc and copper pyrithiones levels were below the detection limits at all the stations surveyed. The relatively high levels of Diuron (9-62.3ng/g) and Irgarol 1051 (1.5-11.5ng/g) were detected in harbor and shipyard areas. Diuron and Irgarol 1051 levels including TBT in sediments from hot spots in Korea exceeded global sediment quality guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.
A centennial tribute to G.K. Gilbert's Hydraulic Mining Débris in the Sierra Nevada
NASA Astrophysics Data System (ADS)
James, L. A.; Phillips, J. D.; Lecce, S. A.
2017-10-01
G.K. Gilbert's (1917) classic monograph, Hydraulic-Mining Débris in the Sierra Nevada, is described and put into the context of modern geomorphic knowledge. The emphasis here is on large-scale applied fluvial geomorphology, but other key elements-e.g., coastal geomorphology-are also briefly covered. A brief synopsis outlines key elements of the monograph, followed by discussions of highly influential aspects including the integrated watershed perspective, the extreme example of anthropogenic sedimentation, computation of a quantitative, semidistributed sediment budget, and advent of sediment-wave theory. Although Gilbert did not address concepts of equilibrium and grade in much detail, the rivers of the northwestern Sierra Nevada were highly disrupted and thrown into a condition of nonequilibrium. Therefore, concepts of equilibrium and grade-for which Gilbert's early work is often cited-are discussed. Gilbert's work is put into the context of complex nonlinear dynamics in geomorphic systems and how these concepts can be used to interpret the nonequilibrium systems described by Gilbert. Broad, basin-scale studies were common in the period, but few were as quantitative and empirically rigorous or employed such a range of methodologies as PP105. None demonstrated such an extreme case of anthropogeomorphic change.
Storage and remobilization of suspended sediment in the lower amazon river of Brazil
Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.
1985-01-01
In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.
NASA Astrophysics Data System (ADS)
Zhang, Yancheng; Chiessi, Cristiano M.; Mulitza, Stefan; Zabel, Matthias; Trindade, Ricardo I. F.; Hollanda, Maria Helena B. M.; Dantas, Elton L.; Govin, Aline; Tiedemann, Ralf; Wefer, Gerold
2015-12-01
We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as εNd(0)) throughout the last 30 ka. Whereas the homogeneous εNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the εNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.
Sedimentary condensation and authigenesis
NASA Astrophysics Data System (ADS)
Föllmi, Karl
2016-04-01
Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.
NASA Astrophysics Data System (ADS)
Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.
2014-12-01
During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about event-based sedimentation and to expand these rates to annual and decadal scales.
Alava, Juan José; Ross, Peter S; Lachmuth, Cara; Ford, John K B; Hickie, Brendan E; Gobas, Frank A P C
2012-11-20
The development of an area-based polychlorinated biphenyl (PCB) food-web bioaccumulation model enabled a critical evaluation of the efficacy of sediment quality criteria and prey tissue residue guidelines in protecting fish-eating resident killer whales of British Columbia and adjacent waters. Model-predicted and observed PCB concentrations in resident killer whales and Chinook salmon were in good agreement, supporting the model's application for risk assessment and criteria development. Model application shows that PCB concentrations in the sediments from the resident killer whale's Critical Habitats and entire foraging range leads to PCB concentrations in most killer whales that exceed PCB toxicity threshold concentrations reported for marine mammals. Results further indicate that current PCB sediment quality and prey tissue residue criteria for fish-eating wildlife are not protective of killer whales and are not appropriate for assessing risks of PCB-contaminated sediments to high trophic level biota. We present a novel methodology for deriving sediment quality criteria and tissue residue guidelines that protect biota of high trophic levels under various PCB management scenarios. PCB concentrations in sediments and in prey that are deemed protective of resident killer whale health are much lower than current criteria values, underscoring the extreme vulnerability of high trophic level marine mammals to persistent and bioaccumulative contaminants.
Mechanisms of sediment flux between shallows and marshes
Lacy, Jessica R.; Schile, L.M.; Callaway, J.C.; Ferner, M.C.
2015-01-01
We conducted a field study to investigate temporal variation and forcing mechanisms of sediment flux between a salt marsh and adjacent shallows in northern San Francisco Bay. Suspended-sediment concentration (SSC), tidal currents, and wave properties were measured over the marsh, in marsh creeks, and in bay shallows. Cumulative sediment flux in the marsh creeks was bayward during the study, and was dominated by large bayward flux during the largest tides of the year. This result was unexpected because extreme high tides with long inundation periods are commonly assumed to supply sediment to marshes, and long-term accretion estimates show that the marsh in the study site is depositional. A water mass-balance shows that some landward transport bypassed the creeks, most likely across the marsh-bay interface. An estimate of transport by this pathway based on observed SSC and inferred volume indicates that it was likely much less than the observed export.
Krishnakumar, S; Ramasamy, S; Simon Peter, T; Godson, Prince S; Chandrasekar, N; Magesh, N S
2017-12-15
Fifty two surface sediments were collected from the northern part of the Gulf of Mannar biosphere reserve to assess the geospatial risk of sediments. We found that distribution of organic matter and CaCO 3 distributions were locally controlled by the mangrove litters and fragmented coral debris. In addition, Fe and Mn concentrations in the marine sediments were probably supplied through the riverine input and natural processes. The Geo-accumulation of elements fall under the uncontaminated category except Pb. Lead show a wide range of contamination from uncontaminated-moderately contaminated to extremely contaminated category. The sediment toxicity level of the elements revealed that the majority of the sediments fall under moderately to highly polluted sediments (23.07-28.84%). The grades of potential ecological risk suggest that predominant sediments fall under low to moderate risk category (55.7-32.7%). The accumulation level of trace elements clearly suggests that the coral reef ecosystem is under low to moderate risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Costa, P. J. M.; Leroy, S. A. G.; Dinis, J. L.; Dawson, A. G.; Kortekaas, S.
2012-05-01
A key issue in coastal hazards research is the need to distinguish sediments deposited by past extreme storms from those of past tsunamis. This study contributes to this aim by investigating patterns of sedimentation associated with extreme coastal flood events, in particular, within the Lagoa de Óbidos (Portugal). The recent stratigraphy of this coastal lagoon was studied using a wide range of techniques including visual description, grain-size analysis, digital and x-ray photography, magnetic susceptibility and geochemical analysis. The sequence was dated by 14C, 210Pb and Optically Stimulated Luminescence. Results disclose a distinctive coarser sedimentary unit, within the top of the sequence studied, and shown in quartz sand by the enrichment of elements with marine affinity (e.g., Ca and Na) and carbonates. The unit fines upwards and inland, thins inland and presents a sharp erosive basal contact. A noticeable post-event change in the sedimentary pattern was observed. The likely agent of sedimentation is discussed here and the conceivable association with the Great Lisbon tsunami of AD 1755 is debated, while a comparison is attempted with a possibly synchronous deposit from a tsunami in Martinhal (Algarve, Portugal). The possibility of a storm origin is also discussed in the context of the storminess of the western Portuguese coast and the North Atlantic Oscillation. This study highlights certain characteristics of the sedimentology of the deposits that may have a value in the recognition of extreme marine inundation signatures elsewhere in the world.
NASA Astrophysics Data System (ADS)
Eichhorn, Luise; Pirrung, Michael; Zolitschka, Bernd; Büchel, Georg
2017-09-01
Differentiating between regularly seasonal, irregular and event-based clastic sedimentation is difficult if sedimentation structures resemble and dating methods are imprecise. In this study - clastic light and dark laminae from lava-dammed Paleolake Alf in the Late Pleistocene in the Quaternary West Eifel Volcanic Field are analyzed to clarify how they formed and if they are of annual origin and comparable to assumed periglacial varves from neighboring Lake Holzmaar. Therefore, a multiproxy approach is applied combining sediment thin section analysis which focuses on composition and structure with 14C dates. The results are compared to recently-formed annually-laminated clastic sediments of, e.g., the High Canadian Arctic. Observed sedimentation structures reveal sediment delivery by over- and interflows and deposition from suspension forming two characteristic microfacies: Type I graded laminae and Type II laminae with graded sublayers. Additionally, erosional bases and event deposits indicate episodic underflows. Thus, lamination is potentially seasonal but is significantly veiled by extreme runoff causing erosion and resuspension processes or a mixed water body preventing sediment delivery into the lake basin. However, sedimentation processes between watershed and lake could be reconstructed by comparing recent and paleosediment structures.
NASA Astrophysics Data System (ADS)
House, B. M.; Norris, R. D.
2017-12-01
The Early Eocene Climatic Optimum (EECO) around 50 Ma was a sustained period of extreme global warmth with ocean bottom water temperatures of up to 12° C. The marine biologic response to such climatic extremes is unclear, however, in part because proxies that integrate ecosystem-wide productivity signals are scarce. While the accumulation of marine barite (BaSO4) is one such proxy, its applicability has remained limited due to the difficulty in reliably quantifying barite. Discrete measurements of barite content in marine sediments are laborious, and indirect estimates provide unclear results. We have developed a fast, high-throughput method for reliable measurement of barite content that relies on selective extraction of barite rather than sample digestion and quantification of remaining barite. Tests of the new method reveal that it gives the expected results for a wide variety of sediment types and can quantitatively extract 10-100 times the amount of barite typically encountered in natural sediments. Altogether, our method provides an estimated ten-fold increase in analysis efficiency over current sample digestion methods and also works reliably on small ( 1 g or less) sediment samples. Furthermore, the instrumentation requirements of this method are minor, so samples can be analyzed in shipboard labs to generate real-time paleoproductivity records during coring expeditions. Because of the magnitude of throughput improvement, this new technique will permit the generation of large datasets needed to address previously intractable paleoclimate and paleoceanographic questions. One such question is how export productivity changes during climatic extremes. We used our new method to analyze globally distributed sediment cores to determine if the EECO represented a period of anomalous export productivity either due to higher rates of primary production or more vigorous heterotrophic metabolisms. An increase in export productivity could provide a mechanism for exiting periods of extreme warmth, and understanding the interplay between temperature, atmospheric CO2 levels, and export productivity during the EECO will help clarify how the marine biologic system functions as a whole.
Chen, Qianqian; Liu, Xiaodong; Xu, Liqiang; Sun, Liguang; Yan, Hong; Liu, Yi; Luo, Yuhan; Huang, Jing
2012-08-01
This study determined the distribution and main source of methylmercury in ornithogenic coral sand sediments and pure guano collected from Guangjin and Jinqing islets of the South China Sea. Results showed that the levels of methylmercury (MeHg) and total mercury (THg), as well as the percentage of MeHg relative to THg (%MeHg), are high in both fresh and ancient guano samples. %MeHg in ancient guano exceeded 70 %, much greater than that in fresh seabird droppings (~45 %). These results suggest that excretion through feces likely plays an important role in the cycling of MeHg by seabirds. Guano has been identified as the major source of MeHg in the ornithogenic coral sand sediments in the Xisha Islands. The close relationship between MeHg and guano-derived phosphorus has weakened considerably since 1840 AD. This is probably caused by a significant increase in THg and MeHg in modern guano samples due to the recent increase of Hg pollution. %MeHg in the ornithogenic coral sand sediments is extremely high, ranging from 10 to 30 % (average 20 %).
NASA Astrophysics Data System (ADS)
Kumar, Amit; Gokhale, Anupam Anand; Shukla, Tanuj; Dobhal, Dwarika Prasad
2016-07-01
Sediments released from high altitude glaciers exhibit varying evacuation patterns and transport characteristics owing to the presence of thick debris cover over the glacier. Despite the recent needs for integrated hydrometeorological studies in the Himalaya, little is known about the impacts of suspended sediment on hydropower generation, reservoir sedimentation, and abrasion of turbine components. Present study involves analysis of particle size distribution of suspended sediments to understand sediment evacuation patterns and transport characteristics in variable energy conditions during the ablation season. Peak suspended sediments were evacuated during extreme rainfall events. The estimated seasonal modern sediment erosion rate varies from 0.6 to 2.3 mm y- 1 for the study period (2009-2012). The analysis shows dominance of medium silt-sized to fine sand-sized particles having sediment size of 0.0156-0.25 mm corresponding to 70-80% without any significant seasonal variation. These transported sediments show that they are poorly sorted, coarser in nature with a nearly symmetrical to coarse skewed texture and kurtosis analysis suggesting mesokurtic distribution of sediments. The particle size fraction ranges between 4.65 and 5.23 ϕ, which is dominantly medium to coarse silty in texture. Results indicate that suspended sediments are evacuated in highly variable energy conditions through subglacial transport pathways because of increase in availability of meltwater with the progressive ablation season. Bulk geochemical characterization has been carried out to differentiate the source of suspended sediments and intensity of weathering. Chemical Index of Alterations (CIA) values of sediment flux range from 54.68 to 55.18 compared to the Upper Continental Crust (UCC) ~ 50, indicating moderate intensity of weathering. Mean seasonal (2009-2012) elemental fluxes and their contribution to the suspended sediment flux reflect that Si and Al are responsible for about 85% of the total detrital elemental flux. Trace elements show high concentrations of radioactive elements like U, Th, Pb, and Rb that suggest their high anomalous presence in the catchment lithology. An overall study indicates that the hydroclimatic conditions over the debris-covered glacier play a dominant controlling factor in erosion, transportation, and evacuation of suspended sediments during the ablation season.
MEASURING THE ACUTE TOXICITY OF ESTUARINE SEDIMENTS
Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the p...
NASA Astrophysics Data System (ADS)
Daigle, Hugh; Worthington, Lindsay L.; Gulick, Sean P. S.; Van Avendonk, Harm J. A.
2017-04-01
Pore pressures in sediments at convergent margins play an important role in driving chemical fluxes and controlling deformation styles and localization. In the Bering Trough offshore Southern Alaska, extreme sedimentation rates over the last 140 kyr as a result of glacial advance/retreats on the continental shelf have resulted in elevated pore fluid pressures in slope sediments overlying the Pamplona Zone fold and thrust belt, the accretionary wedge resulting from subduction of the Yakutat microplate beneath the North American Plate. Based on laboratory experiments and downhole logs acquired at Integrated Ocean Drilling Program Site U1421, we predict that the overpressure in the slope sediments may be as high as 92% of the lithostatic stress. Results of one-dimensional numerical modeling accounting for changes in sedimentation rate over the last 130 kyr predicted overpressures that are consistent with our estimates, suggesting that the overpressure is a direct result of the rapid sedimentation experienced on the Bering shelf and slope. Comparisons with other convergent margins indicate that such rapid sedimentation and high overpressure are anomalous in sediments overlying accretionary wedges. We hypothesize that the shallow overpressure on the Bering shelf/slope has fundamentally altered the deformation style within the Pamplona Zone by suppressing development of faults and may inhibit seismicity by focusing faulting elsewhere or causing deformation on existing faults to be aseismic. These consequences are probably long-lived as it may take several million years for the excess pressure to dissipate.
NASA Astrophysics Data System (ADS)
Cooper, J. A. G.
2002-06-01
Contrasting modes of sedimentation and facies arrangement in tide- and river-dominated microtidal estuaries arise from the degree to which river or tidal discharge and sediment supply influences an estuary. A distinct facies gradation exists in tide-dominated systems from sandy, barrier/tidal delta-associated environments at the coast through deep mud-dominated middle reaches to fluvial sediment in the upper reaches. In river-dominated systems, fluvial sediment extends to the barrier and flood-tidal deltas are poorly developed or absent from the estuary. A number of independent observations during extreme floods on the South African coast indicate that these types of estuary respond differently to extreme river floods and that the mode of response corresponds to estuary type. Tide-dominated systems exhibit preferential erosion of noncohesive barrier and tidal delta sediments during river floods while the middle reaches remain little modified. River-dominated systems experience consistent erosion throughout their channel length during extreme floods. The increased cohesion of riverine sediments and stabilisation of bars by vegetation in river-dominated channels means that higher magnitude floods are necessary to effect significant morphological change. Barrier erosion, including the tidal delta, results in deposition of an ephemeral delta composed almost entirely of sands from these deposits in tide-dominated estuaries. In river-dominated systems, eroded channel sediments and material from the river catchment may augment barrier sediments in the ephemeral delta deposit. Post-flood, wave-reworking of ephemeral delta sediments acts to restore barriers to pre-flood morphology within a few years; however, in river-dominated systems, the additional sediment volume may produce significant coastal progradation that requires several years or decades to redistribute. These different modes of flood response mediated by the nature of the estuary have implications for coastal behaviour at the time scale of months to several decades. Estuary-coastal behaviour at river-dominated estuaries may be influenced for several decades by post-flood morphological adjustment. Tide-dominated estuaries, however, respond more rapidly in reworking flood-eroded sediment and are typically fully adjusted to modal wave and tidal conditions within a few months to a few years. In addition, the facies arrangement within the two estuary types renders tide-dominated estuaries more responsive to minor floods, while river-dominated estuaries, by virtue of more cohesive channel sediments, require greater discharges to effect significant morphological change.
Regional estimation of extreme suspended sediment concentrations using watershed characteristics
NASA Astrophysics Data System (ADS)
Tramblay, Yves; Ouarda, Taha B. M. J.; St-Hilaire, André; Poulin, Jimmy
2010-01-01
SummaryThe number of stations monitoring daily suspended sediment concentration (SSC) has been decreasing since the 1980s in North America while suspended sediment is considered as a key variable for water quality. The objective of this study is to test the feasibility of regionalising extreme SSC, i.e. estimating SSC extremes values for ungauged basins. Annual maximum SSC for 72 rivers in Canada and USA were modelled with probability distributions in order to estimate quantiles corresponding to different return periods. Regionalisation techniques, originally developed for flood prediction in ungauged basins, were tested using the climatic, topographic, land cover and soils attributes of the watersheds. Two approaches were compared, using either physiographic characteristics or seasonality of extreme SSC to delineate the regions. Multiple regression models to estimate SSC quantiles as a function of watershed characteristics were built in each region, and compared to a global model including all sites. Regional estimates of SSC quantiles were compared with the local values. Results show that regional estimation of extreme SSC is more efficient than a global regression model including all sites. Groups/regions of stations have been identified, using either the watershed characteristics or the seasonality of occurrence for extreme SSC values providing a method to better describe the extreme events of SSC. The most important variables for predicting extreme SSC are the percentage of clay in the soils, precipitation intensity and forest cover.
Panagiotoulias, I; Botsou, F; Kaberi, H; Karageorgis, A P; Scoullos, M
2017-10-31
In order to document the impact of Best Available Techniques (BAT) and implementation of regulation on the improvement of the coastal marine environment state, we examined the case of a representative steel mill located at the Gulf of Elefsis (Greece). The evaluation of metal pollution was based on the analysis of major and trace elements, organic carbon, magnetic properties, and sediment accumulation rates, in sediment cores obtained from the vicinity of the plant. The analytical data are discussed in relation to steel production, changes of production routes, and adoption of BAT introduced in order to fulfill EU and national legislation. The results show that the input of pollutants to sediments and the degree of contamination were reduced by approximately 40-70% in the decade 2003-2015 in comparison to the periods of high discharges (1963-2002), whereas the toxicity risks from "high-to-extremely high" were reduced to "medium-to-high."
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Olson, K. J.; McGee, D.; Lowenstein, T. K.; Smoot, J. P.; Janick, J. J.; Lund, S.; Peaple, M.; Chen, C. Y.; Feakins, S. J.; Litwin, R.
2017-12-01
Over decadal to millennial scales, the southwestern U.S has experienced large shifts in hydroclimate ranging from pluvial conditions to extreme droughts. Direct observations, modeling and proxy data suggest precipitation amount and distribution are controlled by multiple factors including the position of the Hadley Cell, strength of the Aleutian Low and North Pacific High, ENSO and the path of winter storm tracks. Sediment records from closed basin lakes provide a means for assessing how hydrologic conditions have responded to past climate changes; however, long (>50 ka) paleoclimate records from lakes are rare and high-resolution age models are challenging to obtain. Searles Lake, in southeastern California, contains a sedimentary record that spans from the Holocene to the Pliocene at high resolution. Previous drill core studies from the basin used stratigraphy and sediment mineralogy to interpret paleoenvironmental changes and have demonstrated that the lake's sediments are able to be precisely dated. These results provide a strong foundation for new high-resolution investigations of the lake sediments. In January 2017, our group collected a new 80 m-long core with the aim of reconstructing hydrologic changes over the last 150 ka at millennial or better resolution. The core was split at the National Lacustrine Core Facility (LacCore) in June. The core contains alternating evaporite layers and finely laminated muds which likely indicate times of dryer and wetter conditions. Despite the challenge of alternating lithologies, core recovery and quality are extremely high. Here, we will present our initial chronological and stratigraphic findings. The core record will be dated using a combination of U/Th, 14C and magnetostratigraphy. We will compare our initial stratigraphic description to the existing Searles Lake literature as well as other records from the region, such as data from Devils Hole. These results provide the framework upon which we will develop detailed stratigraphic and crystallographic interpretations as well as a host of proxy records including leaf waxes, pollen and stable isotopes to advance our understanding of paleoenvironment and paleoclimate.
Small-scale turbidity currents in a big submarine canyon
Xu, Jingping; Barry, James P.; Paull, Charles K.
2013-01-01
Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.
Moody, John A.
2016-03-21
Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an area-averaged peak runoff coefficient for the September 2013 rain storms in Boulder County, and the 8.6 millimeters per hour to be the rainfall intensity corresponding to a soil moisture threshold that controls the soil infiltration rate. Peak discharge estimates based on the sediment transport effects were generally less than the ensemble average and indicated that sediment transport may be a mechanism that limits velocities in these types of mountain streams such that the Froude number fluctuates about 1 suggesting that this type of floodflow can be approximated as critical flow.
NASA Astrophysics Data System (ADS)
Stocker-Waldhuber, Martin; Fischer, Andrea; Keller, Lorenz; Morche, David; Kuhn, Michael
2017-06-01
Alpine glaciers have been retreating at extreme and historically unprecedented rates. While the general course of regional retreat rates reflects long-term climatic change, individual extreme events are closely related to the geomorphological settings and processes of the specific glacier. Nevertheless, these extreme events also influence the regional means and might be an important feedback mechanism accelerating the response of glaciers to climate change. In 2009, during the recent disintegration of the terminus of Gepatschferner (46°52‧30″N, 10°45‧25″E), a shallow circular depression appeared at the glacier tongue with a decrease of surface ice flow velocity to almost nil. In 2015 the area was ice-free. During a heavy precipitation event in August 2012, a subglacial sediment layer of > 10 m was flushed out, which accelerated the subsidence of the ice surface. The development of this 15 to 30 m deep depression was monitored with a combination of methods in high detail, including direct ablation measurements and a time series of seven high-resolution airborne laser DEMs, plus recordings of ice flow velocity and surface elevation with DGPS. The thickness of ice and sediment layers was measured with vibroseismic soundings in 2012 and 2013. Similar developments were observed at three other glaciers with extreme retreat rates. Our investigation suggests that this mechanism has a major impact on and can be read as an indicator of a nonlinear increased response of glaciers to climate change.
NASA Astrophysics Data System (ADS)
Beylich, Achim A.; Laute, Katja; Storms, Joep E. A.
2017-06-01
This paper focuses on environmental controls, spatiotemporal variability and rates of contemporary fluvial suspended sediment transport in the neighboring, partly glacierized and steep Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the fjord landscape of the inner Nordfjord in western Norway. Field work, including extended samplings and measurements, was conducted since 2004 in Erdalen and since 2008 in Bødalen. The distinct intra- and inter-annual temporal variability of suspended sediment transport found is mostly controlled by meteorological events, with most suspended sediment transport occurring during pluvial events in autumn (September-November), followed by mostly thermally determined glacier melt in summer (July-August), and by mostly thermally determined snowmelt in spring (April-June). Extreme rainfall events (> 70 mm d- 1) in autumn can trigger significant debris-flow activity that can cause significant transfers of suspended sediments from ice-free surface areas with sedimentary covers into main stream channels and is particularly important for fluvial suspended sediment transport. In years with occurring relevant debris-flow activity the total annual drainage-basin wide suspended sediment yields are strongly determined by these single extreme events. The proportion of glacier coverage, followed by steepness of slopes, and degree of vegetation cover in ice-free surface areas with sedimentary covers are the main controls for the detected spatial variability of suspended sediment yields. The contemporary sediment supply from glacierized surface areas and the Jostedalsbreen ice cap through different defined outlet glaciers shows a high spatial variability. The fact that the mean annual suspended sediment yield of Bødalen is with 31.3 t km- 2 yr- 1 almost twice as high as the mean annual suspended sediment yield of Erdalen (16.4 t km- 2 yr- 1) is to a large extent explained by the higher proportion of glacier coverage in Bødalen (38% of the drainage basin surface area) as compared to Erdalen (18% of the drainage basin surface area) and by a significantly higher sediment yield from the glacierized area of the Bødalen drainage basin compared to the glacierized surface area in Erdalen. When looking at the total annual mass of suspended sediments being fluvially exported from both entire drainage basin systems, the total amount of suspended sediments coming from the ice-free drainage basin surface areas altogether dominates over the total amount of suspended sediments coming from the glacierized surface area of both drainage basins. Drainage-basin wide annual suspended sediment yields are rather low when compared with yields of other partly glacierized drainage basin systems in Norway and in other cold climate environments worldwide, which is mainly due to the high resistance of the predominant gneisses towards glacial erosion and weathering, the altogether only small amounts of sediments being available within the entire drainage basin systems, the stable and nearly closed vegetation cover in the ice-free surface areas with sedimentary covers, and the efficiency of proglacial lakes in trapping sediments supplied by defined outlet glaciers. Both contemporary and long-term suspended sediment yields are altogether supply-limited. Contemporary suspended sediment transport accounts for nearly two-thirds of the total fluvial transport and, accordingly, plays an important role within the sedimentary budgets of the entire Erdalen and Bødalen drainage basins.
Microbiology: A microbial arsenic cycle in a salt-saturated, extreme environment
Oremland, R.S.; Kulp, T.R.; Blum, J.S.; Hoeft, S.E.; Baesman, S.; Miller, L.G.; Stolz, J.F.
2005-01-01
Searles Lake is a salt-saturated, alkaline brine unusually rich in the toxic element arsenic. Arsenic speciation changed from arsenate [As(V)] to arsenite [As(III)] with sediment depth. Incubated anoxic sediment slurries displayed dissimilatory As(V)-reductase activity that was markedly stimulated by H2 or sulfide, whereas aerobic slurries had rapid As(III)-oxidase activity. An anaerobic, extremely haloalkaliphilic bacterium was isolated from the sediment that grew via As(V) respiration, using either lactate or sulfide as its electron donor. Hence, a full biogeochemical cycle of arsenic occurs in Searles Lake, driven in part by inorganic electron donors.
NASA Astrophysics Data System (ADS)
Hollaus, Lisa-Maria; Khan, Samiullah; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin
2016-04-01
Lake sediments are used as sentinels of changes in organic matter composition and dynamics within lakes and their catchments. In an effort to investigate how past and recent hydrological extreme events have affected organic matter composition in lake sediments, we investigated the biogeochemical composition of sediment cores and settling particles, using sediment traps in the pre-alpine, oligotrophic Lake Lunz, Austria. We assessed annual sedimentation rates using 137Cs and 210Pb, time integrated loads of settling particles, analyze stable carbon (δ13C) and nitrogen (δ15N) isotopes to track changes of carbon sources and trophic compositions, respectively, and use source-specific fatty acids as indicators of allochthonous, bacterial, and algal-derived organic matter. Preliminary results indicate that settling particles of Lake Lunz (33 m depth) contain high algae-derived organic matter, as assessed by long-chain polyunsaturated fatty acids (LC-PUFA), indicating low degradation of such labile organic matter within the water column of this lake. However, LC-PUFA decreased rapidly in sediment cores below the sediment-water interface. Concentrations of phosphorous remained stable throughout the sediment cores (40 cm), suggesting that past changes in climatic forcing did not alter the load of this limiting nutrient in lakes. Ongoing work reveals dramatic biotic changes within the top layers of the sediment cores as evidenced by high numbers of small-bodied cladocerans (e.g., Bosmina) and large-bodied zooplankton (e.g., Daphnia) are only detected at lower sediment layers. Current research on these lake sediments is aimed at investigating how organic matter sources changed during the past century as a result of recorded weather changes.
DDTs and HCHs in sediment cores from the coastal East China Sea.
Lin, Tian; Nizzetto, Luca; Guo, Zhigang; Li, Yuanyuan; Li, Jun; Zhang, Gan
2016-01-01
Four sediment cores were collected along the Yangtze-derived sediment transport pathway in the inner shelf of the East China Sea (ECS) for OCP analysis. The sediment records of HCHs and DDTs in estuarine environment reflected remobilization of chemicals from enhanced soil erosion associated to extreme flood events or large scale land use transformation. The sediment records in the open sea, instead, reflected long-term historical trends of OCP application in the source region. Unlike the so-called mud wedge distribution of sediment, inventories of HCHs and DDTs slightly increased from the mouth of Yangtze River alongshore toward south, suggesting the sediment deposition rate was one of factors on the exposure of chemicals within the inner shelf of the ECS. Re-suspension and transport of the Yangtze-derived sediment and consequent fractionation in grain size and TOC were also responsible for the spatial variation of inventories of catchment derived OCPs in a major repository area of the Yangtze suspended sediment. The total burdens of HCHs and DDTs in the inner shelf of the ECS were 35tons and 110tons, respectively. After 1983 (year of the official ban in China), those values were 13tons and 50tons, respectively. It appears that the Yangtze still delivers relatively high inputs of DDTs more than 30years after the official ban. High proportions of DDD+DDE and β-HCH suggested those OCPs mainly originated from historical usage in the catchment recent years. Copyright © 2015 Elsevier B.V. All rights reserved.
High Nutrient Load Increases Biostabilization of Sediment by Biofilms
NASA Astrophysics Data System (ADS)
Valentine, K.; Mariotti, G.
2016-12-01
Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.
The stratigraphic record of recent climate change in mid-Atlantic USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brush, G.S.; Hilgartner, W.B.; Khan, H.
1994-06-01
The Medieval Warm Period and Little Ice Age recorded in sediments deposited in tributaries and marshes surrounding the Chesapeake and Delaware Bays in the mid-Atlantic region of USA, by changes in pollen and seeds of terrestrial and aquatic plants, and changes in influxes of charcoal, sediment, metals and nutrients. Fossil pollen and seeds portray a regional landscape characterized by conditions drier that present from about 1000 to 1200 AD. During the same period, high charcoal and sediment influxes indicate high fire frequency. This short dry interval was followed by an expansion of submerged aquatic plants, low marsh plants, and terrestrialmore » plants that occupy wet habitats. Charcoal influxes are extremely low during the latter interval, which extended from about 1200 AD to 1500 AD. Plant macrofossil and pollen distributions indicate a second dry period extending from 1550 to 1650 AD, which appears similar to the earlier Medieval Warm interval.« less
Characterizing Novel Archaeal Lineages in Salton Sea Sediments
NASA Astrophysics Data System (ADS)
Tarn, J.; Valentine, D. L.
2016-12-01
Biological communities in extreme environments are often dominated by microorganisms of the domain Archaea. Abundant microbial assemblages of this group are found in the hottest, saltiest, and most thermodynamically-limited ecosystems on earth. These taxing surroundings are thought to impose a state of chronic energy stress on resident organisms due to high costs of cellular maintenance relative to resource availability. Even in more temperate settings, Archaea are regularly associated with low-nutrient lifestyles, reflecting their adaptation to extreme, biologically-limiting conditions, which may be an ancestral, domain-wide trait. In this study, we seek to characterize the Archaeal community of the Salton Sea, where members of this domain are novel and highly abundant. Previous work by Swan et al. in 2010 showed that gradients in salinity, sulfate, carbon and nitrogen across sediment horizons of the Salton Sea are linked to changes in Archaeal dominance and community structure. In light of recent taxonomic revisions of the domain, I reclassified the 107 published small subunit rRNA Archaeal sequences from the 2010 study using updated reference databases. The majority of these Euryarchaeal sequences were reassigned to the so-called DPANN superphylum, with Pacearchaeota-related sequences being very abundant in shallow, organic-rich sediments. In deeper, energy-limited strata, several groups of Bathyarchaeota and one divergent DPANN clade were dominant. Ongoing metagenomic work on these sediment communities is being used to assemble genomes of these novel Archaeal groups. These results will help define genomic adaptations of Salton Sea Archaea to varying levels of energy stress as well as inform future cultivation efforts.
NASA Astrophysics Data System (ADS)
Xie, J.; Wang, M.; Liu, K.
2017-12-01
The 2008 Wenchuan Ms 8.0 earthquake caused overwhelming destruction to vast mountains areas in Sichuan province. Numerous seismic landslides damaged the forest and vegetation cover, and caused substantial loose sediment piling up in the valleys. The movement and fill-up of loose materials led to riverbeds aggradation, thus made the earthquake-struck area more susceptible to flash floods with increasing frequency and intensity of extreme rainfalls. This study investigated the response of sediment and river channel evolution to different rainfall scenarios after the Wenchuan earthquake. The study area was chosen in a catchment affected by the earthquake in Northeast Sichuan province, China. We employed the landscape evolution model CAESAR-lisflood to explore the material migration rules and then assessed the potential effects under two rainfall scenarios. The model parameters were calibrated using the 2013 extreme rainfall event, and the experimental rainfall scenarios were of different intensity and frequency over a 10-year period. The results indicated that CAESAR-lisflood was well adapted to replicate the sediment migration, particularly the fluvial processes after earthquake. With respect to the effects of rainfall intensity, the erosion severity in upstream gullies and the deposition severity in downstream channels, correspondingly increased with the increasing intensity of extreme rainfalls. The modelling results showed that buildings in the catchment suffered from flash floods increased by more than a quarter from the normal to the enhanced rainfall scenarios in ten years, which indicated a potential threat to the exposures nearby the river channel, in the context of climate change. Simulation on landscape change is of great significance, and contributes to early warning of potential geological risks after earthquake. Attention on the high risk area by local government and the public is highly suggested in our study.
NASA Astrophysics Data System (ADS)
Ghaleb, Bassam; Hillaire-Marcel, Claude; Ruiz Fernandez, Ana-Carolina; Sanchez Cabeza, Joan-Albert
2016-04-01
Climatic events (e.g. floods, storminess) and management activities (e.g. dredging) may result in the burial or removal and re-suspension of sediments in estuaries and coastal areas. When such sediments are contaminated, such processes may either help restoring better chemical environments or lead to their long-term contamination. Geochemical signatures in surface sediments may help identifying such sedimentological events. However, short-lived isotope data are generally required to set time-constraints on their occurrence. Whereas 210Pb and radioactive fallout isotope contents can help setting time constraints at ~50 to ~100 yr-time scales, natural disequilibria in the 232Th-228Ra-228Th sequence do provide information on processes which occurred within the last 30 yrs, as illustrated in the present study. Box-cored sediments from the Saguenay Fjord and lower estuary of the St. Lawrence (Canada) as well as from estuaries and lagoons from the Sinaloa Coast (Mexico) are used to document the behavior of these isotopes either under relatively steady conditions (St. Lawrence estuary) or under high-frequency extreme climate events (storms and floods; Saguenay Fjord, Coastal Sinaloa). 228Th/232Th activity ratios were determined by chemical extraction of Th and alpha counting of unspiked samples, rapidly after sampling (228Th/232Th). The activity of the intermediate isotope 228Ra was then estimated based on replicate measurements on aliquot samples made a few years later. Under steady conditions, core-top sediment shows an excess in 228Th vs 232Th (AR ~ 1.6), whereas the intermediate 228Ra depicts a deficit vs its parent 232Th (AR ~0.6). Downcore, radioactive decay carries rapidly 228Th-activities to those of the parent 228Ra within about 10 yrs (i.e., ~ 5 half-lives of 228Th), then both move during the next ~20 yrs (~ i.e., ~ 5 half-lives of 228Ra, when added to the 10 yrs of 228Th-excess) towards secular equilibrium with the parent long-lived 232Th. A few algorithms provide simple models governing these processes under relatively high sedimentation rates, i.e., when Ra-diffusion from the sediment towards the water column may be neglected. In sites characterized by extreme sedimentologival events, 228Th/232Th profiles depict departures from this model, thus bearing information on the timing and processes involved. Examples from the Saguenay Fjord (Canada) illustrate the case of fast-deposited layers due to floods, whereas examples from estuaries and coastal areas of Sinaloa show evidence for re-suspension and/or erosion events linked notably to storminess and/or land use changes. In the first case, the fast accumulation of flood layers has sealed most of the early 20th-century contamination, whereas in the second case, erosion and re-suspension events led to either some removal of sediments contaminated by heavy metals, or their secondary release into the environment.
Sulfur diagenesis in marine sediments
NASA Technical Reports Server (NTRS)
Goldhaber, M.
1985-01-01
Bacterial sulfate reduction occurs in all marine sediments that contain organic matter. Aqueous sulfide (HS-, H2S), one of the initial products of bacterial sulfide reduction, is extremely reactive with iron bearing minerals: sulfur is fixed into sediments as iron sulfide (first FeS and then Fe2S2). A working definition is given of sulfur diagenesis in marine sediments. Controls and consequences of sulfate reduction rates in marine sediments are examined.
Modelling Extreme Events (Hurricanes) at the Seafloor in the Gulf of Mexico:
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Jenkins, C. J.; Meiburg, E. H.; Radhakrishnan, S.; Harris, C. K.; Arango, H.; Kniskern, T. A.; Hutton, E.; Auad, G.
2016-02-01
The subsea infrastructure of the N Gulf of Mexico is exposed to risks of seabed failure and flowage under extreme storm events. Numerical assessments of the likelihood, location and severity of those phenomena would help in planning. A project under BOEM, couples advanced modelling modules in order to begin such a system. The period 2008-10 was used for test data, covering hurricanes Gustav and Ike in the Mississippi to De Soto Canyons region. Currents, tides and surface waves were computed using the Regional Ocean Modeling System (ROMS) and river discharges from WBMsed. The Community Sediment Transport Model (CSTMS) calculated the concurrent sediment erosion-transport-deposition. Local sediment properties were from the dbSEABED database. The preferred paths of near-bottom sediment flows were based on a stream analysis of the bathymetry. Locations and timings of suspended sediment gravity flow were identified by applying energy flow ignition criterea. Wave-induced mass failure and subbottom liquefaction were assessed using a bevy of marine geotechnical models. The persistence, densities and velocities of turbidity flows yielded by the disruption of the sediment masses were calculated using high-Reynolds Number adaptations of LES/RANS-TURBINS models (Large-Eddy Simulation / Reynolds Averaged Navier-Stokes). A valuable experience in the project was devising workflows and linkages between these advanced, but independent models. We thank H Arango, T Kniskern, J Birchler and S Radhakrishnan for their help in this. Results: as known, much of the shelf sediment mantle is suspended and/or moved during hurricanes. Many short-lived gravity-flow ignitions happen on the shelf; only those at the shelf edge will ignite into fast, erosive currents. Sediment patchiness and vagaries of hurricane path mean that the pattern alters from event to event. To understand the impacts on infrastructure, a numerical process-based modelling approach will be essential - along the lines we explored.
Fate and Transport of Cohesive Sediment and HCB in the Middle Elbe River Basin
NASA Astrophysics Data System (ADS)
Moshenberg, Kari; Heise, Susanne; Calmano, Wolfgang
2014-05-01
Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly during flood events. This study focuses on Hexachlorobenzene (HCB), a persistent organic pollutant that has been identified as a contaminant of concern in the Elbe Basin. To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic, suspended sediment, and contaminated transport model for the 271-km reach of the Elbe River basin between Dresden and Magdeburg was developed. Additionally, trends in suspended sediment and contaminant transport were investigated in the context of the recent high frequency of floods in the Elbe Basin. This study presents strong evidence that extreme high water events, such as the August, 2002 floods, have a permanent effect on the sediment transport regime in the Elbe River. Additionally, results indicate that a significant component annual HCB loads are transported downstream during floods. Additionally, modeled results for suspended sediment and HCB accumulation on floodplains are presented and discussed. Uncertainty and issues related to model development are also addressed. A worst case analysis of HCB uptake by dairy cows and beef cattle indicate that significant, biologically relevant quantities of sediment-sorbed HCB accumulate on the Elbe floodplains following flood events. Given both the recent high frequency of floods in the Elbe Basin, and the potential increase in flood frequency due to climate change, an evaluation of source control measures and/or additional monitoring of floodplain soils and grasses is recommended.
Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel
2016-06-01
Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of Potential Climate Change Impacts on Particle Movement in Open Channel Flow
NASA Astrophysics Data System (ADS)
Lin, E.; Tsai, C.
2014-12-01
It is important to develop a forecast model to predict the trajectory of sediment particles when extreme flow events occur. In extreme flow environments, the stochastic jump diffusion particle tracking model (SJD-PTM) can be used to model the movement of sediment particles in response to extreme events. This proposed SJD-PTM can be separated into three main parts — a drift motion, a turbulence term and a jump term due to random occurrences of extreme flow events. The study is intended to modify the jump term, which models the abrupt changes of particle position in the extreme flow environments. The frequency of extreme flow occurrences might change due to many uncertain factors such as climate change. The study attempts to use the concept of the logistic regression and the parameter of odds ratio, namely the trend magnitude to investigate the frequency change of extreme flow event occurrences and its impact on sediment particle movement. With the SJD-PTM, the ensemble mean and variance of particle trajectory can be quantified via simulations. The results show that by taking the effect of the trend magnitude into consideration, the particle position and its uncertainty may undergo a significant increase. Such findings will have many important implications to the environmental and hydraulic engineering design and planning. For instance, when the frequency of the occurrence of flow events with higher extremity increases, particles can travel further and faster downstream. It is observed that flow events with higher extremity can induce a higher degree of entrainment and particle resuspension, and consequently more significant bed and bank erosion.
NASA Astrophysics Data System (ADS)
Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue
2007-02-01
Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.
NASA Astrophysics Data System (ADS)
Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S.
2011-04-01
X-ray fluorescence (XRF) scanning of unlithified, untreated sediment cores is becoming an increasingly common method used to obtain paleoproxy data from lake records. XRF-scanning is fast and delivers high-resolution records of relative variations in the elemental composition of the sediment. However, lake sediments display extreme variations in their organic matter content, which can vary from just a few percent to well over 50%. As XRF scanners are largely insensitive to organic material in the sediment, increasing levels of organic material effectively dilute those components that can be measured, such as the lithogenic material (the closed-sum effect). Consequently, in sediments with large variations in organic material, the measured variations in an element will to a large extent mirror the changes in organic material. It is therefore necessary to normalize the elements in the lithogenic component of the sediment against a conservative element to allow changes in the input of the elements to be addressed. In this study we show that Al, which is the lightest element that can be measured using the Itrax XRF-scanner, can be used to effectively normalize the elements of the lithogenic fraction of the sediment against variations in organic content. We also show that care must be taken when choosing resolution and exposure time to ensure optimal output from the measurements.
Capello, M; Carbone, C; Cecchi, G; Consani, S; Cutroneo, L; Di Piazza, S; Greco, G; Tolotti, R; Vagge, G; Zotti, M
2017-06-15
Fungi include a vast group of eukaryotic organisms able to colonise different natural, anthropised and extreme environments, including marine areas contaminated by metals. The present study aims to give a first multidisciplinary characterisation of marine bottom sediments contaminated by metals (Cd, Co, Cr, Cu, Ni, and Zn), originating in the water leakage from an abandoned Fe-Cu sulphide mine (Libiola, north-western Italy), and evaluate how the chemical and physical parameters of water and sediments may affect the benthic fungal communities. Our preliminary results showed the high mycodiversity of the marine sediments studied (13 genera and 23 species of marine fungi isolated), and the great physiological adaptability that this mycobiota evolved in reaction to the effects of the ecotoxic bottom sediment contamination, and associated changes in the seawater parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Colman, Steven M.; Jones, Glenn A.; Rubin, M.; King, J.W.; Peck, J.A.; Orem, W.H.
1996-01-01
A suite of 146 new accelerator-mass spectrometer (AMS) radiocarbon ages provides the first reliable chronology for late Quaternary sediments in Lake Baikal. In this large, highly oligotrophic lake, biogenic and authigenic carbonate are absent, and plant macrofossils are extremely rare. Total organic carbon is therefore the primary material available for dating. Several problems are associated with the TOC ages. One is the mixture of carbon sources in TOC, not all of which are syndepositional in age. This problem manifests itself in apparent ages for the sediment surface that are greater than zero. However, because most of the organic carbon in Lake Baikal sediments is algal (autochthonous) in origin, this effect is limited to about 1000+500 years, which can be corrected, at least for young deposits. The other major problem with dating Lake Baikal sediments is the very low carbon contents of glacial-age deposits, which makes them extremely susceptible to contamination with modern carbon. This problem can be minimized by careful sampling and handling procedures. The ages show almost an order of magnitude difference in sediment-accumulation rates among different sedimentary environments in Lake Baikal, from about 0.04 mm/year on isolated banks such as Academician Ridge, to nearly 0.3 mm/year in the turbidite depositional areas beneath the deep basin floors, such as the Central Basin. The new AMS ages clearly indicate that the dramatic increase in diatom productivity in the lake, as evidenced by increases in biogenic silica and organic carbon, began about 13 ka, in contrast to previous estimates of 7 ka for the age of this transition. Holocene net sedimentation rates may be less than, equal to, or greater than those in the late Pleistocene, depending on the site. This variability reflects the balance between variable terrigenous sedimentation and increased biogenic sedimentation during interglaciations. The ages reported here, and the temporal and spatial variation in sedimentation rates that they imply, provide opportunities for paleoenvironmental reconstructions at different time scales and resolutions.
Mladotice Lake, Czechia: The unique genesis and evolution of the lake basin
NASA Astrophysics Data System (ADS)
Janský, Bohumír; Šobr, Miroslav; Kliment, Zdeněk; Chalupová, Dagmar
2016-04-01
The Mladotice Lake is a lake of unique genetic type in Czechia. In May 1872 a landslide as a result an extreme rainfall event occurred in western Czechia, blocking the Mladoticky stream valley and creating the Mladotice Lake. The 1952 and 1975 air images document that collective farming had a great impact on the lake basin evolution when balks and field terraces were removed and fields were made much larger. Because of this change in land use we expected higher soil erosion and a related increase in the sedimentation rate. First bathymetric measurements of the newly created lake were carried out in 1972 and were repeated in 1999, in 2003 and in 2014. Our analysis of the sedimentary record aims to identify the sediment stratigraphy, its basic physical and chemical properties, isotope content and thin sections yield a detailed temporal resolution of the sedimentation chronology. In some areas a sediment thickness of 4 m was detected. Hence, the average sedimentation rate is from 2.2 to 2.7 cm per year. KEY WORDS: Mladotice Lake - extreme rainfall event - landslide - land use changes - flood events - bathymetric measurements - sedimentation dynamics - stratigraphy and geochemistry of lake sediments - analyses of isotopes - sedimentation rates.
Lake Sediments show the Frequency of 21st Century Extreme Flooding in the UK is Unprecedented
NASA Astrophysics Data System (ADS)
Chiverrell, R. C.; Sear, D. A.; Warburton, J.; Macdonald, N.; Schillereff, D. N.; Dearing, J.; Croudace, I. W. C.
2016-12-01
Flooding in northwest England has been reconstructed from the coarse grained units preserved in lake sediment sequences at Bassenthwaite Lake, a record that includes the floods of December 2015 (Storm Desmond) and November 2009 and shows they were the most extreme in over 600 years. The inception and propagation of a lake sediment flood event horizon in the aftermath of the December 2015 storms in the UK has been explored as part of NERC Urgency Grant that focuses on Bassenthwaite Lake, Brotherswater, Buttermere and Ullswater. Our approach involves repeat coring of locations over 6-12 months, sediment trapping, and testing how this recent extreme event has settled into the sediment record. For Bassenthwaite Lake linking our new sediment palaeoflood series to river discharges, provides the first assessment of flood frequency and magnitude based on lake sediments for the UK. We show that recent devastating flooding in NW England in 2009 was the largest event in 415 years, had a recurrence interval far larger (1:9000 year) than conventional analysis based on short term records suggest (1:700 year), and occurred during a cluster of floods that is unprecedented in 600 years. Particle size characteristics of flood laminations, after correction for variations in the stability of catchment sediment sources, were correlated on a hydrodynamic basis with recorded river flows. The particle size flood record is underpinned by a robust chronology to CE 1420 derived from radionuclide (Pb210, Am241, and Cs137) dating and correlations to the rich history of metal (Pb, Zn, Ba and Cu) mining in the catchment accurately recorded in the sediment geochemistry. The sediment palaeoflood series reveals five flood rich periods (CE 1460-1500, 1580-1680, 1780-1820, 1850-1925, 1970-present), and these correspond with positive phases of reconstructed winter NAOI and other Atlantic circulation patterns. The hydro-climatology of the extreme events (top 1% of floods) in our series, show that 67% of floods have occurred in the 21st Century during a period of prolonged warmer northern Hemisphere temperatures and positive NAOI winter index. Our approach is widely applicable wherever suitable lakes are found offering the possibility of quantitative long term flood series for different hydroclimatic regions of the world.
Lam, Nguyen Hoang; Jeong, Hui-Ho; Kang, Su-Dong; Kim, Dae-Jin; Ju, Mi-Jo; Horiguchi, Toshihiro; Cho, Hyeon-Seo
2017-08-15
A simultaneous monitoring study on organotins (butyltins and phenyltins) and most frequently used alternative antifouling biocides (Irgarol 1051, Diuron, Sea-Nine 211 and M1) in water and sediments (n=44) collected from three Special Management Sea Areas operated by Korean government. The lower concentration of butyltins (BTs) than that of new antifouling biocides (NEW) was found in water but the significant greater concentration of BTs than that of NEW was still found in sediments. The tributyltin (TBT) levels in water exceeded the chronic criterion to protect seawater aquatic life at several sites. Even ten years after the ban of the use of TBT-based antifouling paint, the concentrations of TBT, Diuron and Irgarol 1051 in sediments from shipyards exceeded global sediment quality guidelines and potentially poses adverse risks on marine organisms and extremely high concentration of TBT up to 2304ng/g was found for a sediment collected at a shipyard. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)
NASA Astrophysics Data System (ADS)
Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.
2012-12-01
Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.
Three decades of TBT contamination in sediments around a large scale shipyard.
Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Shin, Kyung Hoon
2011-08-30
Tributyltin (TBT) contamination in sediments was investigated in the vicinity of a large-scale shipyard in the years after the implementation of a total ban on the use of TBT based antifouling paints in Korea. Extremely high level of TBT (36,292ng Sn/g) in surface sediment was found at a station in front of a drydock and near surface runoff outfall of the shipyard. TBT concentration in surface sediments of Gohyeon Bay, where the shipyard is located, showed an apparent decreased TBT concentration gradient from the shipyard towards the outer bay. The vertical distribution of TBT contamination derived from a sediment core analysis demonstrated a significant positive correlation (r(2)=0.88; p<0.001) with the annual tonnage of ship-construction in the shipyard within the past three decades. TBT concentrations at six stations surveyed before (2003) and seven years after (2010) the total ban showed no significant differences (p>0.05). Despite the ban on the use of TBT, including ocean going vessels, surface sediments are still being heavily contaminated with TBT, and its levels well exceeded the sediment quality guideline or screening values. Copyright © 2011 Elsevier B.V. All rights reserved.
Investigating Holocene Glacial and Pluvials Events in the Sierra Nevada of California
NASA Astrophysics Data System (ADS)
Ashford, J.; Sickman, J. O.; Lucero, D. M.; Kirby, M.; Gray, A. B.
2016-12-01
Understanding interannual and decadal variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental record and uncertainty caused by extrapolating paleoclimate data from lower elevation systems to the alpine snow deposition zone. Longer paleo records from high elevation systems are necessary to provide a more accurate record of snow water content and extreme precipitation events over millennial timescales that can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake, an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning along with grain-size analysis at 1-2 cm increments. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K year record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating fine grained, light-dark bands (1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. The sand to gravel sized clasts are most likely associated with extreme precipitation events. Preliminary grain-size analysis results show evidence of isolated extreme hydrologic events and sections of increased event frequency which we hypothesize are the result of atmospheric rivers intersecting the southern Sierra Nevada outside of the snow covered period.
NASA Astrophysics Data System (ADS)
Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.
2018-03-01
Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged
; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged
value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged
at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false
turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.
Sharp Permeability Transitions due to Shallow Diagenesis of Subduction Zone Sediments
NASA Astrophysics Data System (ADS)
James, S.; Screaton, E.
2013-12-01
The permeability of hemipelagic sediments is an important factor in fluid flow in subduction zones and can be affected by porosity changes and cementation-dissolution processes acting during diagenesis. Anomalously high porosities have been observed in cores from the Shikoku Basin sediments approaching the Nankai Trough subduction zone. These high porosities have been attributed to the presence of minor amounts of amorphous silica cement that strengthen the sediment and inhibit consolidation. The porosity rapidly drops from 66-68% to 54-56% at a diagenetic boundary where the amorphous silica cement dissolves. Although the anomalous porosity profiles at Nankai have received attention, the magnitude of the corresponding permeability change has not been addressed. In this study, permeability profiles were constructed using permeability-porosity relationships from previous studies, to estimate the magnitude and rate of permeability changes with depth. The predicted permeability profiles for the Nankai Trough sediment cores indicate that permeability drops by almost one order of magnitude across the diagenetic boundary. This abrupt drop in permeability has the potential to facilitate significant changes in pore fluid pressures and thus to influence the deformation of the sediment onto the accretionary prism. At the Costa Rica subduction zone, results vary with location. Site U1414 offshore the Osa Peninsula shows porosities stable at 69% above 145 mbsf and then decrease to 54% over a 40 m interval. A porosity drop of that magnitude is predicted to correlate to an order of magnitude permeability decrease. In contrast, porosity profiles from Site 1039 offshore the Nicoya Peninsula and Site U1381 offshore the Osa Peninsula show anomalously high porosities but no sharp drop. It is likely that sediments do not cross the diagenetic boundary due to the extremely low (<10°C/km) thermal gradient at Site 1039 and the thin (<100 m) sediment cover at Site U1381. At these locations, the porosity loss and permeability reduction may occur after the sediment is subducted and contribute to high pore pressures at the plate boundary.
Voichick, Nicholas; Topping, David; Griffiths, Ronald
2018-01-01
Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to correct these low false turbidity measurements and accurately measure turbidity.
NASA Technical Reports Server (NTRS)
2002-01-01
Extremely high sediment loads are delivered to the Arabian Sea along the coast of Pakistan (upper left) and western India. In the case of the Indus River (far upper left) this sedimentation, containing large quantities of desert sand, combines with wave action to create a large sand-bar like delta. In the arid environment, the delta lacks much vegetation, but contains numerous mangrove-lined channels. This true-color image from May 2001 shows the transition from India's arid northwest to the wetter regions farther south along the coast. The increase in vegetation along the coast is brought about by the moisture trapping effect of the Western Ghats Mountain Range that runs north-south along the coast. Heavy sediment is visible in the Gulf of Kachchh (north) and the Gulf of Khambhat(south), which surround the Gujarat Peninsula.
Impacts of an "extreme" storm on a low-lying embayed sandy beach (Pals Bay, NW Mediterranean)
NASA Astrophysics Data System (ADS)
Durán, Ruth; Sagristà, Enric; Guillen, Jorge; Ruiz, Antonio; Jiménez, José Antonio
2014-05-01
The present study aims to assess the effects of an extreme storm in the medium-term evolution of a low-lying, low-tidal sandy coast based on airborne LIDAR (LIght Detection and Ranging) derived high-resolution topographic data. LIDAR data were acquired by the Institut Cartogràfic de Catalunya and analyzed in a Geographical Information System (GIS) environment in order to estimate the shoreline displacement (advance or retreat), volumetric changes of the emerged beach, dune erosion and overswash. LIDAR surveys were undertaken in October 2008 and August 2009 to evaluate the impact of an extreme storm that severely hit the north-west Mediterranean coast on 26 December 2008. During this storm, maximum significant wave heights of 7.5 m (with peaks of 14.4 m of maximum wave height) and maximum wave peak period of 12.8 s were recorded at the Palamós buoy, located at 90 m depth. In addition, several weak to moderate storms also occurred during the study period. The Pals Bay in the northern of Catalonia (NW Mediterranean) has been chosen for this study because: (i) it is a low-lying coastal land, which makes the coastline highly susceptible to flooding by waves during storms; and (ii) it includes high natural value areas and urbanized ones that show different behavior under the impact of storms. It comprises three beaches: the Pals Bay beach that extends along 6840 m between L'Estartit and Begur promontories, and two pocket beaches located at the southern end of the Pals Bay, Cala Moreta and Sa Riera, which are only 185 m and 188 m long, respectively. During the study period, shoreline position and volumetric changes in the large bay beach were not homogeneous. The coastline variations showed alongshore fluctuations up to 40 m, probably related to the development of rhythmic topographies in form of beach cups. Overall, the emerged beach experienced a net volumetric loss of -62 516 m3 (-9.14 m3/m). However, the loss of sediment was not uniform. In urbanized areas, sediment erosion occurred along the whole beach profile, whereas in natural areas foreshore erosion was accompanied by net accumulation of sediment in the backshore. This positive volumetric gain in the upper beach could be largely attributed to overwash processes during the extreme storm, which also caused dune erosion and overwash fan deposition. Nevertheless, the smaller pocked beaches behaved differently. In Cala Moreta, shoreline evolution presented an anti-clockwise rotation of the beach, with a small net loss of sediment of -265 m3 (-1.43 m3/m). Sa Riera showed a small retreat of the shoreline and an important accumulation of sediment in the backshore that resulted in a net positive volume balance in the emerged beach of +2515 m3 (+13.38 m3/m).
Normark, W.R.; Piper, D.J.W.; Sliter, R.
2006-01-01
Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity-current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high-resolution seismic-reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2-3 mm yr-1, with increases at times of extreme relative sea-level lowstand. Coarser-grained mid-fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea-level fall. These pulses of coarse-grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr-1 on the mid- and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr-1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer-term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.
NASA Astrophysics Data System (ADS)
Polvi, Lina
2017-04-01
Streams in northern Fennoscandia have two characteristics that complicate a process-based understanding of sediment transport affecting channel form: (1) they are typically semi-alluvial, in that they contain coarse glacial legacy sediment, and (2) numerous mainstem lakes buffer sediment and water fluxes. Systematic studies of these streams are complicated because natural reference sites are lacking due to over a century of widespread channel simplification to aid timber-floating. This research is part of a larger project to determine controls on channel geometry and sediment transport at: (1) the catchment scale, examining downstream hydraulic geometry, (2) the reach scale, examining sediment transport, and (3) the bedform scale, examining the potential for predictable bedform formation. The objective of the current study, targeting the bedform scale, was to use a flume experiment to determine whether sediment self-organizes and creates bedforms in semi-alluvial channels. The prototype channels, tributaries to the unregulated Vindel River in northern Sweden that are being restored after timber-floating, contain coarse sediment (D16: 55 mm, D50:250 mm, D84:620 mm) with moderately steep slopes (2-5%) and typically experience snowmelt-flooding and flooding due to ice jams. Using a scaling factor of 8 for Froude number similitude, an 8-m long, 1.1 m wide fixed-bed flume was set up at the Colorado State University Engineering Research Center with a scaled-down sediment distribution analogous to the prototype channels. For two flume setups, with bed slopes of 2% and 5%, four runs were conducted with flows analogous to QBF, Q2, Q10 and Q50 flows in the prototype channels until equilibrium conditions were reached. Digital elevation models (DEMs) of bed topography were constructed before and after each run using structure-from-motion photogrammetry. To examine self-organization of sediment, DEMs of difference between pre-flow conditions and after each flow were created; scour and deposition in relation to large immobile clasts were examined. Preliminary results show that at high flows at the lower slope (2%), fine sediment was deposited above immobile clasts and scour was common below. High flows at the higher slope (5%) caused scour above and occasionally directly below immobile clasts, with fine sediment deposited nearby scour zones above immobile clasts. These results indicate that these channels experience a shielding effect by large immobile clasts, inhibiting bedload transport and creating pockets of fine sediment upstream of large boulders. Additionally, pools downstream of immobile boulders may experience velocity reversals, causing scour instead of deposition in low-velocity zones. In addition, the combined aggradation and degradation between the Q50 and Q10 flows was less than between the Q10 and Q2 flows. This is most likely because the snowmelt-dominated flow regime of northern Sweden with buffering capacity of lakes precludes extremely high flows, causing a small difference in intermediate- and high-recurrence interval flow magnitudes. Therefore, flows with an intermediate recurrence interval likely do the most geomorphic work, but major sediment self-organization as seen in alluvial mountain streams is unlikely barring an extreme event. In conclusion, classical slope-dependent bedform relationships found in alluvial gravel-bed streams may not be applicable in semi-alluvial channels in northern Fennoscandia.
Brazilian research on extremophiles in the context of astrobiology
NASA Astrophysics Data System (ADS)
Duarte, Rubens T. D.; Nóbrega, Felipe; Nakayama, Cristina R.; Pellizari, Vivian H.
2012-10-01
Extremophiles are organisms adapted to grow at extreme ranges of environmental variables, such as high or low temperatures, acid or alkaline medium, high salt concentration, high pressures and so forth. Most extremophiles are micro-organisms that belong to the Archaea and Bacteria domains, and are widely spread across the world, which include the polar regions, volcanoes, deserts, deep oceanic sediments, hydrothermal vents, hypersaline lakes, acid and alkaline water bodies, and other extreme environments considered hostile to human life. Despite the tropical climate, Brazil has a wide range of ecosystems which include some permanent or seasonally extreme environments. For example, the Cerrado is a biome with very low soil pH with high Al+3 concentration, the mangroves in the Brazilian coast are anaerobic and saline, Pantanal has thousands of alkaline-saline lakes, the Caatinga arid and hot soils and the deep sea sediments in the Brazilian ocean shelf. These environments harbour extremophilic organisms that, coupled with the high natural biodiversity in Brazil, could be explored for different purposes. However, only a few projects in Brazil intended to study the extremophiles. In the frame of astrobiology, for example, these organisms could provide important models for defining the limits of life and hypothesize about life outside Earth. Brazilian microbiologists have, however, studied the extremophilic micro-organisms inhabiting non-Brazilian environments, such as the Antarctic continent. The experience and previous results obtained from the Brazilian Antarctic Program (PROANTAR) provide important results that are directly related to astrobiology. This article is a brief synopsis of the Brazilian experience in researching extremophiles, indicating the most important results related to astrobiology and some future perspectives in this area.
Tropical river suspended sediment and solute dynamics in storms during an extreme drought
NASA Astrophysics Data System (ADS)
Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.
2017-05-01
Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) "new water" dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.
NASA Astrophysics Data System (ADS)
Ghani, A. H. A.; Lihan, T.; Rahim, S. A.; Musthapha, M. A.; Idris, W. M. R.; Rahman, Z. A.
2013-11-01
Soil erosion and sediment yield are strongly affected by land use change. Spatially distributed erosion models are of great interest to predict soil erosion loss and sediment yield. Hence, the objective of this study was to determine sediment yield using Revised Universal Soil Loss Equation (RUSLE) model in Geographical Information System (GIS) environment at Cameron Highlands, Pahang, Malaysia. Sediment yield at the study area was determined using RUSLE model in GIS environment The RUSLE factors were computed by utilizing information on rainfall erosivity (R) using interpolation of rainfall data, soil erodibility (K) using soil map and field measurement, vegetation cover (C) using satellite images, length and steepness (LS) using contour map and conservation practices using satellite images based on land use/land cover. Field observations were also done to verify the predicted sediment yield. The results indicated that the rate of sediment yield in the study area ranged from very low to extremely high. The higher SY value can be found at middle and lower catchments of Cameron Highland. Meanwhile, the lower SY value can be found at the north part of the study area. Sediment yield value turned out to be higher close to the river due to the topographic characteristic, vegetation type and density, climate and land use within the drainage basin.
Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.
2004-01-01
Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306
Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.
Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang
2015-06-02
Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.
Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing
2017-02-15
Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment.
Buendia, C; Bussi, G; Tuset, J; Vericat, D; Sabater, S; Palau, A; Batalla, R J
2016-01-01
This paper assesses annual and seasonal trends in runoff and sediment load resulting from climate variability and afforestation in an upland Mediterranean basin, the Ribera Salada (NE Iberian Peninsula). We implemented a hydrological and sediment transport distributed model (TETIS) with a daily time-step, using continuous discharge and sediment transport data collected at a monitoring station during the period 2009-2013. Once calibrated and validated, the model was used to simulate the hydrosedimentary response of the basin for the period 1971-2014 using historical climate and land use data. Simulated series were further used to (i) detect sediment transport and hydrologic trends at different temporal scales (annual, seasonal); (ii) assess changes in the contribution of extreme events (i.e. low and high flows) and (ii) assess the relative effect of forest expansion and climate variability on trends observed by applying a scenario of constant land use. The non-parametric Mann-Kendall test indicated upward trends for temperature and decreasing trends (although non-significant) for precipitation. Downward trends occurred for annual runoff, and less significantly for sediment yield. Reductions in runoff were less intense when afforestation was not considered in the model, while trends in sediment yield were reversed. Results also indicated that an increase in the river's torrential behaviour may have occurred throughout the studied period, with low and high flow events gaining importance with respect to the annual contribution, although its magnitude was reduced over time. Copyright © 2015 Elsevier B.V. All rights reserved.
Cronin, T.; Willard, D.; Karlsen, A.; Ishman, S.; Verardo, S.; McGeehin, J.; Kerhin, R.; Holmes, C.; Colman, S.; Zimmerman, A.
2000-01-01
Salinity oscillations caused by multidecadal climatic variability had major impacts on the Chesapeake Bay estuarine ecosystem during the past 1000 yr. Microfossils from sediments dated by radiometry (14C, 137Cs, 210Pb) and pollen stratigraphy indicate that salinity in mesohaline regions oscillated 10-15 ppt during periods of extreme drought (low fresh-water discharge) and wet climate (high discharge). During the past 500 yr, 14 wet-dry cycles occurred, including sixteenth and early seventeenth century megadroughts that exceeded twentieth century droughts in their severity. These droughts correspond to extremely dry climate also recorded in North American tree-ring records and by early colonists. Wet periods occurred every ~60-70 yr, began abruptly, lasted <20 yr, and had mean annual rainfall ~25%-30% and fresh-water discharge ~40%-50% greater than during droughts. A shift toward wetter regional climate occurred in the early nineteenth century, lowering salinity and compounding the effects of agricultural land clearance on bay ecosystems.
NASA Astrophysics Data System (ADS)
Ishii, Katsuhiro; Nakamura, Sohichiro; Sato, Yuki
2014-08-01
High-sensitivity low-coherence DLS apply to measurement of particle size distribution of pigments suspended in a ink. This method can be apply to extremely dense and turbid media without dilution. We show the temporal variation of particle size distribution of thixotropy and sedimentary pigments due to aggregation, agglomerate, and sedimentation. Moreover, we demonstrate the influence of dilution of ink to particle size distribution.
NASA Astrophysics Data System (ADS)
Mouri, Goro; Ros, Faizah Che; Chalov, Sergey
2014-05-01
To better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of snowmelt in volcanic tributaries of the lahar valley, suggesting a significant hydrological contribution of volcanic catchments to instream suspended sediment transport. Daily fluctuations in discharge caused by snowmelt with debris flow were observed in this measurement period, in which suspended sediment concentration is ~ 10 mg/l during nonflooding periods and ~ 1400 mg/l when flooding occurs. The oxygen and hydrogen isotope measurements, when compared with Japan, indicated that the Kamchatka region water is relatively lightweight, incorporating the effects of topography; and the water from the beginning of the snowmelt is relatively lightweight when compared with water from the end of the snowmelt. The trend line of isotopes from the beginning of the snowmelt was defined by a slope of 6.88 (n = 12; r2 = 0.97), significantly less than that of isotopes from the snowmelt (8.72). The sediment particles collected during the snowmelt were round in shape caused by the extreme flows and high discharge. The shape of the sediment particles collected at the beginning of the snowmelt, assumed to be fresh samples from the hillslope, was sharper caused by the relatively small discharge by moderate snowmelt. Finally, the relationship between river discharge and suspended sediment concentration was indicated. The results are compared with mountainous rivers of Japan and Malaysia. A new diagram is proposed to describe the relationship between suspended sediment concentration and river discharge.
Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.
Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore
2010-09-01
The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, W.C.
Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau,more » were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.« less
NASA Astrophysics Data System (ADS)
Contreras, María. Teresa; Müllendorff, Daniel; Pastén, Pablo; Pizarro, Gonzalo E.; Paola, Chris; Escauriaza, Cristián.
2015-05-01
Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and geochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long term. The future construction of a reservoir in the Lluta River, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation, we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. This article was corrected on 15 JUNE 2015. See the end of the full text for details.
Zheng, Jian; Yamada, Masatoshi; Wang, Zhongliang; Aono, Tatsuo; Kusakabe, Masashi
2004-06-01
An analytical method for determining (239)Pu and (240)Pu in marine sediment samples, which uses quadrupole ICP-MS, was developed in this work. A simple anion-exchange chromatography system was employed for the separation and purification of Pu from the sample matrix. A sufficient decontamination factor of 1.4 x 10(4) for U, which interferes with the determination of (239)Pu, was achieved. High sensitivity Pu determination was obtained, which led to an extremely low concentration detection limit of approximately 8 fg/ml (0.019 mBq/ml for (239)Pu; 0.071 mBq/ml for (240)Pu) in a sample solution, or an absolute detection limit of 42 fg in a 5 ml sample solution, by using the shield torch technique. Analytical results for the determination of the (239+240)Pu and the (240)Pu/(239)Pu ratio in IAEA 368 (ocean sediment) reference material indicated that the accuracy of the method was satisfactory. The method developed was successfully applied to a study of Pu behavior in the sediments from Sagami Bay, Japan. The observed high (240)Pu/(239)Pu ratio in the sediment core indicated that there was additional Pu input derived from close-in fallout in addition to the global fallout.
Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N
2010-02-01
Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design. Further investigations of invertebrate sensitivity to sedimentation may benefit from assessments of sedimentation impacts at different spatial scales, determining compromised physical habitat integrity of specific taxa and developing alternative streambed measures for quantifying sedimentation.
Effects of soil management techniques on soil water erosion in apricot orchards.
Keesstra, Saskia; Pereira, Paulo; Novara, Agata; Brevik, Eric C; Azorin-Molina, Cesar; Parras-Alcántara, Luis; Jordán, Antonio; Cerdà, Artemi
2016-05-01
Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare. In this paper we study the impact of different agricultural land management strategies on soil properties (bulk density, soil organic matter, soil moisture), soil water erosion and runoff, by means of simulated rainfall experiments and soil analyses. Three representative land managements (tillage/herbicide/covered with vegetation) were selected, where 20 paired plots (60 plots) were established to determine soil losses and runoff. The simulated rainfall was carried out at 55mmh(-1) in the summer of 2013 (<8% soil moisture) for one hour on 0.25m(2) circular plots. The results showed that vegetation cover, soil moisture and organic matter were significantly higher in covered plots than in tilled and herbicide treated plots. However, runoff coefficient, total runoff, sediment yield and soil erosion were significantly higher in herbicide treated plots compared to the others. Runoff sediment concentration was significantly higher in tilled plots. The lowest values were identified in covered plots. Overall, tillage, but especially herbicide treatment, decreased vegetation cover, soil moisture, soil organic matter, and increased bulk density, runoff coefficient, total runoff, sediment yield and soil erosion. Soil erosion was extremely high in herbicide plots with 0.91Mgha(-1)h(-1) of soil lost; in the tilled fields erosion rates were lower with 0.51Mgha(-1)h(-1). Covered soil showed an erosion rate of 0.02Mgha(-1)h(-1). These results showed that agricultural management influenced water and sediment dynamics and that tillage and herbicide treatment should be avoided. Copyright © 2016 Elsevier B.V. All rights reserved.
Temporal variability and memory in sediment transport in an experimental step-pool channel
NASA Astrophysics Data System (ADS)
Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael
2015-11-01
Temporal dynamics of sediment transport in steep channels using two experiments performed in a steep flume (8%) with natural sediment composed of 12 grain sizes are studied. High-resolution (1 s) time series of sediment transport were measured for individual grain-size classes at the outlet of the flume for different combinations of sediment input rates and flow discharges. Our aim in this paper is to quantify (a) the relation of discharge and sediment transport and (b) the nature and strength of memory in grain-size-dependent transport. None of the simple statistical descriptors of sediment transport (mean, extreme values, and quantiles) display a clear relation with water discharge, in fact a large variability between discharge and sediment transport is observed. Instantaneous transport rates have probability density functions with heavy tails. Bed load bursts have a coarser grain-size distribution than that of the entire experiment. We quantify the strength and nature of memory in sediment transport rates by estimating the Hurst exponent and the autocorrelation coefficient of the time series for different grain sizes. Our results show the presence of the Hurst phenomenon in transport rates, indicating long-term memory which is grain-size dependent. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling duration of bed load transport rates in natural streams, especially for large fractions.
Sedimentary records of Typhoon Haiyan in the South China Sea
NASA Astrophysics Data System (ADS)
Su, C. C.; Chen, Y. H.; Chang, J. H.; Hsu, H. H.; Yu, P. S.; Liu, C. S.
2016-12-01
South China Sea (SCS), which is located at the boundary of the Eurasian, Philippine Sea, and Indian plates, is the largest marginal sea of the northwest Pacific and also on the North Western Pacific corridor of typhoons. The unique tectonic setting and climatic conditions make it has to face the severe natural hazards, like submarine landslides, and high sediment discharges which induced by typhoon. On November 8, 2013, the Typhoon Haiyan, which was one of the largest tropical cyclones ever recorded in western Pacific, devastated Philippines and caused catastrophic destruction. Before the Typhoon Haiyan reached Hainan Province, China and Quangninh Province, Vietnam, it emerged over the SCS. How was the large amount of terrestrial materials distributed and recorded in deep sea sediments by such intense typhoon? Is it possible for us to reconstruct the history of extreme tropical cyclones by using deep sea cores? In this study, twelve gravity cores were collected in the Central SCS Basin and around Taiping Island (Itu Aba Island) from 2014 to 2015 and a series of analysis including Multi-Sensor Core Logger, XRF Core Scanner, core surface and X-radiograph images, grain size, and excess 210Pb chronology were conducted for modern extreme event records in cores and attempt to evaluate the possibility of reconstructed extreme typhoon records in cores from the SCS. On core surface images, an obvious brownish oxidized layer exist in core top with higher 210Pb activities beneath the layer. According to the sampling time, we conjecture the oxidized layer might formed by Typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippines. The Power Barge 103 of Napocor in Estancia IIoilo was dislodged from its mount by Typhoon Haiyan and the United Nations Disaster Assessment and Coordination Team reported 600,000 liters of bunker fuel had spilled. To clarify the relationship between the oil spill and high manganese records in sediments, some further analysis is needed. Our analysis result shows, in the Central SCS Basin, over 80 cm turbidite layer was deposited by Typhoon Haiyan and it will take more than 4000 years to deposit on seafloor without the impact of extreme events.
Characterising Atlantic deep waters during the extreme warmth of the early Eocene 'greenhouse'.
NASA Astrophysics Data System (ADS)
Cameron, A.; Sexton, P. F.; Anand, P.; Huck, C. E.; Fehr, M.; Dickson, A.; Scher, H. D.; van de Flierdt, T.; Westerhold, T.; Roehl, U.
2014-12-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow that is of direct importance to the climate system because it transports heat, salt and nutrients to high latitudes and regulates the exchange of CO2 with the atmosphere. The Atlantic Ocean plays a strong role in the modern day MOC however, it is unclear what role it may have played during extreme climate conditions such as those found in the early Eocene 'greenhouse'. In order to resolve the Atlantic's role in the MOC during the early/middle Eocene, we present a multi-proxy approach to investigate changes in ocean circulation, water mass geometry, sediment supply to the deep oceans and the physical strength of deep waters from four different IODP drill sites. Neodymium isotopes (ɛNd), REE profiles and cerium anomalies measured in fossilised fish teeth help to characterise geochemical changes to water masses throughout the Atlantic whilst bulk sediment ɛNd and XRF-core scan data documents changes in sediment supply to the region. Sortable silt data provides a physical constraint on the strength of deep-water movements during the extreme climatic conditions of the early Eocene. We utilise expanded and continuous sequences from two sites in the North west Atlantic spanning the early to middle Eocene recently recovered on IODP Exp. 342 (1403, 1409) that are located on the Newfoundland Ridge, directly in the flow path of today's Deep Western Boundary Current. We also present data from equatorial Demerara Rise (IODP site 1258) and from further north at the mouth of the Labrador Sea (ODP Site 647).
A 2000-year palaeoflood record from northwest England from lake sediments
NASA Astrophysics Data System (ADS)
Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet
2014-05-01
Greater insight into the relationship between climatic fluctuations and the frequency and magnitude of precipitation events over recent centuries is crucial in the context of future warming and projected intensification of hydrological extremes. However, the detection of trends in flood frequency and intensity is not a straightforward task as conventional flood series derived from instrumental sources rarely span sufficiently long timescales to capture the most extreme events. Usefully, the geomorphic effects of extreme hydrological events can be effectively recorded in upland lake basins as efficient sediment trapping preserves discharge-related proxy indicators (e.g., particle size). Provided distinct sedimentary signatures of historic floods are discernable and the sediment sequence can be well-constrained in time, these lacustrine archives offer a valuable data resource. We demonstrate that a series of sediment cores (3 - 5 m length) from Brotherswater, northwest England, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry, which are interpreted as reflecting a palaeoflood record extending to ~2000 yr BP. The presence of thick facies which exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Data from an on-going sediment trapping protocol at Brotherswater that shows a relationship between river discharge (recorded via short-term lake level change representing flood events) and the calibre of particles captured in the traps lends further support to our interpretation. Well-constrained chronologies were constructed for the cores through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating within a Bayesian age-depth modelling protocol. Geochemical markers of known-age that reflect phases of local point-source lead (Pb) mining were used to resolve time periods where radiocarbon dates returned multiple possible age solutions. We subsequently build a regression model using the time-window where recorded river discharge and the sedimentary record overlap (1961-2013) in order to reconstruct discharge estimates for the palaeoflood laminations. These quantitative palaeoflood data can thus be inserted into statistical flood frequency analyses and compared with outputs using instrumental data and regional flood information.
Carbonate to siliciclastic periplatform sediments: southwest Florida
Holmes, Charles W.
1988-01-01
Geophysical, geochemical, and sedimentological data suggest that the spatial relationships of these deposits are related to sea-level variations. During extreme lowstands, with much of the shelf exposed, the dominant sedimentation was in the form of siliciclastic deposition on the abyssal floor, and slope talus development at the edge of the shelf. During a subsequent rise in sea level, after carbonate production on the shelf was initiated, sediment was transported southward to the head of the canyons and funneled to the abyssal floor. Subsequent rising sea level shifted the axis of transport farther to the shelf, bypassing the canyons and funneling the sediment through breaks in the carbonate reef banks at the southern edge of the platform. At the sites of both the hemipelagic and the turbidite deposition, high-resolution seismic data indicate that at least three cycles of deposition have occurred. In the abyss, this cyclic nature has produced alternating layers of carbonate and noncarbonate sediments, recognizable in the sedimentary record as limestone units interlayered with fine shales. In the geologic record the hemipelagic deposits would be almost indistinguishable from deep-sea foraminiferal oozes.
NASA Astrophysics Data System (ADS)
Wheatley, David; Chan, Marjorie
2015-04-01
Multiple soft sediment deformation features from bed-scale to basin-scale are well preserved within the Jurassic Carmel Formation of Southern Utah. Field mapping reveals thousands of small-scale clastic injectite pipes (10 cm to 10 m diameter, up to 20 m tall) in extremely high densities (up to 500+ pipes per 0.075 square kilometers). The pipes weather out in positive relief from the surrounding host strata of massive sandstone (sabkha) and crossbedded sands with minor conglomerate and shale (fluvial) deposits. The host rock shows both brittle and ductile deformation. Reverse, normal, and antithetical faulting is common with increased frequency, including ring faults, surrounding the pipes. The pipes formed from liquefaction and subsequent fluidization induced by strong ground motion. Down-dropped, graben blocks and ring faults surrounding pipes indicate initial sediment volume increase during pipe emplacement followed by sediment volume decrease during dewatering. Complex crosscutting relationships indicate several injection events where some pipe events reached the surface as sand blows. Multiple ash layers provide excellent stratigraphic and temporal constraints for the pipe system with the host strata deposited between 166 and 164 Ma. Common volcanic fragments and rounded volcanic cobbles occur within sandstone and conglomerate beds, and pipes. Isolated volcanic clasts in massive sandstone indicate explosive volcanic events that could have been the exogenic trigger for earthquakes. The distribution of pipes are roughly parallel to the Middle Jurassic paleoshoreline located in marginal environments between the shallow epicontinental Sundance Sea and continental dryland. At the vertical stratigraphic facies change from dominantly fluvial sediments to dominantly massive sabkha sediments, there is a 1-2 m-thick floodplain mudstone that was a likely seal for underlying, overpressurized sediments. The combination of loose porous sediment at a critical depth of water saturation made the system extremely susceptible to liquefaction. Fluid inclusions of carbonate nodules present on the pipe margins indicate salinity, temperature, and character of possible early diagenetic fluids before significant burial. These inclusions can reveal information about brines from point sources or fed via groundwater. Overall, the combination of clastic pipes and their related soft deformation structures in the host rock provide proxies for the existence of high water table conditions within arid climate regimes and transitional paleoenvironments previously assumed to be devoid of significant amounts of water. The pipe distribution and evidence of multiple injectite events paralleling an ancient paleoshoreline provides basin-scale insights on repeated paleoseismicity and volcanism along the convergent boundary of the Cordilleran.
NASA Astrophysics Data System (ADS)
Zakariya, Razak; Ahmad, Zuhairi; Saad, Shahbudin; Yaakop, Rosnan
2013-04-01
Sediment transport based on 2-dimensional real time model was applied to Pahang River estuary, Pahang, Malaysia and has been evaluated and verified with time series of tidal elevation, flow and suspended sediment load. Period of modelling was during highest high tide and lowest low tide in Northeast Monsoon (NE) which happened in December 2010 and Southwest Monsoon (SW) in July 2011. Simulated model outputs has been verify using Pearson's coefficient and has showed high accuracy. The validated model was used to simulate hydrodynamic and sediment transport of extreme conditions during both monsoon seasons. Based on field measurement and model simulation, tidal elevation and flow velocity, freshwater discharge of Pahang River were found to be higher during NE Monsoon. Based on the fluxes, the estuary also showed 'ebb-dominant' characteristic during highest high tide and lowest low tide in NE monsoon and normal ebbing-flooding characteristics during SW monsoon. In the Pahang River estuary, inflow and outflow patterns were perpendicular to the open boundary with circular flow formed at the shallow area in the middle of estuary during both monsoons. Referring to sea water intrusion from the river mouth, both seasons show penetration of more than 9 km (upstream input boundary) during higher high water tide. During higher lower water tide, the water intrusion stated varies which 5.6km during NE monsoon and 7.8km during SW monsoon. Regarding to the times lap during high tide, the sea water takes 2.8 hours to reach 9km upstream during NE monsoon compared to 1.9 hour during SW monsoon. The averages of suspended sediment concentration and suspended sediment load were higher during Northeast monsoon which increased the sedimentation potentials.Total of suspended sediment load discharged to the South China Sea yearly from Pahang River is approximately 96727.5 tonnes/day or 3.33 tonnes/km2/day which 442.6 tonnes/day during Northeast Monsoon and 25.3 tonnes/day during Southwest Monsoon. Thus, Pahang River estuary found to be directly affected by the monsoon factors especially due to high amount of river discharge and surface erosion from catchment areas. This study provides several useful understanding on the hydrodynamic and sediment transport of Pahang River estuary and catchment area. Keywords: Pahang River Estuary, hydrodynamic, sediment transport, MIKE21 MT
Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter
2015-01-01
The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars.
DNA-labeled clay: A sensitive new method for tracing particle transport
Mahler, B.J.; Winkler, M.; Bennett, P.; Hillis, D.M.
1998-01-01
The behavior of mobile colloids and sediment in most natural environments remains poorly understood, in part because characteristics of existing sediment tracers limit their wide-spread use. Here we describe the development of a new approach that uses a DNA-labeled montmorillonite clay as a highly sensitive and selective sediment tracer that can potentially characterize sediment and colloid transport in a wide variety of environments, including marine, wetland, ground-water, and atmospheric systems. Characteristics of DNA in natural systems render it unsuitable as an aqueous tracer but admirably suited as a label for tracing particulates. The DNA-labeled-clay approach, using techniques developed from molecular biology, has extremely low detection limits, very specific detection, and a virtually infinite number of tracer signatures. Furthermore, DNA-labeled clay has the same physical characteristics as the particles it is designed to trace, it is environmentally benign, and it can be relatively inexpensively produced and detected. Our initial results show that short (500 base pair) strands of synthetically produced DNA reversibly adsorb to both Na-montmorillonite and powdered silica surfaces via a magnesium bridge. The DNA-montmorillonite surface complexes are stable in calcium-bicarbonate spring waters for periods of up to 18 days and only slowly desorb to the aqueous phase, whereas the silica surface complex is stable only in distilled water. Both materials readily release the adsorbed DNA in dilute EDTA solutions for amplification by the polymerase chain reaction (PCR) and quantification. The stability of the DNA-labeled clay complex suggests that this material would be appropriate for use as an extremely sensitive sediment tracer for flow periods of as long as 2 weeks, and possibly longer.
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Jaeger, J. M.
2013-12-01
Integrated Ocean Drilling Program Expedition 341 drilled a cross-margin transect to investigate the linkages between global climate change, modification of the dynamics of surficial processes, and subsequent tectonic responses. The Gulf of Alaska (GoA) borders the St. Elias orogen, the highest coastal mountain range on Earth. Exp. 341 drilled five sites within a regional seismic reflection grid that spans from the distal Surveyor Fan to the continental shelf. More than 3000 m of high-quality core coupled with seismic reflection profiles collected with nested vertical resolution allows us to address the major objectives of drilling in the GoA. These objectives were to: 1) document the tectonic response of an active orogenic system to late Miocene to recent climate change; 2) establish the timing of advance/retreat phases of the northern Cordilleran ice sheet to test its relation to dynamics of other global ice sheets; 3) implement an expanded source-to-sink study of the interactions between glacial, tectonic, and oceanographic processes responsible for creation of one of the thickest Neogene high-latitude continental margin sequences; 4) understand the dynamics of productivity, nutrients, freshwater input to the ocean, and ocean circulation in the northeast Pacific and their role in the global carbon cycle, and 5) document the spatial and temporal behavior of the geomagnetic field at extremely high temporal resolution in an under-sampled region of the globe. The Exp. 341 cross-margin transect discovered transitions in sediment accumulation rates from >100 m/Ma at the distal site to > 1000 m/Ma in the proximal fan, slope and on the continental shelf that provide a telescoping view of strata formation from the Miocene to the Holocene. Complete recovery and development of spliced sedimentary records of the Pleistocene through Holocene were achieved at the distal, proximal, and slope Sites U1417, U1418, and U1419, respectively, because of exceptional piston core recovery coupled with real-time stratigraphic correlation. The 800-m deep U1417 records Miocene to Recent deposition in the distal Surveyor Fan including the onset of glaciation at the Plio-Pleistocene boundary when accumulation rates doubled to ~100 m/Myr. Site U1418 contains an expanded middle to late Pleistocene sedimentary record that also includes significant increases in sediment accumulation from ~400 m/Myr in the middle Pleistocene to >1200 m/Myr in the late Pleistocene. Slope Site U1421 and shelf Site U1420, proximal to or overridden by the Bering Glacier during glaciations, provided cores penetrating thick sequences of poorly sorted, glacigenic sediments ranging from mud to boulders. All five sites include the middle Pleistocene to Holocene and demonstrate exceptional accumulation rates. The sediments are dominantly glacigenic while containing evidence for direct interaction of tectonic and glacial erosion and sedimentation. Glacial ice, glacigenic sediment routing and glacial extents are driven by tectonic morphology at the orogen and individual thrust-sheet scales. Sediment accumulation, tempered by accommodation, perturbs fault patterns and drives positive feedback within the orogen to produce an extreme example of mass flux from orogen to deep-sea.
Gern, Fabiana Regina; Lana, Paulo da Cunha
2013-02-15
Coastal benthic habitats are usually in a state of continuous recolonization as a consequence of natural disturbances or human activities. Recolonization patterns can be strongly affected by the quality of the sediment. We evaluated herein the macrobenthic recolonization of organically enriched sediments through a manipulative experiment involving reciprocal transplants between contaminated and non-contaminated intertidal areas. Regardless of the experimental treatments, the density of the polychaete Capitella sp. was extremely high in the contaminated area as well as the density of the gastropod Cylichna sp. in the non-contaminated area. We rejected the hypothesis that differences in sediment quality would determine macrofaunal recolonization at least in the considered scales of space in meters and time in weeks. The recolonization process in a subtropical estuarine environment was strongly dependent on the migration of adults present in the sediments adjacent to the experimental units. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
von Brömssen, Mattias; Häller Larsson, Sara; Bhattacharya, Prosun; Hasan, M. Aziz; Ahmed, Kazi Matin; Jakariya, M.; Sikder, Mohiuddin A.; Sracek, Ondra; Bivén, Annelie; Doušová, Barbora; Patriarca, Claudio; Thunvik, Roger; Jacks, Gunnar
2008-07-01
High arsenic (As) concentrations in groundwater pose a serious threat to the health of millions of people in Bangladesh. Reductive dissolution of Fe(III)-oxyhydroxides and release of its adsorbed As is considered to be the principal mechanism responsible for mobilisation of As. The distribution of As is extremely heterogeneous both laterally and vertically. Groundwater abstracted from oxidised reddish sediments, in contrast to greyish reducing sediments, contains significantly lower amount of dissolved arsenic and can be a source of safe water. In order to study the sustainability of that mitigation option, this study describes the lithofacies and genesis of the sediments within 60 m depth and establishes a relationship between aqueous and solid phase geochemistry. Oxalate extractable Fe and Mn contents are higher in the reduced unit than in the oxidised unit, where Fe and Mn are present in more crystalline mineral phases. Equilibrium modelling of saturation indices suggest that the concentrations of dissolved Fe, Mn and PO43--tot in groundwater is influenced by secondary mineral phases in addition to redox processes. Simulating AsIII adsorption on hydroferric oxides using the Diffuse Layer Model and analytical data gave realistic concentrations of dissolved and adsorbed AsIII for the reducing aquifer and we speculate that the presence of high PO43--tot in combination with reductive dissolution results in the high-As groundwater. The study confirms high mobility of As in reducing aquifers with typically dark colour of sediments found in previous studies and thus validates the approach for location of wells used by local drillers based on sediment colour. A more systematic and standardised colour description and similar studies at more locations are necessary for wider application of the approach.
Isotopic constraints on crustal growth and recycling
NASA Technical Reports Server (NTRS)
Jacobsen, Stein B.
1988-01-01
The Sm-Nd isotopic data on clastic and chemical sediments are used with the present-day age distribution of continental crustal rocks to estimate the rates of crustal accretion, growth and recycling throughout earth's history. A new method for interpreting Nd model ages on both chemical and clastic sediments is proposed. A general relationship is derived between the mean crustal residence time of material recycled from the crust to the mantle (i.e., sediments), the mean age of the crust, and the crustal growth and recycling rates. This relationship takes into account the fact that the age distribution of material in the continental crust is generally different from the age distribution of material recycled into the mantle. The episodic nature of the present-day age distribution in crustal rocks results in similar episodicity in the accretion and recycling rates. The results suggest that by about 3.8 Ga ago, about 40 percent of the present continental volume was present. Recycling rates were extremely high 3-4 Ga ago and declined rapidly to an insignificant value of about 0.1 cu km/a during most of the Phanerozoic. The Nd model age pattern on sediments suggests a fairly high rate of growth during the Phanerozoic.
Marsh vertical accretion in a Southern California Estuary, U.S.A
Cahoon, D.R.; Lynch, J.C.; Powell, A.N.
1996-01-01
Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.
Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter
2016-11-01
To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).
Tropical river suspended sediment and solute dynamics in storms during an extreme drought
Clark, Kathryn E.; Shanley, James B.; Scholl, Martha A.; Perdrial, Nicolas; Perdrial, Julia N.; Plante, Alain F.; McDowell, William H.
2017-01-01
Droughts, which can strongly affect both hydrologic and biogeochemical systems, are projected to become more prevalent in the tropics in the future. We assessed the effects of an extreme drought during 2015 on stream water composition in the Luquillo Mountains of Puerto Rico. We demonstrated that drought base flow in the months leading up to the study was sourced from trade-wind orographic rainfall, suggesting a resistance to the effects of an otherwise extreme drought. In two catchments (Mameyes and Icacos), we sampled a series of four rewetting events that partially alleviated the drought. We collected and analyzed dissolved constituents (major cations and anions, organic carbon, and nitrogen) and suspended sediment (inorganic and organic matter (particulate organic carbon and particulate nitrogen)). The rivers appeared to be resistant to extreme drought, recovering quickly upon rewetting, as (1) the concentration-discharge (C-Q) relationships deviated little from the long-term patterns; (2) “new water” dominated streamflow during the latter events; (3) suspended sediment sources had accumulated in the channel during the drought flushed out during the initial events; and (4) the severity of the drought, as measured by the US drought monitor, was reduced dramatically after the rewetting events. Through this interdisciplinary study, we were able to investigate the impact of extreme drought through rewetting events on the river biogeochemistry.
Self-Trail, Jean M.; Powars, David S.; Watkins, David K.; Wandless, Gregory A.
2012-01-01
Biotic response of calcareous nannoplankton to abrupt warming across the Paleocene/Eocene boundary reflects a primary response to climatically induced parameters including increased continental runoff of freshwater, global acidification of seawater, high sedimentation rates, and calcareous nannoplankton assemblage turnover. We identify ecophenotypic nannofossil species adapted to low pH conditions (Discoaster anartios, D. araneus, Rhomboaster spp.), excursion taxa adapted to the extremely warm climatic conditions (Bomolithus supremus and Coccolithus bownii), three species of the genus Toweius (T. serotinus, T. callosus, T. occultatus) adapted to warm, rather than cool, water conditions, opportunists adapted to high productivity conditions (Coronocyclus bramlettei, Neochiastozygus junctus), and species adapted to oligotropic and/or cool‐water conditions that went into refugium during the PETM (Zygrablithus bijugatus, Calcidiscus? parvicrucis and Chiasmolithus bidens). Discoaster anartios was adapted to meso- to eutrophic, rather than oligotrophic, conditions. Comparison of these data to previous work on sediments deposited on shelf settings suggests that local conditions such as high precipitation rates and possible increase in major storms such as hurricanes resulted in increased continental runoff and high sedimentation rates that affected assemblage response to the PETM.
O'Sullivan, Louise A; Roussel, Erwan G; Weightman, Andrew J; Webster, Gordon; Hubert, Casey RJ; Bell, Emma; Head, Ian; Sass, Henrik; Parkes, R John
2015-01-01
Bacterial spores are widespread in marine sediments, including those of thermophilic, sulphate-reducing bacteria, which have a high minimum growth temperature making it unlikely that they grow in situ. These Desulfotomaculum spp. are thought to be from hot environments and are distributed by ocean currents. Their cells and spores upper temperature limit for survival is unknown, as is whether they can survive repeated high-temperature exposure that might occur in hydrothermal systems. This was investigated by incubating estuarine sediments significantly above (40–80 °C) maximum in situ temperatures (∼23 °C), and with and without prior triple autoclaving. Sulphate reduction occurred at 40–60 °C and at 60 °C was unaffected by autoclaving. Desulfotomaculum sp. C1A60 was isolated and was most closely related to the thermophilic D. kuznetsoviiT (∼96% 16S rRNA gene sequence identity). Cultures of Desulfotomaculum sp. C1A60, D. kuznetsoviiTand D. geothermicum B2T survived triple autoclaving while other related Desulfotomaculum spp. did not, although they did survive pasteurisation. Desulfotomaculum sp. C1A60 and D. kuznetsovii cultures also survived more extreme autoclaving (C1A60, 130 °C for 15 min; D. kuznetsovii, 135 °C for 15 min, maximum of 154 °C reached) and high-temperature conditions in an oil bath (C1A60, 130° for 30 min, D. kuznetsovii 140 °C for 15 min). Desulfotomaculum sp. C1A60 with either spores or predominantly vegetative cells demonstrated that surviving triple autoclaving was due to spores. Spores also had very high culturability compared with vegetative cells (∼30 × higher). Combined extreme temperature survival and high culturability of some thermophilic Desulfotomaculum spp. make them very effective colonisers of hot environments, which is consistent with their presence in subsurface geothermal waters and petroleum reservoirs. PMID:25325382
Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D
2016-04-01
Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, <0.1-16.5 and <0.2-68.3 % day(-1) and were highly variable among compartments of the lake, but always higher during the dry season. Net Hg M indicates that the influence of urban and mining effluent (NS) promotes MMHg production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.
NASA Astrophysics Data System (ADS)
Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.
2003-04-01
We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.
NASA Astrophysics Data System (ADS)
Blum, M.
2001-12-01
Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but frequent changes in the magnitude and frequency of floods and periods of overbank flooding. This high-frequency signal is absent in landforms and deposits from the glacial period. Glacial vs. interglacial contrasts in process and stratigraphic results are the rule in most large unglaciated fluvial systems. 70-80 percent or more of any 100 kyr glacial-interglacial cycle is characterized by significant ice volume, cooler temperatures, mid-shelf or lower sea-level positions, and cooler-smaller ocean basins. A glacial-period process regime is therefore the norm, and an interglacial regime like that of the late Holocene is relatively unique and non-representative. Large unglaciated midlatitude fluvial systems may be in long-term equilibrium with a glacial-period environment, with long profiles graded to glacial-period sea-level positions, so fluvial systems respond to major changes in climate, discharge regimes, and sediment loads, but they appear to have been relatively insensitive to higher-frequency changes. Short interglacials like the Holocene are, by comparison, periods of abnormally high sea levels and relatively low-amplitude climate changes, but fluvial systems appear to exhibit a greatly increased sensitivity to subtle changes in discharge regimes that produce frequent periods of disequilibrium.
NASA Astrophysics Data System (ADS)
Grant, Stanley B.; Litton-Mueller, Rachel M.; Ahn, Jong H.
2011-05-01
Sediments are a pervasive source of fecal indicator bacteria (FIB) in rivers, lakes, estuaries, and oceans and may constitute a long-term reservoir of human disease. Previous attempts to quantify the flux of FIB across the sediment-water interface (SWI) are limited to extreme flow events, for which the primary mechanism of bacterial release is disruption and/or erosion of the sediment substrate. Here we report measurements of FIB flux across the SWI in a turbulent stream that is not undergoing significant erosion. The stream is formed by the steady discharge of bacteria-free disinfected and highly treated wastewater effluent to an earthen channel harboring high concentrations of FIB in the sediment from in situ growth. The flux j″ of FIB across the SWI, estimated from mass balance on FIB measurements in the water column, scales linearly with the concentration of bacteria in sediment pore fluids Cpore over a 3 decade change in both variables: ? The magnitude of the observed mass transfer velocity (? m s-1) is significantly larger than values predicted for either the diffusion of bacteria across a concentration boundary layer (? m s-1) or sweep and eject fluid motions at the SWI (? m s-1) but is similar to the flux of water between the stream and its hyporheic zone estimated from dye injection experiments. These results support the hypothesis that hyporheic exchange controls the trafficking of bacteria, and perhaps other types of particulate organic matter, across the SWI in turbulent streams.
A mountain river sediment cascade and its controls: the Schöttlbach torrent, Styria
NASA Astrophysics Data System (ADS)
Lutzmann, Silke; Stangl, Johannes; Sass, Oliver
2017-04-01
Steep alpine headwater torrents are characterized by episodic heavy floods and bedload pulses triggered by local high-intensity mountain rainstorms. They frequently pose serious risks and damage in the densely populated East Alpine Region. It is important to understand where critical sediments are mobilized, how much bedload is delivered to the outlet and what controls the variability. We present a concept to quantify the sediment cascade's components and influencing factors for the Schöttlbach torrent - a 71 km2 non-glaciated catchment in the Niedere Tauern mountain Range in Styria, Austria. Geomorphic mapping is used to identify primary bedload sources on slope as well as patterns of lithology, slope-channel coupling and vegetation conditioning erosion intensity. We apply modern near-range measuring techniques (TLS, Structure from Motion) to monitor erosion rates from representative erosion sites and sediment delivery rates at the outlet since 2014. These measurements are interpreted based on the geomorphic map to derive a catchment-wide seasonal sediment budget. To explain seasonal variations we evaluate precipitation and discharge data from a dense station network as storm precipitation and runoff events are the main triggers of torrent sediment mobilization. Torrent reaches in instable glaciofluvial sediments of the last glaciation show high average erosion rates of ca. 0.08 m/a from 2014 to 2016 surpassing rates in deeply weathered bedrock reaches by an order of magnitude (approx. 0.006 m/a). We model a torrent-wide erosion volume of 2000 m3/a opposing an output of 7000 m3/a in that period. We attribute parts of this discrepancy to a sediment wave reworking signal of an extreme flood event in 2011.
Geomorphic Complexity of Sequential Fire and Floods in Mountain Watersheds
NASA Astrophysics Data System (ADS)
Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.; Morgan, J. A.
2017-12-01
Fires and floods are important drivers of fluvial geomorphic changes. While each has been studied independently, there have been almost no situations where the hydrologic and geomorphic effects of fires and extreme floods could be compared at the watershed scale. Following the 2012 High Park fire in montane northcentral Colorado we began intensively monitoring channel changes in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned primarily at moderate to high severity. Summer thunderstorms resulted in extensive hillslope erosion and deposition in the valley bottoms, and subsequent incision through these deposits occurred due to spring snowmelt and elevated baseflows. The complex response associated with this state change from unburned to burned can be completely disrupted and overwhelmed by the larger changes resulting from extreme floods. Fifteen months after burning, both watersheds experienced an extreme flood resulting from a long-duration rainstorm; however, the geomorphic changes resulting from this flood differed markedly between the two watersheds. In Skin Gulch, sustained high flows from the September 2013 flood excavated nearly all of the accumulated sediment, expanded the active channel, and either scoured to bedrock or armored the bed with coarser substrate. Geomorphic changes in Hill Gulch due to the September 2013 flood, however, were small. The disparity between watersheds is likely the legacy of the catastrophic 1976 Big Thompson flood, which scoured out much of the previously accumulated sediment in Hill Gulch but did not appreciably impact Skin Gulch. These different sequences of disturbances indicate that fires in the Rocky Mountains often generate significant and dynamic geomorphic changes over sub-decadal timescales, while extreme floods can result in much longer lasting geomorphic changes. Our results allow us to compare the geomorphic sensitivity for different sequences of fire and floods, and propose a new conceptual model to explain the complicated interactions between the effects of fires and floods on the landscape.
Phytosociology and succession on earthquake-uplifted coastal wetlands, Copper River Delta, Alaska.
T.F. Thilenius
1995-01-01
The delta formed by the Copper River stretches more than 75 kilometers along the south-central coastline of Alaska. It is the terminus of the outwash deposits from a large part of the most heavily glaciated region of North American, and all major rivers that flow into the delta carry extremely high levels of suspended sediments. Coastal wetlands extend inland for as...
NASA Astrophysics Data System (ADS)
Vallalar, B.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.
2016-12-01
Serpentinization involves hydrologic alteration of ultramafic mantle rocks containing olivine and pyroxene to produce serpentine minerals. The fluids resulting from this reaction are reduced, extremely depleted in dissolved inorganic carbon, and are highly alkaline with pH values typically exceeding 10. Major byproducts of the serpentinizing reaction include iron oxides, hydrogen, methane, and small amounts of organic molecules that provide chemosynthetic energy for subsurface microbial communities. In addition, weathering of serpentine rocks often produces fluids and sediments that have elevated concentrations of various toxic heavy metals such as chromium, nickel, cobalt, copper, and zinc. Thus, microorganisms inhabiting these unique ecological niches must be adapted to a variety of physicochemical extremes. The purpose of this study is to isolate bacteria that are capable of withstanding extremely high concentrations of multiple heavy metals from serpentine fluid-associated sediments. Fluid and sediment samples for microbial culturing were collected from Manleluag Spring National Park located on the island of Luzon, Philippines. The area is part of the Zambales ophiolite range, and hosts several serpentinizing fluid seeps. Fluid emanating from the source pool of the spring, designated Manleluag 2 (ML2), has a pH of 10.83 and temperature of 34.4 °C. Luria-Bertani agar medium was supplemented with varying concentrations of five trace elements - Cu, Cr, Co, Ni, and Zn. Environmental samples were spread on each of these media and colony forming units were subsequently chosen for isolation. In all, over 20 isolates were obtained from media with concentrations ranging from 25 mg/L - 400 mg/L of each metal. Taxonomic identity of each isolate was determined using 16S rRNA gene sequences. The isolates were then tested for tolerance to alkaline conditions by altering LB medium to pH values of 8, 9, 10, 11, and 12. The majority of strains exhibit growth at the highest pH tested, demonstrating that alkalitolerant, highly metal resistant organisms are found in this serpentinizing system. These organisms are of great interest as they may be exploited for bioremediation, enzyme production, and other biotechnological applications.
Marsh Vertical Accretion in a Southern California Estuary, U.S.A.
NASA Astrophysics Data System (ADS)
Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.
1996-07-01
Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.
Fallout Radionuclides as Tracers in Southern Alps Sediment Studies
NASA Astrophysics Data System (ADS)
Carey, A. E.; Karanovic, Z.; Dibb, J. E.
2005-12-01
The primary geologic processes shaping the landscape are physical and chemical weathering and the transport of solids by erosion. As part of our studies on the coupling between physical erosion and chemical weathering, we have determined depositional and erosional processes in New Zealand's tectonically active, rapidly uplifting Southern Alps, specifically focusing on the Hokitika River watershed. The South Island watersheds we are studying are subject to extreme orographic precipitation (as high as 7-12 m annually) and high landslide frequency, but have modest topography due to the rapid erosion. In concert with our studies of chemical weathering and physical erosion, we have used the atmospherically-delivered radionuclides of 7Be, 137Cs and 210Pbexcess to determine the relative magnitude of particle residence time in the high elevation Cropp and Whitcombe subwatersheds and the rates of sedimentation. One- and two-box modeling with 7Be and 210Pbexcess was used to determine soil and sediment residence times. Residence time of fine suspended particles is short and particles can travel the length of the river during a single storm, probably due to the short duration, high-intensity rainfalls which produce rapidly moving, steep flood waves. The readily detected peak of 137Cs activity in Cropp terrace and Hokitika gorge soils yielded sedimentation rates of 0.06-0.12 cm yr-1. At the Cropp terrace, inventory models of 210Pbexcess yield soil accumulation rates significantly less than those determined using the 137Cs activity peak. We attribute the differences to overestimation of 210Pbexcess in surface soils and to contrasting fallout fluxes, geochemical behavior and radionuclide contents of sedimenting materials. Total inventories of 210Pbexcess in soils greatly exceed the expected direct atmospheric deposition, suggesting that lateral transport of this nuclide occurs within the watershed. At the Hokitika gorge, all nuclides studied yielded similar sedimentation rates, confirming the potential of 210Pbexcess for determining sedimentation rates in New Zealand watersheds with very low 137Cs inventories.
Richard A. MacKenzie; Patra B. Foulk; J. Val Klump; Kimberly Weckerly; Joko Purbospito; Daniel Murdiyarso; Daniel C. Donato; Vien Ngoc Nam
2016-01-01
Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and...
An optical age chronology of late Quaternary extreme fluvial events recorded in Ugandan dambo soils
Mahan, S.A.; Brown, D.J.
2007-01-01
There is little geochonological data on sedimentation in dambos (seasonally saturated, channel-less valley floors) found throughout Central and Southern Africa. Radiocarbon dating is problematic for dambos due to (i) oxidation of organic materials during dry seasons; and (ii) the potential for contemporary biological contamination of near-surface sediments. However, for luminescence dating the equatorial site and semi-arid climate facilitate grain bleaching, while the gentle terrain ensures shallow water columns, low turbidity, and relatively long surface exposures for transported grains prior to deposition and burial. For this study, we focused on dating sandy strata (indicative of high-energy fluvial events) at various positions and depths within a second-order dambo in central Uganda. Blue-light quartz optically stimulated luminescences (OSL) ages were compared with infrared stimulated luminescence (IRSL) and thermoluminescence (TL) ages from finer grains in the same sample. A total of 8 samples were dated, with 6 intervals obtained at ???35, 33, 16, 10.4, 8.4, and 5.9 ka. In general, luminescence ages were stratigraphically, geomorphically and ordinally consistent and most blue-light OSL ages could be correlated with well-dated climatic events registered either in Greenland ice cores or Lake Victoria sediments. Based upon OSL age correlations, we theorize that extreme fluvial dambo events occur primarily during relatively wet periods, often preceding humid-to-arid transitions. The optical ages reported in this study provide the first detailed chronology of dambo sedimentation, and we anticipate that further dambo work could provide a wealth of information on the paleohydrology of Central and Southern Africa. ?? 2006 Elsevier Ltd. All rights reserved.
Lanthanide-labeled clay: A new method for tracing sediment transport in Karst
Mahler, B.J.; Bennett, P.C.; Zimmerman, M.
1998-01-01
Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.
NASA Astrophysics Data System (ADS)
Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.
2015-12-01
The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high floods of the next years. MOIRA -LAKE model of long term radioisotopes transfer in water, bottom sediment and fish was used for the assessments of the efficiency of the bottom sediment dredging for the remediation of the irrigation ponds at Okuma town.
NASA Astrophysics Data System (ADS)
Glass, J. B.; Reed, B. C.; Sarode, N. D.; Kretz, C. B.; Bray, M. S.; DiChristina, T. J.; Stewart, F. J.; Fowle, D. A.; Crowe, S.
2014-12-01
Methane is the third most reduced environmentally relevant electron donor for microbial metabolisms after organic carbon and hydrogen. In anoxic ecosystems, the major sink for methane is anaerobic oxidation of methane (AOM) mediated by syntrophic microbial consortia that couple AOM to reduction of an oxidized electron acceptor to yield free energy. In marine sediments, AOM is generally coupled to reduction of sulfate despite an extremely small amount of free energy yield because sulfate is the most abundant electron acceptor in seawater. While AOM coupled to Fe(III) and Mn(IV) reduction (Fe- and Mn-AOM) is 10-30x more thermodynamically favorable than sulfate-AOM, and geochemical data suggests that it occurs in diverse environments, the microorganisms mediating Fe- and Mn-AOM remain unknown. Lake Matano, Indonesia is an ideal ecosystem to enrich for Fe- and Mn-AOM microbes because its anoxic ferruginous deep waters and sediments contain abundant Fe(III), Mn(IV) and methane, and extremely low sulfate and nitrate. Our research aims to isolate and characterize the microbes mediating Fe- and Mn-AOM from three layers of Lake Matano sediments through serial enrichment cultures in minimal media lacking nitrate and sulfate. 16S rRNA amplicon sequencing of sediment inoculum revealed the presence of the Fe(III)-reducing bacterium Geobacter (5-10% total microbial community in shallow sediment and 35-60% in deeper sediment) as well as 1-2% Euryarchaeota implicated in methane cycling, including ANME-1 and 2d and Methanosarcinales. After 90 days of primary enrichment, all three sediment layers showed high levels of Fe(III) reduction (60-90 μM Fe(II) d-1) in the presence of methane compared to no methane and heat-killed controls. Treatments with added Fe(III) as goethite contained higher abundances of Geobacter than the inoculum (60-80% in all layers), suggesting that Geobacter may be mediating Fe(III) reduction in these enrichments. Quantification of AOM rates is underway, and will be used to estimate the plausibility of metal-AOM as a thermodynamically favorable methane sink in anoxic ecosystems of both the modern and ancient Earth.
NASA Astrophysics Data System (ADS)
Box, Walter; Keestra, Saskia; Nyman, Petter; Langhans, Christoph; Sheridan, Gary
2015-04-01
South-eastern Australia is generally regarded as one of the world's most fire-prone environments because of its high temperatures, low rainfall and flammable native Eucalyptus forests. Modifications to the landscape by fire can lead to significant changes to erosion rates and hydrological processes. Debris flows in particular have been recognised as a process which increases in frequency as a result of fire. This study used a debris flow event in the east Upper Ovens occurred on the 28th of February 2013 as a case study for analysing sediment transport processes and connectivity of sediment sources and sinks. Source areas were identified using a 15 cm resolution areal imagery and a logistic regression model was made based on fire severity, aridity index and slope to predict locations of source areas. Deposits were measured by making cross-sections using a combination of a differential GPS and a total station. In total 77 cross-sections were made in a 14.1 km2 sub-catchment and distributed based on channel gradient and width. A more detailed estimation was obtained by making more cross-sections where the volume per area is higher. Particle size distribution between sources and sink areas were obtained by combination of field assessment, photography imagery analyses and sieve and laser diffraction. Sediment was locally eroded, transported and deposited depending on factors such as longitude gradient, stream power and the composition of bed and bank material. The role of headwaters as sediment sinks changed dramatically as a result of the extreme erosion event in the wildfire affected areas. Disconnected headwaters became connected to low order streams due to debris flow processes in the contributing catchment. However this redistribution of sediment from headwaters to the drainage network was confined to upper reaches of the Ovens. Below this upper part of the catchment the event resulted in redistribution of sediment already existing in the channel through a combination of debris flows and hyperconcentrated flows. These results indicate that there is a stepwise outflow of sediment influencing long-term erosion rates and landform development.
Potential Analysis of Rainfall-induced Sediment Disaster
NASA Astrophysics Data System (ADS)
Chen, Jing-Wen; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Tsai, Kuang-Jung; Chue, Yung-Sheng
2014-05-01
Most of the mountain regions in Taiwan are sedimentary and metamorphic rocks which are fragile and highly weathered. Severe erosion occurs due to intensive rainfall and rapid flow, the erosion is even worsen by frequent earthquakes and severely affects the stability of hillsides. Rivers are short and steep in Taiwan with large runoff differences in wet and dry seasons. Discharges respond rapidly with rainfall intensity and flood flows usually carry large amount of sediment. Because of the highly growth in economics and social change, the development in the slope land is inevitable in Taiwan. However, sediment disasters occur frequently in high and precipitous region during typhoon. To make the execution of the regulation of slope land development more efficiency, construction of evaluation model for sediment potential is very important. In this study, the Genetic Adaptive Neural Network (GANN) was implemented in texture analysis techniques for the classification of satellite images of research region before and after typhoon or extreme rainfall and to obtain surface information and hazard log data. By using GANN weight analysis, factors, levels and probabilities of disaster of the research areas are presented. Then, through geographic information system the disaster potential map is plotted to distinguish high potential regions from low potential regions. Finally, the evaluation processes for sediment disaster after rainfall due to slope land use are established. In this research, the automatic image classification and evaluation modules for sediment disaster after rainfall due to slope land disturbance and natural environment are established in MATLAB to avoid complexity and time of computation. After implementation of texture analysis techniques, the results show that the values of overall accuracy and coefficient of agreement of the time-saving image classification for different time periods are at intermediate-high level and above. The results of GANN show that the weight of building density is the largest in all slope land disturbance factors, followed by road density, orchard density, baren land density, vegetation density, and farmland density. The weight of geology is the largest in all natural environment factors, followed by slope roughness, slope, and elevation. Overlaying the locations of large sediment disaster in the past on the potential map predicted by GANN, we found that most damage areas were in the region with medium-high or high potential of landslide. Therefore, the proposed potential model of sediment disaster can be used in practice.
Chenier plain genesis explained by feedbacks between waves, mud, and sand
NASA Astrophysics Data System (ADS)
Nardin, William; Fagherazzi, Sergio
2017-04-01
Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss ontogeny of chenier plains through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and inner-shelf slope play an important role in the formation of chenier plains. In our numerical experiments, waves affect chenier plain development in three ways: by winnowing coarse sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex chenier plains. Low inner-shelf slopes are the most favorable for strand plain and chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.
Chenier plain development: feedbacks between waves, mud and sand
NASA Astrophysics Data System (ADS)
Nardin, W.; Fagherazzi, S.
2015-12-01
Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss Chenier plains ontogeny through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and shelf slope play an important role in the formation of Chenier plains. In our numerical experiments waves affect Chenier plain development in three ways: by winnowing sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex Chenier plains. Low inner-shelf slopes are the most favorable for strand plain and Chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.
Hazell, William F.; Huffman, Brad A.
2011-01-01
A study was conducted to characterize sediment transport upstream and downstream from a proposed dam on the First Broad River near the town of Lawndale in Cleveland County, North Carolina. Streamflow was measured continuously, and 381 suspended-sediment samples were collected between late March 2008 and September 2009 at two monitoring stations on the First Broad River to determine the suspended-sediment load at each site for the period April 2008-September 2009. In addition, 22 bedload samples were collected at the two sites to describe the relative contribution of bedload to total sediment load during selected events. Instantaneous streamflow, suspended-sediment, and bedload samples were collected at Knob Creek near Lawndale, North Carolina, to describe general suspended-sediment and bedload characteristics at this tributary to the First Broad River. Suspended- and bedload-sediment samples were collected at all three sites during a variety of flow conditions. Streamflow and suspended-sediment measurements were compared with historical data from a long-term (1959-2009) streamflow station located upstream from Lawndale. The mean streamflow at the long-term streamflow station was approximately 60 percent less during the study period than the long-term annual mean streamflow for the site. Suspended-sediment concentrations and continuous records of streamflow were used to estimate suspended-sediment loads and yields at the two monitoring stations on the First Broad River for the period April 2008-September 2009 and for a complete annual cycle (October 2008-September 2009), also known as a water year. Total suspended-sediment loads during water year 2009 were 18,700 and 36,500 tons at the two sites. High-flow events accounted for a large percentage of the total load, suggesting that the bulk of the total suspended-sediment load was transported during these events. Suspended-sediment yields during water year 2009 were 145 and 192 tons per square mile at the two monitoring stations. Historically, the estimated mean annual suspended-sediment yield at the long-term streamflow station during the period 1970-1979 was 250 tons per square mile, with an estimated mean annual suspended-sediment load of 15,000 tons. Drought conditions throughout most of the study period were a potential factor in the smaller yields at the monitoring stations compared to the yields estimated at the long-term streamflow station in the 1970s. During an extreme runoff event on January 7, 2009, bedload was 0.4 percent, 0.8 percent, and 0.1 percent of the total load at the three study sites, which indicates that during extreme runoff conditions the percentage of the total load that is bedload is not significant. The percentages of the total load that is bedload during low-flow conditions ranged from 0.1 to 90.8, which indicate that the bedload is variable both spatially and temporally.
Heitmuller, Franklin T.; Asquith, William H.; Fang, Xing; Thompson, David B.; Wang, Keh-Han
2005-01-01
A review of the literature addressing sediment transport in gravel-bed river systems and structures designed to control bed-load mobility is provided as part of Texas Department of Transportation research project 0–4695: Guidance for Design in Areas of Extreme Bed-Load Mobility. The study area comprises the western half of the Edwards Plateau in central Texas. Three primary foci of the literature review are journal articles, edited volumes, and government publications. Major themes within the body of literature include deterministic sediment transport theory and equations, development of methods to measure and analyze fluvial sediment, applications and development of theory in natural channels and flume experiments, and recommendations for river management and structural design. The literature review provides an outline and foundation for the research project to characterize extreme bed-load mobility in rivers and streams across the study area. The literature review also provides a basis upon which potential modifications to low-water stream-crossing design in the study area can be made.
NASA Astrophysics Data System (ADS)
Fitch, Erin P.; Meyer, Grant A.
2016-01-01
In the Jemez Mountains, tree-ring data indicate that low-severity fires characterized the 400 yr before Euro-American settlement, and that subsequent fire suppression promoted denser forests, recent severe fires, and erosion. Over longer timescales, climate change may alter fire regimes; thus, we used fire-related alluvial deposits to assess the timing of moderate- to high-severity fires, their geomorphic impact, and relation to climate over the last 4000 yr. Fire-related sedimentation does not clearly follow millennial-scale climatic changes, but probability peaks commonly correspond with severe drought, e.g., within the interval 1700-1400 cal yr BP, and ca. 650 and ca. 410 cal yr BP. The latter episodes were preceded by prolonged wet intervals that could promote dense stands. Estimated recurrence intervals for fire-related sedimentation are 250-400 yr. Climatic differences with aspect influenced Holocene post-fire response: fire-related deposits constitute 77% of fan sediments from north-facing basins but only 39% of deposits from drier southerly aspects. With sparser vegetation and exposed bedrock, south aspects can generate runoff and sediment when unburned, whereas soil-mantled north aspects produce minor sediment unless severely burned. Recent channel incision appears unprecedented over the last 2300 yr, suggesting that fuel loading and extreme drought produced an anomalously severe burn in 2002.
NASA Astrophysics Data System (ADS)
Dunn, Catherine A.; Enkelmann, Eva; Ridgway, Kenneth D.; Allen, Wai K.
2017-03-01
In this study, we present a source to sink evaluation of sediment routing at the glaciated convergent margin in Southeast Alaska. We investigate the efficacy of thermochronology to record spatial and temporal exhumation patterns in synorogenic sediment using Neogene strata drilled by Integrated Ocean Drilling Program Expedition 341 in the Gulf of Alaska. We present 1641 and 529 new detrital zircon and apatite fission track ages, respectively, from strata deposited on the continental shelf, slope, and deep-sea fans. These data are compared to results from the proposed source terrains, including the St. Elias Mountains and new data from the Alsek River. We find that the offshore Bagley-Bering sediment contains grains recording cooling ages much older (80-35 Ma) than those reported from the St. Elias syntaxis (3-2 Ma), indicating that extreme rapid exhumation does not extend west of the Seward-Bagley divide. Data from the sediment on the continental shelf, slope, and proximal deep sea all yield similar results, suggesting the same general source region since 1.2 Ma and limited sediment mixing along this glaciated margin. Data from sediment in the distal deep sea show that extreme, rapid, and deep-seated exhumation was ongoing at 11-8 Ma. Overall, this study demonstrates the strengths and limitations of using detrital fission track thermochronology to understand sediment routing on a glaciated convergent margin and to record changes in exhumation rates over geologic time scales.
Xu, Xiaoyu; Zhang, Qianggong; Wang, Wen-Xiong
2016-01-01
Tibetan Plateau is located at a mountain region isolated from direct anthropogenic sources. Mercury concentrations and stable isotopes of carbon, nitrogen, and mercury were analyzed in sediment and biota for Nam Co and Yamdrok Lake. Biotic mercury concentrations and high food web magnification factors suggested that Tibetan Plateau is no longer a pristine site. The primary source of methylmercury was microbial production in local sediment despite the lack of direct methylmercury input. Strong ultraviolet intensity led to extensive photochemical reactions and up to 65% of methylmercury in water was photo-demethylated before entering the food webs. Biota displayed very high Δ199Hg signatures, with some highest value (8.6%) ever in living organisms. The δ202Hg and Δ199Hg in sediment and biotic samples increased with trophic positions (δ15N) and %methylmercury. Fish total length closely correlated to δ13C and Δ199Hg values due to dissimilar carbon sources and methylmercury pools in different living waters. This is the first mercury isotope study on high altitude lake ecosystems that demonstrated specific isotope fractionations of mercury under extreme environmental conditions. PMID:27151563
Study of pollutant distribution in the Guaxindiba Estuarine System--SE Brazil.
Fonseca, E M; Baptista Neto, J A; Pereira, M P S; Silva, C G; Arantes, J D
2014-05-15
The Guaxindiba Estuarine System is located in the northeast portion of Guanabara Bay. Despite the location inside an environmental protection zone, the main affluent of the river runs through the extremely urbanized area of the cities of Niterói and São Gonçalo. In order to understand the contamination levels of the estuary, 35 surface sediment samples were collected along the river and estuarine area and analyzed for the presence of heavy metals, PAHs, organochlorated pesticides, polychlorinated biphenyl and other contaminants. The analyzed data revealed a greatly affected environment with respect to most of these substances. The results suggested propitious deposits of contaminants, with high concentrations of organic matter and fine sediment. The levels of heavy metal in the entire estuarine system were high compared with the local background. The total mean concentrations of As, Cd, Pb, Cu, Zn, Hg, Cr and Ni in the surface sediments were: 3.74; 0.03; 19.3; 15.0; 99.0; n.d.; 29.0; and 22.0mg/kg, respectively, confirming, in certain cases, the high capacity of the environment to concentrate pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Walsh, R P D; Bidin, K; Blake, W H; Chappell, N A; Clarke, M A; Douglas, I; Ghazali, R; Sayer, A M; Suhaimi, J; Tych, W; Annammala, K V
2011-11-27
Long-term (21-30 years) erosional responses of rainforest terrain in the Upper Segama catchment, Sabah, to selective logging are assessed at slope, small and large catchment scales. In the 0.44 km(2) Baru catchment, slope erosion measurements over 1990-2010 and sediment fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-linked, including fresh landslips and gullying of scars and toe deposits of 1994-1996 landslides. Analysis and modelling of 5-15 min stream-suspended sediment and discharge data demonstrate a reduction in storm-sediment response between 1996 and 2009, but not yet to pre-logging levels. An unmixing model using bed-sediment geochemical data indicates that 49 per cent of the 216 t km(-2) a(-1) 2009 sediment yield comes from 10 per cent of its area affected by road-linked landslides. Fallout (210)Pb and (137)Cs values from a lateral bench core indicate that sedimentation rates in the 721 km(2) Upper Segama catchment less than doubled with initially highly selective, low-slope logging in the 1980s, but rose 7-13 times when steep terrain was logged in 1992-1993 and 1999-2000. The need to keep steeplands under forest is emphasized if landsliding associated with current and predicted rises in extreme rainstorm magnitude-frequency is to be reduced in scale.
A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean
NASA Astrophysics Data System (ADS)
Danovaro, R.; Della Croce, N.; Dell'Anno, A.; Pusceddu, A.
2003-12-01
The Atacama trench, the deepest ecosystem of the southern Pacific Ocean (ca. 8000 m depth) was investigated during the Atacama Trench International Expedition. Sediments, collected at three bathyal stations (1040-1355 m depth) and at a hadal site (7800 m) were analyzed for organic matter quantity and biochemical composition (in terms of phytopigments, proteins, carbohydrates and lipids), bacterial abundance, biomass and carbon production and extracellular enzymatic activities. Functional chlorophyll- a (18.0±0.10 mg m -2), phytodetritus (322.2 mg m -2) and labile organic carbon (16.9±4.3 g C m -2) deposited on surface sediments at hadal depth (7800 m) reached concentrations similar to those encountered in highly productive shallow coastal areas. High values of bacterial C production and aminopeptidase activity were also measured (at in situ temperature and 1 atm). The chemical analyses of the Atacama hadal sediments indicate that this trench behaves as a deep oceanic trap for organic material. We hypothesize that, despite the extreme physical conditions, benthic microbial processes might be accelerated as a result of the organic enrichment.
Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota
Maderak, Marion L.
1966-01-01
The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.
A retrospective analysis of the flash flood in Braunsbach on May 29th, 2016
NASA Astrophysics Data System (ADS)
Laudan, Jonas; Öztürk, Ugur; Sieg, Tobias; Wendi, Dadiyorto; Riemer, Adrian; Agarwal, Ankit; Rözer, Viktor; Korup, Oliver; Thieken, Annegret; Vogel, Kristin
2017-04-01
At the end of May and early June 2016 several rainstorms caused severe surface water flooding and flash floods, partly accompanied by mud and debris flows, in Central Europe, and especially in southern Germany. On the evening of May 29, 2016, a flood outburst with massive amounts of rubble and muddy sediments hit the town of Braunsbach, Baden-Württemberg, damaging numerous buildings, cars, and town facilities. The DFG Graduate School "Natural hazards and risks in a changing world" (NatRiskChange) at the University of Potsdam investigated the Braunsbach "flash flood" as an exemplary catastrophic event triggered by severe weather. Bringing together scientists from the fields of meteorology, hydrology, geomorphology, flood risk, natural hazards, and mathematics the research team was especially interested in the interplay of causes and triggers leading to the event. Accordingly, the team focused on the entire process chain from heavy precipitation to runoff and flood generation and the geomorphic aftermath. The steep slopes in the catchment area promote the episodic supply of gravel, debris and organic material, which remains stored for decades to millennia, only to be remobilized during rare and extreme runoff events such as in 2016. Field mapping revealed at least 48 landslides as sources of high sediment loads. Nonetheless, numerous scars of river erosion along the tributary creeks into Braunsbach indicate that most of the material carried by the flash flood was due to bank undercutting. The flow also entrained more rubble, trees, cars, and other anthropogenic sediments further downstream. This enhanced solids load increased the physical impact, and hence damage, to buildings. Local effects of flow depth, flow velocity, and exposition of buildings into the advancing non-steady and non-uniform flow caused the damage to exceed that of a clearwater flood with comparable return period. We conclude that, to meaningfully inform the implementation of precautionary measures, a quantitative hazard assessment of similarly extreme flash floods may include more explicitly the effects of high sediment loads and flow-roughness elements.
Saffary, Roya; Nandakumar, Renu; Spencer, Dennis; Robb, Frank T; Davila, Joseph M; Swartz, Marvin; Ofman, Leon; Thomas, Roger J; DiRuggiero, Jocelyne
2002-09-24
We have recovered new isolates from hot springs, in Yellowstone National Park and the Kamchatka Peninsula, after gamma-irradiation and exposure to high vacuum (10(-6) Pa) of the water and sediment samples. The resistance to desiccation and ionizing radiation of one of the isolates, Bacillus sp. strain PS3D, was compared to that of the mesophilic bacterium, Deinococcus radiodurans, a species well known for its extraordinary resistance to desiccation and high doses of ionizing radiation. Survival of these two microorganisms was determined in real and simulated space conditions, including exposure to extreme UV radiation (10-100 nm) during a rocket flight. We found that up to 15 days of desiccation alone had little effect on the viability of either bacterium. In contrast, exposure to space vacuum ( approximately 10(-6) Pa) decreased cell survival by two and four orders of magnitude for Bacillus sp. strain PS3D and D. radiodurans, respectively. Simultaneous exposure to space vacuum and extreme UV radiation further decreased the survival of both organisms, compared to unirradiated controls. This is the first report on the isolated effect of extreme UV at 30 nm on cell survival. Extreme UV can only be transmitted through high vacuum, therefore its penetration into the cells may only be superficial, suggesting that in contrast to near UV, membrane proteins rather than DNA were damaged by the radiation.
NASA Astrophysics Data System (ADS)
Joyce, Hannah; Hardy, Richard; Warburton, Jeff
2017-04-01
Hillslope erosion and accelerated lake sedimentation are often viewed as the source and main storage elements in the upland sediment cascade. However, the continuity of sediment transfer through intervening valley systems has rarely been evaluated during extreme events. Storm Desmond (4th - 6th December, 2015) produced record-breaking rainfall maximums in the UK: 341.4 mm rainfall was recorded in a 24 hour period at Honister Pass, Western Lake District, and 405 mm of rainfall was recorded in a 38 hour period at Thirlmere, central Lake District. The storm was the largest in a 150 year local rainfall series, and exceeded previous new records set in the 2005 and 2009 floods. During this exceptional event, rivers over topped flood defences, and caused damage to over 257 bridges, flooded over 5000 homes and businesses, and caused substantial geomorphic change along upland rivers. This research quantifies the geomorphic and sedimentary response to Storm Desmond along a regulated gravel-bed river: St John's Beck. St John's Beck (length 7.8 km) is a channelised low gradient river (0.005) downstream of Thirlmere Reservoir, which joins the River Greta, and flows through Keswick, where major flooding has occurred, before discharging into Bassenthwaite Lake. St John's Beck has a history of chronic sediment aggradation, erosion and reports of historic flooding date back to 1750. During Storm Desmond, riverbanks were eroded, coarse sediment was deposited across valuable farmland and access routes were destroyed, including a bridge and footpaths, disrupting local business. A sediment budget framework has been used to quantify geomorphic change and sedimentary characteristics of the event along St John's Beck. The volume and sediment size distribution of flood deposits, channel bars, tributary deposits, floodplain scour, riverbank erosion and in-channel bars were measured directly in the field and converted to mass using local estimates of coarse and fine sediment bulk densities. During the event 5000 tonnes of sediment was deposited on floodplains surrounding St John's Beck; 65% of this sediment was deposited in the first 3 km of the reach downstream of Thirlmere Reservoir where the channel is unconfined and channel slope and capacity rapidly decrease. Flood sediment deposits were composed of a single layer of sediment of a similar grain size distribution (mean D90 116 mm), with fines generally sparse. The main source of sediment deposited during the event originated from the channel bed and banks; 1500 tonnes of sediment was stored within channel bars. Approximately 2000 tonnes of sediment was eroded from the riverbanks during the event; with local lateral riverbank recession exceeding 12 m. An estimated 500 tonnes of sediment was scoured from the floodplains along the first 3 km of the reach downstream of Thirlmere Reservoir, with local floodplain scour around a bridge estimated at 300 tonnes. Overall, this sediment budget study demonstrates the importance of valley systems as a major source and sink of sediment along the upland sediment cascade during an extreme flood event.
NASA Astrophysics Data System (ADS)
Hanebuth, Till J. J.; Voris, Harold K.; Yokoyama, Yusuke; Saito, Yoshiki; Okuno, Jun'ichi
2011-01-01
Sea-level variations are the major factor controlling sedimentation as well as the biogeographic patterns at continental margins over late Quaternary times. Fluctuations on millennial time-scales produce locally complex deposits in coasts and on shelves, associated with short-term influence on species development. This article reviews the sedimentary and biogeographic history of the tropical siliciclastic Sunda Shelf as an end-member of continental shelves regarding extreme width, an enormous sediment supply, and highest biodiversity in response to rapid sea-level fluctuations. We describe particular depositional segments as part of a genetic succession of zones from land to the deep sea based on literature data, field observations, and calculation of hydro-isostatic adjustment effects on changing relative sea level. These segments are characterized by individual sedimentary processes and deposits, and by a specific potential for material storage and re-mobilization. Long-term regressive intervals led to overall sigmoidal-promoting, extremely thick, and wide succeeding units. In contrast, rapid lateral shifts of defined depocentres over long distances took place in response to short-term sea level fluctuations. Fully isolated small-scale sediment bodies formed when sea level changed at exceptionally high rates. As a result of the high availability of organic-rich sediments, mangrove and freshwater peats formed frequently over late Quaternary times. The appearance of thick, massive and widespread peats is mainly linked to time intervals of a sea-level rise at slow rates, whilst organic matter appears much more dispersely in the sediments during episodes of rapidly changing sea level. The preservation potential of the regressive units is generally high due to highest initial sediment supply, stabilizing soil formation during exposure and rapid subsidence. Preservation of depositional elements from other periods is more exceptional and either restricted to local morphological depressions or to episodes of rapid sea level change. Besides complex channel incision, an overall lowering of the sediment surface related to erosion, as deep as 20 m or more, over wide areas took place mainly during sea level lowering. The final export of shelf material is documented by enormous mass-wasting packages on the associated continental slope. From a palaeogeographic perspective, the rapid formation or disappearance of special habitat zones, such as mangrove fringes and extended mud flats, led to species establishment or truncation in distribution. In addition, the opening or closure of ocean passages, as narrow bridges allowing limited species crossing or as fully colonized corridors, had severe impact on eco-fragmentation and the expansion or contraction of species. Independent of such particular conditions, sea-level changes have been too rapid over the past climatic cycle to allow full regeneration and mature development of coast-related ecosystems.
Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter
2015-01-01
The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206
Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.
1998-01-01
Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.
NASA Astrophysics Data System (ADS)
Fonseca, Rita; Pinho, Catarina; Oliveira, Manuela
2016-12-01
As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O). There is a remarkable homogeneity in the sedimentary distribution along the reservoir in terms of the texture and mineralogy of the clay fraction and of the chemistry of the total, soluble and exchangeable phases. These observations contrast with the physical, morphological and chemical heterogeneity of the soils and the setting lithology. Most of the sediments has a higher contribution of fine-grained material and the mineralogy of the clay fraction is dominated by kaolinite in soils and kaolinite and illite in sediments, followed by lesser amounts of gibbsite, goethite, and metahaloisite and by small/vestigial contents of chlorite and smectite. The sediments are mainly inherited from the watershed but there exist marked differences between the accumulated sediments and their parent materials. These differences mainly come from the selective erosion of fine-grained particles and the extreme climatic conditions which enhance complex transformations of mineralogical and chemical nature. Compared with the parental soils, the reservoir sediments show the following differences: (1) enrichment in fine-grained and less dense inorganic particles, (2) aggradative mineralogical transformations, including enrichment in clay minerals with higher cationic adsorption and exchange capacity, (3) degradation of the crystalline structure of Fe- and Al-oxides (goethite, gibbsite), (4) increase in easily leached elements (Mg, Ca, P, K, Na) and decrease in chemically less mobile elements (Si, Fe) and (5) higher contents of organic carbon, nitrogen, and soluble forms of P and K, mainly concentrated in the clay fraction. These transformations are extremely important in the nutrients cycle, denoting that sediments represent an efficient sink for nutrients from the over-erosion of soils. Mineral and organic compounds can permanently or temporarily sequester these nutrients, recycling them and enhancing their availability through the slow release of components from relatively loose crystal structures. These processes can easily explain the enrichment in soluble and exchangeable forms of elements such as P, K, Ca or Mg. This study conclude that the particles recycling in a large tropical dam reservoir which receives high fluxes of allochthonous nutrients, has an important role in the good quality of sediments for agricultural use and in the profitable use of this technology to recover depleted soils in remediation projects in regions near large hydroelectric plants.
Hydroxyatrazine in soils and sediments
Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.
1999-01-01
Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.
NASA Astrophysics Data System (ADS)
Manning, A. J.; Schoellhamer, D. H.; Mehta, A. J.; Schladow, G.; Monismith, S. G.; Huang, I. B.; Kuwabara, J. S.; Carter, J. L.; Sheremet, A.; Parsons, D. R.; Whitehouse, R. J. S.; Todd, D.; Benson, T.; Spearman, J.
2016-12-01
Many coastal and inland waterways are dominated by muddy sediments; typically a mixture of clay minerals and various types of organic matter. When cohesive sediment is entrained into suspension, the particles tend to flocculate. Flocs are less dense, but faster settling than their constituent particles thus affecting their depositional characteristics. As flocs grow, their effective densities generally decrease, but their settling rates rise due to the Stokes' Law relationship. Flocculation effects become even more complex when purely cohesive sediments are mixed with different ratios of non-cohesive sediments, and if biological activity (e.g., exudate production) affects the resultant cohesion. Developing instrumentation that can provide key physical and dynamical data on depositional rates of flocculating sediments is extremely important in advancing our understanding of natural flocculation processes. Complementary qualitative and quantitative data improve our understanding of the depositional and aggregational physical processes through parameterization. This presentation will demonstrate recent advances in the study of the flocculation process through the use of video image technology. One such device pioneered at HR Wallingford, and implemented with co-authors, is the high-resolution floc video camera, LabSFLOC - Laboratory Spectral Flocculation Characteristics (developed by Prof. Manning). LabSFLOC can observe (directly or indirectly) floc spectral physical properties, including: floc size, settling velocity, effective density, porosity, shape, mass, and settling flux (using controlled volume referencing). These data are highly desirable for sediment transport modelers. Examples of floc measurements from locations in estuaries, tidal lagoons, river deltas, and lakes from locations across the US will be presented. In addition, we will demonstrate how video floc data can be used to parameterize floc settling characteristics for use in modeling.
Konoplev, A; Golosov, V; Wakiyama, Y; Takase, T; Yoschenko, V; Yoshihara, T; Parenyuk, O; Cresswell, A; Ivanov, M; Carradine, M; Nanba, K; Onda, Y
2018-06-01
Processes of vertical and lateral migration lead to gradual reduction in contamination of catchment soil, particularly its top layer. The reduction can be considered as natural attenuation. This, in turn, results in a gradual decrease of radiocesium activity concentrations in the surface runoff and river water, in both dissolved and particulate forms. The purpose of this research is to study the dynamics of Fukushima-derived radiocesium in undisturbed soils and floodplain deposits exposed to erosion and sedimentation during floods. Combined observations of radiocesium vertical distribution in soil and sediment deposition on artificial lawn-grass mats on the Niida River floodplain allowed us to estimate both annual mean sediment accumulation rates and maximum sedimentation rates corresponding to an extreme flood event during Tropical Storm Etau, 6-11 September 2015. Dose rates were reduced considerably for floodplain sections with high sedimentation because the top soil layer with high radionuclide contamination was eroded and/or buried under cleaner fresh sediments produced mostly due to bank erosion and sediments movements. Rate constants of natural attenuation on the sites of the Takase River and floodplain of Niida River was found to be in range 0.2-0.4 year -1 . For the site in the lower reach of the Niida River, collimated shield dose readings from soil surfaces slightly increased during the period of observation from February to July 2016. Generally, due to more precipitation, steeper slopes, higher temperatures and increased biological activities in soils, self-purification of radioactive contamination in Fukushima associated with vertical and lateral radionuclide migration is faster than in Chernobyl. In many cases, monitored natural attenuation along with appropriate restrictions seems to be optimal option for water remediation in Fukushima contaminated areas. Copyright © 2017. Published by Elsevier Ltd.
Flocculation Settling Dynamics of Natural Cohesive Suspended Sediments: "Floccin' Across the USA!"
NASA Astrophysics Data System (ADS)
Manning, A. J.; Schoellhamer, D. H.; Mehta, A. J.; Schladow, G.; Monismith, S. G.; Huang, I. B.; Kuwabara, J. S.; Carter, J. L.; Sheremet, A.; Parsons, D. R.; Whitehouse, R. J. S.; Todd, D.; Benson, T.; Spearman, J.
2017-12-01
Many coastal and inland waterways are dominated by muddy sediments; comprising a mixture of clay minerals and various types of organic matter. When cohesive sediment is entrained into suspension, the particles tend to flocculate. Flocs are less dense, but faster settling than their constituent particles thus affecting their depositional characteristics. As flocs grow, their effective densities generally decrease, but their settling rates rise due to the Stokes' Law relationship. Flocculation effects become even more complex when purely cohesive sediments are mixed with different ratios of non-cohesive sediments, and if biological activity (e.g., exudate production) affects the resultant cohesion. Developing instrumentation that can provide key physical and dynamical data on depositional rates of flocculating sediments is extremely important in advancing our understanding of natural flocculation processes. Complementary qualitative and quantitative data improve our understanding of the depositional and aggregational physical processes through parameterization. This presentation will demonstrate recent advances in the study of the flocculation process through the use of video image technology. One such device pioneered at HR Wallingford, and implemented with co-authors, is the high-resolution floc video camera, LabSFLOC - Laboratory Spectral Flocculation Characteristics (developed by Prof. Manning). LabSFLOC can observe (directly or indirectly) floc spectral physical properties, including: floc size, settling velocity, effective density, porosity, shape, mass, and settling flux (using controlled volume referencing). These data are highly desirable for sediment transport modelers. Examples of floc measurements from locations in estuaries, tidal lagoons, river deltas, and lakes from locations across the US will be presented. In addition, we will demonstrate how video floc data can be used to parameterize floc settling characteristics for use in modeling.
NASA Astrophysics Data System (ADS)
Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo
2016-08-01
This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.
NASA Astrophysics Data System (ADS)
Quinlan, E.; Gibbins, C. N.; Batalla, R. J.; Vericat, D.
2015-03-01
Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km-2 year-1, a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m-2. Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.
The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes
Sorokin, Dimitry Y.; Kuenen, J. Gijs; Muyzer, Gerard
2011-01-01
Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na+ – a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes. PMID:21747784
Abdallah, Maha Ahmed Mohamed
2011-07-01
Sediment quality of Lake Maryout (one of the four Nile Delta shallow brackish water lakes on the south-eastern coast of the Mediterranean Sea) is of concern as this lake is used for land reclamation and aquaculture and is an important fishing source. The magnitude and ecological relevance of metal pollution in Lake Maryout Main Basin was investigated by applying different sediment quality assessment approaches. The aim of this study was to estimate ecological risk of trace elements (Cd, Ni, Pb, Cr, Cu and Zn) in the surficial sediments (<63 jtm fraction) of Lake Maryout. Heavily contaminated sediments were evaluated by the Sediment Quality Guideline (SQG) of the US Environmental Protection Agency. The degree of contamination (Cd) was estimated as very high for each site. Two sets of SQGs effect range-low/effect range-median values and threshold effect concentration (TEC) and probable effect concentration (PEC) values were used in this study. Sediments from each site were judged toxic when more of the PEC values exceeded EPA guidelines. Based on the geoaccumulation index (Ieo) of target trace elements, the Main Basin of Lake Maryout has to be considered as extremely polluted with Cd (Igeo > or =5), strongly polluted with Zn (2 < or = Igeo < or =3), moderately polluted with Cu (1 < or = Igeo < or = 2), unpolluted to moderately polluted with Cr and Pb (0 < or = Igeo < or = 1 for each) and unpolluted with Ni (Igeo < or = 0). Lake Maryout sediments had heavy accumulations of Cd, which apparently come from drains that include industrial and raw domestic wastes. Therefore, a sequential extraction technique was applied to assess the five fractions (exchangeable, metals bound to carbonate, acid-reducible, oxidizable-organic and residual) of Cd in surface sediments. The Cd concentration in most sampling stations was dominated by the non-resistant fraction (anthropogenic). The result showed that those stations located in the vicinity of municipal and mixed waste drains posed a high potential risk to fauna and flora of Maryout Lake.
NASA Astrophysics Data System (ADS)
Horacek, Micha; Brandner, Rainer
2016-04-01
A substantial change in sedimentation rates towards higher values has been documented from the Late Permian to the Lower Triassic. Although it is assumed and also has been shown that the deposition of siliciclastic material increased in the Lower Triassic due to stronger erosion because of loss of land cover and increased chemical and physical weathering with extreme climate warming, the main sediment production occurred by marine carbonate production. Still, carbonate production might have been significantly influenced by weathering and erosion in the hinterland, as the transport of dust by storms into the ocean water probably was a main nutrient source for microbial carbonate producers, because "normal" nutrient supply by ocean circulation, i. e. upwelling was strongly reduced due to the elevated temperatures resulting in water-column stratification . Sediment accumulation was also clearly influenced by the paleo-geographic and latitudinal position, with lower carbonate production and sedimentation rates in moderate latitudes. The existence of a "boundary clay" and microbial carbonate mounds and layers in the immediate aftermath of the latest Permian mass extinction points towards a development from a short-timed acid ocean water - resulting in a carbonate production gap and the deposition of the boundary clay towards the deposition of the microbial mounds and layers due to the microbial production of micro-environments with higher alkalinity allowing the production of carbonate. After the return of the ocean water to normal alkalinity planktic production of carbonate resulted in a very high sedimentation rate, especially taking into account the absence of carbonate producing eukaryotic algae and animals.
Extreme Seasonality During Early Eocene Hyperthermals
NASA Astrophysics Data System (ADS)
Plink-Bjorklund, P.; Birgenheier, L.
2012-12-01
An outcrop multi-proxy dataset from the Uinta Basin, Utah, US indicates that extreme seasonality occurred repeatedly during the Early Eocene transient global warming events (hyperthermals), during the Palaeocene-Eocene Thermal Maximum (PETM) as well as during the six consequent younger hyperthermals. In this multi-proxy analysis we have investigated the precipitation distribution and peakedness changes during Early Eocene hyperthermals. This dataset is different from previously published terrestrial climate proxy analyses, in that we fully utilize the sedimentary record itself, and especially the hydrodynamic indicators within the river strata. We combine these high-resolution sedimentologic-stratigraphic analyses, with analyses of terrestrial burrowing traces, and the conventional palaeosol and stable carbon isotope analyses. With this approach, we are able to better document hydroclimatologic changes, and identify climate seasonality changes, rather than just long-term mean humidity/aridity and temperature trends. For this study we analyzed over 1000 m of Palaeocene and Early Eocene river and lake strata in the Uinta Basin, Utah, US (Figs. 1 and 2). The sedimentologic-stratigraphic analyses of outcrops included measuring detailed stratigraphic sections, analyzing photopanels, a spatial GPS survey, and lateral walk-out of stratigraphic packages across an area of 300 km2, with additional data across an area of ca 6000 km2 (Fig. 2). Continental burrowing traces and palaeosols were analyzed along the measured sections. For geochemical analysis 196 samples of mudrock facies were collected along the measured sections and analyzed for total organic carbon (Corg), total nitrogen (Ntot), and δ13C values of bulk organic matter. Biostratigraphy (25), radiometric dates, and carbon isotope stratigraphy, using bulk δ13C of organic matter in floodplain siltstones confirm the position of the PETM and the 6-8 post-PETM hyperthermals in the studied strata The seasonality intensification is seen as short intense rain seasons alternating with prolonged droughts. Such seasonality intensification had a profound effect on landscape morphology as well as on vegetation. River systems changed from braided streams to highly seasonal fluvial megafans with tens of meters deep channels. River channels staid dry through most of the prolonged droughts, as witnessed by intra-channel insect burrows and paleosols. The intense wet seasons caused extremely high water discharge in channels, resulting in high rates of erosion, sediment transport and deposition. As a result, the channels were filled locally by up to 10s of meters of sediment, causing rapid river course changes and terrestrial flooding. Particulate organic matter content is extremely low in these sediments. This is in contrast to river sediments that were deposited during less intense seasonality. The dataset was compared to other datasets from intermontane basins in the Western Interior and also Europe (Spain), where similar seasonality changes are indicated to have occurred during the PETM. This is in great contrast to intermontane Early Eocene river systems documented in Norwegian Arctic (e.g. Spitsbergen) and in tropics (e.g. Venezuela), where no seasonality intensification has been documented. Thus the seasonality intensification seems to have been confined to (northern) mid-latitudes and subtropics.
Recent marine deposits reconstruction of two depositional environments of the French Atlantic coast
NASA Astrophysics Data System (ADS)
Pouzet, Pierre; Maanan, Mohamed; Schmidt, Sabine; Athimon, Emmanuelle; Robin, Marc
2017-04-01
This work provides a 300-yr high-resolution record of past storm and/or tsunami events using a multi-proxy analysis (137Cs and 210Pb dating, chemical composition and grain size) of sedimentary deposits from two coastal depositional environments of the French Atlantic coast. We analyse two wetland areas situated just behind a narrow coastal sand strip: 1) the Mer Blanche and 2) the Turballe. Evidence for strong extratropical storms and /or tsunamis events can be identified in this central part of the Bay of Biscay from the XIXth to the XXth century. Nine short sediment cores were collected in August 2016 using gravity type corer of 10 inner diameter and 100 cm length. Each core was longitudinally sliced, each half section photographed and described. High-resolution elemental analyses of split sediment cores were done using an Avaatech XRF core scanner. Then sediment cores were sampled every 0.5 cm. Grain size analysis was done using a Malvern 2600 laser beam grain sizer; organic carbon was measured by Leco induction furnace. 137Cs, 210Pb and 226Ra activities were measured on about 2 g dried sediment using a low background, well-type γ spectrometer (Canberra). The 210Pb in excess, which is used for dating, was calculated as the difference of measured 210Pb and of its supported activities (226Ra). The history information is performed using historical documents including narrative sources, ancient maps, records of cities repairs, surveys conducted after a disaster, newspaper from different departmental and national archives, and meteorological data. Coastal depositional environments were affected hardest by extreme environmental and climatological events during the last century. In the Mer Blanche core, three extreme episodes can be observed: i) at 36 cm, sediment is characterized by coarser sand and higher Sr/Al ratio, this episode coincides with a high tidal wave in spring 1937; ii) at 55 cm, we observe the presence of many gravels, they dates back to the high tidal wave of 1924 and iii) at 65 cm, the presence of another coarse pebble layer is attributed to a series of severe storms associated with coastal flooding episodes between 1910 and 1913. Acknowledgements The authors gratefully acknowledge Isabelle Billy (EPOC, University of Bordeaux 1) for XRF spectrometric core scanner analysis. This work was supported by grants from the Fondation de France through the research program « Quels littoraux pour demain? » and OR2C PDL regional framework.
NASA Astrophysics Data System (ADS)
Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre
2016-04-01
Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that underflows (turbidity currents) generated at the river mouths are frequent and deliver coarse-grained sediments to the deeper waters. According to the 2003-2014 mooring data, no single hydroclimatic process can explain this underflow activity. Spring snowmelt is often responsible for delivering a substantial amount of sediment to the lakes in the form of underflows, while the contribution of summer rainfalls has also been important in some years. However, one of the largest rainfall recorded (100 mm over four days in August 2013) did not trigger a corresponding underflow event in West Lake, confirming that antecedent soil conditions can significantly reduce runoff and suspended sediment concentrations in the rivers. Moreover, high peaks of turbidity were recorded below ice cover, during the winter, a season thought to be inactive in terms of sedimentary processes. Hence, reconciling the range of processes responsible for sediment deposition and that generate both bedforms and subaqueous mass movements are important to developing consistent records and interpretations of sediment deposition in High Arctic lakes.
Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.
2009-01-01
A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.
Using repeat lidar to estimate sediment transport in a steep stream
NASA Astrophysics Data System (ADS)
Anderson, Scott; Pitlick, John
2014-03-01
Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Julian, Maurice
1999-12-01
Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific research. A necessary future step in bettering the engineering solutions implemented to contain natural hazards or to harness water and sediment resources is that of fine-scale analysis of source-to-sink sediment transfer processes, of sediment budgets, of time-scales of storage in stream channels, and, finally, of high-magnitude hydrometeorological forcing events in this area. The way all these aspects have been modulated by engineering practices and socioeconomic development should also be an important part of such an analysis.
Mächtle, W
1999-01-01
Sedimentation velocity is a powerful tool for the analysis of complex solutions of macromolecules. However, sample turbidity imposes an upper limit to the size of molecular complexes currently amenable to such analysis. Furthermore, the breadth of the particle size distribution, combined with possible variations in the density of different particles, makes it difficult to analyze extremely complex mixtures. These same problems are faced in the polymer industry, where dispersions of latices, pigments, lacquers, and emulsions must be characterized. There is a rich history of methods developed for the polymer industry finding use in the biochemical sciences. Two such methods are presented. These use analytical ultracentrifugation to determine the density and size distributions for submicron-sized particles. Both methods rely on Stokes' equations to estimate particle size and density, whereas turbidity, corrected using Mie's theory, provides the concentration measurement. The first method uses the sedimentation time in dispersion media of different densities to evaluate the particle density and size distribution. This method works provided the sample is chemically homogeneous. The second method splices together data gathered at different sample concentrations, thus permitting the high-resolution determination of the size distribution of particle diameters ranging from 10 to 3000 nm. By increasing the rotor speed exponentially from 0 to 40,000 rpm over a 1-h period, size distributions may be measured for extremely broadly distributed dispersions. Presented here is a short history of particle size distribution analysis using the ultracentrifuge, along with a description of the newest experimental methods. Several applications of the methods are provided that demonstrate the breadth of its utility, including extensions to samples containing nonspherical and chromophoric particles. PMID:9916040
Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh
Kowalski, Kurt P.; Wilcox, Douglas A.
1999-01-01
Historical and geospatial data were used to identify the relationships between water levels, wetland vegetation, littoral drift of sediments, and the condition of a protective barrier beach at Metzger Marsh, a coastal wetland in western Lake Erie, to enhance and guide a joint federal and state wetland restoration project. Eleven sets of large-scale aerial photographs dating from 1940 through 1994 were interpreted to delineate major vegetation types and boundaries of the barrier beach. A geographic information system (GIS) was then used to digitize the data and calculate the vegetated area and length of barrier beach. Supplemented by paleoecological and sedimentological analyses, aerial photographic interpretation revealed that Metzger Marsh was once a drowned-river-mouth wetland dominated by sedges and protected by a sand barrier beach. Extremely high water levels, storm events, and reduction of sediments in the littoral drift contributed to the complete destruction of the barrier beach in 1973 and prevented its recovery. The extent of wetland vegetation, correlated to water levels and condition of the barrier beach, decreased from a high of 108 ha in 1940 to a low of 33 ha in 1994. The lack of an adequate sediment supply and low probability of a period of extremely low lake levels in the near future made natural reestablishment of the barrier beach and wetland vegetation unlikely. Therefore, the federal and state managers chose to construct a dike to replace the protective barrier beach. Recommendations stemming from this historical analysis, however, resulted in the incorporation of a water-control structure in the dike that will retain a hydrologic connection between wetland and lake. Management of the wetland will seek to mimic processes natural to the wetland type identified by this analysis.
Managment oriented analysis of sediment yield time compression
NASA Astrophysics Data System (ADS)
Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed
2016-04-01
The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in particular months, even in catchment with low or no inter-annual time compression. The analysis of seasonality of time compression showed that in most of the catchments large sediment yields were more likely to occur between October and January, while in two catchments it was in summer (June and July). The appropriate sediment yield management measure: enhancement of soil properties, (dis)connectivity measures or vegetation cover, should therefore be selected with regard to the type of inter-annual time compression, to the properties of the individual catchments, and to the magnitudes of sediment yield. To increase the effectivity and lower the costs of the applied measures, the management in the months or periods when large sediment yields are most likely to occur should be prioritized. The analysis of the monthly time compression might be used for their identification in areas where no event datasets are available. The R-OSMed network of Mediterranean erosion research catchments was funded by "SicMed-Mistrals" grants from 2011 to 2014. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196). João Pedro Nunes has received support from the European Union (in the framework of the European Social Fund) and the Portuguese Government under a post-doctoral fellowship (SFRH/BPD/87571/2012).
Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan
2012-01-01
The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world’s impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems. PMID:22768107
Perignon, M. C.; Tucker, G.E.; Griffin, Eleanor R.; Friedman, Jonathan M.
2013-01-01
The spatial distribution of riparian vegetation can strongly influence the geomorphic evolution of dryland rivers during large floods. We present the results of an airborne lidar differencing study that quantifies the topographic change that occurred along a 12 km reach of the Lower Rio Puerco, New Mexico, during an extreme event in 2006. Extensive erosion of the channel banks took place immediately upstream of the study area, where tamarisk and sandbar willow had been removed. Within the densely vegetated study reach, we measure a net volumetric change of 578,050 ± ∼ 490,000 m3, with 88.3% of the total aggradation occurring along the floodplain and channel and 76.7% of the erosion focusing on the vertical valley walls. The sediment derived from the devegetated reach deposited within the first 3.6 km of the study area, with depth decaying exponentially with distance downstream. Elsewhere, floodplain sediments were primarily sourced from the erosion of valley walls. Superimposed on this pattern are the effects of vegetation and valley morphology on sediment transport. Sediment thickness is seen to be uniform among sandbar willows and highly variable within tamarisk groves. These reach-scale patterns of sedimentation observed in the lidar differencing likely reflect complex interactions of vegetation, flow, and sediment at the scale of patches to individual plants.
Li, Xiaoyu; Liu, Lijuan; Wang, Yugang; Luo, Geping; Chen, Xi; Yang, Xiaoliang; Gao, Bin; He, Xingyuan
2012-01-01
The purpose of this study is to investigate the current status of metal pollution of the sediments from urban-stream, estuary and Jinzhou Bay of the coastal industrial city, NE China. Forty surface sediment samples from river, estuary and bay and one sediment core from Jinzhou bay were collected and analyzed for heavy metal concentrations of Cu, Zn, Pb, Cd, Ni and Mn. The data reveals that there was a remarkable change in the contents of heavy metals among the sampling sediments, and all the mean values of heavy metal concentration were higher than the national guideline values of marine sediment quality of China (GB 18668-2002). This is one of the most polluted of the world's impacted coastal systems. Both the correlation analyses and geostatistical analyses showed that Cu, Zn, Pb and Cd have a very similar spatial pattern and come from the industrial activities, and the concentration of Mn mainly caused by natural factors. The estuary is the most polluted area with extremely high potential ecological risk; however the contamination decreased with distance seaward of the river estuary. This study clearly highlights the urgent need to make great efforts to control the industrial emission and the exceptionally severe heavy metal pollution in the coastal area, and the immediate measures should be carried out to minimize the rate of contamination, and extent of future pollution problems.
Walsh, R. P. D.; Bidin, K.; Blake, W. H.; Chappell, N. A.; Clarke, M. A.; Douglas, I.; Ghazali, R.; Sayer, A. M.; Suhaimi, J.; Tych, W.; Annammala, K. V.
2011-01-01
Long-term (21–30 years) erosional responses of rainforest terrain in the Upper Segama catchment, Sabah, to selective logging are assessed at slope, small and large catchment scales. In the 0.44 km2 Baru catchment, slope erosion measurements over 1990–2010 and sediment fingerprinting indicate that sediment sources 21 years after logging in 1989 are mainly road-linked, including fresh landslips and gullying of scars and toe deposits of 1994–1996 landslides. Analysis and modelling of 5–15 min stream-suspended sediment and discharge data demonstrate a reduction in storm-sediment response between 1996 and 2009, but not yet to pre-logging levels. An unmixing model using bed-sediment geochemical data indicates that 49 per cent of the 216 t km−2 a−1 2009 sediment yield comes from 10 per cent of its area affected by road-linked landslides. Fallout 210Pb and 137Cs values from a lateral bench core indicate that sedimentation rates in the 721 km2 Upper Segama catchment less than doubled with initially highly selective, low-slope logging in the 1980s, but rose 7–13 times when steep terrain was logged in 1992–1993 and 1999–2000. The need to keep steeplands under forest is emphasized if landsliding associated with current and predicted rises in extreme rainstorm magnitude-frequency is to be reduced in scale. PMID:22006973
NASA Astrophysics Data System (ADS)
Zhang, Jianjun; Gao, Guangyao; Fu, Bojie; Zhang, Lu
2018-04-01
The assessment for impacts of climate variability and human activities on suspended sediment yield (SSY) change has long been a question of great interest. However, the sediment generation processes are sophisticated with high nonlinearity and great uncertainty, which give rise to extreme complexity for SSY change assessment in Newtonian approach. Consequently, few approaches can be simply but widely applied to decompose impacts of climatic variability and human activities on SSY change. Thus, it is an urgent need to develop advanced methods that are simple and robust. Since that the Newtonian approach is hardly achievable due to limitation of either observations or knowledge of mechanisms, there have been repeated calls to capture the hydrologic system in Darwinian approach for hydrological change prediction or explanation. As streamflow is the carrier of suspended sediment, SSY change are thus documented in changes of sediment concentrated flow and suspended sediment concentration - water discharge (C-Q) relationships. By deduced corollaries, a differential equation of sediment discharge change was derived to explicitly decompose impacts of climate variability and human activities in Darwinian hydrology. Besides, a new form of sediment rating curves was proposed and curved as C-Q relationships and probability distribution of sediment concentrated flow. River sediment flux can be revealed by this representation, which simply elucidates mechanism of SSY generation covering a range of time scales from finer than rainfall-event to long term. By the new sediment rating curves, the differential equation was partly solved using a segmentation algorithm proposed and validated in this paper, and then was submitted to water balance framework expressed by Budyko-type equation. Thus, for catchment management, hydrologists can obtain explicit explanation of how climate variation and human activities propagate through landscape and result in sediment discharge change. The differential equation is simple and robust for widely application in sediment discharge change assessment, as only discrete data of precipitation, potential evaporation and C-Q observed at gauging stations are required.
NASA Astrophysics Data System (ADS)
Mestdagh, Sebastiaan; Bagaço, Leila; Braeckman, Ulrike; Ysebaert, Tom; De Smet, Bart; Moens, Tom; Van Colen, Carl
2018-05-01
Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.
A geochronologic framework for the Ziegler Reservoir fossil site, Snowmass Village, Colorado
Mahan, Shannon; Gray, Harrison J.; Pigati, Jeffrey S.; Wilson, Jim; Lifton, Nathaniel A.; Paces, James B.; Blaauw, Maarten
2014-01-01
The Ziegler Reservoir fossil site near Snowmass Village, Colorado, provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the last interglacial period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic 10Be and 26Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~ 140 ka and > 45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (DE) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of marine isotope stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.
Laranjeiro, Filipe; Pérez, Sara; Navarro, Patricia; Carrero, José Antonio; Beiras, Ricardo
2015-11-01
Despite the use of tributyltin (TBT) had been banned worldwide in 2008 there is still evidence of its deleterious presence in environment. We evaluate the usefulness of a 28days sediment bioassay with Nassarius reticulatus females to monitor TBT pollution, using imposex as endpoint. In addition, butyltins were determined in sediments and tissues, and, whenever posible, imposex was assessed in native N. reticulatus at the same sites where sediments were sampled. In the bioassay, a significant increase in imposex parameters was obtained with three sediments (Vi2, Vi3, and Vi4). No correlation was found between this and TBT concentrations in sediment although good correlations were obtained for TBT in tissues, putting in evidence TBT bioavailability in sediment. A significant decrease in imposex from 2008 to 2013 in native snails was only observed at sites that did not cause any effect in the bioassay. In contrast, imposex levels in 2013 were kept as high as 2008 in one of the sites where a significant imposex increase in the bioassay was observed. The bioassay proves thus to be a practical and ecological relevant tool, as: (i) it can be conducted in sites with no native populations of snails, (ii) it provides early identification of polluted sites, anticipating future imposex levels or early identification of recovering, and (iii) it yields information on the bioavailable fraction of the TBT in the sediment. Therefore, this tool can be of extreme usefulness under the scope of recent European legislative frameworks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lukin, V B
2002-01-01
The investigation of seasonal changes in spatial structure of phytoperiphyton during succession was conducted at the lower reaches of Akulovsky water channel from April to August 2000. At the beginning of succession from April to June dominant forms were chain-forming diatoms and filamentous green algae, sedimented from plankton. Later, at the middle of June under increasing pressure of herbivorous, they were replaced by stretched unicellular diatoms and colonial cyanobacteria. In late June-August, when herbivorous predation was the most intensive, the relative abundance of typical periphytonic forms decreased while that of settled planktonic forms increased. The effect of planktonic algae sedimentation on periphyton composition was evaluated as similarity between phytoperiphyton and phytoplankton communities measured with Chekanovski--Sorensen index. The value of this index tends to decrease with the development of periphyton while showing some relation to intensity of herbivorous pressure. Minimal values of Chekanovski--Sorensen index were under moderate herbivorous density, whereas maximal values were observed in periods of extremely high or low herbivorous density.
Naifar, Ikram; Pereira, Fernando; Zmemla, Raja; Bouaziz, Moncef; Elleuch, Boubaker; Garcia, Daniel
2018-06-01
In order to investigate the current distribution of metal concentrations in surface marine sediments of the southern coast of Sfax (Tunisia), thirty-nine samples were collected in the vicinity of a mixed industrial and domestic wastewater effluent discharge. In comparison with the threshold effect level and probable effect level, the majority of metals had high ecological and biological risks. Enrichment factor and geoaccumulation Index showed that the majority of sediments are unpolluted by As, Ni and Pb, moderately polluted by Cr and Cu and moderately to strongly polluted by P, Y, Zn. Besides, all sites are extremely polluted by Cd. Principal component analysis indicates that As, Cu and Ni were mainly from lithogenic sources, whereas Cd, Cr, F, P, Pb, Y and Zn were mainly derived from anthropogenic source. Findings of this research can be used as suitable reference for future studies and environmental management plans in the region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mortality of riparian box elder from sediment mobilization and extended inundation
Friedman, Jonathan M.; Auble, Gregor T.
1999-01-01
To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble-bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing-season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross-section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi-objective water management decisions.
NASA Astrophysics Data System (ADS)
Bruno, M. S.; Glenn, S.; Chant, R.; Rankin, K.; Korfiatis, G.; Dimou, N.; Creed, E.; Fullerton, B.; Pence, A.; Burke, P.; Haldeman, C.; Hires, R.; Hunter, E.
2002-12-01
The New York-New Jersey Harbor estuary system is of enormous ecological and economic importance to the region. The presence of toxic chemicals in the water and sediments results in reduced water quality, fisheries restrictions/advisories, and general adverse impacts to the estuarine ecosystem. The Port of New York and New Jersey is central to the economy of the region. However, in recent years, problems associated with the management of contaminated dredged material, including high costs and the lack of suitable disposal/use alternatives, have threatened to impact the volume of shipping in the Harbor. Sources of contaminants include atmospheric deposition, municipal and industrial wastewater treatment facilities, combined sewer and stormwater outfalls, and rainfall-induced runoff (non-point sources). In addition, Harbor sediments can act as a continuing source as they are re-suspended and moved throughout the system by both natural and man-made means. As part of the New Jersey Toxics Reduction Workplan, Stevens Institute of Technology and Rutgers University are conducting hydrodynamic, sediment transport, and water and suspended sediment quality measurements in Newark Bay, the Arthur Kill and the Kill van Kull. The goals of the project include: (1) collection of high resolution (event-driven and long-term) hydrodynamic, sediment transport and water and suspended sediment quality measurements for use in the assessment of the dominant physics of the system and in the development of a combined hydrodynamic-sediment transport-water/sediment quality model for the region. (2) identification of those tributaries to NY-NJ Harbor that are significant sources of the chemicals of concern, and evaluation of the importance of non-point sources and existing contaminated bottom sediments as sources of the chemicals of concern. (3) identification of point discharges that represent significant sources of the chemicals of concern. Observations were obtained over a two-year period, during 21 tributary flow "events", each having an approximate duration of 1 week. The measurement program included 3 fixed mooring stations and 5 shipboard locations. Each mooring consisted of an acoustic Doppler current profiler; a high-resolution pressure sensor; an OBS; a CTD; and a laser-based scatterometer. The ship-board measurements included vertical current profiles using a towed acoustic Doppler current profiler; CTD measurements; OBS measurements; suspended sediment concentration and particle size spectrum using a laser-based scatterometer; and chemical characterization of water and suspended sediment samples. The water and sediment quality measurements were obtained using a specially designed Trace Organics Platform Sampler. This sampler allowed for the measurement of low-level concentrations of PCBs (108 congeners), dioxins/furans, Pesticides, PAHs and metals (Hg, Cd, Pb). Preliminary analysis of the data has improved our understanding of the circulation and sediment transport patterns in this region of the estuary, including the influence of extreme tributary flow events, local winds, and anthropogenic effects such as port structures, vessels, and the navigation channels, and has identified the most highly contaminated reaches of the tributaries.
Neotectonic Activity from the Upper Reaches of the Arabian Gulf and Possibilities of New Oil Fields
NASA Astrophysics Data System (ADS)
Sissakian, V. K.; Abdul Ahad, A. D.; Al-Ansari, N.; Knutsson, S.
2018-03-01
Upper reaches of the Arabian Gulf consist of different types of fine sediments including the vast Mesopotamia Plain sediments, tidal flat sediments and estuarine sabkha sediments. The height of the plain starts from zero meter and increases northwards to three meters with extremely gentle gradient. The vast plain to the north of the Arabian Gulf is drained by Shat Al-Arab (Shat means river in Iraqi slang language) and Khor Al-Zubair (Khor means estuary). The former drains the extreme eastern part of the plain; whereas, the latter drains the western part. Shat Al-Arab is the resultant of confluence of the Tigris and Euphrates rivers near Al-Qurna town; about 160 km north of the Arabian Gulf mouth at Al-Fao town; whereas, the length of Khor Al-Zubair is about 50 km; as measured from Um Qasir Harbor. The drainage system around Khor Al-Zubair is extremely fine dendritic; whereas around Shat Al-Arab is almost parallel running from both sides of the river towards the river; almost perpendicularly. The fine dendritic drainage around Khor Al-Zubair shows clear recent erosional activity, beside water divides, abandoned irrigation channels and dislocated irrigational channels and estuarine distributaries; all are good indication for a Neotectonic activity in the region. These may indicate the presence of subsurface anticlines, which may represent oil fields; since tens of subsurface anticlines occur in near surroundings, which are oil fields.
Major hydrologic shifts in northwest Florida during the Holocene from a lacustrine sediment record
NASA Astrophysics Data System (ADS)
Rodysill, J. R.; Donnelly, J. P.
2011-12-01
Recent climate extremes have threatened water resource availability and destroyed homes and infrastructure along the heavily populated northern Gulf of Mexico coast. Water resources in Northwest Florida, in particular, suffer from declining aquifer levels and salt water intrusion despite the presence of extensive river and aquifer systems. Intensive water resource management has been necessary to meet water supply demands during recent droughts. Advanced preparedness for abrupt climate events requires the ability to anticipate when hydrologic extremes are likely to occur; however, the long-term history of hydrologic extremes is not well known, and the instrumental record is too short to resolve longer-term hydrologic variability. Reconstructing the pre-instrumental hydrologic history is essential to building our understanding of the timing of and the driving forces behind wet and dry extremes. Here we present a new record of paleohydrology in northwest Florida based upon variations in sediment lithology and geochemistry from Rattlesnake Lake. We see evidence for both brief and long-lived changes in the lake environment during the Holocene. We compare our record to published pollen-based reconstructions of paleohydrology to examine the spatial and temporal patterns of paleohydrologic extremes across the northern Gulf of Mexico region during the Holocene.
The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba
Mayzel, Boaz; Aizenberg, Joanna; Ilan, Micha
2014-01-01
Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat's coral reefs. PMID:24759635
Large-scale suspended sediment transport and sediment deposition in the Mekong Delta
NASA Astrophysics Data System (ADS)
Manh, N. V.; Dung, N. V.; Hung, N. N.; Merz, B.; Apel, H.
2014-08-01
Sediment dynamics play a major role in the agricultural and fishery productivity of the Mekong Delta. However, the understanding of sediment dynamics in the delta, one of the most complex river deltas in the world, is very limited. This is a consequence of its large extent, the intricate system of rivers, channels and floodplains, and the scarcity of observations. This study quantifies, for the first time, the suspended sediment transport and sediment deposition in the whole Mekong Delta. To this end, a quasi-2D hydrodynamic model is combined with a cohesive sediment transport model. The combined model is calibrated using six objective functions to represent the different aspects of the hydraulic and sediment transport components. The model is calibrated for the extreme flood season in 2011 and shows good performance for 2 validation years with very different flood characteristics. It is shown how sediment transport and sediment deposition is differentiated from Kratie at the entrance of the delta on its way to the coast. The main factors influencing the spatial sediment dynamics are the river and channel system, dike rings, sluice gate operations, the magnitude of the floods, and tidal influences. The superposition of these factors leads to high spatial variability of sediment transport, in particular in the Vietnamese floodplains. Depending on the flood magnitude, annual sediment loads reaching the coast vary from 48 to 60% of the sediment load at Kratie. Deposited sediment varies from 19 to 23% of the annual load at Kratie in Cambodian floodplains, and from 1 to 6% in the compartmented and diked floodplains in Vietnam. Annual deposited nutrients (N, P, K), which are associated with the sediment deposition, provide on average more than 50% of mineral fertilizers typically applied for rice crops in non-flooded ring dike floodplains in Vietnam. Through the quantification of sediment and related nutrient input, the presented study provides a quantitative basis for estimating the benefits of annual Mekong floods for agriculture and fishery, and is an important piece of information with regard to the assessment of the impacts of deltaic subsidence and climate-change-related sea level rise on delta morphology.
Fabisch, Maria; Beulig, Felix; Akob, Denise M.; Küsel, Kirsten
2013-01-01
We identified and quantified abundant iron-oxidizing bacteria (FeOB) at three iron-rich, metal-contaminated creek sites with increasing sediment pH from extremely acidic (R1, pH 2.7), to moderately acidic (R2, pH 4.4), to slightly acidic (R3, pH 6.3) in a former uranium-mining district. The geochemical parameters showed little variations over the 1.5 year study period. The highest metal concentrations found in creek sediments always coincided with the lowest metal concentrations in creek water at the slightly acidic site R3. Sequential extractions of R3 sediment revealed large portions of heavy metals (Ni, Cu, Zn, Pb, U) bound to the iron oxide fraction. Light microscopy of glass slides exposed in creeks detected twisted stalks characteristic of microaerobic FeOB of the family Gallionellaceae at R3 but also at the acidic site R2. Sequences related to FeOB such as Gallionella ferruginea, Sideroxydans sp. CL21, Ferritrophicum radicicola, and Acidovorax sp. BrG1 were identified in the sediments. The highest fraction of clone sequences similar to the acidophilic “Ferrovum myxofaciens” was detected in R1. Quantitative PCR using primer sets specific for Gallionella spp., Sideroxydans spp., and “Ferrovum myxofaciens” revealed that ~72% (R2 sediment) and 37% (R3 sediment) of total bacterial 16S rRNA gene copies could be assigned to groups of FeOB with dominance of microaerobic Gallionella spp. at both sites. Gallionella spp. had similar and very high absolute and relative gene copy numbers in both sediment communities. Thus, Gallionella-like organisms appear to exhibit a greater acid and metal tolerance than shown before. Microaerobic FeOB from R3 creek sediment enriched in newly developed metal gradient tubes tolerated metal concentrations of 35 mM Co, 24 mM Ni, and 1.3 mM Cd, higher than those in sediments. Our results will extend the limited knowledge of FeOB at contaminated, moderately to slightly acidic environments.
Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling
2015-01-01
Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414
Effects of Extreme Events on Arsenic Cycling in Salt Marshes
NASA Astrophysics Data System (ADS)
Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.
2018-03-01
Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.
NASA Astrophysics Data System (ADS)
Ashford, J.; Sickman, J. O.; Lucero, D. M.
2014-12-01
Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.
NASA Astrophysics Data System (ADS)
Van Exem, A.; Debret, M.; Copard, Y.; Verpoorter, C.; Sorrel, P.; de Wet, G.; Werner, A.; Roof, S.; Laignel, B.; Retelle, M.
2016-12-01
Laminated sediments contained valuable information recorded on a micrometric scale. Information about sediments flux and origins require high-resolution source tracking analysis. Quick and non-destructive, hyperspectral imaging provides contiguous reflectance datasets into 2 dimensions with a spatial resolution of 0.02 mm. Located on the west of the Spitzbergen, Lake Linné is the largest lake in the region. Erosion is mainly driven by glacier fluctuations and three different bedrocks are potential sediment sources. Organic matter (coal) is only found in some carboniferous rocks. Four cores recovered from different parts of the lake contain millimeter scale laminae. Two approaches were compared: (i) measurement of statistical correlations between the sediments and source samples, (ii) extraction of extreme spectral signatures from the VNIR hyperspectral images. Total Organic Carbon (TOC) values of all samples were also given by bulk geochemistry (RE6 ® pyrolyzer). Consequently, the measured similarity between the hyperspectral image and the field samples illustrates the sources contribution within the core. Three sample clusters and three equivalent spectral signatures were found. TOC values from the archive show good correlation (r=0.86, p<0.001, n=73) with the hyperspectral signature relative to TOC content. A least-squares regression (r²=0.74) was used to extrapolate TOC values in order to represent their distribution at 0.02 mm resolution. This is the first source-to-sink study based on imaging spectroscopy. Our results indicate that hyperspectral imagery is a useful tool to (i) identify sediment sources, (ii) perform continuous paleo-environmental reconstruction at high resolution, and (iii) can provide quantitative results (TOC values) validated by destructive analyses.
NASA Astrophysics Data System (ADS)
Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej
2016-02-01
We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and reservoirs, different grain size distribution in both systems, and high variability in thickness of their proximal and distal parts play a crucial role in the analysis of regional accumulation rates. Local effects are much stronger than regional effects, such as rainfall and land use. Combined with the low resolution of time scales (usually only three datums are available: reservoir construction datum, 137Cs fallout event, and top of sediment), these effects may obscure the general trends of regionally increasing or decreasing net SARs, making the analysis of erosion rates from the sedimentary record an extremely difficult task.
NASA Astrophysics Data System (ADS)
Antoine, Germain; Cazilhac, Marine; Monnoyer, Quentin; Jodeau, Magali; Gratiot, Nicolas; Besnier, Anne-Laure; Henault, Fabien; Le Brun, Matthieu
2015-04-01
The dynamic of suspended sediments in highly turbulent and concentrated flow is an important issue to better predict the sediment propagation along mountain rivers. In such extreme environments, the spatial and temporal variability of hydraulic and sediment parameters are difficult to measure: the flow velocity and the suspended sediment concentration (SSC) could be high (respectively several m/s and g/l) and rapidly variable. Simple methods are commonly used to estimate water discharge and mean or punctual SSC. But no method has been used successfully in a mountain river to estimate during a whole event the spatial distribution of flow velocity and SSC, as well as sediment parameters like grain size or settling velocity into a river cross section. This leads to these two questions: in such conditions, can we calculate sediment fluxes with one sediment concentration measurement? How can we explain the spatial heterogeneity of sediment characteristics? In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. Especially, several measurements are usually done during the flushing of the dams located on the upper part of the river. During the flushing event of June 2014, we instrumented the gauging station located just upstream the confluence between the Isere and the Arc River, at the outlet of the Arc River watershed. ADCP measurements have been performed to estimate the spatial distribution of the flow velocity (up to 3 m/s), and turbidimeters and automatic samplers have been used to estimate the spatial distribution of the SSC into the cross section (up to 6 g/l). These samples have been directly analyzed to measure the grain size distribution with a LISST Portable XR, as well as the settling velocities of the suspended sediments with the SCAF device (Wendling et al., 2013). Even if the measurements were difficult due to the flow conditions, some observations are relevant. For example, we observed a spatial heterogeneity of the settling velocity and the grain size of the suspended sediments into the cross section, whereas the SSC was almost homogeneous at the same time. In particular, these measurements show that the sediment flux can be calculated from the single turbidimeter located on the left bank. Moreover, the hydrodynamic measurements highlight the heterogeneity of the settling velocity due to the flow conditions. The first conclusions of these field measurements could be of great importance to assess numerical models, when they are used to estimate sediment deposits in river. V. WENDLING, N. GRATIOT, C. LEGOUT, I.G. DROPPO, A.J. MANNING, G. ANTOINE, H. MICHALLET, M. JODEAU : A rapid method for settling velocity and flocculation measurement within high suspended sediment concentration rivers. INTERCOH 2013, Gainesville, Florida.
NASA Astrophysics Data System (ADS)
Schulz, E.; Grasso, F.; Le Hir, P.; Verney, R.; Thouvenin, B.
2018-01-01
Understanding the sediment dynamics in an estuary is important for its morphodynamic and ecological assessment as well as, in case of an anthropogenically controlled system, for its maintenance. However, the quantification of sediment fluxes and budgets is extremely difficult from in-situ data and requires thoroughly validated numerical models. In the study presented here, sediment fluxes and budgets in the lower Seine Estuary were quantified and investigated from seasonal to annual time scales with respect to realistic hydro- and meteorological conditions. A realistic three-dimensional process-based hydro- and sediment-dynamic model was used to quantify mud and sand fluxes through characteristic estuarine cross-sections. In addition to a reference experiment with typical forcing, three experiments were carried out and analyzed, each differing from the reference experiment in either river discharge or wind and waves so that the effects of these forcings could be separated. Hydro- and meteorological conditions affect the sediment fluxes and budgets in different ways and at different locations. Single storm events induce strong erosion in the lower estuary and can have a significant effect on the sediment fluxes offshore of the Seine Estuary mouth, with the flux direction depending on the wind direction. Spring tides cause significant up-estuary fluxes at the mouth. A high river discharge drives barotropic down-estuary fluxes at the upper cross-sections, but baroclinic up-estuary fluxes at the mouth and offshore so that the lower estuary gains sediment during wet years. This behavior is likely to be observed worldwide in estuaries affected by density gradients and turbidity maximum dynamics.
Belnap, J.; Reynolds, R.L.; Reheis, M.C.; Phillips, S.L.; Urban, F.E.; Goldstein, H.L.
2009-01-01
Large sediment fluxes can have significant impacts on ecosystems. We measured incoming and outgoing sediment across a gradient of soil disturbance (livestock grazing, plowing) and annual plant invasion for 9 years. Our sites included two currently ungrazed sites: one never grazed by livestock and dominated by perennial grasses/well-developed biocrusts and one not grazed since 1974 and dominated by annual weeds with little biocrusts. We used two currently grazed sites: one dominated by annual weeds and the other dominated by perennial plants, both with little biocrusts. Precipitation was highly variable, with years of average, above-average, and extremely low precipitation. During years with average and above-average precipitation, the disturbed sites consistently produced 2.8 times more sediment than the currently undisturbed sites. The never grazed site always produced the least sediment of all the sites. During the drought years, we observed a 5600-fold increase in sediment production from the most disturbed site (dominated by annual grasses, plowed about 50 years previously and currently grazed by livestock) relative to the never grazed site dominated by perennial grasses and well-developed biocrusts, indicating a non-linear, synergistic response to increasing disturbance types and levels. Comparing sediment losses among the sites, biocrusts were most important in predicting site stability, followed by perennial plant cover. Incoming sediment was similar among the sites, and while inputs were up to 9-fold higher at the most heavily disturbed site during drought years compared to average years, the change during the drought conditions was small relative to the large change seen in the sediment outputs. ?? 2009 Elsevier B.V. All rights reserved.
Rehabilitating agricultural streams in Australia with wood: a review.
Lester, Rebecca E; Boulton, Andrew J
2008-08-01
Worldwide, the ecological condition of streams and rivers has been impaired by agricultural practices such as broadscale modification of catchments, high nutrient and sediment inputs, loss of riparian vegetation, and altered hydrology. Typical responses include channel incision, excessive sedimentation, declining water quality, and loss of in-stream habitat complexity and biodiversity. We review these impacts, focusing on the potential benefits and limitations of wood reintroduction as a transitional rehabilitation technique in these agricultural landscapes using Australian examples. In streams, wood plays key roles in shaping velocity and sedimentation profiles, forming pools, and strengthening banks. In the simplified channels typical of many agricultural streams, wood provides habitat for fauna, substrate for biofilms, and refuge from predators and flow extremes, and enhances in-stream diversity of fish and macroinvertebrates.Most previous restoration studies involving wood reintroduction have been in forested landscapes, but some results might be extrapolated to agricultural streams. In these studies, wood enhanced diversity of fish and macroinvertebrates, increased storage of organic material and sediment, and improved bed and bank stability. Failure to meet restoration objectives appeared most likely where channel incision was severe and in highly degraded environments. Methods for wood reintroduction have logistical advantages over many other restoration techniques, being relatively low cost and low maintenance. Wood reintroduction is a viable transitional restoration technique for agricultural landscapes likely to rapidly improve stream condition if sources of colonists are viable and water quality is suitable.
Active subsurface cellular function in the Baltic Sea Basin, IODP Exp 347
NASA Astrophysics Data System (ADS)
Reese, B. K.; Zinke, L. A.; Bird, J. T.; Lloyd, K. G.; Marshall, I.; Amend, J.; Jørgensen, B. B.
2016-12-01
The Baltic Sea Basin is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of global temperature fluctuations over the course of several hundred thousand years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates (100-500 cm/1000 y) make this an ideal setting to understand the microbial structure of a deep biosphere community in a high-organic matter environment. The responses of deep sediment microbial communities to variations in conditions during and after deposition are poorly understood. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further define the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.
Suspended-sediment dynamics in the tidal reach of a San Francisco Bay tributary
Shellenbarger, Gregory; Downing-Kunz, Maureen; Schoellhamer, David H.
2015-01-01
To better understand suspended-sediment transport in a tidal slough adjacent to a large wetland restoration project, we deployed continuously measuring temperature, salinity, depth, turbidity, and velocity sensors in 2010 at a near-bottom location in Alviso Slough (Alviso, California, USA). Alviso Slough is the downstream reach of the Guadalupe River and flows into the far southern end of San Francisco Bay. River flow is influenced by the Mediterranean climate, with high flows (∼90 m3 s−1) correlated to episodic winter storms and low base flow (∼0.85 m3 s−1) during the summer. Storms and associated runoff have a large influence on sediment flux for brief periods, but the annual peak sediment concentrations in the slough, which occur in April and May, are similar to the rest of this part of the bay and are not directly related to peak discharge events. Strong spring tides promote a large upstream sediment flux as a front associated with the passage of a salt wedge during flood tide. Neap tides do not have flood-directed fronts, but a front seen sometimes during ebb tide appears to be associated with the breakdown of stratification in the slough. During neap tides, stratification likely suppresses sediment transport during weaker flood and ebb tides. The slough is flood dominant during spring tides, and ebb dominant during neap tides. Extreme events in landward (salt wedge) and bayward (rainfall events) suspended-sediment flux account for 5.0 % of the total sediment flux in the slough and only 0.55 % of the samples. The remaining 95 % of the total sediment flux is due to tidal transport, with an imbalance in the daily tidal transport producing net landward flux. Overall, net sediment transport during this study was landward indicating that sediment in the sloughs may not be flushed to the bay and are available for sedimentation in the adjacent marshes and ponds.
NASA Astrophysics Data System (ADS)
Bussi, Gianbattista; Dadson, Simon J.; Prudhomme, Christel; Whitehead, Paul G.
2016-11-01
The effects of climate change and variability on river flows have been widely studied. However the impacts of such changes on sediment transport have received comparatively little attention. In part this is because modelling sediment production and transport processes introduces additional uncertainty, but it also results from the fact that, alongside the climate change signal, there have been and are projected to be significant changes in land cover which strongly affect sediment-related processes. Here we assess the impact of a range of climatic variations and land covers on the River Thames catchment (UK). We first calculate a response of the system to climatic stressors (average precipitation, average temperature and increase in extreme precipitation) and land-cover stressors (change in the extent of arable land). To do this we use an ensemble of INCA hydrological and sediment behavioural models. The resulting system response, which reveals the nature of interactions between the driving factors, is then compared with climate projections originating from the UKCP09 assessment (UK Climate Projections 2009) to evaluate the likelihood of the range of projected outcomes. The results show that climate and land cover each exert an individual control on sediment transport. Their effects vary depending on the land use and on the level of projected climate change. The suspended sediment yield of the River Thames in its lowermost reach is expected to change by -4% (-16% to +13%, confidence interval, p = 0.95) under the A1FI emission scenario for the 2030s, although these figures could be substantially altered by an increase in extreme precipitation, which could raise the suspended sediment yield up to an additional +10%. A 70% increase in the extension of the arable land is projected to increase sediment yield by around 12% in the lowland reaches. A 50% reduction is projected to decrease sediment yield by around 13%.
NASA Astrophysics Data System (ADS)
Pearl, J. K.; Anchukaitis, K. J.; Pederson, N.; Donnelly, J. P.
2017-12-01
Extreme hydrologic events pose a present and future threat to cities and infrastructure in the densely populated coastal corridor of the northeastern United States (NE). An understanding of the potential range and return interval of storms, floods, and droughts is important for improving coastal management and hazard planning, as well as the detection and attribution of trends in regional climate phenomena. Here, we examine a suite of evidence for Common Era paleohydroclimate extreme events in the NE. Our study analyzes a network of hydroclimate sensitive trees, subfossil 'drowned' forests and co-located sediment records, using both classical and isotope dendrochronology, radiocarbon analyses, and sediment stratigraphy. Atlantic White cedar (AWC) forests grow along the NE coast and are exposed to severe coastal weather, as they are typically most successful in near-shore, glacially formed depressions. Many coastal AWC sites are ombrotrophic and contain a precipitation or drought signal in their ring widths. Sub-fossil AWC forests are found where near-shore swamps were drowned and exposed to the ocean. Additionally, the rings of coastal AWC may contain the geochemical signature of landfalling tropical cyclones, which bring with them a large influx of precipitation with distinct oxygen isotopes, which can be used to identify these large storms. Dendrochronology, radiocarbon dating, and analysis of sediment cores are used here to identify and date the occurrence of large overwash events along the coastline of the northeastern United States associated with extreme storms.
Origin and dynamics of depositionary subduction margins
Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared W.
2016-01-01
Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.
NASA Astrophysics Data System (ADS)
Schulz, H.; von Rad, U.
2014-06-01
Due to the lack of bioturbation, the varve-laminated muds from the oxygen minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the nearshore part of the northeastern Arabian Sea. West of Karachi (Hab area), the results of two sediment trap stations (EPT and WPT) were correlated with 16 short sediment cores on a depth transect crossing the OMZ. The top of a distinct, either reddish- or light-gray silt layer, 210Pb-dated as AD 1905 ± 10, was used as an isochronous stratigraphic marker bed to calculate sediment accumulation rates. In one core, the red and gray layer were separated by a few (5-10) thin laminae. According to our varve model, this contributes < 10 years to the dating uncertainty, assuming that the different layers are almost synchronous. We directly compared the accumulation rates with the flux rates from the sediment traps that collected the settling material within the water column above. All traps on the steep Makran continental slope show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1. Based on core results, the flux at the seafloor amounts to 4000 mg m-2 d-1 and agrees remarkably well with the bulk winter flux of material, as well as with the flux of the individual bulk components of organic carbon, calcium carbonate and opal. However, due to the extreme mass of remobilized matter, the high winter flux events exceeded the capacity of the shallow traps. Based on our comparisons, we argue that high-flux events must occur regularly during winter within the upper OMZ off Pakistan to explain the high accumulations rates. These show distribution patterns that are a negative function of water depth and distance from the shelf. Some of the sediment fractions show marked shifts in accumulation rates near the lower boundary of the OMZ. For instance, the flux of benthic foraminifera is lowered but stable below ~1200-1300 m. However, flux and sedimentation in the upper eastern Makran area are dominated by the large amount of laterally advected fine-grained material and by the pulsed nature of the resuspension events at the upper margin during winter.
The Origin of EM1 Signatures in Basalts From Tristan da Cunha and Gough
NASA Astrophysics Data System (ADS)
Stracke, A.; Willbold, M.; Hemond, C.
2004-12-01
A long-standing hypothesis is that enriched mantle 1 (EM-1)-type ocean island basalt (OIB) sources contain pelagic sediments. Pelagic sediments range in composition from clays to calcareous or siliceous oozes and encompass a wide range of chemical compositions [1]. For geochemical purposes the use of the term pelagic sediments is often restricted to a special group of pelagic sediments with distinctive enrichment of Rare Earth Elements (REE). The geochemical composition of such REE-enriched pelagic sediments, however, is by no means representative of the geochemical composition of pelagic sediments in general. The extremely high REE/non-REE element ratios in REE-enriched pelagic sediments (e.g. high Lu/Hf, Sm/Hf, La/Nb, La/Th, Eu/Ti, and Gd/Ti ratios) translate into high 176Hf/177Hf ratios for given 143Nd/144Nd ratios with time. OIB sources containing this special variety of REE-enriched pelagic sediment should therefore plot above the oceanic basalt array and mixing arrays with these sources are expected to have a shallow slope in a Hf-Nd isotope diagram. Here we present new Hf-Nd isotope and trace element data for EM-1-type OIB from Tristan da Cunha and Gough in the South Atlantic Ocean. The samples from Tristan have a small range in Hf-Nd isotopic composition and plot within the oceanic basalt array in a Hf-Nd isotope diagram. Samples from Gough form a trend with a slope slightly steeper than that of the ocean basalt array in a Hf-Nd isotope diagram. OIB in general have a very restricted range in Gd/Ti and Sm/Hf ratios, and high La/Nb are associated with low Lu/Hf ratios. In detail, samples from Tristan and Gough have the lowest Lu/Hf and highest La/Nb ratios. Thus from the combined Hf-Nd isotope and trace element composition of basalts from Tristan and Gough involvement of this special variety of (REE-enriched) pelagic sediments can be excluded. Similar observations are made, and thus similar arguments hold, for other EM-1-type localities (Walvis ridge [2] and Pitcairn island [3]). Due to the considerable spread in geochemical composition of pelagic or any other group of sediments (e.g. marine sediments with a higher proportion of terrigenous components), it is difficult to attribute characteristic elemental or isotopic signatures to certain groups of sediment. Moreover, subducting sediments are complex mixtures of different types of sediment [1]. Thus it is difficult to find unique evidence either in favor of or against the involvement of sediments in general at Tristan and Gough, or any other individual OIB locality. Also, it appears highly unlikely that sub-arc processing has an equalizing effect on the composition of different subducting sediments [4]. Associating the similar isotopic characteristics of certain OIB groups and/or mantle-end-members (e.g. EM-1) to recycled sediments is therefore also problematic. [1] Plank, T. and C. H. Langmuir, Chem. Geol., 145, 325-394, 1998. [2] Salters, V. J. M. and X. Li, Geochim. Cosmochim. Acta, 68, A554, 2004. [3] Eisele, J., M. Sharma, J. G. Galer, J. Blichert-Toft, C. W. Devey and A. W. Hofmann, Earth Plan. Sci. Lett., 196, 197-212, 2002. [4] Johnson, M. C. and T. Plank, Geochem., Geophys., Geosys., 1, pp. 29, 1999.
Anezaki, Katsunori; Nakano, Takeshi; Kashiwagi, Nobuhisa
2016-01-19
Using the chemical balance method, and considering the presence of unidentified sources, we estimated the origins of PCB contamination in surface sediments of Muroran Port, Japan. It was assumed that these PCBs originated from four types of Kanechlor products (KC300, KC400, KC500, and KC600), combustion and two kinds of pigments (azo and phthalocyanine). The characteristics of these congener patterns were summarized on the basis of principal component analysis and explanatory variables determined. A Bayesian semifactor model (CMBK2) was applied to the explanatory variables to analyze the sources of PCBs in the sediments. The resulting estimates of the contribution ratio of each kind of sediment indicate that the existence of unidentified sources can be ignored and that the assumed seven sources are adequate to account for the contamination. Within the port, the contribution ratio of KC500 and KC600 (used as paints for ship hulls) was extremely high, but outside the port, the influence of azo pigments was observable to a limited degree. This indicates that environmental PCBs not derived from technical PCBs are present at levels that cannot be ignored.
NASA Astrophysics Data System (ADS)
Bril, J.; Just, C. L.; Newton, T.; Young, N.; Parkin, G.
2009-12-01
Labeled by the National Academy of Engineering as one of fourteen grand challenges for engineering, the management of the nitrogen cycle has become an increasingly difficult obstacle for sustainable development. In an effort to improve nitrogen cycle management practices, we are attempting to expand on the limited scientific knowledge of how aquatic environments are affected by increasing human- and climate-induced changes. To accomplish this, we are using freshwater mussels as a sentinel species to indicate how natural processes within large river systems may be altered by human activity. Freshwater mussels have been referred to as ‘ecosystem engineers’ because they exert control over food resources and alter habitats for other organisms. Also, mussels and bacteria play a major role in nutrient cycling in large river systems by cycling nutrients taken up by phytoplankton and zooplankton. Under ‘normal’ environmental conditions, mussels appear to process nitrogen more rapidly than denitrifying bacteria. However, substantial deposition of carbon-rich sediment resulting from extreme flooding may increase bacterial nitrogen cycling rates and subsequently alter overall denitrification rates. We hypothesize that intense depositions of particulate matter from recent extreme floods in the Upper Mississippi River Basin (UMRB) have altered the freshwater mussel and microbial food webs through physical and chemical means. This work will be done in a 1200-m reach of the UMRB near Buffalo, Iowa. The reach contains a healthy and diverse assemblage of freshwater mussels. A historic flood event during May-July 2008 coincided with intense spring cultivation and nutrient application activities in the heavily farmed landscape of the Upper Midwest and resulted in a significant pulse of agricultural contaminants to the UMRB. This led scientists to predict an almost unprecedented delivery of sediment and nutrients to the mussel bed, the broader Mississippi River, and ultimately to the Gulf of Mexico. We will correlate the rate of nitrogen removal by mussels to the concentrations of organic carbon that may have been deposited during the flood. Initial studies suggest that the highest amount of total organic carbon exists in areas of fine sediments within the mussel bed. Additionally, bacterial nitrate reduction studies indicate that significantly higher rates of denitrification occur in areas of high organic content. Increased availability of organic carbon may affect the rate that mussels process nitrogen. In field studies, mussel densities are generally greater in areas of coarser sediments (thus, less carbon and less bacterial nutrient processing). We are currently working to determine the role of organic carbon availability on denitrification in a laboratory system containing mussels and bacteria. We also hope to couple sediment grain size with organic carbon to compare organic carbon content pre- and post-flood.
Stream bank and sediment movement associated with 2008 flooding, South Fork Iowa River
USDA-ARS?s Scientific Manuscript database
Stream bank erosion can cause substantial damage to riparian systems and impact the use of water downstream. Risks of bank erosion increase during extreme flood events, and frequencies of extreme events may be increasing under changing climate. We assessed bank erosion within the South Fork Iowa Riv...
NASA Astrophysics Data System (ADS)
Zonneveld, Karin; Clotten, Caroline; Chen, Liang
2015-04-01
Sediments of a tephra-dated marine sediment core located at the distal part of the Po-river discharge plume (southern Italy) have been studied with a three annual resolution. Based on the variability in the dinoflagellate cyst content detailed reconstructions have been established of variability in precipitation related river discharge rates and local air temperature. Furthermore about the variability in distort water quality has been reconstructed. We show that both precipitation and temperature signals vary in tune with cyclic changes in solar insolation. On top of these cyclic changes, short term extremes in temperature and precipitation can be observed that can be interpreted to reflect periods of local weather extremes. Comparison of our reconstructions with historical information suggest that times of high temperatures and maximal precipitation corresponds to the period of maximal expansion of the Roman Empire. We have strong indications that at this time discharge waters might have contained higher nutrient concentrations compared to previous and later time intervals suggesting anthropogenic influence of the water quality. First pilot-results suggest that the decrease in temperature reconstructed just after the "Roman Optimum" corresponds to an increase in numbers of armored conflicts between the Roman and German cultures. Furthermore we observe a resemblance in timing of short-term intervals with cold weather spells during the early so called "Dark-Age-Period" to correspond to epidemic/pandemic events in Europe.
Extreme Event impacts on Seafloor Ecosystems
NASA Astrophysics Data System (ADS)
Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic
2013-04-01
The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.
Nitrous Oxide Production and Fluxes from Coastal Sediments under Varying Environmental Conditions
NASA Astrophysics Data System (ADS)
Ziebis, W.; Wankel, S. D.; de Beer, D.; Dentinger, J.; Buchwald, C.; Charoenpong, C.
2014-12-01
Although coastal zones represent important contributors to the increasing levels of atmospheric nitrous oxide (N2O), it is still unclear which role benthic processes play and whether marine sediments represent sinks or sources for N2O, since interactions among closely associated microbial groups lead to a high degree of variability. In addition, coastal areas are extremely dynamic regions, often exposed to increased nutrient loading and conditions of depleted oxygen. We investigated benthic N2O fluxes and how environmental conditions affect N2O production in different sediments at 2 different geographical locations (German Wadden Sea, a California coastal lagoon). At each location, a total of 32 sediment cores were taken in areas that differed in sediment type, organic content and pore-water nutrient concentrations, as well as in bioturbation activity. Parallel cores were incubated under in-situ conditions, low oxygen and increased nitrate levels for 10 days. Zones of N2O production and consumption were identified in intact cores by N2O microprofiles at the beginning and end of the experiments. In a collaborative effort to determine the dominant sources of N2O, samples were taken throughout the course of the experiments for the determination of the isotopic composition of N2O (as well as nitrate, nitrite and ammonium). Our results indicate that both, nitrate addition and low oxygen conditions in the overlying water, caused an increase of subsurface N2O production in most sediments, with a high variability between different sediment types. N2O production in the sediments was accompanied by N2O consumption, reducing the fluxes to the water column. In general, organic rich sediments showed the strongest response to environmental changes with increased production and efflux of N2O into the overlying water. Bioturbation activity added to the complexity of N2O dynamics by an increase in nitrification-denitrification processes, as well as enhanced pore-water transport. The results will be used in a metabolic modeling approach that will allow numerical simulation and prediction of sedimentary N2O dynamics.
The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the city of Toledo. The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission. In 2009-2010 a sediment remediation pro...
Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert.
Rasuk, Maria Cecilia; Fernández, Ana Beatriz; Kurth, Daniel; Contreras, Manuel; Novoa, Fernando; Poiré, Daniel; Farías, María Eugenia
2016-01-01
The Atacama Desert has extreme environmental conditions that allow the development of unique microbial communities. The present paper reports the bacterial diversity of microbial mats and sediments and its mineralogical components. Some physicochemical conditions of the water surrounding these ecosystems have also been studied trying to determine their influence on the diversity of these communities. In that way, mats and sediments distributed among different hypersaline lakes located in salt flats of the Atacama Desert were subjected to massive parallel sequencing of the V4 region of the 16S rRNA genes of Bacteria. A higher diversity in sediment than in mat samples have been found. Lakes that harbor microbial mats have higher salinity than lakes where mats are absent. Proteobacteria and/or Bacteroidetes are the major phyla represented in all samples. An interesting item is the finding of a low proportion or absence of Cyanobacteria sequences in the ecosystems studied, suggesting the possibility that other groups may be playing an essential role as primary producers in these extreme environments. Additionally, the large proportion of 16S rRNA gene sequences that could not be classified at the level of phylum indicates potential new phyla present in these ecosystems.
A long record of extreme wave events in coastal Lake Hamana, Japan
NASA Astrophysics Data System (ADS)
Boes, Evelien; Yokoyama, Yusuke; Schmidt, Sabine; Riedesel, Svenja; Fujiwara, Osamu; Nakamura, Atsunori; Garrett, Ed; Heyvaert, Vanessa; Brückner, Helmut; De Batist, Marc
2017-04-01
Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab is subducted underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw ≥ 8). A good understanding of the earthquake- and tsunami-triggering mechanisms is crucial in order to better estimate the complexity of seismic risks. Thanks to its accommodation space, Lake Hamana may represent a good archive for past events, such as tsunamis and tropical storms (typhoons), also referred to as "extreme wave" events. Characteristic event layers, consisting of sediment entrained by these extreme waves and their backwash, are witnesses of past marine incursions. By applying a broad range of surveying methods (reflection-seismic profiling, gravity coring, piston coring), sedimentological analyses (CT-scanning, XRF-scanning, multi-sensor core logging, grain size, microfossils etc.) and dating techniques (210Pb/137Cs, 14C, OSL, tephrochronology), we attempt to trace extreme wave event deposits in a multiproxy approach. Seismic imagery shows a vertical stacking of stronger reflectors, interpreted to be coarser-grained sheets deposited by highly energetic waves. Systematic sampling of lake bottom sediments along a transect from ocean-proximal to ocean-distal sites enables us to evaluate vertical and lateral changes in stratigraphy. Ocean-proximal, we observe a sequence of eight sandy units separated by silty background sediments, up to a depth of 8 m into the lake bottom. These sand layers quickly thin out and become finer-grained land-inward. Seismic-to-core correlations show a good fit between the occurrence of strong reflectors and sandy deposits, hence confirming presumptions based on acoustic imagery alone. Sand-rich intervals typically display a higher magnetic susceptibility, density and stronger X-ray attenuation. However, based on textural and structural differences, we can make the distinction between different types of sand units: i) massive to layered sands with a sharp, erosive lower contact, ii) thin, discontinuous sand lenses with a sharp lower contact and iii) inter-fingered sand-rich and silt-rich intervals with a gradual lower contact. Variability in appearance suggests a variety in triggering events too, going from tsunamis, over storm surges (typhoons) to the impact of sea-level changes on the interaction between tidal delta and lacustrine sedimentation. Preliminary dating (210Pb/137Cs) results in sedimentation rates of 0.4 cm/yr for the last 100-150 yr. Two closely-spaced tephra layers are tentatively linked with the reported Osawa Fuji scoria (3090 BP) and Kawago-daira pumice (3150 BP). However, more absolute ages (14C and OSL) are essential in order to obtain an accurate age-depth model and to position events in time. We are proceeding with the age determination of event sand beds based on single-grain OSL dating of feldspars. Whereas quartz appeared to be not suitable for dating, research in onshore archives close to Lake Hamana already proved the suitability of the IRSL50 signal of feldspar.
Sanders, James P; Andrade, Natasha A; Menzie, Charles A; Amos, C Bennett; Gilmour, Cynthia C; Henry, Elizabeth A; Brown, Steven S; Ghosh, Upal
2018-06-05
In situ amendment of sediments with highly sorbent materials like activated carbon (AC) is an increasingly viable strategy to reduce the bioavailability of persistent, sediment-associated contaminants to benthic communities. Because in situ sediment remediation is an emerging strategy, much remains to be learned about the field conditions under which amendments can be effective, the resilience of amendment materials toward extreme weather conditions, and the optimal design of engineered applications. Here we report the results of a multi-year, pilot-scale field investigation designed to measure the persistence and efficacy of AC amendments to reduce the bioavailability of polychlorinated biphenyls (PCBs) in an intertidal Phragmites marsh. The amendments tested were granular AC (GAC), GAC with a layer of sand, and a pelletized fine AC. Key metrics presented include vertically-resolved black carbon concentrations in sediment and PCB concentrations in sediment, porewater, and several invertebrate species. The results demonstrate that all three amendments withstood Hurricane Sandy and remained in place for the duration of the study, successfully reducing porewater PCB concentrations by 34-97%. Reductions in invertebrate bioaccumulation were observed in all amendment scenarios, with pelletized fine AC producing the most pronounced effect. Our findings support the use of engineered AC amendments in intertidal marshes, and can be used to inform amendment design, delivery, and monitoring at other contaminated sediment sites. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zabaleta, Ane; Meaurio, Maite; Ruiz, Estilita; Antigüedad, Iñaki
2014-01-01
Climate change is likely to have an impact on runoff and fluvial sediments in watersheds. These factors are among those used to characterize water bodies in relation to the European Water Framework Directive (WFD). Hence, it is important to investigate the extent to which climate change may hinder the achievement of the objectives of the WFD. We explored the potential impact of climate change on runoff and sediment yield for the Aixola watershed using the Soil and Water Assessment Tool (SWAT). The model calibration (2007-2010) and validation (2005-2006) results were rated as satisfactory. Subsequently, simulations were run for four climate change model-scenario combinations based on two general circulation models (CGCM2 and ECHAM4) under two emissions scenarios (A2 and B2) from 2011 to 2100. All combinations predicted that runoff and sediment yield would decrease compared with baseline (1961-1990). Three combinations suggested that runoff and sediments would decrease by 0.13 to 0.45 m s and 0.11 to 0.43 t every year from 2011 to 2100. However, the CGCM2-B2 scenario resulted in an "extremely likely" increase in runoff and sediments of 0.94 m s and 0.57 t every year. These variations in annual sediment yield are closely related to changes in precipitation. The high degree of uncertainty in the results must be considered when assessing potential impacts and making decisions about adaptation measures. Nevertheless, this first attempt to estimate future sediment yields in our region could be a useful starting point to explore future hydrological impacts in the area. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes
Yanagawa, Katsunori; Morono, Yuki; de Beer, Dirk; Haeckel, Matthias; Sunamura, Michinari; Futagami, Taiki; Hoshino, Tatsuhiko; Terada, Takeshi; Nakamura, Ko-ichi; Urabe, Tetsuro; Rehder, Gregor; Boetius, Antje; Inagaki, Fumio
2013-01-01
Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community. PMID:23096400
NASA Astrophysics Data System (ADS)
Pan, H. J.; Chen, M. T.
2014-12-01
Heavy summer monsoon rainfall along with typhoon-induced extreme precipitation cause frequent geological hazards that often threaten the human's safety and property in Taiwan. These geological hazards can be triggered by both natural factors, and/or have become deteriorated by perturbations from more and more human activities ever since few thousand years ago. However, due to the limit of instrumental records for observing long-term environmental changes in Taiwan, few evidence exist for distinguishing the human-induced impacts from natural climate change. Here we report a study on a high quality marine sediment core (MD103264) which were retrieved from the high sedimentation rate area from offshore southwestern Taiwan and present evidence for the long-term climate and possibly human-induced environmental changes since the last glacial. We are using the VIS-NIR Diffuse Reflectance Spectrophotometry (DRS) methods to study the cores. Interpreting the VIS-NIR reflectance spectra through the VARIMAX-rotation, principle component analysis (VPCA) helps conducting rapid and inexpensive measurements for acquiring high-resolution biogenic component, clay, and iron oxide mineral compositional data from the cores. We are also using X-Ray Fluorescence (XRF) analysis, which is also useful in determining the element compositional changes in the core. Our studies aim toward understanding the sediment and element compositional changes that reflect the patterns of changes in precipitation and soil erosion on land since the last glacial to the Holocene, during which the human activities (deforestation, agriculture, and land uses change) may have increased drastically. We will report and interpret the preliminary results of the optical analyses of the core.
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-12-01
Heat flow is an important constraint to study the thermal structure and evolution in modeling experiments. Based on the surface heat flow map and recent geochemistry results, a 2D transient heat conduction-advection model is used to investigate how the effects of sedimentation rate, magmatic intrusion, extension duration and rate on the surface heat flow distribution of the Okinawa Trough. Surface heat flow distribution map is interpolated based on a data set with 664 measurements in the Ryukyu trench-arc-basin system. The map shows an obviously correspondence between heat flows and tectonic zones, characterized by belts in E-W and blocks in S-N. The heat flow is extremely high and variable in the central Okinawa Trough (COT). The lowest heat values are distributed in the northwest of West Philippine Sea near the Ryukyu Trench. This phenomenon is likely related to increasing hydrothermal circulation of cold water into the upper portion of the incoming plate because of bend-faulting and little sediment coverage. Simulation results show that (1) High sedimentation rate can reduce heat flow by 30-35 % in the southern OT. (2) The sedimentation-corrected heat flow indicates that mantle upwelling occurred in the whole OT. The isotherm of 1000°C reaches to the depth of 19 km in the axil of the COT after 10 Ma. (3) The heat flow can be improved drastically by dyke intrusion along normal faults, but subsequent decreases rapidly about 15% after 0.1 Ma, which indicates the age of dyke intrusion under the Iheya area is younger than 0.5 Ma, and the depth is shallower than 2 km. Moreover, the magma fluid upward migrated along the magma conduits is required for the extremely high heat flow and its Darcy velocity can reach to 9 cm/yr. Based on the distribution of heat flow, we suggest that there is a different evolution model between the central- northern OT and the southern. The time of rifting in the NOT-COT began at 10 Ma with the mean rate of 0.4 cm/yr, while the rifting of the SOT started from 6 Ma with higher rate of 0.6 cm/yr.
Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman
2018-02-23
The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.
NASA Astrophysics Data System (ADS)
Zehnich, Marc; Palme, Tina; Spielhagen, Robert F.; Hass, H. Christian; Bauch, Henning A.
2017-04-01
While the Holocene history of the eastern Fram Strait seems well investigated, no high-resolution paleoenvironmental records were available from the western Fram Strait so far. A new sedimentary record, obtained during expedition PS93.1 (2015) of RV Polarstern on the outermost NE Greenland shelf, allows for the first time to reconstruct Holocene changes in near-surface salinities, temperature, stratification and water masses (polar waters vs. Atlantic Water), potentially related to variations of the freshwater and sea ice export from the Arctic Ocean. The 260 cm long sedimentary record from site PS93/025 (80.5°N, 8.5°W) was investigated for sediment composition, foraminifer contents, grain size variations (sortable silt) and the isotopic composition of planktic foraminifers. Radiocarbon datings reveal an age of 10.2 cal-ka for the core base and continuous sedimentation throughout most of the Holocene. The sediments are generally very fine-grained (<2% sand). The grain size record reveals a fining-upwards trend and sediments from <6.5 cal-ka consist of <0.5% coarse fraction. A comparison of foraminifer and coarse fraction abundances shows strong similarities. Apparently the contribution of coarse terrestrial material from iceberg transport was extremely low throughout the last 10.2 cal-ka. Foraminifer abundances (both planktic and benthic) are high in Early Holocene sediments until ca. 7 cal-ka and decrease rapidly thereafter. This is interpreted to reflect a relatively strong advection of Atlantic Water to the NW Fram Strait, which correlates well with similar findings on the eastern side of the Arctic Gateway. Sortable silt grain sizes are high (27-32 µm) in the older part of the record and gradually decrease between 7 cal-ka and 4 cal-ka. After ca. 4 cal-ka, sortable silt shows values of 20-22 µm and little variation. Considering also the grain-size distribution curves, we propose a decline of bottom current velocities on the outer NE Greenland shelf after 7 cal-ka, related to a decrease of Atlantic Water advection. These preliminary results reveal a strong coupling of Holocene environments on both sides of the Fram Strait.
Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent
2012-07-01
Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A
2017-08-31
Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.
Tracing crop-specific sediment sources in agricultural catchments
NASA Astrophysics Data System (ADS)
Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.
2012-02-01
A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research into CSSI signature development (plant and soil processes) and the influence of cultivation regimes are required to support future development of this new tool.
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Meyer, G. A.
2017-12-01
A major influence of wildfire on long-term erosion in the western USA is strongly suggested by extreme postfire debris flows and floods, where fire severity has increased in recent decades due to climate change and land use. Roughly 30% of the ponderosa-mixed conifer forests of the Jemez Mountains has burned in the last 20 yr, much at high severity, whereas tree-ring data indicate mostly lower-severity burns from 1600-1900 CE, before fire suppression and grazing. Fire-related alluvial deposits proximal to hillslopes reflect mostly small to moderate erosional events over the last 4000 yr, compared to thick, bouldery debris-flow deposits from recent severe fires; some modern postfire debris flows appear truly extreme in comparison to Holocene deposits. Recognizable fire-related deposits make up 77% of fans from moist north aspects, as relatively dense vegetation and thick soil yield minor surface runoff unless severely burned. Only 39% of fan sediments from drier south aspects are fire-related, however, as sparser vegetation and exposed bedrock can produce runoff and sediment when unburned. Peaks in fire-related sedimentation at 1800, 650, 410, and 300 cal yr BP coincide with severe droughts, often preceded by wetter decades that could suppress fire activity and promote denser stands. Although the Medieval Climatic Anomaly (MCA, 1050-700 cal yr BP) was marked by generally warmer temperatures and multidecadal episodes of widespread, severe drought in the western USA, fire-related sedimentation was relatively minor in the Jemez Mountains. In contrast, dense subalpine forests of Yellowstone and central Idaho burned less frequently and more severely in the late Holocene, and produced major debris flows in the MCA. Fire accounts for only 30-50% of Holocene fan deposition in these areas, as steep unburned basins also produce large debris flows in extreme storms. The relative importance of fire in erosion depends on topography, bedrock, soil cover, and forest composition and density; potent climatic influence on the latter makes it difficult to generalize about how strongly fire drives long-term erosion rates, as even local aspect is important. Also, our data represent interglacial environments that are uncommon over the Quaternary, such that extrapolation of fire's importance beyond the last 104 yr is unwarranted.
Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun
2012-12-01
The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.
Suspended sediment is a major non-point source pollutant of surface waters. Best management practices (BMPs) and current landuse decisions may not be sufficient to protect water quality in a changing climate, as a result of a loss of efficiency at reducing suspended sedimen...
Rice piles and sticky deltas: Sediment transport fluctuations in threshold-dominated systems
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.
2008-12-01
Sediment transport is an intermittent process. Even under perfectly steady boundary conditions, sediment flux in systems as diverse as rivers and rice piles undergoes wild fluctuations as a result of the inherent nonlinear dynamics of transport. This variability confounds geologic interpretation and prediction: "mean" transport rates may be dominated by rare but extreme events such that short-term measurements are not directly comparable to longer-time integrated measurements; autogenic (internally-generated) erosion and depositon events may be mistaken for changes in climate and tectonics where their temporal and spatial scales overlap; and sediment transport may act as a nonlinear filter that obliterates signals of environmental forcing. Sediment transport fluctuations generally result from slow storage and rapid release of sediment within the transport system itself. We hypothesize that the presence of a strong process threshold, and a high degree of internal friction (or "stickiness"), are sufficient conditions to generate intermittent sediment transport behavior. We present experimental data showing similarities in transport fluctuations from three very different systems: gravel bed load transport in a large flume, avalanching in a table-top pile of rice, and shoreline migration in an experimental river delta. Numerical models of a rice pile and an avulsing river delta reproduce these fluctuations, and are used to explore both their origin and also their influence on environmental perturbations. We impose an environmental perturbation on our model systems in the form of cyclically-varying sediment supply. Physical and numerical experiments demonstrate that when the timescale of environmental forcing overlaps with the timescales of autogenic sediment transport fluctuations, the input signal is obliterated and cannot be detected in sediment output from the system. We also demonstrate how variability in transport introduces a dependence of mean transport rate on the time interval over which it is measured, which finds support in compilations of sedimentation rate from the field. Results suggest that the nonlinear dynamics of sediment transport sets a hard lower limit on our ability to resolve environmental forcing in sedimentary systems. The ubiquity of autogenic sediment storage and release in river systems suggests a new interpretation for common stacking patterns of stratigraphic sequences.
Rheometry of natural sediment slurries
Major, Jon J.; ,
1993-01-01
Recent experimental analyses of natural sediment slurries yield diverse results yet exhibit broad commonality of rheological responses under a range of conditions and shear rates. Results show that the relation between shear stress and shear rate is primarily nonlinear, that the relation can display marked hysteresis, that minimum shear stress can occur following yield, that physical properties of slurries are extremely sensitive to sediment concentration, and the concept of slurry yield strength is still debated. New rheometric analyses have probed viscoelastic behavior of sediment slurries. Results show that slurries composed of particles ??? 125 ?? m exhibit viscoelastic responses, and that shear stresses are relaxed over a range of time scales rather than by a single response time.
NASA Astrophysics Data System (ADS)
Gibson, D. K.; Bird, B. W.; Wattrus, N. J.; Escobar, J.; Fonseca, H.; Velasco, F.; Polissar, P. J.
2017-12-01
Geophysical analysis of lacustrine seismic stratigraphy at Laguna de Tota (hereafter "Tota"), Boyaca, Colombia, provides a record of lake level fluctuations that ranges from the Late Quaternary to the present. Changes in Tota's volume indicated by off-lap and on-lap sequences show that regional hydroclimate varied considerably during at least the last 40 Ka. Modern lake level variability at Tota has been directly linked to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), suggesting that past lake level changes identified in CHIRP seismic data may provide insight into past Pacific atmosphere-ocean dynamics. Here, we use high-resolution CHIRP data spanning the top 15 meters of sediment column and a preliminary age model based on Holocene sedimentation rates to investigate lake level variability over the past 40 Ka. Our data demonstrates that lake levels at Tota were generally lower between 40 and 30 Ka, experienced rapid and extreme fluctuations between 30 and 20 Ka (including the lowest recorded lake level at Tota during the LGM at 22 Ka), and gradually rose to the present day high stand between 20 and 0 Ka. Although the CHIRP data indicate significant late Quaternary lake level fluctuations, the timing and duration of these events needs to be more firmly constrained with additional investigations combining sediment core collection and analysis, geochronology, and other lake level proxies. Future work combining these methods holds tremendous potential in terms of reconstructing Late Quaternary atmosphere-ocean cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espínola, Fernando; Dionisi, Hebe M.; Borglin, Sharon
In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers ofmore » both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.« less
Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena
2017-05-01
Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.
NASA Astrophysics Data System (ADS)
Bono, Richard K.; Clarke, Julia; Tarduno, John A.; Brinkman, Donald
2016-12-01
Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary.
NASA Astrophysics Data System (ADS)
Sedov, S. N.; Aleksandrovskii, A. L.; Benz, M.; Balabina, V. I.; Mishina, T. N.; Shishkov, V. A.; Şahin, F.; Özkaya, V.
2017-04-01
Soils and sediments composing Tell Körtik Tepe (Epipaleolithic, Turkey) and Tell Yunatsite (Chalcolithic (Eneolithic), Bulgaria) have been studied with the aim to gain a better insight into their microfabrics, determine the composition of anthropogenic artifacts, and, on this basis, to analyze similarities and distinctions between these objects and the modern soils of urban areas. The methods of micromorphology, scanning electron microscopy with an energy dispersive X-ray microanalyzer, X-ray fluorometry, and other techniques to determine the chemical and physical properties of the soils and sediments have been applied. Two paleosols have been identified in Tell Yunatsite with a total thickness of 9 m: the paleosol buried under the tell and the paleosol in its middle part. Sediments of Tell Körtik Tepe have a total thickness of up to 5 m; their accumulation began at the end of Pleistocene over the surface of buried paleosol. The cultural layer of the tells consists of construction debris mainly represented by a mixture of clay and sand and of domestic wastes with the high content of phosphorus. The major source of phosphorus is calcium phosphate (apatite) of bone tissues. The abundance of various anthropogenic materials in the sediments is clearly seen in thin sections. Even in the paleosols developed within the cultural layer (the mid-profile paleosol in Tell Yunatsite), the amount of microinclusions of bone fragments, charcoal, and burnt clay (ceramics) is very high. Micromorphological data indicate that up to 50% of the layered material filling an Epipaleolithic construction in Tell Körtik Tepe consists of the anthropogenic inclusions: bone fragments, charcoal, etc. The features of pedogenic transformation are present in the sediments. Such sediments can be classified as synlithogenic soils similar to the modern Urbic Technosols. It is shown that the formation of paleosols and sediments of Tell Körtik Tepe took place under extreme environmental conditions—arid climate of the latest Pleistocene climate cooling phase (the Younger Dryas, Tell Körtik Tepe)—and intensive anthropogenic loads (tells Körtik Tepe and Yunatsite).
NASA Astrophysics Data System (ADS)
Allemand, P.; Lajeunesse, E.; Devauchelle, O.; Delacourt, C.
2012-04-01
he volume of sediment exported from a tropical watershed is dramatically increased during extreme climatic events, such as storms and tropical cyclones (Dadson et al. 2004; Hilton et al. 2008). Indeed, the exceptionally high rainfall rates reached during these events generate runoff and trigger landslides which accumulate a significant amount of sediments in flooded rivers (Gabet et al., 2004; Lin et al., 2008). We estimate the volume of sediments mobilized by the storm Helena (26 to 28 October 1963) on Basse-Terre Island in the archipelago of Guadeloupe. This is achieved using images acquired by IGN (Institut Géographique National) a few weeks after the storm which produced numerous landslides. All the available images from this campaign have been pseudo-orthorectified and included in a GIS with a Digital Elevation Model with a resolution of 10 m. Two hundred fifty three landslides have been identified and mapped. Most of them are located in the center of the island, where the highest slopes are. The cumulated surface of the landslides is 0.5 km2. Field observations on Basse-Terre show that landslides mobilized the whole regolith layer, which is about 1m thick. Assuming an average landslide thickness of 1m, we find that the total volume of sediment mobilized by the storm Helena is 0.5 km3. The associated denudation averaged over all watersheds affected by landslides is 1.4 mm with a maximum of 5 mm for the watersheds of Vieux-Habitants and Capesterre. The impact of the storm Helena is then discussed with respect to 1) the erosion induced on the Capesterre catchment by the highest flood available in a two years survey record (less than 0.1 mm/y); 2) the long term denudation rate of the major watersheds of Basse-Terre estimated by reconstructing the initial volcanic topography (between 0.1 and 0.4 mm/y).
NASA Astrophysics Data System (ADS)
Dale, A. W.; Sommer, S.; Lomnitz, U.; Bourbonnais, A.; Wallmann, K.
2016-06-01
Benthic N cycling in the Peruvian oxygen minimum zone (OMZ) was investigated at ten stations along 12 °S from the middle shelf (74 m) to the upper slope (1024 m) using in situ flux measurements, sediment biogeochemistry and modeling. Middle shelf sediments were covered by mats of the filamentous bacteria Thioploca spp. and contained a large 'hidden' pool of nitrate that was not detectable in the porewater. This was attributed to a biological nitrate reservoir stored within the bacteria to oxidize sulfide during 'dissimilatory nitrate reduction to ammonium' (DNRA). The extremely high rates of DNRA on the shelf (15.6 mmol m-2 d-1 of N), determined using an empirical steady-state model, could easily supply all the ammonium requirements for anammox in the water column. The model further showed that denitrification by foraminifera may account for 90% of N2 production at the lower edge of the OMZ. At the time of sampling, dissolved oxygen was below detection limit down to 400 m and the water body overlying the shelf had stagnated, resulting in complete depletion of nitrate and nitrite. A decrease in the biological nitrate pool was observed on the shelf during fieldwork concomitant with a rise in porewater sulfide levels in surface sediments to 2 mM. Using a non-steady state model to simulate this natural anoxia experiment, these observations were shown to be consistent with Thioploca surviving on a dwindling intracellular nitrate reservoir to survive the stagnation period. The model shows that sediments hosting Thioploca are able to maintain high ammonium fluxes for many weeks following stagnation, potentially sustaining pelagic N loss by anammox. In contrast, sulfide emissions remain low, reducing the economic risk to the Peruvian fishery by toxic sulfide plume development.
Chen, Chih-Feng; Ju, Yun-Ru; Chen, Chiu-Wen; Dong, Cheng-Di
2016-12-01
Six sediment cores collected at the Kaohsiung Harbor of Taiwan were analyzed to evaluate their vertical profiles, enrichments, accumulations, and source apportionments of heavy metals. This was performed to investigate any potential ecological risks posed by heavy metals. Results indicated that the mean heavy metal content (mg kg -1 ) in the six sediment cores was as follows: Hg (0.4-6.4), Cd (<0.05-2.4), Cr (18-820), Cu (16-760), Pb (31-140), and Zn (76-1900). The patterns of heavy metal content in the sediment cores differed substantially among the four river mouths. However, the vertical profiles of metals were relatively stable, indicating that wastewater has the constant characteristics and has been discharged into the rivers for a long period of time. Results of pollution assessment of enrichment factor, geo-accumulation index, and pollution load index revealed that river mouths experience severe enrichment, strong accumulation, and high contamination from the primary heavy metals. It was not consistent in the assessment results of mean effect range median quotient, potential ecological risk index, and total toxic unit method. Potential ecological risks caused by Hg in the sediments at Canon River and Love River mouths on aquatic organisms were extremely high. The estimates derived from the receptor modeling of multiple linear regression of the absolute principal component scores indicated that the contributions of the composite heavy metals derived from the Canon River and the Love River on the potential toxicity and risks to the water environment of Kaohsiung Harbor were highest, followed by those derived from Salt River and Jen-Gen River. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments
Sass, Andrea M; McKew, Boyd A; Sass, Henrik; Fichtel, Jörg; Timmis, Kenneth N; McGenity, Terry J
2008-01-01
Background The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored. Results Eighty nine isolates were obtained from the sediments of four deep-sea, hypersaline anoxic brine lakes in the Eastern Mediterranean Sea: l'Atalante, Bannock, Discovery and Urania basins. This culture collection was dominated by representatives of the genus Bacillus and close relatives (90% of all isolates) that were investigated further. Physiological characterization of representative strains revealed large versatility with respect to enzyme activities or substrate utilization. Two third of the isolates did not grow at in-situ salinities and were presumably present as endospores. This is supported by high numbers of endospores in Bannock, Discovery and Urania basins ranging from 3.8 × 105 to 1.2 × 106 g-1 dw sediment. However, the remaining isolates were highly halotolerant growing at salinities of up to 30% NaCl. Some of the novel isolates affiliating with the genus Pontibacillus grew well under anoxic conditions in sulfidic medium by fermentation or anaerobic respiration using dimethylsulfoxide or trimethylamine N-oxide as electron acceptor. Conclusion Some of the halophilic, facultatively anaerobic relatives of Bacillus appear well adapted to life in this hostile environment and suggest the presence of actively growing microbial communities in the NaCl-rich, deep-sea brine-lake sediments. PMID:18541011
NASA Astrophysics Data System (ADS)
McKenzie, J. A.; Bovier, C.; Bahniuk, A.; Andersen, M. B.; Vasconcelos, C.
2016-12-01
In the geologic record, prolonged intervals of intense δ13C enrichment (>10‰) in carbonate deposits occurred, in particular during the mid-Palaeoproterozoic (2.3-1.9 Ga) and mid-Neoproterozoic (0.8-0.6 Ga) [1]. These anomalously high δ13C values have been interpreted as a global effect due to enhanced burial of organic matter with depleted δ13C values [2]. An alternate interpretation has been proposed whereby the metabolic activity of specific microbial communities, such as methanogens, may have been the source of the strong carbon isotope fractionation [3]. Although such restricted shallow-water environments where methanogens dominate are not widespread today, a unique hypersaline coastal lagoon system, Lagoa Salgada, Brazil provides ideal conditions to study the modern microbial community and its impact on observed extreme δ13C enrichment (up to 20‰) recorded in both in situ stromatolites and carbonate sediments. Here we present our findings and correlations of geochemical data with changing environmental conditions during the last 2600 cal yr BP. This lagoonal system contains highly evaporated water with highest salinities occurring during the dry season. The positive δ13C anomaly shows high and stable values (>14‰) from about 2100 to 1400 cal yr BP. Similar high δ13C values were recorded for the same time period in stromatolite structures growing around the margin of Lagoa Salgada. We propose that the high salinities inhibit photosynthesis, respiration and nitrogen fixation by osmotic stress and, thus, result in increased methanogenesis. We conclude that the combination of methanogenic metabolisms and extreme evaporative conditions is the key factor promoting the production of very high δ13C values observed throughout the lagoonal system, as recorded in both marginal stromatolites and carbonate sediments deposited in the more distal regions of the lagoon. Such unusual environments may have been more widely distributed during the Proterozoic accounting for the intense δ13C enrichment (>10‰) observed in the sedimentary record. [1] Shields G and Veizer J (2002) Geochem. Geophys. Geosyst. 3(6): 10.1029 [2] Schidlowski M (1993) In: Organic Geochemistry: Plenum Press, 639-655 [3] Hayes JM and Waldbauer J Jr (2006) Philosophical Trans. Royal Soc. B Biological Sciences 361: 931-950
Advective and Conductive Heat Flow Budget Across the Wagner Basin, Northern Gulf of California
NASA Astrophysics Data System (ADS)
Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Müller, C.; Hutnak, M.; Gonzalez-Fernandez, A.; Harris, R. N.; Sclater, J. G.
2015-12-01
In May 2015, we conducted a cruise across the northern Gulf of California, an area of continental rift basin formation and rapid deposition of sediments. The cruise was undertaken aboard the R/V Alpha Helix; our goal was to study variation in superficial conductive heat flow, lateral changes in the shallow thermal conductivity structure, and advective transport of heat across the Wagner basin. We used a Fielax heat flow probe with 22 thermistors that can penetrate up to 6 m into the sediment cover. The resulting data set includes 53 new heat flow measurements collected along three profiles. The longest profile (42 km) contains 30 measurements spaced 1-2 km apart. The western part of the Wagner basin (hanging wall block) exhibit low to normal conductive heat flow whereas the eastern part of the basin (foot wall block) heat flow is high to very high (up to 2500 mWm-2). Two other short profiles (12 km long each) focused on resolving an extremely high heat flow anomaly up to 15 Wm-2 located near the intersection between the Wagner bounding fault system and the Cerro Prieto fault. We hypothesize that the contrasting heat flow values observed across the Wagner basin are due to horizontal water circulation through sand layers and fault pathways of high permeability. Circulation appears to be from west (recharge zone) to east (discharge zone). Additionally, our results reveal strong vertical advection of heat due to dehydration reactions and compaction of fine grained sediments.
Organic preservation of fossil musculature with ultracellular detail
McNamara, Maria; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique
2010-01-01
The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota. PMID:19828545
NASA Astrophysics Data System (ADS)
Aljahdali, M. H.; Behzad, A.; Missimer, T. M.; Wise, S. W.; Scientists, E.
2013-12-01
Adjacent to Montserrat Island in the Lesser Antilles of the Caribbean Sea, Integrated Ocean Drilling Program (IODP) Site 1396 recovered lower Pliocene to Pleistocene calcareous nannofossil assemblages (CN11 to CN15) that range between common to abundant and display a variety of preservations. High-resolution Scanning Electron Microscopy (SEM) observation of calcareous nannofossil assemblages in selected samples from Hole 1396A, shows severe diagenesis (overgrowth and/or dissolution) even near the top of the sequence. The nannofossil assemblages in this relatively shallow basin (e.g., 800 m) reveal abnormal diagenesis for such young specimens that are quite similar to the heavy overgrowths and dissolution generally seen only in older deposits (e.g., Cretaceous). Our hypothesis is that volcanic activity in the region probably induced this extreme diagenesis. A more detailed examination of these samples should provide a better understanding of the progression of carbonate diagenesis in this basin. The nannofossil biostratigraphy and magnetostratigraphy at Site 1396 also suggest lower sedimentation rates in the Pleistocene than in the Pliocene. A comparison site (ODP Leg 165 Site 1000) in the Caribbean Sea also shows a similar sedimentation-rate pattern. This we interpret as a regional event caused by the closure of the Central American Seaway.
Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment.
Lomstein, Bente Aa; Langerhuus, Alice T; D'Hondt, Steven; Jørgensen, Bo B; Spivack, Arthur J
2012-03-18
Two decades of scientific ocean drilling have demonstrated widespread microbial life in deep sub-seafloor sediment, and surprisingly high microbial-cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in this vast buried ecosystem are not yet understood. It is not known whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a dormant, spore-like state. Here we apply a new approach--the D:L-amino-acid model--to quantify the distributions and turnover times of living microbial biomass, endospores and microbial necromass, as well as to determine their role in the sub-seafloor carbon budget. The approach combines sensitive analyses of unique bacterial markers (muramic acid and D-amino acids) and the bacterial endospore marker, dipicolinic acid, with racemization dynamics of stereo-isomeric amino acids. Endospores are as abundant as vegetative cells and microbial activity is extremely low, leading to microbial biomass turnover times of hundreds to thousands of years. We infer from model calculations that biomass production is sustained by organic carbon deposited from the surface photosynthetic world millions of years ago and that microbial necromass is recycled over timescales of hundreds of thousands of years.
Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity.
Valletta, Rachel D; Willenbring, Jane K; Lewis, Adam R; Ashworth, Allan C; Caffee, Marc
2015-12-09
The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 ((10)Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14-17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes.
Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity
Valletta, Rachel D.; Willenbring, Jane K.; Lewis, Adam R.; Ashworth, Allan C.; Caffee, Marc
2015-01-01
The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 (10Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14–17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO2 (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO2 manifests at high latitudes. PMID:26647733
Estimating growth rates of uncultivated clades of archaea and bacteria in marine sediments
NASA Astrophysics Data System (ADS)
Lloyd, K. G.
2016-12-01
The vast majority of microbes present in marine sediments have never been cultivated in laboratory conditions. It is therefore difficult to estimate the growth rates of these organisms in situ. Quantitative PCR (qPCR) and 16S rRNA gene libraries from sediments below 10 cm show very little change in abundance of these organisms with depth or with redox conditions. Therefore, we hypothesized that uncultivated clades of bacteria and archaea that are ubiquitous in marine sediments, actually grow in the upper 10 cm of marine sediments. We collected sediment cores from the White Oak River estuary, sectioned them in 1 cm intervals, and examined the changes in abundance of uncultivated microbes with depth using 16S rRNA gene libraries and qPCR. We found that some of the key clades associated with the deep subsurface microbiome, such as Bathyarchaeota and MBG-D, increase in abundance with depth, demonstrating extremely slow growth in these shallow subsurface sediments.
On the geotechnical characterisation of the polluted submarine sediments from Taranto.
Vitone, Claudia; Federico, Antonio; Puzrin, Alexander M; Ploetze, Michael; Carrassi, Elettra; Todaro, Francesco
2016-07-01
This paper reports the results of the first geomechanical laboratory experiments carried out on the polluted submarine clayey sediments of the Mar Piccolo in Taranto (South of Italy). The study had to face with extreme difficulties for the very soft consistency of the sediments and the contaminants. The mineralogy, composition and physical properties of the sediments were analysed, along with their compression and shearing behaviour. The investigation involved sediments up to about 20 m below the seafloor, along three vertical profiles in the most polluted area of the Mar Piccolo, facing the Italian Navy Arsenal. The experimental results were used to derive a preliminary geotechnical model of the site, necessary for the selection and design of the most sustainable in situ mitigation solutions. Moreover, the experimental data reveal that the clayey sediments of the most polluted top layer do not follow the classical geotechnical correlations for normally consolidated deposits. This seems to open interesting perspectives about the effects of pollutants on the geotechnical behaviour of the investigated sediments.
NASA Technical Reports Server (NTRS)
Pirie, D. M.; Steller, D. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.
Sediment dynamics in restored riparian forest with different widths and agricultural surroundings
NASA Astrophysics Data System (ADS)
Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel
2016-04-01
The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an ideal width of riparian vegetation to ensure the retention of sediments and quality of water bodies.
Sattar, Ahmed M.A.; Raslan, Yasser M.
2013-01-01
While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude. PMID:25685476
Sattar, Ahmed M A; Raslan, Yasser M
2014-01-01
While construction of the Aswan High Dam (AHD) has stopped concurrent flooding events, River Nile is still subject to low intensity flood waves resulting from controlled release of water from the dam reservoir. Analysis of flow released from New Naga-Hammadi Barrage, which is located at 3460 km downstream AHD indicated an increase in magnitude of flood released from the barrage in the past 10 years. A 2D numerical mobile bed model is utilized to investigate the possible morphological changes in the downstream of Naga-Hammadi Barrage from possible higher flood releases. Monte Carlo simulation analyses (MCS) is applied to the deterministic results of the 2D model to account for and assess the uncertainty of sediment parameters and formulations in addition to sacristy of field measurements. Results showed that the predicted volume of erosion yielded the highest uncertainty and variation from deterministic run, while navigation velocity yielded the least uncertainty. Furthermore, the error budget method is used to rank various sediment parameters for their contribution in the total prediction uncertainty. It is found that the suspended sediment contributed to output uncertainty more than other sediment parameters followed by bed load with 10% less order of magnitude.
NASA Astrophysics Data System (ADS)
Flint, L. E.; Curtis, J. A.; Flint, A. L.
2006-12-01
The Laguna de Santa Rosa (Laguna), the largest tributary to the Russian River located in Sonoma County, California, occupies a relatively flat low-lying area west of the Santa Rosa Plain. From December 12, 2005 to January 6, 2006 the Laguna experienced heavy flooding, with peak flows on New Year's Day of over 185 m3/s, at a location that experiences median flows of less than 14 m3/s. The objectives of this study were to (1) analyze precipitation intensities and amounts for the region to establish the conditions under which flooding occurred, (2) measure and map inundation areas and floodplain sediment deposition, and (3) compare field data with a GIS sediment deposition potential map. Spatial variations in intensities and total volumes of precipitation correlate well with evidence of local flooding throughout the region, particularly in the mountains to the east and southeast of Santa Rosa. Total precipitation for the month of December was 200 percent of normal, and maximum hourly intensities reached 20 mm/hour during the storm. High water marks and floodplain deposition sites were mapped using kinematic GPS surveying with post-processed differential correction, and sediment deposition was measured. The surveyed data were superimposed on an available two-foot-interval contour map to create an inundation map and a GIS point coverage of sediment deposition. Landscape attributes relevant to floodplain sedimentation were assessed and a sediment deposition potential map was created at the 30-m scale using a matrix of landscape characteristics that included: land use; roughness (influenced by vegetation type and density); channel and hillslope sediment sources (influenced by soils, geology, and cutbank erosion); slope and topography; and geomorphic terrain type. A calculation of sediment deposition potential was developed within a GIS that accounts for all contributing factors and illustrates that floodplain deposition is dominated by localized sedimentation, reflecting the importance of sediment point sources, rather than extensive sedimentation throughout the floodplain. The data collected in this study will be used to constrain model simulations of recurrence-interval floods and provide information on patterns of hydrology and sedimentation for extreme events that will help refine conceptual models of floodplain processes.
Microbial loop contribution to exergy in the sediments of the Marsala lagoon (Italy)
NASA Astrophysics Data System (ADS)
Pusceddu, A.; Danovaro, R.
2003-04-01
Recent advances in ecological modelling have stressed the need for new descriptors of ecosystem health, able to consider the actual transfer of energy through food webs, including also the potential transfer/loss of (genetic) information. In ecological terms, exergy is defined as a goal function which, as sum of energy (biomass) and (genetic) information contained in a given system due to living organisms, acts as a quality indicator of ecosystems. Biopolymeric organic carbon (BPC) quantity and biochemical composition, bacteria, heterotrophic nanoflagellate and meiofauna abundance, biomass and exergy contents were investigated, on a seasonal basis, in the Marsala lagoon (Mediterranean Sea), at two stations characterized by contrasting hydrodynamic conditions. Carbohydrate (2.8 mg g-1), protein (1.6 mg g-1) and lipid (0.86 mg g-1) contents were extremely high, with values at the more exposed station about 3 times lower than those at the sheltered one. BPC (on average 2.5 mg C g-1), dominated by carbohydrates (50%), was mostly refractory and largely unaccounted for by primary organic matter (4% of BPC), indicating that the Marsala lagoon sediments act as a "detritus sink". At both stations, bacterial (on average 0.3 mg C g-1) and heterotrophic nanoflagellate (9.8 μgC g-1) biomass values were rather high, whereas meiofauna biomass was extremely low (on average 7.2 μg C cm-2). The exergy transfer along the benthic microbial loop components in the Marsala lagoon appeared largely bottlenecked by the refractory composition of organic detritus. In the more exposed station, the exergy transfer towards the higher trophic levels was more efficient than in the sheltered one. Although total exergy values were significantly higher in summer than in winter, at both stations the exergy transfer in winter was more efficient than in summer. Our results indicate that, in 'detritus sink' systems, auxiliary energy (e.g., wind-induced sediment resuspension) might be of paramount importance for increasing efficiency of organic detritus channeling to higher trophic levels.
Huffman, Brad A.; Hazell, William F.; Oblinger, Carolyn J.
2017-09-06
Federal, State, and local agencies and organizations have expressed concerns regarding the detrimental effects of excessive sediment transport on aquatic resources and endangered species populations in the upper Little Tennessee River and some of its tributaries. In addition, the storage volume of Lake Emory, which is necessary for flood control and power generation, has been depleted by sediment deposition. To help address these concerns, a 2-year study was conducted in the upper Little Tennessee River Basin to characterize the ambient suspended-sediment concentrations and suspended-sediment loads upstream and downstream from Lake Emory in Franklin, North Carolina. The study was conducted by the U.S. Geological Survey in cooperation with Duke Energy. Suspended-sediment samples were collected periodically, and time series of stage and turbidity data were measured from December 2013 to January 2016 upstream and downstream from Lake Emory. The stage data were used to compute time-series streamflow. Suspended-sediment samples, along with time-series streamflow and turbidity data, were used to develop regression models that were used to estimate time-series suspended-sediment concentrations for the 2014 and 2015 calendar years. These concentrations, along with streamflow data, were used to compute suspended-sediment loads. Selected suspended-sediment samples were collected for analysis of particle-size distribution, with emphasis on high-flow events. Bed-load samples were also collected upstream from Lake Emory.The estimated annual suspended-sediment loads (yields) for the upstream site for the 2014 and 2015 calendar years were 27,000 short tons (92 short tons per square mile) and 63,300 short tons (215 short tons per square mile), respectively. The annual suspended-sediment loads (yields) for the downstream site for 2014 and 2015 were 24,200 short tons (75 short tons per square mile) and 94,300 short tons (292 short tons per square mile), respectively. Overall, the suspended-sediment load at the downstream site was about 28,300 short tons greater than the upstream site over the study period.As expected, high-flow events (the top 5 percent of daily mean flows) accounted for the majority of the sediment load; 80 percent at the upstream site and 90 percent at the downstream site. A similar relation between turbidity (the top 5 percent of daily mean turbidity) and high loads was also noted. In general, when instantaneous streamflows at the upstream site exceeded 5,000 cubic feet per second, increased daily loads were computed at the downstream site. During low to moderate flows, estimated suspended-sediment loads were lower at the downstream site when compared to the upstream site, which suggests that sediment deposition may be occurring in the intervening reach during those conditions. During the high-flow events, the estimated suspended-sediment loads were higher at the downstream site; however, it is impossible to say with certainty whether the increase in loading was due to scouring of lake sediment, contributions from the additional source area, model error, or a combination of one or more of these factors. The computed loads for a one-week period (December 24–31, 2015), during which the two largest high-flow events of the study period occurred, were approximately 52 percent of the 2015 annual sediment load (36 percent of 2-year load) at the upstream site and approximately 72 percent of the 2015 annual sediment load (57 percent of 2-year load) at the downstream site. Six bedload samples were collected during three events; two high-flow events and one base-flow event. The contribution of bedload to the total sediment load was determined to be insignificant for sampled flows. In general, streamflows for long-term streamgages in the study area were below normal for the majority of the study period; however, flows during the last 3 months of the study period were above normal, including the extreme events during the last week of the study period.
Energetic Constraints of Subseafloor Life
NASA Astrophysics Data System (ADS)
D'Hondt, S.; Spivack, A. J.; Wang, G.
2014-12-01
Mean per-cell rates of catabolic activity, energy flux, and biomass turnover are orders of magnitude slower in subseafloor sediment than in the surface world. Despite extreme scarcity of electron donors, competing metabolic pathways co-occur for hundreds of meters deep in subseafloor sediment deposited over millions of years. Our study of an example site (ODP Site 1226) indicates that the energy yields of these competing reactions are pinned to a thermodynamic minimum (Wang et al., 2010). The simplest explanation of this long-term co-existence is thermodynamic cooperation, where microorganisms utilize different but co-existing pathways that remove each other's reaction products. Our Site 1226 results indicate that the energy flux to subseafloor sedimentary microbes is extremely low. Comparison to biomass turnover rates at other sites suggests that most of this flux may be used for building biomolecules from existing components (e.g., amino acids in the surrounding sediment), rather than for de novo biosynthesis from inorganic chemicals. Given these discoveries, ocean drilling provides a tremendous opportunity to address several mysteries of microbial survival and natural selection under extreme energy limitation. Some of these mysteries are centered on microbial communities. To what extent do counted cells in subseafloor sediment constitute a deep microbial necrosphere? How do different kinds of microbes interact to sustain their mean activity at low average rates for millions of years? Other mysteries relate to individual cells. How slowly can a cell metabolize? How long can a cell survive at such low rates of activity? What properties allow microbes to be sustained by low fluxes of energy? In what ways do subseafloor organisms balance the benefit(s) of maximizing energy recovery with the need to minimize biochemical cost(s) of energy recovery? References Wang, G., et al., 2010. Geochimica et Cosmochimica Acta 74, 3938-3947.
NASA Astrophysics Data System (ADS)
Best, J.; Hackney, C. R.; Parsons, D. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.
2014-12-01
Many large rivers are undergoing renewed and increasing anthropogenic-induced change as water diversions, new dams and greater water demands place enhanced stresses on these river basins. Examples of rivers undergoing significant change include the Amazon, Madeira, Nile, Yangtze and Mekong, with considerable ongoing debate raging as to the long-term geomorphic and ecological effects of major anthropogenic interventions. Assessing the effects of such change in large rivers is demanding, one reason being that sediment transport is often exceedingly difficult to measure, and thus data needed to inform the debate on the impact of anthropogenic change is frequently lacking. Here, we report on one aspect of research being undertaken as part of STELAR-S2S - Sediment Transfer and Erosion on Large Alluvial Rivers - that is seeking to better understand the relationship between climate, anthropogenic impacts and sediment transport in some of the world's largest rivers. We are using the Lower Mekong River as our study site, with the Mekong delta being one of only three in the world classified by the IPCC as 'extremely vulnerable' to future changes in climate. Herein, we describe details of bedload sediment flux estimation using repeated high-resolution multibeam echo sounder (MBES) bathymetric mapping along the Lower Mekong and Tonle Sap rivers in Cambodia. We are using MBES to quantify the spatial variation in sediment transport both along and also across the river at 11 sites in the study area. Predicted increases in the extraction of sediment from the river through sand dredging are thought likely to cause a significant decrease in downstream sediment flux, and future dam construction along the Mekong main channel potentially offers another source of significant change. These field results will be set in the light of these anthropogenic drivers on sediment flux in the Mekong River and their possible future effects on bar formation and channel migration.
NASA Astrophysics Data System (ADS)
Cheng, Z.; Yu, X.; Hsu, T. J.; Calantoni, J.; Chauchat, J.
2016-02-01
Regional scale coastal evolution models do not explicitly resolve wave-driven sediment transport and must rely on bedload/suspended modules that utilize empirical assumptions. Under extreme wave events or in regions of high sediment heterogeneity, these empirical bedload/suspended load modules may need to be reevaluated with detailed observation and more sophisticated small-scale models. In the past decade, significant research efforts have been devoted to modeling sediment transport using multiphase Eulerian or Euler-Lagrangian approaches. Recently, an open-source multi-dimensional Reynolds-averaged two-phase sediment transport model, SedFOAM is developed by the authors and it has been adopted by many researchers to study momentary bed failure, granular rheology in sheet flow and scour around structures. In this abstract, we further report our recent progress made in extending the model with 3D turbulence-resolving capability and to model the sediment phase with the Discrete Element method (DEM). Adopting the large-eddy simulation methodology, we validate the 3D model with measured fine sediment transport is oscillatory sheet flow and demonstrate that the model is able to resolve sediment burst events during flow reversals. To better resolve the intergranular interactions and to model heterogeneous properties of sediment (e.g., mixed grain sizes and grain shape), we use an Euler-Lagrangian solver called CFDEM, which couples OpenFOAM for the fluid phase and LIGGGHTS for the particle phase. We improve the model by better enforcing conservation of mass in the pressure solver. The modified CFDEM solver is validated with measured oscillatory sheet flow data for coarse sand and we demonstrated that the model can reproduce the well-known armoring effects. We show that under Stokes second-order wave forcing, the armoring effect is more significant during the energetic positive peak, and hence the net onshore transport is reduced. Preliminary results modeling the shape effects using composite particles will be presented. This research is supported by Office of Naval Research and National Science Foundation.
Kobayashi, Tohru; Koide, Osamu; Mori, Kozue; Shimamura, Shigeru; Matsuura, Takae; Miura, Takeshi; Takaki, Yoshihiro; Morono, Yuki; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki
2008-07-01
"A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4x10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.
NASA Astrophysics Data System (ADS)
Collins, J. A.; McGuire, J. J.; Wei, M.
2013-12-01
The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert the measured compliances in this frequency band using a genetic algorithm that solves for the S-wave velocity, P-wave velocity, and density in a layered structure. By including constraints on the Vp distribution from active-source studies, these parameters appear well constrained down to about 4 km depth from our dataset. There is a clear difference in observed compliance values between stations close to the deformation front (~10 km) and those further up the continental slope (~30-40 km) indicating a region of unconsolidated, high-porosity sediment similar to the off-Tohoku region. The low S-wave velocities and high Vp/Vs ratios in the up-dip region correspond to unconsolidated high-porosity sediments. We calculated the effect of this material property contrast on the inter-seismic strain accumulation in the up-dip region of the subduction zone using a finite element model and find that the sediments can increase the amount of inter-seismic strain accumulated in the up-dip region by >100% relative to a homogenous elastic model.
Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California
NASA Astrophysics Data System (ADS)
Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.
2017-12-01
Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and geomorphologies, difficult to infer with the use of low-resolution data.
Efficient Retention of Mud for Land Building on the Mississippi Delta Plain
NASA Astrophysics Data System (ADS)
Esposito, C. R.; Shen, Z.; Tornqvist, T. E.; Marshak, J.; White, C. D.
2016-02-01
Levee breaching and crevasse splay deposition are fundamental drivers of floodplain and delta plain aggradation in lowland river systems, but questions persist as to whether floodplains and delta plains are faithful recorders of riverine sediment load. In the Mississippi River Delta, where land preservation strategies depend on the sediment delivery capability of human-made, managed crevasse splays, this gap in understanding is also a major management concern. Here we present data characterizing the deposit of the Attakapas Crevasse Splay, which was active in the Lafourche Subdelta of the Mississippi River Delta approximately 1100 to 600 years ago. At the time of its inception the splay was 100 river kilometers from the shoreline, and discharged into a mature cypress swamp. We use LiDAR data and 132 cores (up to 13 m deep and described at 10 cm intervals for sediment texture and organic matter) to develop a three-dimensional model of the crevasse splay deposit. Our model is sufficient to measure the sedimentary composition and volume of the entire deposit, and to resolve the channel bodies preserved within it. We demonstrate that the Attakapas Crevasse Splay deposit is dominated by mud, with only 5-8% of its mass consisting of sand. The sand fraction preserved in the splay is very similar to the sand fraction in suspension in the upper 5 to 10 meters of the modern Mississippi River, suggesting that the splay was a highly efficient trap for material that escaped the confines of the trunk channel. Accretion rates in the splay of 1-4 cm/yr persisted over centennial timescales, and sediment retention rates were between 70 and 100%. We attribute the extremely high sediment retention rate to the splay's protected inland location and its densely vegetated environment, and we note the contrast with lower sediment retention rates (20 to 30% according to various studies, although these estimates may be too low) estimated in settings on the open coast such as the Wax Lake Delta.
NASA Astrophysics Data System (ADS)
Chen, Nianhong; Bianchi, Thomas S.; Bland, John M.
2003-06-01
In April 2000, we collected box cores from five stations along a cross-shelf transect on the Louisiana (LA) continental shelf. Novel esters of carotenols and chlorins (carotenoid chlorin esters, CCEs), which are highly specific grazing markers, were identified in surface and deep sediments (>10 cm) from the LA shelf. Chlorophyll- a inventory indicated that CCEs are one of the major decay products of chlorophyll- a in shelf sediments. Abundances of total CCEs (9-18%) in surface sediments along the cross-shelf transect were comparable to the abundance of pheophytin- a, pyropheophytin- a, and total steryl chlorin esters (SCEs). Prior work has identified four CCEs which have dehydrated fucoxanthin/fucoxanthinol as a substitute alcohol of phytol. We report on four newly identified CCEs associated with nondehydrated fuxocanthin/fucoxanthinol esterified to (pyro)pheophorbide- a. These nondehydrated CCEs were generally present in lower concentrations than their dehydrated counterparts, but were detectable by atmospheric pressure chemical ionization (APCI) mass spectrometry coupled with high-performance liquid chromatography (HPLC). We attributed differences between this study and previous work to the time allowed for predepositional decay and grazing processes to occur. The rapid sedimentation of CCEs in the shallow water column (ca. 10 m) on the LA shelf allowed for effective burial of all CCEs compared to the deeper water column regions sampled by previous work. This speculation is supported by the fact that the concentrations of CCEs with nondehydrated fucoxanthin/fucoxanthinol were extremely low in sediments from the site on the outer LA shelf with a deeper (253 m) water column. We also tentatively identified an additional CCE and its isomer as fucoxanthinol didehydrate pyropheophorbide- a ester. We suggest that the formation and transformation of CCEs are primarily controlled by the following three biologically mediated reactions: demethoxycarbonylation, dehydration, and deacetylation. Our laboratory copepod grazing experiment also confirmed that CCEs can be excellent class-specific biomarkers of zooplankton grazing on phytoplankton.
Rocha, Maria João; Dores-Sousa, José Luís; Cruzeiro, Catarina; Rocha, Eduardo
2017-08-01
This study investigated the presence of 16 priority polycyclic aromatic compounds (PAHs) in waters from the Douro River estuary and nearby Atlantic seacoast, which both bath the Porto metropolis. In the area, there is an oil refinery, an important harbour, an intense maritime traffic, small marinas and highly inhabited cities. For the analysis of PAHs, water samples were taken from four sampling sites, at six different times of the year (2011), and extracted by solid-phase extraction (dissolved fraction) and by ultrasound technique (suspended fraction), before their quantification by gas chromatography-mass spectrometry. Results not only proved the ubiquitous distribution of all analysed PAHs in the present habitat, but also that their global amounts (∑ 16 PAHs) were extremely high at all sampling sites. Their average concentrations attained ≈ 55 ng/L and ≈ 52 μg/g dry weight (dw), respectively, in water and surface sediments. Accordingly, the surveyed area was classified as highly polluted by these organics and so, in view of the concentrations, mutagenic/carcinogenic responses in both humans and aquatic animals are possible to occur. The percentages of carcinogenic PAHs for humans (group 1) dissolved in water and in surface sediments were ca. 5 and 6%, respectively. These results are the first reported in the area and can be used as a baseline for future control of the PAHs levels locally while serving the building of global scenarios of PAHs pollution in Europe. Graphical abstract Percentage of PAHs, from different categories acordingly to WHO (2016), in both surface sediments and surface waters from Douro River estuary and Porto Atlantic seacoast; group 1 - carcinogenic, group 2A - probably carcinogenic, group 2B - possibly carcinogenic, and group 3 - not classifiable as carcinogenic to humans.
Influencing factors on particle-bound contaminant transport in the Elbe estuary
NASA Astrophysics Data System (ADS)
Kleisinger, Carmen; Haase, Holger; Schubert, Birgit
2016-04-01
Particulate matter, i.e. suspended particulate matter and sediments in rivers and estuaries, often are contaminated with trace metals and selected organic contaminants and are mainly associated with fine-grained fractions. Transport processes and fate of particles in estuaries are influenced by several factors, e.g. freshwater discharge, tide, flow velocity and dredging activities (Kappenberg et al., 2007). Understanding the transport processes in estuaries may help to achieve the objectives of the Water Framework Directive and the Marine Strategy Framework Directive. The German Federal Institute of Hydrology (BfG) operates for more than 20 years five monitoring sites in the Elbe estuary in order to monitor the development of particle-bound contaminant concentrations over time and to understand their transport mechanisms. Results of the monitoring revealed freshwater discharge as an important influencing factor on the transport of contaminated particulate matter (Ackermann et al., 2007). The bidirectional transport of marine and fluvial water and particulate matter in estuaries results in a turbidity zone where large amounts of particulate matter are temporarily retained and thus in a delayed transport of particulate matter towards the sea. The extent and the location of the turbidity zone as well as the ratio of highly contaminated fluvial and less contaminated marine sediments at a given location are mainly influenced by the freshwater discharge (Kowalewska et al., 2011). Furthermore, at high freshwater discharge conditions the highly contaminated particulate matter from fluvial origin are transported downstream the estuary, whereas at low freshwater discharges, upstream transport of less contaminated marine sediments prevails. Hence, residence times of particulate matter in the estuary are difficult to estimate. Furthermore, sedimentation areas with flow reduced conditions, e.g. wadden areas or branches of the Elbe estuary, may act as sinks for particle bound contaminants and remove them temporarily or in long term from further transport. In the past, highly contaminated sediments were deposited in these retention areas. The estimated total contamination load in these areas exceeds the annual contamination load entering the estuary by a factor up to 11 (BfG, 2014). Monitoring in sedimentation areas by the means of sediment cores gave no indications for current distinct sedimentation or erosion. It is assumed that the highly contaminated sediments in greater depths are most likely to be resuspended only due to extreme events or human intervention (BfG, 2014). Additionally, dredging and depositing of dredged sediments in the Elbe estuary influence the transport of contaminated sediments. Deposition of dredged material further downstream the dredging site accelerates the transport of particulate matter towards the sea. As the residence time of particulate matter within the estuary varies by many influencing factors, mass balances are associated with large uncertainties and accordingly, annual particle-bound contaminant loads released into the North Sea cannot be calculated reliable. Ackermann, F. and Schubert, B. (2007): Trace metals as indicators for the dynamics of (suspended) particulate matter in the tidal reach of the River Elbe. Sediment Dynamics and Pollutant Mobility in Rivers. U. Förstner and B. Westrich. Heidelberg, Springer Verlag, 296-304. BfG (2014). Sedimentmanagement Tideelbe - Strategien und Potenziale - Systemstudie II. Ökologische Auswirkungen der Unterbringung von Feinmaterial. BfG-1763. Kappenberg, J. and Fanger, H.-U. (2007): "Sedimenttransportgeschehen in der tidebeeinflussten Elbe, der Deutschen Bucht und in der Nordsee." 2007/20, 123. Kowalewska, G., Belzunce-Segarra, M. J., Schubert, B., Heininger, P. and Heise, S. (2011): The Role of Sediments in Coastal Monitoring. Chemical Marine Monitoring. P. Quevauviller, P. Roose and G. Verreet. Chichester, West Sussex, UK, John Wiley & Sons Ltd., 384-388.
[Successful treatment of hyperthyroidism simulating acute abdomen and psychosis].
Kósa, D; Patakfalvi, A; Györi, L
1992-07-19
A 49 years old female patient entered the surgical department because of epigastric and ileocoecal pains with the symptoms of acute abdomen. A surgical intervention was performed because of supposed appendicitis, but it was not verified. During the surgical observation the patient was confused and negativistic so she was transferred to the psychiatric department. Because of loss of 20 kg weight, high blood sedimentation and anaemia she was sent to our department with the suspicion of an organic disease. A moderate exophthalmos, glittering eyes and Graefe's sign was noted, therefore hyperthyroidism was diagnosed, which was proved by Kocher's blood picture, low serum cholesterol, extremely high T3 and T4 level, and iodine storage diagram. The antithyreotic treatment resulted a dramatic improvement in the extremely serious moreover hopeless case and after a long-term treatment the patient became symptom-free without complaints. Later because of regression of hyperthyreoidism and the growing nodular goitre the patient was treated on two occasions with radioactive iodine. At present the patient is in remission.
Kalantari, Zahra; Cavalli, Marco; Cantone, Carolina; Crema, Stefano; Destouni, Georgia
2017-03-01
Climate-driven increase in the frequency of extreme hydrological events is expected to impose greater strain on the built environment and major transport infrastructure, such as roads and railways. This study develops a data-driven spatial-statistical approach to quantifying and mapping the probability of flooding at critical road-stream intersection locations, where water flow and sediment transport may accumulate and cause serious road damage. The approach is based on novel integration of key watershed and road characteristics, including also measures of sediment connectivity. The approach is concretely applied to and quantified for two specific study case examples in southwest Sweden, with documented road flooding effects of recorded extreme rainfall. The novel contributions of this study in combining a sediment connectivity account with that of soil type, land use, spatial precipitation-runoff variability and road drainage in catchments, and in extending the connectivity measure use for different types of catchments, improve the accuracy of model results for road flood probability. Copyright © 2016 Elsevier B.V. All rights reserved.
The natural flow regime of Hawaíi streams
NASA Astrophysics Data System (ADS)
Tsang, Y. P.; Strauch, A. M.; Clilverd, H. M.
2016-12-01
Freshwater is a critical, but limited natural resource on tropical islands; sustaining agriculture, industry, hydropower, urban development, and domestic water supply. The hydrology of Hawaíi islands is largely influenced by the health of mountain forests, which capture and absorb rain and fog drip, recharging aquifers and sustaining stream flow. Forests in Hawaíi are being degraded through the replacement of native vegetation with introduced species or conversion to another land use. Streams in the tropics frequently experience flash flooding due to extreme rainfall-runoff events and low flows due to seasonal drought. These patterns drive habitat availability for freshwater fauna, as well as sediment and nutrient export to near-shore ecosystems. Flow regimes can be used to characterize the frequency and magnitude of extreme high and low flows and are influenced by watershed climate, geology, land cover and soil composition. We examined the effect of climate extremes on stream flow from Hawaiian forests using historical flow data to characterize the spatial and temporal patterns in surface water resources. By defining flow regimes from forests we can improve our understanding of climate extremes on water resource availability across tropical island landscapes.
Levels of Plant Available Phosphorus in Agricultural Soils in the Lake Erie Drainage Basin.
1977-12-01
total P tributary load to Lake Erie is in the form of Tsediment-P and most of the sediment -P is of surficial soil origin. Total P load can be related...extremely high ranges can be attributed to 1) and 2) above. Lake Erie counties in Ontario were identified (Figure 3 ) and published reports of the...M-I -28- -tq way.’ .*..... . .. .. ... oi 111 1111; l -29- Table 8 Available-P in Ontario soils in Lake Erie Basin counties Available*-P (ug/g
NASA Astrophysics Data System (ADS)
Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai
2018-05-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart
2009-11-01
Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems affected by polluted sediments, and the processes affecting pollutant bioavailability in the sediments. Studies that combine contaminated sediment and phytoremediation are relatively recent and are increasing in number since few years. Several papers suggest including phytoremediation in a management scheme for contaminated dredged sediments and state that phytoremediation can contribute to the revaluation of land-disposed contaminated sediments. The status of sediments, i.e. reduced or oxidised, highly influences contaminant mobility, its (eco)toxicity and the success of phytoremediation. Studies are performed either on near-fresh sediment or on sediment-derived soil. Field studies show temporal negative effects on plant growth due to oxidation and subsequent ageing of contaminated sediments disposed on land. The review shows that a large variety of plants and trees are able to colonise or develop on contaminated dredged sediment in particular conditions or events (e.g. high level of organic matter, clay and moisture content, flooding, seasonal hydrological variations). Depending on the studies, trees, high-biomass crop species and graminaceous species could be used to degrade organic pollutants, to extract or to stabilise inorganic pollutants. Water content of sediment is a limiting factor for mycorrhizal development. In sediment, specific bacteria may enhance the mobilisation of inorganic contaminants whereas others may participate in their immobilisation. Bacteria are also able to degrade organic pollutants. Their actions may be increased in the presence of plants. Choice of plants is particularly crucial for phytoremediation success on contaminated sediments. Extremely few studies are long-term field-based studies. Short-term effects and resilience of ecosystems is observed in long-term studies, i.e. due to degradation and stabilisation of pollutants. Terrestrial ecosystems affected by polluted sediments range from riverine tidal marshes with several interacting processes and vegetation development mainly determined by hydrology, over alluvial soils affected by overbank sedimentation (including flood control areas), to dredged sediment disposal facilities where hydrology and vegetation might be affected or managed by human intervention. This gradient is also a gradient of systems with highly variable soil and hydrological conditions in a temporal scale (tidal marshes) versus systems with a distinct soil development over time (dredged sediment landfill sites). In some circumstances (e.g. to avoid flooding or to ensure navigation) dredging operations are necessary. Management and remediation of contaminated sediments are necessary to reduce the ecological risks and risks associated with food chain contamination and leaching. Besides disposal, classical remediation technologies for contaminated sediment also extract or destroy contaminants. These techniques imply the sediment structure deterioration and prohibitive costs. On the contrary, phytoremediation could be a low-cost option, particularly suited to in situ remediation of large sites and environmentally friendly. However, phytoremediation is rarely included in the management scheme of contaminated sediment and accepted as a viable option. Phytoremediation is still an emerging technology that has to prove its sustainability at field scale. Research needs to focus on optimisations to enhance applicability and to address the economic feasibility of phytoremediation.
NASA Astrophysics Data System (ADS)
Iulian Zăinescu, Florin; Vespremeanu-Stroe, Alfred; Tătui, Florin
2017-04-01
In this study, we document a case of exceptionally large natural breaching of a sandy spit (Sacalin barrier, Danube delta) using Lidar data and satellite imagery, annual (and seasonal) surveys of topography and bathymetry on successive cross-barrier profiles, and hourly datasets of wind and waves. The breach morphology and dynamics was monitored and described from its inception to closure, together with its impact on the adjoining features (upper shoreface, back-barrier lagoon, downdrift coast) and on the local sediment budgets. Breaching is first observed to occur on a beach-length of 0.5 km in April 2012 and two years later reached 3.5 km (May 2014). The barrier translates to a recovery stage dominated by continuous back-barrier deposition through subaqueous cross-breach sediment transport. Soon, the barrier widening triggers a negative feedback which limits the back-barrier sediment transfer. As a result, back-barrier deposition decreases whilst the barrier aggradation through overwash becomes more frequent. The event was found to be a natural experiment which switched the barrier's decadal evolution from low cross-shore transport to high cross-shore transport over the barrier. Although previously considered as constant, the cross-shore transport recorded during the large breach lifespan is an order of magnitude larger than in the non-breach period. 3 x 106 m3 of sediment were deposited in three years which is equivalent to the modelled longshore transport in the region. Nevertheless, the sediment circuits are more complex involving exchanges with the upper shoreface, as indicated by the extensive erosion down to -4m. In the absence of tides, the Sacalin breach closed naturally in 3 years and brings a valuable contribution on how breaches may evolve, as only limited data has been internationally reported until now. The very high deposition rate of sediment in the breach is a testimony of the high sediment volumes supplied by the longshore transport and the high sediment release through shoreface retreat, and resulted in widening the barrier to a maximum of 1 km. Since the newly-formed barrier shoreline got displaced backward up to 500 m, this reveals that barrier breaching is an important mechanism which significantly accelerates the landward migration of the barrier system and is a proof of the highly nonlinear morphodynamics involved in the barrier island translation. We demonstrate that the 2012-2015 event was an example of complex barrier breaching which has a substantial influence on the longer-term evolution of the spit. Studies of breaching help us understand the barrier evolution and will help coastal erosion risk management policy makers undertake better decisions on barrier management practice.
The occurrence of extreme events a tsunami and storm deposit in Chilcatay formation, Ica, Peru.
NASA Astrophysics Data System (ADS)
Poma Porras, O. A.; Cayo, R., Jr.; Casas, N.; Figueroa, F.
2016-12-01
The Chilcatay Formation (Oligocene to middle Miocene) south of Peru is in the Pisco Basin contains a thick sequence of Cenozoic sediments that record at least three marine transgressions characterized by successions of fine sandstones, siltstones, and diatomaceous mudstones. The sequence records certain facies that are typical of high-energy events, including extreme storms, tsunamis and earthquakes. The studied deposit is characterized by the presence of two layers of varying thickness. The lower layer, which is in markedly erosive contact with the underlying layer, is a very coarse-grained sandstone, highly sorted and with subrounded to subangular grains. The thickness varies laterally from one to 50 cm. The top layer, which is 40-60 cm thick and exposed for approximately 200 m, consists of a dense matrix of coarse-grained size fragments of molluscs (oysters), barnacles, and lithoclasts. The biogenic matrix contains many igneous (gabbro, granite) and metamorphic cobbles and boulders, and lithic tuffs, clusters of barnacles, and fragments consisting of vermetid gastropods reefs. The abundant igneous and metamorphic cobbles and boulders are rounded and subrounded, with a larger diameter between 3 and 140 cm, and occurring at a density of 3-8 clasts by square meter. The lithic tuffs are subrounded, have an ovoid morphology and a greater diameter between 1 and 44 cm. All these clasts occur scattered and 'floating' in the bioclastic matrix. The characteristics of the studied layer suggest that it was deposited by an extreme event that eroded the area between shoreface and backshore redepositing the materials and leaving a chaotic facies distribution with cobbles and boulders of different lithology. The large waves caused heavy erosion of the sediments in the shallow seafloor and the basement, mixing the biogenic and lithogenic clasts. The large size of these clasts suggests that such an event may have been a tsunami.
Stadler, Susanne; Osenbruck, Karsten; Duijnisveld, Wilhelmus H M; Schwiede, Martin; Bottcher, Jurgen
2010-09-01
In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15-20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2-4 mm a(-1). The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF(6)) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF(6), which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.
NASA Astrophysics Data System (ADS)
Hovius, Niels; Galy, Albert; Hilton, Robert; West, Joshua; Chen, Hongey; Horng, Ming-Jame; Chen, Meng-Chiang
2010-05-01
Systematic monitoring of river loads helps refine and extend the map of internal dynamics and external feedbacks in Earth's surface and near-surface system. Our focus is on Taiwan where hillslope mass wasting and fluvial sediment transport are driven by earthquakes and cyclonic storms. The biggest trigger events cause instantaneous erosion and seed a weakness in the landscape that is removed over time in predictable fashion. This gives rise to patterns of erosion that can not be understood in terms of bulk characteristics of climate, such as average annual precipitation. Instead, these patterns reflect the distribution and history of seismicity and extreme precipitation. For example, the 1999 Mw 7.6 Chi-Chi earthquake has resulted in elevated rates of sediment transport that decayed to normal values over seven years since the earthquake. Very large typhoons, with enhanced precipitation due to a monsoonal feed, have caused a similar, temporary deviation from normal catchment dynamics. Crucially, these events do not only mobilize large quantities of clastic sediment, but they also harvest particulate organic carbon (POC) from rock mass, soils and the biosphere. In Taiwan, most non-fossil POC is carried in hyperpycnal storm floods. This may promote rapid burial and preservation of POC in turbidites, representing a draw down of CO2 from the atmosphere that is potentially larger than that by silicate weathering in the same domain. Oxidation of fossil POC during exhumation and surface transport could offset this effect, but in Taiwan the rate of preservation of fossil POC is extremely high, due to rapid erosion and short fluvial transfer paths. Meanwhile, coarse woody debris flushed from the Taiwan mountains is probably not buried efficiently in geological deposits, representing a concentrated flux of nutrients to coastal and marine environments instead.
NASA Astrophysics Data System (ADS)
Lauterbach, Stefan; Kämpf, Lucas; Swierczynski, Tina; Tjallingii, Rik; Brauer, Achim
2017-04-01
Rainfall-triggered flood events represent one of the most serious societal and economic threats in Central Europe. Nevertheless, the thorough assessment of this hazard is still limited by the restricted knowledge about the long-term spatio-temporal recurrence patterns and complex climatic trigger mechanisms of extreme flood events. As instrumental and documentary flood time series rarely exceed a few hundred years, long and precisely dated palaeoflood records from natural archives, e.g. lake sediments, offer an excellent opportunity to gain important information about long-term flood dynamics. This can improve the understanding of flood occurrence under different climatic boundary conditions as well as flood-generating processes and thus allow a more reliable assessment of future flood scenarios. However, the spatial coverage of lake sediment palaeoflood records across Europe is still limited and individual lakes are very heterogeneous in their sedimentological response and sensitivity to flooding. It therefore remains questionable whether single lake sediment palaeoflood records are representative on a larger spatial scale. Investigating adjacent lakes in terms of their individual flood response can therefore (1) help to improve the understanding of key hydro-climatological variables and lake internal processes, both controlling flood layer deposition, and (2) allow to assess the completeness and representativeness of single palaeoflood records, particularly with regard to different flood seasonality. Here we present first data from a project aiming at establishing a new palaeoflood record for the Eastern Alps by investigating the sediments of Hallstätter See in the Calcareous Alps of Upper Austria. These are compared with results from adjacent Mondsee (ca. 35 km to the northwest), located at the northern fringe of the Calcareous Alps. The recent sediments from these two lakes have been investigated with respect to their reflection of large flood events by using detailed sediment microfacies analysis on large-scale thin sections and high-resolution µ-XRF scanning. The depositional environment in Hallstätter See is mainly controlled by seasonally variable and largely runoff-triggered input of allochthonous clastic-detrital material by the Traun River, a major tributary of the Danube. In consequence, the sediments reveal a complex cm- to sub-mm-scale lamination, reflecting detrital input by frequent individual runoff events that are not necessarily extreme floods. This largely contrasts the depositional environment in Mondsee, where detrital material delivered through the relatively small tributaries is intercalated within the regular endogenic calcite varves only during major flood events. This comparison highlights that both lake systems are very different in their response to flooding, depending on catchment geology and morphology, tributary characteristics as well as flood seasonality. Hence, even for lakes in the same climatic domain, the comparison of resulting palaeoflood records is not necessarily straightforward since every lake sediment record only reflects certain aspects of regional flood history, strongly influenced by the individual characteristics of the lake system.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught.
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-10-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO 3 > CO 3 > Cl > F > SO 4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33-0.45.
Major and trace element geochemistry of Lake Bogoria and Lake Nakuru, Kenya, during extreme draught
Jirsa, Franz; Gruber, Martin; Stojanovic, Anja; Omondi, Steve Odour; Mader, Dieter; Körner, Wilfried; Schagerl, Michael
2013-01-01
The physico-chemical properties of water samples from the two athalassic endorheic lakes Bogoria and Nakuru in Kenya were analysed. Surface water samples were taken between July 2008 and October 2009 in weekly intervals from each lake. The following parameters were determined: pH, salinity, electric conductivity, dissolved organic carbon (DOC), the major cations (FAAS and ICP-OES) and the major anions (IC), as well as certain trace elements (ICP-OES). Samples of superficial sediments were taken in October 2009 and examined using Instrumental Neutron Activation Analysis (INAA) for their major and trace element content including rare earth elements (REE). Both lakes are highly alkaline with a dominance of Na > K > Si > Ca in cations and HCO3 > CO3 > Cl > F > SO4 in anions. Both lakes also exhibited high concentrations of Mo, As and fluoride. Due to an extreme draught from March to October 2009, the water level of Lake Nakuru dropped significantly. This created drastic evapoconcentration, with the total salinity rising from about 20‰ up to 63‰. Most parameters (DOC, Na, K, Ca, F, Mo and As) increased with falling water levels. A clear change in the quality of DOC was observed, followed by an almost complete depletion of dissolved Fe from the water phase. In Lake Bogoria the evapoconcentration effects were less pronounced (total salinity changed from about 40‰ to 48‰). The distributions of REE in the superficial sediments of Lake Nakuru and Lake Bogoria are presented here for the first time. The results show a high abundance of the REE and a very distinct Eu depletion of Eu/Eu* = 0.33–0.45. PMID:25843965
Protracted fluvial recovery from medieval earthquakes, Pokhara, Nepal
NASA Astrophysics Data System (ADS)
Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Andermann, Christoff; Schönfeldt, Elisabeth; Seidemann, Jan; Adhikari, Basanta R.; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver
2016-04-01
River response to strong earthquake shaking in mountainous terrain often entails the flushing of sediments delivered by widespread co-seismic landsliding. Detailed mass-balance studies following major earthquakes in China, Taiwan, and New Zealand suggest fluvial recovery times ranging from several years to decades. We report a detailed chronology of earthquake-induced valley fills in the Pokhara region of western-central Nepal, and demonstrate that rivers continue to adjust to several large medieval earthquakes to the present day, thus challenging the notion of transient fluvial response to seismic disturbance. The Pokhara valley features one of the largest and most extensively dated sedimentary records of earthquake-triggered sedimentation in the Himalayas, and independently augments paleo-seismological archives obtained mainly from fault trenches and historic documents. New radiocarbon dates from the catastrophically deposited Pokhara Formation document multiple phases of extremely high geomorphic activity between ˜700 and ˜1700 AD, preserved in thick sequences of alternating fluvial conglomerates, massive mud and silt beds, and cohesive debris-flow deposits. These dated fan-marginal slackwater sediments indicate pronounced sediment pulses in the wake of at least three large medieval earthquakes in ˜1100, 1255, and 1344 AD. We combine these dates with digital elevation models, geological maps, differential GPS data, and sediment logs to estimate the extent of these three pulses that are characterized by sedimentation rates of ˜200 mm yr-1 and peak rates as high as 1,000 mm yr-1. Some 5.5 to 9 km3 of material infilled the pre-existing topography, and is now prone to ongoing fluvial dissection along major canyons. Contemporary river incision into the Pokhara Formation is rapid (120-170 mm yr-1), triggering widespread bank erosion, channel changes, and very high sediment yields of the order of 103 to 105 t km-2 yr-1, that by far outweigh bedrock denudation rates inferred from cosmogenic 10Be inventories in river sands. The rapid infill of about a dozen tributary valleys displaced river channels, and caused them to re-incise into bedrock along steep epigenetic gorges. We conclude that the Pokhara Formation offers a unique archive of medieval earthquakes as well as the associated protracted fluvial response that may have been ongoing for up to 900 years.
Carr, Robert S.; Nipper, Marion; Field, Michael; Biedenbach, James M.
2006-01-01
Toxicity tests are commonly conducted as a measure of the bioavailability of toxic chemicals to biota in an environment. Chemical analyses alone are insufficient to determine whether contaminants pose a threat to biota. Porewater toxicity tests are extremely sensitive to a broad range of contaminants in marine environments and provide ecologically relevant data on sensitive life stages. The inclusion of porewater toxicity testing as an additional indicator of sediment quality provides a more comprehensive picture of contaminant effects in these sensitive habitats. In this study purple-spined sea urchin (Arbacia punctulata) fertilization and embryological development porewater toxicity tests were used to evaluate the sediments collected from the coastal environment around Hanalei Bay, Kaua’i, Hawaii. These tests have been used previously to assess the bioavailability of contaminants associated with sediments in the vicinity of coral reefs.
Hoang, Truong Minh; van Lap, Nguyen; Oanh, Ta Thi Kim; Jiro, Takemura
2016-11-01
The aim of the study was to characterize a variety of microstructure development-levels and geotechnical property sequences of the late Pleistocene-Holocene deposits in the Mekong River delta (MRD), and the paper furthermore discusses the influences of delta formation mechanisms on them. The survey associated the geotechnical engineering and the sedimentary geology of the late Pleistocene-Holocene deposits at five sites and also undifferentiated Pleistocene sediments. A cross-section which was rebuilt in the delta progradation-direction and between the Mekong and Bassac rivers represents the stratigraphy. Each sedimentary unit was formed under a different delta formation mechanism and revealed a typical geotechnical property sequence. The mechanical behaviors of the sediment succession in the tide-dominated delta with significant fluvial-activity and material source tend to be more cohesionless soils and strengths than those in the tide- and wave-dominated delta and even the coast. The particular tendency of the mechanical behavior of the deposit succession can be reasonably estimated from the delta formation mechanism. The characteristics of the clay minerals from the Mekong River produced the argillaceous soil which does not have extremely high plasticity. The microstructure development-levels are low to very high indicating how to choose hydraulic conductivity value, k, for estimating overconsolidation ratio, OCR, by the piezocone penetration tests (CPTU). The OCR of sediments in the delta types strangely change with depth but none less than 1. The post-depositional processes significantly influenced the microstructure development, particularly the dehydrating and oxidizing processes.
NASA Astrophysics Data System (ADS)
Čanković, Milan; Petrić, Ines; Marguš, Marija; Ciglenečki, Irena
2017-08-01
Highly eutrophic and euxinic seawater system of Rogoznica Lake (Croatia) was used as a study site for investigation of distribution, diversity and abundance of sulfate-reducing bacteria (SRB) during stratified conditions in the summer and winter season, by targeting 6 phylogenetic subgroups of SRB. 16S rRNA gene sequences indicated that community cannot be directly related to cultured SRB species but rather that Rogoznica Lake harbors habitat-specific SRB populations associated to bacteria belonging to δ-Proteobacteria with few Firmicutes and Verrucomicrobium-related populations. Clear spatial-temporal shifts in the SRB community structure were observed. Results implied existence of distinct SRB populations between the water column and sediment, as well as higher diversity of the SRB occupying water layer then the ones found in the sediment. Likewise, seasonal variations in populations were observed. While SRB community was more diverse in the winter compared to the summer season in the water layer, situation was opposite in the sediment. Water layer communities seem to be more susceptible to changes of physico-chemical parameters, while those in the sediment have prorogated response to these changes. Results indicate that SRB diversity is still highly underestimated in natural environments, especially in specific habitats such as Rogoznica Lake. Presented data show a complex SRB diversity and distribution supporting the idea that habitat-specific SRB communities are important part of the anaerobic food chain in degradation of organic matter as well as cycling of sulfur and carbon species in the Lake and similar anoxic environment.
Sweeney, Kristin; Roering, Joshua J.
2016-01-01
Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.
Flow structure at low momentum ratio river confluences
NASA Astrophysics Data System (ADS)
Moradi, Gelare; Rennie, Colin. D.; Cardot, Romain; Mettra, François; Lane, Stuart. N.
2017-04-01
The flow structure at river confluences is a complex pattern of fluid motion and can be characterized by the formation of secondary circulation. As river confluences play an essential role on flow hydrodynamics and control the movement of sediment through river networks, there has been substantial attention given to this subject in recent decades. However, there is still much debate over how momentum ratio and sediment transport can control secondary circulation and mixing processes. In particular, studies have tended to assume that there is some equilibrium between the bed morphology present and the flow structures that form in the junction region. However, this overlooks the fact that tributaries may be associated with highly varying sediment supply regimes, especially for shorter and steeper tributaries, with temporal changes in sediment delivery ratios (between the main stem and the tributary) that do not follow exactly changes in momentum ratio. This may lead to bed morphologies that are a function of rates of historical sediment supply during sediment transporting events and not the momentum ratio associated with the junction during its measurement. It is quite possible that tributaries with low flow momentum ratio have a relatively higher sediment delivery ratio, such that the tributary is still able to influence significantly secondary circulation in the main channel, long after the sediment transport event, and despite its low flow momentum during measurement. The focus of this paper is low momentum ratio junctions where it is possible that the tributary can deliver large amounts of sediment. Secondary circulation at junctions is thought to be dominated by streamwise-oriented vortical cells. These cells are produced by the convergence of surface flow towards the centre of the main channel, with descending motion in the zone of maximum flow convergence. Once flow arrives at the bed, it diverges and completes its rotation by an upwelling motion through the surface at the channels margins. Numerical models, laboratory experiments and field studies have confirmed the presence of this motion. However, such studies have focused on situations where the momentum ratio is close to one and there have been fewer investigations of confluences where the momentum ratio is much less than one. This study presents field investigations in two upper Rhône river confluences in Switzerland, using an acoustic Doppler current profiler (aDcp). These two confluences are characterized by low momentum ratios but potentially higher sediment delivery ratios during extreme events. Results show that sediment delivery from the tributary during extreme events leads to the formation of a tributary mouth bar and associated bed discordance as well as a bank attached bar downstream of the tributary. In both cases, this discordant bed forms a two-layer flow and the water from the tributary penetrates into the upper part of the main river water column. This results in a mixing interface that is shifted toward the outer bank. When this mixing layer detaches from the tributary outer bank, it forms a large recirculation region in the upper part of the water column and a pronounced scour hole at this bank. The bank attached bar that forms downstream during sediment supply events leads to substantial curvature of the main channel flow, even when the flow momentum of the tributary is low and helps to shift the zone of deepest main river flow towards the outer bank.
NASA Astrophysics Data System (ADS)
Afifah, M. R. Nurul; Aziz, A. Che; Roslan, M. Kamal
2015-09-01
Sediment samples were collected from the shallow marine from Kuala Besar, Kelantan outwards to the basin floor of South China Sea which consisted of quaternary bottom sediments. Sixty five samples were analysed for their grain size distribution and statistical relationships. Basic statistical analysis like mean, standard deviation, skewness and kurtosis were calculated and used to differentiate the depositional environment of the sediments and to derive the uniformity of depositional environment either from the beach or river environment. The sediments of all areas were varied in their sorting ranging from very well sorted to poorly sorted, strongly negative skewed to strongly positive skewed, and extremely leptokurtic to very platykurtic in nature. Bivariate plots between the grain-size parameters were then interpreted and the Coarsest-Median (CM) pattern showed the trend suggesting relationships between sediments influenced by three ongoing hydrodynamic factors namely turbidity current, littoral drift and waves dynamic, which functioned to control the sediments distribution pattern in various ways.
Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area.
Liu, James T; Kao, Shuh-Ji; Huh, Chih-An; Hung, Chin-Chang
2013-01-01
Taiwan's unique setting allows it to release disproportionately large quantities of fluvial sediment into diverse dispersal systems around the island. Earthquakes, lithology, topography, cyclone-induced rainfall, and human disturbance play major roles in the catchment dynamics. Deep landslides dominate the sediment-removal process on land, giving fluvial sediment distinct geochemical signals. Extreme conditions in river runoff, sediment load, nearshore waves and currents, and the formation of gravity flows during typhoon events can be observed within short distances. Segregation of fresh biomass and clastic sediment occurs during the marine transport process, yet turbidity currents in the Gaoping Submarine Canyon carry woody debris. Strong currents in the slope and back-arc basin of the Okinawa Trough disperse fine-grained sediments rapidly and widely. Temporal deposition and remobilization may occur when the shallow Taiwan Strait acts as a receptacle. Taiwan can therefore serve as a demonstration of the episodic aspect of the source-to-sink pathway to both the coastal and deep-ocean environments.
Duplisea, Daniel E; Jennings, Simon; Malcolm, Stephen J; Parker, Ruth; Sivyer, David B
2001-01-01
Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5–65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage. PMID:16759420
Duplisea, D E; Jennings, S; Malcolm, S J; Parker, R; Sivyer, D B
2001-12-19
Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5-65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.
NASA Astrophysics Data System (ADS)
Dellapenna, T. M.; Carlin, J. A.; Williams, J. R.
2016-02-01
The Brazos River empties into the Gulf of Mexico (GOM) forming a wave-influenced, muddy, subaqueous delta (SAD). Recent research in the estuarine reach of the river and on the SAD, however, found evidence for significant mass wasting of the delta-front and potential evidence of hyperpycnal flow, a processes typically associated with higher gradient and higher sediment yield rivers. The study used high-resolution geophysics on the SAD and water-column profiling in the lower river to investigate the transfer to and fate of fluvial sediment on the shelf. The SAD side scan mosaic combined with core data reveal that the eastern portion was dominated by exposed relict, consolidated sediment; an erosional scarp along the upper shoreface; and a thinning of the Holocene strata immediately downslope of the scarp. Holocene strata thickness increases into deeper water. These features suggest sediment mass wasting on the delta front. After rapidly prograding during the early and mid 20th century, reductions in sediment load due anthropogenic influences, and a shift in the primary depocenter lead to erosion on these abandoned portions of the delta. During an elevated fluvial discharge event, a >1 m thick fluid mud layer was found along a 6 km span of the river 2 km upstream from the mouth. The river's salt wedge was shown to inhibit sediment export from the river to the GOM, and facilitate deposition of mud in the lower river. We believe that the mud layer in the lower river builds during moderate and low discharge periods and remobilized during increased discharge, potentially resulting in hyperpyncnal flow to the shelf. We observed suspended sediment concentrations up to 100 g/l in the fluid mud layer during this event. While our observations did not capture the transition from fluid mud to hyperpycnal flow, we believe that with persistent increased discharge the fluid mud layer could transition to hyperpycnal flow.
Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.
1996-01-01
Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.
NASA Astrophysics Data System (ADS)
Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel
2018-01-01
Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.
Hazard assessment for small torrent catchments - lessons learned
NASA Astrophysics Data System (ADS)
Eisl, Julia; Huebl, Johannes
2013-04-01
The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam for sediment retention. As far as the transport capacity of the lower reaches is limited a balance had to be found between protection on the one hand and sediment connectivity to the Wölzer-river on the other. The lessons learned kicked off discussions for future hazard assessment especially concerning the use of rainfall data and design precipitation values for small torrent catchments. Also the comparison with empirical values showed the need for differentiated concepts for hazard analysis. Therefor recommendations for the use of spatial rainfall reduction factors as well as the demarcation of hazard maps using different event scenarios are proposed.
NASA Astrophysics Data System (ADS)
Schulz, H.; von Rad, U.
2013-07-01
Due to the lack of bioturbation, the laminated muds from the oxygen-minimum zone (OMZ) off Pakistan provide a unique opportunity to precisely determine the vertical and lateral sediment fluxes in the near shore part of the northeastern Arabian Sea, and to explore the effects of the margin topography and the low oxygen conditions on the accumulation of organic matter and other particles. West of Karachi, in the Hab river area of EPT and WPT (Eastern and Western PAKOMIN Traps), 16 short sediment profiles from water depths between 250 m and 1970 m on a depth transect crossing the OMZ (~ 120 to ~ 1200 m water depth) were investigated, and correlated on the basis of a thick, light-gray- to reddish-colored turbidite layer. Varve counting yielded a date for this layer of AD 1905 to 1888. We adopted the young age which agrees with 210Pb- dating, and used this isochronous stratigraphic marker bed to calculate sediment accumulation rates, that we could directly compare with the flux rates from the sediment traps installed within the water column above. All traps in the area show exceptionally high, pulsed winter fluxes of up to 5000 mg m-2 d-1 in this margin environment. The lithic flux at the sea floor is as high as 4000 mg m-2 d-1 , and agrees remarkably well with the bulk winter flux of material. This holds as well for the individual bulk components (organic carbon, calcium carbonate, opal, lithic fraction). However, the high winter flux events (HFE) by their extreme mass of remobilized matter terminated the recording in the shallow traps by clogging the funnels. Based on our comparisons, we argue that HFE for the past 5000 yr most likely occurred as regular events within the upper OMZ off Pakistan. Coarse fraction and foraminiferal accumulation rates from sediment surface samples along the Hab transect show distribution patterns that seem to be a function of water depth and distance from the shelf. Some of these sediment fractions show sudden shifts at the lower boundary of the OMZ. However, the potential effect of the OMZ on carbon preservation in the area would by masked by high mass of fine-grained matter laterally advected, and by the pulsed nature of the resuspension events.
NASA Astrophysics Data System (ADS)
Kuhn, N. J.; Greenwood, P.; Fister, W.
2014-12-01
The invasive plant, Impatiens glandulifera (Himalayan Balsam), is now found in most European countries, as well as across large parts of North America and on some Australasian islands. It favours damp, nutrient-rich soils that experience frequent natural disturbance, such as riparian zones. Its ability to out-compete native vegetation and tendency to suffer rapid dieback during cold weather has led to speculation that it may promote soil erosion, particularly along riverbanks. Despite the strong implication, its ability to promote erosion has only recently been shown during an investigation over one dieback and regrowth cycle along a small watercourse in northwest Switzerland. This presentation now benefits from additional results covering further dieback and regrowth cycles obtained from the same watercourse as above, and from a different river system in southwest UK. These additional results support the original conclusion that I. glandulifera promotes soil erosion along riverbanks and the riparian zone. Importantly, the equivalent ground surface retreat from each group of contaminated locations over the three dieback and regrowth cycles are comparable with erosion in regions where high magnitude events are often recorded. Given these very high erosion rates, albeit over three monitoring phases, it is hypothesised that I. glandulifera may act as a catalyst for repeat cycles of colonisation, dieback and extreme erosion. Aside from the deleterious effect of large quantities of nutrient-rich sediment entering into watercourses, high magnitude soil loss such as this could result in reach-scale sections of riverbank undergoing profound morphological changes and reduced structural stability. Dynamic modifications such as those could ultimately impede the ability of riverbanks to moderate stream flow and offer flood protection, as well as hamper the capacity of riparian zones to buffer and retain sediment and associated contaminants during their passage from terrestrial to aquatic environments. Given the dearth of effective intervention measures to halt, or even slow, the spread of I. glandulifera, the impact of extreme erosion driven by this invasive plant could eventually affect the ecohydromorphic functioning of whole river systems, thus making their management extremely difficult and complex.
NASA Astrophysics Data System (ADS)
(Phil) Greenwood, Philip; Fister, Wolfgang; Kuhn, Nikolaus
2014-05-01
The invasive plant, Impatiens glandulifera (common English name: Himalayan Balsam), is now found in most temperate European countries, as well as across large parts of North America and on some Australasian islands. As a ruderal species, it favours damp, nutrient-rich soils that experience frequent natural disturbance, such as riparian zones. Its ability to out-compete native vegetation and tendency to suffer rapid dieback during cold weather has led to repeated speculation that it may promote soil erosion, particularly along riverbanks. Despite the strong implication, its ability to promote erosion has only recently been empirically proven during an investigation over one dieback and regrowth cycle along a small watercourse in northwest Switzerland. This presentation now benefits from additional results covering further dieback and regrowth cycles obtained from the same watercourse as above, and from a different river system in southwest UK. These additional results support the original conclusion that I. glandulifera promotes soil erosion along riverbanks and the riparian zone. Importantly, the equivalent ground surface retreat from each group of contaminated locations over the three dieback and regrowth cycles are comparable with erosion in regions where high magnitude events are often recorded. Given these very high erosion rates, albeit over three monitoring phases, it is hypothesised that I. glandulifera may act as a catalyst for repeat cycles of colonisation, dieback and extreme erosion. Aside from the deleterious effect of large quantities of nutrient-rich sediment entering into watercourses, high magnitude soil loss such as this could result in reach-scale sections of riverbank undergoing profound morphological changes and reduced structural stability. Dynamic modifications such as those could ultimately impede the ability of riverbanks to moderate stream flow and offer flood protection, as well as hamper the capacity of riparian zones to buffer and retain sediment and associated contaminants during their passage from terrestrial to aquatic environments. Given the dearth of effective intervention measures to halt, or even slow, the spread of I. glandulifera, the impact of extreme erosion driven by this invasive plant could eventually affect the ecohydromorphic functioning of whole river systems, thus making their management extremely difficult and complex.
The Connection Between Sediment Supply and Paired Strath Terrace Formation at Arroyo Seco, CA, USA.
NASA Astrophysics Data System (ADS)
Finnegan, N. J.
2015-12-01
Although wide, longitudinally traceable, paired strath terraces in river canyons are frequently argued to reflect periods of higher sediment supply, there is no consensus on how changes in sediment supply translate into dramatic changes in valley morphology. Here, quantitative analysis of LiDAR data is combined with field observations in Arroyo Seco, in the Santa Lucia Range of Central California, to develop a conceptual model for paired bedrock terrace formation and its connection to sediment supply. The most recently formed bedrock terrace in Arroyo Seco grades onto a prominent alluvial fan surface, suggesting that planation of straths in Arroyo Seco occurs as downstream alluvial fans aggrade. This aggradation apparently buffers Arroyo Seco's bedrock channel from base level fall on the Reliz Canyon Fault, which separates the bedrock and alluvial sections of the river. Notably, despite the fact that bedrock terraces grade smoothly onto alluvial fan surfaces, the deep aggradation of sediment downstream is not seen upstream in bedrock channel sections. Gravel on straths is typically only 0.5-1 m thick. Instead, excess gravel appears to be accommodated by the lateral planation of the wide strath itself. LiDAR evidence suggests that strath planation is associated with braiding, which is often triggered by increases in sediment supply. Given the high lateral mobility of braided streams and the extremely fractured (and hence easily detached) mudstone valley walls along Arroyo Seco, braiding provides a simple connection between sediment supply and lateral planation in Arroyo Seco. In Arroyo Seco, fan incision (under decreased sediment supply) should exhume a bedrock step whose height represents the accumulated fault slip during fan aggradation. The upstream propagation of this exhumed step as a knickpoint provides a simple mechanism to connect drops in sediment supply to rapid vertical incision, valley narrowing and strath terrace formation. Long profile data for Arroyo Seco shows clear evidence that the last two generations of strath terraces terminate upstream at knickpoints. OSL dating (Taylor and Sweetkind, 2014) constrains the formation of the two most recent strath terraces to the last ~ 35 kyr, implying at least two reductions in sediment supply relative to capacity during this interval.
Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.
Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard
2010-04-01
Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.
Dean, W.E.; Piper, D.Z.; Peterson, L.C.
1999-01-01
Molybdenum (Mo) concentrations in a sediment core from the Cariaco basin on the Venezuelan continental shelf can be partitioned between a marine fraction and a terrigenous fraction. The accumulation rate of the marine fraction of Mo increased abruptly 15 000 calendar years ago (15 ka), from 4 ??g ?? cm-2 ?? yr-1, and then decreased abruptly at 9 ka. The accumulation rate remained high throughout this 6 k.y. period, but exhibited maxima at 15-14 and 12.5 ka, corresponding in time to meltwater pulse IA into the Gulf of Mexico and the onset of the Younger Dryas cold event, respectively. The marine fraction of Mo is interpreted in terms of redox conditions of bottom water, as dictated by both the flux of settling organic matter and bottom-water residence time. Correspondence between geochemical extremes in this core with changes in sea level and global climate demonstrates the high degree to which this ocean-margin basin has responded to the paleoceanographic regime throughout the past 24 k.y.
Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal
NASA Astrophysics Data System (ADS)
Sagnotti, Leonardo; Scardia, Giancarlo; Giaccio, Biagio; Liddicoat, Joseph C.; Nomade, Sebastien; Renne, Paul R.; Sprain, Courtney J.
2014-11-01
We report a palaeomagnetic investigation of the last full geomagnetic field reversal, the Matuyama-Brunhes (M-B) transition, as preserved in a continuous sequence of exposed lacustrine sediments in the Apennines of Central Italy. The palaeomagnetic record provides the most direct evidence for the tempo of transitional field behaviour yet obtained for the M-B transition. 40Ar/39Ar dating of tephra layers bracketing the M-B transition provides high-accuracy age constraints and indicates a mean sediment accumulation rate of about 0.2 mm yr-1 during the transition. Two relative palaeointensity (RPI) minima are present in the M-B transition. During the terminus of the upper RPI minimum, a directional change of about 180 ° occurred at an extremely fast rate, estimated to be less than 2 ° per year, with no intermediate virtual geomagnetic poles (VGPs) documented during the transit from the southern to northern hemisphere. Thus, the entry into the Brunhes Normal Chron as represented by the palaeomagnetic directions and VGPs developed in a time interval comparable to the duration of an average human life, which is an order of magnitude more rapid than suggested by current models. The reported investigation therefore provides high-resolution integrated palaeomagnetic and radioisotopic data that document the fine details of the anatomy and tempo of the M-B transition in Central Italy that in turn are crucial for a better understanding of Earth's magnetic field, and for the development of more sophisticated models that are able to describe its global structure and behaviour.
From Río Tinto to Mars: the terrestrial and extraterrestrial ecology of acidophiles.
Amils, R; González-Toril, E; Aguilera, A; Rodríguez, N; Fernández-Remolar, D; Gómez, F; García-Moyano, A; Malki, M; Oggerin, M; Sánchez-Andrea, I; Sanz, J L
2011-01-01
The recent geomicrobiological characterization of Río Tinto, Iberian Pyrite Belt (IPB), has proven the importance of the iron cycle, not only in generating the extreme conditions of the habitat (low pH, high concentration of toxic heavy metals) but also in maintaining the high level of microbial diversity, both prokaryotic and eukaryotic, detected in the water column and the sediments. The extreme conditions of the Tinto basin are not the product of industrial contamination but the consequence of the presence of an underground bioreactor that obtains its energy from the massive sulfide minerals of the IPB. To test this hypothesis, a drilling project was carried out to intersect ground waters that interact with the mineral ore in order to provide evidence of subsurface microbial activities and the potential resources to support these activities. The oxidants that drive the system appear to come from the rock matrix, contradicting conventional acid mine drainage models. These resources need only groundwater to launch microbial metabolism. There are several similarities between the vast deposits of sulfates and iron oxides on Mars and the main sulfide-containing iron bioleaching products found in the Tinto. Firstly, the short-lived methane detected both in Mars' atmosphere and in the sediments and subsurface of the IPB and secondly, the abundance of iron, common to both. The physicochemical properties of iron make it a source of energy, a shield against radiation and oxidative stress as well as a natural pH controller. These similarities have led to Río Tinto's status as a Mars terrestrial analogue. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grall, C.; Pickering, J.; Steckler, M. S.; Spiess, V.; Seeber, L.; Paola, C.; Goodbred, S. L., Jr.; Palamenghi, L.; Schwenk, T.
2015-12-01
Deltas can subside very fast, yet many deltas remain emergent over geologic time. A large sediment input is often enough to compensate for subsidence and rising sea level to keep many deltas at sea level. This implies a balance between subsidence and sedimentation, both of which may, however, be controlled by independent factors such as sediment supply, tectonic loads and sea-level change. We here examine the subsidence of the Ganges-Brahmaputra Delta (GBD). Located in the NE boundary of the Indian-Eurasian collision zone, the GBD is surrounded by active uplifts (Indo-Burma Fold Belt and the Shillong Massif). The pattern of subsidence from these tectonic loads can strongly vary depending on both loads and lithospheric flexural rigidity, both of which can vary in space and time. Sediment cover changes both the lithostatic pressure and the thermal properties and thus the rigidity of the lithosphere. While sediments are deposited cold, they also insulate the lithosphere, acting as a thermal blanket to increase lower crustal temperatures. These effects are a function of sedimentation rates and may be more important where the lithosphere is thin. At the massive GBD the impact of sedimentation should be considered for properly constraining flexural subsidence. The flexural rigidity of the lithosphere is here modeled by using a yield-stress envelope based on a thermomechanic model that includes geothermal changes associated with sedimentation. Models are constrained by using two different data sets, multichannel seismic data correlated to borehole stratigraphy, and gravity data. This approach allows us to determine the Holocene regional distribution of subsidence from the Hinge Zone to the Bengal Fan and the mass-anomalies associated with the flexural loading. Different end-member scenarios are explored for reproducing the observed land tilting and gravity anomalies. For all scenarios considered, data can be reproduced only if we consider an extremely weak lithosphere and we will quantify the extent that this weakness is influenced by the extreme sediment thickness of the delta. While the distribution of the present-day subsidence suggests that sediment compaction plays a major role on the current subsidence over the delta, its role over a geological time frame is probably minor.
Monitoring of oceanographic properties of Glacier Bay, Alaska 2004
Madison, Erica N.; Etherington, Lisa L.
2005-01-01
Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.
NASA Astrophysics Data System (ADS)
Obrochta, S.; Yokoyama, Y.; Yoshimoto, M.; Yamamoto, S.; Miyairi, Y.; Nagano, G.; Nakamura, A.; Tsunematsu, K.; Lamair, L.; Hubert-Ferrari, A.; Heyvaert, V.; De Batist, M. A. O.; Fujiwara, O.
2017-12-01
Understanding the eruption history of volcanos located near large population centers is of direct societal relevance. Here we present a 8,000-year lacustrine record that includes previously unreported eruptions of the active Mt. Fuji volcano, which receives approximately 47 million annual visitors with another 40 million living in the adjacent Kanto Plain. A high-fidelity age model is constructed from a number of terrestrial macrofossil and bulk organic radiocarbon measurements and is extremely consistent with the independently determined age of diagnostic tephra layers. In addition to reporting new eruptions, we also present more accurate ages for known eruptions and detect a wider distribution of ejecta for the most recent summit eruption, that latter of which will alter modeled prevailing wind vector during eruption. Furthermore, closely spaced fall-scoria layers, unlikely to be differentiated as separate events in land-based surveys, will lower the estimated mass of ejecta erupted and in turn reduce calculated magnitude. These results, the first of their kind from a highly populated region, demonstrate the utility of lacustrine sediments as powerful tools for understanding characteristics of volcanic eruptions and will improve disaster mitigation plans for the region.
NASA Astrophysics Data System (ADS)
Brill, D.; Brückner, H.; Jankaew, K.; Kelletat, D.; Scheffers, A.; Scheffers, S.
2011-08-01
Where historical records are short and/or fragmentary, geological evidence is an important tool to reconstruct the recurrence rate of extreme wave events (tsunamis and/or storms). This is particularly true for those coastal zones around the Indian Ocean, where predecessors of similar magnitude as the 2004 Indian Ocean Tsunami (IOT) have not been reported by written sources. In this context, the sedimentary record of the Holocene coastal plain of Ban Bang Sak (Phang-nga province, Thailand) provides evidence of multiple prehistoric coastal flooding events in the form of allochthonous sand beds, which were radiocarbon dated to 700-500, 1350-1180, and younger than 2000 cal BP. The layers were assigned to high-energy events of marine origin, which could be either tsunamis or tropical storms, by means of granulometry, geochemistry, vertical structure, and macrofossil content. Although no landfall of a strong storm has occurred in the last 150 years of meteorological data recording, cyclones cannot be ruled out for the last centuries and millennia. However, discrimination between tsunami and storm origin was mainly based on the comparison of the palaeoevent beds with the local deposit of the IOT, which revealed similar characteristics in regard to spatial extend and sediment properties. Furthermore, the youngest palaeoevent correlates with contemporaneous deposits from Thailand and more distant coasts. Hence, we relate it to a basin wide tsunami which took place 700-500 years ago. For the sediments of older extreme events, deposited between 2000 and 1180 cal BP, we found no unambiguous counterparts at other sites; nevertheless, at least for now, they are treated as tsunami candidates.
Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene
NASA Astrophysics Data System (ADS)
Quintana-Cobo, Isabel; Moreira-Turcq, Patricia; Cordeiro, Renato C.; Aniceto, Keila; Crave, Alain; Fraizy, Pascal; Moreira, Luciane S.; Duarte Contrera, Julia Maria de Aguiar; Turcq, Bruno
2018-01-01
To better understand the impact of channel migration processes and climate change on the depositional dynamics of floodplain lakes of the upper Amazon Basin during the late Holocene, we collected three sediment cores from floodplain lakes of the Ucayali River and one from the Marañón River. The cores were dated with 14C, radiographed and described. Bulk density, grain size analysis and total organic carbon (TOC) were determined. The results show that sedimentation in Ucayali floodplain lakes was marked by variations during the late Holocene, with periods of intense hydrodynamic energy and abrupt accumulations, a gap in the record between about 2870 and 690 cal yr BP, and periods of more lacustrine conditions. These changes in sedimentation were associated with variations in the river's influence related to changes in its meandering course (2870 cal yr BP) and a period of severe flooding between 3550 and 3000 cal yr BP. Lake Lagarto on the Marañón River floodplain exhibits a different sedimentary environment of low hydrodynamics with palm trees and macrophytes. Apparently, the lake has not experienced intense migration processes during the last 600 cal yr BP (base of the core). Nevertheless, the river sediment flux to the lake was important from 600 to 500 cal yr BP, although it decreased thereafter until the present. This decrease in the mineral accumulation rate indicates a decrease in river discharge since 500 cal yr BP, which coincides with precipitation records from the central Andes. In the upper part of the three Ucayali floodplain cores, a 30- to 250-cm-thick layer of reworked sediments has been deposited since 1950 AD (post-bomb). In Lake Carmen, this layer is associated with invasion of the lake by the levee of a migrating meander of the Ucayali. In Lakes Hubos and La Moringa, however, the river is still far away and the deposition must be interpreted as the result of extreme flooding. The beginning of the Ucayali meander migration is dated back to 2000 AD, suggesting that these extreme floods could be very recent and linked to hydrologic extremes registered instrumentally in the Amazon Basin.
Terrace aggradation during the 1978 flood on Powder River, Montana, USA
Moody, J.A.; Meade, R.H.
2008-01-01
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes. Peak flood discharge was about 930??m3 s- 1, which lasted about eight??days. During this time, the flood transported 8.2??million tons of sediment into and 4.5??million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7??m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5??m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16??m and the higher terrace by 0.063??m. Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07??m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.
Tropical Cyclone-Driven Sediment Dynamics Over the Australian North West Shelf
NASA Astrophysics Data System (ADS)
Dufois, François; Lowe, Ryan J.; Branson, Paul; Fearns, Peter
2017-12-01
Owing to their strong forcing at the air-sea interface, tropical cyclones are a major driver of hydrodynamics and sediment dynamics of continental shelves, strongly impacting marine habitats and offshore industries. Despite the North West Shelf of Australia being one of the most frequently impacted tropical cyclone regions worldwide, there is limited knowledge of how tropical cyclones influence the sediment dynamics of this shelf region, including the significance of these episodic extreme events to the normal background conditions that occur. Using an extensive 2 year data set of the in situ sediment dynamics and 14 yearlong calibrated satellite ocean-color data set, we demonstrate that alongshore propagating cyclones are responsible for simultaneously generating both strong wave-induced sediment resuspension events and significant southwestward subtidal currents. Over the 2 year study period, two particular cyclones (Iggy and Narelle) dominated the sediment fluxes resulting in a residual southwestward sediment transport over the southern part of the shelf. By analyzing results from a long-term (37 year) wind and wave hindcast, our results suggest that at least 16 tropical cyclones had a strong potential to contribute to that southwestward sediment pathway in a similar way to Iggy and Narelle.
NASA Astrophysics Data System (ADS)
Loveless, S. E.; Bense, V.; Turner, J.
2011-12-01
Many aquifers worldwide occur in poorly lithified sediments, often in regions that experience active tectonic deformation. Faulting of these sediments introduces heterogeneities that may affect aquifer porosity and permeability, and consequently subsurface fluid flow and groundwater storage. The specific hydrogeological effects of faults depend upon the fault architecture and deformation mechanisms. These are controlled by factors such as rheology, stratigraphy and burial depth. Here, we analyse fault permeability in poorly lithified sediments as a function of fault displacement. We have carried out detailed outcrop studies of minor normal faults at five study sites within the rapidly extending Corinth rift, Central Greece. Gravel conglomerates of giant Gilbert delta facies form productive but localised shallow aquifers within the region. Exposures reveal dense (average 20 faults per 100 m) networks of minor (0.1 to 50 m displacement) normal faults within the uplifted sequences, proximal to many of the crustal-scale normal faults. Analysis of 42 faults shows that fault zones are primarily composed of smeared beds that can either retain their definition or mix with surrounding sediment. Lenses or blocks of sediment are common in fault zones that cut beds with contrasting rheology, and a few faults have a clay core and/or damage zone. Fault thickness increases at a rate of about 0.4 m per 10 m increase in displacement. Comparison of sediment micro-structures from the field, hand samples and thin sections show grain-scale sediment mixing, fracturing of clasts, and in some cases cementation, within fault zones. In faults with displacements >12 m we also find a number of roughly parallel, highly indurated shear planes, up to 20 mm in thickness, composed of highly fragmented clasts and a fine grained matrix. Image analysis of thin sections from hand samples collected in the field was used to quantify the porosity of fault zones and adjacent undeformed sediment. These data show a reduction in average porosity from 21% (± 4) in undisturbed sediments to 14% (± 8) within fault zones. We find that fault zone porosity decreases by approximately 5% per 1 m displacement (up to 2 m displacement), as sediments undergo greater micro-scale deformation. Porosity within the shear planes of larger displacement faults (> 12 m) is significantly less than 5%. In summary, with an increase in fault displacement there is an increase in fault thickness and decrease in fault zone porosity, in addition to the occurrence of extremely low porosity shear planes. Consequently, the impact of faults in poorly lithified sediment on fluid flow is, to a large degree, dependent upon the magnitude of fault displacement.
Tropical Aquatic Archaea Show Environment-Specific Community Composition
Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.
2013-01-01
The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota , a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729
Martin, G. D.; George, Rejomon; Shaiju, P.; Muraleedharan, K. R.; Nair, S. M.; Chandramohanakumar, N.
2012-01-01
Concentrations and distributions of trace metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surficial sediments of the Cochin backwaters were studied during both monsoon and pre-monsoon periods. Spatial variations were in accordance with textural charaterstics and organic matter content. A principal component analysis distinguished three zones with different metal accumulation capacity: (i) highest levels in north estuary, (ii) moderate levels in central zone, and (iii) lowest levels in southern part. Trace metal enrichments are mainly due to anthropogenic contribution of industrial, domestic, and agricultural effluents, whose effect is enhanced by settling of metals due to organic flocculation and inorganic precipitation associated with salinity changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately-to-heavily polluted with Zn, and heavily-to-extremely polluted with Cd. Concentrations at many sites largely exceed NOAA ERL (e.g., Cu, Cr, and Pb) or ERM (e.g., Cd, Ni, and Zn). This means that adverse effects for benthic organisms are possible or even highly probable. PMID:22645488
Independently dated paleomagnetic secular variation records from the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Haberzettl, Torsten; Henkel, Karoline; Kasper, Thomas; Ahlborn, Marieke; Su, Youliang; Wang, Junbo; Appel, Erwin; St-Onge, Guillaume; Stoner, Joseph; Daut, Gerhard; Zhu, Liping; Mäusbacher, Roland
2015-04-01
Magnetostratigraphy has been serving as a valuable tool for dating and confirming chronologies of lacustrine sediments in many parts of the world. Suitable paleomagnetic records on the Tibetan Plateau (TP) and adjacent areas are, however, extremely scarce. Here, we derive paleomagnetic records from independently radiocarbon-dated sediments from two lakes separated by 250 km on the southern central TP, Tangra Yumco and Taro Co. Studied through alternating field demagnetization of u-channel samples, characteristic remanent magnetization (ChRM) directions document similar inclination patterns in multiple sediment cores for the past 4000 years. Comparisons to an existing record from Nam Co, a lake 350 km east of Tangra Yumco, a varve-dated record from the Makran Accretionary Wedge, records from Lakes Issyk-Kul and Baikal, and a stack record from East Asia reveal many similarities in inclination. This regional similarity demonstrates the high potential of inclination to compare records over the Tibetan Plateau and eventually date other Tibetan records stratigraphically. PSV similarities over such a large area (>3000 km) suggest a large-scale core dynamic origin rather than small scale processes like drift of the non-dipole field often associated with PSV records.
Nitrogen cycling in 2.7 Ga oceans
NASA Astrophysics Data System (ADS)
Yang, J.; Zerkle, A.; Grassineau, N.; Nisbet, E.; Mettam, C.; Izon, G. J.; Morag, H.; Anthony, M.; Newton, J.; Boyce, A.
2016-12-01
A growing body of geochemical evidence suggests that localized oxygenation of the surface earth must have begun much earlier than the GOE ( 2.4 Ga). This could have triggered the emergence of the aerobic biogeochemical cycle of nitrogen (N), an essential nutrient for all organisms. However, the timing of this revolutionary transition is poorly known. Some sediments from 2.7 Ga possess exceptionally high enrichment of 15N. Whether these values are linked to the onset of the aerobic N cycle[1], or reflective of alkaline lakes on land[2], has been in dispute. To explore this, we are investigating one of the best-preserved unambiguously marine Achaean successions from the Belingwe Greenstone Belt, in Zimbabwe. We are focusing on nearly pristine sediments from the 2.7 Ga Manjeri Formation, which span both shallow and deep-water environments, preserving organic-rich shales and some of the oldest and most well-preserved stromatolites. The depositional conditions for this succession are further constrained by iron speciation data and sulfur isotopes, which show a redox transition from ferruginous to oxic environments from older to younger sediments. Nitrogen isotopes in these sediments will constrain the global nature of the extremely 15N-enriched values, and test hypotheses for the Neoarchean nitrogen cycle in a non-disputed marine setting. [1] Thomazo et al. (2011) Geobiology; [2] Stüeken et al. (2015) EPSL.
Sainz, A; Ruiz, F
2006-03-01
A spatial and temporal analysis (period 1990-2003) of 15 sampling points distributed along the southwestern Spanish coast permits to delimitate the influence area of the extremely polluted discharges coming from the Tinto-Odiel system in the bottom sediments of the adjacent littoral area. As, Cu, Pb and Zn are the main heavy metals transported by the freshwater runoffs toward the shallow shelf and present very high negative (r < -0.7) and significant (p < 0.001) correlations with the distance to the estuarine mouth. The statistical analysis (index of geoaccumulation, Pearson correlation matrix, cluster analysis) of their concentrations in the littoral sediments located between the Guadiana and Guadalquivir mouths delimitates three zones: (a) Zone 1 (from the estuarine mouth to 6 km to the east), characterized by moderate to strongly polluted bottom sediments and main responsible of the mean annual variations of the former heavy metals in the area studied; (b) Zone 2 (from 21.2 km to the west to 29 km to the east), characterized by moderate pollution levels; and (c) Zone 3, located near the Guadiana and Guadalquivir mouths, with very low As-Cu-Pb contents and unpolluted to moderately levels of Zn due to urban sewages or the presence of local low mobility areas for this element.
Zeng, Lixi; Wang, Thanh; Wang, Pu; Liu, Qian; Han, Shanlong; Yuan, Bo; Zhu, Nali; Wang, Yawei; Jiang, Guibin
2011-07-01
Short-chain chlorinated paraffins (SCCPs) are an extremely complex group of industrial chemicals and found to be potential persistent organic pollutants (POPs), and thus have attracted extensive concern worldwide. In this study, influent, effluent, and sludge were collected from a large sewage treatment plant (STP) in Beijing, China. Water, sediment, and aquatic species were also collected from a recipient lake that receives effluents discharged from the STP. These samples were then analyzed to investigate the effect of STP effluent on distribution and trophic transfer of SCCPs in the local aquatic ecosystem. Concentrations of total SCCPs (ΣSCCPs) in lake water and surface sediments were found in the range 162-176 ng/L and 1.1-8.7 μg/g (dry weight, dw), respectively. Vertical concentration profiles of sediment cores showed ΣSCCPs decreased exponentially with increasing depth. Specific congener composition analysis in sediment layers indicated possible in situ biodegradation might be occurring. High bioaccumulation of SCCPs was observed in the sampled aquatic species. The bioaccumulation factor (BAF) generally increased with the number of chlorines in the SCCP congeners. A significantly positive correlation between lipid-normalized ΣSCCPs concentration and trophic levels (R(2) = 0.65, p < 0.05) indicate that SCCPs can biomagnify through the food chain in the effluent-receiving aquatic ecosystem.
NASA Astrophysics Data System (ADS)
Wilhelm, B.; Arnaud, F.; Giguet-Covex, C.; Sabatier, P.; Crouzet, C.; Delannoy, J. J.
2012-04-01
In mountain areas extreme precipitation events trigger torrential floods, characterized by a sudden and intense rise of discharge causing large human and economic losses. Their frequency and/or intensity are expected to increase in the context of global warming. However, the relationship between such events and climate changes remains difficult to assess. Long-term geological records of intense events could enable to extend documented records beyond the observational data for a better understanding of local to regional flood hazard patterns in relation to past climatic changes and hence improving predictive models. In this context, lake sediment records appear a relevant archive as they are continuous records in which the identification of high-energy sediment layers allows to reconstruct flood calendar. In addition, the flood intensity can be reconstructed from the coarse fraction of each flood layer. Frequency and intensity of past torrential floods were thus reconstructed from four high-elevation lake records of the French Alps, in the framework of Pygmalion research program. Studied sites were selected along a north-south transect over this region to investigate the flooding responses to different climatic influences (westerlies in the north and Mediterranean influences in the south). High-resolution geochemical and sedimentological analyses were undertaken for an exhaustive identification of flood layers and several dating methods (short-lived radionuclides, 14C, correlation with historic events, paleomagnetism) were combined to reduce age uncertainties as much as possible. Over the entire French Alps, the torrential-flood frequency increases at a secular timescale during the cold period of the Little Ice Age (LIA; 1300-1900 AD). This increase seems in agreement with a regional high wetness, already described in the literature, possibly related to an increase in cyclonic activity. Superimposed to this secular trend, a pluri-decadal variability appears at different times depending on the site location (i.e. north-western or southern French Alps). In the north, peaks of flood frequency match well with high summer temperatures, while in the south they seem to be associated to solar maxima and negative phases of the North Atlantic Oscillation. Furthermore, the most extreme events occur during the warm Medieval Climate Anomaly (800-1300 AD) in the north while in the south the intensity of these events increases during the cold LIA period. Our results reveal major differences in the evolutions of the torrential-flood activity at a regional scale. This suggests that extreme precipitations over this part of the Alps are influenced by different forcing factors. In the north-western French Alps, warming seems to plays an important role, favouring the increase of both flood frequency and intensity at a pluri-decadal time scale. Inversely, at the same time scale, in the Southern French Alps, flood frequency and intensity seem to be strongly linked to meso-scale atmospheric circulations in relation to the North Atlantic Oscillation (see abstract from Wilhelm et al. in session CL4.3 for details). Our study hence suggests one should expect a generalised decrease of torrential flood frequency all around the Alps. However, in northern French Alps only, an increase in torrential flood intensity is expected by analogy with the MWP pattern.
NASA Astrophysics Data System (ADS)
Fang, N. F.; Shi, Z. H.; Chen, F. X.; Zhang, H. Y.; Wang, Y. X.
2015-09-01
Understanding and quantifying sediment loads is important in watersheds with highly erodible materials, which will eventually cause environmental and ecological problems. Within this context, suspended sediment (SS) transport and its temporal dynamics were studied in a small mountainous watershed with sloping lands containing rock fragments in subtropical China. Soils containing rock fragments with many macro-pores have a high permeability rate. Over a 7-year period, the mean runoff coefficient of this watershed was 0.65. Overall, 30 flood events were monitored and accounted for 95.5%, 27.3%, 17.1% of the total SS load, precipitation and total discharge, respectively, over a 5-year period. The presence of rock fragments in soils can affect soil loss. When comparing the soil loss in the studied watershed with that of other watersheds under similar climatic conditions, rock fragments negatively affect soil loss. However, an extreme event occurred on 14 August 1990, and the sediment load exhibited a phenomenon called "small deposits towards lump withdrawal", which resulted in a soil loss of 20,499 t (4.6 times the mean yearly soil loss). This event exhausted most of the SSs stored by the rock fragments on the slope and channel. Following this event, the mean SS concentration (SSC) of the 11 events was 1.05 kg m-3, and the mean SSC of the 18 previous events was 1.75 kg m-3. Twelve variables were separated using the classical hydrograph separation method. Partial least-squares regression (PLSR) was used to determine the highly co-related variables of the discharge. The results indicated that PLSR could explain runoff well. The relationship between discharge and SSC was highly scattered. During 24 flood events, three types of hysteresis loops were observed: clockwise (17 events), figure-eight (3 events), and complex (4 events).
NASA Astrophysics Data System (ADS)
Moffitt, S. E.; Hill, T. M.; Kroeker, K.; Roopnarine, P. D.; Kennett, J.
2014-12-01
We have reconstructed paleoecological and climatic change in a Late Quaternary (16.1-3.4 ka) sediment core from the California margin (418 meters below sea level) of Santa Barbara Basin using quantitative analyses of Molluscan and Foraminiferan microfossils. This archive represents the first record of marine metazoan community ecology, and a comparison to a well-established biotic proxy (Foraminifera), through the climatic and oceanographic events of the most recent deglaciation. The high-resolution seafloor archive reveals strong coupling between orbital and millennial climatic episodes and the structure of shallow ocean ecosystems. Changes in the density and diversity of molluscs and foraminifera exhibit clear associations with climatic events that mark the deglacial episode, including rapid expansions and contractions of the Oxygen Minimum Zone and development of chemosynthetic bacterial mat communities. Molluscans occur discontinuously in only 28% of the sediment sequence, whereas foraminifera occur throughout. Multivariate statistical analyses of the community ecology assist with the interpretations of the multi-species paleoecological data and of processes that caused the variability. A surprising dominance of molluscan extremophiles (sulfidic Astrys permodesta and hypoxic Lucinoma aequizonatum) during cool, well oxygenated intervals reveals how such forms can thrive during inferred brief ephemeral extreme events. Hydrographic variability and bottom water flow, as well as the growth of benthic bacterial communities, determine where such extremophile communities dominate.
NASA Astrophysics Data System (ADS)
Soomere, T.
2010-07-01
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.
Interactive 4D Visualization of Sediment Transport Models
NASA Astrophysics Data System (ADS)
Butkiewicz, T.; Englert, C. M.
2013-12-01
Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the sunken subway cars and other vessels present at the Redbird site. Due to the extensive surveying and historical data availability in the area, the site is highly attractive for comparing hindcasted sediment transport simulations to our observations of actual changes. This work has the potential to strengthen the accuracy of sediment transport modeling, as well as help predict and prepare for future changes due to similar extreme sediment transport events. Our visualization showing a simple sediment transport model with tidal flows causing significant erosion (red) and deposition (blue).
Rogge, Ryan A; Hansen, Jeffrey C
2015-01-01
Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.
Lasting Impact of a Tsunami Event on Sediment-Organism Interactions in the Ocean
NASA Astrophysics Data System (ADS)
Seike, Koji; Sassa, Shinji; Shirai, Kotaro; Kubota, Kaoru
2018-02-01
Although tsunami sedimentation is a short-term phenomenon, it may control the long-term benthic environment by altering seafloor surface characteristics such as topography and grain-size composition. By analyzing sediment cores, we investigated the long-term effect of the 2011 tsunami generated by the Tohoku Earthquake off the Pacific coast of Japan on sediment mixing (bioturbation) by an important ecosystem engineer, the heart urchin Echinocardium cordatum. Recent tsunami deposits allow accurate estimation of the depth of current bioturbation by E. cordatum, because there are no preexisting burrows in the sediments. The in situ hardness of the substrate decreased significantly with increasing abundance of E. cordatum, suggesting that echinoid bioturbation softens the seafloor sediment. Sediment-core analysis revealed that this echinoid rarely burrows into the coarser-grained (medium-grained to coarse-grained) sandy layer deposited by the 2011 tsunami; thus, the vertical grain-size distribution resulting from tsunami sedimentation controls the depth of E. cordatum bioturbation. As sandy tsunami layers are preserved in the seafloor substrate, their restriction on bioturbation continues for an extended period. The results demonstrate that understanding the effects on seafloor processes of extreme natural events that occur on geological timescales, including tsunami events, is important in revealing continuing interactions between seafloor sediments and marine benthic invertebrates.
Bravo, Andrea Garcia; Loizeau, Jean-Luc; Ancey, Lydie; Ungureanu, Viorel Gheorghe; Dominik, Janusz
2009-08-01
Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments. Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01-0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3-2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the (137)Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments. Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control. Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment-water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.
Algae Reefs in Shark Bay, Western Australia, Australia
NASA Technical Reports Server (NTRS)
1990-01-01
Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.
Onset of submarine debris flow deposition far from original giant landslide.
Talling, P J; Wynn, R B; Masson, D G; Frenz, M; Cronin, B T; Schiebel, R; Akhmetzhanov, A M; Dallmeier-Tiessen, S; Benetti, S; Weaver, P P E; Georgiopoulou, A; Zühlsdorff, C; Amy, L A
2007-11-22
Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.
NASA Astrophysics Data System (ADS)
Wang, Y.; Chang, J.; Guo, A.
2017-12-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on flood control systems. Given this focus, a univariate and copula-based bivariate hydrological risk framework focusing on flood control and sediment transport is proposed in the current work. Additionally, the conditional probabilities of occurrence of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula model. Moreover, a Monte Carlo-based algorithm is used to evaluate the uncertainties of univariate and bivariate hydrological risk. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The results indicate that (1) 2-day and 3-day consecutive rainfall are highly correlated with the annual maximum flood discharge (AMF) in UCX and UCH, respectively; and (2) univariate and bivariate return periods, risk and reliability for the purposes of flood control and sediment transport are successfully estimated. Sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the AMF, exceeding the design flood of downstream hydraulic structures in the UCX and UCH. Most importantly, there was considerable sampling uncertainty in the univariate and bivariate hydrologic risk analysis, which would greatly challenge measures of future flood mitigation. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
The Pliocene-Pleistocene sedimentary tectonic history of NW California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, L.; Moley, K.; Aalto, K.R.
1993-04-01
A thick sequence of Late Miocene to Pleistocene sediments thought to represent deposition in a Neogene forearc basin are preserved in the structural basin referred to as the Eel River basin' located offshore of NW California and SE Oregon. The southern portion of this structural basin comes on land in the vicinity of Eureka where the marine and fluvial Wildcat Group is exposed. Basal Wildcat Group sediments are fluvial and littorial. Marine sandstones of the Wildcat Group contain K-spar concentrations of 5.5% and are believed to represent a fresh source. [sup 40]Ar/[sup 39]Ar laser probe analyses of Wildcat Group micasmore » yield dates of 52--57, 66--75, 128.5 and 299--303 Ma. The presence of Idaho detritus throughout the Neogene Wildcat Group indicates that the Klamath Mountains remained low during the Pliocene and early Pleistocene. Younger fluvial sediments in this region contain primarily locally derived detritus indicating local uplift of the Klamath Mountains. To the north, at Crescent City, thin remnants of the near-shore Saint George Formation and the eastern estuarine and fluvial Wimer Formation are lowermost Pliocene in age (5 ma). The presence of the highly erodible Wilmer Formation on uplifted plateaus in an area of extreme rainfall suggest that these sediments represent only the lowermost portion of an originally much thicker sequence. Consequently, the sediments confined to the present day Eel River basin do not represent the lateral extent of the original forearc basin. Sandstones and conglomerates of the Saint George and Wimer Formation indicate a local Klamath provenance derivation.« less
NASA Astrophysics Data System (ADS)
Dolozi, Michael B.; Kalindekafe, Leonard S. N.; Ngongondo, Cosmo; Dulanya, Zuze
2011-05-01
The Linthipe and Songwe River Deltas are found to the extreme southern and northern parts of Lake Malawi respectively within the East African Rift System. They occur in contrasting tectonic and climatic settings of the rift-valley half-graben structure. The sub-aqueous part of the Songwe Delta consists of relatively finer grained sediments than the Linthipe but is relatively poorly sorted. The composition of sediments within the Songwe Delta shows significant amounts of sedimentary and volcanic lithic fragments which are lacking in the Linthipe. On the other hand, ferromanganese nodules were recovered in the Linthipe Delta at water depths of 80-100 m but were not recovered in Songwe Delta at similar water depths. The finer grained facies of the Songwe Delta suggests a more prograded delta than the Linthipe. However, its poorly sorted sediments are most likely due to the heterogeneous geology of the source area; higher and faster depositional rates due to climatic influences. The lack of Ferromangenese nodules in the Songwe Delta is probably due to the sand-mud facies boundary which occurs at shallower depth. The higher proportion of Total Organic Carbon (TOC) in higher the Linthipe Delta is probably related to high rates of environmental degradation such as deforestation and agricultural activities in the riparian catchment basin. This is in contrast to the Songwe catchment basin where the levels of anthropogenic disturbance are less and climate, geomorphology and the heterogenous character of the source rocks seems to play a major role in the sedimentation processes.
Erosion and channel changes due to extreme flooding in the Fourmile Creek catchment, Colorado
NASA Astrophysics Data System (ADS)
Wicherski, Will; Dethier, David P.; Ouimet, William B.
2017-10-01
Infrequent, large magnitude geomorphic events generate quantifiable change on geologically short timescales and are crucial to understanding landscape evolution. Airborne lidar surveys and field measurements were used to investigate floodplain erosion and deposition along a 19.5 km reach of Fourmile Creek, Colorado that was devastated by severe flooding in 2013 that followed a 2010 wildfire. > 350 mm of rain fell on the Fourmile catchment from September 9-15, 2013, generating discharge that exceeded bankfull for > 120 h at the Orodell gage, with local unit stream power > 300 W m- 2 throughout the study reach. Debris flows occurred on steep hillslopes and tributary channels in the most intensely burned areas. Lidar difference measurements and field studies highlight zones of local deposition along the study reach, but demonstrate overall net erosion of 0.25 m for the 19.5 km reach of Fourmile floodplain, mainly by channel widening. Tributary junctions where debris-flow sediment entered the floodplain and local decreases in unit stream power controlled some zones of deposition. Overall, mass balance calculations show that a total sediment loss of 91,000-161,000 m3 from the Fourmile Creek floodplain and hillslopes, which is broadly consistent with channel sediment flux estimates of 71,000-111,000 m3. Measurements from the Fourmile catchment demonstrate that floodplain erosion was a major source of sediment in the 2013 flood and demonstrate that infrequent events marked by long-duration flooding and high total energy expenditure can account for a large fraction of total sediment transport in mountain streams.
Rojas, Patricia; Rodríguez, Nuria; de la Fuente, Vicenta; Sánchez-Mata, Daniel; Amils, Ricardo; Sanz, José L
2018-06-01
Soda lakes are inhabited by important haloalkaliphilic microbial communities that are well adapted to these extreme characteristics. The surface waters of the haloalkaline Mono Lake (California, USA) are alkaline but, in contrast to its bottom waters, do not present high salinity. We have studied the microbiota present in the shoreline sediments of Mono Lake using next-generation sequencing techniques. The statistical indexes showed that Bacteria had a higher richness, diversity, and evenness than Archaea. Seventeen phyla and 8 "candidate divisions" were identified among the Bacteria, with a predominance of the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Among the Proteobacteria, there was a notable presence of Rhodoplanes and a high diversity of sulfate-reducing Deltaproteobacteria, in accordance with the high sulfate-reducing activity detected in soda lakes. Numerous families of bacterial fermenters were identified among the Firmicutes. The Bacteroides were represented by several environmental groups that have not yet been isolated. Since final organic matter in anaerobic environments with high sulfate contents is mineralized mainly by sulfate-reducing bacteria, very little methanogenic archaeal biodiversity was detected. Only 2 genera, Methanocalculus and Methanosarcina, were retrieved. The species similarities described indicate that a significant number of the operational taxonomic units identified may represent new species.
Comparing and Linking Post-fire Hillslope Erosion and Channel Change for Different Storm Types
NASA Astrophysics Data System (ADS)
MacDonald, Lee; Kampf, Stephanie; Brogan, Dan; Schmeer, Sarah; Nelson, Peter
2016-04-01
Moderate and high severity wildfires can greatly reduce infiltration rates, leading to orders of magnitude increases in hillslope-scale runoff and erosion rates. These increases can cause dramatic downstream channel change, with post-fire deposition being most common, but this depends on the number, magnitude and timing of storm events. The objective of this study is to compare post-fire hillslope erosion rates and downstream channel change from two distinct rainfall events approximately one year after burning. The first was a set of relatively typical, higher-intensity convective storms in June-August 2013, and the second was a highly unusual, week-long ~270 mm rainstorm in September 2013. The study was conducted in two ~15 km2 watersheds that had two-thirds of their area burned at high or moderate severity by 2012 High Park Fire in northcentral Colorado, USA. Hillslope erosion was measured with sediment fences at 29 sites grouped into five clusters, with each cluster having an associated tipping bucket rain gage. Downstream channel change was monitored at approximately ten cross-sections in each of the two watersheds, Skin Gulch and Hill Gulch. Twelve summer storms produced an overall mean hillslope erosion of 6 Mg ha-1, with higher rainfall intensities at lower elevations and in Skin Gulch causing higher sediment yields. The higher sediment yields in Skin Gulch caused substantial downstream deposition of up to 0.8 m at most cross-sections. Generally lower rainfall in Hill Gulch resulted in less Horton overland flow and hence lower erosion rates and much less downstream deposition. The September storm had roughly twice as much rainfall as the summer thunderstorms, but there were much lower peak rainfall intensities and hillslope-scale sediment yields except where shallow bedrock induced saturation overland flow. The much longer duration of the September storm resulted in sustained high flows, and these flows plus the lower hillslope erosion caused most of the cross-sections to incise rather than aggrade. Maximum mean bed incision was nearly one meter and some cross-sections also exhibited considerable lateral migration, removing much of the aggraded sediment from the previous two summer storm seasons. The results indicate that: 1) sediment yields are best correlated with the amount of precipitation above a given intensity threshold; 2) this threshold tends to increase over time with increasing surface cover; and 3) the standard trajectory of post-fire channel change can be completely altered by extreme storm events.
Radiocarbon dating of plant macrofossils from tidal-marsh sediment
Kemp, A.C.; Nelson, Alan R.; Horton, B.P.
2013-01-01
Tidal-marsh sediment is an archive of Holocene environmental changes, including movements of sea and land levels, and extreme events such as hurricanes, earthquakes, and tsunamis. Accurate and precise radiocarbon dating of environmental changes is necessary to estimate rates of change and the recurrence interval (frequency) of events. Plant macrofossils preserved in growth position (or deposited soon after death) in tidal-marsh sediment are ideal samples for dating such changes. In this chapter, we focus on the selection of plant macrofossils for radiocarbon dating and the application of ages from different types of macrofossils to varied research projects, and make recommendations for selection and preparation of tidal-marsh samples for dating.
The influence of sediment transport rate on the development of structure in gravel bed rivers
NASA Astrophysics Data System (ADS)
Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo
2013-04-01
Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure
Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.; Suhayda, J.M.; Gambrell, R.
2011-01-01
From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70. km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10. cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging. ?? 2010 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sánchez-Martínez, Martha A.; Marmolejo-Rodríguez, Ana J.; Magallanes-Ordóñez, Víctor R.; Sánchez-González, Alberto
2013-09-01
The mining zone at El Triunfo, Baja California Sur, Mexico, was exploited for gold extraction for 200 years. This area includes more than 100 abandoned mining sites. These sites contain mine tailings that are highly contaminated with potential toxic elements (PTE), such as As, Cd, Pb, Sb, Zn, and other associated elements. Over time, these wastes have contaminated the sediments in the adjacent fluvial systems. Our aim was to assess the vertical PTE variations in the abandoned mining zone and in the discharge of the main arroyo into a small lagoon at the Pacific Ocean. Sediments were collected from the two following locations in the mining zone near the arroyo basin tailings: 1) an old alluvial terrace (Overbank) and a test pit (TP) and 2) two sediment cores locations at the arroyo discharge into a hypersaline small lagoon. Samples were analyzed by ICP-MS, ICP-OES, and INAA and the methods were validated. The overbank was the most contaminated and had As, Cd, Pb, Sb, and Zn concentrations of 8690, 226, 84,700, 17,400, and 42,600 mg kg-1, respectively, which decreased with depth. In addition, the TP contained elevated As, Cd, Pb, Sb, and Zn concentrations of 694, 18.8, 5001, 39.2, and 4170 mg kg-1, respectively. The sediment cores were less contaminated. However, the As, Cd, Pb, Sb, and Zn concentrations were greater than the concentrations that are generally found in the Earth's crust. The normalized enrichment factors (NEFs), which were calculated from the background concentrations of these elements in the system, showed that extremely severe As, Cd, Pb, Sb, and Zn (NEF > 50) enrichment occurred at the overbank. The TP was severe to very severely enriched with As, Cd, Pb, Sb, and Zn (NEF = 10-50). The sediment cores had a severe enrichment of As, Pb, and Zn (NEF = 10-25). Their vertical profiles showed that anthropogenic influences occurred in the historic sediment deposition at the overbank and TP and in the sediment cores. In addition, the As, Pb, and Zn concentrations in the sediment cores were related to the deposition of fine sediments and organic carbon.
NASA Astrophysics Data System (ADS)
Ziebis, W.; Patel, A.; Krupke, A.; Ferdelman, T. G.
2012-12-01
The vast majority of scientific drilling expeditions have focused on continental margins where oxygen is depleted within the surface (1 m) layer of the sediment and buried organic carbon sustains anaerobic microbial communities. IODP expeditions 329 (South Pacific Gyre) and 336 (Mid-Atlantic Ridge - North Pond) took place in oligotrophic open ocean regions, which constitute 48% of the world ocean. These expeditions have revealed that unlike continental margins the seafloor underneath oligotrophic ocean gyres is oxic. Within the South Pacific Gyre (SPG) dissolved oxygen persists throughout the sediment cover and reaches the basement even at the sites with thickest sediment cover (62 and 75 mbsf). North Pond is a sedimented pond (< 300 m sediment cover) located on the flank of the Mid-Atlantic Ridge underlying the oligotrophic central Atlantic. Here, oxygen diffuses upward from the basaltic aquifer underlying the sediment package in addition to deep oxygen penetration from the overlying water. Oxygen is the main electron acceptor available for sub-seafloor microbial activity in these vast oligotrophic open ocean regions. Microbial cells are present and active in the organic poor sediments, albeit numbers are near or below the detection limit (<103 cm-3 sediment) in the extremely organic-poor sediment of the SPG (below 2 -15 m sediment depth, depending on the location). However, we have very limited knowledge on the microbial community compositions and metabolic activities. Even the dominance of bacteria or archaea remains largely elusive. It has been suggested that while archaea dominate in the anoxic sediments of continental margins bacteria might be more abundant in the oxic seafloor underlying oligotrophic ocean gyres where aerobic respiration prevails. Experiments were conducted with sediment samples from the SPG and North Pond to explore the pattern of microbial diversity and metabolic activity using a suite of radio and stable isotopes in combination with single cell analyses. Our goal was to track the uptake and turnover of metabolically important elements (C, N, P) and to compare metabolic activities (heterotrophy / autotrophy) between sites and with depth. Labeling of cells using fluorescent oligonucleotide probes (HISH and CARD-FISH) in combination with nanoSIMS has thus far revealed a clear dominance of bacteria in SPG sub-seafloor sediments, which showed a high uptake of nitrogen (ammonium). Current experiments using cell extractions and cell encapsulations followed by incubations with radiotracers will further reveal carbon turnover pathways of specific microorganisms.
NASA Astrophysics Data System (ADS)
Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.
2016-12-01
Many studies have shown that surface water quality can be impaired after wildfire. The majority of these studies are typically conducted for short periods (1-2 years), and until recently, usually employed routine (fixed-interval) sampling. We monitored stream water quality for five years after a wildfire in the Colorado Front Range using a combination of routine sampling, storm sampling, and continuous sensors. This five-year study facilitated the measurement of post-wildfire water-quality response to a number of climatic events, including low- to moderate-intensity rain storms, drought, extreme rainfall (based on amount of rain that fell in a 7-day period), and the highest spring runoff recorded from the watershed during 23 years of record. Post-wildfire water quality was controlled by the hydrologic response to these climatic events, and by a legacy of historical disturbance from mining and related activities. Increased surface runoff during rain storms led to mobilization of sediment from hillslopes to stream channels. The sediment remained in stream channels during a drought that led to reduced (25% of mean) spring runoff, but this sediment, and associated constituents such as dissolved organic carbon and manganese, were remobilized into the water column and transported downstream during sustained high-flow spring runoff in the third year. We infer that the relative proportions of surface and subsurface runoff were altered by the wildfire and during the extreme rainfall, possibly leading to greater flow through abandoned mine adits and tunnels, and thus causing increased instream metal concentrations (such as arsenic and manganese). Post-wildfire water-quality issues were both acute, with significant water-quality impairment during storm events, and chronic, with elevated concentrations of sediment, nitrate, dissolved organic carbon, manganese, and arsenic for months to years after the wildfire. Such variable source water quality, in both contaminant type and concentration, presents a substantial challenge to water-treatment facilities. Climate change is projected to increase wildfire risk and possibly storm frequency and intensity, and thus the risk of wildfire impacts on water supplies is likely to worsen in the future.
Fitzgerald, S.A.; Klump, J.V.; Swarzenski, P.W.; Mackenzie, R.A.; Richards, K.D.
2001-01-01
Short-term (???monthly) sediment deposition and resuspension rates of surficial bed sediments in two PCB-laden impoundments on the Fox River, WI, were determined in the summer and fall of 1998 using 7Be, a naturally occurring radioisotope produced in the atmosphere. Decay-corrected activities and inventories of 7Be were measured in bed sediment and in suspended particles. Beryilium-7 activities generally decreased with depth in the top 5-10 cm of sediments and ranged from undetectable to ???0.9 pCi cm-3. Inventories of 7Be, calculated from the sum of activities from all depths, ranged from 0.87 to 3.74 pCi cm-2, and the values covaried between sites likely reflecting a common atmospheric input signal. Activities of 7Be did not correlate directly with rainfall. Partitioning the 7Be flux into "new" and "residual" components indicated that net deposition was occurring most of the time during the summer. Net erosion, however, was observed at the upstream site from the final collection in the fall. This erosion event was estimated to have removed 0.10 g (cm of sediment)-2, corresponding to ???0.5 cm of sediment depth, and ???6-10 kg of polychlorinated biphenyls (PCBs) over the whole deposit. Short-term accumulation rates were up to ???130 times higher than the long-term rates calculated from 137Cs profiles, suggesting an extremely dynamic sediment transport environment, even within an impounded river system.Short-term (approximately monthly) sediment deposition and resuspension rates of surficial bed sediments in two PCB-laden impoundments on the Fox River, WI, were determined in the summer and fall of 1998 using 7Be, a naturally occurring radioisotope produced in the atmosphere. Decay-corrected activities and inventories of 7Be were measured in bed sediment and in suspended particles. Beryllium-7 activities generally decreased with depth in the top 5-10 cm of sediments and ranged from undetectable to approximately 0.9 pCi cm-3. Inventories of 7Be, calculated from the sum of activities from all depths, ranged from 0.87 to 3.74 pCi cm-2, and the values covaried between sites likely reflecting a common atmospheric input signal. Activities of 7Be did not correlate directly with rainfall. Partitioning the 7Be flux into `new' and `residual' components indicated that net deposition was occurring most of the time during the summer. Net erosion, however, was observed at the upstream site from the final collection in the fall. This erosion event was estimated to have removed 0.10 g (cm of sediment)-2, corresponding to approximately 0.5 cm of sediment depth, and approximately 6-10 kg of polychlorinated biphenyls (PCBs) over the whole deposit. Short-term accumulation rates were up to approximately 130 times higher than the long-term rates calculated from 137Cs profiles, suggesting an extremely dynamic sediment transport environment, even within an impounded river system.
NASA Astrophysics Data System (ADS)
Strzelecki, M. C.; Long, A. J.; Zagorski, P.
2017-12-01
The rapid retreat of glaciers observed since the end of the Little Ice Age (LIA) led to a dramatic transformation of High Arctic landscape. This change is apparent in slope, valley and glacier foreland systems, where glacigenic landforms are being denudated by fluvial, aeolian or mass-wasting processes that are being accelerated by permafrost degradation. However, the impact of these changes on the coastal zone is uncertain because of few studies of pre- and post-LIA coastal change. This paper addresses this deficiency by detailing the patterns and processes of post-LIA coastal zone changes in Svalbard - key area for observation of recent paraglacial landscape change in the High Arctic. By application of a mosaic of geomorphological, sedimentological and remote sensing techniques we proved that studied coastal systems (i.e. Billefjorden, Bellsund, Hornsund) abruptly responded to post-LIA deglaciation, permafrost thaw, extreme slope processes and shifts in glaciated catchments. Most of studied coastal systems were characterised by more rapid morphodynamic adjustments than previously thought. Under intervals characterized by a warming climate, retreating local ice masses and shortened sea-ice seasons most of studied coastal systems rapidly responded to an excess of freshly released sediments and experienced significant geomorphological changes (Figure 1). The increased supply of sediments led to the accumulation of new coastal landforms such as extensive gravel-dominated barriers, spits and tidal flats, which are highly sensitive recorders of recent environmental change. We also proved that the development of the post-LIA Svalbard coast is closely linked to the rate of sediment excavation from relict sediment storage systems, such as alluvial fans and outwash plains, that developed across a wide coast plains between the glacier valleys and the fjord during the Holocene. The results are synthesised to propose a new conceptual model of High Arctic paraglacial coastal system, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of High Arctic coastal evolution.This paper is a contribution to the NCN projects UMO2013/11/B/ST10/00283 and UMO2013/08/S/ST10/00585.
Sediment Coring of the Proglacial Lake Donguz-Orun (northern Caucasus, Russia)
NASA Astrophysics Data System (ADS)
Alexandrin, Mikhail; Solomina, Olga; Kalugin, Ivan; Darin, Andrey; Nesje, Atle
2014-05-01
So far, no high-resolution reconstructions of climate and glacier variations based on lake sediment properties are available in Caucasus Mountains. In other presently glaciated regions this approach is proved to be very useful for this purpose (e.g. Nesje et al., 2001, 2011; Bakke, 2005, Nesje, 2009) In this paper we report the first results of the sediment coring of Donguz-Orun Lake (N 43°13'26", E 42°29'35") situated in the upper reaches of Donguz-Orun-Kyol, a tributary of Baksan river in the Elbrus region of Northern Caucasus, a typical proglacial lake dammed by a lateral moraine deposited by the Donguz-Orun Glacier. It is a drainage lake with several inflowing glacial streams and effluent river Donguz-Orun. The surface area is around 105 000 m2 with a water volume of 465 000m3. The average water depth is around 4.5 m, with a maximum water depth of 14 m. The deepest part is found close to the moraine dam in the narrow northern part of the lake. This is normally consistent with this type of glacial lake systems. An intensive gravitational drift of the moraine material towards the lake is observed. These non-rounded moraine boulders constitute a significant part of the lakebed. Lacustrine sediments are present though. The coring campaign from Institute of Geography, Russian Academy of Sciences (August 2012) used a modified piston corer with a 110 mm-diameter plastic tube (Nesje, 1992) mounted on the inflatable catamaran to obtain lake sediments from Lake Donguz-Orun. A 28-cm long core was retrieved from a water depth of around 7 m. The sediments consist of regularly laminated, fine beige clay, with several interlayers of sand. The coring process appeared to be challenging due to the stiffness of clay, which led to extreme bending of the sediment layers in the basal part of the core. The original thickness of the sediments was obviously higher than observed in the core. In order to clarify the recent history of the Donguz-Orun glacier, we used lichenometry and dendrochronology for dating its lateral and terminal moraines. The upper part of the core (0-170 mm) was scanned applying X-ray fluorescent microanalysis using synchrotron radiation and sampled for dating using 137Cs and 210Pb. The assumption that the sediment stratification represents annual layering (spring flood) is generally confirmed with correlation of the Rb/Sr-ratio (that supposedly marks grain-size variations in the sediments) curve and the image of the sediment core. Calculations of Rb/Sr peaks or visual layers yield an accumulation rate of around 2 mm/yr. Analogous results (1.73 mm/yr) are derived from 137Cs-dating. With this high accumulation rate, the sediment core of Lake Donguz-Orun represents an important source of information for high-resolution reconstructions of climatic parameters and glacier variations of the region. The research project of Mikhail Alexandrin is supported by grant# 227470/F11 issued by The Research Council of Norway.
Radioiodine concentrated in a wetland.
Kaplan, Daniel I; Zhang, Saijin; Roberts, Kimberly A; Schwehr, Kathy; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Santschi, Peter H
2014-05-01
Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vandermarken, T; Croes, K; Van Langenhove, K; Boonen, I; Servais, P; Garcia-Armisen, T; Brion, N; Denison, M S; Goeyens, L; Elskens, M
2018-06-01
The Zenne River, crossing the Brussels region (Belgium) is an extremely urbanized river impacted by both domestic and industrial effluents. The objective of this study was to monitor the occurrence and activity of Endocrine Active Substances (EAS) in river water and sediments in the framework of the Environmental Quality Standards Directive (2008/105/EC and 2013/39/EU). Activities were determined using Estrogen and Dioxin Responsive Elements (ERE and DRE) Chemical Activated Luciferase Gene Expression (CALUX) bioassays. A potential contamination source of estrogen active compounds was identified in the river at an industrial area downstream from Brussels with a peak value of 938 pg E2 eq./L water (above the EQS of 0.4 ng/L) and 195 pg E2 eq./g sediment. Estrogens are more abundantly present in the sediments than in the dissolved phase. Principal Component Analysis (PCA) showed high correlations between Suspended Particulate Matter (SPM), Particulate (POC) and Dissolved Organic Carbon (DOC) and estrogenic EAS. The dioxin fractions comply with previous data and all were above the United States Environmental Protection Agency (US EPA) low-level risk, with one (42 pg TCDD eq./g sediment) exceeding the high-level risk value for mammals. The self-purifying ability of the Zenne River regarding estrogens was examined with an in vitro biodegradation experiment using the bacterial community naturally present in the river. Hill coefficient and EC 50 values (Effective Concentration at 50%) revealed a process of biodegradation in particulate and dissolved phase. The estrogenic activity was decreased by 80%, demonstrating the ability of self-purification of estrogenic compounds in the Zenne River. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamaguchi, A.; Nakamura, Y.; Fukuchi, R.; Kurano, H.; Ikehara, K.; Kanamatsu, T.; Arai, K.; Usami, K.; Ashi, J.
2017-12-01
Catastrophic tsunami of the 2011 Tohoku Earthquake was triggered by large coseismic slip reached to the Japan Trench axis (e.g. Fujiwara et al., 2011, Science; Kodaira et al., 2012, Nature Geoscience). Results of the IODP Expedition 343 (JFAST) suggest that small friction of smectite-rich pelagic clay caused slip propagation on shallow plate boundary fault (Ujiie et al., 2013, Science; Kameda et al., 2015, Geology; Moore et al., 2015, Geosphere). On the other hand, JAMSTEC high-resolution seismic profiles show that incoming sediments have large heterogeneities in thicknesses, and two areas of extremely thin sediments on the Pacific Plate (thickness less than 100 m) were found at around 39°N (Nakamura et al., AGU 2017, this session). To reconcile whether the smectite-rich pelagic clay even exists in these areas, we sampled surface sediments during the R/V Shinsei Maru KS-15-3 cruise. Seven piston cores were retrieved from seaward trench slope, horst, graben, and graben edge. Core lithologies are mainly diatomaceous ooze/clay including tephra layers, not resemble to pelagic clays discovered in JFAST. Ages of tephra layers were estimated by correlating mineral assemblages and refractive indices of volcanic glasses to Japanese widespread tephras. Averaged sedimentation rates of seaward trench slope, horst, graben, and graben edge are estimated to be 25-30, 6.5-20, 45, 0.9 cm/kyr, respectively. These sedimentation rates imply that sediments on seaward trench slope and horst have been deposited in the last 160-500 kyr, suggesting that entire pelagic sediments, including smectite-rich pelagic clay, have been removed by some reasons in the last 0.5 million years. Possible reason for such modification of sediment is near-trench igneous activity known as petit-spot volcanism (Hirano et al., 2006, Science). The lack of smectite-rich pelagic clay near 39°N of the Japan Trench is consistent with results of tsunami inversions proposing shallow large coseismic slip propagated to 39°N and stopped northward (Koketsu et al., 2011, Earth Planet. Sci. Lett.; Satake et al., 2013, Bull. Seism. Soc. Am.). In the off-Sanriku Japan Trench, slip propagation is likely to be controlled by frictional property of incoming sediments, and sediment disappearance due to petit-spot volcanism may affect rupture area segmentation.
NASA Astrophysics Data System (ADS)
Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.
2012-04-01
Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing sediment dynamics during whether extreme flood events or mass-movements due to deltaic scarp failures. The active canyon shows a classic turbiditic system with frequent spillover processes in the canyon floor/levee complex. Geotechnical measurements, a decrease in the frequency of turbidites and a fining upward sequence along the levee suggest that erosion dominates sedimentation in the canyon floor, while sedimentation dominates in the rapid levee building-up process, with sedimentation rates that exceed 3cm/yr in the proximal areas. Therefore, mechanisms controlling the sedimentary evolution on the active canyon result in a complex interplay between erosion and sedimentation. Further research will provide a detailed evaluation of the human impact on sedimentary dynamic in the Rhone Delta subaquatic canyons.
The Role of Authigenic Volcanic Ash in Marine Sediment
NASA Astrophysics Data System (ADS)
Scudder, R.; McKinley, C. C.; Thomas, D. J.; Murray, R. W.
2016-12-01
Marine sediments are a fundamental archive of the history of weathering and erosion, biological productivity, volcanic activity, patterns of deep-water formation and circulation, and a multitude of other earth, ocean, and atmosphere processes. In particular, the record and consequences of volcanic eruptions have long fascinated humanity. Volcanic ash layers are often visually stunning, and can have thicknesses of 10s of cm or more. While the ash layer records are of great importance by themselves, we are missing a key piece of information-that of the very fined grained size fractions. Dispersed ash is the very fine grained-component that has either been mixed into the bulk sediment by bioturbation, or is deposited from subaqueous eruptions, erosion of terrestrial deposits, general input during time periods of elevated global volcanism, or other mechanisms, plays an important role in the marine sediment. The presence of dispersed ash in the marine record has previously been relatively over-looked as it is difficult to identify petrographically due to its commonly extremely fine grain size and/or alteration to authigenic clay. The dispersed ash, either altered or unaltered, is extremely difficult to differentiate from detrital/terrigenous/authigenic clay, as they are all "aluminosilicates". Here we apply a combined geochemical, isotopic, and statistical technique that enables us to resolve volcanic from detrital terrigenous inputs at DSDP/ODP/IODP sites from both the Brazil Margin and the Northwest Pacific Oceans. Incorporating the combined geochemical/statistical techniques with radiogenic isotope records allows us to address paleoceanographic questions in addition to studies of the effect of sediment fluxes on carbon cycling, the relationship between volcanic ash and biological productivity of the open ocean and nutrient availability for subseafloor microbial life.
Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J
2015-11-15
During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland.
Kroon, Aart; Abermann, Jakob; Bendixen, Mette; Lund, Magnus; Sigsgaard, Charlotte; Skov, Kirstine; Hansen, Birger Ulf
2017-02-01
A wide range of delta morphologies occurs along the fringes of the Young Sound in Northeast Greenland due to spatial heterogeneity of delta regimes. In general, the delta regime is related to catchment and basin characteristics (geology, topography, drainage pattern, sediment availability, and bathymetry), fluvial discharges and associated sediment load, and processes by waves and currents. Main factors steering the Arctic fluvial discharges into the Young Sound are the snow and ice melt and precipitation in the catchment, and extreme events like glacier lake outburst floods (GLOFs). Waves are subordinate and only rework fringes of the delta plain forming sandy bars if the exposure and fetch are optimal. Spatial gradients and variability in driving forces (snow and precipitation) and catchment characteristics (amount of glacier coverage, sediment characteristics) as well as the strong and local influence of GLOFs in a specific catchment impede a simple upscaling of sediment fluxes from individual catchments toward a total sediment flux into the Young Sound.
A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia.
Cukrov, Neven; Frančišković-Bilinski, Stanislav; Hlača, Bojan; Barišić, Delko
2011-01-01
We studied metal pollution in the sediments of Rijeka harbor, including anthropogenic influence during recent decades and at the present time. Sediment profiles were collected at ten sampling points. The concentrations of 63 elements in bulk sediment were obtained using ICP-MS, and the concentrations of selected elements were evaluated by statistical factor analyses. We also calculated metal-enrichment factors and geoaccumulation indices and constructed spatial-distribution maps. Mercury (Hg) was the heaviest pollutant, with concentrations exceeding 4 mg/kg. Silver (Ag) was the second most important pollutant, with constantly increasing values. The average concentrations of the most toxic elements were comparable to those found in sediments of other ports throughout the world, and their toxicity ranged from threshold values [chromium (Cr), arsenic (As)] and midrange-effect values [cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni)] to extreme-effect values (Hg). Metal pollution has decreased during recent decades, except for Ag and barium (Ba). Copyright © 2010 Elsevier Ltd. All rights reserved.
N, Anbuselvan; D, Senthil Nathan; M, Sridharan
2018-06-01
The present study investigates the distribution of heavy metals (Fe, Cd, Co, Cr, Cu, Ni, Zn and Pb) in the surface sediments along the Coromandel Coast of Bay of Bengal as an indicator of marine pollution. Pollution indices such as Contamination factor (CF), Enrichment factor (EF) and Geo-accumulation index (I) were performed to assess the spatial distribution and pollution status of the study area. The heavy metal concentration in the study area is closely associated with grain size and organic matter. Both geoaccumulation index and metal contamination factor indicate that the sediments are free from contamination with regards to the metals Cr and Ni, followed by uncontamination to moderate contamination of Co, Cu and Zn. However, sediments are found to be extremely polluted with respect to Cd and Pb. Factor analysis reveals that the accumulation of these heavy metals in the shelf sediments are due to anthropogenic inputs from the adjacent land area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cobain, S L; Hodgson, D M; Peakall, J; Wignall, P B; Cobain, M R D
2018-01-10
Macrofauna is known to inhabit the top few 10s cm of marine sediments, with rare burrows up to two metres below the seabed. Here, we provide evidence from deep-water Permian strata for a previously unrecognised habitat up to at least 8 metres below the sediment-water interface. Infaunal organisms exploited networks of forcibly injected sand below the seabed, forming living traces and reworking sediment. This is the first record that shows sediment injections are responsible for hosting macrofaunal life metres below the contemporaneous seabed. In addition, given the widespread occurrence of thick sandy successions that accumulate in deep-water settings, macrofauna living in the deep biosphere are likely much more prevalent than considered previously. These findings should influence future sampling strategies to better constrain the depth range of infaunal animals living in modern deep-sea sands. One Sentence Summary: The living depth of infaunal macrofauna is shown to reach at least 8 metres in new habitats associated with sand injections.
Riverine C, N, Si and P transport to the coastal ocean: An overview
Peterson, David H.; Hager, Stephen W.; Schemel, Laurence E.; Cayan, Daniel R.
1988-01-01
Terrestrial ecosystems cycle and recyle inorganic nutrients including a feedback to atmospheric dry deposition and precipitation (cf. Lewis et al., 1985). Each year, however, a small fraction per unit area of the atmosphere/plant/soil flux leaks from these land-based cycles via precipitation/runoff (Meybeck, 1982). These losses are, in general, unpreventable. Moreover, such nutrient “losses” have increased with increasing human population (Wollast, 1983); although to some extent this anthropogenic component can be controlled. Most rivers eventually flow into estuaries and the coastal ocean where their natural and anthropogenic nutrient loads continue to recycle, are lost to the atmosphere, or are buried in sediment. In one extreme, when riverine nutrient concentrations are exceedingly low, as in southwestern Canadian streams (Naiman and Sibert, 1978; Stockner and Shortreed, 1978, 1985), downstream plant biomass can be nutrient limited. In the other extreme, when these nutrient concentrations are very high such as in highly populated European river basins, downstream plant biomass can increase, perhaps intensifying natural anoxia cycles within the receiving estuarine/coastal ocean waters if these waters are stratified (Rosenberg, 1985).
Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W; Bühring, Solveig I
2017-01-01
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas , indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.
Pop Ristova, Petra; Pichler, Thomas; Friedrich, Michael W.; Bühring, Solveig I.
2017-01-01
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments. PMID:29255454
NASA Astrophysics Data System (ADS)
Zhuang, Guang-Chao; Elling, Felix J.; Nigro, Lisa M.; Samarkin, Vladimir; Joye, Samantha B.; Teske, Andreas; Hinrichs, Kai-Uwe
2016-08-01
Among the most extreme habitats on Earth, dark, deep, anoxic brines host unique microbial ecosystems that remain largely unexplored. As the terminal step of anaerobic degradation of organic matter, methanogenesis is a potentially significant but poorly constrained process in deep-sea hypersaline environments. We combined biogeochemical and phylogenetic analyses with incubation experiments to unravel the origin of methane in the hypersaline sediments of Orca Basin in the northern Gulf of Mexico. Substantial concentrations of methane, up to 3.4 mM, coexisted with high concentrations of sulfate from 16 to 43 mM in two sediment cores retrieved from the northern and southern parts of Orca Basin. The strong depletion of 13C in methane (-77‰ to -89‰) points towards a biological source. While low concentrations of competitive substrates limited the significance of hydrogenotrophic and acetoclastic methanogenesis, the presence of non-competitive methylated substrates (methanol, trimethylamine, dimethyl sulfide, dimethylsulfoniopropionate) supported the potential for methane generation through methylotrophic methanogenesis. Thermodynamic calculations demonstrated that hydrogenotrophic and acetoclastic methanogenesis were unlikely to occur under in situ conditions, while methylotrophic methanogenesis from a variety of substrates was highly favorable. Likewise, carbon isotope relationships between methylated substrates and methane suggested methylotrophic methanogenesis was the major source of methane. Stable and radio-isotope tracer experiments with 13C-labeled bicarbonate, acetate and methanol and 14C-labeled methylamine indicated that methylotrophic methanogenesis was the predominant methanogenic pathway. Based on 16S rRNA gene sequences, halophilic methylotrophic methanogens related to the genus Methanohalophilus dominated the benthic archaeal community in the northern basin and also occurred in the southern basin. High abundances of methanogen lipid biomarkers such as intact polar and polyunsaturated hydroxyarchaeols were detected in sediments from the northern basin, with lower abundances in the southern basin. Strong 13C-depletion of saturated and monounsaturated hydroxyarchaeol were consistent with methylotrophic methanogenesis as the major methanogenic pathway. Collectively, the availability of methylated substrates, thermodynamic calculations, experimentally determined methanogenic activity as well as lipid and gene biomarkers support the hypothesis that methylotrophic methanogenesis is the predominant pathway of methane formation in the presence of sulfate in Orca Basin sediments.
Zonal characterization of hillslope erosion processes in a semi-arid high mountain catchment
NASA Astrophysics Data System (ADS)
Torres, Raquel; Millares, Agustín; Aguilar, Cristina; Moñino, Antonio; Ángel Losada, Miguel; José Polo, María
2013-04-01
Mediterranean and semi-arid catchments, generally suffer heterogeneous erosive processes at different spatio-temporal scales which produce, in a synergistic manner, a large amount of sediment supply. In mountainous catchments, the influence of pluvio-nival hydrological regime leads to a clear subdivision into homogeneous zones regarding the nature of hillslope processes. Here, a distinction could be addressed with 1) subsurface erosion due to saturated soil by intense snowmelt pulses and 2) steepest mid-mountain soil loss with rill/interrill, small-scale landslides and ephemeral or permanent gullying. Furthermore, the associated channels in these areas are formed by wide alluvial floodplains with important bedload contributions. This complexity conditions the evaluation of erosion and monitoring at catchment scale with elevated costs in time, devices and staff. The catchment of the Guadalfeo river encloses 1200 km², with important presence of snow in the summits height on its right margin, and semiarid low range hills with very erodible soils on its left margin. Gully erosion, landslides and stream bed-load processes, extremely actives in this area, are responsible of a real problem of soil loss and desertification with a high associated cost. This work suggests a methodology for the zonal assessment of different erosive processes taking into account the described heterogeneity and the reduction of research costs. To do this, high resolution bathymetric and topographic surveys supported in a reservoir (110 hm3) allowed the differentiation of bedload and suspended sediments as both are deposited in different locations and hence the validation of the hillslope sediment yield. In parallel, measurements in homogeneous areas were selected in order to obtain zonal results to achieve the representative processes involved. The use of portable samplers allows the remote changing of sampling routines, and thus to capture the temporal scale of the processes and the associated forcing agents. The obtained results validate the proposed methodology with adjustments/fitting between measured suspended sediment regarding the increase of volume registered at the dam. Furthermore, the measures obtained reveal a clear zonal differentiation in sediment yield which represents the heterogeneous dynamic of the processes involved.
Storm impacts and shoreline recovery: Mechanisms and controls in the southern North Sea
NASA Astrophysics Data System (ADS)
Brooks, S. M.; Spencer, T.; Christie, E. K.
2017-04-01
Storm impacts play a significant role in shoreline dynamics on barrier coastlines. Furthermore, inter-storm recovery is a key parameter determining long-term coastal resilience to climate change, storminess variability and sea level rise. Over the last decade, four extreme storms, with strong energetic waves and high still water levels resulting from high spring tides and large skew surge residuals, have impacted the shoreline of the southern North Sea. The 5th December 2013 storm, with the highest run-up levels recorded in the last 60 years, resulted in large sections of the frontline of the North Norfolk coast being translated inland by over 10 m. Storms in March and November 2007 also generated barrier scarping and shoreline retreat, although not on the scale of 2013. Between 2008 and 2013, a calm period, recovery dominated barrier position and elevation but was spatially differentiated alongshore. For one study area, Scolt Head Island, no recovery was seen; this section of the coast is being reset episodically landwards during storms. By contrast, the study area at Holkham Bay showed considerable recovery between 2008 and 2013, with barrier sections developing seaward through foredune recovery. The third study area, Brancaster Bay, showed partial recovery in barrier location and elevation. Results suggest that recovery is promoted by high sediment supply and onshore intertidal bar migration, at rates of 40 m a- 1. These processes bring sand to elevations where substrate drying enables aeolian processes to entrain and transport sand from upper foreshores to foredunes. We identify three potential sediment transport pathways that create a region of positive diffusivity at Holkham Bay. During calm periods, a general westward movement of sediment from the drift divide at Sheringham sources the intertidal bar and foredune development at Holkham Bay. However, during and following storms the drift switches to eastward, not only on the beach itself but also below the - 7 m isobath. Sediment from the eroding barrier at Brancaster Bay, and especially Scolt Head Island, also sources the sediment sink of Holkham Bay. Knowledge of foredune growth and barrier recovery in natural systems are vital aspects of future coastal management planning with accelerated sea-level rise and storminess variability.
Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada
NASA Astrophysics Data System (ADS)
Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.
2007-12-01
Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost effective remediation plan that includes minimizing future loading of the reservoir with soils capable of producing extended turbidity.
NASA Astrophysics Data System (ADS)
Toubes-Rodrigo, Mario; Potgieter-Vermaak, Sanja; Sen, Robin; Elliott, David R.; Cook, Simon J.
2017-04-01
Basal ice is a significant sub-glacial component of glaciers and ice sheets that arises from ice-bedrock/substrate interaction. As a result, basal ice of a glacier retains a distinctive physical and chemical signature characterised by a high sediment- and low bubble-content and selective ionic enrichment. Previous research concluded that sediment entrapped in the basal ice matrix originates from the bedrock/substrate, and harbours an active microbial community. However, the nature and significance of the microbial community inhabiting basal ice facies remains poorly characterised. This paper reports on an integrated chemical, mineralogical, and microbial community analysis of basal ice in the subglacial environment at Svínafellsjökull, in south-east Iceland. Basal ice sediment supported 10E7 cells g^-1 and, based on glacier velocity and sediment flux, an estimated 10E17 cells a^-1 are exported to the glacier foreland. Furthermore, 16S rRNA gene analysis highlighted a glacier basal ice bacterial community dominated by Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Sequences ascribed to chemolithotrophic-related species (Thiobacillus, Syderoxidans) were highly abundant. Minerological analyses of basal ice sediment confirmed dominant silicates and iron-containing minerals that represent susceptible substrates open to oxidation by the aforementioned chemolithotrophs. Previous studies have suggested that basal ice could constitute a good analogue for astrobiology. Svínafellsjökull and Mars geology are similar - volcanically derived rocks with a high abundance of silicates and iron-rich minerals, reinforcing this idea. Understanding where the limits of life in extreme environments, such as debris-rich basal ice, could help to unravel how life on other planets could succeed, and could help to identify which markers to use in order to find it. In dark and isolated basal ice niches, the dominating chemolithotrophic bacterial community are likely to act as primary producers, fixing carbon while weathering minerals and thus providing a plausible mechanism to explain how a basal ice microbial ecosystem can be sustained.
Barnard, P.L.; Warrick, J.A.
2010-01-01
Record flooding on the Santa Clara River of California (USA) during January 2005 injected ∼ 5 million m3 of littoral-grade sediment into the Santa Barbara Littoral Cell, approximately an order of magnitude more than both the average annual river loads and the average annual alongshore littoral transport in this portion of the cell. This event appears to be the largest sediment transport event on record for a Southern California river. Over 170 m of local shoreline (mean high water (MHW)) progradation was observed as a result of the flood, followed by 3 years of rapid local shoreline recession. During this post-flood stage, linear regression-determined shoreline change rates are up to −45 m a− 1 on the subaerial beach (MHW) and − 114 m a− 1 on the submarine delta (6 m isobath). Starting approximately 1 km downdrift of the river mouth, shoreline progradation persisted throughout the 3-year post-flood monitoring period, with rates up to + 19 m a− 1. Post-flood bathymetric surveys show nearshore (0 to 12 m depth) erosion on the delta exceeding 400 m3/m a− 1, more than an order of magnitude higher than mean seasonal cross-shore sediment transport rates in the region. Changes were not constant with depth, however; sediment accumulation and subsequent erosion on the delta were greatest at − 5 to − 8 m, and accretion in downdrift areas was greatest above –2 m. Thus, this research shows that the topographic bulge (or “wave”) of sediment exhibited both advective and diffusive changes with time, although there were significant variations in the rates of change with depth. The advection and diffusion of the shoreline position was adequately reproduced with a simple “one line” model, although these modeling techniques miss the important cross-shore variations observed in this area. This study illustrates the importance of understanding low-frequency, high volume coastal discharge events for understanding short- and long-term sediment supply, littoral transport, and beach and nearshore evolution in coastal systems adjacent to river mouths.
Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W.J.
2016-01-01
Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366–412 m) and a deep site near Norfolk Canyon (NCS, 1467–1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This study is the first investigation of seep infauna along the U.S. Atlantic slope north of the Blake Ridge Diapir and provides a baseline for future regional comparisons to other seep habitats along the Atlantic margin.
NASA Astrophysics Data System (ADS)
Bourque, Jill R.; Robertson, Craig M.; Brooke, Sandra; Demopoulos, Amanda W. J.
2017-03-01
Hydrocarbon seeps support distinct benthic communities capable of tolerating extreme environmental conditions and utilizing reduced chemical compounds for nutrition. In recent years, several locations of methane seepage have been mapped along the U.S. Atlantic continental slope. In 2012 and 2013, two newly discovered seeps were investigated in this region: a shallow site near Baltimore Canyon (BCS, 366-412 m) and a deep site near Norfolk Canyon (NCS, 1467-1602 m), with both sites containing extensive chemosynthetic mussel bed and microbial mat habitats. Sediment push cores, suction samples, and Ekman box cores were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 μm) in mussel beds, mats, and slope habitats at both sites. Community data from the deep site were also assessed in relation to the associated sediment environment (organic carbon and nitrogen, stable carbon and nitrogen isotopes, grain size, and depth). Infaunal assemblages and densities differed both between depths and among habitat types. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments and were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in BCS microbial mat habitats, but higher in mussel and slope sediments compared to NCS habitats. Multivariate statistical analysis revealed specific sediment properties as important for distinguishing the macrofaunal communities, including larger grain sizes present within NCS microbial mat habitats and depleted stable carbon isotopes (δ13C) in sediments present at mussel beds. These results suggest that habitat differences in the quality and source of organic matter are driving the observed patterns in the infaunal assemblages, including high β diversity and high variability in the macrofaunal community composition. This study is the first investigation of seep infauna along the U.S. Atlantic slope north of the Blake Ridge Diapir and provides a baseline for future regional comparisons to other seep habitats along the Atlantic margin.
NASA Astrophysics Data System (ADS)
Uebayashi, Hirotoshi; Kawabe, Hidenori; Kamae, Katsuhiro
2012-05-01
Estimating the velocity structure of microseisms based on the horizontal-to-vertical spectral ratio (HVSR) is an extremely practical means of modelling the subsurface structure necessary for strong ground motion predictions. Thus, beyond the traditional framework of the 1-D velocity structure, the HVSR, derived from observation records of microseisms (microtremors with a frequency of about 1 Hz or lower originating from ocean waves) in areas where the sediment-bedrock interface has irregular topographies, was reproduced by finite differential method (FDM)-based simulation. This study was conducted for the Osaka sedimentary basin, the sediment-bedrock interface of which is three-dimensionally complicated and contains grabens, steps and ramps, because high-precision models for this basin have been constructed based on a wide range of existing exploration information. The HVSRs of two components (the east-west direction and the north-south direction to the vertical direction) derived from the FDM simulations were both well reproduced in terms of not only the peak frequency (HVfp) but also the spectral curves for a number of observation sites above the sediment-bedrock interface with complex geological features. These results suggest that with a sufficient number of observation sites for microtremors and highly accurate a priori information on geophysical constants in the sedimentary layer that spatially serves as the reference, the irregular-shaped sediment-bedrock interface may be estimated based on how well the HVSR curves and the HVfp agree between the observations and simulations. Furthermore, the FDM simulations confirmed observed phenomena such as the polarization of the amplitude of horizontal motions and broad or 'plateau-like' HVSR peaks of microseisms in grabens and step structures. It was determined that the HVfps in areas with these strong irregularities are higher than the peak frequency of Rayleigh wave ellipticity for the fundamental mode (RHVfp) based on the 1-D velocity structure. In addition, there was a difference of about 20 per cent at most between the HVfp derived from FDM simulations and the RHVfp in areas where the depth of the sediment-bedrock interface varies only slightly.
NASA Astrophysics Data System (ADS)
Splinter, Kristen D.; Gonzalez, Maria V. G.; Oltman-Shay, Joan; Rutten, Jantien; Holman, Robert
2018-05-01
This contribution describes 10 years of observed sandbar and shoreline cross-shore position variability at a meso-tidal, high energy, multiple sandbar beach. To examine relationships between the temporal variability in shoreline/sandbar position with offshore wave forcing, a simple equilibrium model is applied to these data. The analysis presented in this paper shows that the equilibrium model is skilled at predicting the alongshore-averaged, time-varying position of the shoreline (R = 0.82) and the outer sandbar position (R = 0.75), suggesting that these end members of the nearshore sediment system are most strongly influenced by offshore wave forcing in a predictable, equilibrium-forced manner. The middle and inner bars are hypothesized to act as sediment transport pathways between the shoreline and the outer bar. Prediction of these more transient features by an equilibrium model was less skilful. Model coefficients reveal that these two end members (outer bar and shoreline) in the sediment system act in opposite directions to changes in the annual offshore wave forcing. During high wave events, sediment is removed from the shoreline and deposited in the nearshore sediment system with simultaneous landward retreat of the shoreline and offshore migration of the outer sandbar. While both end member features have cycles at annual and inter-annual scales, their respective equilibrium response factor differs by almost a factor of 10, with the shoreline responding around an inter-annual mean (ϕ = 1000 days) and the outer bar responding around a seasonal mean (ϕ = 170 days). The model accurately predicts shoreline response to both mild (e.g. 2004/05, 2008/09) and extreme (e.g. 2005/06, 2009/10) winter storms, as well as their summer recovery. The more mobile and dynamic outer sandbar is well-modelled during typical winters. Summer onshore sandbar migration of the outer bar in 2005 and 2006 is under-predicted as the system transitioned between a triple (winter) and double (summer) sandbar system. The changing of the number of bars present in the system is something that this simple model cannot predict. Analysis of the data suggests that this multi-bar system adjusts its cross-shore seasonal movement when there is a significant change in the sediment supply to the system (e.g., nourishment projects, severe storms).
NASA Astrophysics Data System (ADS)
Jouve, Guillaume; Vidal, Laurence; Adallal, Rachid; Bard, Edouard; Benkaddour, Abdel; Chapron, Emmanuel; Courp, Thierry; Dezileau, Laurent; Hébert, Bertil; Rhoujjati, Ali; Simonneau, Anaelle; Sonzogni, Corinne; Sylvestre, Florence; Tachikawa, Kazuyo; Viry, Elisabeth
2016-04-01
Since the 1990s, the Mediterranean basin undergoes an increase in precipitation events and extreme droughts likely to intensify in the XXI century, and whose origin is attributable to human activities since 1850 (IPCC, 2013). Regional climate models indicate a strengthening of flood episodes at the end of the XXI century in Morocco (Tramblay et al, 2012). To understand recent hydrological and paleohydrological variability in North Africa, our study focuses on the macro- and micro-scale analysis of sedimentary sequences from Lake Azigza (Moroccan Middle Atlas Mountains) covering the last few centuries. This lake is relevant since local site monitoring revealed that lake water table levels were correlated with precipitation regime (Adallal R., PhD Thesis in progress). The aim of our study is to distinguish sedimentary facies characteristic of low and high lake levels, in order to reconstruct past dry and wet periods during the last two hundred years. Here, we present results from sedimentological (lithology, grain size, microstructures under thin sections), geochemical (XRF) and physical (radiography) analyses on short sedimentary cores (64 cm long) taken into the deep basin of Lake Azigza (30 meters water depth). Cores have been dated (radionuclides 210Pb, 137Cs, and 14C dating). Two main facies were distinguished: one organic-rich facies composed of wood fragments, several reworked layers and characterized by Mn peaks; and a second facies composed of terrigenous clastic sediments, without wood nor reworked layers, and characterized by Fe, Ti, Si and K peaks. The first facies is interpreted as a high lake level stand. Indeed, the highest paleoshoreline is close to the vegetation, and steeper banks can increase the current velocity, allowing the transport of wood fragments in case of extreme precipitation events. Mn peaks are interpreted as Mn oxides precipitations under well-oxygenated deep waters after runoff events. The second facies is linked to periods of increased detrital input by incising sediments during low lake levels. This interpretation is supported by chronological jumps in this facies (incoherent old 14C ages). Finally, the presence of numerous anhydrous calcium sulfates in the recent low lake level facies supports the observation of a decreasing lake level for the last decades (Flower et al., 1989; Adallal R., PhD Thesis in progress). Our study demonstrates that several lake level changes occurred during the past two hundred years, and highlights the unprecedented lake level drop since the 1980s. Bibliography Flower, R.J., Stevenson, A.C., Dearing, J.A., Foster, I.D., Airey, A., Rippey, B.,Wilson, J.P.F. & Appleby, P.G. (1989). Catchment disturbance inferred from paleolimnological studies of three contrasted sub-humid environments in Morocco. J Paleolimnol 1: 293-322. IPCC, AR 5. Climate Change (2013). The physical Science Report. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E. 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary Change 82-83: 104-114.
Transport of free and particulate-associated bacteria in karst
NASA Astrophysics Data System (ADS)
Mahler, B. J.; Personné, J.-C.; Lods, G. F.; Drogue, C.
2000-12-01
Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst.
NASA Astrophysics Data System (ADS)
Brigatti, M. F.; Elmi, C.; Laurora, A.; Malferrari, D.; Medici, L.
2009-04-01
An extremely severe aspect, both from environmental and economic viewpoint, is the management of polluted sediments removed from drainage and irrigation canals. Canals, in order to retain their functionality over the time, need to have their beds, periodically cleaned from sediments there accumulating. The management of removed sediments is extremely demanding, also from an economical perspective, if these latter needs to be treated as dangerous waste materials, as stated in numerous international standards. Furthermore the disposal of such a large amount of material may introduce a significant environmental impact as well. An appealing alternative is the recovery or reuse of these materials, for example in brick and tile industry, after obviously the application of appropriate techniques and protocols that could render these latter no longer a threat for human health. The assessment of the effective potential danger for human health and ecosystem of sediments before and after treatment obviously requires both a careful chemical and mineralogical characterization and, even if not always considered in the international standards, the definition of the coordination shell of heavy metals dangerous for human health, as a function of their oxidation state and coordination (e.g. Cr and Pb), and introducing technological constraints or affecting the features of the end products. Fe is a good representative for this second category, as the features of the end product, such as color, strongly depend not only from Fe concentration but also from its oxidation state, speciation and coordination. This work will first of all provide mineralogical characterization of sediments from various sampling points of irrigation and drainage canals of Po river region in the north-eastern of Italy. Samples were investigated with various approaches including X-ray powder diffraction under non-ambient conditions, thermal analysis and EXAFS spectroscopy. Obtained results, and in particular EXAFS spectra were used to define and optimize the technological variables of the recovery process.
Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments.
Wentzel, Lia Costa Pinto; Inforsato, Fábio José; Montoya, Quimi Vidaurre; Rossin, Bruna Gomes; Nascimento, Nadia Regina; Rodrigues, André; Sette, Lara Durães
2018-06-19
Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.
Atmospheric Rivers and floods in Southern California: Climate forcing of extreme weather events.
NASA Astrophysics Data System (ADS)
Hendy, I. L.; Heusser, L. E.; Napier, T.; Pak, D. K.
2016-12-01
Southern California has a Mediterranean type climate characterized by warm dry summers associated with the North Pacific High pressure system and cool, wet winters primarily associated in low pressure systems originating in the high latitude North Pacific. Extreme precipitation, however, is connected to strong zonal flow that brings warm, moist tropical across the Pacific (AKA atmospheric river). Here we present a revised record of flood events in Santa Barbara Basin that have been linked to atmospheric rivers focusing on events associated with transitions between known climate events using new radiocarbon chronology and detailed sediment composition. Flood events identified by homogenous grey layers are present throughout the Holocene with a recurrence every 110 years, but are particularly common (85 year recurrence) between 4,200 and 2,000 years BP. Interval between 6,500 and 4,500 commonly associated with dry conditions in California was associated with fewer flood events (recurrence interval increased to 176 years). Intervals of high lake levels in California associated with pluvials appear to be associated with more frequent extreme precipitation events. The longest recurrence interval (535 years) is associated with the Medieval Climate Anomaly. The season in which the atmospheric river occurs was estimated using the relative abundance of pollen within the flood deposit. The 735 and 1270 C.E. flood events are associated with May-June flowering vegetation, while the most recent events (1861-2 and 1761 C.E.) were associated with November to March flowering vegetation. This agrees with the December-January rainfall records of the historic 1861-62. We conclude the frequency of extreme precipitation events appears to increase as climate cools (e.g. the Little Ice Age).
NASA Astrophysics Data System (ADS)
Peterse, Francien; Vonk, Jorien E.; Holmes, R. Max; Giosan, Liviu; Zimov, Nikita; Eglinton, Timothy I.
2014-08-01
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are analyzed in different lakes of the Mackenzie (Canadian Arctic) and Kolyma (Siberian Arctic) River basins to evaluate their sources and the implications for brGDGT-based paleothermometry in high-latitude lakes. The comparison of brGDGT distributions and concentrations in the lakes with those in river suspended particulate matter, riverbank sediments, and permafrost material indicates that brGDGTs in Arctic lake sediments have mixed sources. In contrast to global observations, distributional offsets between brGDGTs in Arctic lakes and elsewhere in the catchment are minor, likely due to the extreme seasonality and short window of biological production at high latitudes. Consequently, both soil- and lake-calibrated brGDGT-based temperature proxies return sensible temperature estimates, even though the mean air temperature (MAT) in the Arctic is below the calibration range. The original soil-calibrated MBT-CBT (methylation of branched tetraethers-cyclisation of branched tetraethers) proxy generates MATs similar to those in the studied river basins, whereas using the recently revised MBT'-CBT calibration overestimates MAT. The application of the two global lake calibrations, generating summer air temperatures (SAT) and MAT, respectively, illustrates the influence of seasonality on the production of brGDGTs in lakes, as the latter overestimates actual MAT, whereas the SAT-based lake calibration accounts for this influence and consequently returns more accurate temperatures. Our results in principle support the application of brGDGT-based temperature proxies in high-latitude lakes in order to obtain long-term paleotemperature records for the Arctic, although the calibration and associated transfer function have to be selected with care.
Effects of seagrass bed removal for tourism purposes in a Mauritian bay.
Daby, D
2003-01-01
Stresses and shocks are increasing on the main natural assets in Mauritius (Western Indian Ocean) by tourism (marine-based) development activities. Seagrasses are removed by hotels in the belief that they are unsightly or harbour organisms causing injury to bathers. Environmental changes (e.g. sediment characteristics and infauna distribution, water quality, seagrass biomass) resulting from clearing of a seagrass bed to create an aesthetically pleasant swimming zone for clients of a hotel were monitored during June 2000-July 2001, and compared to conditions prevailing in an adjacent undisturbed area. Key observations in the disturbed area were: highly turbid water overlying a destabilized lagoon seabed, complete loss of sediment infauna, and dramatic dry weight biomass declines (e.g. 72 and 65% in S. isoetifolium and H. uninervis, respectively). Such disruptions draw-down resilience rendering the marine habitats less robust and more vulnerable to environmental change and extreme events, with higher risks of chaos and ecological collapse, and constitute a major threat to the industry itself.
Metal concentration in the tourist beaches of South Durban: An industrial hub of South Africa.
Vetrimurugan, E; Shruti, V C; Jonathan, M P; Roy, Priyadarsi D; Kunene, N W; Villegas, Lorena Elizabeth Campos
2017-04-15
South Durban basin of South Africa has witnessed tremendous urban, industrial expansion and mass tourism impacts exerting significant pressure over marine environments. 43 sediment samples from 7 different beaches (Bluff beach; Ansteys beach; Brighton beach; Cutting beach; Isipingo beach; Tiger Rocks beach; Amanzimtoti beach) were analyzed for acid leachable metals (ALMs) Fe, Mg, Mn, Cr, Cu, Mo, Ni, Co, Pb, Cd, Zn and Hg. The metal concentrations found in all the beaches were higher than the background reference values (avg. in μgg -1 ) for Cr (223-352), Cu (27.67-42.10), Mo (3.11-4.70), Ni (93-118), Co (45.52-52.44), Zn (31.26-57.01) and Hg (1.13-2.36) suggesting the influence of industrial effluents and harbor activities in this region. Calculated geochemical indexes revealed that extreme contamination of Cr and Hg in all the beach sediments and high Cr and Ni levels poses adverse biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sissakian, Varoujan K.
2013-08-01
The Iraqi territory could be divided into four main tectonic zones; each one has its own characteristics concerning type of the rocks, their age, thickness and structural evolution. These four zones are: (1) Inner Platform (stable shelf), (2) Outer Platform (unstable shelf), (3) Shalair Zone (Terrain), and (4) Zagros Suture Zone. The first two zones of the Arabian Plate lack any kind of metamorphism and volcanism. The Iraqi territory is located in the extreme northeastern part of the Arabian Plate, which is colliding with the Eurasian (Iranian) Plate. This collision has developed a foreland basin that includes: (1) Imbricate Zone, (2) High Folded Zone, (3) Low Folded Zone and (4) Mesopotamia Foredeep. The Mesopotamia Foredeep, in Iraq includes the Mesopotamia Plain and the Jazira Plain; it is less tectonically disturbed as compared to the Imbricate, High Folded and Low Folded Zones. Quaternary alluvial sediments of the Tigris and Euphrates Rivers and their tributaries as well as distributaries cover the central and southeastern parts of the Foredeep totally; it is called the Mesopotamian Flood Plain. The extension of the Mesopotamia Plain towards northwest however, is called the Jazira Plain, which is covered by Miocene rocks. The Mesopotamia Foredeep is represented by thick sedimentary sequence, which thickens northwestwards including synrift sediments; especially of Late Cretaceous age, whereas on surface the Quaternary sediments thicken southeastwards. The depth of the basement also changes from 8 km, in the west to 14 km, in the Iraqi-Iranian boarders towards southeast. The anticlinal structures have N-S trend, in the extreme southern part of the Mesopotamia Foredeep and extends northwards until the Latitude 32°N, within the Jazira Plain, there they change their trends to NW-SE, and then to E-W trend. The Mesozoic sequence is almost without any significant break, with increase in thickness from the west to the east, attaining 5 km. The sequence forms the main source and reservoir rocks in the central and southern parts of Iraq. The Cenozoic sequence consists of Paleogene open marine carbonates, which grades upwards into Neogene lagoonal marine; of Early Miocene and evaporitic rocks; of Middle Miocene age, followed by thick molasses of continental clastics that attain 3500 m in thickness; starting from Late Miocene. The Quaternary sediments are very well developed in the Mesopotamia Plain and they thicken southwards to reach about 180 m near Basra city; in the extreme southeastern part of Iraq. The Iraqi Inner Platform (stable shelf) is a part of the Arabian Plate, being less affected by tectonic disturbances; it covers the area due to south and west of the Euphrates River. The main tectonic feature in this zone that had affected on the geology of the area is the Rutbah Uplift; with less extent is the Ga'ara High. The oldest exposed rocks within the Inner Platform belong to Ga'ara Formation of Permian age; it is exposed only in the Ga'ara Depression. The Permian rocks are overlain by Late Triassic rocks; represented by Mulussa and Zor Hauran formations, both of marine carbonates with marl intercalations. The whole Triassic rocks are absent west, north and east of Ga'ara Depression. Jurassic rocks, represented by five sedimentary cycles, overlie the Triassic rocks. Each cycle consists of clastic rocks overlain by carbonates, being all of marine sediments; whereas the last one (Late Jurassic) consists of marine carbonates only. All the five formations are separated from each other by unconformable contacts. Cretaceous rocks, represented by seven sedimentary cycles, overlie the Jurassic rocks. Marine clastics overlain by marine carbonates. Followed upwards (Late Cretaceous) by continental clastics overlain by marine carbonates; then followed by marine carbonates with marl intercalations, and finally by marine clastics overlain by carbonates; representing the last three cycles, respectively. The Paleocene rocks form narrow belt west of the Ga'ara Depression, represented by Early-Late Paleocene phosphatic facies, which is well developed east of Rutbah Uplift and extends eastwards in the Foredeep. Eocene rocks; west of Rutbah Uplift are represented by marine carbonates that has wide aerial coverage in south Iraq. Locally, east of Rutbah Uplift unconformable contacts are recorded between Early, Middle and Late Eocene rocks. During Oligocene, in the eastern margin of the Inner Platform, the Outer Platform was uplifted causing very narrow depositional Oligocene basin. Therefore, very restricted exposures are present in the northern part of the Inner Platform (north of Ga'ara Depression), represented by reef, forereef sediments of some Oligocene formations. The Miocene rocks have no exposures west of Rutbah Uplift, but north and northwestwards are widely exposed represented by Early Miocene of marine carbonates with marl intercalations. Very locally, Early Miocene deltaic clastics and carbonates, are interfingering with the marine carbonates. The last marine open sea sediments, locally with reef, represent the Middle Miocene rocks and fore reef facies that interfingers with evaporates along the northern part of Abu Jir Fault Zone, which is believed to be the reason for the restriction of the closed lagoons; in the area. During Late Miocene, the continental phase started in Iraq due to the closure of the Neo-Tethys and collision of the Sanandaj Zone with the Arabian Plate. The continental sediments consist of fine clastics. The Late Miocene - Middle Pliocene sediments were not deposited in the Inner Platform. The Pliocene-Pleistocene sediments are represented by cyclic sediments of conglomeratic sandstone overlain by fresh water limestone, and by pebbly sandstone. The Quaternary sediments are poorly developed in the Inner Platform. Terraces of Euphrates River and those of main valleys represent pleistocene sediments. Flood plain of the Euphrates River and those of large valleys represent Holocene sediments. Residual soil is developed, widely in the western part of Iraq, within the western marginal part of the Inner Platform.
A zonation technique for landslide susceptibility in southern Taiwan
NASA Astrophysics Data System (ADS)
Chiang, Jie-Lun; Tian, Yu-Qing; Chen, Yie-Ruey; Tsai, Kuang-Jung
2016-04-01
In recent years, global climate changes violently, extreme rainfall events occur frequently and also cause massive sediment related disasters in Taiwan. The disaster seriously hit the regional economic development and national infrastructures. For example, in August, 2009, the typhoon Morakot brought massive rainfall especially in the mountains in Chiayi County and Kaohsiung County in which the cumulative maximum rainfall was up to 2900 mm; meanwhile, the cumulative maximum rainfall was over 1500m.m. in Nantou County, Tainan County and Pingtung County. The typhoon caused severe damage in southern Taiwan. The study will search for the influence on the sediment hazards caused by the extreme rainfall and hydrological environmental changes focusing on southern Taiwan (including Chiayi, Tainan, Kaohsiung and Pingtung). The instability index and kriging theories are applied to analyze the factors of landslide to determine the susceptibility in southern Taiwan. We collected the landslide records during the period year, 2007~2013 and analyzed the instability factors including elevation, slope, aspect, soil, and geology. Among these factors, slope got the highest weight. The steeper the slope is, the more the landslides occur. As for the factor of aspect, the highest probability falls on the Southwest. However, this factor has the lowest weight among all the factors. Likewise, Darkish colluvial soil holds the highest probability of collapses among all the soils. Miocene middle Ruifang group and its equivalents have the highest probability of collapses among all the geologies. In this study, Kriging was used to establish the susceptibility map in southern Taiwan. The instability index above 4.21 can correspond to those landslide records. The potential landslide area in southern Taiwan, where collapses more likely occur, belongs to high level and medium-high level; the area is 5.12% and 17.81% respectively.
Kolaříková, Kateřina; von Tümpling, Wolf; Bartels, Peter
2013-05-01
Sediments of the Elbe River have been extremely polluted by contaminants originating from previous large-scale hexachlorocyclohexane (HCH) production and the application of γ-HCH (lindane) in its catchment in the second half of the twentieth century. In order to gain knowledge on bioaccumulation processes at lower trophic levels, field investigations of HCHs in macroinvertebrates were carried out along the longitudinal profile of the Elbe and tributary. Among the sites studied, concentrations in macroinvertebrates ranged within five orders of magnitude (0.01-100 μg/kg). In general, lower values of HCH isomers were observed at all Czech sites (mostly <1 μg/kg) compared with those in Germany. At the most contaminated site, Spittelwasser brook (a tributary of the Mulde), extremely high concentrations were measured (up to 234 μg/kg α-HCH and 587 μg/kg β-HCH in Hydropsychidae). In contrast, the Obříství site, though also influenced by HCH production facilities, showed only negligibly elevated values (mostly <1 μg/kg). Results showed that fairly high levels of α-HCH and β-HCH compared to γ-HCH can still be detected in aquatic environments of the Elbe catchment, and these concentrations are decreasing over time to a lesser extent than γ-HCH. Higher HCH concentrations in sediments in the springtime are considered to be the result of erosion and transport processes during and after spring floods, and lower concentrations at sites downstream are thought to be caused by the time lapse involved in the transportation of contaminated particles from upstream. In addition, comparison with fish (bream) data from the literature revealed no increase in tissue concentrations between invertebrates and fish.
Life detection strategy for Jovian's icy moons: Lessons from subglacial Lake Vostok exploration
NASA Astrophysics Data System (ADS)
Bulat, Sergey; Alekhina, Irina; Marie, Dominique; Petit, Jean-Robert
2010-05-01
The objective was to estimate the microbial content of accretion ice originating from the subglacial Lake Vostok buried beneath 4-km thick East Antarctic ice sheet with the ultimate goal to discover microbial life in this extreme icy environment. The DNA study constrained by Ancient DNA research criteria was used as a main approach. The flow cytometry was implemented in cell enumerating. As a result, both approaches showed that the accretion ice contains the very low unevenly distributed biomass indicating that the water body should also be hosting a highly sparse life. Up to now, the only accretion ice featured by mica-clay sediments presence allowed the recovery a pair of bacterial phylotypes. This unexpectedly included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and one more unclassified phylotype both passing numerous contaminant controls. In contrast, the deeper and cleaner accretion ice with no sediments presence and near detection limit gas content gave no reliable signals. Thus, the results obtained testify that the search for life in the Lake Vostok is constrained by a high chance of forward-contamination. The subglacial Lake Vostok seems to represent the only extremely clean giant aquatic system on the Earth providing a unique test area for searching for life on icy worlds. The life detection strategy for (sub)glacial environments elsewhere (e.g., Jovian's Europa) should be based on stringent decontamination procedures in clean-room facilities, establishment of on-site contaminant library, implementation of appropriate methods to reach detection level for signal as low as possible, verification of findings through ecological settings of a given environment and repetition at an independent laboratory within the specialized laboratory network.
Revisiting the 1993 historical extreme precipitation and damaging flood event in Central Nepal
NASA Astrophysics Data System (ADS)
Marahatta, S.; Adhikari, L.; Pokharel, B.
2017-12-01
Nepal is ranked the fourth most climate-vulnerable country in the world and it is prone to different weather-related hazards including droughts, floods, and landslides [Wang et al., 2013; Gillies et al., 2013]. Although extremely vulnerable to extreme weather events, there are no extreme weather warning system established to inform public in Nepal. Nepal has witnessed frequent drought and flood events, however, the extreme precipitation that occurred on 19-20 July 1993 created a devastating flood and landslide making it the worst weather disaster in the history of Nepal. During the second week of July, Nepal and northern India experienced abnormal dry condition due to the shifting of the monsoon trough to central India. The dry weather changed to wet when monsoon trough moved northward towards foothills of the Himalayas. Around the same period, a low pressure center was located over the south-central Nepal. The surface low was supported by the mid-, upper-level shortwave and cyclonic vorticity. A meso-scale convective system created record breaking one day rainfall (540 mm) in the region. The torrential rain impacted the major hydropower reservoir, Bagmati barrage in Karmaiya and triggered many landslides and flash floods. The region had the largest hydropower (Kulekhani hydropower, 92 MW) of the country at that time and the storm event deposited extremely large amount of sediments that reduced one-fourth (4.8 million m3) of reservoir dead storage (12 million m3). The 1-in-1000 years flood damaged the newly constructed barrage and took more than 700 lives. Major highways were damaged cutting off supply of daily needed goods, including food and gas, in the capital city, Kathmandu, for more than a month. In this presentation, the meteorological conditions of the extreme event will be diagnosed and the impact of the sedimentation due to the flood on Kulekhani reservoir and hydropower generation will be discussed.
NASA Astrophysics Data System (ADS)
O'Driscoll, Kieran; Doherty, Rory; Robinson, Jill; Chiang, Wen-Son; Kao Kao, Ruey-Chy
2015-04-01
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals. An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region. The results indicate that large amounts of PBDEs presently reside in all model compartments - air, soil, water, and sediment - with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities. Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat less than measured values. In sediment, model results are at the high end of measured values.
Knebel, H.J.
1993-01-01
Three modern sedimentary environments have been identified and mapped across the glaciated Boston Harbor estuary and adjacent inner shelf of Massachusetts Bay by means of an extensive set of sidescan sonar records and supplemental bathymetric, sedimentary, subbottom and bottom-current data. 1. (1) Environments of erosion and nondeposition appear on the sonographs either as patterns with isolated reflections (caused by outcrops of bedrock, glacial drift, and coastal plain rocks) or as patterns of strong backscatter (caused by coarse-grained lag deposits). Sediments in these environments range from boulder fields to gravelly sands with megaripples. Inside the harbor, areas of erosion or nondeposition are found primarily near mainland and insular shores and within constricted tidal channels, whereas, on the shelf, they are present over extensive areas of hummocky topography near the coast and atop local bathymetric highs offshore. 2. (2) Environments of sediment reworking are characterized on the sonographs by patterns with patches of strong to weak backscatter caused by a combination of erosional and depositional processes. These environments have diverse grain sizes that range from sandy gravels to muds. Within the harbor, the locations of reworked sediments are uncorrelated with the bottom topography, but, on the shelf, they are found on the lower flanks of bathymetric highs, within broad lows and in relatively deep water (30-50 m). 3. (3) Environments of deposition are depicted on the sonographs as uniform patterns of weak backscatter. These areas contain relatively fine-grained muddy sands and muds. Inside the harbor, depositional environments are found over extensive subtidal flats and within sheltered depressions, whereas, on the shelf, they are restricted to broad lows mainly in deep water. The extreme patchiness of modern sedimentary environments within the Boston Harbor-Massachusetts Bay system reflects the interaction between the irregular bottom topography and both geologic and oceanographic processes. The estuarine part of the system is an effective trap for fine-grained detritus because of its protected nature, low wave climate, and large supply of sediments. The open shelf, however, is largely mantled by winnowed and sorted sediments as a result of erosion during past sea-level fluctuations, sediment resuspension and transport by modern waves and currents, and a spatially variable supply of fine-grained sediments.
Magnesium isotope geochemistry in arc volcanism.
Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine
2016-06-28
Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.
NASA Astrophysics Data System (ADS)
Dalvi, Shrutika; Greenwood, Philip
2016-04-01
Impatiens glandulifera (Common English Name - Himalayan Balsam) is a non native annual and highly invasive plant that was introduced into parts of Europe from the Himalaya during the nineteenth century as a colourful adornment to parks and gardens. This Plant colonises areas along the river banks, preferably wet, depositional sites, and displaces natural vegetation. The plant is killed by cold weather. The leaves area of riverbank previously occupied by the plant extremely vulnerable to soil erosion until new plant germinates in the following spring. Research work undertaken in the northwest Switzerland and the soutwestern United Kingdom established s link between accelerated soil erosion caused by Impatiens glandulifera and its detrimental impact on native biodiversity of riparian zone of river catchment area. This study focueses on the potential impact of such erosion on sediment quality. A priory reasoning suggests that the preference of Impatiens glandulifera on young depsotional sites near watercourses affects sediment quality. In this study, the results of a soil quality analysis along Impatiens glandulifera-contaminated river banks is presented. Soil physical and chemical properties are compared to non-affected sites to assess the potential impact of preferential erosion on water quality. In addtiion, soil surface profile (SSP) measuring based on by erosion pins, a micro profile bridge and a digital calliper at different selected locations along the riparian zone of river catchment area is used to determine erosion rates and determine sediment transfer from the riparian zone into the rivers.
DEMONSTRATION BULLETIN: IN SITU VITRIFICATION - GEOSAFE CORPORATION
in Situ Vitrification (ISV) is designed to treat soils, sludges, sediments, and mine tailings contaminated with organic and inorganic compounds. The process uses electrical current to heat (mett) and vitrify the soil in place. Organic contaminants are decomposed by the extreme h...
The Towuti Drilling Project: A new, long Pleistocene record of Indo-Pacific Climate
NASA Astrophysics Data System (ADS)
Russell, James M.; Vogel, Hendrik; Bijaksana, Satria; Melles, Martin
2016-04-01
Lake Towuti is the largest tectonic lake in Indonesia, and the longest known terrestrial sediment archive in Southeast Asia. Lake Towuti's location in central Indonesia provides an important opportunity to reconstruct long-term changes in terrestrial climate in the Western Pacific warm pool, heart of the El Niño-Southern Oscillation. Lake Towuti has extremely high rates of floral and faunal endemism and is surrounded by one of the most diverse tropical forests on Earth making it a hotspot of Southeast Asian biodiversity. The ultramafic rocks and soils surrounding Lake Towuti provide high concentrations of metals to the lake and its sediments that feed a diverse, exotic microbial community. From May - July, 2015, the Towuti Drilling Project, consisting of more than 30 scientists from eight countries, recovered over 1,000 meters of new sediment core from 3 different drill sites in Lake Towuti, including cores through the entire sediment column to bedrock. These new sediment cores will allow us to investigate the history of rainfall and temperature in central Indonesia, long-term changes in the composition of the region's rainforests and diverse aquatic ecosystems, and the micro-organisms living in Towuti's exotic, metal-rich sediments. The Indo-Pacific region plays a pivotal role in the Earth's climate system, regulating critical atmospheric circulation systems and the global concentration of atmospheric water vapor- the Earth's most important greenhouse gas. Changes in seasonal insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene. Existing records from the region are short and exhibit fundamental differences and complexity in orbital-scale climate patterns that limit our understanding of the regional climate responses to climate boundary conditions. Our sediment cores, which span much of the past 1 million years, allow new tests of these hypotheses. Sediment core logging and lithostratigraphic data document major shifts in sediment composition, including alterations of lake clays and calcareous sediments in the upper ~100m and peats and gravels in the basal units of our records. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we now test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale Indo-Pacific hydrologic change during the late Pleistocene.
Experimental Investigations of the Weathering of Suspended Sediment by Alpine Glacial Meltwater
NASA Astrophysics Data System (ADS)
Brown, Giles H.; Tranter, M.; Sharp, M. J.
1996-04-01
The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These free-drift experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.
Schilling, Kristian; Krause, Frank
2015-01-01
Monoclonal antibodies represent the most important group of protein-based biopharmaceuticals. During formulation, manufacturing, or storage, antibodies may suffer post-translational modifications altering their physical and chemical properties. Such induced conformational changes may lead to the formation of aggregates, which can not only reduce their efficiency but also be immunogenic. Therefore, it is essential to monitor the amount of size variants to ensure consistency and quality of pharmaceutical antibodies. In many cases, antibodies are formulated at very high concentrations > 50 g/L, mostly along with high amounts of sugar-based excipients. As a consequence, all routine aggregation analysis methods, such as size-exclusion chromatography, cannot monitor the size distribution at those original conditions, but only after dilution and usually under completely different solvent conditions. In contrast, sedimentation velocity (SV) allows to analyze samples directly in the product formulation, both with limited sample-matrix interactions and minimal dilution. One prerequisite for the analysis of highly concentrated samples is the detection of steep concentration gradients with sufficient resolution: Commercially available ultracentrifuges are not able to resolve such steep interference profiles. With the development of our Advanced Interference Detection Array (AIDA), it has become possible to register interferograms of solutions as highly concentrated as 150 g/L. The other major difficulty encountered at high protein concentrations is the pronounced non-ideal sedimentation behavior resulting from repulsive intermolecular interactions, for which a comprehensive theoretical modelling has not yet been achieved. Here, we report the first SV analysis of highly concentrated antibodies up to 147 g/L employing the unique AIDA ultracentrifuge. By developing a consistent experimental design and data fit approach, we were able to provide a reliable estimation of the minimum content of soluble aggregates in the original formulations of two antibodies. Limitations of the procedure are discussed.
Changes in surfzone morphodynamics driven by multi-decadel contraction of a large ebb-tidal delta
Hansen, Jeff E.; Elias, Edwin; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
The impact of multi-decadal, large-scale deflation (76 million m3 of sediment loss) and contraction (~ 1 km) of a 150 km2 ebb-tidal delta on hydrodynamics and sediment transport at adjacent Ocean Beach in San Francisco, CA (USA), is examined using a coupled wave and circulation model. The model is forced with representative wave and tidal conditions using recent (2005) and historic (1956) ebb-tidal delta bathymetry data sets. Comparison of the simulations indicates that along north/south trending Ocean Beach the contraction and deflation of the ebb-tidal delta have resulted in significant differences in the flow and sediment dynamics. Between 1956 and 2005 the transverse bar (the shallow attachment point of the ebb-tidal delta to the shoreline) migrated northward ~ 1 km toward the inlet while a persistent alongshore flow and transport divergence point migrated south by ~ 500 m such that these features now overlap. A reduction in tidal prism and sediment supply over the last century has resulted in a net decrease in offshore tidal current-generated sediment transport at the mouth of San Francisco Bay, and a relative increase in onshore-directed wave-driven transport toward the inlet, accounting for the observed contraction of the ebb-tidal delta. Alongshore migration of the transverse bar and alongshore flow divergence have resulted in an increasing proportion of onshore migrating sediment from the ebb-tidal delta to be transported north along the beach in 2005 versus south in 1956. The northerly migrating sediment is then trapped by Pt. Lobos, a rocky headland at the northern extreme of the beach, consistent with the observed shoreline accretion in this area. Conversely, alongshore migration of the transverse bar and divergence point has decreased the sediment supply to southern Ocean Beach, consistent with the observed erosion of the shoreline in this area. This study illustrates the utility of applying a high-resolution coupled circulation-wave model for understanding coastal response to large-scale bathymetric changes over multi-decadal timescales, common to many coastal systems adjacent to urbanized estuaries and watersheds worldwide.
Majewski, Michael S.; Kahle, Sue C.; Ebbert, James C.; Josberger, Edward G.
2003-01-01
A series of studies have documented elevated concentrations of trace elements such as arsenic, cadmium, copper, lead, mercury, and zinc in the water, bed sediment, or fish of Lake Roosevelt and the upstream reach of the Columbia River. Elevated concentrations of some trace elements in this region are largely attributable to the transport of slag and metallurgical waste discharged into the Columbia River from a smelter in Canada. Although most recent studies have focused on contamination levels in water, bed sediment, and fish, there is growing concern in the region over the potential threat of airborne contaminants to human health. In response to these concerns, the U.S. Geological Survey conducted an assessment of trace-element concentrations in the relatively shallow fine-grained sediment along the shore of Lake Roosevelt that is exposed annually during periods of reservoir drawdown. During each winter and spring, the water level of Lake Roosevelt is lowered as much as about 80 feet to provide space to capture high river flows from spring runoff, exposing vast expanses of lake-bottom sediment for a period of several months. Upon drying, these exposed areas provide an extremely large source for wind-blown dust. This study concluded that trace elements associated with slag and metallurgical waste are present in the fine-grained fraction (less than 63 micrometers) of bed sediments along the length of Lake Roosevelt, and as such, could be components of the airborne dust resulting from exposure, drying, and wind mobilization of the sediments exposed during the annual drawdowns of the reservoir. Trace-element concentrations in the surficial bed sediment varied, but the major components in slag?arsenic, cadmium, copper, lead, and zinc?showed generally pronounced gradients of decreasing concentrations from near the International Border to the Grand Coulee Dam. The results of this study provide base-line information needed to plan and conduct air monitoring of trace elements in wind-blown dust along Lake Roosevelt.
Algae Reefs in Shark Bay, Western Australia, Australia
1990-12-10
STS035-81-040 (2-10 Dec 1990) --- Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.
Selvam, A Paneer; Priya, S Laxmi; Banerjee, Kakolee; Hariharan, G; Purvaja, R; Ramesh, R
2012-10-01
The geochemical distribution and enrichment of ten heavy metals in the surface sediments of Vembanad Lake, southwest coast of India was evaluated. Sediment samples from 47 stations in the Lake were collected during dry and wet seasons in 2008 and examined for heavy metal content (Al, Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co, Cd), organic carbon, and sediment texture. Statistically significant spatial variation was observed among all sediment variables, but negligible significant seasonal variation was observed. Correlation analysis showed that the metal content of sediments was mainly regulated by organic carbon, Fe oxy-hydroxides, and grain size. Principal component analysis was used to reduce the 14 sediment variables into three factors that reveal distinct origins or accumulation mechanisms controlling the chemical composition in the study area. Pollution intensity of the Vembanad Lake was measured using the enrichment factor and the pollution load index. Severe and moderately severe enrichment of Cd and Zn in the north estuary with minor enrichment of Pb and Cr were observed, which reflects the intensity of the anthropogenic inputs related to industrial discharge into this system. The results of pollution load index reveal that the sediment was heavily polluted in northern arm and moderately polluted in the extreme end and port region of the southern arm of the lake. A comparison with sediment quality guideline quotient was also made, indicating that there may be some ecotoxicological risk to benthic organisms in these sediments.
NASA Astrophysics Data System (ADS)
Huang, Shao-Yi; Yen, Jiun-Yee; Wu, Bo-Lin; Kao, Yu-Hsuan; Chang, Ting-Yi
2017-04-01
As an island surrounded by open water bodies, Taiwan faces associated challenges of oceanic events such as tidal, current and seasonsal wave cycles. In addition to the secular variations of the adjacent oceans, researchers have raised public awareness toward extreme wave events such as tsunamis and storm surges that may cause great damage to coastal infrastructures and loss of valuable lives. The east coast of Taiwan is prone to suffer from typhoons every year and records have shown that more than 30% of the low-pressure centers took the east coastline as their landing point. In year 2015, Typhoon Soudelor attacked the east coast of Taiwan and resulted in a great number of casualties and severe damage to the infrastructures all over the island. Soudelor is not the greatest typhoon of the year yet still brought in significant influences to the coastal topography due to its path and robust structure. In order to understand the impacts of typhoons like Soudelor, we investigated the coastal areas of Hualien, east Taiwan, to document how sediments and debris are transported along the shoreline under the extreme wave condition. Four coastal areas were surveyed to extract applicable information such as local relief profiles, grain size distribution of drifted sediments/debris, maximum inundation limit and so forth. Field observation suggests that the waves displayed great capability of transporting the sediments and redistributing the beach morphology. For instance, the beach of Qixing Lake (Chishingtan) has astonishing records like maximum volume of transported boulder around 3,000,000 cm3, maximum long axis of transported boulder around 144 cm, maximum distance of boulder transportation of 70 m, and maximum inundation distance of ca. 180 m. The composition and distribution of the drifted sediments in every areas vary with local geological conditions but in general all suggest similar characteristics: 1. the transported materials size down toward inland; 2. The sediments are originated from the vicinity and link positively with the local beach relief; 3. The occurrence of the drifted boulders shows a pattern of boulder field instead of sheet beds which is commonly observed at tsunami-related outcrops. By adding the detailed documentations of coastal environmental changes after the typhoon events, we hope to establish a thorough database that can facilitate tracking and predicting the behavior of extreme wave events in the future.
Medical geochemistry research in Spissko-Gemerské rudohorie Mts., Slovakia.
Rapant, S; Cvecková, V; Dietzová, Z; Khun, M; Letkovicová, M
2009-02-01
This study presents an assessment of the potential impact of geological contamination of the environment on the health of the population in Spissko-Gemerské rudohorie Mts. (SGR Mts.). The concentration levels of potentially toxic elements (mainly As, Cd, Cu, Hg, Pb, Sb, and Zn) were determined in soils, groundwater, surface water, and stream sediments as well as in the food chain (locally grown vegetables). A medical study included some 30 health indicators for all 98 municipalities of the study area. The As and Sb contents in human fluids and tissues were analyzed in one municipality identified to be at the highest risk. Based on element content, environmental and health risks were calculated for respective municipalities. Out of 98 municipalities 14 were characterized with extremely high environmental risk and 10 were characterized with very high carcinogenic risk from arsenic (groundwater). Extensive statistical analysis of geochemical data (element contents in soils, groundwater, surface water, and stream sediments) and health indicators was performed. Significant correlations between element contents in the geological environment and health indicators, mainly cancer and cardiovascular diseases, were identified. Biological monitoring has confirmed the transfer of elements from the geological environment to human fluids and tissues as well as to the local food chain.
Determination of TBT in water and sediment samples along the Argentine Atlantic coast.
de Waisbaum, R G; Rodriguez, C; Nudelman, N Sbarbati
2010-11-01
Cases of imposex have been reported for some organisms living in areas of the Argentine Atlantic coast. Since this is one of the known effects of the anti-fouling agent tributyltin (TBT), quantitative determinations of organotins in samples of water and sediments collected from sites along the Argentine coast were carried out. Severe cases of imposex were first reported for two gastropod species living in the Mar del Plata area, and determinations of TBT in samples collected from this site gave extremely high values and showed a close correlation between the degree of imposex and TBT concentration. Recent investigations in the area have shown a significant decrease. Surveys were also conducted in sites that exhibit highly irregular coastal profiles to examine the relevance of physical environments. Alarming concentrations of TBT were determined in most of the sites where heavy boat traffic and/or marine activities occur, demonstrating the urgent need for regulations to avoid further input of TBT. Reports from other sites in South America reveal that this should be a subject of regional concern in order to avoid severe damage to the biodiversity of regional marine organisms.
NASA Astrophysics Data System (ADS)
Betka, P. M.; Seeber, L.; Buck, W. R.; Steckler, M. S.; Sincavage, R.; Zoramthara, C.; Thomson, S.
2017-12-01
The Indo-Burma Ranges (IBR) are the result of ongoing oblique subduction along the northern Sunda subduction zone and accretion of the 19 km thick Ganges-Brahmaputra delta. The IBR forearc is subaerial and in one of the most densely populated (>200M people) regions of the planet, with the potential to generate a >Mw 8.2 megathrust earthquake. Despite the seismic hazard, the structure of the accretionary prism and up-dip part of the megathrust is poorly known. We present a geologically constrained structural model of the frontal part ( 150 km wide) of the IBR. A shallow, 3.1-3.2 ± 0.1 km deep, blind, subhorizontal décollement separates sandy shallow marine and fluvial deposits in the upper plate from under-thrust, fine-grained deep marine strata that are overpressured. Upper plate shortening of 42 ± 6 km yields a minimum geologic shortening rate of 4.6 mm/yr based on maximum detrital ages ( 9 Ma) of the deformed strata, about 35% of the geodetic convergence rate ( 13-17 mm/yr). The existence of the shallow décollement implies that either the 16 km thick sediment pile below it is subducted, or an additional, deep, blind décollement must exist to accrete the incoming sediment. We combine the structural results with critical taper theory and mechanical modeling to predict a range of plausible megathrust geometries. The IBR has an extremely low slope (0.1-0.5˚), thus, highly elevated pore-fluid pressures (>0.95 of the lithostatic pressure) are required to produce the low taper (0.3-0.6˚). These theoretical constraints are consistent with pore-fluid pressure ratios of 0.92-0.97 that were measured at 3 km depth in a well that pierces an anticline near the front of the wedge. We carried out a numerical modeling experiment to predict the formation of the shallow décollement. If the effective friction coefficient for several layers of the core of the wedge is reduced by a factor of 15 to account for high pore-fluid pressures, two subhorizontal décollements localize at the top and bottom of the weak overpressured zone. A ramp that links the two décollements propagates forward to accrete the incoming sediment. We argue that a mechanically stratified incoming sedimentary pile may result in the formation of multiple décollement horizons, and thus, influence the development of the critical wedge and the magnitude of the seismic hazard.
A geomorphic explanation for a meander cutoff following channel relocation of a coarse-bedded river.
Thompson, Douglas M
2003-03-01
The Veteran's Fishing section of the Blackledge River in central Connecticut was relocated in the late 1950s. The relocation resulted in an unstable channel despite extensive efforts to prevent erosion. Overbank erosion and meander cutoffs were investigated using detailed survey data, characterizations of sediment deposits, flow modeling, and a moment-stability analysis. Limited reworking of revetment boulders indicate that riprap bank material was immobile during a 1979 flood event responsible for the formation of the cutoff channel. A moment-stability analysis factor-of-safety value of 1.1 supports the conclusion that riprap was not directly eroded from the banks. Alluvial particles with d(95) values ranging up to 120 mm were deposited along a bar downstream from the cutoff channel at flows estimated to be below a 1.5-year recurrence interval flow. Development of the bar deposit resulted in locally elevated water surfaces at high flow. The resulting overbank flow across the meander neck to the adjacent downstream bend led to the creation of an upstream migrating knickpoint, the erosion of approximately 16,000-year-old sediments, and the subsequent meander cutoff. The results of the study indicate that traditional erosion-control measures cannot prevent extreme channel adjustments if the geomorphic processes that control sediment continuity also are not considered.
NASA Astrophysics Data System (ADS)
Lloyd, K. G.; Bird, J. T.; Shumaker, A.
2014-12-01
Very little is known about how evolutionary branches that are distantly related to cultured microorganisms make a living in the deep subsurface marine environment. Here, sediments are cut-off from surface inputs of organic substrates for tens of thousands of years; yet somehow support a diverse population of microorganisms. We examined the potential metabolic and ecological roles of uncultured archaea and bacteria in IODP Leg 347: Baltic Sea Paleoenvironment samples, using quantitative PCR holes 60B, 63E, 65C, and 59C and single cell genomic analysis for hole 60B. We quantified changes in total archaea and bacteria, as well as deeply-branching archaeal taxa with depth. These sediment cores alternate between high and low salinities, following a glacial cycle. This allows changes in the quantities of these groups to be placed in the context of potentially vastly different organic matter sources. In addition, single cells were isolated, and their genomes were amplified and sequenced to allow a deeper look into potential physiologies of uncultured deeply-branching organisms found up to 86 meters deep in marine sediments. Together, these data provide deeper insight into the relationship between microorganisms and their organic matter substrates in this extreme environments.
Tracking the deposition of sediments from the Great Mississippi Flood of 2011
NASA Astrophysics Data System (ADS)
Khan, N. S.; McKee, K. L.; Horton, B. P.; Varvaeke, W.; Dura, T.; Jerolmack, D. J.
2011-12-01
The marshes of coastal Louisiana are disappearing at a rapid rate due to both natural and anthropogenic processes. Maintenance of soil elevations relative to water levels is key to marsh sustainability, but leveeing of the Mississippi River prevents overbank flooding and direct delivery of sediment to counterbalance rapid rates of subsidence in the deltaic plain. Episodic sediment deposition may occur during storms and hurricanes or extreme flood events, contributing to marsh accretion, but their relative importance to marsh maintenance is unclear. A better understanding of routing and deposition of sediments and their role in the marsh-building dynamics of coastal Louisiana would help clarify these issues and aid restoration planning. The Great Mississippi River Flood of 2011 caused sustained high discharge, producing a narrow jet that penetrated far into the Gulf of Mexico, and prompted the opening of the Morganza spillway, which generated a wide, diffuse plume that inundated vast areas of land and was trapped within coastal currents. These events provided a unique opportunity to test a new theoretical model of coastal sediment dynamics that predicts greater sedimentation over a broader area from the smaller Atchafalaya channel in comparison to the focused plume emanating from the larger Mississippi River channel. Here, we report how the flood contributed to marsh sedimentation, which is part of a larger effort to connect offshore sediment dynamics to sediment delivery and soil accretion within wetlands. A helicopter survey of 45 sites was conducted across the Mississippi (Bird's Foot) Delta, Barataria, Terrebonne, and Atchafalaya basins (350 km of coastline) to measure sediment accumulation and determine its provenance. At each site, new flood sediment deposits were distinguished from pre-flood sediment and sampled separately for organic matter content, bulk density, grain-size and diatom analysis. Comparison of grain-size distribution and diatom assemblages of new marsh sediment accumulations to grab samples taken from within and offshore of the Mississippi River elucidates their provenance. Of the 45 sites sampled, 31 have pre-existing data on marsh accretion or hurricane deposition, providing context for the flood-induced sediment deposition. Our preliminary findings show that sediment accumulation was greatest in the Atchafalaya (1.61 ± 0.96 g cm-2), intermediate in the Bird's Foot (1.14 ± 0.78 g cm-2) and least in the Terrebonne (0.42 ± 0.18 g cm-2) and Barataria (0.34 ± 0.22 g cm-2) basins. These pilot results provide support for the theoretical model of coastal mixing and sedimentation patterns and imply that while small diversions and branches off the main channel supplied sediment locally to marshes in the Bird's Foot Delta, the Mississippi River plume contributed little to declining wetlands in the Barataria and Terrebonne basins during this flood event. The significant sediment deposits found in Atchafalaya marshes indicate greater contributions to soil accretion and improved potential for wetland maintenance.
NASA Astrophysics Data System (ADS)
Larsen, M. C.; Webb, R. M.; Warne, A. G.
2004-12-01
Sediment and nutrient discharge to the insular shelf of Puerto Rico (18 degrees latitude), augmented by anthropogenic activity, is believed to have contributed to widespread degradation of coral reefs of Puerto Rico during the 20th century. Sediment deposition degrades coral reefs because it reduces the area of sea floor suitable for growth of new coral, diminishes the amount of light available for photosynthesis by symbiotic algae that live within individual coral animals, and in extreme cases, buries coral colonies. Land-use history and data from 30 water-discharge, 9 daily and 15 intermittent sediment-concentration, and 24 water-quality gaging stations were analyzed to investigate the timing and intensity of terrestrial sediment and nutrient discharge into coastal waters. Watersheds in Puerto Rico generally are small (10's to 100's of square km), channel gradients are steep, and stream valleys are deeply incised and narrow. Major storms are usually brief (<24 h) but intense such that the majority of the annual sediment discharge occurs in a few days. From 1960 through 2000 the highest mean daily discharge for a water year (October - September) accounted for 20 to 60 percent of the total annual sediment discharge. Major storms, with a return frequency of approximately a decade, were capable of discharging up to 30 times the median annual sediment-discharge volume. Prior to agricultural and industrial development, coastal waters are believed to have been relatively transparent, with strong currents and seasonal high-energy swells assisting corals in the removal of minor amounts of sediment deposited after storms. Land clearing and modification, first for agriculture and later for urban development, have increased sediment and nutrient influx to the coast during the 19th and 20th centuries. Although forest cover has increased to approximately 30 percent of the surface of Puerto Rico during the past 60 years, sediment eroded from hillslopes during the agricultural period is still being episodically transported from upland valleys to downstream floodplains and the coast. In response to better land management, the quality of water has improved significantly since the 1980s. Nitrogen and phosphorous concentrations in river waters are now well within regulatory limits, although current concentrations are as much as 10 times the estimated pre-settlement levels. Concentrations of pathogens also are improved but continue to be near or above regulatory limits. Unlike sediment discharge, which is episodic and intense, the discharge of river-borne nutrients and pathogens is a less intense but chronic stressor to coral reefs located near the mouths of rivers.
Siam, Rania; Mustafa, Ghada A.; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R.; Antunes, Andre; Bajic, Vladimir B.; Stingl, Uli; Marsis, Nardine G. R.; Coolen, Marco J. L.; Sogin, Mitchell; Ferreira, Ari J. S.; Dorry, Hamza El
2012-01-01
The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction. PMID:22916172
NASA Astrophysics Data System (ADS)
Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F.
2016-03-01
Recent technological developments of multibeam echosounder systems (MBES) allow mapping of benthic habitats with unprecedented detail. MBES can now be employed in extremely shallow waters, challenging data acquisition (as these instruments were often designed for deeper waters) and data interpretation (honed on datasets with resolution sometimes orders of magnitude lower). With extremely high-resolution bathymetry and co-located backscatter data, it is now possible to map the spatial distribution of fine scale benthic habitats, even identifying the acoustic signatures of single sponges. In this context, it is necessary to understand which of the commonly used segmentation methods is best suited to account for such level of detail. At the same time, new sampling protocols for precisely geo-referenced ground truth data need to be developed to validate the benthic environmental classification. This study focuses on a dataset collected in a shallow (2-10 m deep) tidal channel of the Lagoon of Venice, Italy. Using 0.05-m and 0.2-m raster grids, we compared a range of classifications, both pixel-based and object-based approaches, including manual, Maximum Likelihood Classifier, Jenks Optimization clustering, textural analysis and Object Based Image Analysis. Through a comprehensive and accurately geo-referenced ground truth dataset, we were able to identify five different classes of the substrate composition, including sponges, mixed submerged aquatic vegetation, mixed detritic bottom (fine and coarse) and unconsolidated bare sediment. We computed estimates of accuracy (namely Overall, User, Producer Accuracies and the Kappa statistic) by cross tabulating predicted and reference instances. Overall, pixel based segmentations produced the highest accuracies and the accuracy assessment is strongly dependent on the number of classes chosen for the thematic output. Tidal channels in the Venice Lagoon are extremely important in terms of habitats and sediment distribution, particularly within the context of the new tidal barrier being built. However, they had remained largely unexplored until now, because of the surveying challenges. The application of this remote sensing approach, combined with targeted sampling, opens a new perspective in the monitoring of benthic habitats in view of a knowledge-based management of natural resources in shallow coastal areas.
NASA Astrophysics Data System (ADS)
Cescon, Anna Lisa; Cooper, J. Andrew G.; Jackson, Derek W. T.
2014-05-01
Beach ridge landforms have been observed in different environments and in settings that range from polar to tropical. Their stratigraphy and sedimentology has received a limited amount of discussion in the literature (Tamura, 2012). In coastal geomorphology a beach ridge can be seen as a transitional deposit between onshore and offshore environments. They are regarded as representing high level wave action along a coastline. In the Caribbean the origin of beach ridges has been variously attributed to one of three extreme wave events: extreme swell, extreme storm or tsunami waves. Beach ridges are arranged in beach ridge plains where there is succession of the landforms and can be several kilometres long. Beach ridge accumulation is not continuous and the coast shows alternating accretion and erosion periods. The use of beach ridges as palaeostorm archives is therefore not straightforward. The temporal continuity of beach ridge formation is being assessed on the beach ridge plains of Anegada, British Virgin Islands (Lesser Antilles). This carbonate platform surrounded by a fringing reef contains two beach ridge plains. There are more than 30 ridges in the Atlantic facing- coast and around 10 in the south, Caribbean- facing coast. The sediments of the modern beaches are dominated by the sand fraction and are 100% biogenic origin due to the isolation of Anegada from terrestrial sediment sources. The beach ridge sections have been studied in different area of Anegada beach ridge plains and present low angle seaward-dipping bedding. The sand fraction is dominant in the stratigraphy with a few intact shells. At only one site were coral pebbles deposited in association with the sand fraction. Aeolian deposits represent the upper part of the beach ridges and reflect the stabilization of the beach ridges with ongoing accretion. The sedimentology of the contemporary beach and dunes will be discussed in terms of their implications for understanding beach ridge genesis and its relationship to extreme wave events. Tamura, T., 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews, 114, pp. 279-297.
Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.
2008-01-01
In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg/kg. Comparing the mean mercury concentration present in post-hurricane samples with regional background data from the U.S. Geological Survey National Geochemical Dataset, indicates that mercury concentrations in post-hurricane sediment generally are larger. Sequential extraction analysis of 51 samples for arsenic indicate that 54.5 percent of the total arsenic concentration is contained in the extremely mobile iron-manganese oxide fraction. Pesticide and polychlorinated biphenyl Arochlor concentrations in post-hurricane samples were small. Prometon was the most frequently detected pesticide with concentrations ranging from 2.4 to 193 micrograms per kilogram (µg/kg). Methoxychlor was present in 22 samples with a concentration ranging from 3.5 to 3,510 µg/kg. Although methoxychlor had the largest detected pesticide concentration, it was well below the U.S. Environmental Protection Agency’s High-Priority Screening Level for residential soils. Arochlor congeners were not detected for any sample above the minimum detection level of 7.9 µg/kg.
Assessing sedimentation issues within aging flood-control reservoirs
USDA-ARS?s Scientific Manuscript database
Flood control reservoirs designed and built by federal agencies have been extremely effective in reducing the ravages of floods nationwide. Yet some structures are being removed for a variety of reasons, while other structures are aging rapidly and require either rehabilitation or decommissioning. ...
RELATIONSHIPS BETWEEN NEAR-BOTTOM DISSOLVED OXYGEN AND SEDIMENT PROFILE CAMERA MEASUREMENTS
The United States Environmental Protection Agency (U.S. EPA) and other environmental authorities regulate concentrations of dissolved oxygen (DO) as a measure of nutrient-related eutrophication in estuarine and coastal waters. However, in situ DO concentrations are extremely var...
Development of self-cleaning box culvert designs : final report, June 2009.
DOT National Transportation Integrated Search
2009-06-01
The main function of a roadway culvert is to effectively convey drainage flow during normal and extreme hydrologic conditions. This function is often impaired due to the sedimentation blockage of the culvert. This research sought to understand the me...
NASA Astrophysics Data System (ADS)
Contreras, Darío; Jurado, Alicia; Carpintero, Miriam; Rovira, Albert; Polo, María J.
2016-04-01
River regulation by dams for both flood control and water storage has allowed to decrease both uncertainty and risks associated to extreme hydrological events. However, the alteration of the natural river flow regime and the detraction of high water volumes usually lead to significant effects downstream on the morphology, water quality, ecological status of water… and this is particularly relevant in the transitional waters since the sea level rise poses an additional threat on such conditions. The Ebro River, in northeastern Spain, is one of the highly regulated rivers in Spain with the dams located in the mainstream. Besides an estimated decrease of a 30% of the freshwater inputs, the sediment delivery to the final delta in the Mediterranean has dramatically been decreased up to a 99%, with environmental risks associated to the reduction of the emerged areas from the loss of sediment supply, the impact on the subsidence dynamics, and the sea level rise. The Ebro Delta suffers a mean regression of 10 m per year, and the persistence of macrophyte development in the final reach of the river due to the low water mean flow regime. The project LIFE EBRO-ADMICLIM (ENV/ES/001182), coordinated by the IRTA in Catalonia (Spain), puts forwards pilot actions for adaptation to and mitigation of climate change in the Ebro Delta. An integrated approach is proposed for managing water, sediment and habitats (rice fields and wetlands), with the multiple aim of optimizing ground elevation, reducing coastal erosion, increasing the accumulation (sequestration) of carbon in the soil, reducing emissions of greenhouse gases (GHG), and improving water quality. This work presents the pilot actions included in the project to mitigate the loss of water flow and sediment supply to the delta. Sediment injections at different points upstream have been designed to calibrate and validate a sediment transport model coupled to a 2D-hydrodinamic model of the river. The combination of an a-priori approach theoretical modeling with the pilot field actions leads to an efficient design of these injections, an estimation of their efficiency, the calibration of the flow and sediment transport model for the simulation of different options of regular recirculation of sediments from the dams' tails, and the identification of thresholds for their operationality. The use of physical approaches for modeling the hydrological impacts of dam regulation provides an efficient tool for the design of field work and potential adaption actions.
Sedimentary regimes at Potter Cove, King George Island, maritime Antarctica - from source to sink
NASA Astrophysics Data System (ADS)
Monien, Donata; Monien, Patrick; Brünjes, Robert M.; Widmer, Tatjana; Schnetger, Bernhard; Brumsack, Hans-Jürgen
2013-04-01
Increased particle run-off due to recently retreated ice masses along the Antarctic margins may play an important role in fertilizing the high-nutrient-low-chlorophyll regions of the Southern Ocean. At Potter Cove, King George Island, maritime Antarctica, small melt water streams at the south-eastern shoreline (Potter Peninsula) discharge up to 1,500 mg L-1 (av. 110 mg L-1) of suspended particle matter (SPM) per day into the coastal water body during the summer seasons. Apart from potential light limitation of plankton growth by the suspension load, the particle run-off affects benthic feeders, possibly changes the depositional regime and the preservation of chemical proxies in the outlet zones, and exports trace elements offshore. In Potter Cove's water column, the average particle size is low, and extreme turbidity events are restricted to the upper five to seven meters. High particle loads are often associated with low salinities, most probably induced by increased onshore precipitation. Sediment traps installed in the inner and outer cove at 5 and 20 m water depth suggest mass accumulation rates of 0.83 and 0.58 g cm-2 yr-1, and 0.13 and 0.11 g cm-2 yr-1 (considering 183 days of sedimentation), respectively. 210Pb measurements of short sediment cores reveal recent sediment accumulation rates of approximately 0.1 to 0.6 g cm-2 yr-1. The SPM sampled in the melt water streams and plumes is chemically different to surface sediments deposited in Potter Cove. Chemical characteristics suggest a significant impact of particle sorting: SPM and outer cove sediments are more clayey, whereas inner cove sediments contain more heavy minerals. Generally, sediment deposits in Potter Cove exhibit coarser grain sizes and are mainly derived from Barton Peninsula (northern shoreline), whereas the SPM consists of more fine-grained material originating from Potter Peninsula eluviations. Sequential leaching of the SPM by ascorbic acid showed that approximately 0.5 to 2% of the total iron (5.9 wt.% Fe) is easily dissolvable, which in turn can be translated into an additional load of approximately 5 to 21 mmol L-1 dissolved Fe2+. In consequence, the results of our three-summer study highlight that the major part of the particle load from the melt water streams are exported to the Southern Ocean rather than being deposited near shore in Potter Cove. These exported particles are rich in easily leachable Fe acting as a natural fertilization to the Fe-limited Southern Ocean.
Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows
NASA Astrophysics Data System (ADS)
Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian
2016-04-01
Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed to produce similar run-out distances and maximum head velocities. Strongly cohesive bentonite flows were able to create a stronger network of particle bonds than weakly cohesive kaolinite flows of a similar concentration, thus producing the lower maximum head velocities and run-out distances observed. The lack of cohesion in the silica-flour laden flows meant that extremely high suspended sediment concentrations, i.e. close to the cubic packing density, were required to produce a high enough frictional strength to reduce the forward momentum of these flows. These experimental results can be used to improve our understanding of the deposit geometry and run-out distance of fine-grained SGFs in the natural environment. We suggest that natural SGFs that carry weakly cohesive clays (e.g. kaolinite) reach a greater distance from their origin than flows that contain strongly cohesive clays (e.g. bentonite) at similar suspended sediment concentrations, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. In addition, weakly cohesive SGFs may cover a larger surface area and have thinner deposits, with important ramifications for the architecture of stacked event beds.
NASA Astrophysics Data System (ADS)
Cooke, M. P.; Talbot, H. M.; Eniola, O.; Zabel, M.; Wagner, T.
2007-12-01
The transport and subsequent deposition of terrestrially derived organic matter into the ocean is an important but poorly constrained aspect of the modern global carbon cycle. In regions associated with large river systems it is likely that the terrestrial input of organic carbon is much more complex than commonly considered and very difficult to trace based on established geochemical proxies. It is therefore important to develop proxies that target the movement and fate of this terrestrial organic material. The identification of bacteriohopanepolyol (BHP) biomarkers unique to soil derived organic carbon (SOC) has enabled the transport of SOC into aquatic sediments to be traced. The extreme recalcitrance of BHPs enables these source specific compounds to be used on recent and ancient sediments to identify periods of high and low SOC input into sediments. BHPs are bacterial membrane compounds with a high degree of structural variability. They are analogous to steroids in eukaryotes and have been identified in over half of all bacteria studied for their presence. BHPs have a wide range of over 40 functional groups on the side chain, with up to 6 functional groups in each structure, and with methylation and unsaturation over 100 total structures have been identified1. During the BHP analysis of a wide range of soils from around the world we consistently measure high levels adenosylhopane, known to originate from purple non-sulphur, nitrogen fixing and ammonia oxidising bacteria and 2-methyl adenosyl hopane (m/z 802)2, from nitrogen fixing bacteria. Only 3 lacustrine sediments with large SOC supply from their catchments areas have been found to contain these markers in a survey of over 40 different non-marine settings. Recent studies on Late Quaternary sediments from the Congo deep sea fan (OPD site 1075, approximately 2 km water depth) provide a strong case to expect markers for SOC3. An initial analysis of the core samples confirms the presence of soil specific BHP markers in each sample analyzed down to 89 m depth in addition to the presence of common sediment associated BHPs. Concentrations of soil markers are high in the upper sediment section down to about 49 m supporting the case for these molecular markers as novel proxies for SOC supply and burial. Distinct peaks of adenosyl and 2 methyl adenosyl hopane at about 200, 300 and 550 kyrs tentatively imply that the rate of terrestrial organic matter discharge from tropical Africa significantly increased at these times, possibly associated with periods of reduced soil stability in the Congo catchment. Analysis of the surface sediments from 4 other cores in close proximity to ODP site 1075 clearly shows that the percentage contribution of soil marker BHPs decreases with increasing distance from the river mouth, indicating that the river is the source of these BHPs. References 1. Rohmer, M. 1993. Pure and Applied Chemistry 65, 1293-1298. 2. Talbot, H.M., Rohmer, M., Farrimond, P., 2007. Rapid Communications in Mass Spectrometry (In press). 3. Holtvoeth, J., Wagner, T., Kolonic, S., 2005. Geochimica et Cosmochimica Acta, 69, 2031-2041.
Sediment dynamics of muddy coasts and estuaries in China: An introduction
NASA Astrophysics Data System (ADS)
Wang, Xiao Hua; Gan, Jianping; Lowe, Ryan
2018-06-01
Sustainable livelihoods and economic development is supported by effective management of coastal and estuarine assets, which represents a huge and, in many instances, extremely costly challenge, in particular given the multiple stakeholders with mixed interests in ports and harbours and the adjacent coastal and marine environments. Given the importance of the well-being of coastal environments, the rapid expansion of major ports has caused concerns within both the scientific community and the general public about the possible environmental consequences. The implications of these rapid coastal changes, including urbanization and industrialization, are often highly degraded natural systems, ecosystems with compromised functions, and intense conflict and competition between users.
Fitzpatrick, F.A.; Knox, J.C.
2000-01-01
Clear-cut logging followed by agricultural activity caused hydrologic and geomorphic changes in North Fish Creek, a Wisconsin tributary to Lake Superior. Hydro-geomorphic responses to changes in land use were sensitive to the location of reaches along the main stem and to the relative timing of large floods. Hydrologic and sediment-load modeling indicates that flood peaks were three times larger and sediment loads were five times larger during maximum agricultural activity in the 1920s and 1930s than prior to about 1890, when forest cover was dominant. Following logging, overbank sedimentation rates in the lower main stem increased four to six times above pre-settlement rates. Accelerated streambank and channel erosion in the upper main stem have been and continue to be primary sources of sediment to downstream reaches. Extreme floods in 1941 and 1946, followed by frequent moderate floods through 1954, caused extensive geomorphic changes along the entire main stem. Sedimentation rates in the lower main stem may have decreased in the last several decades as agricultural activity declined. However, geomorphic recovery is slow, as incised channels in the upper main stem function as efficient conveyors of watershed surface runoff and thereby continue to promote flooding and sedimentation problems downstream. [Key words: fluvial geomorphology, floods, erosion, sedimentation, deforestation, agriculture.].
The role of organic matter and clay content in sediments for bioavailability of pyrene.
Spasojević, Jelena; Maletić, Snežana; Rončević, Srđan; Grgić, Marko; Krčmar, Dejan; Varga, Nataša; Dalmacija, Božo
2018-01-01
Evaluation of the bioavailable fractions of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) is extremely important for assessing their risk to the environment. This available fraction, which can be solubilised and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation. Sediment organic matter (OM) and clay play an important role in the biodegradation and bioavailability of PAHs. The strong association of PAHs with OM and clay in sediments has a great influence not only on their distribution but also on their long-term environmental impact. This paper investigates correlations between bioavailability and the clay and OM contents in sediments. The results show that OM is a better sorbent for pyrene (chosen as a model PAH) and that increasing the OM content reduces the bioavailable fraction. A mathematical model was used to predict the kinetic desorption, and these results showed that the sediment with the lowest content of OM had an F fast value of 24%, whereas sediment with 20% OM gave a value of 9%. In the experiments with sediments with different clay contents, no clear dependence between clay and rate constants of the fast desorbing fractions was observed, which can be explained by the numerous possible interactions at the molecular level.
Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes
Miller, L.G.; Oremland, R.S.
2008-01-01
Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.
Extension of 239+240Pu sediment geochronology to coarse-grained marine sediments
Kuehl, Steven A.; Ketterer, Michael E.; Miselis, Jennifer L.
2012-01-01
Sediment geochronology of coastal sedimentary environments dominated by sand has been extremely limited because concentrations of natural and bomb-fallout radionuclides are often below the limit of measurement using standard techniques. ICP-MS analyses of 239+240Pu from two sites representative of traditionally challenging (i.e., low concentration) environments provide a "proof of concept" and demonstrate a new application for bomb-fallout radiotracers in the study of sandy shelf-seabed dynamics. A kasten core from the New Zealand shelf in the Southern Hemisphere (low fallout), and a vibracore from the sandy nearshore of North Carolina (low particle surface area) both reveal measurable 239+240Pu activities at depth. In the case of the New Zealand site, independently verified steady-state sedimentation results in a 239+240Pu profile that mimics the expected atmospheric fallout. The depth profile of 239+240Pu in the North Carolina core is more uniform, indicating significant sediment resuspension, which would be expected in this energetic nearshore environment. This study, for the first time, demonstrates the utility of 239+240Pu in the study of sandy environments, significantly extending the application of bomb-fallout isotopes to coarse-grained sediments, which compose the majority of nearshore regions.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Huang, Yu-Ting; Huang, Mei-Jen; Chiang, Yi-Lin; Yeh, En-Chao; Chao, Yu-Jui
2014-05-01
Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Typhoon Morakot brought extreme and long-time rainfall for Taiwan in August 2009. It further caused huge loss of life and property in central and southern Taiwan. Laonong River is the largest tributary of Gaoping River. It's length is 137 km, and the basin area is 1373 km2. More than 2000mm rainfall brought and maximum rainfall exceeded 100mm/hr in the region by Typhoon Morakot in Aug, 2009. Its heavy rains made many landslides and debris flew into the river and further brought out accumulation and erosion on river banks of different areas. It caused severe disasters within the Laonong River drainage. In the past, the study of sediment blockage of river channel usually relies on field investigation, but due to inconvenient transportation, topographical barriers, or located in remote areas, etc. the survey is hardly to be completed sometimes. In recent years, the rapid development of remote sensing technology improves image resolution and quality significantly. Remote sensing technology can provide a wide range of image data, and provide essential and precious information. Furthermore, although the amount of sediment transportation can be estimated by using data such as rainfall, river flux, and suspended loads, the situation of large debris migration cannot be studied via those data. However, landslides, debris flow and river sediment transportation model in catchment area can be evaluated easily through analyzing the digital terrain model (DTM) . The purpose of this study is to investigate the phenomenon of river migration and to evaluate the amount of migration along Laonong River by analyzing the DEM before and after the typhoon Morakot. The DEMs are built by using the aerial images taken by digital mapping camera (DMC) and by airborne digital scanner 40 (ADS 40) before and after typhoon event. The results show that lateral erosion of the Laonong River caused by the typhoon seriously, especially in Yushan National Park, and midstream region. However, lateral erosion in downstream region is not so obvious. Meanwhile the siltation depth resulted from the Typhoon Morakot is larger in upstream region than in midstream and downstream regions. The amount of landslide debris created by Typhoon Morakot was too excessive to be transported. Materials just siltated in the upstream in place, same as in the middle stream area. Because of the amount of river slope erosion and sediment collapse in the downstream region is less than in upstream and midstream region, the amount of river erosion slightly larger than the amount of river siltation. The goals of this project are trying to decipher the sliding process and morphologic changes of large landslide areas, sediment transport and budgets, and to investigate the phenomenon of river migration. The results of this study provides not only geomatics and GIS dataset of the hazards, but also for essential geomorphologic information for other study, and for hazard mitigation and planning, as well.
Structural and functional connectivity in the agricultural Can Revull catchment (Mallorca, Spain)
NASA Astrophysics Data System (ADS)
Calsamiglia, Aleix; García-Comendador, Julián; Fortesa, Josep; Crema, Stefano; Cavalli, Marco; Alorda, Bartomeu; Estrany, Joan
2017-04-01
Unravelling the spatio-temporal variability of the sediment transfer within a catchment represents a challenge of great importance to quantify erosion, soil redistribution and their impacts on agricultural landscape. Structural and functional connectivity have been identified as useful aspects of connectivity that may clarify how these processes are coupled or decoupled in various types of catchment sediment cascades. In this study, hydrological and sediment connectivity in a Mediterranean agricultural catchment (1.4 km2) modified through traditional drainage systems (i.e., ditches and subsurface tile drainages) was assessed during two contrasted rainfall events occurred in October 2016 (20 mm in 24 h -return period < 1 yr-, I30 6.6 mm h-1 with 32 mm accumulated in 14 days) and in December 2016 (99 mm in 24 h -return period ≈ 25 yr-, I30 23 mm h-1 with 39 mm accumulated in 14 days). A morphometric index of connectivity (IC) was calculated to study the spatial patterns of structural connectivity. The identification of the main sediment pathways -in terms of functional connectivity- was conducted by field mapping, whilst the estimation of erosion and deposition rates by the analysis of high resolution digital terrain models (i.e., 5 cm pix-1; RMSE < 0.05 m) obtained from automated digital photogrammetry and unmanned aerial vehicle (UAV). The IC estimations allowed the identification of the most (dis-)connected areas related with the anthropogenic control in the resisting forces of the catchment. On the one hand, in the upper part of the catchment, depositional compartments were created by dry-stone walls that separate agricultural properties laminating flash floods. On the other hand, in the lower part of the catchment these depositional compartments were generated by an orthogonal network of ditches situated topographically above the natural thalwegs. In its turn, the most connected areas are located in the steepest parts of the catchment under rainfed herbaceous crops without dry stone walls and also within the lowland depositional compartments where the pathways are diverted generating parallel concentrated flows because of the greater elevation of these ditches. The observed spatial patterns of functional connectivity showed significant differences between the two events, although well fitted with IC as a clear evidence of anthropogenic controls in the resisting forces. During the October 2016 event -representative of high frequency-low magnitude events in the catchment- traditional drainage systems controlled the water and sediment transfer which was mainly concentrated within the ditches. By contrast, during the event of December 2016 -representative of extreme events- this transfer process was controlled by the natural morphology of the catchment, which activated coupling mechanisms between different compartments, increasing the effective area and triggering erosion processes including the formation of rills and incipient gullies. The spatial location of the sediment mobilization and deposition areas during the extreme event in December 2016 is well fitted with the IC estimations. The application of IC, therefore, may provide useful information to improve the drainage systems design and the implementation of measures to prevent soil losses.
Transport of free and particulate-associated bacteria in karst
Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.
2000-01-01
Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst. (C) 2000 Elsevier Science B.V.Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended
NASA Astrophysics Data System (ADS)
Mullane, M.; Kumpf, L. L.; Kineke, G. C.
2017-12-01
The Huanghe (Yellow River), once known for extremely high suspended-sediment concentrations (SSCs) that could produce hyperpycnal plumes (10s of g/l), has experienced a dramatic reduction in sediment load following the construction of several reservoirs, namely the Xiaolangdi reservoir completed in 1999. Except for managed flushing events, SSC in the lower river is now on the order of 1 g/l or less. Adaptations of the Chezy equation for gravity-driven transport show that dominant parameters driving hyperpycnal underflows include concentration (and therefore density), thickness of a sediment-laden layer and bed slope. The objectives of this research were to assess the potential for gravity-driven underflows given modern conditions at the active river mouth. Multiple shore-normal transects were conducted during research cruises in mid-July of 2016 and 2017 using a Knudsen dual-frequency echosounder to collect bathymetric data and to document the potential presence of fluid mud layers. An instrumented profiling tripod equipped with a CTD, optical backscatterance sensor and in-situ pump system were used to sample water column parameters. SSCs were determined from near-bottom and surface water samples. Echosounder data were analyzed for bed slopes at the delta-front and differences in depth of return for the two frequencies (50 and 200 kHz), which could indicate fluid muds. Bathymetric data analysis yielded bed slope measurements near or above threshold values to produce gravity-driven underflows (0.46°). The maximum observed thickness of a potential fluid mud layer was 0.7 m, and the highest sampled near-bed SSCs were nearly 14 g/l for both field campaigns. These results indicate that the modern delta maintains potential for sediment gravity-driven underflows, even during ambient conditions prior to maximum summer discharge. These results will inform future work quantitatively comparing the contributions of all sediment dispersal mechanisms near the active Huanghe delta environment, including advection of the buoyant river plume and wave resuspension and transport by tidal currents.
Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea
Braun, Stefan; Morono, Yuki; Littmann, Sten; Kuypers, Marcel; Aslan, Hüsnü; Dong, Mingdong; Jørgensen, Bo B.; Lomstein, Bente Aa.
2016-01-01
The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm3. The cell-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass. PMID:27630628
Global Overview On Delivery Of Sediment To The Coast From Tropical River Basins
NASA Astrophysics Data System (ADS)
Syvitski, J. P.; Kettner, A. J.; Brakenridge, G. R.
2011-12-01
Depending on definition, the tropics occupy between 16% and 19% of the earth's land surface, and discharge ~18.5% of the earth's fluvial water runoff. These flow regimes are driven by three types of sub-regional climate: rainforest, monsoon, and savannah. Even though the tropics include extreme precipitation events, particularly for the SE Asian islands, the general rainfall pattern alternates between wet and dry seasons as the ITCZ follows the sun and where annual monsoonal rain occurs. ITCZ convective rainfall is the dominant style of precipitation but this can be influenced by rare intra-tropical cyclone events, and by atmospheric river events set up by strong monsoonal conditions. Though a rainy season is normal (for example, portions of India discharge in summer may reach 50 times that of winter), the actual rainfall events are in the form of short bursts of precipitation (hours to days) separated by periods of dry (hours to weeks). Some areas of the tropics receive more than 100 thunderstorms per year. Rivers respond to this punctuated weather by seasonal flooding. For the smaller island nations and locales (e.g. Indonesia, Philippines, Borneo, Hainan, PNG, Madagascar, Hawaii, Taiwan) flash floods are common. Larger tropical river systems (Niger, Ganges, Brahmaputra, Congo, Amazon, Orinoco, Magdalena) show typical seasonally modulated discharges. The sediment flux from tropical rivers is approximately 17% to 19% of the global total - however individual river basins offer a wide range in sediment yields reflecting highly variable differences in their hinterland lithology, tectonic activity and volcanism, land-sliding, and relief. Human influences also greatly influence the range for tropical river sediment yield. Some SE Asian Rivers continue to be greatly affected by deforestation, road construction, and monoculture plantations. Sediment flux is more than twice the pre-Anthropocene flux in many of these SE Asian countries, especially where dams and reservoir emplacements do not impact sediment delivery, as is the case in most temperate regions.
Bernier, Julie C.; Kelso, Kyle W.; Tuten, Thomas M.; Stalk, Chelsea A.; Flocks, James G.
2017-03-08
Breton Island, located at the southern end of the Chandeleur Islands, supports one of Louisiana’s largest historical brown pelican (Pelecanus occidentalis) nesting colonies. Although the brown pelican was delisted as an endangered species in 2009, nesting areas are threatened by continued land loss and are extremely vulnerable to storm impacts. The U.S. Fish and Wildlife Service proposed to restore Breton Island to pre-Hurricane Katrina conditions through rebuilding the shoreface, dune, and back-barrier marsh environments. Prior to restoration, scientists from the U.S. Geological Survey’s (USGS) St. Petersburg Coastal and Marine Science Center Geologic and Morphologic Evolution of Coastal Margins project collected high-resolution geophysical (topography, bathymetry, and sub-bottom profiles) and sedimentologic data from around Breton Island to characterize the geologic framework of the island platform, nearshore, and shelf environments. These data will be used to characterize the geologic framework around Breton Island, identify potential borrow areas for restoration efforts, quantify seafloor change, and provide information for sediment transport and morphologic change models to assess island response to restoration and natural processes.This report, along with the accompanying USGS data release, serves as an archive of sediment data from vibracores, push cores, and submerged grab samples collected from around Breton and Gosier Islands, Louisiana, during two surveys conducted in July 2014 and January 2015 (USGS Field Activity Numbers 2014–314–FA and 2014–336–FA, respectively). Sedimentologic and stratigraphic metrics (for example, sediment texture or unit thicknesses) derived from these data can be used to ground-truth the geophysical data and characterize potential sand resources or can be incorporated into sediment transport or morphologic change models. Data products, including sample location tables, descriptive core logs, core photographs and x-radiographs, results of sediment grain-size analyses, and geographic information system data files with accompanying formal Federal Geographic Data Committee metadata can be downloaded from the accompanying data release.
NASA Astrophysics Data System (ADS)
Wu, J.; Zhou, J.; Shen, B.; Zeng, H.
2017-12-01
Global climate change has the potential to accelerate the hydrological cycle, which may further enhance the temporal frequency of regional extreme floods. Climatic models predict that intra-annual rainfall variability will intensify, which will shift current rainfall regimes towards more extreme systems with lower precipitation frequencies, longer dry periods, and larger individual precipitation events worldwide. Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, currently available instrumental data are not long enough for capturing the most extreme events, thus the acquisition of long duration datasets for historical floods that extend beyond available instrumental records is clearly an important step in discerning trends in flood frequency and magnitude with respect to climate change. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Grain parameters and frequency distributions both demonstrate that two abrupt environment changes exist within the lake sedimentary sequence. Based on canonical discriminant analysis (CDA) and C-M pattern analysis, two flood events corresponding to ca. 1760 AD and ca. 1890 AD were identified, both of which occurred during warmer and wetter climate conditions according to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan areas. Furthermore, through a comparison with other records, the flood event in ca. 1760 AD seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation (NAO) index.
Sánchez-Canales, M; López-Benito, A; Acuña, V; Ziv, G; Hamel, P; Chaplin-Kramer, R; Elorza, F J
2015-01-01
Climate change and land-use change are major factors influencing sediment dynamics. Models can be used to better understand sediment production and retention by the landscape, although their interpretation is limited by large uncertainties, including model parameter uncertainties. The uncertainties related to parameter selection may be significant and need to be quantified to improve model interpretation for watershed management. In this study, we performed a sensitivity analysis of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) sediment retention model in order to determine which model parameters had the greatest influence on model outputs, and therefore require special attention during calibration. The estimation of the sediment loads in this model is based on the Universal Soil Loss Equation (USLE). The sensitivity analysis was performed in the Llobregat basin (NE Iberian Peninsula) for exported and retained sediment, which support two different ecosystem service benefits (avoided reservoir sedimentation and improved water quality). Our analysis identified the model parameters related to the natural environment as the most influential for sediment export and retention. Accordingly, small changes in variables such as the magnitude and frequency of extreme rainfall events could cause major changes in sediment dynamics, demonstrating the sensitivity of these dynamics to climate change in Mediterranean basins. Parameters directly related to human activities and decisions (such as cover management factor, C) were also influential, especially for sediment exported. The importance of these human-related parameters in the sediment export process suggests that mitigation measures have the potential to at least partially ameliorate climate-change driven changes in sediment exportation. Copyright © 2014 Elsevier B.V. All rights reserved.
A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium
NASA Technical Reports Server (NTRS)
Witzke, Walter R; Prok, George M; Walsh, Thomas J
1954-01-01
Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.
40 CFR 230.24 - Normal water fluctuations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... change salinity patterns, alter erosion or sedimentation rates, aggravate water temperature extremes, and... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Normal water fluctuations. 230.24... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.24 Normal water...
NASA Astrophysics Data System (ADS)
Callahan, R. P.; Riebe, C. S.; Ferrier, K.
2017-12-01
For more than two decades, cosmogenic nuclides have been used to quantify catchment-wide erosion rates averaged over tens of thousands of years. These rates have been used as baselines for comparison with sediment yields averaged over decades, leading to insights on how human activities such as deforestation and agriculture have influenced the production and delivery of sediment to streams and oceans. Here we present new data from the southern Sierra Nevada, California, where sediment yields have been measured over the last ten years using sediment trapping and gauging methods. Cosmogenic nuclides measured in stream sediment reveal erosion rates that are between 13 and 400 (average = 94) times faster than erosion rates inferred from annual accumulations in sediment traps. We show that the discrepancy can be explained by extremely low sediment trapping efficiency, which leads to bias in the short-term rates due to incomplete capture of suspended sediment. Thus the short-term rates roughly agree with the long-term rates, despite intensive timber harvesting in the study catchments over the last century. This differs from results obtained in similar forested granitic catchments of Idaho, where long-term rates are more than ten times greater than short-term rates because large, rare events do not contribute to the short-term averages. Our analysis of a global database indicates that both the magnitude and sign of differences between short- and long-term average erosion rates are difficult to predict, even when the history of land use in known.
Schenk, Liam N.; Bragg, Heather M.
2014-01-01
The drawdown of Fall Creek Lake resulted in the net transport of approximately 50,300 tons of sediment from the lake during a 6-day drawdown operation, based on computed daily values of suspended-sediment load downstream of Fall Creek Dam and the two main tributaries to Fall Creek Lake. A suspended-sediment budget calculated for 72 days of the study period indicates that as a result of drawdown operations, there was approximately 16,300 tons of sediment deposition within the reaches of Fall Creek and the Middle Fork Willamette River between Fall Creek Dam and the streamgage on the Middle Fork Willamette River at Jasper, Oregon. Bedload samples collected at the station downstream of Fall Creek Dam during the drawdown were primarily composed of medium to fine sands and accounted for an average of 11 percent of the total instantaneous sediment load (also termed sediment discharge) during sample collection. Monitoring of dissolved oxygen at the station downstream of Fall Creek Dam showed an initial decrease in dissolved oxygen concurrent with the sediment release over the span of 5 hours, though the extent of dissolved oxygen depletion is unknown because of extreme and rapid fouling of the probe by the large amount of sediment in transport. Dissolved oxygen returned to background levels downstream of Fall Creek Dam on December 18, 2012, approximately 1 day after the end of the drawdown operation.
Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia).
Olivero-Verbel, Jesus; Caballero-Gallardo, Karina; Turizo-Tapia, Alexi
2015-04-01
Gold mining is responsible for most Hg pollution in developing countries. The aims of this study were to assess the levels of total Hg (T-Hg) in human hair, fish, water, macrophyte, and sediment samples in the gold mining district of San Martin de Loba, Colombia, as well as to determine fish consumption-based risks for T-Hg ingestion. T-Hg levels were measured by electrothermal atomization and atomic absorption spectroscopy. The overall mean T-Hg level in hair for humans in the mining district of San Martin de Loba was 2.12 μg/g, whereas for the reference site, Chimichagua, Cesar, it was 0.58 μg/g. Mean T-Hg levels were not different when considered within localities belonging to the mining district but differed when the comparison included Chimichagua. T-Hg levels in examined locations were weakly but significantly associated with age and height, as well as with fish consumption, except in San Martin de Loba. High T-Hg concentrations in fish were detected in Pseudoplatystoma magdaleniatum, Caquetaia kraussii, Ageneiosus pardalis, Cyrtocharax magdalenae, and Triportheus magdalenae, whereas the lowest appeared in Prochilodus magdalenae and Hemiancistrus wilsoni. In terms of Hg exposure due to fish consumption, only these last two species offer some guarantee of low risk for Hg-related health problems. Water, floating macrophytes, and sediments from effluents near mining sites also had high Hg values. In mines of San Martin de Loba and Hatillo de Loba, for instance, the geoaccumulation index (I(geo)) for sediments reached values greater than 6, indicating extreme pollution. In short, these data support the presence of a high Hg-polluted environment in this mining district, with direct risk for deleterious effects on the health of the mining communities.
NASA Astrophysics Data System (ADS)
Loh, Pei Sun; Cheng, Long-Xiu; Yuan, Hong-Wei; Yang, Lin; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Lin, Yu-Shih; Chen, Chen-Tung Arthur
2018-02-01
In this study, lignin-derived phenols, stable carbon isotopes and bulk elemental compositions were determined along the length of two sediment cores (C1 and C2) from the Andong salt marsh, which is located southwest of Hangzhou Bay, China. The purpose of this study was to determine the short-term changes and their implications along sediment profiles. The 1997 high tide had caused an increase in the terrestrial organic matter (OM) signal from 1996/1997 to 2000 in both cores, which was indicated by a high Λ (total lignin in mg/100 mg OC), TOC, C/N and more negative δ13C values. The slight increases in terrestrial OM along the length of the cores between 2003 and 2006 were most likely attributable to the construction of the Hangzhou Bay Bridge. Both events have likely caused an increase in erosion, and thus, these events have increased the input of terrestrial OM to nearby areas. The effects of the distinctively dry year of 2006 can be observed along C2 between 2006 and 2008 in the steadily declining terrestrial OM signal. The overall slight decrease in terrestrial OM and the distinct increase in TOC along the length of both cores toward the present were most likely because of the overall reduced sediment caused by the trapping of materials within reservoirs. These results show that the reduction in terrestrial OM in the Andong salt marsh for the past 30 years was due to reservoirs and the 2006 drought, but this was counterbalanced by the 1997 high tide event and construction of the Hangzhou Bay Bridge, which resulted in increased erosion and terrestrial OM input.
Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean
NASA Astrophysics Data System (ADS)
Danovaro, R.; Gambi, C.; Della Croce, N.
2002-05-01
Meiofaunal assemblages were investigated (in terms of abundance, biomass, individual size and community structure) at bathyal and hadal depths (from 1050 to 7800 m) in the Atacama Trench in the upwelling sector of the eastern South Pacific Ocean, in relation to the distribution and availability of potential food sources (phytopigments, biochemical compounds and bacterial biomass) in this highly productive region. Meiofaunal density and biomass in the Atacama Trench were one to two orders of magnitude higher than values reported in other "oligotrophic" hadal systems. The Atacama Trench presented very high concentrations of nutritionally rich organic matter at 7800-m depth and displayed characteristics typical of eutrophic systems. Surprisingly, despite a decrease in chlorophyll- a and organic matter concentrations of about 50% from bathyal to hadal depths, meiofaunal abundance in hadal sediments was 10-fold higher than at bathyal depths. As indicated by the higher protein to carbohydrate ratio observed in trench sediments, the extraordinarily high meiofaunal density reported in the Atacama Trench was more dependent upon organic matter quality than on its quantity. The trophic richness of the system was reflected by a shift of the size structure of the benthic organisms. In contrast with typical trends of deep-sea systems, the ratio of bacterial to meiofaunal biomass decreased with increasing depth and, in the Atacama Trench, meiofaunal biomass largely dominated total benthic biomass. Nematodes at 7800-m depth accounted for more than 80% of total density and about 50% of total meiofaunal biomass. In hadal sediments a clear meiofaunal dwarfism was observed: the individual body size of nematodes and other taxa was reduced by 30-40% compared to individuals collected at bathyal depths. The peculiarity of this trophic-rich system allows rejection of previous hypotheses, which explained deep-sea dwarfism by the extremely oligotrophic conditions typical of deep-sea regions.
Physical processes and sedimentation on a broad, shallow bank
NASA Astrophysics Data System (ADS)
Murray, S. P.; Hsu, S. A.; Roberts, H. H.; Owens, E. H.; Crout, R. L.
1982-02-01
An integrated study of the meteorology, physical oceanography, sedimentationand coastal morphology on the broad, shallow Miskito Bank off the eastern coast of Nicaragua has uncovered systematic interrelationships between driving forces. Bank geometry and sedimentologic environments on the Bank. Extremely high rainfall results from an interaction between meteorological processes over the Bank and topographic effects along the coast. Both acoustic and radio sounding of the lower atmosphere have documented the feedback between convective plumes, inversion layers and the incessant rainfall, which brings three times more freshwater and 15 times more sediment down to a unit length of coast than on the U.S. Atlantic shore. The resultant brackish, turbid coastal water moves as a highly organized band of water parallel to the coast. Seaward of this coastal boundary layer, offshore water from the Caribbean Current rides up on the Bank and provides an environment ideal for carbonate production. A zone of fine-grained terrigenous sediment underlying the coastal boundary current merges abruptly into a smooth carbonate plain covering most of the surface of the Bank. These central Bank carbonates are composed primarily of the disintegration products of prolific calcareous green algae. A trend of high relief, luxuriant coral reef growth is aligned along the steep dropoff at the Bank edge, a zone of observed upwelling of cooler and saltier basin water. A threefold southerly increase in wave energy at the shoreline due to the decreasing width of the shallow shelf results in wave-dominated coastal morphologies in the south compared to fluvial domination in the north and a systematic change from straight, linear bars and beaches in the north to rhythmic topography in the south.
NASA Astrophysics Data System (ADS)
Ligero, Rufino; Casas-Ruiz, Melquiades; Barrera, Manuel; Barbero, Luis
2010-05-01
The techniques for the direct measurement of the sedimentation rate are reliable but slow and imprecise, given that the time intervals of measurement cannot be very long. Consequently it is an extremely laborious task to obtain a representative map of the sedimentation rates and such maps are available for very few zones. However, for most environmental studies, it is very important to know the sedimentation rates. The high degree of accuracy of the gamma spectrometric techniques together with the application of the model describes in this work, has allowed the determination of the sedimentation rates in a wide spatial area such of the Bay of Cadiz to be obtained with precision and consuming considerably less time in comparison to the traditional techniques. Even so, the experimental conditions required for the sample cores are fairly restrictive, and although the radiological method provides a quantitative advance in measurement, the experimental difficulty in the execution of the study is not greatly diminished. For this reason, a second model has been derived based on the measurement of the inventory, which offers economies in time and financial cost, and which allows the sedimentation rate in a region to be determined with satisfactory accuracy. Furthermore, it has been shown that the application of this model requires a precise determination of 137Cs inventories. The sedimentation rates estimated by the 137Cs inventory method ranged from 0.26 cm/year to 1.72 cm/year. The average value of the sedimentation rate obtained is 0.59 cm/year, and this rate has been compared with those resulting from the application of the 210Pb dating technique. A good agreement between the two procedures has been found. From the study carried out, it has been possible for the first time, to draw a map of sedimentation rates for this zone where numerous physical-chemical, oceanographic and ecological studies converge, since it is situated in a region of great environmental interest. This area, which is representative of common environmental coastal scenarios, is particularly sensitive to perturbations related to climate change, and the results of the study will allow to carry out short and medium term evaluations of this change.
Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutfin, Nicholas Alan
This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek;more » Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.« less
NASA Astrophysics Data System (ADS)
Hagemann, M.; Jeznach, L. C.; Park, M. H.; Tobiason, J. E.
2016-12-01
Extreme precipitation events such as tropical storms and hurricanes are by their nature rare, yet have disproportionate and adverse effects on surface water quality. In the context of drinking water reservoirs, common concerns of such events include increased erosion and sediment transport and influx of natural organic matter and nutrients. As part of an effort to model the effects of an extreme precipitation event on water quality at the reservoir intake of a major municipal water system, this study sought to estimate extreme-event watershed responses including streamflow and exports of nutrients and organic matter for use as inputs to a 2-D hydrodynamic and water quality reservoir model. Since extreme-event watershed exports are highly uncertain, we characterized and propagated predictive uncertainty using a quasi-Monte Carlo approach to generate reservoir model inputs. Three storm precipitation depths—corresponding to recurrence intervals of 5, 50, and 100 years—were converted to streamflow in each of 9 tributaries by volumetrically scaling 2 storm hydrographs from the historical record. Rating-curve models for concentratoin, calibrated using 10 years of data for each of 5 constituents, were then used to estimate the parameters of a multivariate lognormal probability model of constituent concentrations, conditional on each scenario's storm date and streamflow. A quasi-random Halton sequence (n = 100) was drawn from the conditional distribution for each event scenario, and used to generate input files to a calibrated CE-QUAL-W2 reservoir model. The resulting simulated concentrations at the reservoir's drinking water intake constitute a low-discrepancy sample from the estimated uncertainty space of extreme-event source water-quality. Limiting factors to the suitability of this approach include poorly constrained relationships between hydrology and constituent concentrations, a high-dimensional space from which to generate inputs, and relatively long run-time for the reservoir model. This approach proved useful in probing a water supply's resilience to extreme events, and to inform management responses, particularly in a region such as the American Northeast where climate change is expected to bring such events with higher frequency and intensity than have occurred in the past.
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
NASA Astrophysics Data System (ADS)
Cantone, Carolina; Kalantari, Zahra; Cavalli, Marco; Crema, Stefano
2016-04-01
Climate changes are predicted to increase precipitation intensities and occurrence of extreme rainfall events in the near future. Scandinavia has been identified as one of the most sensitive regions in Europe to such changes; therefore, an increase in the risk for flooding, landslides and soil erosion is to be expected also in Sweden. An increase in the occurrence of extreme weather events will impose greater strain on the built environment and major transport infrastructures such as roads and railways. This research aimed to identify the risk of flooding at the road-stream intersections, crucial locations where water and debris can accumulate and cause failures of the existing drainage facilities. Two regions in southwest of Sweden affected by an extreme rainfall event in August 2014, were used for calibrating and testing a statistical flood prediction model. A set of Physical Catchment Descriptors (PCDs) including road and catchment characteristics was identified for the modelling. Moreover, a GIS-based topographic Index of Sediment Connectivity (IC) was used as PCD. The novelty of this study relies on the adaptation of IC for describing sediment connectivity in lowland areas taking into account contribution of soil type, land use and different patterns of precipitation during the event. A weighting factor for IC was calculated by estimating runoff calculated with SCS Curve Number method, assuming a constant value of precipitation for a given time period, corresponding to the critical event. The Digital Elevation Model of the study site was reconditioned at the drainage facilities locations to consider the real flow path in the analysis. These modifications led to highlight the role of rainfall patterns and surface runoff for modelling sediment delivery in lowland areas. Moreover, it was observed that integrating IC into the statistic prediction model increased its accuracy and performance. After the calibration procedure in one of the study areas, the model was validated in the other study area, located in the central part of Sweden, since this experienced flooding in relation to the same triggering event.
Modelling geomorphic responses to human perturbations: Application to the Kander river, Switzerland
NASA Astrophysics Data System (ADS)
Ramirez, Jorge; Zischg, Andreas; Schürmann, Stefan; Zimmermann, Markus; Weingartner, Rolf; Coulthard, Tom; Keiler, Margreth
2017-04-01
Before 1714 the Kander river (Switzerland) flowed into the Aare river causing massive flooding and for this reason the Kander river was deviated (Kander correction) to lake Thun. The Kander correction was a pioneering hydrological project and induced a major human change to the landscape, but had unintended hydrological and geomorphic impacts that cascaded upstream and downstream. For example doubling the catchment area of Lake Thun, which gave rise to major flood problems, cessation of direct sediment delivery to the Aare, and sediment flux to lake Thun forming the Kander delta. More importantly the Kander correction shortened the Kander river and substantially increased the slope and bed shear of the Kander upstream from the correction. Consequently impacts of the correction cascaded upstream as a migrating knickpoint and eroded the river channel at unprecedented rates. Today we may have at our disposal the theoretical and empirical foundations to foresee the consequences of human intervention into natural systems. One method to investigate such geomorphic changes are numerical models that estimate the evolution of rivers by simulating the movement of water and sediment. Although much progress has been made in the development of these geomorphic models, few models have been tested in circumstances with rare perturbations and extreme forcings. As such, it remains uncertain if geomorphic models are useful and stable in extreme situations that include large movements of sediment and water. Here, in this study, we use historic maps and documents to develop a detailed geomorphic model of the Kander river starting in the year 1714. We use this model to simulate the extreme geomorphic events that preceded the deviation of the Kander river into Lake Thun and simulate changes to the river until conditions become relatively stable. We test our model by replicating long term impacts to the river that include 1) rates of incision within the correction, 2) knickpoint migration, and 3) delta formation in Lake Thun. In doing this we build confidence in the model and gain understanding of how the river system responded to anthropogenic perturbations.
Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin
NASA Astrophysics Data System (ADS)
Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.
2017-12-01
Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.
Trisurat, Yongyut; Eawpanich, Piyathip; Kalliola, Risto
2016-05-01
The Thadee watershed, covering 112km(2), is the main source of water for agriculture and household consumption in the Nakhon Srithammarat Province in Southern Thailand. As the natural forests upstream have been largely degraded and transformed to fruit tree and rubber plantations, problems with landslides and flooding have resulted. This research attempts to predict how further land-use/land-cover changes during 2009-2020 and conceivable changes in rainfall may influence the future levels of water yield and sediment load in the Thadee River. Three different land use scenarios (trend, development and conservation) were defined in collaboration with the local stakeholders, and three different rainfall scenarios (average rainfall, climate change and extreme wet) were determined on the basis of literature sources. Spatially explicit empirical modelling was employed to allocate future land demands and to assess the contributions of land use and rainfall changes, considering both their separate and combined effects. The results suggest that substantial land use changes may occur from a large expansion of rubber plantations in the upper sub-watersheds, especially under the development land use scenario. The reduction of the current annual rainfall by approximately 30% would decrease the predicted water yields by 38% from 2009. According to the extreme rainfall scenario (an increase of 36% with respect to current rainfall), an amplification of 50% of the current runoff could result. Sensitivity analyses showed that the predicted soil loss is more responsive to changes in rainfall than to the compared land use scenarios alone. However, very high sediment load and runoff levels were predicted on the basis of combined intensified land use and extreme rainfall scenarios. Three conservation activities-protection, reforestation and a mixed-cropping system-are proposed to maintain the functional watershed services of the Thadee watershed region. Copyright © 2016 Elsevier Inc. All rights reserved.
The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.
2014-12-01
Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.
NASA Astrophysics Data System (ADS)
Powell, R. D.
2001-12-01
The southern Alaska margin has high coastal mountains, which coupled with temperate glaciation, result in extremely high modern erosion rates (e.g. Jaeger et al., 2001), possibly exceeding rates of orogenic uplift (Meigs and Sauber, 2000). Where measured, modern sediment yields are among the highest of any basin worldwide (Hallet et al., 1996; Elverhoi et al., 1998; Jaeger et al., 1998). In Muir Inlet, Glacier Bay, sediment yields from slowly retreating glaciers decrease logarithmically with decreasing drainage basin area (Powell, 1991), a trend also reflected in regional data synthesized in Hallet et al. (1996). Alley (1997) then hypothesized that if erosion increases with basin area then where two tributaries join, deeper erosion would ensue, which is consistent with linear erosional troughs and hanging valleys. The idea is also consistent with the general downglacier increase in water flux at the glacier bed. However over longer periods, data from seismic profiles of the Gulf of Alaska shelf, show sediment yields are nearly the same through a glacial-interglacial cycle; regional data from other glaciated basins appear to confirm that trend (Elverhoi et al., 1998). If yields are continuously high from bedrock erosion, then why are mountains not eroded to base level because erosion rates are higher than isostatic uplift? Why are trends in yields apparently different during recent retreats with decreasing basin sizes than during longer term glacial cycles? Answers to these questions may be numerous and compound; however, one possibility will be evaluated. We know there is significant modern bedrock erosion occurring during glacial retreat and that also appears to have been the case during advance. Native stories describing the last (Little Ice Age) advance in Glacier Bay describe a large amount of sediment being produced (Powell et al., 1995) indicating that significant erosion was occurring. Fjord-wall stratigraphy shows that sediment had infilled much of the Bay up to ca. 200 m above modern sea level (Goldthwait,1986) prior to the LIA. During that advance, all sediments were then eroded down to bedrock, locally up to 400-500 m below sea level (Powell and Molnia, 1989), and then dumped at the Bay entrance, the site of maximum advance Powell et al., 1995). By inference, because most sediment packages on the shelf are deposited during glacially advanced phases, they probably mostly include sediment redistributed from fjords and inner shelf with a minor component from freshly eroded mountain bedrock. The ELA, under which most erosion may occur (Meigs and Sauber, 2000), lies over fjords during glacial maxima where the glacier is probably thickest with pressure melting and melting/freezing occurring at the bed. Erosion of sediment deposited there during a retreat phase may be enhanced, as may fjord over-deepening, whereas, thinner ice over mountains is likely to be cold at the bed, limiting erosion. As the glacier retreats the ELA moves toward the mountains as may the center of erosion, which then occurs mainly on bedrock. Mountain uplift may be enhanced during interglacials when glacio-isostatic rebound occurs and increased erosion adds to the isostatic effect. Therefore, during glacial-interglacial cycles average sediment yields from a glacier may not vary significantly, but the main centers of erosion change through time as does the eroding substrate and locations of depocenters.
Guédron, S; Point, D; Acha, D; Bouchet, S; Baya, P A; Tessier, E; Monperrus, M; Molina, C I; Groleau, A; Chauvaud, L; Thebault, J; Amice, E; Alanoca, L; Duwig, C; Uzu, G; Lazzaro, X; Bertrand, A; Bertrand, S; Barbraud, C; Delord, K; Gibon, F M; Ibanez, C; Flores, M; Fernandez Saavedra, P; Ezpinoza, M E; Heredia, C; Rocha, F; Zepita, C; Amouroux, D
2017-12-01
Aquatic ecosystems of the Bolivian Altiplano (∼3800 m a.s.l.) are characterized by extreme hydro-climatic constrains (e.g., high UV-radiations and low oxygen) and are under the pressure of increasing anthropogenic activities, unregulated mining, agricultural and urban development. We report here a complete inventory of mercury (Hg) levels and speciation in the water column, atmosphere, sediment and key sentinel organisms (i.e., plankton, fish and birds) of two endorheic Lakes of the same watershed differing with respect to their size, eutrophication and contamination levels. Total Hg (THg) and monomethylmercury (MMHg) concentrations in filtered water and sediment of Lake Titicaca are in the lowest range of reported levels in other large lakes worldwide. Downstream, Hg levels are 3-10 times higher in the shallow eutrophic Lake Uru-Uru than in Lake Titicaca due to high Hg inputs from the surrounding mining region. High percentages of MMHg were found in the filtered and unfiltered water rising up from <1 to ∼50% THg from the oligo/hetero-trophic Lake Titicaca to the eutrophic Lake Uru-Uru. Such high %MMHg is explained by a high in situ MMHg production in relation to the sulfate rich substrate, the low oxygen levels of the water column, and the stabilization of MMHg due to abundant ligands present in these alkaline waters. Differences in MMHg concentrations in water and sediments compartments between Lake Titicaca and Uru-Uru were found to mirror the offset in MMHg levels that also exist in their respective food webs. This suggests that in situ MMHg baseline production is likely the main factor controlling MMHg levels in fish species consumed by the local population. Finally, the increase of anthropogenic pressure in Lake Titicaca may probably enhance eutrophication processes which favor MMHg production and thus accumulation in water and biota. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kondolf, G. M.; Oreilly, C.
2010-12-01
Water-supply reservoirs in the actively eroding California Coast Ranges are vulnerable to sediment filling, thus creating obsolete impounding dams (Minear & Kondolf 2009). Once full of sediment, there is more impetus to remove dams for public safety and fish passage, but managing accumulated sediments becomes a dominant issue in dam removal planning. We analyzed the planning process and sediment management analyses for five dams, all of which have important ecological resources but whose dam removal options are constrained by potential impacts to downstream urban populations. Ringe Dam on Malibu Ck, Matilija Dam on the Ventura River, Searsville Dam on San Francisquito Ck, and Upper York Creek Dam on York Ck cut off important habitat for anadromous steelhead trout (Oncorhynchus mykiss). San Clemente Dam on the Carmel River has a working fish ladder, but only some of the migratory steelhead use it. By virtue of having filled with sediment, all five dams are at greater risk of seismic failure. San Clemente Dam is at greater risk because its foundation is on alluvium (not bedrock), and the poor-quality concrete in Matilija Dam is deteriorating from an akali-aggregate reaction. Simply removing the dams and allowing accumulated sediments to be transported downstream is not an option because all these rivers have extremely expensive houses along downstream banks and floodplains, so that allowing the downstream channel to aggrade with dam-dervied sediments could expose agencies to liability for future flood losses. Analyses of potential sediment transport have been based mostly on application of tractive force models, and have supported management responses ranging from in-situ stabilization (San Clemente and Matilija) to removal of stored sediment (York) to annual dredging to maintain capacity and prevent sediment passing over the dam (proposed for Searsville).
Sun, Weimin; Xiao, Enzong; Dong, Yiran; Tang, Song; Krumins, Valdis; Ning, Zengping; Sun, Min; Zhao, Yanlong; Wu, Shiliang; Xiao, Tangfu
2016-04-15
Located in Southwest China, the Chahe watershed has been severely contaminated by upstream active antimony (Sb) mines. The extremely high concentrations of Sb make the Chahe watershed an excellent model to elucidate the response of indigenous microbial activities within a severe Sb-contaminated environment. In this study, water and surface sediments from six locations in the Chahe watershed with different levels of Sb contamination were analyzed. Illumina sequencing of 16S rRNA amplicons revealed more than 40 phyla from the domain Bacteria and 2 phyla from the domain Archaea. Sequences assigned to the genera Flavobacterium, Sulfuricurvum, Halomonas, Shewanella, Lactobacillus, Acinetobacter, and Geobacter demonstrated high relative abundances in all sequencing libraries. Spearman's rank correlations indicated that a number of microbial phylotypes were positively correlated with different speciation of Sb, suggesting potential roles of these phylotypes in microbial Sb cycling. Canonical correspondence analysis further demonstrated that geochemical parameters, including water temperature, pH, total Fe, sulfate, aqueous Sb, and Eh, significantly structured the overall microbial community in Chahe watershed samples. Our findings offer a direct and reliable reference to the diversity of microbial communities in the presence of extremely high Sb concentrations, and may have potential implications for in situ bioremediation strategies of Sb contaminated sites. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessing overland sediment transport to the Apalachicola River/Bay in Florida
NASA Astrophysics Data System (ADS)
Smar, D. E.; Hagen, S.; Daranpob, A.; Passeri, D.
2011-12-01
An ongoing study in Franklin County, Florida is focused on classifying the mechanisms of sediment transport from the overland areas to eventual deposition in the Apalachicola River and surrounding estuaries. Sediment cores and water column samples were collected at various locations along the Apalachicola River, its tributaries, and distributaries over a two-week period during the wet season. A preliminary particle size distribution analysis of the sediment cores and water column samples demonstrates decreasing particle sizes as the river and wetlands progress toward the ocean. Daily water samples from the mouth of the Apalachicola River and two distributaries reveal fluctuating total suspended solid (TSS) concentrations. To understand these deviations, flow rate and water level at each location is inspected. Because the nearest USGS gage is approximately 16 miles upstream from these sites, investigation of the hydrodynamic influences of sediment transport is conducted by developing a hydrodynamic model simulating river flow and tides in the Apalachicola River and bay system. With spatially accurate flow rates and water levels, an attempt can be made to correlate flow rate with fluctuating TSS concentrations. Precipitation events during the sampling period also support spikes in the TSS concentrations as expected. Assessing sediment transport to the river/bay system will lead to a better understanding of the regression or accretion of the river's alluvial fan and the marsh platform. High flow periods following extreme rain events (which are expected to intensify under global climate change) transport more sediment downstream, however, the interaction with tidal and sea level effects are still being analyzed. With rising sea levels, it is expected that the alluvial fan will recede and wetland areas may migrate inland gradually transforming existing dry lands such as pine forests into new wetland regions. Future work will include an analysis of the tidal cycle during the sampling period to more accurately classify fluctuation of TSS concentration in the downstream samples. The data collection process and laboratory analysis will also be repeated in the dry season, and subsequent years to observe temporal trends.
Early Holocene to present landscape dynamics of the tectonic lakes of west-central Mexico
NASA Astrophysics Data System (ADS)
Castillo, Miguel; Muñoz-Salinas, Esperanza; Arce, José Luis; Roy, Priyadarsi
2017-12-01
Paleoclimatic reconstructions from lake sediments of central Mexico indicate that the environmental conditions in the Holocene have oscillated from cool-dry to warm-wet, thus, landscape erosion rates have been modified accordingly. The Cenozoic tectonics and volcanic activity of west-central Mexico have produced a set of lakes in warmer and drier conditions compared to lakes of central Mexico. Nevertheless, the Holocene landscape dynamics for this area remains understudied. Using age-depth models, OSL and multi-element chemistry analysis of sediments in the lakes of San Marcos and Sayula we explore the landscape dynamics from early Holocene present of west-central Mexico. Our results indicate that the sedimentation rates in San Marcos Lake notably increased from 240 yr BP to the present. Since AD 1950 the sedimentation rate in Sayula Lake rose fourfold the rates of the last 2000 years. Analysis of OSL and chemistry of major elements of sediments indicates that IRSL/BLSL strongly correlates with Ti/Al (R2 = 0.93) and with the mean monthly rainfall (R2 = 0.70). We propose that the IRSL/BLSL can be used as a proxy to infer past changes in landscape dynamics. Analysis of climatic data from the 1950s to present indicates that rainfall, and consequently water runoff, is enhanced in summers free of ENSO conditions. Extreme one-day rainfall can, however, exceed mean seasonal rainfall and occur in all phases of ENSO. Droughts are particularly severe in the phase of La Niña. Our results indicate that the erosion rate in San Marcos Lake was high from ∼8000 to ∼7000 yr BP in a period coinciding with the advance and recession of glaciers in Central Mexico, however, the erosion rates in the last 165 years have surpassed the rates of the early to mid-Holocene. By constraining the age of sediment and using environmental proxies such as the Ti/Al and IRSL/BLSL from lake sediments of Sayula and San Marcos we present the first model of landscape dynamics of this part of Mexico from the Early Holocene to present times.
NASA Astrophysics Data System (ADS)
Bertrand-Sarfati, Janine; Moussine-Pouchkine, Alexis
1988-08-01
The Atar Group, part of the Upper Proterozoic sequence covering the West African craton, stable since 2000 Ma, is characterized by an alternation of extensive carbonate beds and mixed siliciclastic and carbonate facies. The carbonate beds comprise essentially columnar stromatolite biostromes and bioherms which reflect sublittoral environments. The mixed facies contain a variety of laterally discontinuous facies which imply more variable environmental conditions. The settings of the mixed facies are not always clear but they do not contain thick sequences of high-energy facies. Few obvious facies sequences are discernable; those that are present are considered to be punctuated aggradational cycles (PACs) and they always start with biostromes of columnar stromatolites with very few sediments. Composite sequences are interpreted as due to shallowing upward or increasing energy environments that may be laterally contiguous, despite the fact that the contacts are not gradational. However, much of the stratigraphic sequence cannot be subdivided into cycles and seems to consist of unrelated individual facies, bound by sharp boundaries. The basin analysis reveals that biostromes of columnar stromatolites start after an instantaneous geological event corresponding to a sea-level rise. Consequently, their appearance can be considered as a time-line. We describe, in the Atar Group and its equivalents, three sedimentation trends, all of which are interpreted to be of shallowing upward character. The Atar Group appears to have been deposited in an epeiric sea (i.e. an extremely flat ramp). There are two contrasting styles of sedimentation: (1) after the submergence of the whole area, columnar stromatolites built extensive biostromes; (2) during the stable phase, sediments are deposited in a mosaic of laterally-discontinuous facies. Tidal influence cannot be recognized in the sequence, neither can a salinity increase toward the land; both common features in published epeiric sea models. A cratonic sedimentation area such as this is characterized by its size and flatness. Only during the stable phase of the cycle does small-scale topographic relief lead to deposition of a mosaic of facies. The sedimentation is storm- and wave-dominated.
NASA Astrophysics Data System (ADS)
Hewson, I.; Archer, R.; Mahaffey, C.; Scott, J.; Tsapin, A.
2002-12-01
Extrapolations into ancient biomes make many assumptions and inferences regarding life modes and environmental habitat. While definition of a stromatolite as an extinct microbial biome by petrographic analysis is promising, Life interacts with is environment, actively manipulating energy flow across chemical disequilibria gradients, harvesting energy crucial for physiological maintenance and reproduction. Such structuring of communities in turn, leaves specific chemical/isotopic imprints related to physiological processes of prokaryotic communities specific to each oxidation/redox horizon. We examine stable isotopic d13C signals (d13C and d15N) as potential biomarkers reflecting bacterial physiology and microbial community nutrient-energy dynamics. While isotopes may reveal ancient chemical structuring of microbial mats, we also turn to invoking viral lysing of bacterial hosts in nutrient cycling within modern extreme environments as well as ancient stromatic structures of early Earth. Our records of d13C indicate extreme enrichment(-12%) for Corg in our extant mat due to CO2 limitation across a hypersaline diffusive barrier at the mat's surface. d15N is lowest at the mat's surface (indicating N2- fixation) where nitrogen- fixing cyanobacteria Microcoleus sp. are present . Viruses are extremely abundant in the microbial mat, exceeding bacterial abundances by a factor of ten. The ratio of viruses to bacteria was very high (VBR = 39 ñ 10) compared with abundances in marine sediments. Distribution of viruses closely follows distribution of bacteria, suggesting bacteria as primary hosts. The ratio of viruses to bacteria is inversely correlated to the concentration of organic C suggesting virus abundance is responsive to host substrate availability. High ratios of viruses to bacteria in mid-mat horizons (2.5 - 3.7 cm) above increasing levels of d13C in deeper horizons, coupled with a lack of increase in bacteria, suggests that viral lysis contributes to significant downward organic C (polysaccaride exudates) transport within the mat. Subsequent accumulation of d13C as well as heavier d15N in deeper sediment(denitrification)horizons elucidates tight nutrient coupling between evaporite substrate, nitrogen fixing primary producers and downcore zones of active denitrification and sulphate reduction. Discrepencies between d13C of ancient stromatolites (in line with C-3 photosynthetic pathways) and modern analogues (Badwater, CA) suggest a migration of microbial mats towards more extreme environments through time. A methodology for isotopically testing environmental and physiological responses in the geological record is presented here.
Zeiger, Sean; Hubbart, Jason A
2016-01-15
Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. Copyright © 2015 Elsevier B.V. All rights reserved.
Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A
2016-03-01
Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.
Xia, Dan; Gao, Lirong; Zheng, Minghui; Tian, Qichang; Huang, Huiting; Qiao, Lin
2016-07-19
Chlorinated paraffins (CPs) are complex technical mixtures containing thousands of isomers. Analyzing CPs in environmental matrices is extremely challenging. CPs have broad, unresolved profiles when analyzed by one-dimensional gas chromatography (GC). Comprehensive two-dimensional GC (GC×GC) can separate CPs with a high degree of orthogonality. A novel method for simultaneously profiling and quantifying short- and medium-chain CPs, using GC×GC coupled with electron capture negative ionization high-resolution time-of-flight mass spectrometry, was developed. The method allowed 48 CP formula congener groups to be analyzed highly selectively in one injection through accurate mass measurements of the [M - Cl](-) ions in full scan mode. The correlation coefficients (R(2)) for the linear calibration curves for different chlorine contents were 0.982 for short-chain CPs and 0.945 for medium-chain CPs. The method was successfully used to determine CPs in sediment and fish samples. By using this method, with enhanced chromatographic separation and high mass resolution, interferences between CP congeners and other organohalogen compounds, such as toxaphene, are minimized. New compounds, with the formulas C9H14Cl6 and C9H13Cl7, were found in sediment and biological samples for the first time. The method was shown to be a powerful tool for the analysis of CPs in environmental samples.
Diphytanyl glycerol ether distributions in sediments of the Orca Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pease, T.K.; VanVleet, E.S.; Barre, J.S.
1992-09-01
Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 [mu]g/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-boundmore » DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in-situ production by methanogenic or extremely halophilic archaebacteria.« less
Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam
Marineau, Mathieu D.; Wright, Scott A.
2017-01-01
A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Tseng, Chih-Ming
2017-04-01
Due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island Taiwan. Global warming and sea-level rise with increasing frequency and magnitude of storms and typhoons has resulted in an increase of natural hazards, and strong impacts on human life. A consequence of a change of the rainfall regime, increase of intensity and in a reduction of the duration of the events may have dramatic impacts. Heavy rainfall precipitations are one of the major triggering factors for landslides. Typhoon Morakot in 2009 brought extreme and long-time rainfall, and caused severe disasters. After 2009, numerous debris and sediment deposition increased greatly due to the severe landslides in upstream area. Detail morphological records may able to reveal the environment changes. This kind of analysis is based on the concept of DEM of difference (DoD) to evaluate the sediment budgets during climate and geo-hazard events. The aerial photographs generated digital surface models (DSMs) before and after Typhoon Morakot, and the subsequent multi-periods of imageries is thus been conducted in this study. In recent years, the remote sensing technology improves rapidly, providing a wide range of image, essential and precious information. In order quantify the hazards in different time; we try to integrate several technologies, especially by unmanned aircraft system (UAS), to decipher the consequence and the potential hazard, and the social impact. In order to monitoring the sediment budget of the study area, we integrates several methods, including, 1) Remote-sensing images gathered by UAS and by aerial photos taken in different periods; 2) field in-situ geologic investigation; 3) Differential GPS, RTK GPS in-site geomatic measurements; 4) Construct the DTMs before and after landslide, as well as the subsequent periods using UAS and aerial photos. We finally acquired 7 DEMs, prior to post-events, from 2009-2015. The precision of the dataset been verified firstly. The migration of the debris is well defined from DEMs and been calculated. The sediment budgets are thus been evaluated. The riverbed migration is affect both by natural sediment deposition and by human activities. The profile of the riverbed is blocked mainly in the midstream area. One-half of the debris still rested on the mid- to upstream, and in the up-slope. To the end, the UAS and the methodology used in this study is been adjusted and is capable to apply to other region for hazard monitoring, mitigation and planning.
Hu, Jianfang; Xiao, Xiao; Peng, Ping'an; Huang, Weilin; Chen, Deyi; Cai, Ying
2013-10-01
Workshop dust, soil and sediment samples were collected to investigate the level and spatial distribution of PCDDs/Fs at an intensive electronic waste (e-waste) recycling site in Southern China, and also to characterize the dioxin emission in different e-waste recycling procedures. The concentrations of total PCDDs/Fs ranged from 1866 to 234292 ng kg(-1) for the dust samples, from 3187 to 63998 ng kg(-1) dry wt for the top soils, and 33718 ng kg(-1) for the surface sediment. All the samples were characterized by abnormally high concentrations of OCDD and an extremely low portion of PCDFs. Different e-waste recycling procedures may generate different congener profiles. Open burning and dismantling were the two procedures emitting relatively higher concentrations of PCDDs/Fs in this case, indicating that low-tech recycling operations were one of the major contributors of PCDDs/Fs to the environment. The variation and distinction of the concentrations and homologue/congener profiles among different environmental matrices reveal the characteristics of contaminant environmental behavior and fate during the transportation from "source" to "sink". Daily intake of PCDDs/Fs through soil ingestion and dermal absorption was negligible, but the rough estimated total PCDD/F intake dose far exceeded the tolerance daily intake value of 4 pg-TEQ per kg per day recommended by WHO, indicating that residents in Longtang were at a high risk of exposure to dioxins, especially children.
Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers
Gaeuman, D.; Jacobson, R.B.
2007-01-01
Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.
NASA Astrophysics Data System (ADS)
Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin
2018-02-01
Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (< 1% Annual Exceedance Probability for durations exceeding 6 h) and resulted in flooding and sediment deposition across the alluvial fan. The impacts of the 2011 and 2016 events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.
Assessing the performance of multi-purpose channel management measures at increasing scales
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve
2016-04-01
In addition to hydroclimatic drivers, sediment deposition from high energy river systems can reduce channel conveyance capacity and lead to significant increases in flood risk. There is an increasing recognition that we need to work with the interplay of natural hydrological and morphological processes in order to attenuate flood flows and manage sediment (both coarse and fine). This typically includes both catchment (e.g. woodland planting, wetlands) and river (e.g. wood placement, floodplain reconnection) restoration approaches. The aim of this work was to assess at which scales channel management measures (notably wood placement and flood embankment removal) are most appropriate for flood and sediment management in high energy upland river systems. We present research findings from two densely instrumented research sites in Scotland which regularly experience flood events and have associated coarse sediment problems. We assessed the performance of a range of novel trial measures for three different scales: wooded flow restrictors and gully tree planting at the small scale (<1 km2), floodplain tree planting and engineered log jams at the intermediate scale (5-60 km2), and flood embankment lowering at the large scale (350 km2). Our results suggest that at the smallest scale, care is needed in the installation of flow restrictors. It was found for some restrictors that vertical erosion can occur if the tributary channel bed is disturbed. Preliminary model evidence suggested they have a very limited impact on channel discharge and flood peak delay owing to the small storage areas behind the structures. At intermediate scales, the ability to trap sediment by engineered log jams was limited. Of the 45 engineered log jams installed, around half created a small geomorphic response and only 5 captured a significant amount of coarse material (during one large flood event). As scale increases, the chance of damage or loss of wood placement is greatest. Monitoring highlights the importance of structure design (porosity and degree of channel blockage) and placement in zones of high sediment transport to optimise performance. At the large scale, well designed flood embankment lowering can improve connectivity to the floodplain during low to medium return period events. However, ancillary works to stabilise the bank failed thus emphasising the importance of letting natural processes readjust channel morphology and hydrological connections to the floodplain. Although these trial measures demonstrated limited effects, this may be in part owing to restrictions in the range of hydroclimatological conditions during the study period and further work is needed to assess the performance under more extreme conditions. This work will contribute to refining guidance for managing channel coarse sediment problems in the future which in turn could help mitigate flooding using natural approaches.
Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.
2006-01-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E
2006-09-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
NASA Astrophysics Data System (ADS)
Krastel, S.; Wynn, R. B.; Feldens, P.; Unverricht, D.; Huehnerbach, V.; Stevenson, C.; Glogowski, S.; Schuerer, A.
2014-12-01
Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during Cruise MSM32. We collected ~ 1500 km of high-resolution seismic 2D-lines in combination with a dense net of hydroacoustic data. About 1000 km2 of sea floor were imaged during three deployments of TOBI (deep-towed sidescan sonar operated by the National Oceanography Centre Southampton). A total of 186 m of gravity cores and several giant box cores were recovered at more than 50 stations. The new data show that Agadir canyon is the source area of the world's largest submarine sediment flow, which occurred about 60,000 years ago. Up to 160 km3 of sediment was transported to the deep ocean in a single catastrophic event. For the first time, sediment flows of this scale have been tracked along their entire flow pathway. A major landslide area was identified south of Agadir Canyon. Landslide material enters Agadir canyon in about 2500 m water depth; the material is transported as debrite for at least another 200 km down the canyon. Initial data suggest that the last major slide from this source entered Agadir canyon at least 130,000 years ago. A large field of living deep-water corals was imaged north of Agadir canyon. To our knowledge, these are the first living cold water corals recovered off the coast of Morocco (except for the Gulf of Cadiz). They represent an important link between the known cold-water coral provinces off Mauritania and in the Gulf of Cádiz.
NASA Astrophysics Data System (ADS)
Tillmann, Tanja; Ziehe, Daniel
2014-05-01
Dating of Holocene sediments in shallow coastal areas of the German North Sea by conventional techniques is commonly problematic. In particular the marine reservoir effect of radiocarbon means that radiocarbon dating cannot be applied to sediments younger than about 400 years. Amino acid racemization dating (AAR) is a viable alternative for dating young sediments. The method is based on the determination of ratios of D and L amino acid enantiomers in organic matrices of biogenic carbonates. In this study we use AAR as a tool for dating Holocene barrier islands sediments. Based on an AAR derived chronological framework we develop a model of barrier spit accretion which describes the interaction between extreme events, fair weather coastal processes and sedimentary development that constrains the major episodes of barrier island evolution. The stratigraphy was defined using ground-penetrating radar (GPR) surveys complemented by sedimentological coring data. The stratigraphy is then conceptualised in a AAR chronostratigraphic framework to define a chronological order and allow the development of a stratigraphic model of the evolution of Southern Sylt. The AAR data provide high temporal resolution and have been used for dating stages of barrier spit accretion. The time lines are marked as storm surge generated erosion unconformities in the stratigraphic profile. Individual shells and shell fragments of Cerastoderma edule, Mya arenaria, Mytilus edulis and Scrobicularia plana have been accumulated by short-term storm events as shell layers associated with the erosion unconformities and have been dated by AAR. Time lines reveal that the barrier spit accretion occurred episodically, and is dependant on the provided rate of sand delivery. The general trend is that sequences young to the. South. The AAR derived time lines have been verified and correlated by historic maps and sea charts. It is apparent that spit enlargement at this site increased significantly during the Middle Ages (1593 - 1794) and was coupled with several intensive storm surges in this period. The findings indicate that when combined with GRR stratigraphy AAR provides useful results of high accuracy for dating stages of barrier spit progradation.
Sangiorgi, F.; Brumsack, H.-J.; Willard, D.A.; Schouten, S.; Stickley, C.E.; O'Regan, M.; Reichart, G.-J.; Sinninghe, Damste J.S.; Brinkhuis, H.
2008-01-01
The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene (???44.4 Ma) from lower Miocene sediments (???18.2 Ma). To elucidate the nature of this unconformity, we performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86) and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from ???5 m below to ???7 m above the hiatus. Four main paleoenvironmental. phases (A-D) are recognized in the sediments encompassing the unconformity, two below (A-B) and two above (C-D): (A) Below the hiatus, proxies show relatively warm temperatures, with Sea Surface Temperatures (TEX86-derived SSTs) of about 8??C and high fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86-derived SSTs of ???5??C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling site, located close to or at sea level. (C) The interval directly above the unconformity contains sparse reworked Cretaceous to Oligocene dinoflagellate cysts. Sediments were deposited in a relatively shallow, restricted marine environment. Proxies show the simultaneous influence of both fresh and marine waters, with alternating oxic and anoxic conditions. Pollen indicates a relatively cold climate. Intriguingly, TEX86-derived SSTs are unexpectedly high, ???15-19??C. Such warm surface waters may be partially explained by the ingression of warmer North Atlantic waters after the opening of the Fram Strait during the early Miocene. (D) Sediments of the uppermost interval indicate a phase of extreme oxic conditions, and a well-ventilated environment, which occurred after the complete opening of the Fram Strait. Importantly, and in contrast with classical postrifting thermal subsidence models for passive margins, our data suggest that sediment erosion and/or nondeposition that generated the hiatus was likely due to a progressive shoaling of the Lomonosov Ridge. A shallow water setting both before and after the hiatus suggests that the Lomonosov Ridge remained at or near sea level for the duration of the gap in the sedimentary record. Interacting sea level changes and/ or tectonic activity (possibly uplift) must be invoked as possible causes for such a long hiatus. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Li, Michael Z.; Shaw, John; Todd, Brian J.; Kostylev, Vladimir E.; Wu, Yongsheng
2014-07-01
Multibeam sonar mapping and geophysical and geological groundtruth surveys were coupled with tidal current and sediment transport model calculations to investigate the sediment transport and formation processes of the complex seabed features off the Cape Split headland in the upper Bay of Fundy. The Cape Split banner bank, composed of coarse to very coarse sand, is a southwest-northeast oriented, large tear-drop shaped sand body with superimposed sand waves that show wavelengths from 15 to 525 m and heights from 0.5 to 19 m. Isolated and chains of barchan dunes occur on top of a shadow bank to the southeast of the banner bank. The barchan dunes are composed of well-sorted medium sand and are oriented northwest-southeast. Their mean height and width are 1.5 and 55 m, respectively. A gravel bank, with an elongated elliptical shape and west-east orientation, lies in the Minas Passage erosional trough east of the headland to form the counterpart to the sandy Cape Split banner bank. The southern face is featureless but the northern face is covered by gravel megaripples. Tidal model predictions and sediment transport calculations show that the formation of the banner bank and the gravel bank are due to the development of the transient counter-clockwise and clockwise tidal eddies respectively to the west and east of the headland. The formation of barchan dunes is controlled by the nearly unidirectional flow regime in outer Scots Bay. Sand waves on the flanks of the Cape Split banner bank show opposite asymmetry and the barchan dunes are asymmetric to the northeast. The tidal current and sediment transport predictions corroborate bedform asymmetry to show that sand wave migration and net sediment transport is to southwest on the northern flank of the banner bank but to northeast on the southern bank. Long-term migration of the Scots Bay barchan dunes is to the northeast. Spring-condition tidal currents can cause frequent mobilization and high-stage transport over the banner bank and barchan dunes. Strong currents in Minas Passage can cause infrequent low-stage transport over the megarippled northern face but are not high enough to mobilize the coarser gravels on the southern face of the gravel bank.
NASA Astrophysics Data System (ADS)
Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.
2018-02-01
A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic marine sediments between 69°N and 81°N. Thus, the pronounced intensity minimum at 64.5 ka and described directional variations might be the effect of a weak geomagnetic field with a multi-polar geometry in the middle of MIS 4.
Sedimentation and chemical quality of surface waters in the Wind River basin, Wyoming
Colby, B.R.; Hembree, C.H.; Rainwater, F.H.
1956-01-01
This report gives results of an investigation by the U. S. Geological Survey of chemical quality of surface waters and sedimentation in the Wind River Basin, Wyo. The sedimentation study was begun in 1946 to determine the quantity of sediment that is transported by the streams in the basin; the probable sources of the sediment; the effect of large irrigation projects on sediment yield, particularly along Fivemile Creek; and the probable specific weight of the sediment when initially deposited in a reservoir. The study of the chemical quality of the water was begun in 1945 to obtain information on the sources, nature, and amounts of dissolved material that is transported by streams and on the suitability of the waters for different uses. Phases of geology and hydrology pertinent to the sedimentation and chemical quality were studied. Results of the investigation through September 30, 1952, and some special studies that were made during the 1953 and 1954 water years are reported. The rocks in the Wind River Basin are granite, schist, and gneiss of Precambrian age and a thick series of sedimentary strata that range in age from Cambrian to Recent. Rocks of Precambrian and Paleozoic age are confined to the mountains, rocks of Mesozoic age crop out along the flank of the Wind River and Owl Creek Mountains and in denuded anticlines in the floor of the basin, and rocks of Tertiary age cover the greater part of the floor of the basin. Deposits of debris from glaciers are in the mountains, and remnants of gravel-capped terraces of Pleistocene age are on the floor of the basin. The lateral extent and depth of alluvial deposits of Recent age along all the streams are highly variable. The climate of the floor of the basin is arid. The foothills probably receive a greater amount of intense rainfall than the areas at lower altitudes. Most precipitation in the Wind River Mountains falls as snow. The foothill sections, in general, are transitional zones between the cold, humid climate of the high mountains and the warmer, drier climate of the basin floor. Average annual runoff in the basin is about 3.6 inches on the basis of adjusted streamflow records for the Bighorn River near Thermopolis. Runoff from the mountains is high and is mostly from melting of snow and from spring and early summer rains. It does not vary greatly from year to year because annual water losses are small in comparison to annual precipitation. In the areas on the floor of the basin, where runoff is low, the runoff is mostly the result of storms in late spring and early summer. The annual water losses nearly equal the annual precipitation; therefore, runoff is extremely variable, in terms of percentage changes, from year to year and from point to point during any 1 year.
Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.
Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P
2014-01-01
Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.
Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments
Bernhard, Joan M.; Kormas, Konstantinos; Pachiadaki, Maria G.; Rocke, Emma; Beaudoin, David J.; Morrison, Colin; Visscher, Pieter T.; Cobban, Alec; Starczak, Victoria R.; Edgcomb, Virginia P.
2014-01-01
Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers. PMID:25452749
Shih, Chao-Jen; Chen, Yi-Lung; Wang, Chia-Hsiang; Wei, Sean T.-S.; Lin, I-Ting; Ismail, Wael A.; Chiang, Yin-Ru
2017-01-01
Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0–30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions. PMID:28848528
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... at the Ohatchee shoal, including excessive sedimentation and algal growth, have been observed..., in the downstream areas, the tulotoma has extended its range laterally within the channel in habitats... tulotoma were considered to be extremely localized, vulnerable to water quality or channel degradation, and...
Montoya, Lilia; Lozada-Chávez, Irma; Amils, Ricardo; Rodriguez, Nuria; Marín, Irma
2011-01-01
Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA. PMID:21915180
Multivariate analysis for source identification of pollution in sediment of Linggi River, Malaysia.
Elias, Md Suhaimi; Ibrahim, Shariff; Samuding, Kamarudin; Rahman, Shamsiah Ab; Wo, Yii Mei; Daung, Jeremy Andy Dominic
2018-03-29
Rapid socioeconomic development in the Linggi River Basin has contributed to the significant increase of pollution discharge into the Linggi River and its adjacent coastal areas. The toxic element contents and distributions in the sediment samples collected along the Linggi River were determined using neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques. The measured mean concentration of As, Cd, Pb, Sb, U, Th and Zn is relatively higher compared to the continental crust value of the respective element. Most of the elements (As, Cr, Fe, Pb, Sb and Zn) exceeded the freshwater sediment quality guideline-threshold effect concentration (FSQG-TEC) value. Downstream stations of the Linggi River showed that As concentrations in sediment exceeded the freshwater sediment quality guideline-probable effect concentration (FSQG-PEC) value. This indicates that the concentration of As will give an adverse effect to the growth of sediment-dwelling organisms. Generally, the Linggi River sediment can be categorised as unpolluted to strongly polluted and unpolluted to strongly to extremely polluted. The correlation matrix of metal-metal relationship, principle component analysis (PCA) and cluster analysis (CA) indicates that the pollution sources of Cu, Ni, Zn, Cd and Pb in sediments of the Linggi River originated from the industry of electronics and electroplating. Elements of As, Cr, Sb and Fe mainly originated from motor-vehicle workshops and metal work, whilst U and Th originated from natural processes such as terrestrial runoff and land erosion.
Sowmya, M; Rejula, M P; Rejith, P G; Mohan, Mahesh; Karuppiah, Makesh; Hatha, A A Mohamed
2014-07-01
Microorganisms which can resist high concentration of toxic heavy metals are often considered as effective tools of bioremediation from such pollutants. In the present study, sediment samples from Vembanad Lake were screened for the presence of halophilic bacteria that are tolerant to heavy metals. A total of 35 bacterial strains belonging to different genera such as Alcaligenes, Vibrio, Kurthia, Staphylococcus and members of the family Enterobacteriaceae were isolated from 21 sediment samples during February to April, 2008. The salt tolerance and optimum salt concentrations of the isolates revealed that most of them were moderate halophiles followed by halotolerant and extremely halotolerant groups. The minimum inhibitory concentrations (MICs) against cadmium and lead for each isolate revealed that the isolates showed higher MIC against lead than cadmium. Based on the resistance limit concentration, most of them were more tolerant to lead than cadmium at all the three salt concentrations tested. Heavy metal removal efficiency of selected isolates showed a maximum reduction of 37 and 99% against cadmium and lead respectively. The study reveals the future prospects of halophilic microorganisms in the field of bioremediation.
Klein, Terry L.; Cannon, Michael R.; Fey, David L.
2004-01-01
Frohner Meadows, an area of low-topographic gradient subalpine ponds and wetlands in glaciated terrane near the headwaters of Lump Gulch (a tributary of Prickly Pear Creek), is located about 15 miles west of the town of Clancy, Montana, in the Helena National Forest. Mining and ore treatment of lead-zinc-silver veins in granitic rocks of the Boulder batholith over the last 120 years from two sites (Frohner mine and the Nellie Grant mine) has resulted in accumulations of mine waste and mill tailings that have been distributed downslope and downstream by anthropogenic and natural processes. This report presents the results of an investigation of the geochemistry of the wetlands, streams, and unconsolidated-sediment deposits and the hydrology, hydrogeology, and water quality of the area affected by these sources of ore-related metals. Ground water sampled from most shallow wells in the meadow system contained high concentrations of arsenic, exceeding the Montana numeric water-quality standard for human health. Transport of cadmium and zinc in ground water is indicated at one site near Nellie Grant Creek based on water-quality data from one well near the creek. Mill tailings deposited in upper Frohner Meadow contribute large arsenic loads to Frohner Meadows Creek; Nellie Grant Creek contributes large arsenic, cadmium, and zinc loads to upper Frohner Meadows. Concentrations of total-recoverable cadmium, copper, lead, and zinc in most surface-water sites downstream from the Nellie Grant mine area exceeded Montana aquatic-life standards. Nearly all samples of surface water and ground water had neutral to slightly alkaline pH values. Concentrations of arsenic, cadmium, lead, and zinc in streambed sediment in the entire meadow below the mine waste and mill tailings accumulations are highly enriched relative to regional watershed-background concentrations and exceed consensus-based, probable-effects concentrations for streambed sediment at most sites. Cadmium, copper, and zinc typically are adsorbed to the surface coatings of streambed-sediment grains. Mine waste and mill tailings contain high concentrations of arsenic, cadmium, copper, lead, and zinc in a quartz-rich matrix. Most of the waste sites that were sampled had low acid-generating capacity, although one site (fine-grained mill tailings from the Nellie Grant mine deposited in the upper part of lower Frohner Meadows) had extremely high acid-generating potential because of abundant fine-grained pyrite. Two distinct sites were identified as metal sources based on streambed-sediment samples, cores in the meadow substrate, and mine and mill-tailings samples. The Frohner mine and mill site contribute material rich in arsenic and lead; similar material from the Nellie Grant mine and mill site is rich in cadmium and zinc.
NASA Astrophysics Data System (ADS)
Dahri, Noura; Atoui, Abdelfattah; Ellouze, Manel; Abida, Habib
2018-04-01
This study deals with the assessment of the behaviour of seven heavy metals (Cd, Zn, Cu, Pb, Ni, Cr and As) in streambed sediments within the Gabes Catchment, located in South-eastern Tunisia. To understand the effect of intense human activities in the Gabes Basin on the quality of the environment, 22 sediment samples, spread all over the study basin, were taken and analyzed for heavy metals. Heavy metal concentrations were shown to vary in the following order: Zn > Pb > Cu > Cr > Ni > Cd > As. Sediment quality was assessed based on the evaluation of various indices. A total of 27% of the sampling stations are characterised by sediment Enrichment Factors (EF) exceeding 40, reflecting extremely severe pollution. This result was also confirmed by different indices, including Sediment Pollution Index (SPI), Pollution Load Index (PLI) and Geo-accumulation index. The calculation of Mean Effect Range-Median Quotient (M-ERM-Q) indicated that in stream discharge, all metals have a probability of 21% to be toxic. The ecological toxicity risk of heavy metals increases close to urban (traffic activity) and industrial activities (industrial complex of Gabes). Close to Gabes City, the situation and the degree of contamination that may be transferred into marine ecosystems is worrisome and requires immediate intervention.
Sediment gravity flows triggered by remotely generated earthquake waves
NASA Astrophysics Data System (ADS)
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.
2017-06-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
Sediment gravity flows triggered by remotely generated earthquake waves
Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie
2017-01-01
Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.
NASA Astrophysics Data System (ADS)
Loveley, Matthew R.; Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami; Hertzberg, Jennifer E.; Schmidt, Matthew W.
2017-12-01
Here, we examine how redistribution of differing grain sizes by sediment focusing processes in Panama Basin sediments affects the use of 230Th as a constant-flux proxy. We study representative sediments of Holocene and Last Glacial Maximum (LGM) time slices from four sediment cores from two different localities close to the ridges that bound the Panama Basin. Each locality contains paired sites that are seismically interpreted to have undergone extremes in sediment redistribution, i.e., focused versus winnowed sites. Both Holocene and LGM samples from sites where winnowing has occurred contain significant amounts (up to 50%) of the 230Th within the >63 μm grain size fraction, which makes up 40-70% of the bulk sediment analyzed. For sites where focusing has occurred, Holocene and LGM samples contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4 μm), which makes up 26-40% of the bulk sediment analyzed. There are slight underestimations of 230Th-derived mass accumulation rates (MARs) and overestimations of 230Th-derived focusing factors at focused sites, while the opposite is true for winnowed sites. Corrections made using a model by Kretschmer et al. (2010) suggest a maximum change of about 30% in 230Th-derived MARs and focusing factors at focused sites, except for our most focused site which requires an approximate 70% correction in one sample. Our 230Th-corrected 232Th flux results suggest that the boundary between hemipelagically- and pelagically-derived sediments falls between 350 and 600 km from the continental margin.
Jones, C.S.; Schilling, K.E.
2011-01-01
Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Powell, R.D.; Molnia, B.F.
1989-01-01
High precipitation from Gulf of Alaska air masses can locally reach up to 800 cm a-1. This precipitation on tectonically active mountains creates cool-temperate glaciation with extremely active erosion and continuously renewed resources. High basal debris loads up to 1.5 m thick of pure debris and rapid glacial flow, which can be more than 3000 m a-1, combine to produce large volumes of siliciclastic glacimarine sediment at some of the highest sediment accumulation rates on record. At tidewater fronts of valley glaciers, sediment accumulation rates can be over 13 m a-1 and deltas commonly grow at about 106 m3 a-1. Major processes influencing glacimarine sedimentation are glacial transport and glacier-contact deposition, meltwater (subaerial and submarine) and runoff transport and deposition, iceberg rafting and gouging, sea-ice transport, wave action and storm reworking, tidal transport and deposition, alongshelf transport, sliding and slumping and gravity flows, eolian transport, and biogenic production and reworking. Processes are similar in both shelf and fjord settings; however, different intensities of some processes create different facies associations and geometries. The tectonoclimatic regime also controls morphology because bedrock structure is modified by glacial action. Major glacimarine depositional systems are all siliciclastic. They are subglacial, marginal-morainal bank and submarine outwash, and proglacial/paraglacial-fluvial/deltaic, beach, tidal flat/estuary, glacial fjord, marine outwash fjord and continental shelf. Future research should include study of long cores with extensive dating and more seismic surveys to evaluate areal and temporal extent of glacial facies and glaciation; time-series oceanographic data, sidescan sonar surveys and submersible dives to evaluate modern processes; biogenic diversity and production to evaluate paleoecological, paleobiogeographic and biofacies analysis; and detailed comparisons of exposed older rock of the Yakataga Formation to evaluate how glacial style has evolved over 6.3 Ma. ?? 1989.
Processes affecting transport of uranium in a suboxic aquifer
Davis, J.A.; Curtis, G.P.; Wilkins, M.J.; Kohler, M.; Fox, P.; Naftz, D.L.; Lloyd, J.R.
2006-01-01
At the Naturita site in Colorado, USA, groundwaters were sampled and analyzed for chemical composition and by culture and culture-independent microbiological techniques. In addition, sediments were extracted with a dilute sodium carbonate solution to determine quantities of labile uranium within the sediments. Samples from the upgradient portion of the contaminated aquifer, where very little dissolved Fe(II) is found in the groundwater, have uranium content that is controlled by U(VI) adsorption and few metal-reducing bacteria are observed. In the extreme downgradient portion of the aquifer, where dissolved Fe(II) is observed, uranium content of the sediments includes significant quantities of reduced U(IV) and diverse populations of Fe(III)-reducing bacteria were present in the subsurface with the potential of reducing U(VI) to U(IV). ?? 2006 Elsevier Ltd. All rights reserved.
Self-organization of river channels as a critical filter on climate signals.
Phillips, Colin B; Jerolmack, Douglas J
2016-05-06
Spatial and temporal variations in rainfall are hypothesized to influence landscape evolution through erosion and sediment transport by rivers. However, determining the relation between rainfall and river dynamics requires a greater understanding of the feedbacks between flooding and a river's capacity to transport sediment. We analyzed channel geometry and stream-flow records from 186 coarse-grained rivers across the United States. We found that channels adjust their shape so that floods slightly exceed the critical shear velocity needed to transport bed sediment, independently of climatic, tectonic, and bedrock controls. The distribution of fluid shear velocity associated with floods is universal, indicating that self-organization of near-critical channels filters the climate signal evident in discharge. This effect blunts the impact of extreme rainfall events on landscape evolution. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Engel, Max; Brückner, Helmut; Wennrich, Volker; Scheffers, Anja; Kelletat, Dieter; Vött, Andreas; Schäbitz, Frank; Daut, Gerhard; Willershäuser, Timo; May, Simon Matthias
2010-11-01
A sediment record of three alluvial sites along the east- and northeast-oriented shore of Bonaire (Netherlands Antilles) provides evidence for the recurrence of several extraordinary wave impacts during the Holocene. The interpretation of onshore high-energy wave deposits is controversially discussed in recent sedimentary research. However, it represents a powerful tool to evaluate the hazard of tsunami and severe storms where historical documentation is short and/or fragmentary. A facies model was established based on sedimentary and geochemical characteristics as well as the assemblage and state of preservation of shells and shell fragments. Radiocarbon data and the comparison of the facies model with both recent local hurricane deposits and global "tsunami signature types" point to the occurrence of three major wave events around 3300, 2000-1700 and shortly before 500 BP. Since (i) the stratigraphically correlated sand layers fulfill several sedimentary characteristics commonly associated with tsunamis and (ii) modern strong hurricanes left only little or even no sediment in the study areas, they were interpreted as tsunamigenic. However, surges largely exceeding the energy of those accompanying modern hurricanes in the southern Caribbean cannot entirely be ruled out. The results are partially consistent with existing chronologies for Holocene extreme wave events deduced from supralittoral coarse-clast deposits on Aruba, Bonaire and Curaçao as well as overwash sediments from Cayo Sal, Venezuela.
Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats
NASA Astrophysics Data System (ADS)
Ridd, Peter V.; Sam, Renagi
1996-11-01
The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.
Global Bedload Flux Modeling and Analysis in Large Rivers
NASA Astrophysics Data System (ADS)
Islam, M. T.; Cohen, S.; Syvitski, J. P.
2017-12-01
Proper sediment transport quantification has long been an area of interest for both scientists and engineers in the fields of geomorphology, and management of rivers and coastal waters. Bedload flux is important for monitoring water quality and for sustainable development of coastal and marine bioservices. Bedload measurements, especially for large rivers, is extremely scarce across time, and many rivers have never been monitored. Bedload measurements in rivers, is particularly acute in developing countries where changes in sediment yields is high. The paucity of bedload measurements is the result of 1) the nature of the problem (large spatial and temporal uncertainties), and 2) field costs including the time-consuming nature of the measurement procedures (repeated bedform migration tracking, bedload samplers). Here we present a first of its kind methodology for calculating bedload in large global rivers (basins are >1,000 km. Evaluation of model skill is based on 113 bedload measurements. The model predictions are compared with an empirical model developed from the observational dataset in an attempt to evaluate the differences between a physically-based numerical model and a lumped relationship between bedload flux and fluvial and basin parameters (e.g., discharge, drainage area, lithology). The initial study success opens up various applications to global fluvial geomorphology (e.g. including the relationship between suspended sediment (wash load) and bedload). Simulated results with known uncertainties offers a new research product as a valuable resource for the whole scientific community.