A New Integrated Threshold Selection Methodology for Spatial Forecast Verification of Extreme Events
NASA Astrophysics Data System (ADS)
Kholodovsky, V.
2017-12-01
Extreme weather and climate events such as heavy precipitation, heat waves and strong winds can cause extensive damage to the society in terms of human lives and financial losses. As climate changes, it is important to understand how extreme weather events may change as a result. Climate and statistical models are often independently used to model those phenomena. To better assess performance of the climate models, a variety of spatial forecast verification methods have been developed. However, spatial verification metrics that are widely used in comparing mean states, in most cases, do not have an adequate theoretical justification to benchmark extreme weather events. We proposed a new integrated threshold selection methodology for spatial forecast verification of extreme events that couples existing pattern recognition indices with high threshold choices. This integrated approach has three main steps: 1) dimension reduction; 2) geometric domain mapping; and 3) thresholds clustering. We apply this approach to an observed precipitation dataset over CONUS. The results are evaluated by displaying threshold distribution seasonally, monthly and annually. The method offers user the flexibility of selecting a high threshold that is linked to desired geometrical properties. The proposed high threshold methodology could either complement existing spatial verification methods, where threshold selection is arbitrary, or be directly applicable in extreme value theory.
Power laws and extreme values in antibody repertoires
NASA Astrophysics Data System (ADS)
Boyer, Sebastien; Biswas, Dipanwita; Scaramozzino, Natale; Kumar, Ananda Soshee; Nizak, Clément; Rivoire, Olivier
2015-03-01
Evolution by natural selection involves the succession of three steps: mutations, selection and proliferation. We are interested in describing and characterizing the result of selection over a population of many variants. After selection, this population will be dominated by the few best variants, with highest propensity to be selected, or highest ``selectivity.'' We ask the following question: how is the selectivity of the best variants distributed in the population? Extreme value theory, which characterizes the extreme tail of probability distributions in terms of a few universality class, has been proposed to describe it. To test this proposition and identify the relevant universality class, we performed quantitative in vitro experimental selections of libraries of >105 antibodies using the technique of phage display. Data obtained by high-throughput sequencing allows us to fit the selectivity distribution over more than two decades. In most experiments, the results show a striking power law for the selectivity distribution of the top antibodies, consistent with extreme value theory.
A modified estimation distribution algorithm based on extreme elitism.
Gao, Shujun; de Silva, Clarence W
2016-12-01
An existing estimation distribution algorithm (EDA) with univariate marginal Gaussian model was improved by designing and incorporating an extreme elitism selection method. This selection method highlighted the effect of a few top best solutions in the evolution and advanced EDA to form a primary evolution direction and obtain a fast convergence rate. Simultaneously, this selection can also keep the population diversity to make EDA avoid premature convergence. Then the modified EDA was tested by means of benchmark low-dimensional and high-dimensional optimization problems to illustrate the gains in using this extreme elitism selection. Besides, no-free-lunch theorem was implemented in the analysis of the effect of this new selection on EDAs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Wingad, Richard L; Bergström, Emilie J E; Everett, Matthew; Pellow, Katy J; Wass, Duncan F
2016-04-14
Catalysts based on ruthenium diphosphine complexes convert methanol/ethanol mixtures to the advanced biofuel isobutanol, with extremely high selectivity (>99%) at good (>75%) conversion via a Guerbet-type mechanism.
Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish
NASA Astrophysics Data System (ADS)
Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin
2007-05-01
Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.
How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?
NASA Astrophysics Data System (ADS)
Anandhi, A.
2017-12-01
The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.
Phenotypic and genetic overlap between autistic traits at the extremes of the general population.
Ronald, Angelica; Happé, Francesca; Price, Thomas S; Baron-Cohen, Simon; Plomin, Robert
2006-10-01
To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are caused by the same genes and environments, and how often they occur together (as required by an autism diagnosis). The most extreme-scoring 5% were selected from 3,419 8-year-old pairs in the Twins Early Development Study assessed on the Childhood Asperger Syndrome Test. Phenotypic associations between extreme traits were compared with associations among the full-scale scores. Genetic associations between extreme traits were quantified using bivariate DeFries-Fulker extremes analysis. Phenotypic relationships between extreme SIs, CIs, and RRBIs were modest. There was a degree of genetic overlap between them, but also substantial genetic specificity. This first twin study assessing the links between extreme individual autistic-like traits (SIs, CIs, and RRBIs) found that all are highly heritable but show modest phenotypic and genetic overlap. This finding concurs with that of an earlier study from the same cohort that showed that a total autistic symptoms score at the extreme showed high heritability and that SIs, CIs, and RRBIs show weak links in the general population. This new finding has relevance for both clinical models and future molecular genetic studies.
CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xingxing; Wang, Junxian; Shu, Xinwen
2015-03-01
We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-framemore » [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.« less
The Power to Detect Linkage Disequilibrium with Quantitative Traits in Selected Samples
Abecasis, Gonçalo R.; Cookson, William O. C.; Cardon, Lon R.
2001-01-01
Results from power studies for linkage detection have led to many ongoing and planned collections of phenotypically extreme nuclear families. Given the great expense of collecting these families and the imminent availability of a dense diallelic marker map, the families are likely to be used in allelic-association as well as linkage studies. However, optimal selection strategies for linkage may not be equally powerful for association. We examine the power to detect linkage disequilibrium for quantitative traits after phenotypic selection. The results encompass six selection strategies that are in widespread use, including single selection (two designs), affected sib pairs, concordant and discordant pairs, and the extreme-concordant and -discordant design. Selection of sibships on the basis of one extreme proband with high or low trait scores provides as much power as discordant sib pairs but requires the screening and phenotyping of substantially fewer initial families from which to select. Analysis of the role of allele frequencies within each selection design indicates that common trait alleles generally offer the most power, but similarities between the marker- and trait-allele frequencies are much more important than the trait-locus frequency alone. Some of the most widespread selection designs, such as single selection, yield power gains only when both the marker and quantitative trait loci (QTL) are relatively rare in the population. In contrast, discordant pairs and the extreme-proband design provide power for the broadest range of QTL–marker-allele frequency differences. Overall, proband selection from either tail provides the best balance of power, robustness, and simplicity of ascertainment for family-based association analysis. PMID:11349228
USDA-ARS?s Scientific Manuscript database
Methionine is an important nutrient in animal feed and several approaches have been developed to increase methionine concentration in maize (Zea mays L.) grain. One approach is through traditional breeding using recurrent selection. Two populations selected were selected for high and low methionin...
Lower extremity muscle activation during baseball pitching.
Campbell, Brian M; Stodden, David F; Nixon, Megan K
2010-04-01
The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.
Role of Water in the Selection of Stable Proteins at Ambient and Extreme Thermodynamic Conditions
NASA Astrophysics Data System (ADS)
Bianco, Valentino; Franzese, Giancarlo; Dellago, Christoph; Coluzza, Ivan
2017-04-01
Proteins that are functional at ambient conditions do not necessarily work at extreme conditions of temperature T and pressure P . Furthermore, there are limits of T and P above which no protein has a stable functional state. Here, we show that these limits and the selection mechanisms for working proteins depend on how the properties of the surrounding water change with T and P . We find that proteins selected at high T are superstable and are characterized by a nonextreme segregation of a hydrophilic surface and a hydrophobic core. Surprisingly, a larger segregation reduces the stability range in T and P . Our computer simulations, based on a new protein design protocol, explain the hydropathy profile of proteins as a consequence of a selection process influenced by water. Our results, potentially useful for engineering proteins and drugs working far from ambient conditions, offer an alternative rationale to the evolutionary action exerted by the environment in extreme conditions.
Hu, Yingli; Ding, Meili; Liu, Xiao-Qin; Sun, Lin-Bing; Jiang, Hai-Long
2016-04-28
Based on an organic ligand involving both carboxylate and tetrazole groups, a chemically stable Zn(II) metal-organic framework has been rationally synthesized and behaves as a fluorescence chemosensor for the highly selective and sensitive detection of picric acid, an extremely hazardous and strong explosive.
The matter in extreme conditions instrument at the Linac Coherent Light Source
Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...
2015-04-21
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
Ion exchangers in radioactive waste management: natural Iranian zeolites.
Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K
2006-01-01
Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.
High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal
Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.
2004-01-01
The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin
2016-12-01
Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.
On the performance of Cu-BTC metal organic framework for carbon tetrachloride gas removal.
Calero, Sofía; Martín-Calvo, Ana; Hamad, Said; García-Pérez, Elena
2011-01-07
The performance of Cu-BTC metal organic framework for carbon tetrachloride removal from air has been studied using molecular simulations. According to our results, this material shows extremely high adsorption selectivity in favour of carbon tetrachloride. We demonstrate that this selectivity can be further enhanced by selective blockage of the framework.
The Matter in Extreme Conditions instrument at the Linac Coherent Light Source
Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; Granados, Eduardo; Hastings, Jerry; Hays, Greg; Heimann, Philip; Lee, Richard W.; Milathianaki, Despina; Plummer, Lori; Schropp, Andreas; Wallace, Alex; Welch, Marc; White, William; Xing, Zhou; Yin, Jing; Young, James; Zastrau, Ulf; Lee, Hae Ja
2015-01-01
The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented. PMID:25931063
Global ecological success of Thalassoma fishes in extreme coral reef habitats.
Fulton, Christopher J; Wainwright, Peter C; Hoey, Andrew S; Bellwood, David R
2017-01-01
Phenotypic adaptations can allow organisms to relax abiotic selection and facilitate their ecological success in challenging habitats, yet we have relatively little data for the prevalence of this phenomenon at macroecological scales. Using data on the relative abundance of coral reef wrasses and parrotfishes (f. Labridae) spread across three ocean basins and the Red Sea, we reveal the consistent global dominance of extreme wave-swept habitats by fishes in the genus Thalassoma , with abundances up to 15 times higher than any other labrid. A key locomotor modification-a winged pectoral fin that facilitates efficient underwater flight in high-flow environments-is likely to have underpinned this global success, as numerical dominance by Thalassoma was contingent upon the presence of high-intensity wave energy. The ecological success of the most abundant species also varied with species richness and the presence of congeneric competitors. While several fish taxa have independently evolved winged pectoral fins, Thalassoma appears to have combined efficient high-speed swimming (to relax abiotic selection) with trophic versatility (to maximize exploitation of rich resources) to exploit and dominate extreme coral reef habitats around the world.
Gapeev, A B; Shved, D M; Mikhaĭlik, E N; Korystov, Iu N; Levitman, M Kh; Shaposhnikova, V V; Sadovnikov, V B; Alekhin, A I; Goncharov, N G; Chemeris, N K
2009-01-01
The influence of different exposure regimes of low-intensity extremely high-frequency electromagnetic radiation on the growth rate of solid Ehrlich carcinoma in mice has been studied. It was shown that, at an optimum repetition factor of exposure (20 min daily for five consecutive days after the tumor inoculation), there is a clearly pronounced frequency dependence of the antitumor effect. The analysis of experimental data indicates that the mechanisms of antitumor effects of the radiation may be related to the modification of the immune status of the organism. The results obtained show that extremely high-frequency electromagnetic radiation at a proper selection of exposure regimes can result in distinct and stable antitumor effects.
Highly Sensitive and Selective Gas Sensor Using Hydrophilic and Hydrophobic Graphenes
Some, Surajit; Xu, Yang; Kim, Youngmin; Yoon, Yeoheung; Qin, Hongyi; Kulkarni, Atul; Kim, Taesung; Lee, Hyoyoung
2013-01-01
New hydrophilic 2D graphene oxide (GO) nanosheets with various oxygen functional groups were employed to maintain high sensitivity in highly unfavorable environments (extremely high humidity, strong acidic or basic). Novel one-headed polymer optical fiber sensor arrays using hydrophilic GO and hydrophobic reduced graphene oxide (rGO) were carefully designed, leading to the selective sensing of volatile organic gases for the first time. The two physically different surfaces of GO and rGO could provide the sensing ability to distinguish between tetrahydrofuran (THF) and dichloromethane (MC), respectively, which is the most challenging issue in the area of gas sensors. The eco-friendly physical properties of GO allowed for faster sensing and higher sensitivity when compared to previous results for rGO even under extreme environments of over 90% humidity, making it the best choice for an environmentally friendly gas sensor. PMID:23736838
High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors
NASA Astrophysics Data System (ADS)
Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.
2009-05-01
Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.
High brilliance negative ion and neutral beam source
Compton, Robert N.
1991-01-01
A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.
Innovations in prosthetic interfaces for the upper extremity.
Kung, Theodore A; Bueno, Reuben A; Alkhalefah, Ghadah K; Langhals, Nicholas B; Urbanchek, Melanie G; Cederna, Paul S
2013-12-01
Advancements in modern robotic technology have led to the development of highly sophisticated upper extremity prosthetic limbs. High-fidelity volitional control of these devices is dependent on the critical interface between the patient and the mechanical prosthesis. Recent innovations in prosthetic interfaces have focused on several control strategies. Targeted muscle reinnervation is currently the most immediately applicable prosthetic control strategy and is particularly indicated in proximal upper extremity amputations. Investigation into various brain interfaces has allowed acquisition of neuroelectric signals directly or indirectly from the central nervous system for prosthetic control. Peripheral nerve interfaces permit signal transduction from both motor and sensory nerves with a higher degree of selectivity. This article reviews the current developments in each of these interface systems and discusses the potential of these approaches to facilitate motor control and sensory feedback in upper extremity neuroprosthetic devices.
Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra
2015-05-27
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.
NASA Astrophysics Data System (ADS)
Rokita, Pawel
Classical portfolio diversification methods do not take account of any dependence between extreme returns (losses). Many researchers provide, however, some empirical evidence for various assets that extreme-losses co-occur. If the co-occurrence is frequent enough to be statistically significant, it may seriously influence portfolio risk. Such effects may result from a few different properties of financial time series, like for instance: (1) extreme dependence in a (long-term) unconditional distribution, (2) extreme dependence in subsequent conditional distributions, (3) time-varying conditional covariance, (4) time-varying (long-term) unconditional covariance, (5) market contagion. Moreover, a mix of these properties may be present in return time series. Modeling each of them requires different approaches. It seams reasonable to investigate whether distinguishing between the properties is highly significant for portfolio risk measurement. If it is, identifying the effect responsible for high loss co-occurrence would be of a great importance. If it is not, the best solution would be selecting the easiest-to-apply model. This article concentrates on two of the aforementioned properties: extreme dependence (in a long-term unconditional distribution) and time-varying conditional covariance.
The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed
Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling
2013-01-01
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898
Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.
Skrajnie niskie i wysokie przepływy rzek Polski w dwudziestoleciu 1986-2005
NASA Astrophysics Data System (ADS)
Sobolewski, Wojciech
2008-01-01
The objective of this study was to determine the parameters of extreme high and low flows of selected Polish rivers in the two decades 1986-2005. These parameters were used to elaborate river basin characteristics and to perform a series of maps. Subsequently, on the base of maps analysis of spatial diversity of extreme high or extremely low flows of particular rivers was performed. The analysis shows characters of extreme high flow events (in particular their size and progress), which are changing from South to North. It indicates a strong connection between hypsometric parameters of catchment area and infiltration. Different situation can be seen in case of the extremely low flows. The spatial diversity of their properties has not so apparent tendency. In southern and central part of Poland change from SW to NE was observed. However, the northern basins are no longer subject to this rule and form a separate group. Such a distribution of characteristics is probably associated with a stronger impact of other than catchment hypsometry environmental factors.
NASA Astrophysics Data System (ADS)
Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il
2018-04-01
When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.
A perturbation approach for assessing trends in precipitation extremes across Iran
NASA Astrophysics Data System (ADS)
Tabari, Hossein; AghaKouchak, Amir; Willems, Patrick
2014-11-01
Extreme precipitation events have attracted a great deal of attention among the scientific community because of their devastating consequences on human livelihood and socio-economic development. To assess changes in precipitation extremes in a given region, it is essential to analyze decadal oscillations in precipitation extremes. This study examines temporal oscillations in precipitation data in several sub-regions of Iran using a novel quantile perturbation method during 1980-2010. Precipitation data from NASA's Modern-Era Retrospective Analysis for Research and Applications-Land (MERRA-Land) are used in this study. The results indicate significant anomalies in precipitation extremes in the northwest and southeast regions of Iran. Analysis of extreme precipitation perturbations reveals that perturbations for the monthly aggregation level are generally lower than the annual perturbations. Furthermore, high-oscillation and low-oscillation periods are found in extreme precipitation quantiles across different seasons. In all selected regions, a significant anomaly (i.e., extreme wet/dry conditions) in precipitation extremes is observed during spring.
Planck, Herschel & Spitzer unveil overdense z>2 regions
NASA Astrophysics Data System (ADS)
Dole, Herve; Chary, Ranga-Ram; Chary, Ranga; Frye, Brenda; Martinache, Clement; Guery, David; Le Floc'h, Emeric; Altieri, Bruno; Flores-Cacho, Ines; Giard, Martin; Hurier, Guillaume; Lagache, Guilaine; Montier, Ludovic; Nesvadba, Nicole; Omont, Alain; Pointecouteau, Etienne; Pierini, Daniele; Puget, Jean-Loup; Scott, Douglas; Soucail, Genevieve
2014-12-01
At which cosmic epoch did massive galaxy clusters assemble their baryons? How does star formation occur in the most massive, most rapidly collapsing dark-matter-dense environments in the early Universe? To answer these questions, we take the completely novel approach to select the most extreme z>~2 star-forming overdensities seen over the entire sky. This selection nicely complements the other existing selections for high redshift clusters (i.e., by stellar mass, or by total mass like Sunyaev-Zeldovish (SZ) or X-ray selection). We make use of the Planck all-sky submillimetre survey to systematically identify the rarest, most luminous high-redshift sub-mm sources on the sky, either strongly gravitationally lensed galaxies, or the joint FIR/sub-mm emission from multiple intense starbursts. We observed 228 Planck sources with Herschel/SPIRE and discovered that most of them are overdensities of red galaxies with extremely high star formation rates (typically 7.e3 Msun/yr for a structure). Only Spitzer data can allow a better understanding of these promising Planck+Herschel selected sources, as is shown on a first set of IRAC data on 40 targets in GO9: (i) the good angular resolution and sensitivity of IRAC allows a proper determination of the clustered nature of each Herschel/SPIRE source; (ii) IRAC photometry (often associated with J, K) allows a good estimate of the colors and approximate photometric redshift. Note spectroscopic redshifts are available for two cluster candidates, at z=1.7 and z=2.3, confirming their high redshift nature. The successful GO9 observation of 40 fields showed that about half to be >7sigma overdensities of red IRAC sources. These observations were targeting the whole range of Herschel overdensities and significances. We need to go deeper into the Spitzer sample and acquire complete coverage of the most extreme Herschel overdensities (54 new fields). Such a unique sample has legacy value, and this is the last opportunity prior to JWST, WFIRST and Euclid.
1976-09-01
fluid. For optical measurements in the regions of extremely high absorption ( lOs — io6 cm~~) thin films are required with a thickness of 500—5000L The top...round trip in the cavity. The result is a series of extremely narrow pulses, each pulse a few picoseconds ( lO ~~2 seconds) in duration and separated...electronic pulsar and electro—optic selection elements, it is possible to extract a single picosecond pulse from the train. This is I achieved by placing a
Solutions for Critical Raw Materials under Extreme Conditions: A Review
Grilli, Maria Luisa; Bellezze, Tiziano; Gamsjäger, Ernst; Rinaldi, Antonio; Novak, Pavel; Balos, Sebastian; Piticescu, Radu Robert; Ruello, Maria Letizia
2017-01-01
In Europe, many technologies with high socio-economic benefits face materials requirements that are often affected by demand-supply disruption. This paper offers an overview of critical raw materials in high value alloys and metal-matrix composites used in critical applications, such as energy, transportation and machinery manufacturing associated with extreme working conditions in terms of temperature, loading, friction, wear and corrosion. The goal is to provide perspectives about the reduction and/or substitution of selected critical raw materials: Co, W, Cr, Nb and Mg. PMID:28772645
Bai, Shuxing; Bu, Lingzheng; Shao, Qi; Zhu, Xing; Huang, Xiaoqing
2018-06-22
The selective hydrogenation of α, β-unsaturated aldehyde is an extremely important transformation, while developing efficient catalysts with desirable selectivity to highly value-added products is challenging, mainly due to the coexistence of two conjugated unsaturated functional groups. Herein, we report that a series of Pt-based zigzag nanowires (ZNWs) can be adopted as selectivity controllers for α, β-unsaturated aldehyde hydrogenation, where the excellent unsaturated alcohol (UOL) selectivity (>95%) and high saturated aldehyde (SA) selectivity (>94%) are achieved on PtFe ZNWs and PtFeNi ZNWs+AlCl 3 , respectively. The excellent UOL selectivity of PtFe ZNWs is attributed to the lower electron density of the surface Pt atoms, while the high SA selectivity of PtFeNi ZNWs+AlCl 3 is due to synergy between PtFeNi ZNWs and AlCl 3 , highlighting the importance of Pt-based NWs with precisely controlled surface and composition for catalysis and beyond.
NASA Astrophysics Data System (ADS)
Dibike, Y. B.; Eum, H. I.; Prowse, T. D.
2017-12-01
Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.
[Results of selective posterior radiculetomy at the lumbar and cervical level].
Vlahovitch, B; Fuentes, J M
1975-01-01
At the light of authors' present experience, radicletomy appears as an excellent antalgic operative procedure in the case of roots with high functional risk (brachial plexus and lumbar plexus). In the absence of any motor deficiency or ataxia, it appears that radicletomy is of help in the cure of severe hypertonies of the extremities (sequelae of cerebral stem contusions). Conversely, in the spastic sequelae of hemi- or paraparesias, lumbar-sacral posterior selective radicotomy is a sure procedure that procures results nearly super-imposable to radicletomy with an appreciable gain in time. At last, for what concerns the motor involvements of the upper extremity ending in spasticity, selective radicletomy recovers its rights and has to be preferred to S.P.R. The indications may be summarized as follows: -- At the level of the lower extremities: in the case of paraparetic sequelae or of sequelae due to spastic paraplegia, a S.P.R. has to be performed; for what concerns antalgic surgery, in the absence of motor deficiency, the best indication is radicletomy. -- At the level of the upper extremities: in the case of dystonic sequeale of the cerebral stem, spastic pain bound with hemiplegia or with carcinoma etc. (herpes zoster..), radicletomy constitutes the ideal surgical procedure.
Reinholdt, Sofia; Alexanderson, Kristina
2009-01-01
This study examined some plausible explanations for the higher rates of ill-health seen in extremely gender-segregated occupations. The focus was on the work experiences of disability pensioners with last jobs prior to pensioning characterized by segregated conditions (i.e., less than 10% of the employees of their own sex). Seven interviews were subjected to qualitative content analyses focusing on aspects of health selection, gender differences in work tasks, and in the work situation. The results show a negative health selection into occupations in which the participants constitute an extreme minority. There were some differences in work tasks between the gender in extreme minority and the other gender. Exposure to different stress factors related to the minority status included increased visibility, performance pressure, and harassment. Gender had been of main importance for differences in exposure, for assigning work tasks, and for interaction dynamics between the groups in majority and extreme minority. A combination of negative health selection, gender marking of work tasks, and group interaction dynamics related to group proportions and gender may play a role in cumulative health risks. Additional longitudinal studies are needed to identify mechanisms and interactions in this context in order to better understand possible relationships between occupational gender segregation and increased health risks.
Social selection is a powerful explanation for prosociality.
Nesse, Randolph M
2016-01-01
Cultural group selection helps explain human cooperation, but social selection offers a complementary, more powerful explanation. Just as sexual selection shapes extreme traits that increase matings, social selection shapes extreme traits that make individuals preferred social partners. Self-interested partner choices create strong and possibly runaway selection for prosocial traits, without requiring group selection, kin selection, or reciprocity.
Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall
NASA Astrophysics Data System (ADS)
Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik
2016-02-01
Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.
NASA Astrophysics Data System (ADS)
Lazoglou, Georgia; Anagnostopoulou, Christina; Tolika, Konstantia; Kolyva-Machera, Fotini
2018-04-01
The increasing trend of the intensity and frequency of temperature and precipitation extremes during the past decades has substantial environmental and socioeconomic impacts. Thus, the objective of the present study is the comparison of several statistical methods of the extreme value theory (EVT) in order to identify which is the most appropriate to analyze the behavior of the extreme precipitation, and high and low temperature events, in the Mediterranean region. The extremes choice was made using both the block maxima and the peaks over threshold (POT) technique and as a consequence both the generalized extreme value (GEV) and generalized Pareto distributions (GPDs) were used to fit them. The results were compared, in order to select the most appropriate distribution for extremes characterization. Moreover, this study evaluates the maximum likelihood estimation, the L-moments and the Bayesian method, based on both graphical and statistical goodness-of-fit tests. It was revealed that the GPD can characterize accurately both precipitation and temperature extreme events. Additionally, GEV distribution with the Bayesian method is proven to be appropriate especially for the greatest values of extremes. Another important objective of this investigation was the estimation of the precipitation and temperature return levels for three return periods (50, 100, and 150 years) classifying the data into groups with similar characteristics. Finally, the return level values were estimated with both GEV and GPD and with the three different estimation methods, revealing that the selected method can affect the return level values for both the parameter of precipitation and temperature.
Boros, Emil; Katalin, V.-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L–1, max: 16 g L–1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L–1), and total phosphorus concentration was also extremely high (median: 2 mg L–1, max: 32 mg L–1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem. PMID:28572691
Hierarchy and extremes in selections from pools of randomized proteins
Boyer, Sébastien; Biswas, Dipanwita; Kumar Soshee, Ananda; Scaramozzino, Natale; Nizak, Clément; Rivoire, Olivier
2016-01-01
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different “frameworks” typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution). PMID:26969726
Hierarchy and extremes in selections from pools of randomized proteins.
Boyer, Sébastien; Biswas, Dipanwita; Kumar Soshee, Ananda; Scaramozzino, Natale; Nizak, Clément; Rivoire, Olivier
2016-03-29
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different "frameworks" typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution).
2016-01-01
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643
Censored rainfall modelling for estimation of fine-scale extremes
NASA Astrophysics Data System (ADS)
Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro
2018-01-01
Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.
Glassman, Tavis; Braun, Robert E; Dodd, Virginia; Miller, Jeffrey M; Miller, E Maureen
2010-04-01
This study assessed the extent to which the Theory of Planned Behavior (TPB) correctly predicted college student's motivation to consume alcohol on game day based on alcohol consumption rates. Three cohorts of 1,000 participants each (N = 3,000) were randomly selected and invited to complete an anonymous web-based survey the Monday following one of three designated college home football games. Path analyses were conducted to determine which of the TPB constructs were most effective in predicting Behavioral Intention and alcohol consumption among social, high-risk, and extreme drinkers. Social drinkers, high-risk, and those drinkers who engage in Extreme Ritualistic Alcohol Consumption (ERAC) were defined as males who consumed 1-4, 5-9, or 10 or more drinks on game day (1-3, 4-8, or nine or more drinks for females), respectively. Attitude Towards the Behavior and Subjective Norm constructs predicted participant's intentions to consume alcohol and corresponding behavior among all three classifications of drinkers; whereas the Perceived Behavioral Control (PBC) construct inconsistently predicted intention and alcohol consumption. Based on Behavioral Intention, the proportion of variance the TPB model explained decreased as participants alcohol consumption increased. It appears that the TPB constructs Attitude Toward the Behavior and Subjective Norm can effectively be utilized when designing universal prevention interventions targeting game day alcohol consumption among college students. However, the applicability of the PBC construct remains in question. While select constructs in the TPB appear to have predictive ability, the usefulness of the complete theoretical framework is limited when trying to predict high-risk drinking and ERAC. These findings suggest that other behavioral theories should be considered when addressing the needs of high-risk and extreme drinkers.
A New Selective Area Lateral Epitaxy Approach for Depositing a-Plane GaN over r-Plane Sapphire
NASA Astrophysics Data System (ADS)
Chen, Changqing; Zhang, Jianping; Yang, Jinwei; Adivarahan, Vinod; Rai, Shiva; Wu, Shuai; Wang, Hongmei; Sun, Wenhong; Su, Ming; Gong, Zheng; Kuokstis, Edmundas; Gaevski, Mikhail; Khan, Muhammad Asif
2003-07-01
We report a new epitaxy procedure for growing extremely low defect density a-plane GaN films over r-plane sapphire. By combining selective area growth through a SiO2 mask opening to produce high height to width aspect ratio a-plane GaN pillars and lateral epitaxy from their c-plane facets, we obtained fully coalesced a-plane GaN films. The excellent structural, optical and electrical characteristics of these selective area lateral epitaxy (SALE) deposited films make them ideal for high efficiency III-N electronic and optoelectronic devices.
Regions of extreme synonymous codon selection in mammalian genes
Schattner, Peter; Diekhans, Mark
2006-01-01
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for such motifs by searching for extended regions of extreme codon conservation between homologous genes of related species. Here we present the results of applying this approach to five mammalian species (human, chimpanzee, mouse, rat and dog). Even with very conservative selection criteria, we find over 200 regions of extreme codon conservation, ranging in length from 60 to 178 codons. The regions are often found within genes involved in DNA-binding, RNA-binding or zinc-ion-binding. They are highly depleted for synonymous single nucleotide polymorphisms (SNPs) but not for non-synonymous SNPs, further indicating that the observed codon conservation is being driven by negative selection. Forty-three percent of the regions overlap conserved alternative transcript isoforms and are enriched for known ESEs. Other regions are enriched for TpA dinucleotides and may contain conserved motifs/structures relating to mRNA stability and/or degradation. We anticipate that this tool will be useful for detecting regions enriched in other classes of coding-sequence motifs and structures as well. PMID:16556911
Sex determination: balancing selection in the honey bee.
Charlesworth, Deborah
2004-07-27
Sequences of alleles of the honey bee's primary sex-determining gene have extremely high diversity, with many amino acid variants, suggesting that different alleles of this gene have been maintained in populations for very long evolutionary times.
Categorization of erosion control matting for slope applications.
DOT National Transportation Integrated Search
2013-12-25
Erosion control is an important aspect of any Georgia Department of Transportation (GDOT) construction project, with the extreme negative impacts of high sediment loads in natural waterways having been well documented. Selection of a proper erosion c...
NASA Technical Reports Server (NTRS)
Dube, W. P.; Sparks, L. L.; Slifka, A. J.; Bitsy, R. M.
1990-01-01
Advanced aerospace designs require thermal insulation systems which are consistent with cryogenic fluids, high thermal loads, and design restrictions such as weight and volume. To evaluate the thermal performance of these insulating systems, an apparatus capable of measuring thermal conductivity using extreme temperature differences (27 to 1100 K) is being developed. This system is described along with estimates of precision and accuracy in selected operating conditions. Preliminary data are presented.
NASA Astrophysics Data System (ADS)
Dube, W. P.; Sparks, L. L.; Slifka, A. J.; Bitsy, R. M.
Advanced aerospace designs require thermal insulation systems which are consistent with cryogenic fluids, high thermal loads, and design restrictions such as weight and volume. To evaluate the thermal performance of these insulating systems, an apparatus capable of measuring thermal conductivity using extreme temperature differences (27 to 1100 K) is being developed. This system is described along with estimates of precision and accuracy in selected operating conditions. Preliminary data are presented.
2014-01-01
Background Discerning the traits evolving under neutral conditions from those traits evolving rapidly because of various selection pressures is a great challenge. We propose a new method, composite selection signals (CSS), which unifies the multiple pieces of selection evidence from the rank distribution of its diverse constituent tests. The extreme CSS scores capture highly differentiated loci and underlying common variants hauling excess haplotype homozygosity in the samples of a target population. Results The data on high-density genotypes were analyzed for evidence of an association with either polledness or double muscling in various cohorts of cattle and sheep. In cattle, extreme CSS scores were found in the candidate regions on autosome BTA-1 and BTA-2, flanking the POLL locus and MSTN gene, for polledness and double muscling, respectively. In sheep, the regions with extreme scores were localized on autosome OAR-2 harbouring the MSTN gene for double muscling and on OAR-10 harbouring the RXFP2 gene for polledness. In comparison to the constituent tests, there was a partial agreement between the signals at the four candidate loci; however, they consistently identified additional genomic regions harbouring no known genes. Persuasively, our list of all the additional significant CSS regions contains genes that have been successfully implicated to secondary phenotypic diversity among several subpopulations in our data. For example, the method identified a strong selection signature for stature in cattle capturing selective sweeps harbouring UQCC-GDF5 and PLAG1-CHCHD7 gene regions on BTA-13 and BTA-14, respectively. Both gene pairs have been previously associated with height in humans, while PLAG1-CHCHD7 has also been reported for stature in cattle. In the additional analysis, CSS identified significant regions harbouring multiple genes for various traits under selection in European cattle including polledness, adaptation, metabolism, growth rate, stature, immunity, reproduction traits and some other candidate genes for dairy and beef production. Conclusions CSS successfully localized the candidate regions in validation datasets as well as identified previously known and novel regions for various traits experiencing selection pressure. Together, the results demonstrate the utility of CSS by its improved power, reduced false positives and high-resolution of selection signals as compared to individual constituent tests. PMID:24636660
Behrends, J M; Goodson, K J; Koohmaraie, M; Shackelford, S D; Wheeler, T L; Morgan, W W; Reagan, J O; Gwartney, B L; Wise, J W; Savell, J W
2005-03-01
An in-home beef study evaluated consumer ratings of top round steaks (semimembranosus) as influenced by USDA quality grade (top Choice or high Select), city (Chicago or Philadelphia), consumer segment (beef loyalists = heavy consumers of beef; budget rotators = cost-driven and split meat consumption between beef and chicken; and variety rotators = higher incomes and education and split meat consumption among beef, poultry, and other foods), degree of doneness, cooking method, and marination. Consumers evaluated each steak for overall like, tenderness, juiciness, flavor like, and flavor amount using 10-point scales (1 = dislike extremely, not at all tender, not at all juicy, dislike extremely, and none at all to 10 = like extremely, extremely tender, extremely juicy, like extremely, and an extreme amount of flavor, respectively). Quality grade affected several consumer sensory traits, with top Choice receiving higher (P < or = 0.004) tenderness, juiciness, and flavor like scores than high Select. Consumers in Chicago rated steaks cooked "medium and less" higher for overall like, tenderness, juiciness, flavor like, and flavor amount than those in Philadelphia (city x degree of doneness; P < or = 0.020). Steaks braised by customers in Philadelphia received among the highest scores for overall like, tenderness, juiciness, flavor like, and flavor amount compared with any cooking method used by customers in Chicago (cooking method x city; P < or = 0.026). Overall like and flavor amount ratings were least (P < 0.05) for steaks that were marinated and cooked to "medium and less" degree of doneness (marination x degree of doneness; P < or = 0.014). Braised steaks received among the highest values for overall like, tenderness, juiciness, flavor like, and flavor amount when cooked to "medium and less" or "medium well and more" (cooking method x degree of doneness; P < or = 0.008). Correlation and stepwise regression analysis indicated that flavor like was pivotal in customers' satisfaction with top round steaks, and was the sensory trait most highly correlated to overall like, followed by tenderness, flavor amount, and juiciness. Preparation of top round steaks was crucial in consumers' likes and dislikes, and by improving flavor, higher consumer satisfaction may be achieved.
Selective Tree-ring Models: A Novel Method for Reconstructing Streamflow Using Tree Rings
NASA Astrophysics Data System (ADS)
Foard, M. B.; Nelson, A. S.; Harley, G. L.
2017-12-01
Surface water is among the most instrumental and vulnerable resources in the Northwest United States (NW). Recent observations show that overall water quantity is declining in streams across the region, while extreme flooding events occur more frequently. Historical streamflow models inform probabilities of extreme flow events (flood or drought) by describing frequency and duration of past events. There are numerous examples of tree-rings being utilized to reconstruct streamflow in the NW. These models confirm that tree-rings are highly accurate at predicting streamflow, however there are many nuances that limit their applicability through time and space. For example, most models predict streamflow from hydrologically altered rivers (e.g. dammed, channelized) which may hinder our ability to predict natural prehistoric flow. They also have a tendency to over/under-predict extreme flow events. Moreover, they often neglect to capture the changing relationships between tree-growth and streamflow over time and space. To address these limitations, we utilized national tree-ring and streamflow archives to investigate the relationships between the growth of multiple coniferous species and free-flowing streams across the NW using novel species-and site-specific streamflow models - a term we coined"selective tree-ring models." Correlation function analysis and regression modeling were used to evaluate the strengths and directions of the flow-growth relationships. Species with significant relationships in the same direction were identified as strong candidates for selective models. Temporal and spatial patterns of these relationships were examined using running correlations and inverse distance weighting interpolation, respectively. Our early results indicate that (1) species adapted to extreme climates (e.g. hot-dry, cold-wet) exhibit the most consistent relationships across space, (2) these relationships weaken in locations with mild climatic variability, and (3) some species appear to be strong candidates for predicting high flow events, while others may be better at pridicting drought. These findings indicate that selective models may outperform traditional models when reconstructing distinctive aspects of streamflow.
Derrien, Thomas; Axelsson, Erik; Rosengren Pielberg, Gerli; Sigurdsson, Snaevar; Fall, Tove; Seppälä, Eija H.; Hansen, Mark S. T.; Lawley, Cindy T.; Karlsson, Elinor K.; Bannasch, Danika; Vilà, Carles; Lohi, Hannes; Galibert, Francis; Fredholm, Merete; Häggström, Jens; Hedhammar, Åke; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Webster, Matthew T.
2011-01-01
The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease. PMID:22022279
Vaysse, Amaury; Ratnakumar, Abhirami; Derrien, Thomas; Axelsson, Erik; Rosengren Pielberg, Gerli; Sigurdsson, Snaevar; Fall, Tove; Seppälä, Eija H; Hansen, Mark S T; Lawley, Cindy T; Karlsson, Elinor K; Bannasch, Danika; Vilà, Carles; Lohi, Hannes; Galibert, Francis; Fredholm, Merete; Häggström, Jens; Hedhammar, Ake; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Webster, Matthew T
2011-10-01
The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.
Overcoming etch challenges related to EUV based patterning (Conference Presentation)
NASA Astrophysics Data System (ADS)
Metz, Andrew W.; Cottle, Hongyun; Honda, Masanobu; Morikita, Shinya; Kumar, Kaushik A.; Biolsi, Peter
2017-04-01
Research and development activities related to Extreme Ultra Violet [EUV] defined patterning continue to grow for < 40 nm pitch applications. The confluence of high cost and extreme process control challenges of Self-Aligned Quad Patterning [SAQP] with continued momentum for EUV ecosystem readiness could provide cost advantages in addition to improved intra-level overlay performance relative to multiple patterning approaches. However, Line Edge Roughness [LER] and Line Width Roughness [LWR] performance of EUV defined resist images are still far from meeting technology needs or ITRS spec performance. Furthermore, extreme resist height scaling to mitigate flop over exacerbates the plasma etch trade-offs related to traditional approaches of PR smoothing, descum implementation and maintaining 2D aspect ratios of short lines or elliptical contacts concurrent with ultra-high photo resist [PR] selectivity. In this paper we will discuss sources of LER/LWR, impact of material choice, integration, and innovative plasma process techniques and describe how TELTM VigusTM CCP Etchers can enhance PR selectivity, reduce LER/LWR, and maintain 2D aspect ratio of incoming patterns. Beyond traditional process approaches this paper will show the utility of: [1] DC Superposition in enhancing EUV resist hardening and selectivity, increasing resistance to stress induced PR line wiggle caused by CFx passivation, and mitigating organic planarizer wiggle; [2] Quasi Atomic Layer Etch [Q-ALE] for ARC open eliminating the tradeoffs between selectivity, CD, and shrink ratio control; and [3] ALD+Etch FUSION technology for feature independent CD shrink and LER reduction. Applicability of these concepts back transferred to 193i based lithography is also confirmed.
Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C
2011-09-01
Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.
NASA Astrophysics Data System (ADS)
Li, Zhanling; Li, Zhanjie; Li, Chengcheng
2014-05-01
Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.
Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic
NASA Astrophysics Data System (ADS)
Matti, B.; Dahlke, H. E.; Lyon, S. W.
2015-12-01
There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.
A comparative assessment of statistical methods for extreme weather analysis
NASA Astrophysics Data System (ADS)
Schlögl, Matthias; Laaha, Gregor
2017-04-01
Extreme weather exposure assessment is of major importance for scientists and practitioners alike. We compare different extreme value approaches and fitting methods with respect to their value for assessing extreme precipitation and temperature impacts. Based on an Austrian data set from 25 meteorological stations representing diverse meteorological conditions, we assess the added value of partial duration series over the standardly used annual maxima series in order to give recommendations for performing extreme value statistics of meteorological hazards. Results show the merits of the robust L-moment estimation, which yielded better results than maximum likelihood estimation in 62 % of all cases. At the same time, results question the general assumption of the threshold excess approach (employing partial duration series, PDS) being superior to the block maxima approach (employing annual maxima series, AMS) due to information gain. For low return periods (non-extreme events) the PDS approach tends to overestimate return levels as compared to the AMS approach, whereas an opposite behavior was found for high return levels (extreme events). In extreme cases, an inappropriate threshold was shown to lead to considerable biases that may outperform the possible gain of information from including additional extreme events by far. This effect was neither visible from the square-root criterion, nor from standardly used graphical diagnosis (mean residual life plot), but from a direct comparison of AMS and PDS in synoptic quantile plots. We therefore recommend performing AMS and PDS approaches simultaneously in order to select the best suited approach. This will make the analyses more robust, in cases where threshold selection and dependency introduces biases to the PDS approach, but also in cases where the AMS contains non-extreme events that may introduce similar biases. For assessing the performance of extreme events we recommend conditional performance measures that focus on rare events only in addition to standardly used unconditional indicators. The findings of this study are of relevance for a broad range of environmental variables, including meteorological and hydrological quantities.
Extreme pressure differences at 0900 NZST and winds across New Zealand
NASA Astrophysics Data System (ADS)
Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita
2005-07-01
Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.
Musto, H; Romero, H; Zavala, A; Jabbari, K; Bernardi, G
1999-07-01
We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection.
Bowerman, Erin Anne; Whatman, Chris; Harris, Nigel; Bradshaw, Elizabeth
2015-06-01
The objective of this study was to review the evidence for selected risk factors of lower extremity overuse injuries in young elite female ballet dancers. An electronic search of key databases from 1969 to July 2013 was conducted using the keywords dancers, ballet dancers, athletes, adolescent, adolescence, young, injury, injuries, risk, overuse, lower limb, lower extremity, lower extremities, growth, maturation, menarche, alignment, and biomechanics. Thirteen published studies were retained for review. Results indicated that there is a high incidence of lower extremity overuse injuries in the target population. Primary risk factors identified included maturation, growth, and poor lower extremity alignment. Strong evidence from well-designed studies indicates that young elite female ballet dancers suffer from delayed onset of growth, maturation, menarche, and menstrual irregularities. However, there is little evidence that this deficit increases the risk of overuse injury, with the exception of stress fractures. Similarly, there is minimal evidence linking poor lower extremity alignment to increased risk of overuse injury. It is concluded that further prospective, longitudinal studies are required to clarify the relationship between growth, maturation, menarche, and lower extremity alignment, and the risk of lower extremity overuse injury in young elite female ballet dancers.
Herrero-Medrano, J M; Mathur, P K; ten Napel, J; Rashidi, H; Alexandri, P; Knol, E F; Mulder, H A
2015-04-01
Robustness is an important issue in the pig production industry. Since pigs from international breeding organizations have to withstand a variety of environmental challenges, selection of pigs with the inherent ability to sustain their productivity in diverse environments may be an economically feasible approach in the livestock industry. The objective of this study was to estimate genetic parameters and breeding values across different levels of environmental challenge load. The challenge load (CL) was estimated as the reduction in reproductive performance during different weeks of a year using 925,711 farrowing records from farms distributed worldwide. A wide range of levels of challenge, from favorable to unfavorable environments, was observed among farms with high CL values being associated with confirmed situations of unfavorable environment. Genetic parameters and breeding values were estimated in high- and low-challenge environments using a bivariate analysis, as well as across increasing levels of challenge with a random regression model using Legendre polynomials. Although heritability estimates of number of pigs born alive were slightly higher in environments with extreme CL than in those with intermediate levels of CL, the heritabilities of number of piglet losses increased progressively as CL increased. Genetic correlations among environments with different levels of CL suggest that selection in environments with extremes of low or high CL would result in low response to selection. Therefore, selection programs of breeding organizations that are commonly conducted under favorable environments could have low response to selection in commercial farms that have unfavorable environmental conditions. Sows that had experienced high levels of challenge at least once during their productive life were ranked according to their EBV. The selection of pigs using EBV ignoring environmental challenges or on the basis of records from only favorable environments resulted in a sharp decline in productivity as the level of challenge increased. In contrast, selection using the random regression approach resulted in limited change in productivity with increasing levels of challenge. Hence, we demonstrate that the use of a quantitative measure of environmental CL and a random regression approach can be comprehensively combined for genetic selection of pigs with enhanced ability to maintain high productivity in harsh environments.
Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules
NASA Astrophysics Data System (ADS)
Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten
2016-05-01
Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.
A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.
Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan
2017-07-04
A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating teams in extreme environments: from issues to answers.
Bishop, Sheryl L
2004-07-01
The challenge to effectively evaluating teams in extreme environments necessarily involves a wide range of physiological, psychological, and psychosocial factors. The high reliance on technology, the growing frequency of multinational and multicultural teams, and the demand for longer duration missions all further compound the complexity of the problem. The primary goal is the insurance of human health and well-being with expectations that such priorities will naturally lead to improved chances for performance and mission success. This paper provides an overview of some of the most salient immediate challenges for selecting, training, and supporting teams in extreme environments, gives exemplars of research findings concerning these challenges, and discusses the need for future research.
What to eat in a warming world: do increased temperatures necessitate hazardous duty pay?
Hall, L. Embere; Chalfoun, Anna D.
2018-01-01
Contemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predation risk in food choice has been studied broadly, the extent to which individuals respond to thermoregulatory risk by changing resource preferences is unclear. We addressed whether individuals compensated for temperature-related reductions in foraging time by altering forage preferences, using the American pika (Ochotona princeps) as a model species. We tested two hypotheses: (1) food-quality hypothesis—individuals exposed to temperature extremes should select higher-quality vegetation in return for accepting a physiologically riskier feeding situation; and (2) food-availability hypothesis—individuals exposed to temperature extremes should prioritize foraging quickly, thereby decreasing selection for higher-quality food. We quantified the composition and quality (% moisture, % nitrogen, and fiber content) of available and harvested vegetation, and deployed a network of temperature sensors to measure in situ conditions for 30 individuals, during July–Sept., 2015. Individuals exposed to more extreme daytime temperatures showed increased selection for high-nitrogen and for low-fiber vegetation, demonstrating strong support for the food-quality hypothesis. By contrast, pikas that experienced warmer conditions did not reduce selection for any of the three vegetation-quality metrics, as predicted by the food-availability hypothesis. By shifting resource-selection patterns, temperature-limited animals may be able to proximately buffer some of the negative effects associated with rapidly warming environments, provided that sufficient resources remain on the landscape.
The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection
NASA Astrophysics Data System (ADS)
Tahriri, Farzad; Mousavi, Maryam; Hozhabri Haghighi, Siamak; Zawiah Md Dawal, Siti
2014-06-01
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including "extremely preferred", "moderately preferred", and "weakly preferred". In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
Selection criteria for wear resistant powder coatings under extreme erosive wear conditions
NASA Astrophysics Data System (ADS)
Kulu, P.; Pihl, T.
2002-12-01
Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.
VUV and XUV reflectance of optically coated mirrors for selection of high harmonics
Larsen, K. A.; Cryan, J. P.; Shivaram, N.; ...
2016-08-08
We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. Furthermore, we discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.
Gear materials for high-production light-deputy service
NASA Technical Reports Server (NTRS)
Townsend, D. P.
1973-01-01
The selection of a material for high volume, low cost gears requires careful consideration of all the requirements and the processes used to manufacture the gears. The wrong choice in material selection could very well mean the difference between success and failure. A summary of the cost that might be expected for different materials and processes is presented; it can be seen that the cost can span nearly three order of magnitudes from the molded plastic gear to the machined gear with stamped and powder metal gears falling in between these extremes.
Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo
2014-12-01
Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes
NASA Astrophysics Data System (ADS)
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.
2016-10-01
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.
AVN-492, A Novel Highly Selective 5-HT6R Antagonist: Preclinical Evaluation.
Ivachtchenko, Alexandre V; Okun, Ilya; Aladinskiy, Vladimir; Ivanenkov, Yan; Koryakova, Angela; Karapetyan, Ruben; Mitkin, Oleg; Salimov, Ramiz; Ivashchenko, Andrey
2017-01-01
Discovery of 5-HT6 receptor subtype and its exclusive localization within the central nervous system led to extensive investigations of its role in Alzheimer's disease, schizophrenia, and obesity. In the present study, we present preclinical evaluation of a novel highly-potent and highly-selective 5-HT6R antagonist, AVN-492. The affinity of AVN-492 to bind to 5-HT6R (Ki = 91 pM) was more than three orders of magnitude higher than that to bind to the only other target, 5-HT2BR, (Ki = 170 nM). Thus, the compound displayed great 5-HT6R selectivity against all other serotonin receptor subtypes, and is extremely specific against any other receptors such as adrenergic, GABAergic, dopaminergic, histaminergic, etc. AVN-492 demonstrates good in vitro and in vivo ADME profile with high oral bioavailability and good brain permeability in rodents. In behavioral tests, AVN-492 shows anxiolytic effect in elevated plus-maze model, prevents an apomorphine-induced disruption of startle pre-pulse inhibition (the PPI model) and reverses a scopolamine- and MK-801-induced memory deficit in passive avoidance model. No anti-obesity effect of AVN-492 was found in a murine model. The data presented here strongly indicate that due to its high oral bioavailability, extremely high selectivity, and potency to block the 5-HT6 receptor, AVN-492 is a very promising tool for evaluating the role the 5-HT6 receptor might play in cognitive and neurodegenerative impairments. AVN-492 is an excellent drug candidate to be tested for treatment of such diseases, and is currently being tested in Phase I trials.
NASA Astrophysics Data System (ADS)
Rieder, H. E.; Staehelin, J.; Maeder, J. A.; Ribatet, M.; Stübi, R.; Weihs, P.; Holawe, F.; Peter, T.; Davison, A. C.
2009-04-01
Over the last few decades negative trends in stratospheric ozone have been studied because of the direct link between decreasing stratospheric ozone and increasing surface UV-radiation. Recently a discussion on ozone recovery has begun. Long-term measurements of total ozone extending back earlier than 1958 are limited and only available from a few stations in the northern hemisphere. The world's longest total ozone record is available from Arosa, Switzerland (Staehelin et al., 1998a,b). At this site total ozone measurements have been made since late 1926 through the present day. Within this study (Rieder et al., 2009) new tools from extreme value theory (e.g. Coles, 2001; Ribatet, 2007) are applied to select mathematically well-defined thresholds for extreme low and extreme high total ozone. A heavy-tail focused approach is used by fitting the Generalized Pareto Distribution (GPD) to the Arosa time series. Asymptotic arguments (Pickands, 1975) justify the use of the GPD for modeling exceedances over a sufficiently high (or below a sufficiently low) threshold (Coles, 2001). More precisely, the GPD is the limiting distribution of normalized excesses over a threshold, as the threshold approaches the endpoint of the distribution. In practice, GPD parameters are fitted, to exceedances by maximum likelihood or other methods - such as the probability weighted moments. A preliminary step consists in defining an appropriate threshold for which the asymptotic GPD approximation holds. Suitable tools for threshold selection as the MRL-plot (mean residual life plot) and TC-plot (stability plot) from the POT-package (Ribatet, 2007) are presented. The frequency distribution of extremes in low (termed ELOs) and high (termed EHOs) total ozone and their influence on the long-term changes in total ozone are analyzed. Further it is shown that from the GPD-model the distribution of so-called ozone mini holes (e.g. Bojkov and Balis, 2001) can be precisely estimated and that the "extremes concept" provides new information on the data distribution and variability within the Arosa record as well as on the influence of ELOs and EHOs on the long-term trends of the ozone time series. References: Bojkov, R. D., and Balis, D.S.: Characteristics of episodes with extremely low ozone values in the northern middle latitudes 1975-2000, Ann. Geophys., 19, 797-807, 2001. Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, ISBN:1852334592, Springer, Berlin, 2001. Pickands, J.: Statistical inference using extreme order statistics, Ann. Stat., 3, 1, 119-131, 1975. Ribatet, M.: POT: Modelling peaks over a threshold, R News, 7, 34-36, 2007. Rieder, H.E., Staehelin, J., Maeder, J.A., Stübi, R., Weihs, P., Holawe, F., and M. Ribatet: From ozone mini holes and mini highs towards extreme value theory: New insights from extreme events and non stationarity, submitted to J. Geophys. Res., 2009. Staehelin, J., Kegel, R., and Harris, N. R.: Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1929-1996, J. Geophys. Res., 103(D7), 8389-8400, doi:10.1029/97JD03650, 1998a. Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P., Hoegger, B., Bugnion, V., Giroud, M., and Schill, H.: Total ozone series at Arosa (Switzerland): Homogenization and data comparison, J. Geophys. Res., 103(D5), 5827-5842, doi:10.1029/97JD02402, 1998b.
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhou, Lin; Zheng, Qinghui; Lu, Hong; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia
2017-05-01
Spectrally selective absorbers (SSA) with high selectivity of absorption and sharp cut-off between high absorptivity and low emissivity are critical for efficient solar energy conversion. Here, we report the semiconductor nanowire enabled SSA with not only high absorption selectivity but also temperature dependent sharp absorption cut-off. By taking advantage of the temperature dependent bandgap of semiconductors, we systematically demonstrate that the absorption cut-off profile of the semiconductor-nanowire-based SSA can be flexibly tuned, which is quite different from most of the other SSA reported so far. As an example, silicon nanowire based selective absorbers are fabricated, with the measured absorption efficiency above (below) bandgap ˜97% (15%) combined with an extremely sharp absorption cut-off (transition region ˜200 nm), the sharpest SSA demonstrated so far. The demonstrated semiconductor-nanowire-based SSA can enable a high solar thermal efficiency of ≳86% under a wide range of operating conditions, which would be competitive candidates for the concentrated solar energy utilizations.
Fogarty, Dillon T; Elmore, R Dwayne; Fuhlendorf, Samuel D; Loss, Scott R
2017-08-01
Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground-nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite ( Colinus virginianus ), Eastern Meadowlark ( Sturnella magna ), and Grasshopper Sparrow ( Ammodramus savannarum ) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory-related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species' nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness-related benefits.
Neural architecture design based on extreme learning machine.
Bueno-Crespo, Andrés; García-Laencina, Pedro J; Sancho-Gómez, José-Luis
2013-12-01
Selection of the optimal neural architecture to solve a pattern classification problem entails to choose the relevant input units, the number of hidden neurons and its corresponding interconnection weights. This problem has been widely studied in many research works but their solutions usually involve excessive computational cost in most of the problems and they do not provide a unique solution. This paper proposes a new technique to efficiently design the MultiLayer Perceptron (MLP) architecture for classification using the Extreme Learning Machine (ELM) algorithm. The proposed method provides a high generalization capability and a unique solution for the architecture design. Moreover, the selected final network only retains those input connections that are relevant for the classification task. Experimental results show these advantages. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Sbarrato, T.
2015-07-01
High-energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347-121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. (2011), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multiwavelength spectral energy distribution of the resulting nine sources, profiting of publicly available archival observations performed by Swift, GALEX, and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array.
Overview of the biology of extreme events
NASA Astrophysics Data System (ADS)
Gutschick, V. P.; Bassirirad, H.
2008-12-01
Extreme events have, variously, meteorological origins as in heat waves or precipitation extremes, or biological origins as in pest and disease eruptions (or tectonic, earth-orbital, or impact-body origins). Despite growing recognition that these events are changing in frequency and intensity, a universal model of ecological responses to these events is slow to emerge. Extreme events, negative and positive, contrast with normal events in terms of their effects on the physiology, ecology, and evolution of organisms, hence also on water, carbon, and nutrient cycles. They structure biogeographic ranges and biomes, almost surely more than mean values often used to define biogeography. They are challenging to study for obvious reasons of field-readiness but also because they are defined by sequences of driving variables such as temperature, not point events. As sequences, their statistics (return times, for example) are challenging to develop, as also from the involvement of multiple environmental variables. These statistics are not captured well by climate models. They are expected to change with climate and land-use change but our predictive capacity is currently limited. A number of tools for description and analysis of extreme events are available, if not widely applied to date. Extremes for organisms are defined by their fitness effects on those organisms, and are specific to genotypes, making them major agents of natural selection. There is evidence that effects of extreme events may be concentrated in an extended recovery phase. We review selected events covering ranges of time and magnitude, from Snowball Earth to leaf functional loss in weather events. A number of events, such as the 2003 European heat wave, evidence effects on water and carbon cycles over large regions. Rising CO2 is the recent extreme of note, for its climatic effects and consequences for growing seasons, transpiration, etc., but also directly in its action as a substrate of photosynthesis. Effects on water and N cycles are already marked. Adaptive responses of plants are very irregularly distributed among species and genotypes, most adaptive responses having been lost over 20 My of minimal or virtually accidental genetic selection for correlated traits. Offsets of plant activity from those of pollinators and pests may amplify direct physiological effects on plants. Another extreme of interest is the insect-mediated mass dieoff of conifers across western North America tied to a rare combination of drought and year-long high temperatures.
Foellmer, Matthias W; Fairbairn, Daphne J
2005-02-01
Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.
Chen, Bin Bin; Liu, Meng Li; Zhan, Lei; Li, Chun Mei; Huang, Cheng Zhi
2018-03-20
Highly selective and sensitive detection of guanosine 3'-diphosphate-5'-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb 3+ ) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb 3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb 3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb 3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.
ERIC Educational Resources Information Center
Cross, Jennifer Riedl; Fletcher, Kathryn L.; Speirs Neumeister, Kristie L.
2011-01-01
In this collective case study of caregiver behaviors with their toddlers, two-minute videotaped reading interactions were analyzed using a constant comparative method. Twenty-four caregiver-toddler dyads from a high-risk sample of children prenatally exposed to cocaine were selected from a larger sample because they represented the extremes of…
Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis.
Kurth, Daniel; Amadio, Ariel; Ordoñez, Omar F; Albarracín, Virginia H; Gärtner, Wolfgang; Farías, María E
2017-04-21
Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.
Hsu, Cary; McCloskey, Susan A; Peddi, Parvin F
2016-10-01
Breast sarcomas are exceptionally rare mesenchymal neoplasms composed of many histologic subtypes. Therapy is guided by principles established in the management of extremity sarcomas. The anatomic site does influence treatment decisions, particularly the surgical management. Surgery should be undertaken with the aim of achieving a widely negative margin. Selected patients can be managed with breast-conserving surgery. Breast reconstruction is increasingly being undertaken for selected patients. Radiation therapy and chemotherapy are used selectively for large, high-grade sarcomas for which there is significant concern for local and distant recurrence. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
José Gómez-Navarro, Juan; Raible, Christoph C.; Blumer, Sandro; Martius, Olivia; Felder, Guido
2016-04-01
Extreme precipitation episodes, although rare, are natural phenomena that can threat human activities, especially in areas densely populated such as Switzerland. Their relevance demands the design of public policies that protect public assets and private property. Therefore, increasing the current understanding of such exceptional situations is required, i.e. the climatic characterisation of their triggering circumstances, severity, frequency, and spatial distribution. Such increased knowledge shall eventually lead us to produce more reliable projections about the behaviour of these events under ongoing climate change. Unfortunately, the study of extreme situations is hampered by the short instrumental record, which precludes a proper characterization of events with return period exceeding few decades. This study proposes a new approach that allows studying storms based on a synthetic, but physically consistent database of weather situations obtained from a long climate simulation. Our starting point is a 500-yr control simulation carried out with the Community Earth System Model (CESM). In a second step, this dataset is dynamically downscaled with the Weather Research and Forecasting model (WRF) to a final resolution of 2 km over the Alpine area. However, downscaling the full CESM simulation at such high resolution is infeasible nowadays. Hence, a number of case studies are previously selected. This selection is carried out examining the precipitation averaged in an area encompassing Switzerland in the ESM. Using a hydrological criterion, precipitation is accumulated in several temporal windows: 1 day, 2 days, 3 days, 5 days and 10 days. The 4 most extreme events in each category and season are selected, leading to a total of 336 days to be simulated. The simulated events are affected by systematic biases that have to be accounted before this data set can be used as input in hydrological models. Thus, quantile mapping is used to remove such biases. For this task, a 20-yr high-resolution control simulation is carried out. The extreme events belong to this distribution, and can be mapped onto the distribution of precipitation obtained from a gridded product of precipitation provided by MeteoSwiss. This procedure yields bias-free extreme precipitation events which serve as input by hydrological models that eventually produce a simulated, yet physically consistent flooding event. Thereby, the proposed methodology guarantees consistency with the underlying physics of extreme events, and reproduces plausible impacts of up to one-in-five-centuries situations.
Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.
Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K
2008-09-01
To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.
Binary-selectable detector holdoff circuit
NASA Technical Reports Server (NTRS)
Kadrmas, K. A.
1974-01-01
High-speed switching circuit protects detectors from sudden, extremely-intense backscattered radiation that results from short-range atmospheric dust layers, or low-level clouds, entering laser/radar field of view. Function of circuit is to provide computer-controlled switching of photodiode detector, preamplifier power-supply voltages, in approximately 10 nanoseconds.
Obtaining the variance of gametic diversity with genomic models
USDA-ARS?s Scientific Manuscript database
It may be possible to use information about the variability among gametes (spermatozoa and ova) to select parents that are more likely than average to produce offspring with extremely high or low breeding values. In this study, statistical formulae were developed to calculate variability among gamet...
NASA Astrophysics Data System (ADS)
Asano, Atsushi; Maeyoshi, Yuta; Watanabe, Shogo; Saeki, Akinori; Sugimoto, Masaki; Yoshikawa, Masahito; Nanto, Hidehito; Tsukuda, Satoshi; Tanaka, Shun-Ichiro; Seki, Shu
2013-03-01
Cyclodextrins (CDs), hosting selectively a wide range of guest molecules in their hydrophobic cavity, were directly fabricated into 1-dimensional nanostructures with extremely wide surface area by single particle nanofabrication technique in the present paper. The copolymers of acrylamide and mono(6-allyl)-β-CD were synthesized, and the crosslinking reaction of the polymer alloys with poly(4-bromostyrene) (PBrS) in SPNT gave nanowires on the quarts substrate with high number density of 5×109 cm-2. Quartz crystal microbalance (QCM) measurement suggested 320 fold high sensitivity for formic acid vapor adsorption in the nanowire fabricated surfaces compared with that in the thin solid film of PBrS, due to the incorporation of CD units and extremely wide surface area of the nanowires.
NASA Astrophysics Data System (ADS)
Schlögl, Matthias; Laaha, Gregor
2017-04-01
The assessment of road infrastructure exposure to extreme weather events is of major importance for scientists and practitioners alike. In this study, we compare the different extreme value approaches and fitting methods with respect to their value for assessing the exposure of transport networks to extreme precipitation and temperature impacts. Based on an Austrian data set from 25 meteorological stations representing diverse meteorological conditions, we assess the added value of partial duration series (PDS) over the standardly used annual maxima series (AMS) in order to give recommendations for performing extreme value statistics of meteorological hazards. Results show the merits of the robust L-moment estimation, which yielded better results than maximum likelihood estimation in 62 % of all cases. At the same time, results question the general assumption of the threshold excess approach (employing PDS) being superior to the block maxima approach (employing AMS) due to information gain. For low return periods (non-extreme events) the PDS approach tends to overestimate return levels as compared to the AMS approach, whereas an opposite behavior was found for high return levels (extreme events). In extreme cases, an inappropriate threshold was shown to lead to considerable biases that may outperform the possible gain of information from including additional extreme events by far. This effect was visible from neither the square-root criterion nor standardly used graphical diagnosis (mean residual life plot) but rather from a direct comparison of AMS and PDS in combined quantile plots. We therefore recommend performing AMS and PDS approaches simultaneously in order to select the best-suited approach. This will make the analyses more robust, not only in cases where threshold selection and dependency introduces biases to the PDS approach but also in cases where the AMS contains non-extreme events that may introduce similar biases. For assessing the performance of extreme events we recommend the use of conditional performance measures that focus on rare events only in addition to standardly used unconditional indicators. The findings of the study directly address road and traffic management but can be transferred to a range of other environmental variables including meteorological and hydrological quantities.
Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook
2015-01-01
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933
Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook
2015-03-19
Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.
NASA Astrophysics Data System (ADS)
Mehmood, S.; Ashfaq, M.; Evans, K. J.; Black, R. X.; Hsu, H. H.
2017-12-01
Extreme precipitation during summer season has shown an increasing trend across South Asia in recent decades, causing an exponential increase in weather related losses. Here we combine a cluster analyses technique (Agglomerative Hierarchical Clustering) with a Lagrangian based moisture analyses technique to investigate potential commonalities in the characteristics of the large scale meteorological patterns (LSMP) and moisture anomalies associated with the observed extreme precipitation events, and their representation in the Department of Energy model ACME. Using precipitation observations from the Indian Meteorological Department (IMD) and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE), and atmospheric variables from Era-Interim Reanalysis, we first identify LSMP both in upper and lower troposphere that are responsible for wide spread precipitation extreme events during 1980-2015 period. For each of the selected extreme event, we perform moisture source analyses to identify major evaporative sources that sustain anomalous moisture supply during the course of the event, with a particular focus on local terrestrial moisture recycling. Further, we perform similar analyses on two sets of five-member ensemble of ACME model (1-degree and ¼ degree) to investigate the ability of ACME model in simulating precipitation extremes associated with each of the LSMP patterns and associated anomalous moisture sourcing from each of the terrestrial and oceanic evaporative region. Comparison of low and high-resolution model configurations provides insight about the influence of horizontal grid spacing in the simulation of extreme precipitation and the governing mechanisms.
Graphene oxide membranes with high permeability and selectivity for dehumidification of air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit
Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was belowmore » the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications« less
Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.
Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L
2016-10-21
We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.
Terminal Investment Strategies and Male Mate choice: Extreme Tests of Bateman.
Andrade, Maydianne C B; Kasumovic, Michael M
2005-11-01
Bateman's principle predicts the intensity of sexual selection depends on rates of increase of fecundity with mating success for each sex (Bateman slopes). The sex with the steeper increase (usually males) is under more intense sexual selection and is expected to compete for access to the sex under less intense sexual selection (usually females). Under Bateman and modern refinements of his ideas, differences in parental investment are key to defining Bateman slopes and thus sex roles. Other theories predict sex differences in mating investment, or any expenditures that reduce male potential reproductive rate, can also control sex roles. We focus on sexual behaviour in systems where males have low paternal investment but frequently mate only once in their lifetimes, after which they are often killed by the female. Mating effort (=terminal investment) is high for these males, and many forms of investment theory might predict sex role reversal. We find no qualitative evidence for sex role reversal in a sample of spiders that show this extreme male investment pattern. We also present new data for terminally-investing redback spiders (Latrodectus hasselti). Bateman slopes are relatively steep for male redbacks, and, as predicted by Bateman, there is little evidence for role reversal. Instead, males are competitive and show limited choosiness despite wide variation in female reproductive value. This study supports the proposal that high male mating investment coupled with low parental investment may predispose males to choosiness but will not lead to role reversal. We support the utility of using Bateman slopes to predict sex roles, even in systems with extreme male mating investment.
The DAQ needle in the big-data haystack
NASA Astrophysics Data System (ADS)
Meschi, E.
2015-12-01
In the last three decades, HEP experiments have faced the challenge of manipulating larger and larger masses of data from increasingly complex, heterogeneous detectors with millions and then tens of millions of electronic channels. LHC experiments abandoned the monolithic architectures of the nineties in favor of a distributed approach, leveraging the appearence of high speed switched networks developed for digital telecommunication and the internet, and the corresponding increase of memory bandwidth available in off-the-shelf consumer equipment. This led to a generation of experiments where custom electronics triggers, analysing coarser-granularity “fast” data, are confined to the first phase of selection, where predictable latency and real time processing for a modest initial rate reduction are “a necessary evil”. Ever more sophisticated algorithms are projected for use in HL- LHC upgrades, using tracker data in the low-level selection in high multiplicity environments, and requiring extremely complex data interconnects. These systems are quickly obsolete and inflexible but must nonetheless survive and be maintained across the extremely long life span of current detectors. New high-bandwidth bidirectional links could make high-speed low-power full readout at the crossing rate a possibility already in the next decade. At the same time, massively parallel and distributed analysis of unstructured data produced by loosely connected, “intelligent” sources has become ubiquitous in commercial applications, while the mass of persistent data produced by e.g. the LHC experiments has made multiple pass, systematic, end-to-end offline processing increasingly burdensome. A possible evolution of DAQ and trigger architectures could lead to detectors with extremely deep asynchronous or even virtual pipelines, where data streams from the various detector channels are analysed and indexed in situ quasi-real-time using intelligent, pattern-driven data organization, and the final selection is operated as a distributed “search for interesting event parts”. A holistic approach is required to study the potential impact of these different developments on the design of detector readout, trigger and data acquisition systems in the next decades.
Duncan, Emma L; Danoy, Patrick; Kemp, John P; Leo, Paul J; McCloskey, Eugene; Nicholson, Geoffrey C; Eastell, Richard; Prince, Richard L; Eisman, John A; Jones, Graeme; Sambrook, Philip N; Reid, Ian R; Dennison, Elaine M; Wark, John; Richards, J Brent; Uitterlinden, Andre G; Spector, Tim D; Esapa, Chris; Cox, Roger D; Brown, Steve D M; Thakker, Rajesh V; Addison, Kathryn A; Bradbury, Linda A; Center, Jacqueline R; Cooper, Cyrus; Cremin, Catherine; Estrada, Karol; Felsenberg, Dieter; Glüer, Claus-C; Hadler, Johanna; Henry, Margaret J; Hofman, Albert; Kotowicz, Mark A; Makovey, Joanna; Nguyen, Sing C; Nguyen, Tuan V; Pasco, Julie A; Pryce, Karena; Reid, David M; Rivadeneira, Fernando; Roux, Christian; Stefansson, Kari; Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Tichawangana, Rumbidzai; Evans, David M; Brown, Matthew A
2011-04-01
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies.
Duncan, Emma L.; Danoy, Patrick; Kemp, John P.; Leo, Paul J.; McCloskey, Eugene; Nicholson, Geoffrey C.; Eastell, Richard; Prince, Richard L.; Eisman, John A.; Jones, Graeme; Sambrook, Philip N.; Reid, Ian R.; Dennison, Elaine M.; Wark, John; Richards, J. Brent; Uitterlinden, Andre G.; Spector, Tim D.; Esapa, Chris; Cox, Roger D.; Brown, Steve D. M.; Thakker, Rajesh V.; Addison, Kathryn A.; Bradbury, Linda A.; Center, Jacqueline R.; Cooper, Cyrus; Cremin, Catherine; Estrada, Karol; Felsenberg, Dieter; Glüer, Claus-C.; Hadler, Johanna; Henry, Margaret J.; Hofman, Albert; Kotowicz, Mark A.; Makovey, Joanna; Nguyen, Sing C.; Nguyen, Tuan V.; Pasco, Julie A.; Pryce, Karena; Reid, David M.; Rivadeneira, Fernando; Roux, Christian; Stefansson, Kari; Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Tichawangana, Rumbidzai; Evans, David M.; Brown, Matthew A.
2011-01-01
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55–85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or −4.0 to −1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD–associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. PMID:21533022
Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine.
Biedrzycka, Aleksandra; Bielański, Wojciech; Ćmiel, Adam; Solarz, Wojciech; Zając, Tadeusz; Migalska, Magdalena; Sebastian, Alvaro; Westerdahl, Helena; Radwan, Jacek
2018-06-01
Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen-mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high-throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long-term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease. © 2018 John Wiley & Sons Ltd.
Footwear traction and lower extremity noncontact injury.
Wannop, John W; Luo, Geng; Stefanyshyn, Darren J
2013-11-01
Football is the most popular high school sport; however, it has the highest rate of injury. Speculation has been prevalent that foot fixation due to high footwear traction contributes to injury risk. Therefore, the purpose of the study was to determine whether a relationship exists between the athlete's specific footwear traction (measured with their own shoes on the field of play) and lower extremity noncontact injury in high school football. For 3 yr, 555 high school football athletes had their footwear traction measured on the actual field of play at the start of the season, and any injury the athletes suffered during a game was recorded. Lower extremity noncontact injury rates, grouped based on the athlete's specific footwear traction (both translational and rotational), were compared. For translational traction, injury rate reached a peak of 23.3 injuries/1000 game exposures within the midrange of translational traction, before decreasing to 5.0 injuries/1000 game exposures in the high range of traction. For rotational traction, there was a steady increase in injury rate as footwear traction increased, starting at 4.2 injuries/1000 game exposures at low traction and reaching 19.2 injuries/1000 game exposures at high traction. A relationship exists between footwear traction and noncontact lower extremity injury, with increases in rotational traction leading to a greater injury rate and increases in translational traction leading to a decrease in injury. It is recommended that athletes consider selecting footwear with the lowest rotational traction values for which no detriment in performance results.
Intra-arterial Ultra-low-Dose CT Angiography of Lower Extremity in Diabetic Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özgen, Ali, E-mail: draliozgen@hotmail.com; Sanioğlu, Soner; Bingöl, Uğur Anıl
2016-08-15
PurposeTo image lower extremity arteries by CT angiography using a very low-dose intra-arterial contrast medium in patients with high risk of developing contrast-induced nephropathy (CIN).Materials and MethodsThree cases with long-standing diabetes mellitus and signs of lower extremity atherosclerotic disease were evaluated by CT angiography using 0.1 ml/kg of the body weight of contrast medium given via 10-cm-long 4F introducer by puncturing the CFA. Images were evaluated by an interventional radiologist and a cardiovascular surgeon. Density values of the lower extremity arteries were also calculated. Findings in two cases were compared with digital subtraction angiography images performed for percutaneous revascularization. Blood creatininemore » levels were followed for possible CIN.ResultsIntra-arterial CT angiography images were considered diagnostic in all patients and optimal in one patient. No patient developed CIN after intra-arterial CT angiography, while one patient developed CIN after percutaneous intervention.ConclusionIntra-arterial CT angiography of lower extremity might be performed in selected patients with high risk of developing CIN. Our limited experience suggests that as low as of 0.1 ml/kg of the body weight of contrast medium may result in adequate diagnostic imaging.« less
Demirel, Gokcen Birlik; Daglar, Bihter; Bayindir, Mehmet
2013-07-14
A novel sensing material based on pyrene doped polyethersulfone worm-like structured thin film is developed using a facile technique for detection of nitroaromatic explosive vapours. The formation of π-π stacking in the thin fluorescent film allows a highly sensitive fluorescence quenching which is detectable by the naked eye in a response time of a few seconds.
Biobased extreme pressure additives: Structure-property considerations
USDA-ARS?s Scientific Manuscript database
Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...
Colonna, Vincenza; Ayub, Qasim; Chen, Yuan; Pagani, Luca; Luisi, Pierre; Pybus, Marc; Garrison, Erik; Xue, Yali; Tyler-Smith, Chris; Abecasis, Goncalo R; Auton, Adam; Brooks, Lisa D; DePristo, Mark A; Durbin, Richard M; Handsaker, Robert E; Kang, Hyun Min; Marth, Gabor T; McVean, Gil A
2014-06-30
Population differentiation has proved to be effective for identifying loci under geographically localized positive selection, and has the potential to identify loci subject to balancing selection. We have previously investigated the pattern of genetic differentiation among human populations at 36.8 million genomic variants to identify sites in the genome showing high frequency differences. Here, we extend this dataset to include additional variants, survey sites with low levels of differentiation, and evaluate the extent to which highly differentiated sites are likely to result from selective or other processes. We demonstrate that while sites with low differentiation represent sampling effects rather than balancing selection, sites showing extremely high population differentiation are enriched for positive selection events and that one half may be the result of classic selective sweeps. Among these, we rediscover known examples, where we actually identify the established functional SNP, and discover novel examples including the genes ABCA12, CALD1 and ZNF804, which we speculate may be linked to adaptations in skin, calcium metabolism and defense, respectively. We identify known and many novel candidate regions for geographically restricted positive selection, and suggest several directions for further research.
Blob, Richard W; Bridges, William C; Ptacek, Margaret B; Maie, Takashi; Cediel, Roberto A; Bertolas, Morgan M; Julius, Matthew L; Schoenfuss, Heiko L
2008-12-01
Flow characteristics are a prominent factor determining body shapes in aquatic organisms, and correlations between body shape and ambient flow regimes have been established for many fish species. In this study, we investigated the potential for a brief period of extreme flow to exert selection on the body shape of juvenile climbing Hawaiian gobiid fishes. Because of an amphidromous life history, juvenile gobies that complete an oceanic larval phase return to freshwater habitats, where they become adults. Returning juveniles often must scale waterfalls (typically with the use of a ventral sucker) in order to reach the habitats they will use as adults, thereby exposing these animals to brief periods of extreme velocities of flow. Hydrodynamic theory predicts that bodies with larger suckers and with lower heights that reduce drag would have improved climbing success and, thus, be well suited to meet the demands of the flows in waterfalls. To test the potential for the flow environment of waterfalls to impose selection that could contribute to differences in body shape between islands, we subjected juvenile Sicyopterus stimpsoni to climbing trials up artificial waterfalls (∼100 body lengths) and measured differences in body shape between successful and unsuccessful climbers. Waterfalls appear to represent a significant selective barrier to these fishes, as nearly 30% failed our climbing test. However, the effects of selection on morphology were not straightforward, as significant differences in shape between successful and unsuccessful climbers did not always match hydrodynamic predictions. In both selection experiments and in adult fish collected from habitats with different prevailing conditions of flow (the islands of Hawai'i versus Kaua'i), lower head heights were associated with exposure to high-flow regimes, as predicted by hydrodynamic theory. Thus, a premium appears to be placed on the reduction of drag via head morphology throughout the ontogeny of this species. The congruence of phenotypic selection patterns observed in our experiments, with morphological character divergence documented among adult fish from Hawai'i and Kaua'i, suggests that differences in morphology between subpopulations of adult climbing gobies may result, at least in part, from the selective pressures of high-velocity flows encountered by migrating juveniles.
Discovering highly obscured AGN with the Swift-BAT 100-month survey
NASA Astrophysics Data System (ADS)
Marchesi, Stefano; Ajello, Marco; Comastri, Andrea; Cusumano, Giancarlo; La Parola, Valentina; Segreto, Alberto
2017-01-01
In this talk, I present a new technique to find highly obscured AGN using the 100-month Swift-BAT survey. I will show the results of the combined Chandra and BAT spectral analysis in the 0.3-150 keV band of seven Seyfert 2 galaxies selected from the 100-month BAT catalog. We selected nearby (z<0.03) sources lacking of a ROSAT counterpart and never previously observed in the 0.3-10 keV energy range. All the objects are significantly obscured, having NH>1E23 cm-2 at a >99% confidence level, and one to three sources are candidate Compton thick Active Galactic Nuclei (CT-AGN), i.e., have NH>1E24 cm-2.Since the selection criteria we adopted have been extremely effective in detecting highly obscured AGN, further observations of these and other Seyfert 2 galaxies selected from the BAT 100-month catalog will allow us to create a statistically significant sample of highly obscured AGN, therefore better understanding the physics of the obscuration processes.
Generalized extreme gust wind speeds distributions
Cheng, E.; Yeung, C.
2002-01-01
Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.
Physical properties of distant red galaxies in the COSMOS/UltraVISTA field
NASA Astrophysics Data System (ADS)
Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu
2015-10-01
We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.
Density-dependent natural selection and trade-offs in life history traits.
Mueller, L D; Guo, P Z; Ayala, F J
1991-07-26
Theories of density-dependent natural selection state that at extreme population densities evolution produces alternative life histories due to trade-offs. The trade-offs are presumed to arise because those genotypes with highest fitness at high population densities will not also have high fitness at low density and vice-versa. These predictions were tested by taking samples from six populations of Drosophila melanogaster kept at low population densities (r-populations) for nearly 200 generations and placing them in crowded cultures (K-populations). After 25 generations in the crowded cultures, the derived K-populations showed growth rate and productivity that at high densities were elevated relative to the controls, but at low density were depressed.
Hybrid photonic signal processing
NASA Astrophysics Data System (ADS)
Ghauri, Farzan Naseer
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.
Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong
2016-07-27
We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.
Selective probing of mRNA expression levels within a living cell.
Nawarathna, D; Turan, T; Wickramasinghe, H Kumar
2009-08-24
We report on a selective and nondestructive measurement of mRNA (messenger ribonucleic acid) expression levels within a living cell. We first modify an atomic force microscope tip to create a tapered nanoscale coaxial cable. Application of an ac (alternating potential) between the inner and outer electrodes of this cable creates a dielectrophoretic force attracting mRNA molecules toward the tip-end which is pretreated with gene specific primers. We selectively extracted and analyzed both high ( approximately 2500) and extremely low (11 0) copy number mRNA from a living cell mRNA in less than 10 s.
Pepper, chili (Capsicum annuum).
Min, Jung; Shin, Sun Hee; Jeon, En Mi; Park, Jung Mi; Hyun, Ji Young; Harn, Chee Hark
2015-01-01
Pepper is a recalcitrant plant for Agrobacterium-mediated genetic transformation. Several obstacles to genetic transformation remain such as extremely low transformation rates; the choice of correct genotype is critical; and there is a high frequency of false positives due to direct shoot formation. Here, we report a useful protocol with a suitable selection method. The most important aspect of the pepper transformation protocol is selecting shoots growing from the callus, which is referred to as callus-mediated shoot formation. This protocol is a reproducible and reliable system for pepper transformation.
Recent Development in Chemical Depolymerization of Lignin: A Review
Wang, Hai; Tucker, Melvin; Ji, Yun
2013-01-01
This article reviewed recent development of chemical depolymerization of lignins. There were five types of treatment discussed, including base-catalyzed, acid-catalyzed, metallic catalyzed, ionic liquids-assisted, and supercritical fluids-assisted lignin depolymerizations. The methods employed in this research were described, and the important results were marked. Generally, base-catalyzed and acid-catalyzed methods were straightforward, but the selectivity was low. The severe reaction conditions (high pressure, high temperature, and extreme pH) resulted in requirement of specially designed reactors, which led to high costs of facility and handling. Ionic liquids, and supercritical fluids-assisted lignin depolymerizations had high selectivity, but the high costs of ionic liquids recyclingmore » and supercritical fluid facility limited their applications on commercial scale biomass treatment. Metallic catalyzed depolymerization had great advantages because of its high selectivity to certain monomeric compounds and much milder reaction condition than base-catalyzed or acid-catalyzed depolymerizations. It would be a great contribution to lignin conversion if appropriate catalysts were synthesized.« less
USDA-ARS?s Scientific Manuscript database
Meishan is a famous Chinese indigenous pig breed known for its extremely high fecundity. To explore if Meishan has unique evolutionary process and genome characteristics differing from other pig breeds, we systematically analyzed its genetic divergence, and demographic history by large-scale reseque...
Mass Spectrometry-based Assay for High Throughput and High Sensitivity Biomarker Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xuejiang; Tang, Keqi
Searching for disease specific biomarkers has become a major undertaking in the biomedical research field as the effective diagnosis, prognosis and treatment of many complex human diseases are largely determined by the availability and the quality of the biomarkers. A successful biomarker as an indicator to a specific biological or pathological process is usually selected from a large group of candidates by a strict verification and validation process. To be clinically useful, the validated biomarkers must be detectable and quantifiable by the selected testing techniques in their related tissues or body fluids. Due to its easy accessibility, protein biomarkers wouldmore » ideally be identified in blood plasma or serum. However, most disease related protein biomarkers in blood exist at very low concentrations (<1ng/mL) and are “masked” by many none significant species at orders of magnitude higher concentrations. The extreme requirements of measurement sensitivity, dynamic range and specificity make the method development extremely challenging. The current clinical protein biomarker measurement primarily relies on antibody based immunoassays, such as ELISA. Although the technique is sensitive and highly specific, the development of high quality protein antibody is both expensive and time consuming. The limited capability of assay multiplexing also makes the measurement an extremely low throughput one rendering it impractical when hundreds to thousands potential biomarkers need to be quantitatively measured across multiple samples. Mass spectrometry (MS)-based assays have recently shown to be a viable alternative for high throughput and quantitative candidate protein biomarker verification. Among them, the triple quadrupole MS based assay is the most promising one. When it is coupled with liquid chromatography (LC) separation and electrospray ionization (ESI) source, a triple quadrupole mass spectrometer operating in a special selected reaction monitoring (SRM) mode, also known as multiple reaction monitoring (MRM), is capable of quantitatively measuring hundreds of candidate protein biomarkers from a relevant clinical sample in a single analysis. The specificity, reproducibility and sensitivity could be as good as ELISA. Furthermore, SRM MS can also quantify protein isoforms and post-translational modifications, for which traditional antibody-based immunoassays often don’t exist.« less
Using Extreme Groups Strategy When Measures Are Not Normally Distributed.
ERIC Educational Resources Information Center
Fowler, Robert L.
1992-01-01
A Monte Carlo simulation explored how to optimize power in the extreme groups strategy when sampling from nonnormal distributions. Results show that the optimum percent for the extreme group selection was approximately the same for all population shapes, except the extremely platykurtic (uniform) distribution. (SLD)
Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena
2017-07-05
Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the putative function of different MHC genes in future studies of MHC in relation to disease resistance and fitness.
NASA Astrophysics Data System (ADS)
Guidetti, Roberto; Tiziana, Altiero; Cesari, Michele; Rizzo, Angela Maria; Bertolani, Roberto; Galletta, Giuseppe; Dalessandro, Maurizio; Rebecchi, Lorena
Extreme habitats are highly selective and can host only living organisms possessing specific adaptations to stressors. Among extreme habitats, space environment has particular charac-teristics of radiations, vacuum, microgravity and temperature, which induce rapid changes in living systems. Consequently, the response of multicellular complex organisms, able to colo-nize extreme environments, to space stresses can give very useful information on the ability to withstand a single stress or stress combinations. This knowledge on changes in living systems in space, with their similarity to the ageing processes, offers the opportunity to improve human life both on Earth and in space. Even though experimentation in space has often been carried out using unicellular organisms, multicellular organisms are very relevant in order to develop the appropriate countermeasures to avoid the risks imposed by environmental space in humans. The little attention received by multicellular organisms is probably due, other than to difficul-ties in the manipulation of biological materials in space, to the presence of only few organisms with the potential to tolerate environmental space stresses. Among them, tardigrades are small invertebrates representing an attractive animal model to study adaptive strategies for surviving extreme environments, including space environment. Tardigrades are little known microscopic aquatic animals (250-800 m in body length) distributed in different environments (from the deep sea to high mountains and deserts all over the world), and frequently inhabiting very unstable and unpredictable habitats (e.g. interstices of mosses, lichens, leaf litter, freshwater ponds, cryoconite holes). Their ability to live in the extreme environments is related to a wide variety of their life histories and adaptive strategies. A widespread and crucial strategy is cryptobiosis, a form of quiescence. It includes strategies such as anhydrobiosis and cryobiosis, characterized by a complete or almost complete metabolic standstill. The ability of tardigrades to colonize terrestrial habitats is linked to their well known ability to enter anhydrobiosis when their habi-tat desiccates. Tardigrades survive dehydration by entering a highly stable state of suspended animation due to complete desiccation (¿ 95Results on tardigrades open a window on the fu-ture perspective in astrobiology and in their applications. The discovery and identification of metabolites naturally synthesized by tardigrades to perform a remarkable protection against the damages to cellular components and DNA due to desiccation, radiation, microgravity and oxidation stresses, will be used to define the countermeasures to protect sensitive organisms, including humans, not naturally able to withstand extreme stresses under space conditions, for the future long-term explorations of our solar system, including Mars.
Detecting overlapping instances in microscopy images using extremal region trees.
Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew
2016-01-01
In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst.
Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan
2017-10-01
Although considerable progress has been made in carbon dioxide (CO 2 ) hydrogenation to various C 1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO 2 because of the extreme inertness of CO 2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In 2 O 3 ) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In 2 O 3 surfaces activate CO 2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.
Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S
2013-01-01
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.
Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.
2013-01-01
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure. PMID:24204801
A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells
NASA Astrophysics Data System (ADS)
Chen, Song; Hou, Peng; Wang, Jing; Liu, Lei; Zhang, Qi
2017-02-01
A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450 nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7 × 10- 8 M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.
Jakšić, Ana Marija; Schlötterer, Christian
2016-09-01
Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing-with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments. Copyright © 2016 by the Genetics Society of America.
Satellite-Enhanced Dynamical Downscaling of Extreme Events
NASA Astrophysics Data System (ADS)
Nunes, A.
2015-12-01
Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.
Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond
NASA Astrophysics Data System (ADS)
Canganella, Francesco; Wiegel, Juergen
2011-04-01
The anthropocentric term "extremophile" was introduced more than 30 years ago to describe any organism capable of living and growing under extreme conditions—i.e., particularly hostile to human and to the majority of the known microorganisms as far as temperature, pH, and salinity parameters are concerned. With the further development of studies on microbial ecology and taxonomy, more "extreme" environments were found and more extremophiles were described. Today, many different extremophiles have been isolated from habitats characterized by hydrostatic pressure, aridity, radiations, elevated temperatures, extreme pH values, high salt concentrations, and high solvent/metal concentrations, and it is well documented that these microorganisms are capable of thriving under extreme conditions better than any other organism living on Earth. Extremophiles have also been investigated as far as the search for life in other planets is concerned and even to evaluate the hypothesis that life on Earth came originally from space. Extremophiles are interesting for basic and applied sciences. Particularly fascinating are their structural and physiological features allowing them to stand extremely selective environmental conditions. These properties are often due to specific biomolecules (DNA, lipids, enzymes, osmolites, etc.) that have been studied for years as novel sources for biotechnological applications. In some cases (DNA polymerase, thermostable enzymes), the search was successful and the final application was achieved, but certainly further exploitations are next to come.
Rogers, D W; Baker, R H; Chapman, T; Denniff, M; Pomiankowski, A; Fowler, K
2005-05-01
Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.
NASA Astrophysics Data System (ADS)
Takagi, T.; Mortier, A. M. J.; Shimasaku, K.; Coppin, K.; Pope, A.; Ivison, R. J.; Hanami, H.; Serjeant, S.; Clements, D. L.; Priddey, R. S.; Dunlop, J. S.; Takata, T.; Aretxaga, I.; Chapman, S. C.; Eales, S. A.; Farrah, D.; Granato, G. L.; Halpern, M.; Hughes, D. H.; van Kampen, E.; Scott, D.; Sekiguchi, K.; Smail, I.; Vaccari, M.
2007-11-01
We have studied the submillimetre (submm) properties of the following classes of near-infrared-selected (NIR-selected) massive galaxies at high redshifts: BzK-selected star-forming galaxies (BzKs); distant red galaxies (DRGs); and extremely red objects (EROs). We used the SCUBA HAlf Degree Extragalactic Survey (SHADES), the largest uniform submm survey to date. Partial overlap of SIRIUS/NIR images and SHADES in Subaru/XMM-Newton deep field has allowed us to identify four submm-bright NIR-selected galaxies, which are detected in the mid-IR, 24μ m, and the radio, 1.4GHz. We find that all of our submm-bright NIR-selected galaxies satisfy the BzK selection criteria, i.e. BzK ≡ (z - K)AB - (B - z)AB >= -0.2, except for one galaxy whose B - z and z - K colours are however close to the BzK colour boundary. Two of the submm-bright NIR-selected galaxies satisfy all of the selection criteria we considered, i.e. they belong to the BzK-DRG-ERO overlapping population, or `extremely red' BzKs. Although these extremely red BzKs are rare (0.25 arcmin-2), up to 20 per cent of this population could be submm galaxies. This fraction is significantly higher than that found for other galaxy populations studied here. Via a stacking analysis, we have detected the 850-μ m flux of submm-faint BzKs and EROs in our SCUBA maps. While the contribution of z ~ 2 BzKs to the submm background is about 10-15 per cent and similar to that from EROs typically at z ~ 1, BzKs have a higher fraction (~30 per cent) of submm flux in resolved sources compared with EROs and submm sources as a whole. From the spectral energy distribution (SED) fitting analysis for both submm-bright and submm-faint BzKs, we found no clear signature that submm-bright BzKs are experiencing a specifically luminous evolutionary phase, compared with submm-faint BzKs. An alternative explanation might be that submm-bright BzKs are more massive than submm-faint ones.
Chen, Yang; He, Xi-Wen; Mao, Jie; Li, Wen-You; Zhang, Yu-Kui
2013-10-01
Protein-imprinted polymers with hollow cores that have a super-high imprinting factor were prepared by etching the core of the surface-imprinted polymers that used silica particles as the support. Lysozyme as template was modified onto the surface of silica particles by a covalent method, and after polymerization and the removal of template molecules, channels through the polymer layer were formed, which allowed a single-protein molecule to come into the hollow core and attach to the binding sites inside the polymer layer. The adsorption experiments demonstrated that the hollow imprinted polymers had an extremely high binding capacity and selectivity, and thus a super-high imprinting factor was obtained. The as-prepared imprinted polymers were used to separate the template lysozyme from egg white successfully, indicating its high selectivity and potential application in the field of separation of protein from real samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.
Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres
2014-01-01
A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.
Torgomyan, Heghine; Trchounian, Armen
2015-01-01
The effects of extremely high frequency electromagnetic irradiation and antibiotics on Escherichia coli can create new opportunities for applications in different areas—medicine, agriculture, and food industry. Previously was shown that irradiated bacterial sensitivity against antibiotics was changed. In this work, it was presented the results that irradiation of antibiotics and then adding into growth medium was more effective compared with non-irradiated antibiotics bactericidal action. The selected antibiotics (tetracycline, kanamycin, chloramphenicol, and ceftriaxone) were from different groups. Antibiotics irradiation was performed with low intensity 53 GHz frequency during 1 h. The E. coli growth properties—lag-phase duration and specific growth rate—were markedly changed. Enhanced bacterial sensitivity to irradiated antibiotics is similar to the effects of antibiotics of higher concentrations.
Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate
NASA Astrophysics Data System (ADS)
Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan
2017-12-01
Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.
Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates
Williams, Caroline M.; Szejner-Sigal, Andre; Morgan, Theodore J.; Edison, Arthur S.; Allison, David B.; Hahn, Daniel A.
2016-01-01
Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving “Beyond the Mean”. PMID:27103615
NASA Astrophysics Data System (ADS)
Ludwig, R.
2017-12-01
There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change.
NASA Astrophysics Data System (ADS)
Song, Xuezhen; Dong, Baoli; Kong, Xiuqi; Wang, Chao; Zhang, Nan; Lin, Weiying
2018-01-01
Hypochlorite is one of the important reactive oxygen species (ROS) and plays critical roles in many biologically vital processes. Herein, we present a unique ratiometric fluorescent probe (CBP) with an extremely large emission shift for detecting hypochlorite in living cells. Utilizing positively charged α,β-unsaturated carbonyl group as the reaction site, the probe CBP itself exhibited near-infrared (NIR) fluorescence at 662 nm, and can display strong blue fluorescence at 456 nm when responded to hypochlorite. Notably, the extremely large emission shift of 206 nm could enable the precise measurement of the fluorescence peak intensities and ratios. CBP showed high sensitivity, excellent selectivity, desirable performance at physiological pH, and low cytotoxicity. The bioimaging experiments demonstrate the biological application of CBP for the ratiometric imaging of hypochlorite in living cells.
A Cost-Benefit Analysis for Per-Student Expenditures and Academic Achievement
ERIC Educational Resources Information Center
Womack, Sid T.; Roberts, Kerry; Bell, C. David; Womack, Karen
2015-01-01
Cost-benefit correlations have been subject to "selective sampling" in the media. Usually extremes of data from a very few high-funding and low-funding states are cited in the media to construct the case that there is no relationship between economic inputs and academic outputs. This study, using average per-pupil expenditures and ACT…
A Follow-Up of Subjects Scoring above 180 IQ in Terman's "Genetic Studies of Genius."
ERIC Educational Resources Information Center
Feldman, David Henry
1984-01-01
Using the Terman files, 26 subjects with scores above 180 IQ were compared with 26 randomly selected subjects from Terman's sample. Findings were generally that the extra IQ points made little difference and that extremely high IQ does not seem to indicate "genius" in the commonly understood sense. (Author/CL)
Small Body Size at Birth and Behavioural Symptoms of ADHD in Children Aged Five to Six Years
ERIC Educational Resources Information Center
Lahti, J.; Raikkonen, K.; Kajantie, E.; Heinonen, K.; Pesonen, A.-K.; Jarvenpaa, A.-L.; Strandberg, T.
2006-01-01
Background: Behavioural disorders with a neurodevelopmental background, such as attention deficit hyperactivity disorder (ADHD), have been associated with a non-optimal foetal environment, reflected in small body size at birth. However, the evidence stems from highly selected groups with birth outcomes biased towards the extreme low end of the…
Selective probing of mRNA expression levels within a living cell
Nawarathna, D.; Turan, T.; Wickramasinghe, H. Kumar
2009-01-01
We report on a selective and nondestructive measurement of mRNA (messenger ribonucleic acid) expression levels within a living cell. We first modify an atomic force microscope tip to create a tapered nanoscale coaxial cable. Application of an ac (alternating potential) between the inner and outer electrodes of this cable creates a dielectrophoretic force attracting mRNA molecules toward the tip-end which is pretreated with gene specific primers. We selectively extracted and analyzed both high (∼2500) and extremely low (11¯0) copy number mRNA from a living cell mRNA in less than 10 s. PMID:19777090
Recent Advances in Chemical Modification of Peptide Nucleic Acids
Rozners, Eriks
2012-01-01
Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification. PMID:22991652
Development of an instrument for assessing workstyle in checkout cashier work (BAsIK).
Kjellberg, Katarina; Palm, Peter; Josephson, Malin
2012-01-01
Checkout cashier work consists of handling a large number of items during a work shift, which implies repetitive movements of the shoulders, arms and hands/wrists, and a high work rate. The work is associated with a high prevalence of disorders in the neck and upper extremity. The concept of workstyle explains how ergonomic and psychosocial factors interact in the development of work-related upper extremity disorders. The aim of the project was to develop an instrument for the occupational health services to be used in the efforts to prevent upper extremity disorders in checkout cashier work. The instrument is based on the workstyle concept and is intended to be used as a tool to identify high-risk workstyle and needs for interventions, such as training and education. The instrument, BAsIK, consists of four parts; a questionnaire about workstyle, an observation protocol for work technique, a checklist about the design of the checkout and a questionnaire about work organization. The instrument was developed by selecting workstyle items developed for office work and adapting them to checkout cashier work, discussions with researchers and ergonomists, focus-group interviews with cashiers, observations of video recordings of cashiers, and studies of existing guidelines and checklists.
Blueberry Galaxies: The Lowest Mass Young Starbursts
NASA Astrophysics Data System (ADS)
Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian
2017-09-01
Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.
2017-01-01
Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways—EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive. PMID:29240764
Harbison, Susan T; Serrano Negron, Yazmin L; Hansen, Nancy F; Lobell, Amanda S
2017-12-01
Why do some individuals need more sleep than others? Forward mutagenesis screens in flies using engineered mutations have established a clear genetic component to sleep duration, revealing mutants that convey very long or short sleep. Whether such extreme long or short sleep could exist in natural populations was unknown. We applied artificial selection for high and low night sleep duration to an outbred population of Drosophila melanogaster for 13 generations. At the end of the selection procedure, night sleep duration diverged by 9.97 hours in the long and short sleeper populations, and 24-hour sleep was reduced to 3.3 hours in the short sleepers. Neither long nor short sleeper lifespan differed appreciably from controls, suggesting little physiological consequences to being an extreme long or short sleeper. Whole genome sequence data from seven generations of selection revealed several hundred thousand changes in allele frequencies at polymorphic loci across the genome. Combining the data from long and short sleeper populations across generations in a logistic regression implicated 126 polymorphisms in 80 candidate genes, and we confirmed three of these genes and a larger genomic region with mutant and chromosomal deficiency tests, respectively. Many of these genes could be connected in a single network based on previously known physical and genetic interactions. Candidate genes have known roles in several classic, highly conserved developmental and signaling pathways-EGFR, Wnt, Hippo, and MAPK. The involvement of highly pleiotropic pathway genes suggests that sleep duration in natural populations can be influenced by a wide variety of biological processes, which may be why the purpose of sleep has been so elusive.
Statistic analysis of annual total ozone extremes for the period 1964-1988
NASA Technical Reports Server (NTRS)
Krzyscin, Janusz W.
1994-01-01
Annual extremes of total column amount of ozone (in the period 1964-1988) from a network of 29 Dobson stations have been examined using the extreme value analysis. The extremes have been calculated as the highest deviation of daily mean total ozone from its long-term monthly mean, normalized by the monthly standard deviations. The extremes have been selected from the direct-Sun total ozone observations only. The extremes resulting from abrupt changes in ozone (day to day changes greater than 20 percent) have not been considered. The ordered extremes (maxima in ascending way, minima in descending way) have been fitted to one of three forms of the Fisher-Tippet extreme value distribution by the nonlinear least square method (Levenberg-Marguard method). We have found that the ordered extremes from a majority of Dobson stations lie close to Fisher-Tippet type III. The extreme value analysis of the composite annual extremes (combined from averages of the annual extremes selected at individual stations) has shown that the composite maxima are fitted by the Fisher-Tippet type III and the composite minima by the Fisher-Tippet type I. The difference between the Fisher-Tippet types of the composite extremes seems to be related to the ozone downward trend. Extreme value prognoses for the period 1964-2014 (derived from the data taken at: all analyzed stations, the North American, and the European stations) have revealed that the prognostic extremes are close to the largest annual extremes in the period 1964-1988 and there are only small regional differences in the prognoses.
Red, redder, reddest: SCUBA-2 imaging of colour-selected Herschel sources
NASA Astrophysics Data System (ADS)
Duivenvoorden, S.; Oliver, S.; Scudder, J. M.; Greenslade, J.; Riechers, D. A.; Wilkins, S. M.; Buat, V.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Coppin, K. E. K.; Dannerbauer, H.; De Zotti, G.; Dunlop, J. S.; Eales, S. A.; Efstathiou, A.; Farrah, D.; Geach, J. E.; Holland, W. S.; Hurley, P. D.; Ivison, R. J.; Marchetti, L.; Petitpas, G.; Sargent, M. T.; Scott, D.; Symeonidis, M.; Vaccari, M.; Vieira, J. D.; Wang, L.; Wardlow, J.; Zemcov, M.
2018-06-01
High-redshift, luminous, dusty star-forming galaxies (DSFGs) constrain the extremity of galaxy formation theories. The most extreme are discovered through follow-up on candidates in large area surveys. Here, we present extensive 850 μm SCUBA-2 follow-up observations of 188 red DSFG candidates from the Herschel Multitiered Extragalactic Survey (HerMES) Large Mode Survey, covering 274 deg2. We detected 87 per cent with a signal-to-noise ratio >3 at 850 μm. We introduce a new method for incorporating the confusion noise in our spectral energy distribution fitting by sampling correlated flux density fluctuations from a confusion limited map. The new 850 μm data provide a better constraint on the photometric redshifts of the candidates, with photometric redshift errors decreasing from σz/(1 + z) ≈ 0.21 to 0.15. Comparison spectroscopic redshifts also found little bias (<(z - zspec)/(1 + zspec)> = 0.08). The mean photometric redshift is found to be 3.6 with a dispersion of 0.4 and we identify 21 DSFGs with a high probability of lying at z > 4. After simulating our selection effects we find number counts are consistent with phenomenological galaxy evolution models. There is a statistically significant excess of WISE-1 and SDSS sources near our red galaxies, giving a strong indication that lensing may explain some of the apparently extreme objects. Nevertheless, our sample includes examples of galaxies with the highest star formation rates in the Universe (≫103 M⊙ yr-1).
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
Modeling extreme PM10 concentration in Malaysia using generalized extreme value distribution
NASA Astrophysics Data System (ADS)
Hasan, Husna; Mansor, Nadiah; Salleh, Nur Hanim Mohd
2015-05-01
Extreme PM10 concentration from the Air Pollutant Index (API) at thirteen monitoring stations in Malaysia is modeled using the Generalized Extreme Value (GEV) distribution. The data is blocked into monthly selection period. The Mann-Kendall (MK) test suggests a non-stationary model so two models are considered for the stations with trend. The likelihood ratio test is used to determine the best fitted model and the result shows that only two stations favor the non-stationary model (Model 2) while the other eleven stations favor stationary model (Model 1). The return level of PM10 concentration that is expected to exceed the maximum once within a selected period is obtained.
Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.
Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus
2017-11-02
The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.
Wu, Xiang; Lee, Hyungseok; Bilsel, Osman; ...
2015-01-01
One of the key roadblocks in UCNP development is its extremely limited choices of excitation wavelengths. We report a generic design to program UCNPs to possess highly tunable dye characteristic excitation bands. Using such distinctive properties, we were able to develop a new excitation wavelength selective security imaging. Finally, this work unleashed the greater freedom of the excitation wavelengths of the upconversion nanoparticles and we believe it is a game-changer in the field and this method will enable numerous applications that are currently limited by existing UCNPs.
CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grazioli, C.; Gauthier, D.; Ivanov, R.
2014-02-15
We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse thatmore » generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.« less
Peng, Xiong; Karakalos, Stavros G; Mustain, William E
2018-01-17
Selective electrochemical reduction of CO 2 is one of the most important processes to study because of its promise to convert this greenhouse gas to value-added chemicals at low cost. In this work, a simple anodization treatment was devised that first oxidizes Ag to Ag 2 CO 3 , then uses rapid electrochemical reduction to create preferentially oriented nanoparticles (PONs) of metallic Ag (PON-Ag) with high surface area as well as high activity and very high selectivity for the reduction of CO 2 to CO. The PON-Ag catalyst was dominated by (110) and (100) orientation, which allowed PON-Ag to achieve a CO Faradaic efficiency of 96.7% at an operating potential of -0.69 V vs RHE. This performance is not only significantly higher than that of polycrystalline Ag (60% at -0.87 V vs RHE) but also represents one of the best combinations of activity and selectivity achieved to date - all with a very simple, scalable approach to electrode fabrication.
ERIC Educational Resources Information Center
Blair, Mark R.; Watson, Marcus R.; Walshe, R. Calen; Maj, Fillip
2009-01-01
Humans have an extremely flexible ability to categorize regularities in their environment, in part because of attentional systems that allow them to focus on important perceptual information. In formal theories of categorization, attention is typically modeled with weights that selectively bias the processing of stimulus features. These theories…
Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models
Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita
2010-01-01
Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models. PMID:20080720
Selection of experimental modal data sets for damage detection via model update
NASA Technical Reports Server (NTRS)
Doebling, S. W.; Hemez, F. M.; Barlow, M. S.; Peterson, L. D.; Farhat, C.
1993-01-01
When using a finite element model update algorithm for detecting damage in structures, it is important that the experimental modal data sets used in the update be selected in a coherent manner. In the case of a structure with extremely localized modal behavior, it is necessary to use both low and high frequency modes, but many of the modes in between may be excluded. In this paper, we examine two different mode selection strategies based on modal strain energy, and compare their success to the choice of an equal number of modes based merely on lowest frequency. Additionally, some parameters are introduced to enable a quantitative assessment of the success of our damage detection algorithm when using the various set selection criteria.
The effect of mortality salience on women's judgments of male faces.
Vaughn, James E; Bradley, Kristopher I; Byrd-Craven, Jennifer; Kennison, Shelia M
2010-08-30
Previous research has shown that individuals who are reminded of their death exhibited a greater desire for offspring than those who were not reminded of their death. The present research investigated whether being reminded of mortality affects mate selection behaviors, such as facial preference judgments. Prior research has shown that women prefer more masculine faces when they are at the high versus low fertility phase of their menstrual cycles. We report an experiment in which women were tested either at their high or fertility phase. They were randomly assigned to either a mortality salience (MS) or control condition and then asked to judge faces ranging from extreme masculine to extreme feminine. The results showed that women's choice of the attractive male face was determined by an interaction between fertility phase and condition. In control conditions, high fertility phase women preferred a significantly more masculine face than women who were in a lower fertility phase of their menstrual cycles. In MS conditions, high fertility phase women preferred a significantly less masculine (i.e., more average) face than women who were in a low fertility phase. The results indicate that biological processes, such as fertility phase, involved in mate selection are sensitive to current environmental factors, such as death reminders. This sensitivity may serve as an adaptive compromise when choosing a mate in potentially adverse environmental conditions.
Romero, H; Zavala, A; Musto, H
2000-01-25
It is widely accepted that the compositional pressure is the only factor shaping codon usage in unicellular species displaying extremely biased genomic compositions. This seems to be the case in the prokaryotes Mycoplasma capricolum, Rickettsia prowasekii and Borrelia burgdorferi (GC-poor), and in Micrococcus luteus (GC-rich). However, in the GC-poor unicellular eukaryotes Dictyostelium discoideum and Plasmodium falciparum, there is evidence that selection, acting at the level of translation, influences codon choices. This is a twofold intriguing finding, since (1) the genomic GC levels of the above mentioned eukaryotes are lower than the GC% of any studied bacteria, and (2) bacteria usually have larger effective population sizes than eukaryotes, and hence natural selection is expected to overcome more efficiently the randomizing effects of genetic drift among prokaryotes than among eukaryotes. In order to gain a new insight about this problem, we analysed the patterns of codon preferences of the nuclear genes of Entamoeba histolytica, a unicellular eukaryote characterised by an extremely AT-rich genome (GC = 25%). The overall codon usage is strongly biased towards A and T in the third codon positions, and among the presumed highly expressed sequences, there is an increased relative usage of a subset of codons, many of which are C-ending. Since an increase in C in third codon positions is 'against' the compositional bias, we conclude that codon usage in E. histolytica, as happens in D. discoideum and P. falciparum, is the result of an equilibrium between compositional pressure and selection. These findings raise the question of why strongly compositionally biased eukaryotic cells may be more sensitive to the (presumed) slight differences among synonymous codons than compositionally biased bacteria.
Information Gain Based Dimensionality Selection for Classifying Text Documents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumidu Wijayasekara; Milos Manic; Miles McQueen
2013-06-01
Selecting the optimal dimensions for various knowledge extraction applications is an essential component of data mining. Dimensionality selection techniques are utilized in classification applications to increase the classification accuracy and reduce the computational complexity. In text classification, where the dimensionality of the dataset is extremely high, dimensionality selection is even more important. This paper presents a novel, genetic algorithm based methodology, for dimensionality selection in text mining applications that utilizes information gain. The presented methodology uses information gain of each dimension to change the mutation probability of chromosomes dynamically. Since the information gain is calculated a priori, the computational complexitymore » is not affected. The presented method was tested on a specific text classification problem and compared with conventional genetic algorithm based dimensionality selection. The results show an improvement of 3% in the true positives and 1.6% in the true negatives over conventional dimensionality selection methods.« less
Taxonomic study of extreme halophilic archaea isolated from the "Salar de Atacama", Chile.
Lizama, C; Monteoliva-Sánchez, M; Prado, B; Ramos-Cormenzana, A; Weckesser, J; Campos, V
2001-11-01
A large number of halophilic bacteria were isolated in 1984-1992 from the Atacama Saltern (North of Chile). For this study 82 strains of extreme halophilic archaea were selected. The characterization was performed by using the phenotypic characters including morphological, physiological, biochemical, nutritional and antimicrobial susceptibility test. The results, together with those from reference strains, were subjected to numerical analysis, using the Simple Matching (S(SM)) coefficient and clustered by the unweighted pair group method of association (UPGMA). Fifteen phena were obtained at an 70% similarity level. The results obtained reveal a high diversity among the halophilic archaea isolated. Representative strains from the phena were chosen to determine their DNA base composition and the percentage of DNA-DNA similarity compared to reference strains. The 16S rRNA studies showed that some of these strains constitutes a new taxa of extreme halophilic archaea.
Anatomy and dry weight yields of two Populus clones grown under intensive culture.
John B. Crist; David H. Dawson
1975-01-01
Two Populus clones grown for short rotations at three dense planting spacings produced some extremely high yields of material of acceptable quality. However, variation in yields and quality illustrates that selection of genetic material and the cultured regime under which a species is growth are significant factors that must be determined in maximum-yield systems....
Defense Acquisitions: Assessments of Selected Weapon Programs
2009-03-01
a field experiment , but program officials report that it will take additional efforts to transition the waveform to an operational platform. The...successfully demonstrated during a field experiment ending in October 2008 that included a multi-subnet test by Future Combat Systems personnel. The...Individual Programs 29 Advanced Extremely High Frequency (AEHF) Satellites 31 Advanced Threat Infrared Countermeasure/Common Missile Warning System
Wireless Distribution Systems To Support Medical Response to Disasters
Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.
2005-01-01
We discuss the design of multi-hop access networks with multiple gateways that supports medical response to disasters. We examine and implement protocols to ensure high bandwidth, robust, self-healing and secure wireless multi-hop access networks for extreme conditions. Address management, path setup, gateway discovery and selection protocols are described. Future directions and plans are also considered. PMID:16779171
Hesse, Almut; Biyikal, Mustafa; Rurack, Knut; Weller, Michael G
2016-02-01
An improved antibody against the explosive pentaerythritol tetranitrate (PETN) was developed. The immunogen was designed by the concept of bioisosteric replacement, which led to an excellent polyclonal antibody with extreme selectivity and immunoassays of very good sensitivity. Compounds such as nitroglycerine, 2,4,6-trinitrotoluene, 1,3,5-trinitrobenzene, hexogen (RDX), 2,4,6-trinitroaniline, 1,3-dinitrobenzene, octogen (HMX), triacetone triperoxide, ammonium nitrate, 2,4,6-trinitrophenol and nitrobenzene were tested for potential cross-reactivity. The detection limit of a competitive enzyme-linked immunosorbent assay was determined to be around 0.5 µg/l. The dynamic range of the assay was found to be between 1 and 1000 µg/l, covering a concentration range of three decades. This work shows the successful application of the bioisosteric concept in immunochemistry by exchange of a nitroester to a carbonate diester. The antiserum might be used for the development of quick tests, biosensors, microtitration plate immunoassays, microarrays and other analytical methods for the highly sensitive detection of PETN, an explosive frequently used by terrorists, exploiting the extreme difficulty of its detection. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.
2014-01-15
Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition inmore » view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.« less
Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying
2013-05-22
A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.
Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.
Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V
2017-08-04
Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Johnson, S; Hennessy, E; Smith, R; Trikic, R; Wolke, D; Marlow, N
2009-07-01
To assess academic attainment and special educational needs (SEN) in extremely preterm children in middle childhood. Of 307 extremely preterm (< or =25 weeks) survivors born in the UK and Ireland in 1995, 219 (71%) were re-assessed at 11 years of age and compared to 153 classmates born at term, using standardised tests of cognitive ability and academic attainment and teacher reports of school performance and SEN. Multiple imputation was used to correct for selective dropout. Extremely preterm children had significantly lower scores than classmates for cognitive ability (-20 points; 95% CI -23 to -17), reading (-18 points; -22 to -15) and mathematics (-27 points; -31 to -23). Twenty nine (13%) extremely preterm children attended special school. In mainstream schools, 105 (57%) extremely preterm children had SEN (OR 10; 6 to 18) and 103 (55%) required SEN resource provision (OR 10; 6 to 18). Teachers rated 50% of extremely preterm children as having below average attainment compared with 5% of classmates (OR 18; 8 to 41). Extremely preterm children who entered compulsory education an academic year early due to preterm birth had similar academic attainment but required more SEN support (OR 2; 1.0 to 3.6). Extremely preterm survivors remain at high risk for learning impairments and poor academic attainment in middle childhood. A significant proportion require full-time specialist education and over half of those attending mainstream schools require additional health or educational resources to access the national curriculum. The prevalence and impact of SEN are likely to increase as these children approach the transition to secondary school.
Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia
Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres
2014-01-01
A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment. PMID:25763024
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
2011-01-01
Background 'Selection signatures' delimit regions of the genome that are, or have been, functionally important and have therefore been under either natural or artificial selection. In this study, two different and complementary methods--integrated Haplotype Homozygosity Score (|iHS|) and population differentiation index (FST)--were applied to identify traces of decades of intensive artificial selection for traits of economic importance in modern cattle. Results We scanned the genome of a diverse set of dairy and beef breeds from Germany, Canada and Australia genotyped with a 50 K SNP panel. Across breeds, a total of 109 extreme |iHS| values exceeded the empirical threshold level of 5% with 19, 27, 9, 10 and 17 outliers in Holstein, Brown Swiss, Australian Angus, Hereford and Simmental, respectively. Annotating the regions harboring clustered |iHS| signals revealed a panel of interesting candidate genes like SPATA17, MGAT1, PGRMC2 and ACTC1, COL23A1, MATN2, respectively, in the context of reproduction and muscle formation. In a further step, a new Bayesian FST-based approach was applied with a set of geographically separated populations including Holstein, Brown Swiss, Simmental, North American Angus and Piedmontese for detecting differentiated loci. In total, 127 regions exceeding the 2.5 per cent threshold of the empirical posterior distribution were identified as extremely differentiated. In a substantial number (56 out of 127 cases) the extreme FST values were found to be positioned in poor gene content regions which deviated significantly (p < 0.05) from the expectation assuming a random distribution. However, significant FST values were found in regions of some relevant genes such as SMCP and FGF1. Conclusions Overall, 236 regions putatively subject to recent positive selection in the cattle genome were detected. Both |iHS| and FST suggested selection in the vicinity of the Sialic acid binding Ig-like lectin 5 gene on BTA18. This region was recently reported to be a major QTL with strong effects on productive life and fertility traits in Holstein cattle. We conclude that high-resolution genome scans of selection signatures can be used to identify genomic regions contributing to within- and inter-breed phenotypic variation. PMID:21679429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel
2006-12-15
We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.
Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2016-01-01
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex. PMID:27500640
Response of ice caves to weather extremes in the southeastern Alps, Europe
NASA Astrophysics Data System (ADS)
Colucci, R. R.; Fontana, D.; Forte, E.; Potleca, M.; Guglielmin, M.
2016-05-01
High altitude karstic environments often preserve permanent ice deposits within caves, representing the lesser-known portion of the cryosphere. Despite being not so widespread and easily reachable as mountain glaciers and ice caps, ice caves preserve much information about past environmental changes and climatic evolution. We selected 1111 ice caves from the existing cave inventory, predominantly but not exclusively located in the periglacial domain where permafrost is not dominant (i.e., with mean annual air temperature < 3 °C but not in a permafrost environment). The influence of climate and topography on ice cave distribution is also investigated. In order to assess the thickness and the inner structure of the deposits, we selected two exemplary ice caves in the Canin massif (Julian Alps) performing several multifrequency GPR surveys. A strong influence of global and local climate change in the evolution of the ice deposits has been particularly highlighted in the dynamic ice cave type, especially in regard to the role of weather extremes. The natural response of ice caves to a warming climate could lead to a fast reduction of such ice masses. The increased occurrence of weather extremes, especially warmer and more intense precipitation caused by higher mean 0 °C-isotherms, could in fact be crucial in the future mass balance evolution of such permanent ice deposits.
Qureshi, Muhammad Naveed Iqbal; Min, Beomjun; Jo, Hang Joon; Lee, Boreom
2016-01-01
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.
Skier triggering of backcountry avalanches with skilled route selection
NASA Astrophysics Data System (ADS)
Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce
2015-04-01
Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for exposure to Considerable hazard. While the absolute values for triggering probability cannot be compared to the 2009 study because of different definitions of exposure, our preliminary results suggest that with skilled route selection the triggering probability is similar all hazard levels, except for extreme for which there are few exposures. This means that the guiding teams of backcountry skiing operations effectively control the hazard from triggering avalanches with skilled route selection. Groups were exposed relatively evenly to Low hazard (1275 times or 29% of total exposure), Moderate hazard (1450 times or 33 %) and Considerable hazard (1215 times or 28 %). At higher levels, the exposure reduced to roughly 380 times (9 % of total exposure) to High hazard, and only 13 times (0.3 %) to Extreme hazard. We assess the sensitivity of the results to some of our key assumptions.
2017-03-01
enable extremely high dynamic range receivers to be realized in very compact dimensions. This paper provides information on the performance...this is the “Butler Matrix” topology in which N beam angular positions into N matrix ports. With this topology , by selecting a particular...waveguide port to connect a receiver or transmitter chain to a particular beam direction would be enabled. RF phase shifters and amplitude weighting
Women and couples in isolated extreme environments: Applications for long-duration missions
NASA Astrophysics Data System (ADS)
Leon, Gloria R.; Sandal, Gro M.
2003-08-01
Expedition teams provide a number of analogs relevant to crew selection for long-duration space missions. Three groups were studied that varied in team composition. Group 1 was a two woman international dyad that traversed the Antarctic continent in 97 days. Similarities in problem solving approach, respect for each other's opinions, and a collaborative process of decision making were evident. Group 2 was composed of four women, all from different countries, engaged in a six week trek across Greenland. The most important factors in overcoming interpersonal difficulties and contributing to the successful completion of the expedition were mutual respect and motivation to maintain positive and supportive relationships. Group 3 consisted of three married couples from different countries icelocked on a boat in the High Arctic for a 9 month period. The emotional support of and ability to confide in their partner were extremely important in alleviating interpersonal tensions, and contributed to the generally effective functioning of the group. Women add an element of emotional support and help to other team members that is not as evident in all-male groups. Selection of couples with strong bonds to each other is another paradigm for crew selection for extended missions.
Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry
2014-01-01
We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets’ locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research. PMID:25339978
Microclimate and nest-site selection in Micronesian Kingfishers
Kesler, Dylan C.; Haig, Susan M.
2005-01-01
We studied the relationship between microclimate and nest-site selection in the Pohnpei Micronesian Kingfisher (Todiramphus cinnamominus reichenbachii) which excavates nest cavities from the mudlike nest structures of arboreal termites (Nasutitermes sp.) or termitaria. Mean daily high temperatures at termitaria were cooler and daily low temperatures were warmer than at random sites in the forest. Results also indicate that termitaria provided insulation from temperature extremes, and that temperatures inside termitaria were within the thermoneutral zone of Micronesian Kingfishers more often than those outside. No differences were identified in temperatures at sites where nest termitaria and nonnest termitaria occurred or among the insulation properties of used and unused termitaria. These results suggest that although termitaria provide insulation from thermal extremes and a metabolically less stressful microclimate, king-fishers did not select from among available termitaria based on their thermal properties. Our findings are relevant to conservation efforts for the critically endangered Guam Micronesian Kingfisher (T. c. cinnamominus) which is extinct in the wild and exists only as a captive population. Captive breeding facilities should provide aviaries with daily ambient temperatures ranging from 22.06 A?C to 28.05 A?C to reduce microclimate-associated metabolic stress and to replicate microclimates used by wild Micronesian Kingfishers.
Translating weather extremes into the future - a case for Norway
NASA Astrophysics Data System (ADS)
Sillmann, Jana; Mueller, Malte; Gjertsen, Uta; Haarsma, Rein; Hazeleger, Wilco; Amundsen, Helene
2017-04-01
We introduce a new project "Translating weather extremes into the future - a case for Norway" (TWEX - http://www.cicero.uio.no/en/twex). In TWEX, we take a novel "Tales of future weather" approach in which we use future scenarios tailored to a specific region and stakeholder in order to gain a more realistic picture of what future weather extremes might look like in a particular context. We focus on hydroclimatic extremes associated with a particular circulation pattern (so-called "Atmospheric River") leading to heavy rainfall in fall and winter along the West Coast of Norway and causing high-impact floods in Norwegian communities. We translate selected past events into the future (e.g., 2090) by using an approach very similar to what is used today for weather prediction. The data generated in TWEX will be distributed by standard (weather prediction) communication channels of the Norwegian Meteorological Institute and thus, will be accessible by end-user in a well-known data format for analyzing the impact of the events in the future and support decision-making on hazard prevention and adaptation planning.
NASA Astrophysics Data System (ADS)
Gales, S.
2015-10-01
Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.
Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M
2018-01-01
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.
2018-01-01
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546
NASA Astrophysics Data System (ADS)
Zittis, G.; Bruggeman, A.; Camera, C.; Hadjinicolaou, P.; Lelieveld, J.
2017-07-01
Climate change is expected to substantially influence precipitation amounts and distribution. To improve simulations of extreme rainfall events, we analyzed the performance of different convection and microphysics parameterizations of the WRF (Weather Research and Forecasting) model at very high horizontal resolutions (12, 4 and 1 km). Our study focused on the eastern Mediterranean climate change hot-spot. Five extreme rainfall events over Cyprus were identified from observations and were dynamically downscaled from the ERA-Interim (EI) dataset with WRF. We applied an objective ranking scheme, using a 1-km gridded observational dataset over Cyprus and six different performance metrics, to investigate the skill of the WRF configurations. We evaluated the rainfall timing and amounts for the different resolutions, and discussed the observational uncertainty over the particular extreme events by comparing three gridded precipitation datasets (E-OBS, APHRODITE and CHIRPS). Simulations with WRF capture rainfall over the eastern Mediterranean reasonably well for three of the five selected extreme events. For these three cases, the WRF simulations improved the ERA-Interim data, which strongly underestimate the rainfall extremes over Cyprus. The best model performance is obtained for the January 1989 event, simulated with an average bias of 4% and a modified Nash-Sutcliff of 0.72 for the 5-member ensemble of the 1-km simulations. We found overall added value for the convection-permitting simulations, especially over regions of high-elevation. Interestingly, for some cases the intermediate 4-km nest was found to outperform the 1-km simulations for low-elevation coastal parts of Cyprus. Finally, we identified significant and inconsistent discrepancies between the three, state of the art, gridded precipitation datasets for the tested events, highlighting the observational uncertainty in the region.
Temporal Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland
NASA Astrophysics Data System (ADS)
Barton, Yannick; Giannakaki, Paraskevi; Von Waldow, Harald; Chevalier, Clément; Pfhal, Stephan; Martius, Olivia
2017-04-01
Temporal clustering of extreme precipitation events on subseasonal time scales is a form of compound extremes and is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. To analyze the clustering in the precipitation time series a modified version of Ripley's K function is used. It determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upperlevel breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.
The role of weak selection and high mutation rates in nearly neutral evolution.
Lawson, Daniel John; Jensen, Henrik Jeldtoft
2009-04-21
Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.
Short Wavelength Laser/Materials Interactions
1989-12-20
lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme
SUMER: Solar Ultraviolet Measurements of Emitted Radiation
NASA Technical Reports Server (NTRS)
Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.
1992-01-01
The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.
Estimation of local extreme suspended sediment concentrations in California Rivers.
Tramblay, Yves; Saint-Hilaire, André; Ouarda, Taha B M J; Moatar, Florentina; Hecht, Barry
2010-09-01
The total amount of suspended sediment load carried by a stream during a year is usually transported during one or several extreme events related to high river flow and intense rainfall, leading to very high suspended sediment concentrations (SSCs). In this study quantiles of SSC derived from annual maximums and the 99th percentile of SSC series are considered to be estimated locally in a site-specific approach using regional information. Analyses of relationships between physiographic characteristics and the selected indicators were undertaken using the localities of 5-km radius draining of each sampling site. Multiple regression models were built to test the regional estimation for these indicators of suspended sediment transport. To assess the accuracy of the estimates, a Jack-Knife re-sampling procedure was used to compute the relative bias and root mean square error of the models. Results show that for the 19 stations considered in California, the extreme SSCs can be estimated with 40-60% uncertainty, depending on the presence of flow regulation in the basin. This modelling approach is likely to prove functional in other Mediterranean climate watersheds since they appear useful in California, where geologic, climatic, physiographic, and land-use conditions are highly variable. Copyright 2010 Elsevier B.V. All rights reserved.
The AzTEC/SMA Interferometric Imaging Survey of Submillimeter-selected High-redshift Galaxies
NASA Astrophysics Data System (ADS)
Younger, Joshua D.; Fazio, Giovanni G.; Huang, Jia-Sheng; Yun, Min S.; Wilson, Grant W.; Ashby, Matthew L. N.; Gurwell, Mark A.; Peck, Alison B.; Petitpas, Glen R.; Wilner, David J.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Lowenthal, James D.
2009-10-01
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology—including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared—of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation—which struggle to account for such objects even under liberal assumptions—and dust production models given the limited time since the big bang.
Hinterholzinger, Florian M.; Rühle, Bastian; Wuttke, Stefan; Karaghiosoff, Konstantin; Bein, Thomas
2013-01-01
The detection, differentiation and visualization of compounds such as gases, liquids or ions are key challenges for the design of selective optical chemosensors. Optical chemical sensors employ a transduction mechanism that converts a specific analyte recognition event into an optical signal. Here we report a novel concept for fluoride ion sensing where a porous crystalline framework serves as a host for a fluorescent reporter molecule. The detection is based on the decomposition of the host scaffold which induces the release of the fluorescent dye molecule. Specifically, the hybrid composite of the metal-organic framework NH2-MIL-101(Al) and fluorescein acting as reporter shows an exceptional turn-on fluorescence in aqueous fluoride-containing solutions. Using this novel strategy, the optical detection of fluoride is extremely sensitive and highly selective in the presence of many other anions. PMID:24008779
Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study
Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.; ...
2018-01-12
Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less
Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.
Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less
Minute synthesis of extremely stable gold nanoparticles.
Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar
2009-12-16
We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.
Highly specialized microbial diversity in hyper-arid polar desert
Pointing, Stephen B.; Chan, Yuki; Lacap, Donnabella C.; Lau, Maggie C. Y.; Jurgens, Joel A.; Farrell, Roberta L.
2009-01-01
The McMurdo Dry Valleys in Antarctica are a cold hyperarid polar desert that present extreme challenges to life. Here, we report a culture-independent survey of multidomain microbial biodiversity in McKelvey Valley, a pristine example of the coldest desert on Earth. We demonstrate that life has adapted to form highly-specialized communities in distinct lithic niches occurring concomitantly within this terrain. Endoliths and chasmoliths in sandstone displayed greatest diversity, whereas soil was relatively depauperate and lacked a significant photoautotrophic component, apart from isolated islands of hypolithic cyanobacterial colonization on quartz rocks in soil contact. Communities supported previously unreported polar bacteria and fungi, but archaea were absent from all niches. Lithic community structure did not vary significantly on a landscape scale and stochastic moisture input due to snowmelt resulted in increases in colonization frequency without significantly affecting diversity. The findings show that biodiversity near the cold-arid limit for life is more complex than previously appreciated, but communities lack variability probably due to the high selective pressures of this extreme environment. PMID:19850879
Extreme Light Infrastructure - Nuclear Physics Eli-Np Project
NASA Astrophysics Data System (ADS)
Gales, S.
2015-06-01
The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular High energy, Nuclear and Astrophysics as well as societal applications in Material Science, Nuclear Energy and Medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW class lasers and a Back Compton Scattering High Brilliance and Intense Low Energy Gamma Beam , a marriage of Laser and Accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.
Shaw, W S; Feuerstein, M; Lincoln, A E; Miller, V I; Wood, P M
2001-08-01
A case manager's ability to obtain worksite accommodations and engage workers in active problem solving may improve health and return to work outcomes for clients with work related upper extremity disorders (WRUEDs). This study examines the feasibility of a 2 day training seminar to help nurse case managers identify ergonomic risk factors, provide accommodation, and conduct problem solving skills training with workers' compensation claimants recovering from WRUEDs. Eight procedural steps to this case management approach were identified, translated into a training workshop format, and conveyed to 65 randomly selected case managers. Results indicate moderate to high self ratings of confidence to perform ergonomic assessments (mean = 7.5 of 10) and to provide problem solving skills training (mean = 7.2 of 10) after the seminar. This training format was suitable to experienced case managers and generated a moderate to high level of confidence to use this case management approach.
Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature.
Tehei, Moeava; Madern, Dominique; Franzetti, Bruno; Zaccai, Giuseppe
2005-12-09
To explore protein adaptation to extremely high temperatures, two parameters related to macromolecular dynamics, the mean square atomic fluctuation and structural resilience, expressed as a mean force constant, were measured by neutron scattering for hyperthermophilic malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The root mean square fluctuations, defining flexibility, were found to be similar for both enzymes (1.5 A) at their optimal activity temperature. Resilience values, defining structural rigidity, are higher by an order of magnitude for the high temperature-adapted protein (0.15 Newtons/meter for O. cunniculus lactate dehydrogenase and 1.5 Newtons/meter for M. jannaschii malate dehydrogenase). Thermoadaptation appears to have been achieved by evolution through selection of appropriate structural rigidity in order to preserve specific protein structure while allowing the conformational flexibility required for activity.
Extreme storm activity in North Atlantic and European region
NASA Astrophysics Data System (ADS)
Vyazilova, N.
2010-09-01
The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.
NASA Astrophysics Data System (ADS)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-09-01
We present a high resolution positron annihilation induced Auger Electron Spectroscopy (PAES) of the CuM 2,3VV-transition with the unprecedented energy resolution of Δ/EE <1%. This energy resolution and the highly intense positron source NEPOMUC enabled us to resolve the double peak structure with PAES for the first time within a measurement time of only 5.5 h. In addition, sub-monolayers of Cu were deposited on Fe- and Pd-samples in order to investigate the surface selectivity of PAES in comparison with EAES. The extremely high surface selectivity of PAES due to the different positron affinity of Cu and Fe lead to the result that with only 0.96 monolayer of Cu on Fe more than 55% of the emitted Auger electrons stem from Cu, whereas with EAES the Cu Auger fraction amounted to less than 6%.
High Misalignment Carbon Seals for the Fan Drive Gear System Technologies
NASA Technical Reports Server (NTRS)
Shaughnessy, Dennis; Dobek, Lou
2006-01-01
Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.
Harris, Chelsea A; Muller, John-Michael; Shauver, Melissa J; Chung, Kevin C
2017-07-01
Patients with tetraplegia consistently rank better use of the upper extremity as their top functional priority. Multiple case series have demonstrated that upper extremity reconstruction (UER) is well-tolerated and can produce substantial functional improvements for appropriate candidates; however, UER remains critically underutilized. The mechanisms that drive differences in provider practice and referral patterns have been studied, but comprehensive examination of the patient factors that influence UER decisions has not been performed for American patients. Nineteen patients with C4-8 cervical spinal injuries were selected using purposive sampling: 9 patients had undergone UER, 10 had not undergone UER. Semistructured interviews were conducted and transcripts evaluated using grounded theory methodology. Our study yielded a conceptual model that describes the characteristics common to all patients who undergo UER. Patients who selected reconstruction proceeded stepwise through a shared sequence of steps: (1) functional dissatisfaction, (2) awareness of UER, and (3) acceptance of surgery. Patients' ability to meet these criteria was determined by 3 checkpoints: how well they coped, their access to information, and the acceptability of surgery. Extremely positive or negative coping prevented patients from moving from the Coping to the Information Checkpoint; thus, they remained unaware of UER and did not undergo surgery. A lack of knowledge regarding reconstruction was the strongest barrier to surgery among our participants. We built a conceptual model that outlines how patients' personal and contextual factors drive their progression to UER. Moving from functional dissatisfaction to understanding that they were candidates for UER was a substantial barrier for participants, particularly those with very high and very low coping skills. To improve utilization for all patients, interventions are needed to increase UER awareness. Standardizing introduction to UER during the rehabilitation process or improving e-content may represent key awareness access points. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ludwig, Ralf; Baese, Frank; Braun, Marco; Brietzke, Gilbert; Brissette, Francois; Frigon, Anne; Giguère, Michel; Komischke, Holger; Kranzlmueller, Dieter; Leduc, Martin; Martel, Jean-Luc; Ricard, Simon; Schmid, Josef; von Trentini, Fabian; Turcotte, Richard; Weismueller, Jens; Willkofer, Florian; Wood, Raul
2017-04-01
The recent accumulation of extreme hydrological events in Bavaria and Québec has stimulated scientific and also societal interest. In addition to the challenges of an improved prediction of such situations and the implications for the associated risk management, there is, as yet, no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for 'virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change. [The authors acknowledge funding for the project from the Bavarian State Ministry for the Environment and Consumer Protection].
A compliant mechanism for inspecting extremely confined spaces
NASA Astrophysics Data System (ADS)
Mascareñas, David; Moreu, Fernando; Cantu, Precious; Shields, Daniel; Wadden, Jack; El Hadedy, Mohamed; Farrar, Charles
2017-11-01
We present a novel, compliant mechanism that provides the capability to navigate extremely confined spaces for the purpose of infrastructure inspection. Extremely confined spaces are commonly encountered during infrastructure inspection. Examples of such spaces can include pipes, conduits, and ventilation ducts. Often these infrastructure features go uninspected simply because there is no viable way to access their interior. In addition, it is not uncommon for extremely confined spaces to possess a maze-like architecture that must be selectively navigated in order to properly perform an inspection. Efforts by the imaging sensor community have resulted in the development of imaging sensors on the millimeter length scale. Due to their compact size, they are able to inspect many extremely confined spaces of interest, however, the means to deliver these sensors to the proper location to obtain the desired images are lacking. To address this problem, we draw inspiration from the field of endoscopic surgery. Specifically we consider the work that has already been done to create long flexible needles that are capable of being steered through the human body. These devices are typically referred to as ‘steerable needles.’ Steerable needle technology is not directly applicable to the problem of navigating maze-like arrangements of extremely confined spaces, but it does provide guidance on how this problem should be approached. Specifically, the super-elastic nitinol tubing material that allows steerable needles to operate is also appropriate for the problem of navigating maze-like arrangements of extremely confined spaces. Furthermore, the portion of the mechanism that enters the extremely confined space is completely mechanical in nature. The mechanical nature of the device is an advantage when the extremely confined space features environmental hazards such as radiation that could degrade an electromechanically operated mechanism. Here, we present a compliant mechanism developed to navigate maze-like arrangements of extremely confined spaces. The mechanism is shown to be able to selectively navigate past three 90° bends. The ability to selectively navigate extremely confined spaces opens up new possibilities to use emerging miniature imaging technology for infrastructure inspection.
Zhu, Yuzhang; Xie, Wei; Gao, Shoujian; Zhang, Feng; Zhang, Wenbin; Liu, Zhaoyang; Jin, Jian
2016-09-01
Fabricating nanofiltration (NF) membranes with high permeating flux and simultaneous high rejection rate for desalination is rather significant and highly desired. A new avenue is reported in this work to design NF membrane by using polydopamine wrapped single-walled carbon nanotube (PD/SWCNTs) ultrathin film as support layer instead of the use of traditional polymer-based underlying layers. Thanks to the high porosity, smooth surface, and more importantly optimal hydrophilic surface of PD/SWCNTs film, a defect-free polyamide selective layer for NF membrane with thickness of as thin as 12 nm is achieved. The obtained NF membrane exhibits an extremely high performance with a permeating flux of 32 L m -2 h -1 bar -1 and a rejection rate of 95.9% to divalent ions. This value is two to five times higher than the traditional NF membranes with similar rejection rate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B
2017-06-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.
Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.
2017-01-01
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.
Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok
2016-12-05
High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.
Prefrontal/accumbal catecholamine system processes high motivational salience
Puglisi-Allegra, Stefano; Ventura, Rossella
2012-01-01
Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes. Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine (NE) transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine (DA) in the nucleus accumbens (NAc), a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine (CA) system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus (UCS) is high enough to induce sustained CA activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events. PMID:22754514
SOI N-Channel Field Effect Transistors, CHT-NMOS80, for Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Almad
2009-01-01
Extreme temperatures, both hot and cold, are anticipated in many of NASA space exploration missions as well as in terrestrial applications. One can seldom find electronics that are capable of operation under both regimes. Even for operation under one (hot or cold) temperature extreme, some thermal controls need to be introduced to provide appropriate ambient temperatures so that spacecraft on-board or field on-site electronic systems work properly. The inclusion of these controls, which comprise of heating elements and radiators along with their associated structures, adds to the complexity in the design of the system, increases cost and weight, and affects overall reliability. Thus, it would be highly desirable and very beneficial to eliminate these thermal measures in order to simplify system's design, improve efficiency, reduce development and launch costs, and improve reliability. These requirements can only be met through the development of electronic parts that are designed for proper and efficient operation under extreme temperature conditions. Silicon-on-insulator (SOI) based devices are finding more use in harsh environments due to the benefits that their inherent design offers in terms of reduced leakage currents, less power consumption, faster switching speeds, good radiation tolerance, and extreme temperature operability. Little is known, however, about their performance at cryogenic temperatures and under wide thermal swings. The objective of this work was to evaluate the performance of a new commercial-off-the-shelf (COTS) SOI parts over an extended temperature range and to determine the effects of thermal cycling on their performance. The results will establish a baseline on the suitability of such devices for use in space exploration missions under extreme temperatures, and will aid mission planners and circuit designers in the proper selection of electronic parts and circuits. The electronic part investigated in this work comprised of a CHT-NMOS80 high temperature N-channel MOSFET (metal-oxide semiconductor field-effect transistor) device that was manufactured by CISSOID. This high voltage, medium-power transistor is fabricated using SOI processes and is designed for extreme wide temperature applications such as geothermal well logging, aerospace and avionics, and automotive industry. It has a high DC current capability and is specified for operation in the temperature range of -55 C to +225 C
Sh, Jiying; Jin, Dan; Lu, Wei; Zhang, Xiaoyu; Zhang, Chao; Li, Liang; Ma, Ruiqiang; Xiao, Lei; Wang, Yiding; Lin, Min
2008-06-01
To isolate and characterize a glyphosate-resistant strain from extremely polluted environment. A glyphosate-resistant strain was isolated from extremely polluted soil taking glyphosate as the selection pressure. Its glyphosate resistance, growth optimal pH and antibiotic sensitivity were detected. Its morphology, cultural characteristics, physiological and biochemical properties, chemotaxonomy and 16S rDNA sequences were studied. Based on these results, the strain was identified according to the ninth edition of Bergey's manual of determinative bacteriology. The isolate was named SL06500. It could grow in M9 minimal medium containing up to 500 mmol/L glyphosate. The cell growth optimal pH of SL06500 was 4.0. It was resistant to ampicillin, kanamycin, tetracycline and chloromycetin. The 16S rDNA of SL06500 was amplified by PCR and sequenced. Compared with the published nucleotide sequence of 16S rDNA in NCBI (National Center for Biotechnology Information), SL06500 showed high identity with Achromobacter and Alcaligenes. Based on morphological, physiological and biochemical characteristics, the strain was identified as Alcaligenes xylosoxidans subsp.xylosoxidans SL06500 according to the ninth edition of Bergey's manual of determinative bacteriology. Strain SL06500 is worthy to be studied because of its high glyphosate resistance.
Extreme value modelling of Ghana stock exchange index.
Nortey, Ezekiel N N; Asare, Kwabena; Mettle, Felix Okoe
2015-01-01
Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana stock exchange all-shares index (2000-2010) by applying the extreme value theory (EVT) to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before the EVT method was applied. The Peak Over Threshold approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model's goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the value at risk and expected shortfall risk measures at some high quantiles, based on the fitted GPD model.
A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations
Clemente, Florian J.; Cardona, Alexia; Inchley, Charlotte E.; Peter, Benjamin M.; Jacobs, Guy; Pagani, Luca; Lawson, Daniel J.; Antão, Tiago; Vicente, Mário; Mitt, Mario; DeGiorgio, Michael; Faltyskova, Zuzana; Xue, Yali; Ayub, Qasim; Szpak, Michal; Mägi, Reedik; Eriksson, Anders; Manica, Andrea; Raghavan, Maanasa; Rasmussen, Morten; Rasmussen, Simon; Willerslev, Eske; Vidal-Puig, Antonio; Tyler-Smith, Chris; Villems, Richard; Nielsen, Rasmus; Metspalu, Mait; Malyarchuk, Boris; Derenko, Miroslava; Kivisild, Toomas
2014-01-01
Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6–23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment. PMID:25449608
Intensity changes in future extreme precipitation: A statistical event-based approach.
NASA Astrophysics Data System (ADS)
Manola, Iris; van den Hurk, Bart; de Moel, Hans; Aerts, Jeroen
2017-04-01
Short-lived precipitation extremes are often responsible for hazards in urban and rural environments with economic and environmental consequences. The precipitation intensity is expected to increase about 7% per degree of warming, according to the Clausius-Clapeyron (CC) relation. However, the observations often show a much stronger increase in the sub-daily values. In particular, the behavior of the hourly summer precipitation from radar observations with the dew point temperature (the Pi-Td relation) for the Netherlands suggests that for moderate to warm days the intensification of the precipitation can be even higher than 21% per degree of warming, that is 3 times higher than the expected CC relation. The rate of change depends on the initial precipitation intensity, as low percentiles increase with a rate below CC, the medium percentiles with 2CC and the moderate-high and high percentiles with 3CC. This non-linear statistical Pi-Td relation is suggested to be used as a delta-transformation to project how a historic extreme precipitation event would intensify under future, warmer conditions. Here, the Pi-Td relation is applied over a selected historic extreme precipitation event to 'up-scale' its intensity to warmer conditions. Additionally, the selected historic event is simulated in the high-resolution, convective-permitting weather model Harmonie. The initial and boundary conditions are alternated to represent future conditions. The comparison between the statistical and the numerical method of projecting the historic event to future conditions showed comparable intensity changes, which depending on the initial percentile intensity, range from below CC to a 3CC rate of change per degree of warming. The model tends to overestimate the future intensities for the low- and the very high percentiles and the clouds are somewhat displaced, due to small wind and convection changes. The total spatial cloud coverage in the model remains, as also in the statistical method, unchanged. The advantages of the suggested Pi-Td method of projecting future precipitation events from historic events is that it is simple to use, is less expensive time, computational and resource wise compared to a numerical model. The outcome can be used directly for hydrological and climatological studies and for impact analysis such as for flood risk assessments.
NASA Astrophysics Data System (ADS)
Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris
2013-04-01
Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be calculated. For the remaining directions the univariate extreme wind velocity distribution is stratified, each class combined with 5 high water levels. The wave height at the model boundaries was taken into account by a regression with the extreme wind velocity at the offshore location. The regression line and the 95% confidence limits where combined with each class. Eventually the wave period is computed by a new regression with the significant wave height. This way 1103 synthetic events were selected and simulated with the SWAN wave model, each of which a frequency of occurrence is calculated for. Hence near shore significant wave heights are obtained with corresponding frequencies. The statistical distribution of the near shore wave heights is determined by sorting the model results in a descending order and accumulating the corresponding frequencies. This approach allows determination of conditional return periods. For example, for the imposed univariate design return periods of 100 years for significant wave height and 30 years for water level, the joint return period for a simultaneous exceedance of both conditions can be computed as 4000 years. Hence, this methodology allows for a probabilistic design of coastal defense structures.
NASA Astrophysics Data System (ADS)
Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao
2018-03-01
Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
[Suicide and suicide prevention in Vienna from 1938 to 1945].
Sonneck, Gernot; Hirnsperger, Hans; Mundschütz, Reinhard
2012-01-01
Beginning with the inception of suicide prevention in interwar Vienna, the paper illustrates how the high number of counselling centres contrasted with a discourse of selection. Despite the fact that suicide rates proved extremely high, suicide prevention declined in importance between 1934 and 1945. Suicide was increasingly attributed to the weak and the inferior. The massive threat to Vienna's Jewish population and the high suicide rates among Viennese Jews are also outlined. The paper concludes with a synopsis of V. E. Frankl's activities in the field of suicide prevention at the Rothschild Hospital as well as the concentration camp in Theresienstadt.
NASA Astrophysics Data System (ADS)
Souza Silva, Marconi; Martins, Rogério Parentoni; Ferreira, Rodrigo Lopes
2015-02-01
Cave environments are characterized by possessing specialized fauna living in high environmental stability with limited food conditions. These fauna are highly vulnerable to impacts, because this condition can frequently be easily altered. Moreover, environmental determinants of the biodiversity patterns of caves remain poorly understood and protected. Therefore, the main goal of this work is to propose a cave conservation priority index (CCPi) for a rapid assessment for troglobiotic and troglophile protection. Furthermore, the troglobiotic diversity, distribution and threats have been mapped in the Brazilian Atlantic forest. To propose the CCPi, the human impacts and richness of troglobiotic and troglophile species of 100 caves were associated. Data related to troglomorphic/troglobiotic fauna from another 200 caves were used to map the troglobiotic diversity and distribution. The CCPi reveals extremely high conservation priority for 15 % of the caves, high for 36 % and average for 46 % of the caves. Fourteen caves with extremely high priorities should have urgent conservation and management actions. The geographical distribution of the 221 known troglobiotic/troglomorphic species allowed us to select 19 karst areas that need conservation actions. Seven areas were considered to have urgent priority for conservation actions. The two richest areas correspond to the "iron quadrangle" with iron ore caves (67 spp.) and the "Açungui limestone group" (56 spp.). Both areas have several caves and are important aquifers. The use of the CCPi can prevent future losses because it helps assessors to select caves with priorities for conservation which should receive emergency attention in relation to protection, management and conservation actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Song; Shi, Tujin; Fillmore, Thomas L.
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined withmore » precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.« less
Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E
2016-06-01
Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.
Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L.; Song, Qijian; Cregan, Perry B.; Graef, George L.; Specht, James E.
2016-01-01
Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca. 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg–1 and R2 values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. PMID:27172185
Detection of the relationship between peak temperature and extreme precipitation
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, J.; Zhiyong, Y.
2017-12-01
Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.
Follow up observationes of extremely metal-poor stars identified from SDSS and LAMOST
NASA Astrophysics Data System (ADS)
Aguado, David; Allende Prieto, Carlos; González Hernández, Jonay I.; Rebolo, Rafael
2017-06-01
The most metal-poor stars in the Milky Way witnessed the early phases of formation of the Galaxy, and have chemical compositions close to the pristine mixture from Big Bang nucleosynthesis, polluted by one or very few supernovae. Here we present a program to search for and characterize new ultra metal-poor stars in the Galactic halo. These stars are extremely rare; despite significant efforts, only a handful of stars have been identified with a metallicity [Fe/H]< -5. We select candidates from SDSS and LAMOST. Dozens of them have already been observed with the ISIS spectrograph on the 4.2 m William Herschel Telescope. The most interesting objects have been confirmed with OSIRIS on the 10.4m-GTC and HRS on the 9.2 m HET. Our analysis is highly automated, and based on the FERRE code. We report the discovery of a new carbon-rich ultra metal-poor (CRUMP) dwarf star at [Fe/H]~ -5.8 with an extreme carbon over-abundance [C/Fe]~ +5.0.
Decker, Leslie; Houser, Jeremy J.; Noble, John M.; Karst, Gregory M.; Stergiou, Nicholas
2009-01-01
This study aims to investigate the effects of shoe traction and obstacle height on lower extremity relative phase dynamics (analysis of intralimb coordination) during walking to better understand the mechanisms employed to avoid slippage following obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of shoes (low and high traction). A coordination analysis was used and phasing relationships between lower extremity segments were examined. The results demonstrated that significant behavioral changes were elicited under varied obstacle heights and frictional conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more in-phase relationship between the interacting lower limb segments. The higher the obstacle and the lower the shoe traction, the more unstable the system became. These changes in phasing relationship and variability are indicators of alterations in coordinative behavior, which if pushed further may have lead to falling. PMID:19187929
The extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Bowyer, Stuart; Malina, Roger F.
1990-01-01
The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled for launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of Extreme Ultraviolet (EUV) radiation. The survey will be accomplished with the use of three EUV telescopes, each sensitive to a different segment of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all sky survey will be carried out in the first six months of the mission and will be made in four bands, or colors. The second phase of the mission, conducted entirely by guest observers selected by NASA, will be devoted to spectroscopic observations of EUV sources. The performance of the instrument components is described. An end to end model of the mission, from a stellar source to the resulting scientific data, was constructed. Hypothetical data from astronomical sources processed through this model are shown.
Climate and its change over the Tibetan Plateau and its Surroundings in 1963-2015
NASA Astrophysics Data System (ADS)
Ding, J.; Cuo, L.
2017-12-01
Tibetan Plateau and its surroundings (TPS, 23°-43°N, 73°-106°E) lies in the southwest of China and includes Tibet Autonomous Region, Qinghai Province, southern Xinjiang Uygur Autonomous Region, part of Gansu Province, western Sichuan Province, and northern Yunnan Province. The region is of strategic importance in water resources because it is the headwater of ten large rivers that support more than 16 billion population. In this study, we use daily temperature maximum and minimum, precipitation and wind speed in 1963-2015 obtained from Climate Data Center of China Meteorological Administration and Qinghai Meteorological Bureau to investigate extreme climate conditions and their changes over the TPS. The extreme events are selected based on annual extreme values and percentiles. Annual extreme value approach produces one value each year for all variables, which enables us to examine the magnitude of extreme events; whereas percentile approach selects extreme values by setting 95th percentile as thresholds for maximum temperature, precipitation and wind speed, and 5th percentile for minimum temperature. Percentile approach not only enables us to investigate the magnitude but also frequency of the extreme events. Also, Mann-Kendall trend and mutation analysis were applied to analyze the changes in mean and extreme conditions. The results will help us understand more about the extreme events during the past five decades on the TPS and will provide valuable information for the upcoming IPCC reports on climate change.
Thematic mapper studies band correlation analysis
NASA Technical Reports Server (NTRS)
Ungar, S. G.; Kiang, R.
1976-01-01
Spectral data representative of thematic mapper candidate bands 1 and 3 to 7 were obtained by selecting appropriate combinations of bands from the JSC 24 channel multispectral scanner. Of all the bands assigned, only candidate bands 4 (.74 mu to .80 mu) and 5 (.80 mu to .91 mu) showed consistently high intercorrelation from region to region and time to time. This extremely high correlation persisted when looking at the composite data set in a multitemporal, multilocation domain. The GISS investigations lend positive confirmation to the hypothesis, that TM bands 4 and 5 are redundant.
NASA Astrophysics Data System (ADS)
Möller, Jens; Heinrich, Hartmut
2017-04-01
As a consequence of climate change atmospheric and oceanographic extremes and their potential impacts on coastal regions are of growing concern for governmental authorities responsible for the transportation infrastructure. Highest risks for shipping as well as for rail and road traffic originate from combined effects of extremes of storm surges and heavy rainfall which sometimes lead to insufficient dewatering of inland waterways. The German Ministry of Transport and digital Infrastructure therefore has tasked its Network of Experts to investigate the possible evolutions of extreme threats for low lands and especially for Kiel Canal, which is an important shortcut for shipping between the North and Baltic Seas. In this study we present results of a comparison of an Extreme Value Analysis (EVA) carried out on gauge observations and values derived from a coupled Regional Ocean-Atmosphere Climate Model (MPI-OM). High water levels at the coasts of the North and Baltic Seas are one of the most important hazards which increase the risk of flooding of the low-lying land and prevents such areas from an adequate dewatering. In this study changes in the intensity (magnitude of the extremes) and duration of extreme water levels (above a selected threshold) are investigated for several gauge stations with data partly reaching back to 1843. Different methods are used for the extreme value statistics, (1) a stationary general Pareto distribution (GPD) model as well as (2) an instationary statistical model for better reproduction of the impact of climate change. Most gauge stations show an increase of the mean water level of about 1-2 mm/year, with a stronger increase of the highest water levels and a decrease (or lower increase) of the lowest water levels. Also, the duration of possible dewatering time intervals for the Kiel-Canal was analysed. The results for the historical gauge station observations are compared to the statistics of modelled water levels from the coupled atmosphere-ocean climate model MPI-OM for the time interval from 1951 to 2000. We demonstrate that for high water levels the observations and MPI-OM results are in good agreement, and we provide an estimate on the decreasing dewatering potential for Kiel Canal until the end of the 21st century.
NASA Astrophysics Data System (ADS)
Schindler, Jan-Torge; Fan, Xiaohui; McGreer, Ian
2018-01-01
Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. Unfortunately, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) nd the Baryon Oscillation Spectroscopic Survey (BOSS) have so far provided the most widely adopted measurements of the type I quasar luminosity function (QLF) at z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of $z~3$ quasars at the brightest end.We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (i < 18.0) quasars in the redshift range of 2.8<= z<=5.0. It effectively uses Random Forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation.The ELQS is spectroscopically following up ~230 new quasar candidates in an area of ~12000 deg2 in the SDSS footprint, to obtain a well-defined and complete quasar sample for an accurate measurement of the bright-end quasar luminosity function (QLF) at 2.8<= z<=5.0. So far the ELQS has identified 75 bright new quasars in this redshift range and observations of the fall sky will continue until the end of the year. At the AAS winter meeting we will present the full spectroscopic results of the survey, including a re-estimation and extension of the high-z QLF toward higher luminosities.
Assaf, Zoe June; Tilk, Susanne; Park, Jane; Siegal, Mark L; Petrov, Dmitri A
2017-12-01
Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster , first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations. © 2017 Assaf et al.; Published by Cold Spring Harbor Laboratory Press.
Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability
Schein, Stanley J.
1976-01-01
The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878
On the variability of cold region flooding
NASA Astrophysics Data System (ADS)
Matti, Bettina; Dahlke, Helen E.; Lyon, Steve W.
2016-03-01
Cold region hydrological systems exhibit complex interactions with both climate and the cryosphere. Improving knowledge on that complexity is essential to determine drivers of extreme events and to predict changes under altered climate conditions. This is particularly true for cold region flooding where independent shifts in both precipitation and temperature can have significant influence on high flows. This study explores changes in the magnitude and the timing of streamflow in 18 Swedish Sub-Arctic catchments over their full record periods available and a common period (1990-2013). The Mann-Kendall trend test was used to estimate changes in several hydrological signatures (e.g. annual maximum daily flow, mean summer flow, snowmelt onset). Further, trends in the flood frequency were determined by fitting an extreme value type I (Gumbel) distribution to test selected flood percentiles for stationarity using a generalized least squares regression approach. Results highlight shifts from snowmelt-dominated to rainfall-dominated flow regimes with all significant trends (at the 5% significance level) pointing toward (1) lower magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest widespread permafrost thawing and are supported by increasing trends in annual minimum daily flows. Trends in selected flood percentiles showed an increase in extreme events over the full periods of record (significant for only four catchments), while trends were variable over the common period of data among the catchments. An uncertainty analysis emphasizes that the observed trends are highly sensitive to the period of record considered. As such, no clear overall regional hydrological response pattern could be determined suggesting that catchment response to regionally consistent changes in climatic drivers is strongly influenced by their physical characteristics.
Drug coated balloon in peripheral artery disease.
Shanmugasundaram, Madhan; Murugapandian, Sangeetha; Truong, Huu Tam; Lotun, Kapildeo; Banerjee, Subhash
2018-04-21
Peripheral artery disease (PAD) is highly prevalent but is often underdiagnosed and undertreated. Lower extremity PAD can often be life style limiting. Revascularization in carefully selected lower extremity PAD patients improves symptoms and functional status. Surgical revascularization used to be the only available strategy, but in the recent years, endovascular strategies have gained popularity due to faster recovery times with low morbidity and mortality rates. Endovascular procedures have increased significantly in the United States in the past few years. That being said, higher restenosis rates and low long-term patency rates have been the limiting factors for this strategy. Drug eluting stents have been introduced to help with lowering restenosis, however lower extremity PAD involves long segment where the outcomes of stents are suboptimal. Also, the disease often crosses joint line that makes it less ideal for the stents. Drug coated balloons (DCB) have been introduced to improve patency rates following endovascular intervention for lower extremity PAD. They have gained popularity among endovascular specialists due to its ease of use and the concept of "leave nothing behind". This is a review of scientific evidence supporting DCB use in PAD. Published by Elsevier Inc.
Comb-based radiofrequency photonic filters with rapid tunability and high selectivity
NASA Astrophysics Data System (ADS)
Supradeepa, V. R.; Long, Christopher M.; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E.; Weiner, Andrew M.
2012-03-01
Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.
Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R
2012-11-01
The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Jinyan; Fong, Simon; Wong, Raymond K; Millham, Richard; Wong, Kelvin K L
2017-06-28
Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses the natural strategy established by Charles Darwin; that is, 'It is not the strongest of the species that survives, but the most adaptable'. This means that in the evolution of a swarm, the elitists are motivated to quickly obtain more and better resources. The memory function helps the proposed method to avoid repeat searches for the worst position in order to enhance the effectiveness of the search, while the binary strategy simplifies the feature selection problem into a similar problem of function optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the maximum correctness of global classification models. The experimental results from the six public high-dimensional bioinformatics datasets tested demonstrate that the proposed method can best some of the conventional feature selection methods up to 29% in classification accuracy, and outperform previous WSAs by up to 99.81% in computational time.
Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun
2017-09-20
NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.
Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.
Carniato, Fabio; Bisio, Chiara; Psaro, Rinaldo; Marchese, Leonardo; Guidotti, Matteo
2014-09-15
A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
Lai, Fang-Nong; Zhai, Hong-Li; Cheng, Ming; Ma, Jun-Yu; Cheng, Shun-Feng; Ge, Wei; Zhang, Guo-Liang; Wang, Jun-Jie; Zhang, Rui-Qian; Wang, Xue; Min, Ling-Jiang; Song, Jiu-Zhou; Shen, Wei
2016-01-01
Dairy goats are one of the most utilized domesticated animals in China. Here, we selected extreme populations based on differential fecundity in two Laoshan dairy goat populations. Utilizing deep sequencing we have generated 68.7 and 57.8 giga base of sequencing data, and identified 12,458,711 and 12,423,128 SNPs in the low fecundity and high fecundity groups, respectively. Following selective sweep analyses, a number of loci and candidate genes in the two populations were scanned independently. The reproduction related genes CCNB2, AR, ADCY1, DNMT3B, SMAD2, AMHR2, ERBB2, FGFR1, MAP3K12 and THEM4 were specifically selected in the high fecundity group whereas KDM6A, TENM1, SWI5 and CYM were specifically selected in the low fecundity group. A sub-set of genes including SYCP2, SOX5 and POU3F4 were localized both in the high and low fecundity selection windows, suggesting that these particular genes experienced strong selection with lower genetic diversity. From the genome data, the rare nonsense mutations may not contribute to fecundity, whereas nonsynonymous SNPs likely play a predominant role. The nonsynonymous exonic SNPs in SETDB2 and CDH26 which were co-localized in the selected region may take part in fecundity traits. These observations bring us a new insights into the genetic variation influencing fecundity traits within dairy goats. PMID:27905513
Sawitzky, Mandy; Zeissler, Anja; Langhammer, Martina; Bielohuby, Maximilian; Stock, Peggy; Hammon, Harald M; Görs, Solvig; Metges, Cornelia C; Stoehr, Barbara J M; Bidlingmaier, Martin; Fromm-Dornieden, Carolin; Baumgartner, Bernhard G; Christ, Bruno; Brenig, Bertram; Binder, Gerhard; Metzger, Friedrich; Renne, Ulla; Hoeflich, Andreas
2012-01-01
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.
Sawitzky, Mandy; Zeissler, Anja; Langhammer, Martina; Bielohuby, Maximilian; Stock, Peggy; Hammon, Harald M.; Görs, Solvig; Metges, Cornelia C.; Stoehr, Barbara J. M.; Bidlingmaier, Martin; Fromm-Dornieden, Carolin; Baumgartner, Bernhard G.; Christ, Bruno; Brenig, Bertram; Binder, Gerhard; Metzger, Friedrich; Renne, Ulla; Hoeflich, Andreas
2012-01-01
We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice) characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold) if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK), were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α) and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß) and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice. PMID:22768110
Role of interventional radiologists in the management of lower extremity venous insufficiency.
Hardman, Rulon L; Rochon, Paul J
2013-12-01
Lower extremity venous insufficiency affects over half of all women. Interventional radiologists should be aware of the clinical evaluation of women with venous insufficiency and classification of disease. Endovascular therapies available for treatment of lower extremity venous insufficiency include: endovenous laser ablation, radiofrequency endovascular ablation, and sclerotherapy. The interventional radiologist should be versed on which therapy to select in each clinical presentation and the procedural techniques. The authors review the role of the interventional radiologist in managing this lower extremity venous disorder.
Daneman, Nick; Campitelli, Michael A.; Giannakeas, Vasily; Morris, Andrew M.; Bell, Chaim M.; Maxwell, Colleen J.; Jeffs, Lianne; Austin, Peter C.; Bronskill, Susan E.
2017-01-01
BACKGROUND: Understanding the extent to which current antibiotic prescribing behaviour is influenced by clinicians’ historical patterns of practice will help target interventions to optimize antibiotic use in long-term care. Our objective was to evaluate whether clinicians’ historical prescribing behaviours influence the start, prolongation and class selection for treatment with antibiotics in residents of long-term care facilities. METHODS: We conducted a retrospective cohort study of all physicians who prescribed to residents in long-term care facilities in Ontario between Jan. 1 and Dec. 31, 2014. We examined variability in antibiotic prescribing among physicians for 3 measures: start of treatment with antibiotics, use of prolonged durations exceeding 7 days and selection of fluoroquinolones. Funnel plots with control limits were used to determine the extent of variation and characterize physicians as extreme low, low, average, high and extreme high prescribers for each tendency. Multivariable logistic regression was used to assess whether a clinician’s prescribing tendency in the previous year predicted current prescribing patterns, after accounting for residents’ demographics, comorbidity, functional status and indwelling devices. RESULTS: Among 1695 long-term care physicians, who prescribed for 93 132 residents, there was wide variability in the start of antibiotic treatment (median 45% of patients, interquartile range [IQR] 32%–55%), use of prolonged treatment durations (median 30% of antibiotic prescriptions, IQR 19%–46%) and selection of fluoroquinolones (median 27% of antibiotic prescriptions, IQR 18%–37%). Prescribing tendencies for antibiotics by physicians in 2014 correlated strongly with tendencies in the previous year. After controlling for individual resident characteristics, prior prescribing tendency was a significant predictor of current practice. INTERPRETATION: Physicians prescribing antibiotics exhibited individual, measurable and historical tendencies toward start of antibiotic treatment, use of prolonged treatment duration and class selection. Prescriber audit and feedback may be a promising tool to optimize antibiotic use in long-term care facilities. PMID:28652480
Daneman, Nick; Campitelli, Michael A; Giannakeas, Vasily; Morris, Andrew M; Bell, Chaim M; Maxwell, Colleen J; Jeffs, Lianne; Austin, Peter C; Bronskill, Susan E
2017-06-26
Understanding the extent to which current antibiotic prescribing behaviour is influenced by clinicians' historical patterns of practice will help target interventions to optimize antibiotic use in long-term care. Our objective was to evaluate whether clinicians' historical prescribing behaviours influence the start, prolongation and class selection for treatment with antibiotics in residents of long-term care facilities. We conducted a retrospective cohort study of all physicians who prescribed to residents in long-term care facilities in Ontario between Jan. 1 and Dec. 31, 2014. We examined variability in antibiotic prescribing among physicians for 3 measures: start of treatment with antibiotics, use of prolonged durations exceeding 7 days and selection of fluoroquinolones. Funnel plots with control limits were used to determine the extent of variation and characterize physicians as extreme low, low, average, high and extreme high prescribers for each tendency. Multivariable logistic regression was used to assess whether a clinician's prescribing tendency in the previous year predicted current prescribing patterns, after accounting for residents' demographics, comorbidity, functional status and indwelling devices. Among 1695 long-term care physicians, who prescribed for 93 132 residents, there was wide variability in the start of antibiotic treatment (median 45% of patients, interquartile range [IQR] 32%-55%), use of prolonged treatment durations (median 30% of antibiotic prescriptions, IQR 19%-46%) and selection of fluoroquinolones (median 27% of antibiotic prescriptions, IQR 18%-37%). Prescribing tendencies for antibiotics by physicians in 2014 correlated strongly with tendencies in the previous year. After controlling for individual resident characteristics, prior prescribing tendency was a significant predictor of current practice. Physicians prescribing antibiotics exhibited individual, measurable and historical tendencies toward start of antibiotic treatment, use of prolonged treatment duration and class selection. Prescriber audit and feedback may be a promising tool to optimize antibiotic use in long-term care facilities. © 2017 Canadian Medical Association or its licensors.
Birkhofer, Klaus; Henschel, Joh; Lubin, Yael
2012-11-01
Individuals of most animal species are non-randomly distributed in space. Extreme climatic events are often ignored as potential drivers of distribution patterns, and the role of such events is difficult to assess. Seothyra henscheli (Araneae, Eresidae) is a sedentary spider found in the Namib dunes in Namibia. The spider constructs a sticky-edged silk web on the sand surface, connected to a vertical, silk-lined burrow. Above-ground web structures can be damaged by strong winds or heavy rainfall, and during dispersal spiders are susceptible to environmental extremes. Locations of burrows were mapped in three field sites in 16 out of 20 years from 1987 to 2007, and these grid-based data were used to identify the relationship between spatial patterns, climatic extremes and sampling year. According to Morisita's index, individuals had an aggregated distribution in most years and field sites, and Geary's C suggests clustering up to scales of 2 m. Individuals were more aggregated in years with high maximum wind speed and low annual precipitation. Our results suggest that clustering is a temporally stable property of populations that holds even under fluctuating burrow densities. Climatic extremes, however, affect the intensity of clustering behaviour: individuals seem to be better protected in field sites with many conspecific neighbours. We suggest that burrow-site selection is driven at least partly by conspecific cuing, and this behaviour may protect populations from collapse during extreme climatic events.
Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang
2018-08-24
In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.
dC Rubin, Sergio S; Marín, Irma; Gómez, Manuel J; Morales, Eduardo A; Zekker, Ivar; San Martín-Uriz, Patxi; Rodríguez, Nuria; Amils, Ricardo
2017-09-01
Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL 2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg 2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J
2010-02-01
Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in gait speed.
THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-includingmore » the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.« less
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Mariano; Assatourians, Karen; Jimenez, Maria-Jose
2018-01-01
Extreme natural hazard events have the potential to cause significant disruption to critical infrastructure (CI) networks. Among them, earthquakes represent a major threat as sudden-onset events with limited, if any, capability of forecast, and high damage potential. In recent years, the increased exposure of interdependent systems has heightened concern, motivating the need for a framework for the management of these increased hazards. The seismic performance level and resilience of existing non-nuclear CIs can be analyzed by identifying the ground motion input values leading to failure of selected key elements. Main interest focuses on the ground motions exceeding the original design values, which should correspond to low probability occurrence. A seismic hazard methodology has been specifically developed to consider low-probability ground motions affecting elongated CI networks. The approach is based on Monte Carlo simulation, which allows for building long-duration synthetic earthquake catalogs to derive low-probability amplitudes. This approach does not affect the mean hazard values and allows obtaining a representation of maximum amplitudes that follow a general extreme-value distribution. This facilitates the analysis of the occurrence of extremes, i.e., very low probability of exceedance from unlikely combinations, for the development of, e.g., stress tests, among other applications. Following this methodology, extreme ground-motion scenarios have been developed for selected combinations of modeling inputs including seismic activity models (source model and magnitude-recurrence relationship), ground motion prediction equations (GMPE), hazard levels, and fractiles of extreme ground motion. The different results provide an overview of the effects of different hazard modeling inputs on the generated extreme motion hazard scenarios. This approach to seismic hazard is at the core of the risk analysis procedure developed and applied to European CI transport networks within the framework of the European-funded INFRARISK project. Such an operational seismic hazard framework can be used to provide insight in a timely manner to make informed risk management or regulating further decisions on the required level of detail or on the adoption of measures, the cost of which can be balanced against the benefits of the measures in question.
Yang, Jinliang; Jiang, Haiying; Yeh, Cheng-Ting; Yu, Jianming; Jeddeloh, Jeffrey A; Nettleton, Dan; Schnable, Patrick S
2015-11-01
Although approaches for performing genome-wide association studies (GWAS) are well developed, conventional GWAS requires high-density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP-GWAS (extreme-phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well-characterized kernel row number trait, which was selected to enable comparisons between the results of XP-GWAS and conventional GWAS. An exome-sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait-associated variants were significantly enriched in regions identified by conventional GWAS. XP-GWAS was able to resolve several linked QTL and detect trait-associated variants within a single gene under a QTL peak. XP-GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
El-Samra, R.; Bou-Zeid, E.; Bangalath, H. K.; Stenchikov, G.; El-Fadel, M.
2017-12-01
A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model's ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.
Xu, Ronghui; Hou, Jue; Chambers, Christina D
2018-06-01
Our work was motivated by small cohort studies on the risk of birth defects in infants born to pregnant women exposed to medications. We controlled for confounding using propensity scores (PS). The extremely rare events setting renders the matching or stratification infeasible. In addition, the PS itself may be formed via different approaches to select confounders from a relatively long list of potential confounders. We carried out simulation experiments to compare different combinations of approaches: IPW or regression adjustment, with 1) including all potential confounders without selection, 2) selection based on univariate association between the candidate variable and the outcome, 3) selection based on change in effects (CIE). The simulation showed that IPW without selection leads to extremely large variances in the estimated odds ratio, which help to explain the empirical data analysis results that we had observed. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunn, R. J. H.; Willett, K. M.; Thorne, P. W.; Woolley, E. V.; Durre, I.; Dai, A.; Parker, D. E.; Vose, R. S.
2012-10-01
This paper describes the creation of HadISD: an automatically quality-controlled synoptic resolution dataset of temperature, dewpoint temperature, sea-level pressure, wind speed, wind direction and cloud cover from global weather stations for 1973-2011. The full dataset consists of over 6000 stations, with 3427 long-term stations deemed to have sufficient sampling and quality for climate applications requiring sub-daily resolution. As with other surface datasets, coverage is heavily skewed towards Northern Hemisphere mid-latitudes. The dataset is constructed from a large pre-existing ASCII flatfile data bank that represents over a decade of substantial effort at data retrieval, reformatting and provision. These raw data have had varying levels of quality control applied to them by individual data providers. The work proceeded in several steps: merging stations with multiple reporting identifiers; reformatting to netCDF; quality control; and then filtering to form a final dataset. Particular attention has been paid to maintaining true extreme values where possible within an automated, objective process. Detailed validation has been performed on a subset of global stations and also on UK data using known extreme events to help finalise the QC tests. Further validation was performed on a selection of extreme events world-wide (Hurricane Katrina in 2005, the cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Some very initial analyses are performed to illustrate some of the types of problems to which the final data could be applied. Although the filtering has removed the poorest station records, no attempt has been made to homogenise the data thus far, due to the complexity of retaining the true distribution of high-resolution data when applying adjustments. Hence non-climatic, time-varying errors may still exist in many of the individual station records and care is needed in inferring long-term trends from these data. This dataset will allow the study of high frequency variations of temperature, pressure and humidity on a global basis over the last four decades. Both individual extremes and the overall population of extreme events could be investigated in detail to allow for comparison with past and projected climate. A version-control system has been constructed for this dataset to allow for the clear documentation of any updates and corrections in the future.
Nara, Hiroshi; Kaieda, Akira; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni
2017-01-26
On the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC 50 = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE). Furthermore, the inhibitor was shown to protect bovine nasal cartilage explants against degradation induced by interleukin-1 and oncostatin M. In this article, we report the discovery of extremely potent, highly selective, and orally bioavailable fused pyrimidine derivatives that possess a 1,2,4-triazol-3-yl group as a novel ZBG for selective MMP-13 inhibition.
Lister, Callum; Arbuckle, Kevin; Jackson, Timothy N W; Debono, Jordan; Zdenek, Christina N; Dashevsky, Daniel; Dunstan, Nathan; Allen, Luke; Hay, Chris; Bush, Brian; Gillett, Amber; Fry, Bryan G
2017-11-01
A paradigm of venom research is adaptive evolution of toxins as part of a predator-prey chemical arms race. This study examined differential co-factor dependence, variations relative to dietary preference, and the impact upon relative neutralisation by antivenom of the procoagulant toxins in the venoms of a clade of Australian snakes. All genera were characterised by venoms rich in factor Xa which act upon endogenous prothrombin. Examination of toxin sequences revealed an extraordinary level of conservation, which indicates that adaptive evolution is not a feature of this toxin type. Consistent with this, the venoms did not display differences on the plasma of different taxa. Examination of the prothrombin target revealed endogenous blood proteins are under extreme negative selection pressure for diversification, this in turn puts a strong negative selection pressure upon the toxins as sequence diversification could result in a drift away from the target. Thus this study reveals that adaptive evolution is not a consistent feature in toxin evolution in cases where the target is under negative selection pressure for diversification. Consistent with this high level of toxin conservation, the antivenom showed extremely high-levels of cross-reactivity. There was however a strong statistical correlation between relative degree of phospholipid-dependence and clotting time, with the least dependent venoms producing faster clotting times than the other venoms even in the presence of phospholipid. The results of this study are not only of interest to evolutionary and ecological disciplines, but also have implications for clinical toxinology. Copyright © 2017 Elsevier Inc. All rights reserved.
Pop, Tudor Radu; Vesa, Ştefan Cristian; Trifa, Adrian Pavel; Crişan, Sorin; Buzoianu, Anca Dana
2014-01-01
This study investigates the accuracy of two scores in predicting the risk of acute lower extremity deep vein thrombosis. The study included 170 patients [85 (50%) women and 85 (50%) men] who were diagnosed with acute lower extremity deep vein thrombosis (DVT) with duplex ultrasonography. Median age was 62 (52.75; 72) years. The control group consisted of 166 subjects [96 (57.8%) women and 70 (42.2%) men], without DVT, matched for age (± one year) to those in the group with DVT. The patients and controls were selected from those admitted to the internal medicine, cardiology and geriatrics wards within the Municipal Hospital of Cluj-Napoca, Romania, between October 2009 and June 2011. Clinical, demographic and lab data were recorded for each patient. For each patient we calculated the prior risk of DVT using two prediction scores: Caprini and Padua. According to the Padua score only 93 (54.7%) patients with DVT had been at high risk of developing DVT, while 48 (28.9%) of controls were at high risk of developing DVT. When Padua score included PAI-1 4G/5G and MTHFR C677T polymorphisms, the sensitivity increased at 71.7%. Using the Caprini score, we determined that 147 (86.4%) patients with DVT had been at high risk of developing DVT, while 103 (62%) controls were at high risk of developing DVT. A Caprini score higher than 5 was the strongest predictor of acute lower extremity DVT risk. The Caprini prediction score was more sensitive than the Padua score in assessing the high risk of DVT in medical patients. PAI-1 4G/5G and MTHFR C677T polymorphisms increased the sensitivity of Padua score.
Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara
2017-01-01
Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically complex disorders.
Modelling hydrological extremes under non-stationary conditions using climate covariates
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Galiatsatou, Panagiota; Loukas, Athanasios
2013-04-01
Extreme value theory is a probabilistic theory that can interpret the future probabilities of occurrence of extreme events (e.g. extreme precipitation and streamflow) using past observed records. Traditionally, extreme value theory requires the assumption of temporal stationarity. This assumption implies that the historical patterns of recurrence of extreme events are static over time. However, the hydroclimatic system is nonstationary on time scales that are relevant to extreme value analysis, due to human-mediated and natural environmental change. In this study the generalized extreme value (GEV) distribution is used to assess nonstationarity in annual maximum daily rainfall and streamflow timeseries at selected meteorological and hydrometric stations in Greece and Cyprus. The GEV distribution parameters (location, scale, and shape) are specified as functions of time-varying covariates and estimated using the conditional density network (CDN) as proposed by Cannon (2010). The CDN is a probabilistic extension of the multilayer perceptron neural network. Model parameters are estimated via the generalized maximum likelihood (GML) approach using the quasi-Newton BFGS optimization algorithm, and the appropriate GEV-CDN model architecture for the selected meteorological and hydrometric stations is selected by fitting increasingly complicated models and choosing the one that minimizes the Akaike information criterion with small sample size correction. For all case studies in Greece and Cyprus different formulations are tested with combinational cases of stationary and nonstationary parameters of the GEV distribution, linear and non-linear architecture of the CDN and combinations of the input climatic covariates. Climatic indices such as the Southern Oscillation Index (SOI), which describes atmospheric circulation in the eastern tropical pacific related to El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) index that varies on an interdecadal rather than interannual time scale and the atmospheric circulation patterns as expressed by the North Atlantic Oscillation (NAO) index are used to express the GEV parameters as functions of the covariates. Results show that the nonstationary GEV model can be an efficient tool to take into account the dependencies between extreme value random variables and the temporal evolution of the climate.
Jung, Jaemin; Lee, Sang-yeol
2014-01-01
[Purpose] The purpose of this study was to determine the effects of wearing high heels while driving on lower extremity muscle activation. [Subjects] The subjects of this experimental study were 14 healthy women in their 20s who normally wear shoes with high heels. [Methods] The subjects were asked to place their shoes on an accelerator pedal with the heel touching the floor and then asked to press the pedal with as much pressure as possible for 3 seconds before removing their feet from the pedal. A total of 3 measurements were taken for each heel height (flat, 5 cm, 7 cm), and the heel height was randomly selected. [Results] The levels of muscle activity, indicated as the percentage of reference voluntary contraction, for gastrocnemius muscle in the flat, 5 cm, and 7 cm shoes were 180.8±61.8%, 285.4±122.3%, and 366.2±193.7%, respectively, and there were significant differences between groups. Those for the soleus muscle were 477.3±209.2%, 718.8±380.5%, and 882.4±509.9%, and there were significant differences between groups. [Conclusion] To summarize the results of this study, it was found that female drivers require greater lower extremity muscle activation when wearing high heels than when wearing low heels. Furthermore, instability and muscle fatigue of the ankle joint, which results from wearing high heels on a daily basis, could also occur while driving. PMID:25435684
Nucleic acid-based aptamers: applications, development and clinical trials.
Kanwar, Jagat R; Roy, Kislay; Maremanda, Nihal G; Subramanian, Krishnakumar; Veedu, Rakesh N; Bawa, Raj; Kanwar, Rupinder K
2015-01-01
Short single-stranded oligonucleotides called aptamers, often termed as chemical antibodies, have been developed as powerful alternatives to traditional antibodies with respect to their obvious advantages like high specificity and affinity, longer shelf-life, easier manufacturing protocol, freedom to introduce chemical modifications for further improvement, etc. Reiterative selection process of aptamers over 10-15 cycles starting from a large initial pool of random nucleotide sequences renders them with high binding affinity, thereby making them extremely specific for their targets. Aptamer-based detection systems are well investigated and likely to displace primitive detection systems. Aptamer chimeras (combination of aptamers with another aptamer or biomacromolecule or chemical moiety) have the potential activity of both the parent molecules, and thus hold the capability to perform diverse functions at the same time. Owing to their extremely high specificity and lack of immunogenicity or pathogenicity, a number of other aptamers have recently entered clinical trials and have garnered favorable attention from pharmaceutical companies. Promising results from the clinical trials provide new hope to change the conventional style of therapy. Aptamers have attained high therapeutic relevance in a short time as compared to synthetic drugs and/or other modes of therapy. This review follows the various trends in aptamer technology including production, selection, modifications and success in clinical fields. It focusses largely on the various applications of aptamers which mainly depend upon their selection procedures. The review also sheds light on various modifications and chimerizations that have been implemented in order to improve the stability and functioning of the aptamers, including introduction of locked nucleic acids (LNAs). The application of various aptamers in detection systems has been discussed elaborately in order to stress on their role as efficient diagnostic agents. The key aspect of this review is focused on success of aptamers on the basis of their performance in clinical trials for various diseases.
Development of lightweight graphite/polyimide honeycomb. Phase 1: Materials selection
NASA Technical Reports Server (NTRS)
Poesch, J. G.
1971-01-01
The materials selected for the production of extremely lightweight honeycomb sandwich panels are discussed. The resin selected for the first core and face sheet fabrication was Monsanto RS6234 polyimide. The fiber selected for core manufacture was Hercules HT-S, and for face sheets, Hercules HM-S; these selections are discussed.
NASA Technical Reports Server (NTRS)
Radoman-Shaw, Brandon; Harvey, Ralph; Costa, Gustavo; Nakley, Leah Michelle; Jacobson, Nathan S.
2016-01-01
Both historical and current investigations of Venus suggest that atmosphererock interactions play a critical role in the evolution of its atmosphere and crust. We have begun a series of systematic experiments designed to further our understanding of atmosphere-driven weathering and secondary mineralization of basaltic materials that may be occurring on Venus today. Our experiments expose representative igneous phases (mineral, glasses and rocks) to a high-fidelity simulation of Venus surface conditions using the NASA Glenn Extreme Environment Rig (GEER) located at the NASA Glenn Research Center in Cleveland, Ohio. GEER is a very large (800L) vessel capable of producing a long-term, high fidelity simulation of both the physical conditions (750 K and 92 bar) and atmospheric chemistry (down to the ppb-level) asso-ciated with the Venusian surface. As of this writing we have just finished the first of several planned experiments: a 42-day exposure of selected mineral, rocks and volcanic glasses. Our goal is to identify and prioritize the reactions taking place and better our understanding of their importance in Venus' climate history.
Yang, Ziheng; Zhu, Tianqi
2018-02-20
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Postcopulatory sexual selection influences baculum evolution in primates and carnivores.
Brindle, Matilda; Opie, Christopher
2016-12-14
The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. © 2016 The Authors.
Postcopulatory sexual selection influences baculum evolution in primates and carnivores
Brindle, Matilda
2016-01-01
The extreme morphological variability of the baculum across mammals is thought to be the result of sexual selection (particularly, high levels of postcopulatory selection). However, the evolutionary trajectory of the mammalian baculum is little studied and evidence for the adaptive function of the baculum has so far been elusive. Here, we use Markov chain Monte Carlo methods implemented in a Bayesian phylogenetic framework to reconstruct baculum evolution across the mammalian class and investigate the rate of baculum length evolution within the primate order. We then test the effects of testes mass (postcopulatory sexual selection), polygamy, seasonal breeding and intromission duration on the baculum in primates and carnivores. The ancestral mammal did not have a baculum, but both ancestral primates and carnivores did. No relationship was found between testes mass and baculum length in either primates or carnivores. Intromission duration correlated with baculum presence over the course of primate evolution, and prolonged intromission predicts significantly longer bacula in extant primates and carnivores. Both polygamous and seasonal breeding systems predict significantly longer bacula in primates. These results suggest the baculum plays an important role in facilitating reproductive strategies in populations with high levels of postcopulatory sexual selection. PMID:27974519
Temporal development of extreme precipitation in Germany projected by EURO-CORDEX simulations
NASA Astrophysics Data System (ADS)
Brendel, Christoph; Deutschländer, Thomas
2017-04-01
A sustainable operation of transport infrastructure requires an enhanced resilience to the increasing impacts of climate change and related extreme meteorological events. To meet this challenge, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) commenced a comprehensive national research program on safe and sustainable transport in Germany. A network of departmental research institutes addresses the "Adaptation of the German transport infrastructure towards climate change and extreme events". Various studies already have identified an increase in the average global precipitation for the 20th century. There is some indication that these increases are most visible in a rising frequency of precipitation extremes. However, the changes are highly variable between regions and seasons. With a further increase of atmospheric greenhouse gas concentrations in the 21st century, the likelihood of occurrence of such extreme events will continue to rise. A kernel estimator has been used in order to obtain a robust estimate of the temporal development of extreme precipitation events projected by an ensemble of EURO-CORDEX simulations. The kernel estimator measures the intensity of the poisson point process indicating temporal changes in the frequency of extreme events. Extreme precipitation events were selected using the peaks over threshold (POT) method with the 90th, 95th and 99th quantile of daily precipitation sums as thresholds. Application of this non-parametric approach with relative thresholds renders the use of a bias correction non-mandatory. In addition, in comparison to fitting an extreme value theory (EVT) distribution, the method is completely unsusceptible to outliers. First results show an overall increase of extreme precipitation events for Germany until the end of the 21st century. However, major differences between seasons, quantiles and the three different Representative Concentration Pathways (RCP 2.6, 4.5, and 8.5) have been identified. For instance, the frequency of extreme precipitation events more than triples in the most extreme scenario. Regional differences are rather small with the largest increase in northern Germany, particularly in coastal regions and the weakest increase in the most southern parts of Germany.
Climate change, extreme weather events, and us health impacts: what can we say?
Mills, David M
2009-01-01
Address how climate change impacts on a group of extreme weather events could affect US public health. A literature review summarizes arguments for, and evidence of, a climate change signal in select extreme weather event categories, projections for future events, and potential trends in adaptive capacity and vulnerability in the United States. Western US wildfires already exhibit a climate change signal. The variability within hurricane and extreme precipitation/flood data complicates identifying a similar climate change signal. Health impacts of extreme events are not equally distributed and are very sensitive to a subset of exceptional extreme events. Cumulative uncertainty in forecasting climate change driven characteristics of extreme events and adaptation prevents confidently projecting the future health impacts from hurricanes, wildfires, and extreme precipitation/floods in the United States attributable to climate change.
Impacts of future changes in weather condition on U.S. transportation
NASA Astrophysics Data System (ADS)
Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.
2016-12-01
High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.
Bacterial and archaeal resistance to ionizing radiation
NASA Astrophysics Data System (ADS)
Confalonieri, F.; Sommer, S.
2011-01-01
Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in radioresistance. Here, we compare mechanisms and discuss hypotheses suggested to contribute to radioresistance in several Archaea and Eubacteria.
Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2018-07-06
This paper presents the development of an extremely sensitive and selective acetone sensor prototype which can be used as a platform for non-invasive diabetes detection through exhaled human breath. The miniaturized sensors were produced in high yield with the use of standard microfabrication processes. The sensors were based on a heterostructure composed of MoO 3 and nano-porous silicon (NPS). Features like acetone selective, enhanced sensor response and 0.5 ppm detection limit were observed upon introduction of MoO 3 on the NPS. The sensors were found to be repeatable and stable for almost 1 year, as tested under humid conditions at room temperature. It was inferred that the interface resistance of MoO 3 and NPS played a key role in the sensing mechanism. With the use of breath analysis and lab-on-chip, medical diagnosis procedures can be simplified and provide solutions for point-of-care testing.
Walter, Maria Astrid; Panne, Ulrich; Weller, Michael G
2011-07-07
Triacetone triperoxide (TATP) is a primary explosive, which was used in various terrorist attacks in the past. For the development of biosensors, immunochemical µ-TAS, electronic noses, immunological test kits, or test strips, the availability of antibodies of high quality is crucial. Recently, we presented the successful immunization of mice, based on the design, synthesis, and conjugation of a novel TATP derivative. Here, the long-term immunization of rabbits is shown, which resulted in antibodies of extreme selectivity and more than 1,000 times better affinity in relation to the antibodies from mice. Detection limits below 10 ng L-1 (water) were achieved. The working range covers more than four decades, calculated from a precision profile. The cross-reactivity tests revealed an extraordinary selectivity of the antibodies-not a single compound could be identified as a relevant cross-reactant. The presented immunoreagent might be a major step for the development of highly sensitive and selective TATP detectors particularly for security applications.
Walter, Maria Astrid; Panne, Ulrich; Weller, Michael G.
2011-01-01
Triacetone triperoxide (TATP) is a primary explosive, which was used in various terrorist attacks in the past. For the development of biosensors, immunochemical µ-TAS, electronic noses, immunological test kits, or test strips, the availability of antibodies of high quality is crucial. Recently, we presented the successful immunization of mice, based on the design, synthesis, and conjugation of a novel TATP derivative. Here, the long-term immunization of rabbits is shown, which resulted in antibodies of extreme selectivity and more than 1,000 times better affinity in relation to the antibodies from mice. Detection limits below 10 ng L−1 (water) were achieved. The working range covers more than four decades, calculated from a precision profile. The cross-reactivity tests revealed an extraordinary selectivity of the antibodies—not a single compound could be identified as a relevant cross-reactant. The presented immunoreagent might be a major step for the development of highly sensitive and selective TATP detectors particularly for security applications. PMID:25586922
Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W.; Zitzelsberger, Horst; Caldwell, Randolph B
2014-01-01
With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model. PMID:25192257
Schoetz, Ulrike; Deliolanis, Nikolaos C; Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W; Zitzelsberger, Horst; Caldwell, Randolph B
2014-01-01
With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.
Denmark, Scott E; Wilson, Tyler W; Burk, Matthew T; Heemstra, John R
2007-12-05
Silyl ketene imines derived from a variety of alpha-branched nitriles have been developed as highly useful reagents for the construction of quaternary stereogenic centers via the aldol addition reaction. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-5, silyl ketene imines undergo extremely rapid and high yielding addition to a wide variety of aromatic aldehydes with excellent diastereo- and enantioselectivity. Of particular note is the high yields and selectivities obtained from electron-rich, electron-poor, and hindered aldehydes. The nitrile function serves as a useful precursor for further synthetic manipulation.
Selective growth of MoS2 for proton exchange membranes with extremely high selectivity.
Feng, Kai; Tang, Beibei; Wu, Peiyi
2013-12-26
Proton conductivity and methanol permeability are the most important transport properties of proton exchange membranes (PEMs). The ratio of proton conductivity to methanol permeability is usually called selectivity. Herein, a novel strategy of in situ growth of MoS2 is employed to prepare MoS2/Nafion composite membranes for highly selective PEM. The strong interactions between the Mo precursor ((NH4)2MoS4) and Nafion's sulfonic groups in a suitable solvent environment (DMF) probably lead to a selective growth of MoS2 flakes mainly around the ionic clusters of the resultant MoS2/Nafion composite membrane. Therefore, it would significantly promote the aggregation and hence lead to a better connectivity of these ionic clusters, which favors the increase in proton conductivity. Meanwhile, the existence of MoS2 in the ionic channels effectively prevents methanol transporting through the PEM, contributing to the dramatic decrease in the methanol permeability. Consequently, the MoS2/Nafion composite membranes exhibit greatly increased selectivity. Under some severe conditions, such as 50 °C with 80 v/v% of methanol concentration, an increase in the membrane selectivity by nearly 2 orders of magnitude compared with that of the recast Nafion membrane could be achieved here, proving our method as a very promising way to prepare high-performance PEMs. All these conclusions are confirmed by various characterizations, such as (FE-) SEM, TEM, AFM, IR, Raman, TGA, XRD, etc.
Kang, Dong-Ku; Ali, M. Monsur; Zhang, Kaixiang; Huang, Susan S.; Peterson, Ellena; Digman, Michelle A.; Gratton, Enrico; Zhao, Weian
2014-01-01
Blood stream infection or sepsis is a major health problem worldwide, with extremely high mortality, which is partly due to the inability to rapidly detect and identify bacteria in the early stages of infection. Here we present a new technology termed ‘Integrated Comprehensive Droplet Digital Detection’ (IC 3D) that can selectively detect bacteria directly from milliliters of diluted blood at single-cell sensitivity in a one-step, culture- and amplification-free process within 1.5–4 h. The IC 3D integrates real-time, DNAzyme-based sensors, droplet microencapsulation and a high-throughput 3D particle counter system. Using Escherichia coli as a target, we demonstrate that the IC 3D can provide absolute quantification of both stock and clinical isolates of E. coli in spiked blood within a broad range of extremely low concentration from 1 to 10,000 bacteria per ml with exceptional robustness and limit of detection in the single digit regime. PMID:25391809
Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M
2017-08-11
High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.
NASA Astrophysics Data System (ADS)
Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen
2018-03-01
MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.
Sheng, Zheya; Pettersson, Mats E; Honaker, Christa F; Siegel, Paul B; Carlborg, Örjan
2015-10-01
Artificial selection provides a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions where allele-frequencies have diverged during selection. To avoid false positive signatures of selection, it is necessary to show that a sweep affects a selected trait before it can be considered adaptive. Here, we confirm candidate, genome-wide distributed selective sweeps originating from the standing genetic variation in a long-term selection experiment on high and low body weight of chickens. Using an intercross between the two divergent chicken lines, 16 adaptive selective sweeps were confirmed based on their association with the body weight at 56 days of age. Although individual additive effects were small, the fixation for alternative alleles across the loci contributed at least 40 % of the phenotypic difference for the selected trait between these lines. The sweeps contributed about half of the additive genetic variance present within and between the lines after 40 generations of selection, corresponding to a considerable portion of the additive genetic variance of the base population. Long-term, single-trait, bi-directional selection in the Virginia chicken lines has resulted in a gradual response to selection for extreme phenotypes without a drastic reduction in the genetic variation. We find that fixation of several standing genetic variants across a highly polygenic genetic architecture made a considerable contribution to long-term selection response. This provides new fundamental insights into the dynamics of standing genetic variation during long-term selection and adaptation.
Hume, Benjamin C C; Voolstra, Christian R; Arif, Chatchanit; D'Angelo, Cecilia; Burt, John A; Eyal, Gal; Loya, Yossi; Wiedenmann, Jörg
2016-04-19
Coral communities in the Persian/Arabian Gulf (PAG) withstand unusually high salinity levels and regular summer temperature maxima of up to ∼35 °C that kill conspecifics elsewhere. Due to the recent formation of the PAG and its subsequent shift to a hot climate, these corals have had only <6,000 y to adapt to these extreme conditions and can therefore inform on how coral reefs may respond to global warming. One key to coral survival in the world's warmest reefs are symbioses with a newly discovered alga,Symbiodinium thermophilum Currently, it is unknown whether this symbiont originated elsewhere or emerged from unexpectedly fast evolution catalyzed by the extreme environment. Analyzing genetic diversity of symbiotic algae across >5,000 km of the PAG, the Gulf of Oman, and the Red Sea coastline, we show thatS. thermophilumis a member of a highly diverse, ancient group of symbionts cryptically distributed outside the PAG. We argue that the adjustment to temperature extremes by PAG corals was facilitated by the positive selection of preadapted symbionts. Our findings suggest that maintaining the largest possible pool of potentially stress-tolerant genotypes by protecting existing biodiversity is crucial to promote rapid adaptation to present-day climate change, not only for coral reefs, but for ecosystems in general.
APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.
Rodrigo, Daniel; Limaj, Odeta; Janner, Davide; Etezadi, Dordaneh; García de Abajo, F Javier; Pruneri, Valerio; Altug, Hatice
2015-07-10
Infrared spectroscopy is the technique of choice for chemical identification of biomolecules through their vibrational fingerprints. However, infrared light interacts poorly with nanometric-size molecules. We exploit the unique electro-optical properties of graphene to demonstrate a high-sensitivity tunable plasmonic biosensor for chemically specific label-free detection of protein monolayers. The plasmon resonance of nanostructured graphene is dynamically tuned to selectively probe the protein at different frequencies and extract its complex refractive index. Additionally, the extreme spatial light confinement in graphene—up to two orders of magnitude higher than in metals—produces an unprecedentedly high overlap with nanometric biomolecules, enabling superior sensitivity in the detection of their refractive index and vibrational fingerprints. The combination of tunable spectral selectivity and enhanced sensitivity of graphene opens exciting prospects for biosensing. Copyright © 2015, American Association for the Advancement of Science.
Method and apparatus for spraying molten materials
Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Nelson, G.L.; Lee, Y.M.
1996-06-25
A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.
Clinical Considerations for the Use Lower Extremity Arthroplasty in the Elderly.
Otero-López, Antonio; Beaton-Comulada, David
2017-11-01
There is an increase in the aging population that has led to a surge of reported cases of osteoarthritis and a greater demand for lower extremity arthroplasty. This article aims to review the current treatment options and expectations when considering lower extremity arthroplasty in the elderly patient with an emphasis on the following subjects: (1) updated clinical guidelines for the management of osteoarthritis in the lower extremity, (2) comorbidities and risk factors in the surgical patient, (3) preoperative evaluation and optimization of the surgical patient, (4) surgical approach and implant selection, and (5) rehabilitation and life after lower extremity arthroplasty. Published by Elsevier Inc.
Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A.
2014-01-01
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities. PMID:25279954
NASA Astrophysics Data System (ADS)
Auer, I.; Kirchengast, A.; Proske, H.
2009-09-01
The ongoing climate change debate focuses more and more on changing extreme events. Information on past events can be derived from a number of sources, such as instrumental data, residual impacts in the landscape, but also chronicles and people's memories. A project called "A Tale of Two Valleys” within the framework of the research program "proVision” allowed to study past extreme events in two inner-alpine valleys from the sources mentioned before. Instrumental climate time series provided information for the past 200 years, however great attention had to be given to the homogeneity of the series. To derive homogenized time series of selected climate change indices methods like HOCLIS and Vincent have been applied. Trend analyses of climate change indices inform about increase or decrease of extreme events. Traces of major geomorphodynamic processes of the past (e.g. rockfalls, landslides, debris flows) which were triggered or affected by extreme weather events are still apparent in the landscape and could be evaluated by geomorphological analysis using remote sensing and field data. Regional chronicles provided additional knowledge and covered longer periods back in time, however compared to meteorological time series they enclose a high degree of subjectivity and intermittent recordings cannot be obviated. Finally, questionnaires and oral history complemented our picture of past extreme weather events. People were differently affected and have different memories of it. The joint analyses of these four data sources showed agreement to some extent, however also showed some reasonable differences: meteorological data are point measurements only with a sometimes too coarse temporal resolution. Due to land-use changes and improved constructional measures the impact of an extreme meteorological event may be different today compared to earlier times.
NASA Astrophysics Data System (ADS)
Nunes, Ana
2015-04-01
Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.
Selected Design Parameters for Reclining Seats Based on Engineering Anthropometry
1977-09-01
mounted on these arm rests and immediately adjacent surfaces -provide upper extremity configuratinns conducive to maximum biomechanical advantage -meet...operation at the rudder pedals under normal or under high G environments. (2) Size: The foot rest must be large enough to cover the range of heel positions...See Figure 9.) Foot Control Adjustment Two horizontal cylinders 2" in diameter x 6" long represented rudder pedals to be operated by feet. They were
Using Blood Indexes to Predict Overweight Statuses: An Extreme Learning Machine-Based Approach
Chen, Huiling; Yang, Bo; Liu, Dayou; Liu, Wenbin; Liu, Yanlong; Zhang, Xiuhua; Hu, Lufeng
2015-01-01
The number of the overweight people continues to rise across the world. Studies have shown that being overweight can increase health risks, such as high blood pressure, diabetes mellitus, coronary heart disease, and certain forms of cancer. Therefore, identifying the overweight status in people is critical to prevent and decrease health risks. This study explores a new technique that uses blood and biochemical measurements to recognize the overweight condition. A new machine learning technique, an extreme learning machine, was developed to accurately detect the overweight status from a pool of 225 overweight and 251 healthy subjects. The group included 179 males and 297 females. The detection method was rigorously evaluated against the real-life dataset for accuracy, sensitivity, specificity, and AUC (area under the receiver operating characteristic (ROC) curve) criterion. Additionally, the feature selection was investigated to identify correlating factors for the overweight status. The results demonstrate that there are significant differences in blood and biochemical indexes between healthy and overweight people (p-value < 0.01). According to the feature selection, the most important correlated indexes are creatinine, hemoglobin, hematokrit, uric Acid, red blood cells, high density lipoprotein, alanine transaminase, triglyceride, and γ-glutamyl transpeptidase. These are consistent with the results of Spearman test analysis. The proposed method holds promise as a new, accurate method for identifying the overweight status in subjects. PMID:26600199
Sympatric speciation by sexual selection alone is unlikely.
Arnegard, Matthew E; Kondrashov, Alexey S
2004-02-01
According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.
Fusion power: a challenge for materials science.
Duffy, D M
2010-07-28
The selection and design of materials that will withstand the extreme conditions of a fusion power plant has been described as one of the greatest materials science challenges in history. The high particle flux, high thermal load, thermal mechanical stress and the production of transmutation elements combine to produce a uniquely hostile environment. In this paper, the materials favoured for the diverse roles in a fusion power plant are discussed, along with the experimental and modelling techniques that are used to advance the understanding of radiation damage in materials. Areas where further research is necessary are highlighted.
High-performance functional ecopolymers based on flora and fauna.
Kaneko, Tatsuo
2007-01-01
Liquid crystalline (LC) polymers of rigid monomers based on flora and fauna were prepared by in-bulk polymerization. Para-coumaric (p-coumaric) acid [4-hydroxycinnamic acid (4HCA)] and its derivatives were selected as phytomonomers and bile acids were selected as biomonomers. The 4HCA homopolymer showed a thermotropic LC phase only in a state of low molecular weight. The copolymers of 4HCA with bile acids such as lithocholic acid (LCA) and cholic acid (CA) showed excellent cell compatibilities but low molecular weights. However, P(4HCA-co-CA)s allowed LC spinning to create molecularly oriented biofibers, presumably due to the chain entanglement that occurs during in-bulk chain propagation into hyperbranching architecture. P[4HCA-co-3,4-dihydroxycinnamic acid (DHCA)]s showed high molecular weight, high mechanical strength, high Young's modulus, and high softening temperature, which may be achieved through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, in-soil degradation, and photo-tunable hydrolysis. Thus, P(4HCA-co-DHCA)s might be applied as an environmentally degradable plastic with extremely high performance.
The Incidence of Buried Dual AGN in Advanced Mergers: New results from Chandra
NASA Astrophysics Data System (ADS)
Pfeifle, Ryan William; Satyapal, Shobita; Secrest, Nathan; Gliozzi, Mario; Ricci, Claudio; Ellison, Sara L.; Blecha, Laura; Rothberg, Barry; Constantin, Anca
2018-01-01
Since the vast majority of galaxies contain supermassive black holes (SMBHs) and galaxy interactions trigger nuclear gas accretion, a direct consequence of the hierarchical model of galaxy formation would be the existence of dual active galactic nuclei (AGN). The existence, frequency, and characteristics of such dual AGN have important astrophysical implications on the SMBH mass function, the interplay between SMBHs and the host galaxy, and the M-sigma relation. Despite decades of searching, and strong theoretical reasons for their existence, observationally confirmed cases of dual AGN are extremely rare, and most have been discovered serendipitously. Using the all-sky WISE survey, we identified a population of over one hundred strongly interacting galaxies that display extreme red mid-infrared colors thus far exclusively associated with extragalactic sources possessing powerful AGN. In a recent Chandra, XMM-Newton, and NuSTAR investigation of advanced mergers selected by WISE, we find dual AGN candidates in 8 out of 15 mergers, all of which show no evidence for AGN based on optical spectroscopy. Our results demonstrate that 1) optical studies miss a significant fraction of single and dual AGN in advanced mergers, and 2) mid-infrared pre-selection is extremely effective in identifying dual AGN candidates in late-stage mergers. Our multi-wavelength observations suggest that the buried AGN in these mergers are highly absorbed, with intrinsic column densities in excess of NH > 1024 cm-2, consistent with hydrodynamic simulations.
Connor, Richard C
2007-04-29
Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.
NASA Astrophysics Data System (ADS)
Castro, C.
2013-05-01
Arid and semi-arid regions are experiencing some of the most adverse impacts of climate change with increased heat waves, droughts, and extreme weather. These events will likely exacerbate socioeconomic and political instabilities in regions where the United States has vital strategic interests and ongoing military operations. The Southwest U.S. is strategically important in that it houses some of the most spatially expansive and important military installations in the country. The majority of severe weather events in the Southwest occur in association with the North American monsoon system (NAMS), and current observational record has shown a 'wet gets wetter and dry gets drier' global monsoon precipitation trend. We seek to evaluate the warm season extreme weather projection in the Southwest U.S., and how the extremes can affect Department of Defense (DoD) military facilities in that region. A baseline methodology is being developed to select extreme warm season weather events based on historical sounding data and moisture surge observations from Gulf of California. Numerical Weather Prediction (NWP)-type high resolution simulations will be performed for the extreme events identified from Weather Research and Forecast (WRF) model simulations initiated from IPCC GCM and NCAR Reanalysis data in both climate control and climate change periods. The magnitude in extreme event changes will be analyzed, and the synoptic forcing patterns of the future severe thunderstorms will provide a guide line to assess if the military installations in the Southwest will become more or less susceptible to severe weather in the future.
The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress
Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.
2016-01-01
The hand pattern (i.e., full-cycle hand path) used during manual wheelchair propulsion is frequently classified as one of four distinct hand pattern types: arc, single loop, double loop and semicircular. Current clinical guidelines recommend the use of the semicircular pattern, which is based on advantageous levels of broad biomechanical metrics implicitly related to the demand placed on the upper extremity (e.g., lower cadence). However, an understanding of the influence of hand pattern on specific measures of upper extremity muscle demand (e.g., muscle power and stress) is needed to help make such recommendations, but these quantities are difficult and impractical to measure experimentally. The purpose of this study was to use musculoskeletal modeling and forward dynamics simulations to investigate the influence of the hand pattern used on specific measures of upper extremity muscle demand. The simulation results suggest that the double loop and semicircular patterns produce the most favorable levels of overall muscle stress and total muscle power. The double loop pattern had the lowest full-cycle and recovery-phase upper extremity demand but required high levels of muscle power during the relatively short contact phase. The semicircular pattern had the second-lowest full-cycle levels of overall muscle stress and total muscle power, and demand was more evenly distributed between the contact and recovery phases. These results suggest that in order to decrease upper extremity demand, manual wheelchair users should use either the double loop or semicircular pattern when propelling their wheelchairs at a self-selected speed on level ground. PMID:27062591
Selective breeding for susceptibility to myopia reveals a gene-environment interaction.
Chen, Yen-Po; Hocking, Paul M; Wang, Ling; Povazay, Boris; Prashar, Ankush; To, Chi-Ho; Erichsen, Jonathan T; Feldkaemper, Marita; Hofer, Bernd; Drexler, Wolfgang; Schaeffel, Frank; Guggenheim, Jeremy A
2011-06-08
Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks.
Tong, Jasper W K; Kong, Pui W
2013-10-01
Systematic literature review with meta-analysis. To investigate the association between nonneutral foot types (high arch and flatfoot) and lower extremity and low back injuries, and to identify the most appropriate methods to use for foot classification. A search of 5 electronic databases (PubMed, Embase, CINAHL, SPORTDiscus, and ProQuest Dissertations and Theses), Google Scholar, and the reference lists of included studies was conducted to identify relevant articles. The review included comparative cross-sectional, case-control, and prospective studies that reported qualitative/quantitative associations between foot types and lower extremity and back injuries. Quality of the selected studies was evaluated, and data synthesis for the level of association between foot types and injuries was conducted. A random-effects model was used to pool odds ratio (OR) and standardized mean difference (SMD) results for meta-analysis. Twenty-nine studies were included for meta-analysis. A significant association between nonneutral foot types and lower extremity injuries was determined (OR = 1.23; 95% confidence interval [CI]: 1.11, 1.37; P<.001). Foot posture index (OR = 2.58; 95% CI: 1.33, 5.02; P<.01) and visual/physical examination (OR = 1.17; 95% CI: 1.06, 1.28; P<.01) were 2 assessment methods using distinct foot-type categories that showed a significant association with lower extremity injuries. For foot-assessment methods using a continuous scale, measurements of lateral calcaneal pitch angle (SMD, 1.92; 95% CI: 1.44, 2.39; P<.00001), lateral talocalcaneal angle (SMD, 1.36; 95% CI: 0.93, 1.80; P<.00001), and navicular height (SMD, 0.34; 95% CI: 0.16, 0.52; P<.001) showed significant effect sizes in identifying high-arch foot, whereas the navicular drop test (SMD, 0.45; 95% CI: 0.03, 0.87; P<.05) and relaxed calcaneal stance position (SMD, 0.49; 95% CI: 0.01, 0.97; P<.05) displayed significant effect sizes in identifying flatfoot. Subgroup analyses revealed no significant associations for children with flatfoot, cross-sectional studies, or prospective studies on high arch. High-arch and flatfoot foot types are associated with lower extremity injuries, but the strength of this relationship is low. Although the foot posture index and visual/physical examination showed significance, they are qualitative measures. Radiographic and navicular height measurements can delineate high-arch foot effectively, with only anthropometric measures accurately classifying flatfoot. Prognosis, level 2a.
Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization.
Paul, Supantha; Ghosh, Subimal; Mathew, Micky; Devanand, Anjana; Karmakar, Subhankar; Niyogi, Dev
2018-03-02
While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.
Survival in extreme environments - on the current knowledge of adaptations in tardigrades.
Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M
2011-07-01
Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
NASA Astrophysics Data System (ADS)
Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.
2014-06-01
The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 +/- 0.06, 1.0 +/- 0.13 and 0.4 +/- 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation.
Zhang, Fang; Zhang, Yan; Ding, Jing; Dai, Kun; van Loosdrecht, Mark C. M.; Zeng, Raymond J.
2014-01-01
The control of metabolite production is difficult in mixed culture fermentation. This is particularly related to hydrogen inhibition. In this work, hydrogenotrophic methanogens were selectively enriched to reduce the hydrogen partial pressure and to realize efficient acetate production in extreme-thermophilic (70°C) mixed culture fermentation. The continuous stirred tank reactor (CSTR) was stable operated during 100 days, in which acetate accounted for more than 90% of metabolites in liquid solutions. The yields of acetate, methane and biomass in CSTR were 1.5 ± 0.06, 1.0 ± 0.13 and 0.4 ± 0.05 mol/mol glucose, respectively, close to the theoretical expected values. The CSTR effluent was stable and no further conversion occurred when incubated for 14 days in a batch reactor. In fed-batch experiments, acetate could be produced up to 34.4 g/L, significantly higher than observed in common hydrogen producing fermentations. Acetate also accounted for more than 90% of soluble products formed in these fed-batch fermentations. The microbial community analysis revealed hydrogenotrophic methanogens (mainly Methanothermobacter thermautotrophicus and Methanobacterium thermoaggregans) as 98% of Archaea, confirming that high temperature will select hydrogenotrophic methanogens over aceticlastic methanogens effectively. This work demonstrated a potential application to effectively produce acetate as a value chemical and methane as an energy gas together via mixed culture fermentation. PMID:24920064
Nagy, P; Skidmore, J A; Juhasz, J
2013-01-10
Despite their production potential and ability to survive on marginal resources in extreme conditions, dromedaries have not been exploited as an important food source. Camels have not been specifically selected for milk production, and genetic improvement has been negligible. High individual variation in milk production both within the population and within breeds provides a good base for selection and genetic progress. In this paper, we discuss the possibilities and constraints of selective breeding for milk production in camels, and include a summary of the use of embryo transfer at the world's first camel dairy farm. Embryo transfer is an integral part of the breeding strategy at the camel dairy farm because it increases selection intensity and decreases the generation interval. Using high milk-producing camels as donors and low producing camels as recipients, 146 embryos were recovered (6.1±1.0embryos/donor; range: 0-18). Embryos were transferred non-surgically into 111 recipients (83 single and 28 twin embryo transfers). Pregnancy rate at 21 days and 5 months was 55% (61/111) and 45% (50/111), respectively. Finally, a total of 46 recipients delivered a live calf. These results document the utility of embryo transfer using high milk producing dromedaries as donors. Copyright © 2012 Elsevier B.V. All rights reserved.
Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas
2016-03-04
The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.
Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas
2016-01-01
The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications. PMID:26940260
NASA Astrophysics Data System (ADS)
Zolina, Olga; Simmer, Clemens; Kapala, Alice; Mächel, Hermann; Gulev, Sergey; Groisman, Pavel
2014-05-01
We present new high resolution precipitation daily grids developed at Meteorological Institute, University of Bonn and German Weather Service (DWD) under the STAMMEX project (Spatial and Temporal Scales and Mechanisms of Extreme Precipitation Events over Central Europe). Daily precipitation grids have been developed from the daily-observing precipitation network of DWD, which runs one of the World's densest rain gauge networks comprising more than 7500 stations. Several quality-controlled daily gridded products with homogenized sampling were developed covering the periods 1931-onwards (with 0.5 degree resolution), 1951-onwards (0.25 degree and 0.5 degree), and 1971-2000 (0.1 degree). Different methods were tested to select the best gridding methodology that minimizes errors of integral grid estimates over hilly terrain. Besides daily precipitation values with uncertainty estimates (which include standard estimates of the kriging uncertainty as well as error estimates derived by a bootstrapping algorithm), the STAMMEX data sets include a variety of statistics that characterize temporal and spatial dynamics of the precipitation distribution (quantiles, extremes, wet/dry spells, etc.). Comparisons with existing continental-scale daily precipitation grids (e.g., CRU, ECA E-OBS, GCOS) which include considerably less observations compared to those used in STAMMEX, demonstrate the added value of high-resolution grids for extreme rainfall analyses. These data exhibit spatial variability pattern and trends in precipitation extremes, which are missed or incorrectly reproduced over Central Europe from coarser resolution grids based on sparser networks. The STAMMEX dataset can be used for high-quality climate diagnostics of precipitation variability, as a reference for reanalyses and remotely-sensed precipitation products (including the upcoming Global Precipitation Mission products), and for input into regional climate and operational weather forecast models. We will present numerous application of the STAMMEX grids spanning from case studies of the major Central European floods to long-term changes in different precipitation statistics, including those accounting for the alternation of dry and wet periods and precipitation intensities associated with prolonged rainy episodes.
A content analysis of tweets about high-potency marijuana.
Cavazos-Rehg, Patricia A; Sowles, Shaina J; Krauss, Melissa J; Agbonavbare, Vivian; Grucza, Richard; Bierut, Laura
2016-09-01
"Dabbing" involves heating extremely concentrated forms of marijuana to high temperatures and inhaling the resulting vapor. We studied themes describing the consequences of using highly concentrated marijuana by examining the dabbing-related content on Twitter. Tweets containing dabbing-related keywords were collected from 1/1-1/31/2015 (n=206,854). A random sample of 5000 tweets was coded for content according to pre-determined categories about dabbing-related behaviors and effects experienced using a crowdsourcing service. An examination of tweets from the full sample about respiratory effects and passing out was then conducted by selecting tweets with relevant keywords. Among the 5000 randomly sampled tweets, 3540 (71%) were related to dabbing marijuana concentrates. The most common themes included mentioning current use of concentrates (n=849; 24%), the intense high and/or extreme effects from dabbing (n=763; 22%) and excessive/heavy dabbing (n=517; 15%). Extreme effects included both physiological (n=124/333; 37%) and psychological effects (n=55/333; 17%). The most common physiologic effects, passing out (n=46/333; 14%) and respiratory effects (n=30/333; 9%), were then further studied in the full sample of tweets. Coughing was the most common respiratory effect mentioned (n=807/1179; 68%), and tweeters commonly expressed dabbing with intentions to pass out (416/915; 45%). This study adds to the limited understanding of marijuana concentrates and highlights self-reported physical and psychological effects from this type of marijuana use. Future research should further examine these effects and the potential severity of health consequences associated with concentrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Griffiths, Silja Torvik; Aukland, Stein Magnus; Markestad, Trond; Eide, Geir Egil; Elgen, Irene; Craven, Alexander R; Hugdahl, Kenneth
2014-10-01
The purpose of the study was to investigate a possible association between brain activation in functional magnetic resonance imaging scans, cognition and school performance in extremely preterm children and term born controls. Twenty eight preterm and 28 term born children were scanned while performing a working memory/selective attention task, and school results from national standardized tests were collected. Brain activation maps reflected difference in cognitive skills but not in school performance. Differences in brain activation were found between children born preterm and at term, and between high and low performers in cognitive tests. However, the differences were located in different brain areas. The implication may be that lack of cognitive skills does not alone explain low performance due to prematurity. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Dvornyk, Volodymyr; Jahan, Akhee Sabiha
2012-01-01
Cyanobacteria are among the most ancient organisms known to have circadian rhythms. The cpmA gene is involved in controlling the circadian output signal. We studied polymorphism and divergence of this gene in six populations of a stress-tolerant cyanobacterium, Chroococcidiopsis sp., sampled in extreme habitats across the globe. Despite high haplotype diversity (0.774), nucleotide diversity of cpmA is very low (π = 0.0034): the gene appears to be even more conserved than housekeeping genes. Even though the populations were sampled thousands kilometers apart, they manifested virtually no genetic differentiation at this locus (FST = 0.0228). Using various tests for neutrality, we determined that evolution of cpmA significantly departures from the neutral model and is governed by episodic positive selection. PMID:22844070
Hart-Cooper, William M.; Zhao, Chen; Triano, Rebecca M.; ...
2014-11-28
The effect of host structure on the selectivity and mechanism of intramolecular Prins reactions is evaluated using K 12Ga 4L 6 tetrahedral catalysts. The host structure was varied by modifying the structure of the chelating moieties and the size of the aromatic spacers. While variation in chelator substituents was generally observed to affect changes in rate but not selectivity, changing the host spacer afforded differences in efficiency and product diastereoselectivity. An extremely high number of turnovers (up to 840) was observed. Maximum rate accelerations were measured to be on the order of 10 5, which numbers among the largest magnitudesmore » of transition state stabilization measured with a synthetic host-catalyst. Host/guest size effects were observed to play an important role in host-mediated enantioselectivity.« less
Bandarian, Fatemeh; Daneshpour, Maryam Sadat; Hedayati, Mehdi; Naseri, Mohsen; Azizi, Fereidoun
2016-01-01
Apolipoprotein A2 (APOA2) is the second major apolipoprotein of the high-density lipoprotein cholesterol (HDL-C). The study aim was to identify APOA2 gene variation in individuals within two extreme tails of HDL-C levels and its relationship with HDL-C level. This cross-sectional survey was conducted on participants from Tehran Glucose and Lipid Study (TLGS) at Research Institute for Endocrine Sciences, Tehran, Iran from April 2012 to February 2013. In total, 79 individuals with extreme low HDL-C levels (≤5th percentile for age and gender) and 63 individuals with extreme high HDL-C levels (≥95th percentile for age and gender) were selected. Variants were identified using DNA amplification and direct sequencing. Screen of all exons and the core promoter region of APOA2 gene identified nine single nucleotide substitutions and one microsatellite; five of which were known and four were new variants. Of these nine variants, two were common tag single nucleotide polymorphisms (SNPs) and seven were rare SNPs. Both exonic substitutions were missense mutations and caused an amino acid change. There was a significant association between the new missense mutation (variant Chr.1:16119226, Ala98Pro) and HDL-C level. None of two common tag SNPs of rs6413453 and rs5082 contributes to the HDL-C trait in Iranian population, but a new missense mutation in APOA2 in our population has a significant association with HDL-C.
NASA Astrophysics Data System (ADS)
Vartanyan, T.; Polishchuk, V.; Sargsyan, A.; Krasteva, A.; Cartaleva, St.; Todorov, G.
2018-03-01
Linear and nonlinear absorption spectra of 133Cs vapor confined in an extremely thin cell were computed via iterations with respect to the resonance radiation intensity. When the incident radiation intensity is low, the transient polarization of the atoms that undergo frequent collisions with the cell walls leads to sub-Doppler features in the absorption spectra. Higher incident radiation intensities result in the appearance of velocity-selective optical pumping resonances. The theory developed agrees quantitatively with the experimental findings.
Vasudeva, R; Deeming, D C; Eady, P E
2014-09-01
The outcome of post-copulatory sexual selection is determined by a complex set of interactions between the primary reproductive traits of two or more males and their interactions with the reproductive traits of the female. Recently, a number of studies have shown the primary reproductive traits of both males and females express phenotypic plasticity in response to the thermal environment experienced during ontogeny. However, how plasticity in these traits affects the dynamics of sperm competition remains largely unknown. Here, we demonstrate plasticity in testes size, sperm size and sperm number in response to developmental temperature in the bruchid beetle Callosobruchus maculatus. Males reared at the highest temperature eclosed at the smallest body size and had the smallest absolute and relative testes size. Males reared at both the high- and low-temperature extremes produced both fewer and smaller sperm than males reared at intermediate temperatures. In the absence of sperm competition, developmental temperature had no effect on male fertility. However, under conditions of sperm competition, males reared at either temperature extreme were less competitive in terms of sperm offence (P(2)), whereas those reared at the lowest temperature were less competitive in terms of sperm defence (P(1)). This suggests the developmental pathways that regulate the phenotypic expression of these ejaculatory traits are subject to both natural and sexual selection: natural selection in the pre-ejaculatory environment and sexual selection in the post-ejaculatory environment. In nature, thermal heterogeneity during development is commonplace. Therefore, we suggest the interplay between ecology and development represents an important, yet hitherto underestimated component of male fitness via post-copulatory sexual selection. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Simons, Jessica M.; Maybery, Murray T.; Leung, Doris; Ng, Honey L. H.; Whitehouse, Andrew J. O.
2015-01-01
The Extreme Male Brain (EMB) theory posits that autistic traits are linked to excessive exposure to testosterone in utero. While findings from a number of studies are consistent with this theory, other studies have produced contradictory results. For example, some findings suggest that rather than being linked to hypermasculinization for males, or defeminization for females, elevated levels of autistic traits are instead linked to more androgynous physical features. The current study provided further evidence relevant to the EMB and androgony positions by comparing groups of males selected for high or low scores on the Autism-spectrum Quotient (AQ) as to the rated masculinity of their faces and voices, and comparable groups of females as to the rated femininity of their faces and voices. The voices of High-AQ males were rated as more masculine than those of Low-AQ males, while the faces of High-AQ females were rated as less feminine than those of Low-AQ females. There was no effect of AQ group on femininity ratings for female voices or on masculinity ratings for male faces. The results thus provide partial support for a link between high levels of autistic-like traits and hypermasculinization for males and defeminization for females, consistent with the EMB theory. PMID:26186689
Estimation of potential runoff-contributing areas in Kansas using topographic and soil information
Juracek, Kyle E.
1999-01-01
Digital topographic and soil information was used to estimate potential runoff-contributing areas throughout Kansas. The results then were used to compare 91 selected subbasins representing soil, slope, and runoff variability. Potential runoff-contributing areas were estimated collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented very high, high, moderate, low, very low, and extremely low potential runoff. For infiltration-excess overland flow, various rainfall-intensity and soil-permeability values were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that very low potential-runoff conditions provided the best ability to distinguish the 91 selected subbasins as having relatively high or low potential runoff. The majority of the subbasins with relatively high potential runoff are located in the eastern half of the State where soil permeability generally is less and precipitation typically is greater. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the State.
Kiyotsuka, Yohei; Acharya, Hukum P; Katayama, Yuji; Hyodo, Tomonori; Kobayashi, Yuichi
2008-05-01
The picolinoxy group was found to be an extremely powerful leaving group for allylic substitution with aryl nucleophiles derived from ArMgBr and CuBr*Me2S. The substitution proceeds with anti SN2' pathway and with high chirality transfer. The electron-withdrawing effect of the pyridyl group and chelation to MgBr2 are likely the origin of success. Results suggesting these effects were obtained.
THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laag, Edward; Croft, Steve; Canalizo, Gabriela
2010-12-15
This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels)more » on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.« less
Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...
Developing a healthcare law library.
Sconyers, J M
1998-01-01
Legal materials are expensive, bulky, and extremely time sensitive. Selecting the appropriate means of ensuring easy access to easily-retrievable, timely legal materials is of extreme importance to any lawyer. The author gives an overview of the various means of retrieving necessary research, including the strengths and weaknesses of each of the various options.
Schramm, H.L.; Gerard, P.D.; Gill, D.A.
2003-01-01
We measured the importance of 24 fishing site attributes to Mississippi freshwater anglers. Factor analysis identified four multiattribute factors as important in the selection of fishing location: CLEAN ENVIRONMENT CATCH, COST AND HARVEST and AMENITIES AND SAFETY. In general, the importance of site selection factors differed little among anglers grouped by preferred type of fish, preferred fishing location (lakes and reservoirs, rivers and streams, ponds, or reservoir tailwaters), usual manner of fishing (engine-powered boat, nonpowered boat, or shore), or change in fishing frequency. COST AND HARVEST was more important to anglers with high harvest orientations. We found low correlations between site selection factor importance scores and angler age, fishing frequency, fishing expenditures, or fishing motivation factors. We suggest that the general lack of differences in site selection factors among angler groups indicates that management strategies to improve fishing site attributes should benefit all angler groups. Clean fishing environments and awareness of the availability of desired sport fishes were "very" or "extremely" important to fishing site selection by more than 70% of Mississippi freshwater anglers and should be priority management objectives.
Adaptation to metals in widespread and endemic plants.
Shaw, A J
1994-01-01
Bryophytes, including the mosses, liverworts, and hornworts, occur in a variety of habitats with high concentrations of metals and have other characteristics that are advantageous for studies of metal tolerance. Mosses may evolve genetically specialized, metal-tolerant races less frequently than flowering plants. Some species of mosses appear to have inherently high levels of metal tolerance even in individuals that have not been subjected to natural selection in contaminated environments. Scopelophila cataractae, one of the so-called copper mosses, not only tolerates extremely high concentrations of metals in its substrates, but requires these substrates for optimum growth. This species should be included in mechanistic studies of tolerance at the cellular and molecular levels. PMID:7713025
Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhichao; Lustig, William P.; Zhang, Jingming
In this paper, we designed and synthesized a new luminescent metal–organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin–LMOF interactions, employing theoretical methods. Finally, possible electron andmore » energy transfer mechanisms are discussed.« less
Effective Detection of Mycotoxins by a Highly Luminescent Metal–Organic Framework
Hu, Zhichao; Lustig, William P.; Zhang, Jingming; ...
2015-12-11
In this paper, we designed and synthesized a new luminescent metal–organic framework (LMOF). LMOF-241 is highly porous and emits strong blue light with high efficiency. We demonstrate for the first time that very fast and extremely sensitive optical detection can be achieved, making use of the fluorescence quenching of an LMOF material. The compound is responsive to Aflatoxin B1 at parts per billion level, which makes it the best performing luminescence-based chemical sensor to date. We studied the electronic properties of LMOF-241 and selected mycotoxins, as well as the extent of mycotoxin–LMOF interactions, employing theoretical methods. Finally, possible electron andmore » energy transfer mechanisms are discussed.« less
Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations.
Lin, Fang-yu; Huang, Zhu; Lu, Ning; Chen, Wei; Fang, Hui; Han, Wei
2016-03-01
Functional studies have suggested the important role of early growth response 1 (EGR1) and Laminin α2-chain (LAMA2) in human eye development. Genetic studies have reported a significant association of the single nucleotide polymorphism (SNP) in the LAMA2 gene with myopia. This study aimed to evaluate the association of the tagging SNPs (tSNPs) in the EGR1 and LAMA2 genes with high myopia in two independent Han Chinese populations. Four tSNPs (rs11743810 in the EGR1 gene; rs2571575, rs9321170, and rs1889891 in the LAMA2 gene) were selected, according to the HapMap database (http://hapmap.ncbi.nlm.nih.gov), and were genotyped using the ligase detection reaction (LDR) approach for 167 Han Chinese nuclear families with extremely highly myopic offspring (<-10.0 diopters) and an independent group with 485 extremely highly myopic cases (<-10.0 diopters) and 499 controls. Direct sequencing was used to confirm the LDR results in twenty randomly selected subjects. Family-based association analysis was performed using the family-based association test (FBAT) software package (Version 1.5.5). Population-based association analysis was performed using the Chi-square test. The association analysis power was estimated using online software (http://design.cs.ucla.edu). The FBAT demonstrated that all four tSNPs tested did not show association with high myopia (P>0.05). Haplotype analysis of tSNPs in the LAMA2 genes also did not show a significant association (P>0.05). Meanwhile, population-based association analysis also showed no significant association results with high myopia (P>0.05). On the basis of our family- and population-based analyses for the Han Chinese population, we did not find positive association signals of the four SNPs in the LAMA2 and EGR1 genes with high myopia.
2013-01-01
Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130
Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.; Verbael, David J.
1995-01-01
An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.
Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules
NASA Technical Reports Server (NTRS)
Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.
1987-01-01
Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.
Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Verbael, D.J.
1995-10-17
An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.
Potential Use of Agile Methods in Selected DoD Acquisitions: Requirements Development and Management
2014-04-01
understanding of common Agile meth- ods, particularly Scrum and eXtreme Programming. For those unfamiliar with the basics of Agile development, the... Scrum (namely, the concepts of product owner, product backlog and self- organized teams) and eXtreme Programming (epics and user stories). These concepts...also been adopted as a requirements specification mechanism by many teams using Scrum , even if those teams don’t use other aspects of eXtreme
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Method of achieving the controlled release of thermonuclear energy
Brueckner, Keith A.
1986-01-01
A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Prisoner's dilemma posed by fitness-associated recombination strategies.
Wexler, Ydo; Rokhlenko, Oleg
2007-07-07
Genetic recombination is a central and repeated topic of study in the evolution of life. However, along with the influence of recombination on evolution, we understand surprisingly little of how selection shapes the nature of recombination. One explanation for recombination is that it allows organisms to escape from perilous situations where they experience very low fitness. As a corollary, it has been suggested that selection should favor recombination at low fitness and not at high fitness (fitness-associated recombination, FAR), and theory suggests that such strategies can indeed be selected. Here we develop models to further investigate the evolution of FAR. Consistent with previous works, we find that FAR can invade and dominate over a strategy of uniform recombination that is independent of fitness. However, our simulation results suggest that extreme FAR strategies, known as group-elitism, are not necessarily superior to other FAR strategies. Moreover, we argue that FAR domination will often occur with a net loss of mean population fitness. Interestingly, this suggests that the strategy of not recombining at high fitness will sometimes be analogous to a defector strategy from the famous "prisoner's dilemma" game: a selfish strategy that is selected but leads to a loss of mean fitness for all players.
Not looking yourself: The cost of self-selecting photographs for identity verification.
White, David; Burton, Amy L; Kemp, Richard I
2016-05-01
Photo-identification is based on the premise that photographs are representative of facial appearance. However, previous studies show that ratings of likeness vary across different photographs of the same face, suggesting that some images capture identity better than others. Two experiments were designed to examine the relationship between likeness judgments and face matching accuracy. In Experiment 1, we compared unfamiliar face matching accuracy for self-selected and other-selected high-likeness images. Surprisingly, images selected by previously unfamiliar viewers - after very limited exposure to a target face - were more accurately matched than self-selected images chosen by the target identity themselves. Results also revealed extremely low inter-rater agreement in ratings of likeness across participants, suggesting that perceptions of image resemblance are inherently unstable. In Experiment 2, we test whether the cost of self-selection can be explained by this general disagreement in likeness judgments between individual raters. We find that averaging across rankings by multiple raters produces image selections that provide superior identification accuracy. However, benefit of other-selection persisted for single raters, suggesting that inaccurate representations of self interfere with our ability to judge which images faithfully represent our current appearance. © 2015 The British Psychological Society.
Sung, Min Jae; Yoon, Seongwon; Kwon, Soon-Ki; Kim, Yun-Hi; Chung, Dae Sung
2016-11-16
A push-pull-type donor copolymer, named PP-TPD, was synthesized with the Suzuki coupling reaction using 6H-phenanthro[1,10,9,8-cdefg]carbazole (PCZ) as the donor unit and 1,3-bis(5-bromothiophen-2-yl)-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (TPD) as the acceptor unit. The synthesized PP-TPD was systematically investigated in terms of crystallinity and thermal, electrical, electrochemical, and optical properties. PP-TPD revealed green-selective absorption with a narrow full width at half-maximum of 138 nm. Green-selective organic photodiodes (OPDs) were constructed using PP-TPD as the green-absorbing donor and ZnO as the nonabsorbing acceptor material. The fabricated OPDs exhibited an extremely low dark current of 0.68 nA/cm 2 at -5 V and a high detectivity above 10 12 Jones at 550 nm. Moreover, they showed a sufficiently high 3-dB frequency and a linear dynamic range, similar to those of ideal-operating OPDs. The origin and physics background of the observed low dark current and high detectivity are discussed in detail.
Tripathi, Pooja; Muth, Theodore R.
2017-01-01
Agrobacterium tumefaciens mediated T-DNA integration is a common tool for plant genome manipulation. However, there is controversy regarding whether T-DNA integration is biased towards genes or randomly distributed throughout the genome. In order to address this question, we performed high-throughput mapping of T-DNA-genome junctions obtained in the absence of selection at several time points after infection. T-DNA-genome junctions were detected as early as 6 hours post-infection. T-DNA distribution was apparently uniform throughout the chromosomes, yet local biases toward AT-rich motifs and T-DNA border sequence micro-homology were detected. Analysis of the epigenetic landscape of previously isolated sites of T-DNA integration in Kanamycin-selected transgenic plants showed an association with extremely low methylation and nucleosome occupancy. Conversely, non-selected junctions from this study showed no correlation with methylation and had chromatin marks, such as high nucleosome occupancy and high H3K27me3, that correspond to three-dimensional-interacting heterochromatin islands embedded within euchromatin. Such structures may play a role in capturing and silencing invading T-DNA. PMID:28742090
Tancredi, T; Temussi, P A; Picone, D; Amodeo, P; Tomatis, R; Salvadori, S; Marastoni, M; Santagada, V; Balboni, G
1991-05-01
The message domain of dermorphin (Tyr-D-Ala-Phe), a natural mu-opioid heptapeptide, has long been considered the main cause of the high mu selectivity of this peptide and of its analogues. The recent discovery, in the skin of Phyllomedusa sauvagei (i.e., the same natural source of dermorphin) and of Phyllomedusa bicolor of deltorphins, challenges this belief. Deltorphins, in fact, are three heptapeptides characterized by a message domain typical of mu-selective peptides, but endowed of an extremely high delta selectivity, the highest of all natural opioid peptides. A conformational analysis of dermorphin and deltorphins, based on nmr studies in DMSO and cryoprotective mixtures and internal energy calculations, showed that the enormous differences in receptor selectivity can be interpreted on the basis of receptor models for mu and delta opioids that recognize the same beta-turn in the N-terminal part, but discriminate for the conformation and polarity of the C-terminal part. Here we present the synthesis, biological activity, and conformational analysis in solution of three deltorphin analogues with very similar constitution, but with different net charge, different location of negative residues, or even without negative residues, which confirm these hypotheses and show that His4 can play a specific structural role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portone, Teresa; Niederhaus, John Henry; Sanchez, Jason James
This report introduces the concepts of Bayesian model selection, which provides a systematic means of calibrating and selecting an optimal model to represent a phenomenon. This has many potential applications, including for comparing constitutive models. The ideas described herein are applied to a model selection problem between different yield models for hardened steel under extreme loading conditions.
Sand-Jensen, Kaj
2014-01-01
Background The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. Scope The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Conclusions Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10–14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2–3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3– uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by structural substances in large Nostoc colonies cause lower quantum efficiency and assimilation number and higher light compensation points than in unicells and other aquatic macrophytes. Extremely low growth and mortality rates of N. zetterstedtii reflect stress-selected adaptation to nutrient- and DIC-poor temperate lakes, while N. pruniforme exhibits a mixed ruderal- and stress-selected strategy with slow growth and year-long survival prevailing in sub-Arctic lakes and faster growth and shorter longevity in temperate lakes. Nostoc commune and its close relative N. flagelliforme have a mixed stress–disturbance strategy not found among higher plants, with stress selection to limiting water and nutrients and disturbance selection in quiescent dry or frozen stages. Despite profound ecological differences between species, active growth of temperate specimens is mostly restricted to the same temperature range (0–35 °C; maximum at 25 °C). Future studies should aim to unravel the processes behind the extreme persistence and low metabolism of Nostoc species under ambient resource supply on sediment and soil surfaces. PMID:24966352
A Review: Fundamental Aspects of Silicate Mesoporous Materials
ALOthman, Zeid A.
2012-01-01
Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.
Hume, Benjamin C. C.; Voolstra, Christian R.; Arif, Chatchanit; D’Angelo, Cecilia; Burt, John A.; Eyal, Gal; Loya, Yossi; Wiedenmann, Jörg
2016-01-01
Coral communities in the Persian/Arabian Gulf (PAG) withstand unusually high salinity levels and regular summer temperature maxima of up to ∼35 °C that kill conspecifics elsewhere. Due to the recent formation of the PAG and its subsequent shift to a hot climate, these corals have had only <6,000 y to adapt to these extreme conditions and can therefore inform on how coral reefs may respond to global warming. One key to coral survival in the world’s warmest reefs are symbioses with a newly discovered alga, Symbiodinium thermophilum. Currently, it is unknown whether this symbiont originated elsewhere or emerged from unexpectedly fast evolution catalyzed by the extreme environment. Analyzing genetic diversity of symbiotic algae across >5,000 km of the PAG, the Gulf of Oman, and the Red Sea coastline, we show that S. thermophilum is a member of a highly diverse, ancient group of symbionts cryptically distributed outside the PAG. We argue that the adjustment to temperature extremes by PAG corals was facilitated by the positive selection of preadapted symbionts. Our findings suggest that maintaining the largest possible pool of potentially stress-tolerant genotypes by protecting existing biodiversity is crucial to promote rapid adaptation to present-day climate change, not only for coral reefs, but for ecosystems in general. PMID:27044109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less
Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme; ...
2017-01-01
As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less
Tilapia and human CLIC2 structures are highly conserved.
Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam
2018-01-08
Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.
Choi, Won Jun; Lee, Hyuk Woo; Kim, Hea Ok; Chinn, Moshe; Gao, Zhan-Guo; Patel, Amit; Jacobson, Kenneth A.; Moon, Hyung Ryong; Jung, Young Hoon; Jeong, Lak Shin
2009-01-01
On the basis of a bioisosteric rationale, 4′-thionucleoside analogues of IB-MECA, which is a potent and selective A3 adenosine receptor agonist (AR), were synthesized from d-gulonic acid γ-lactone. The 4′-thio analogue (5h) of IB-MECA showed extremely high binding affinity (Ki = 0.25 nM) at the human A3AR and was more potent than IB-MECA (Ki = 1.4 nM). Bulky substituents at the 5′-uronamide position, such as cyclohexyl and 2- methylbenzyl, in this series of 2-H nucleoside derivatives were tolerated in A3AR binding, although small alkyl analogues were more potent. PMID:19879151
The Planetary and Space Simulation Facilities at DLR Cologne
NASA Astrophysics Data System (ADS)
Rabbow, Elke; Parpart, André; Reitz, Günther
2016-06-01
Astrobiology strives to increase our knowledge on the origin, evolution and distribution of life, on Earth and beyond. In the past centuries, life has been found on Earth in environments with extreme conditions that were expected to be uninhabitable. Scientific investigations of the underlying metabolic mechanisms and strategies that lead to the high adaptability of these extremophile organisms increase our understanding of evolution and distribution of life on Earth. Life as we know it depends on the availability of liquid water. Exposure of organisms to defined and complex extreme environmental conditions, in particular those that limit the water availability, allows the investigation of the survival mechanisms as well as an estimation of the possibility of the distribution to and survivability on other celestial bodies of selected organisms. Space missions in low Earth orbit (LEO) provide access for experiments to complex environmental conditions not available on Earth, but studies on the molecular and cellular mechanisms of adaption to these hostile conditions and on the limits of life cannot be performed exclusively in space experiments. Experimental space is limited and allows only the investigation of selected endpoints. An additional intensive ground based program is required, with easy to access facilities capable to simulate space and planetary environments, in particular with focus on temperature, pressure, atmospheric composition and short wavelength solar ultraviolet radiation (UV). DLR Cologne operates a number of Planetary and Space Simulation facilities (PSI) where microorganisms from extreme terrestrial environments or known for their high adaptability are exposed for mechanistic studies. Space or planetary parameters are simulated individually or in combination in temperature controlled vacuum facilities equipped with a variety of defined and calibrated irradiation sources. The PSI support basic research and were recurrently used for pre-flight test programs for several astrobiological space missions. Parallel experiments on ground provided essential complementary data supporting the scientific interpretation of the data received from the space missions.
NASA Technical Reports Server (NTRS)
Daly, M.; Sridhar, R.; Richmond, R.
1999-01-01
Deinococcus radiodurans is an extremophile in more than one defined way. First it is extreme in its resistance to freeze drying. Second it is probably uniquely extreme on Earth in its resistance to ionizing radiation. The polyextremophilic capacity of D. radiodurans will be considered. The selection pressures on Mars will then be considered in relation to D. radiodurans in order to support a hypothesis that if microbial life exists on Mars, then it likely includes polyextremophiles.
Adaptations to local environments in modern human populations.
Jeong, Choongwon; Di Rienzo, Anna
2014-12-01
After leaving sub-Saharan Africa around 50000-100000 years ago, anatomically modern humans have quickly occupied extremely diverse environments. Human populations were exposed to further environmental changes resulting from cultural innovations, such as the spread of farming, which gave rise to new selective pressures related to pathogen exposures and dietary shifts. In addition to changing the frequency of individual adaptive alleles, natural selection may also shape the overall genetic architecture of adaptive traits. Here, we review recent advances in understanding the genetic architecture of adaptive human phenotypes based on insights from the studies of lactase persistence, skin pigmentation and high-altitude adaptation. These adaptations evolved in parallel in multiple human populations, providing a chance to investigate independent realizations of the evolutionary process. We suggest that the outcome of adaptive evolution is often highly variable even under similar selective pressures. Finally, we highlight a growing need for detecting adaptations that did not follow the classical sweep model and for incorporating new sources of genetic evidence such as information from ancient DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phenotypic and Genetic Overlap between Autistic Traits at the Extremes of the General Population
ERIC Educational Resources Information Center
Ronald, Angelica; Happe, Francesca; Price, Thomas S.; Baron-Cohen, Simon; Plomin, Robert
2006-01-01
Objective: To investigate children selected from a community sample for showing extreme autistic-like traits and to assess the degree to which these individual traits--social impairments (SIs), communication impairments (CIs), and restricted repetitive behaviors and interests (RRBIs)--are caused by genes and environments, whether all of them are…
[The use of a detector of the extremely weak radiation as a variometer of gravitation field].
Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A
2001-01-01
It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.
Extremely Long-Lived Stigmas Allow Extended Cross-Pollination Opportunities in a High Andean Plant
Torres-Díaz, Cristian; Gómez-González, Susana; Stotz, Gisela C.; Torres-Morales, Patricio; Paredes, Brayam; Pérez-Millaqueo, Matías; Gianoli, Ernesto
2011-01-01
High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.), just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min). Although pollinator visitation rate significantly differed between populations, they were not translated into differences in achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than that of open pollinated plants (26.3±2.8 days vs. 10.1±2.2, respectively), which gives support to the increased pollination probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that xenogamous breeding systems and mechanisms to increase pollination opportunities can be selected in high-elevation ecosystems. PMID:21573159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarley, Brooke A.; Manero, Albert; Cotelo, Jose
2017-01-01
Selective laser melting (SLM) is an additive manufacturing process that uses laser scanning to achieve melting and solidification of a metal powder bed. This process, when applied to develop high temperature material systems, holds great promise for more efficient manufacturing of turbine components that withstand extreme temperatures, heat fluxes, and high mechanical stresses associated with engine environments. These extreme operational conditions demand stringent tolerances and an understanding of the material evolution under thermal loading. This work presents a real-time approach to elucidating the evolution of precipitate phases in SLM Inconel 718 (IN718) under high temperatures using high-energy synchrotron x-ray diffraction.more » Four representative samples (taken along variable build height) were studied in room temperature conditions. Two samples were studied as-processed (samples 1 and 4) and two samples after different thermal treatments (samples 2 and 3). The as-processed samples were found to contain greater amounts of weakening phase, δ. Precipitation hardening of Sample 2 reduced the detectable volume of δ, while also promoting growth of γ00 in the γ matrix. Inversely, solution treatment of Sample 3 produced an overall decrease in precipitate phases. High-temperature, in-situ synchrotron scans during ramp-up, hold, and cool down of two different thermal cycles show the development of precipitate phases. Sample 1 was held at 870°C and subsequently ramped up to 1100°C, during which the high temperature instability of strengthening precipitate, γ00, was seen. γ00 dissolution occurred after 15 minutes at 870°C and was followed by an increase of δ-phase. Sample 4 was held at 800°C and exhibited growth of γ00 after 20 minutes at this temperature. These experiments use in-situ observations to understand the intrinsic thermal effect of the SLM process and the use of heat treatment to manipulate the phase composition of SLM IN718.« less
Adaptations to Climate-Mediated Selective Pressures in Humans
Hancock, Angela M.; Witonsky, David B.; Alkorta-Aranburu, Gorka; Beall, Cynthia M.; Gebremedhin, Amha; Sukernik, Rem; Utermann, Gerd; Pritchard, Jonathan K.; Coop, Graham; Di Rienzo, Anna
2011-01-01
Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans. PMID:21533023
Digital Filtering of Three-Dimensional Lower Extremity Kinematics: an Assessment
Sinclair, Jonathan; Taylor, Paul John; Hobbs, Sarah Jane
2013-01-01
Errors in kinematic data are referred to as noise and are an undesirable portion of any waveform. Noise is typically removed using a low-pass filter which removes the high frequency components of the signal. The selection of an optimal frequency cut-off is very important when processing kinematic information and a number of techniques exists for the determination of an optimal frequency cut-off. Despite the importance of cut-off frequency to the efficacy of kinematic analyses there is currently a paucity of research examining the influence of different cut-off frequencies on the resultant 3-D kinematic waveforms and discrete parameters. Twenty participants ran at 4.0 m•s−1 as lower extremity kinematics in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. The data were filtered at a range of cut-off frequencies and the discrete kinematic parameters were examined using repeated measures ANOVA’s. The similarity between the raw and filtered waveforms were examined using intra-class correlations. The results show that the cut-off frequency has a significant influence on the discrete kinematic measure across displacement and derivative information in all three planes of rotation. Furthermore, it was also revealed that as the cut-off frequency decreased the attenuation of the kinematic waveforms became more pronounced, particularly in the coronal and transverse planes at the second derivative. In conclusion, this investigation provides new information regarding the influence of digital filtering on lower extremity kinematics and re-emphasizes the importance of selecting the correct cut-off frequency. PMID:24511338
Concept Study Report: Extreme-Ultraviolet Imaging Spectrometer Solar-B
NASA Technical Reports Server (NTRS)
Doschek, George, A.; Brown, Charles M.; Davila, Joseph M.; Dere, Kenneth P.; Korendyke, Clarence M.; Mariska, John T.; Seely, John F.
1999-01-01
We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.
NASA Technical Reports Server (NTRS)
Munasinghe, L.; Jun, T.; Rind, D. H.
2012-01-01
Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.
Evaluation of GCMs in the context of regional predictive climate impact studies.
NASA Astrophysics Data System (ADS)
Kokorev, Vasily; Anisimov, Oleg
2016-04-01
Significant improvements in the structure, complexity, and general performance of earth system models (ESMs) have been made in the recent decade. Despite these efforts, the range of uncertainty in predicting regional climate impacts remains large. The problem is two-fold. Firstly, there is an intrinsic conflict between the local and regional scales of climate impacts and adaptation strategies, on one hand, and larger scales, at which ESMs demonstrate better performance, on the other. Secondly, there is a growing understanding that majority of the impacts involve thresholds, and are thus driven by extreme climate events, whereas accent in climate projections is conventionally made on gradual changes in means. In this study we assess the uncertainty in projecting extreme climatic events within a region-specific and process-oriented context by examining the skills and ranking of ESMs. We developed a synthetic regionalization of Northern Eurasia that accounts for the spatial features of modern climatic changes and major environmental and socio-economical impacts. Elements of such fragmentation could be considered as natural focus regions that bridge the gap between the spatial scales adopted in climate-impacts studies and patterns of climate change simulated by ESMs. In each focus region we selected several target meteorological variables that govern the key regional impacts, and examined the ability of the models to replicate their seasonal and annual means and trends by testing them against observations. We performed a similar evaluation with regard to extremes and statistics of the target variables. And lastly, we used the results of these analyses to select sets of models that demonstrate the best performance at selected focus regions with regard to selected sets of target meteorological parameters. Ultimately, we ranked the models according to their skills, identified top-end models that "better than average" reproduce the behavior of climatic parameters, and eliminated the outliers. Since the criteria of selecting the "best" models are somewhat loose, we constructed several regional ensembles consisting of different number of high-ranked models and compared results from these optimized ensembles with observations and with the ensemble of all models. We tested our approach in specific regional application of the terrestrial Russian Arctic, considering permafrost and Artic biomes as key regional climate-dependent systems, and temperature and precipitation characteristics governing their state as target meteorological parameters. Results of this case study are deposited on the web portal www.permafrost.su/gcms
Pazos, Elena; Garcia-Algar, Manuel; Penas, Cristina; Nazarenus, Moritz; Torruella, Arnau; Pazos-Perez, Nicolas; Guerrini, Luca; Vázquez, M Eugenio; Garcia-Rico, Eduardo; Mascareñas, José L; Alvarez-Puebla, Ramon A
2016-11-02
Blood-based biomarkers (liquid biopsy) offer extremely valuable tools for the noninvasive diagnosis and monitoring of tumors. The protein c-MYC, a transcription factor that has been shown to be deregulated in up to 70% of human cancers, can be used as a robust proteomic signature for cancer. Herein, we developed a rapid, highly specific, and sensitive surface-enhanced Raman scattering (SERS) assay for the quantification of c-MYC in real blood samples. The sensing scheme relies on the use of specifically designed hybrid plasmonic materials and their bioderivatization with a selective peptidic receptor modified with a SERS transducer. Peptide/c-MYC recognition events translate into measurable alterations of the SERS spectra associated with a molecular reorientation of the transducer, in agreement with the surface selection rules. The efficiency of the sensor is demonstrated in cellular lines, healthy donors and a cancer patient.
Selective removal of cesium by ammonium molybdophosphate - polyacrylonitrile bead and membrane.
Ding, Dahu; Zhang, Zhenya; Chen, Rongzhi; Cai, Tianming
2017-02-15
The selective removal of radionuclides with extremely low concentrations from environmental medium remains a big challenge. Ammonium molybdophosphate possess considerable selectivity towards cesium ion (Cs + ) due to the specific ion exchange between Cs + and NH 4 + . Ammonium molybdophosphate - polyacrylonitrile (AMP-PAN) membrane was successfully prepared for the first time in this study. Efficient removal of Cs + (95.7%, 94.1% and 91.3% of 1mgL -1 ) from solutions with high ionic strength (400mgL -1 of Na + , Ca 2+ or K + ) was achieved by AMP-PAN composite. Multilayer chemical adsorption process was testified through kinetic and isotherm studies. The estimated maximum adsorption capacities even reached 138.9±21.3mgg -1 . Specifically, the liquid film diffusion was identified as the rate-limiting step throughout the removal process. Finally, AMP-PAN membrane could eliminate Cs + from water effectively through the filtration adsorption process. Copyright © 2016 Elsevier B.V. All rights reserved.
Valley-selective optical Stark effect in monolayer WS2
NASA Astrophysics Data System (ADS)
Gedik, Nuh
Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.
NASA Astrophysics Data System (ADS)
Bréda, Nathalie; Badeau, Vincent
2008-09-01
The aim of this paper is to illustrate how some extreme events could affect forest ecosystems. Forest tree response can be analysed using dendroecological methods, as tree-ring widths are strongly controlled by climatic or biotic events. Years with such events induce similar tree responses and are called pointer years. They can result from extreme climatic events like frost, a heat wave, spring water logging, drought or insect damage… Forest tree species showed contrasting responses to climatic hazards, depending on their sensitivity to water shortage or temperature hardening, as illustrated from our dendrochronological database. For foresters, a drought or a pest disease is an extreme event if visible and durable symptoms are induced (leaf discolouration, leaf loss, perennial organs mortality, tree dieback and mortality). These symptoms here are shown, lagging one or several years behind a climatic or biotic event, from forest decline cases in progress since the 2003 drought or attributed to previous severe droughts or defoliations in France. Tree growth or vitality recovery is illustrated, and the functional interpretation of the long lasting memory of trees is discussed. A coupled approach linking dendrochronology and ecophysiology helps in discussing vulnerability of forest stands, and suggests management advices in order to mitigate extreme drought and cope with selective mortality.
Kim, Jongin; Park, Hyeong-jun
2016-01-01
The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128
Persistent pulmonary hypertension of the newborn.
Nair, P M C; Bataclan, Maria Flordeliz A
2004-06-01
This article attempts to define a complicated, yet not rare disease of the neonate, which presents with extreme hypoxemia due to increased pulmonary vascular resistance, resulting in diversion of the pulmonary venous blood through persistent fetal channels, namely ductus arteriosus and foramen ovale. Pathophysiology, diagnostic approach and the various modalities of management are analyzed. Persistent pulmonary hypertension of the newborn is multi-factorial, which is reflected in the management as well. These babies are extremely labile to hypoxia and should be stabilized with minimum handling. One hundred percent oxygen and ventilation are the mainstay of treatment. The role of hyperventilation, alkalinization, various non-specific vasodilators such as tolazoline, magnesium sulphate, selective vasodilators such as inhaled nitric oxide, adenosine and the role of high frequency oscillatory ventilation and extra corporeal membrane oxygenation are discussed. With the newer modalities of management, the outlook has improved with mortality of less than 20% and fewer long-term deficits.
Isolation of Coherent Synchrotron Emission During Relativistic Laser Plasma Interactions
NASA Astrophysics Data System (ADS)
Dromey, B.; Rykovanov, S. G.; Lewis, C. L. S.; Zepf, M.
Coherent Synchrotron Emission (CSE) from relativistic laser plasmas (Pukhov et al., Plas Phys Control Fusion 52:124039, 2010; Dromey et al., Nat Phys 8:804-808, 2012; Dromey et al., New J Phys 15:015025, 2013) has recently been identified as a unique platform for the generation of coherent extreme ultraviolet (XUV) and X-Ray radiation with clear potential for bright attosecond pulse production. Exploiting this potential requires careful selection of interaction geometry, spectral wavelength range and target characteristics to allow the generation of high fidelity single attosecond pulses. In the laboratory the first step on this road is to study the individual mechanisms driving the emission of coherent extreme ultraviolet and X-Ray radiation during laser solid interactions in isolation. Here we show how interactions can be tailored to permit the unambiguous observation of coherent synchrotron emission (CSE) and the implications of this geometry for the resulting harmonic spectrum over the duration of the interaction.
A complex multi-notch astronomical filter to suppress the bright infrared sky.
Bland-Hawthorn, J; Ellis, S C; Leon-Saval, S G; Haynes, R; Roth, M M; Löhmannsröben, H-G; Horton, A J; Cuby, J-G; Birks, T A; Lawrence, J S; Gillingham, P; Ryder, S D; Trinh, C
2011-12-06
A long-standing and profound problem in astronomy is the difficulty in obtaining deep near-infrared observations due to the extreme brightness and variability of the night sky at these wavelengths. A solution to this problem is crucial if we are to obtain the deepest possible observations of the early Universe, as redshifted starlight from distant galaxies appears at these wavelengths. The atmospheric emission between 1,000 and 1,800 nm arises almost entirely from a forest of extremely bright, very narrow hydroxyl emission lines that varies on timescales of minutes. The astronomical community has long envisaged the prospect of selectively removing these lines, while retaining high throughput between them. Here we demonstrate such a filter for the first time, presenting results from the first on-sky tests. Its use on current 8 m telescopes and future 30 m telescopes will open up many new research avenues in the years to come.
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2011-01-01
The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.
Super Dwarf Wheat for Growth in Confined Spaces
NASA Technical Reports Server (NTRS)
Bugbee, Bruce
2011-01-01
USU-Perigee is a dwarf red spring wheat that is a hybrid of a high-yield early tall wheat (USU-Apogee) and a low-yield, extremely short wheat that has poor agronomic characteristics. USU-Perigee was selected for its extremely short height (.0.3 m) and high yield . characteristics that make it suitable for growth in confined spaces in controlled environments. Other desirable characteristics include rapid development and resistance to a leaf-tip necrosis, associated with calcium deficiency, that occurs in other wheat cultivars under rapid-growth conditions (particularly, continuous light). Heads emerge after only 21 days of growth in continuous light at a constant temperature of 25 C. In tests, USU-Perigee was found to outyield other full dwarf (defined as <0.4 m tall) wheat cultivars: The yield advantage at a constant temperature of 23 C was found to be about 30 percent. Originally intended as a candidate food crop to be grown aboard spacecraft on long missions, this cultivar could also be grown in terrestrial growth chambers and could be useful for plant-physiology and -pathology studies.
NASA Astrophysics Data System (ADS)
Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin
2017-05-01
By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.
Metal resistance in acidophilic microorganisms and its significance for biotechnologies.
Dopson, Mark; Holmes, David S
2014-10-01
Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.
Hu, Ying; Ren, Jie; Peng, Zhao; Umana, Arnoldo A; Le, Ha; Danilova, Tatiana; Fu, Junjie; Wang, Haiyan; Robertson, Alison; Hulbert, Scot H; White, Frank F; Liu, Sanzhen
2018-01-01
Goss's wilt (GW) of maize is caused by the Gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn) and has spread in recent years throughout the Great Plains, posing a threat to production. The genetic basis of plant resistance is unknown. Here, a simple method for quantifying disease symptoms was developed and used to select cohorts of highly resistant and highly susceptible lines known as extreme phenotypes (XP). Copy number variation (CNV) analyses using whole genome sequences of bulked XP revealed 141 genes containing CNV between the two XP groups. The CNV genes include the previously identified common rust resistant locus rp1 . Multiple Rp1 accessions with distinct rp1 haplotypes in an otherwise susceptible accession exhibited hypersensitive responses upon inoculation. GW provides an excellent system for the genetic dissection of diseases caused by closely related subspecies of C. michiganesis . Further work will facilitate breeding strategies to control GW and provide needed insight into the resistance mechanism of important related diseases such as bacterial canker of tomato and bacterial ring rot of potato.
Pieber, Bartholomäus; Glasnov, Toma; Kappe, C Oliver
2015-03-09
One of the rare alternative reagents for the reduction of carbon-carbon double bonds is diimide (HN=NH), which can be generated in situ from hydrazine hydrate (N2H4⋅H2O) and O2. Although this selective method is extremely clean and powerful, it is rarely used, as the rate-determining oxidation of hydrazine in the absence of a catalyst is relatively slow using conventional batch protocols. A continuous high-temperature/high-pressure methodology dramatically enhances the initial oxidation step, at the same time allowing for a safe and scalable processing of the hazardous reaction mixture. Simple alkenes can be selectively reduced within 10-20 min at 100-120 °C and 20 bar O2 pressure. The development of a multi-injection reactor platform for the periodic addition of N2H4⋅H2O enables the reduction of less reactive olefins even at lower reaction temperatures. This concept was utilized for the highly selective reduction of artemisinic acid to dihydroartemisinic acid, the precursor molecule for the semisynthesis of the antimalarial drug artemisinin. The industrially relevant reduction was achieved by using four consecutive liquid feeds (of N2H4⋅H2O) and residence time units resulting in a highly selective reduction within approximately 40 min at 60 °C and 20 bar O2 pressure, providing dihydroartemisinic acid in ≥93% yield and ≥95% selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
OPTIMAL TIME-SERIES SELECTION OF QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Nathaniel R.; Bloom, Joshua S.
2011-03-15
We present a novel method for the optimal selection of quasars using time-series observations in a single photometric bandpass. Utilizing the damped random walk model of Kelly et al., we parameterize the ensemble quasar structure function in Sloan Stripe 82 as a function of observed brightness. The ensemble model fit can then be evaluated rigorously for and calibrated with individual light curves with no parameter fitting. This yields a classification in two statistics-one describing the fit confidence and the other describing the probability of a false alarm-which can be tuned, a priori, to achieve high quasar detection fractions (99% completenessmore » with default cuts), given an acceptable rate of false alarms. We establish the typical rate of false alarms due to known variable stars as {approx}<3% (high purity). Applying the classification, we increase the sample of potential quasars relative to those known in Stripe 82 by as much as 29%, and by nearly a factor of two in the redshift range 2.5 < z < 3, where selection by color is extremely inefficient. This represents 1875 new quasars in a 290 deg{sup 2} field. The observed rates of both quasars and stars agree well with the model predictions, with >99% of quasars exhibiting the expected variability profile. We discuss the utility of the method at high redshift and in the regime of noisy and sparse data. Our time-series selection complements well-independent selection based on quasar colors and has strong potential for identifying high-redshift quasars for Baryon Acoustic Oscillations and other cosmology studies in the LSST era.« less
van Tienderen, Kaj M.; van der Meij, Sancia E. T.
2017-01-01
The effectiveness of migration in marine species exhibiting a pelagic larval stage is determined by various factors, such as ocean currents, pelagic larval stage duration and active habitat selection. Direct measurement of larval movements is difficult and, consequently, factors determining the gene flow patterns remain poorly understood for many species. Patterns of gene flow play a key role in maintaining genetic homogeneity in a species by dampening the effects of local adaptation. Coral-dwelling gall crabs (Cryptochiridae) are obligate symbionts of stony corals (Scleractinia). Preliminary data showed high genetic diversity on the COI gene for 19 Opecarcinus hypostegus specimens collected off Curaçao. In this study, an additional 176 specimens were sequenced and used to characterize the population structure along the leeward side of Curaçao. Extremely high COI genetic variation was observed, with 146 polymorphic sites and 187 unique haplotypes. To determine the cause of this high genetic diversity, various gene flow scenarios (geographical distance along the coast, genetic partitioning over depth, and genetic differentiation by coral host) were examined. Adaptive genetic divergence across Agariciidae host species is suggested to be the main cause for the observed high intra-specific variance, hypothesised as early signs of speciation in O. hypostegus. PMID:28079106
Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Mice Team
It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood). Impacts will be evaluated through a combination of techniques ranging from quantitative analyses through to expert judge- ment. Throughout the project, a continuing dialogue with stakeholders and end-users will be maintained.
Optimization of an on-board imaging system for extremely rapid radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry Kemmerling, Erica M.; Wu, Meng, E-mail: mengwu@stanford.edu; Yang, He
2015-11-15
Purpose: Next-generation extremely rapid radiation therapy systems could mitigate the need for motion management, improve patient comfort during the treatment, and increase patient throughput for cost effectiveness. Such systems require an on-board imaging system that is competitively priced, fast, and of sufficiently high quality to allow good registration between the image taken on the day of treatment and the image taken the day of treatment planning. In this study, three different detectors for a custom on-board CT system were investigated to select the best design for integration with an extremely rapid radiation therapy system. Methods: Three different CT detectors aremore » proposed: low-resolution (all 4 × 4 mm pixels), medium-resolution (a combination of 4 × 4 mm pixels and 2 × 2 mm pixels), and high-resolution (all 1 × 1 mm pixels). An in-house program was used to generate projection images of a numerical anthropomorphic phantom and to reconstruct the projections into CT datasets, henceforth called “realistic” images. Scatter was calculated using a separate Monte Carlo simulation, and the model included an antiscatter grid and bowtie filter. Diagnostic-quality images of the phantom were generated to represent the patient scan at the time of treatment planning. Commercial deformable registration software was used to register the diagnostic-quality scan to images produced by the various on-board detector configurations. The deformation fields were compared against a “gold standard” deformation field generated by registering initial and deformed images of the numerical phantoms that were used to make the diagnostic and treatment-day images. Registrations of on-board imaging system data were judged by the amount their deformation fields differed from the corresponding gold standard deformation fields—the smaller the difference, the better the system. To evaluate the registrations, the pointwise distance between gold standard and realistic registration deformation fields was computed. Results: By most global metrics (e.g., mean, median, and maximum pointwise distance), the high-resolution detector had the best performance but the medium-resolution detector was comparable. For all medium- and high-resolution detector registrations, mean error between the realistic and gold standard deformation fields was less than 4 mm. By pointwise metrics (e.g., tracking a small lesion), the high- and medium-resolution detectors performed similarly. For these detectors, the smallest error between the realistic and gold standard registrations was 0.6 mm and the largest error was 3.6 mm. Conclusions: The medium-resolution CT detector was selected as the best for an extremely rapid radiation therapy system. In essentially all test cases, data from this detector produced a significantly better registration than data from the low-resolution detector and a comparable registration to data from the high-resolution detector. The medium-resolution detector provides an appropriate compromise between registration accuracy and system cost.« less
Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT
Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster
2016-01-01
Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view. PMID:27694701
Lyu, Lingyun; Zeng, Xu; Yun, Jun; Wei, Feng; Jin, Fangming
2014-05-20
The "greenhouse effect" caused by the increasing atmospheric CO2 level is becoming extremely serious, and thus, the reduction of CO2 emissions has become an extensive, urgent, and long-term task. The dissociation of water for CO2 reduction with solar energy is regarded as one of the most promising methods for the sustainable development of the environment and energy. However, a high solar-to-fuel efficiency keeps a great challenge. In this work, the first observation of a highly effective, highly selective, and robust system of dissociating water for the reduction of carbon dioxide (CO2) into formic acid with metallic manganese (Mn) is reported. A considerably high formic acid yield of more than 75% on a carbon basis from NaHCO3 was achieved with 98% selectivity in the presence of simple commercially available Mn powder without the addition of any catalyst, and the proposed process is exothermic. Thus, this study may provide a promising method for the highly efficient dissociation of water for CO2 reduction by combining solar-driven thermochemistry with the reduction of MnO into Mn.
NASA Astrophysics Data System (ADS)
Odenweller, Adrian; Donner, Reik V.
2017-04-01
Over the last decade, complex network methods have been frequently used for characterizing spatio-temporal patterns of climate variability from a complex systems perspective, yielding new insights into time-dependent teleconnectivity patterns and couplings between different components of the Earth climate. Among the foremost results reported, network analyses of the synchronicity of extreme events as captured by the so-called event synchronization have been proposed to be powerful tools for disentangling the spatio-temporal organization of particularly extreme rainfall events and anticipating the timing of monsoon onsets or extreme floodings. Rooted in the analysis of spike train synchrony analysis in the neurosciences, event synchronization has the great advantage of automatically classifying pairs of events arising at two distinct spatial locations as temporally close (and, thus, possibly statistically - or even dynamically - interrelated) or not without the necessity of selecting an additional parameter in terms of a maximally tolerable delay between these events. This consideration is conceptually justified in case of the original application to spike trains in electroencephalogram (EEG) recordings, where the inter-spike intervals show relatively narrow distributions at high temporal sampling rates. However, in case of climate studies, precipitation extremes defined by daily precipitation sums exceeding a certain empirical percentile of their local distribution exhibit a distinctively different type of distribution of waiting times between subsequent events. This raises conceptual concerns if event synchronization is still appropriate for detecting interlinkages between spatially distributed precipitation extremes. In order to study this problem in more detail, we employ event synchronization together with an alternative similarity measure for event sequences, event coincidence rates, which requires a manual setting of the tolerable maximum delay between two events to be considered potentially related. Both measures are then used to generate climate networks from parts of the satellite-based TRMM precipitation data set at daily resolution covering the Indian and East Asian monsoon domains, respectively, thereby reanalysing previously published results. The obtained spatial patterns of degree densities and local clustering coefficients exhibit marked differences between both similarity measures. Specifically, we demonstrate that there exists a strong relationship between the fraction of extremes occurring at subsequent days and the degree density in the event synchronization based networks, suggesting that the spatial patterns obtained using this approach are strongly affected by the presence of serial dependencies between events. Given that a manual selection of the maximally tolerable delay between two events can be guided by a priori climatological knowledge and even used for systematic testing of different hypotheses on climatic processes underlying the emergence of spatio-temporal patterns of extreme precipitation, our results provide evidence that event coincidence rates are a more appropriate statistical characteristic for similarity assessment and network construction for climate extremes, while results based on event synchronization need to be interpreted with great caution.
NASA Astrophysics Data System (ADS)
Pureswaran, Deepa S.; Sullivan, Brian T.; Ayres, Matthew P.
2008-01-01
Aggregation via pheromone signalling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxical. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An alternative hypothesis is that aggregation behaviour dilutes the contribution of individuals to the trait under selection and reduces the efficacy of natural selection on pheromone production by individuals. We compared pheromone measurements from traditional hindgut extractions of female southern pine beetles with those obtained by aerating individuals till they died. Aerations showed greater total pheromone production than hindgut extractions, but coefficients of variation (CV) remained high (60-182%) regardless of collection technique. This leaves the puzzle of high variation unresolved. A novel but simple explanation emerges from considering bark beetle aggregation behaviour. The phenotype visible to natural selection is the collective pheromone plume from hundreds of colonisers. The influence of a single beetle on this plume is enhanced by high variation among individuals but constrained by large group sizes. We estimated the average contribution of an individual to the pheromone plume across a range of aggregation sizes and showed that large aggregation sizes typical in mass attacks limit the potential of natural selection because each individual has so little effect on the overall plume. Genetic variation in pheromone production could accumulate via mutation and recombination, despite strong effects of the pheromone plume on the fitness of individuals within the aggregation. Thus, aggregation behaviour, by limiting the efficacy of natural selection, can allow the persistence of extreme phenotypes in nature.
Global coastal flood hazard mapping
NASA Astrophysics Data System (ADS)
Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi
2017-04-01
Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.
Trends in hydrological extremes in the Senegal and the Niger Rivers
NASA Astrophysics Data System (ADS)
Wilcox, C.; Bodian, A.; Vischel, T.; Panthou, G.; Quantin, G.
2017-12-01
In recent years, West Africa has witnessed several floods of unprecedented magnitude. Although the evolution of hydrological extremes has been evaluated in the region to some extent, results lack regional coverage, significance levels, uncertainty estimations, model selection criteria, or a combination of the above. In this study, Generalized Extreme Value (GEV) distributions with and without various non-stationary temporal covariates are applied to annual maxima of daily discharge (AMAX) data sets in the Sudano-Guinean part of the Senegal River basin and in the Sahelian part of the Niger River basin. The data ranges from the 1950s to the 2010s. The two models of best fit most often selected (with an alpha=0.05 certainty level) were 1) a double-linear model for the central tendency parameter (μ) with stationary dispersion (σ) and 2) a double-linear model for both parameters. Change points are relatively consistent for the Senegal basin, with stations switching from a decreasing streamflow trend to an increasing streamflow trend in the early 1980s. In the Niger basin the trend in μ was generally positive with an increase in slope after the change point, but the change point location was less consistent. The study clearly demonstrates the significant trends in extreme discharge values in West Africa over the past six decades. Moreover, it proposes a clear methodology for comparing GEV models and selecting the best for use. The return levels generated from the chosen models can be applied to river basin management and hydraulic works sizing. The results provide a first evaluation of non-stationarity in extreme hydrological values in West Africa that is accompanied by significance levels, uncertainties, and non-stationary return level estimations .
Extreme Landfalling Atmospheric River Events in Arizona: Possible Future Changes
NASA Astrophysics Data System (ADS)
Singh, I.; Dominguez, F.
2016-12-01
Changing climate could impact the frequency and intensity of extreme atmospheric river events. This can have important consequences for regions like the Southwestern United Sates that rely upon AR-related precipitation for meeting their water demand and are prone to AR-related flooding. This study investigates the effects of climate change on extreme AR events in the Salt and Verde river basins in Central Arizona using a pseudo global warming method (PGW). First, the five most extreme events that affected the region were selected. High-resolution control simulations of these events using the Weather Research and Forecasting model realistically captured the magnitude and spatial distribution of precipitation. Subsequently, following the PGW approach, the WRF initial and lateral boundary conditions were perturbed. The perturbation signals were obtained from an ensemble of 9 General Circulation Models for two warming scenarios - Representative Concentration Pathway (RCP) 4.5 and RCP8.5. Several simulations were conducted changing the temperature and relative humidity fields. PGW simulations reveal that while the overall dynamics of the storms did not change significantly, there was marked strengthening of associated Integrated Vertical Transport (IVT) plumes. There was a general increase in the precipitation over the basins due to increased moisture availability, but heterogeneous spatial changes. Additionally, no significant changes in the strength of the pre-cold frontal low-level jet in the future simulations were observed.
NASA Astrophysics Data System (ADS)
McPartland, Conor; Ebeling, Harald; Roediger, Elke; Blumenthal, Kelly
2016-01-01
We investigate the observational signatures and physical origin of ram-pressure stripping (RPS) in 63 massive galaxy clusters at z = 0.3-0.7, based on images obtained with the Hubble Space Telescope. Using a training set of a dozen `jellyfish' galaxies identified earlier in the same imaging data, we define morphological criteria to select 211 additional, less obvious cases of RPS. Spectroscopic follow-up observations of 124 candidates so far confirmed 53 as cluster members. For the brightest and most favourably aligned systems, we visually derive estimates of the projected direction of motion based on the orientation of apparent compression shocks and debris trails. Our findings suggest that the onset of these events occurs primarily at large distances from the cluster core (>400 kpc), and that the trajectories of the affected galaxies feature high-impact parameters. Simple models show that such trajectories are highly improbable for galaxy infall along filaments but common for infall at high velocities, even after observational biases are accounted for, provided the duration of the resulting RPS events is ≲500 Myr. We thus tentatively conclude that extreme RPS events are preferentially triggered by cluster mergers, an interpretation that is supported by the disturbed dynamical state of many of the host clusters. This hypothesis implies that extreme RPS might occur also near the cores of merging poor clusters or even merging groups of galaxies. Finally, we present nine additional `jellyfish" galaxies at z > 0.3 discovered by us, thereby doubling the number of such systems known at intermediate redshift.
Bandarian, Fatemeh; Daneshpour, Maryam Sadat; Hedayati, Mehdi; Naseri, Mohsen; Azizi, Fereidoun
2016-01-01
Background: Apolipoprotein A2 (APOA2) is the second major apolipoprotein of the high-density lipoprotein cholesterol (HDL-C). The study aim was to identify APOA2 gene variation in individuals within two extreme tails of HDL-C levels and its relationship with HDL-C level. Methods: This cross-sectional survey was conducted on participants from Tehran Glucose and Lipid Study (TLGS) at Research Institute for Endocrine Sciences, Tehran, Iran from April 2012 to February 2013. In total, 79 individuals with extreme low HDL-C levels (≤5th percentile for age and gender) and 63 individuals with extreme high HDL-C levels (≥95th percentile for age and gender) were selected. Variants were identified using DNA amplification and direct sequencing. Results: Screen of all exons and the core promoter region of APOA2 gene identified nine single nucleotide substitutions and one microsatellite; five of which were known and four were new variants. Of these nine variants, two were common tag single nucleotide polymorphisms (SNPs) and seven were rare SNPs. Both exonic substitutions were missense mutations and caused an amino acid change. There was a significant association between the new missense mutation (variant Chr.1:16119226, Ala98Pro) and HDL-C level. Conclusion: None of two common tag SNPs of rs6413453 and rs5082 contributes to the HDL-C trait in Iranian population, but a new missense mutation in APOA2 in our population has a significant association with HDL-C. PMID:26590203
Energetics, scaling and sexual size dimorphism of spiders.
Grossi, B; Canals, M
2015-03-01
The extreme sexual size dimorphism in spiders has motivated studies for many years. In many species the male can be very small relative to the female. There are several hypotheses trying to explain this fact, most of them emphasizing the role of energy in determining spider size. The aim of this paper is to review the role of energy in sexual size dimorphism of spiders, even for those spiders that do not necessarily live in high foliage, using physical and allometric principles. Here we propose that the cost of transport or equivalently energy expenditure and the speed are traits under selection pressure in male spiders, favoring those of smaller size to reduce travel costs. The morphology of the spiders responds to these selective forces depending upon the lifestyle of the spiders. Climbing and bridging spiders must overcome the force of gravity. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. In wandering spiders with low population density and as a consequence few male-male interactions, high speed and low energy expenditure or cost of transport should be favored by natural selection. Pendulum mechanics show the advantages of long legs in spiders and their relationship with high speed, even in climbing and bridging spiders. Thus small size, compensated by long legs should be the expected morphology for a fast and mobile male spider.
Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems
NASA Astrophysics Data System (ADS)
Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.
2018-04-01
Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.
NASA Astrophysics Data System (ADS)
Helgert, Sebastian; Khodayar, Samiro
2017-04-01
In a warmer Mediterranean climate an increase in the intensity and frequency of extreme events like floods, droughts and extreme heat is expected. The ability to predict such events is still a great challenge and exhibits many uncertainties in the weather forecast and climate predictions. Thereby the missing knowledge about soil moisture-atmosphere interactions and their representation in models is identified as one of the main sources of uncertainty. In this context the soil moisture(SM) plays an important role in the partitioning of sensible and latent heat fluxes on the surface and consequently influences the boundary-layer stability and the precipitation formation. The aim of this research work is to assess the influence of soil moisture-atmosphere interactions on the initiation and development of extreme events in the western Mediterranean (WMED). In this respect the impact of realistic SM initialization on the model representation of extreme events is investigated. High-resolution simulations of different regions in the WMED, including various climate zones from moderate to arid climate, are conducted with the atmospheric COSMO (Consortium for Small-scale Modeling) model in the numerical weather prediction and climate mode. A multiscale temporal and spatial approach is used (days to years, 7km to 2.8km grid spacing). Observational data provided by the framework of the HYdrological cycle in the Mediterranean EXperiment (HyMeX) as well as satellite data such as precipitation from CMORPH (CPC MORPHing technique), evapotranspiration from Land Surface Analysis Satellite Applications Facility (LSA-SAF) and atmospheric moisture from MODIS (Moderate Resolution Imaging Spectroradiometer) are used for process understanding and model validation. To select extreme dry and wet periods the Effective Drought Index (EDI) is calculated. In these periods sensitivity studies of extreme SM initialization scenarios are performed to prove a possible impact of soil moisture on precipitation in the WMED. For the realistic SM initialization different state-of-art high-resolution SM products (25km up to 1km grid spacing) of the Soil Moisture Ocean Salinity mission (SMOS) are examined. A CDF-matching method is applied to reduce the bias between model and SMOS-satellite observation. Moreover, techniques to estimate the initial soil moisture profile from satellite data are tested.
Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori
2018-02-08
The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Magnetically induced orientation of mesochannels in mesoporous silica films at 30 tesla.
Yamauchi, Yusuke; Sawada, Makoto; Komatsu, Masaki; Sugiyama, Atsushi; Osaka, Tetsuya; Hirota, Noriyuki; Sakka, Yoshio; Kuroda, Kazuyuki
2007-12-03
We demonstrate the magnetically induced orientation of mesochannels in mesoporous silica films prepared with low-molecular-weight surfactants under an extremely high magnetic field of 30 T. This process is principally applicable to any type of surfactant that has magnetic anisotropy because such a high magnetic field provides sufficient magnetic energy for smooth magnetic orientation. Hexadecyltrimethylammonium bromide (CTAB) and polyoxyethylene-10-cetyl ether (Brij 56) were used as cationic and nonionic surfactants, respectively. According to XRD and cross-sectional TEM, mesochannels aligned perpendicular to the substrates were observed in films prepared with low-molecular-weight surfactants, although the effect was incomplete. The evolution of these types of films should lead to future applications such as highly sensitive chemical sensors and selective separation.
NASA Astrophysics Data System (ADS)
Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.
2018-01-01
Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.
NASA Astrophysics Data System (ADS)
Duband, D.
2009-09-01
It is important to remember that scientific research programs of the European Commission and contributors had implemented a multidisciplinary (geography, history, meteorology, climatology, hydrology, geomorphology, geology, paleohydrology, sociology, economy......) better knowledge and more understanding of the physical risk assessment of disastrous floods (particularly flash floods) with rising factors of vulnerability and perhaps climate change at the end of the XX1 century, in the triangular geographical area Zaragosa (Spain)-Orléans (France)-Firenze (Italy). With reference to historical floods events observed from last two centuries in Spain (Catalonia), France (Languedoc Roussillon - Provence Alpes Cote d’Azur-Corse-Rhone Alpes -Auvergne- Bourgogne) and in Italy (Ligurie - Piemont - Lombardie) we lay particular stress on a detailed understanding of the spatial and temporal scales of the physical dynamic process being at the origin of locals or extensive flash floods. This study requires to be based on the meteorology (atmospheric circulation patterns ,on west Europe- Atlantic and Mediterranean sea) responsible, with relief and sea surface temperature, of high precipitations (amounts, intensities), air temperature, discharges of high floods, observed in the past ,on large and coastal rivers. We will take example of the Rhone river catchments, in connexion with Po-Ebre-Loire-Seine rivers, based on the studies of thirty high historical floods occurred from 1840 to 2005, and characteristics of Oceanic and Mediterranean weather situations, sometime alternated. Since recent years we have the daily mean sea level pressure dataset (EMSLP) reconstructions for European-North Atlantic Region for the period 1850-2006. So it is now possible to allow us the selection in the complete meteorological dataset during 1950- 2009 period by an analog method (like operational daily applications from 1969, at Electricity of France) to select weather situations similar to historical daily situations responsible of extreme floods with larges discharges, with the conditional precipitations associated on catchments with god and up to date observations of precipitations (daily, hourly). This kind of complete studies would be very useful for: -Statistical-physical studies of extreme rainfall-flood events (peak discharge, volume), frequency-probability-uncertainty (GRADEX and SHADEX methodology), -Better forecasting of meteorological (precipitations) and hydrological (floods) events, during crisis situations, -better understanding of the historical variability in the past 2 centuries (atmospheric features, precipitations, discharges high/low), -Better adjustment of modelling simulation, -Better identification and probabilistic approach of uncertainties.
NASA Astrophysics Data System (ADS)
Kern, Anikó; Marjanović, Hrvoje; Barcza, Zoltán
2017-04-01
Extreme weather events frequently occur in Central Europe, affecting the state of the vegetation in large areas. Droughts and heat-waves affect all plant functional types, but the response of the vegetation is not uniform and depends on other parameters, plant strategies and the antecedent meteorological conditions as well. Meteorologists struggle with the definition of extreme events and selection of years that can be considered as extreme in terms of meteorological conditions due to the large variability of the meteorological parameters both in time and space. One way to overcome this problem is the definition of extreme weather based on its observed effect on plant state. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Leaf Area Index (LAI), the Fraction of Photosynthetically Active Radiation (FPAR) and the Gross Primary Production (GPP) are different measures of the land vegetation derived from remote sensing data, providing information about the plant state, but it is less known how weather anomalies affect these measures. We used the vegetation related official products created from the measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) on board satellite Terra to select and characterize the extreme years in Central European countries during the 2000-2016 time period. The applied Collection-6 MOD13 NDVI/EVI, MOD15 LAI/FPAR and MOD17 GPP datasets have 500 m × 500 m spatial resolution covering the region of the Carpathian-Basin. After quality and noise filtering (and temporal interpolation in case of MOD13) 8-day anomaly values were derived to investigate the different years. The freely available FORESEE meteorological database was used to study climate variability in the region. Daily precipitation and maximum/minimum temperature fields at 1/12° × 1/12° grid were resampled to the 8-day temporal and 500 m × 500 m spatial resolution of the MODIS products. To discriminate the different behavior of the various plant functional types MODIS (MCD12) and CORINE (CLC2012) land cover datasets were applied and handled together. Based on the determination of the reliable pixels with different plant types the response of broadleaf forests, coniferous forests, grasslands and croplands were discriminated and investigated. Characteristic time periods were selected based on the remote sensing data to define anomalies, and then the meteorological data were used to define critical time periods within the year that has the strongest effect on the observed anomalies. Similarities/dissimilarities between the behaviors of the different remotely sensed measures are also studied to elucidate the consistency of the indices. The results indicate that the diverse remote sensing indices typically co-vary but reveal strong plant functional type dependency. The study suggest that the selection of extreme years based on annual data is not the best choice, as shorter time periods within the years explain the anomalies to a higher degree than annual data. The results can be used to select anomalous years outside of the satellite era as well. Keywords: Remote sensing, meteorology; extreme years; MODIS, NDVI; EVI; LAI; FPAR; GPP; phenology
Molecular Eigensolution Symmetry Analysis and Fine Structure
Harter, William G.; Mitchell, Justin C.
2013-01-01
Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041
Wind data for wind driven plant. [site selection for optimal performance
NASA Technical Reports Server (NTRS)
Stodhart, A. H.
1973-01-01
Simple, averaged wind velocity data provide information on energy availability, facilitate generator site selection and enable appropriate operating ranges to be established for windpowered plants. They also provide a basis for the prediction of extreme wind speeds.
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Boghozian, T.; Chavez-Garcia, J.; Ellerby, D.; Fowler, M.; Gage, P.; Gasch, M.; Gonzales, G.; Kazemba, C.; Kellermann, C.;
2017-01-01
Future NASA robotic missions utilizing an entry system into Venus and the outer planets, results in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or AVCOAT. Previously, mission planners had to assume the use of fully dense carbon phenolic heatshields similar to what was flown on Pioneer Venus or Galileo. Carbon phenolic is a robust TPS material, however, its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. NASA has decided to invest in new technology development rather than invest in reviving carbon phenolic. The HEEET project, funded by STMD is maturing a game changing Woven Thermal Protection System technology. HEEET is a capability development project and is not tied to a single mission or destination, therefore, it is challenging to complete ground testing needed to demonstrate a capability that is much broader than any single mission or destination would require. This presentation will status HEEET progress. Near term infusion target for HEEET is the upcoming New Frontiers (NF-4) class of competitively selected Science Mission Directorate (SMD) missions for which it is incentivized.
Simulations of the Montréal urban heat island
NASA Astrophysics Data System (ADS)
Roberge, François; Sushama, Laxmi; Fanta, Gemechu
2017-04-01
The current population of Montreal is around 3.8 million and this number is projected to go up in the coming years to decades, which will lead to vast expansion of urban areas. It is well known that urban morphology impacts weather and climate, and therefore should be taken into consideration in urban planning. This is particularly important in the context of a changing climate, as the intensity and frequency of temperature extremes such as hot spells are projected to increase in future climate, and Urban Heat Island (UHI) can potentially raise already stressful temperatures during such events, which can have significant effects on human health and energy consumption. High-resolution regional climate model simulations can be utilized to understand better urban-weather/climate interactions in current and future climates, particularly the spatio-temporal characteristics of the Urban Heat Island and its impact on other weather/climate characteristics such as urban flows, precipitation etc. This paper will focus on two high-resolution (250 m) simulations performed with (1) the Canadian Land Surface Scheme (CLASS) and (2) CLASS and TEB (Town Energy Balance) model; TEB is a single layer urban canopy model and is used to model the urban fractions. The two simulations are performed over a domain covering Montreal for the 1960-2015 period, driven by atmospheric forcing data coming from a high-resolution Canadian Regional Climate Model (CRCM5) simulation, driven by ERA-Interim. The two simulations are compared to assess the impact of urban regions on selected surface fields and the simulation with both CLASS and TEB is then used to study the spatio-temporal characteristics of the UHI over the study domain. Some preliminary results from a coupled simulation, i.e. CRCM5+CLASS+TEB, for selected years, including extreme warm years, will also be presented.
Dobrinas, Maria; Crettol, Séverine; Oneda, Beatrice; Lahyani, Rachel; Rotger, Margalida; Choong, Eva; Lubomirov, Rubin; Csajka, Chantal; Eap, Chin B
2013-02-01
(S)-Methadone, metabolized mainly by CYP2B6, shows a wide interindividual variability in its pharmacokinetics and pharmacodynamics. Resequencing of the CYP2B6 gene was performed in 12 and 35 selected individuals with high (S)-methadone plasma exposure and low (S)-methadone plasma exposure, respectively, from a previously described cohort of 276 patients undergoing methadone maintenance treatment. Selected genetic polymorphisms were then analyzed in the complete cohort. The rs35303484 (*11; c136A>G; M46V) polymorphism was overrepresented in the high (S)-methadone level group, whereas the rs3745274 (*9; c516G>T; Q172H), rs2279344 (c822+183G>A), and rs8192719 (c1294+53C>T) polymorphisms were underrepresented in the low (S)-methadone level group, suggesting an association with decreased CYP2B6 activity. Conversely, the rs3211371 (*5; c1459C>T; R487C) polymorphism was overrepresented in the low-level group, indicating an increased CYP2B6 activity. A higher allele frequency was found in the high-level group compared with the low-level group for rs3745274 (*9; c516G>T; Q172H), rs2279343 (*4; c785A>G; K262R) (together representing CYP2B6*6), rs8192719 (c1294+53C>T), and rs2279344 (c822+183G>A), suggesting their involvement in decreased CYP2B6 activity. These results should be replicated in larger independent cohorts. Known genetic polymorphisms in CYP2B6 contribute toward explaining extreme (S)-methadone plasma levels observed in a cohort of patients following methadone maintenance treatment.
Mining lipolytic enzymes in community DNA from high Andean soils using a targeted approach.
Borda-Molina, Daniel; Montaña, José Salvador; Zambrano, María Mercedes; Baena, Sandra
2017-08-01
Microbial enrichments cultures are a useful strategy to speed up the search for enzymes that can be employed in industrial processes. Lipases have gained special attention because they show unique properties such as: broad substrate specificity, enantio- and regio-selectivity and stability in organic solvents. A major goal is to identify novel lipolytic enzymes from microorganisms living in cold extreme environments such as high Andean soils, of relevance to our study being their capability be used in industrial processes. Paramo and glacier soils from the Nevados National Park in Colombia were sampled and microbial communities enriched through a fed-batch fermentation using olive oil as an inductor substrate. After 15 days of enrichment under aerobic conditions, total DNA was extracted. Subsequently, metagenomic libraries were constructed in the cosmid vector pWEB-TNC™. After functional screening, twenty and eighteen lipolytic clones were obtained from Paramo and Glacier soil enrichments, respectively. Based on lipid hydrolysis halo dimensions, the clone (Gla1) from a glacier enrichment was selected. A gene related to lipolytic activity was subcloned to evaluate enzyme properties. Phylogenetic analysis of the identified gene showed that the encoded lipase belongs to the family GDSL from a Ralstonia-like species. Interestingly, the secreted enzyme exhibited stability at high temperature and alkaline conditions, specifically the preferred conditions at 80 °C and pH 9.0. Thus, with the identification of an enzyme with non-expected properties, in this study is shown the potential of extreme cold environments to be explored for new catalytic molecules, using current molecular biology techniques, with applications in industrial processes, which demand stability under harsh conditions.
Empirical Distributions of F ST from Large-Scale Human Polymorphism Data
Elhaik, Eran
2012-01-01
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection. PMID:23185452
Empirical distributions of F(ST) from large-scale human polymorphism data.
Elhaik, Eran
2012-01-01
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright's F(ST) that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F(ST) may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F(ST) analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F(ST) distribution closely follows an exponential distribution. Third, although the overall F(ST) distribution is similarly shaped (inverse J), F(ST) distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F(ST) of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F(ST) distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.
Inagaki, Elica; Farber, Alik; Kalish, Jeffrey A; Eslami, Mohammad H; Siracuse, Jeffrey J; Eberhardt, Robert T; Rybin, Denis V; Doros, Gheorghe; Hamburg, Naomi M
2018-04-12
Contemporary data on patients presenting with acute limb ischemia (ALI), who are selected for treatment with endovascular peripheral vascular interventions (PVI), are limited. Our study examined outcomes following endovascular PVI in patients with ALI by comparing with patients treated for chronic critical limb ischemia using a regional quality improvement registry. Of the 11 035 patients in the Vascular Study Group of New England PVI database (2010-2014), we identified 365 patients treated for lower extremity ALI who were 5:1 frequency matched (by procedure year and arterial segments treated) to 1808 patients treated for critical limb ischemia. ALI patients treated with PVI had high burden of atherosclerotic risk factors and were more likely to have had prior ipsilateral revascularizations. ALI patients were less likely to be treated with self-expanding stents and more likely to undergo thrombolysis than patients with critical limb ischemia. In multivariable analysis, ALI was associated with higher technical failure (odds ratio 1.7, 95% confidence interval, 1.1%-2.5%), increased rate of distal embolization (odds ratio 2.7, 95% confidence interval, 1.5%-4.9%), longer length of stay (means ratio 1.6, 95% confidence interval, 1.4%-1.8%), and higher in-hospital mortality (odds ratio 2.8, 95% confidence interval, 1.3%-5.9%). ALI was not associated with risk of major amputation or mortality at 1 year. In a multicenter cohort of patients treated with PVI, we found that ALI patients selected for treatment with endovascular techniques experienced greater short-term adverse events but similar long-term outcomes as their critical limb ischemia counterparts. Further studies are needed to refine the selection of ALI patients who are best served by PVI. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
The principle and application of new PCR Technologies
NASA Astrophysics Data System (ADS)
Yu, Miao; Cao, Yue; Ji, Yubin
2017-12-01
Polymerase chain reaction (PCR) is essentially a selective DNA amplification technique commonlyapplied for genetic testing and molecular diagnosis because of its high specificity and sensitivity.PCR technologies as the key of molecular biology, has realized that the qualitative detection of absolute quantitative has been changed. It has produced a variety of new PCR technologies, such as extreme PCR, photonic PCR, o-amplification at lower denaturation temperature PCR, nanoparticle PCR and so on. In this paper, the principle and application of PCR technologies are reviewed, and its development is prospected too.
Brown, R.G.
1984-01-01
The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.
Adolescent exposure to extremely violent movies.
Sargent, James D; Heatherton, Todd F; Ahrens, M Bridget; Dalton, Madeline A; Tickle, Jennifer J; Beach, Michael L
2002-12-01
To determine exposure of young adolescents to extremely violent movies. Cross-sectional school-based survey of middle school students at 15 randomly selected New Hampshire and Vermont middle schools. Each survey contained a unique list of 50 movies, randomly selected from 603 top box office hits from 1988 to 1999, 51 of which were determined by content analysis to contain extremely violent material. Movie titles only were listed, and adolescents were asked to indicate which ones they had seen. Each movie appeared on approximately 470 surveys. We calculated the percentage of students who had seen each movie for a representative subsample of the student population. We also examined characteristics associated with seeing at least one extremely violent movie. Complete survey information was obtained from 5,456 students. The sample was primarily white and equally distributed by gender. On average, extremely violent movies were seen by 28% of the students in the sample (range 4% to 66%). The most popular movie, Scream, was seen by two-thirds of students overall and over 40% of fifth-graders. Other movies with sexualized violent content were seen by many of these adolescents. Examples include The General's Daughter (rated R for "graphic images related to sexual violence including a rape scene and perverse sexuality") and Natural Born Killers (rated R for "extreme violence and graphic carnage, shocking images, language, and sexuality"), seen by 27% and 20%, respectively. Older students, males, those of lower socioeconomic status, and those with poorer school performance were all significantly more likely to have seen at least one extremely violent movie. This study documents widespread exposure of young adolescents to movies with brutal, and often sexualized, violence. Given that many of these films were marketed to teens, better oversight of the marketing practices of the film industry may be warranted.
NASA Astrophysics Data System (ADS)
Theissen, Christopher A.; West, Andrew A.
2017-04-01
We present the results of an investigation into the occurrence and properties (stellar age and mass trends) of low-mass field stars exhibiting extreme mid-infrared (MIR) excesses ({L}{IR}/{L}* ≳ 0.01). Stars for the analysis were initially selected from the Motion Verified Red Stars (MoVeRS) catalog of photometric stars with Sloan Digital Sky Survey, 2MASS, and WISE photometry and significant proper motions. We identify 584 stars exhibiting extreme MIR excesses, selected based on an empirical relationship for main-sequence W1-W3 colors. For a small subset of the sample, we show, using spectroscopic tracers of stellar age (Hα and Li I) and luminosity class, that the parent sample is most likely comprised of field dwarfs (≳ 1 Gyr). We also develop the Low-mass Kinematics (LoKi) galactic model to estimate the completeness of the extreme MIR excess sample. Using Galactic height as a proxy for stellar age, the completeness-corrected analysis indicates a distinct age dependence for field stars exhibiting extreme MIR excesses. We also find a trend with stellar mass (using r - z color as a proxy). Our findings are consistent with the detected extreme MIR excesses originating from dust created in a short-lived collisional cascade (≲100,000 years) during a giant impact between two large planetismals or terrestrial planets. These stars with extreme MIR excesses also provide support for planetary collisions being the dominant mechanism in creating the observed Kepler dichotomy (the need for more than a single mode, typically two, to explain the variety of planetary system architectures Kepler has observed), rather than different formation mechanisms.
Towards a Unified Framework in Hydroclimate Extremes Prediction in Changing Climate
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Yan, H.; Zarekarizi, M.; Bracken, C.
2016-12-01
Spatio-temporal analysis and prediction of hydroclimate extremes are of paramount importance in disaster mitigation and emergency management. The IPCC special report on managing the risks of extreme events and disasters emphasizes that the global warming would change the frequency, severity, and spatial pattern of extremes. In addition to climate change, land use and land cover changes also influence the extreme characteristics at regional scale. Therefore, natural variability and anthropogenic changes to the hydroclimate system result in nonstationarity in hydroclimate variables. In this presentation recent advancements in developing and using Bayesian approaches to account for non-stationarity in hydroclimate extremes are discussed. Also, implications of these approaches in flood frequency analysis, treatment of spatial dependence, the impact of large-scale climate variability, the selection of cause-effect covariates, with quantification of model errors in extreme prediction is explained. Within this framework, the applicability and usefulness of the ensemble data assimilation for extreme flood predictions is also introduced. Finally, a practical and easy to use approach for better communication with decision-makers and emergency managers is presented.
Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.
Vincenzi, Simone
2014-01-01
One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116
Crawford, H J; Brown, A M; Moon, C E
1993-11-01
Relations between sustained attentional and disattentional abilities and hypnotic susceptibility (Harvard Group Scale of Hypnotic Susceptibility: Form A; Stanford Hypnotic Susceptibility Scale: Form C) were examined in 38 low (0-3) and 39 highly (10-12) hypnotizable college students. Highs showed greater sustained attention on Necker cube and autokinetic movement tasks and self-reported greater absorption (Tellegen Absorption Scale) and extremely focused attentional (Differential Attentional Processes Inventory) styles. Hypnotizability was unrelated to dichotic selective attention (A. Karlin, 1979) and random number generation (C. Graham & F. J. Evans, 1977) tasks. Discriminant analysis correctly classified 74% of the lows and 69% of the highs. Results support H. J. Crawford and J. H. Gruzelier's (1992) neuropsychophysiological model of hypnosis that proposes that highly hypnotizable persons have a more efficient far frontolimbic sustained attentional and disattentional system.
Adsorption properties of thermally sputtered calcein film
NASA Astrophysics Data System (ADS)
Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.
2014-05-01
High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).
Kosior, Grzegorz; Steinnes, Eiliv; Samecka-Cymerman, Aleksandra; Lierhagen, Syverin; Kolon, Krzysztof; Dołhańczuk-Śródka, Agnieszka; Ziembik, Zbigniew
2017-03-01
The past uranium/polymetallic mining activities in the Sudety (SW Poland) left abandoned mines, pits, and dumps of waste rocks with trace elements and radionuclides which may erode or leach out and create a potential risk for the aquatic ecosystem, among others. In the present work four rivers affected by effluents from such mines were selected to evaluate the application of aquatic mosses for the bioindication of 56 elements. Naturally growing F. antipyretica and P. riparioides were compared with transplanted samples of the same species. The results demonstrate serious pollution of the examined rivers, especially with As, Ba, Fe, Mn, Pb, Ti, U and Zn, reaching extremely high concentrations in native moss samples. In the most polluted rivers native F. antipyretica and P. riparioides samples showed significantly higher concentrations of As, Ba, Cu, Fe, La, Nd, Ni, Pb, U and Zn than corresponding transplanted samples, whereas at less polluted sites a reverse situation was sometimes observed. Transplanted moss moved from clean to extremely polluted rivers probably protects itself against the accumulation of toxic elements by reducing their uptake. Selection of native or transplanted F. antipyretica and P. riparioides depended on the pollution load. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling
2018-03-01
Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.
Griffiths, Silja Torvik; Gundersen, Hilde; Neto, Emanuel; Elgen, Irene; Markestad, Trond; Aukland, Stein M; Hugdahl, Kenneth
2013-08-01
Extremely preterm (EPT)/extremely low-birth-weight (ELBW) children attaining school age and adolescence often have problems with executive functions such as working memory and selective attention. Our aim was to investigate a hypothesized difference in blood oxygen level-dependent (BOLD) activation during a selective attention-working memory task in EPT/ELBW children as compared with term-born controls. A regional cohort of 28 EPT/ELBW children and 28 term-born controls underwent functional magnetic resonance imaging (fMRI) scanning at 11 y of age while performing a combined Stroop n-back task. Group differences in BOLD activation were analyzed with Statistical Parametric Mapping 8 analysis software package, and reaction times (RTs) and response accuracy (RA) were compared in a multifactorial ANOVA test. The BOLD activation pattern in the preterm group involved the same areas (cingulate, prefrontal, and parietal cortexes), but all areas displayed significantly less activation than those in the control group, particularly when the cognitive load was increased. The RA results corresponded with the activation data in that the preterm group had significantly fewer correct responses. No group difference was found regarding RTs. Children born EPT/ELBW displayed reduced working memory and selective attention capacity as compared with term-born controls. These impairments had neuronal correlates with reduced BOLD activation in areas responsible for online stimulus monitoring, working memory, and cognitive control.
Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs
NASA Astrophysics Data System (ADS)
Jones, Suzy F.; Blain, Andrew W.; Assef, Roberto J.; Eisenhardt, Peter; Lonsdale, Carol; Condon, James; Farrah, Duncan; Tsai, Chao-Wei; Bridge, Carrie; Wu, Jingwen; Wright, Edward L.; Jarrett, Tom
2017-08-01
We investigate extremely luminous dusty galaxies in the environments around Wide-field Infrared Survey Explorer (WISE)-selected hot dust-obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ˜2-3 and ˜5-6, respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-infrared (mid-IR) colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find that the star formation rate densities are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5-arcmin scale maps.
Quantitative genetic models of sexual selection by male choice.
Nakahashi, Wataru
2008-09-01
There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.
Nakaya, Masato; Kuwahara, Yuji; Aono, Masakazu; Nakayama, Tomonobu
2011-04-01
The nanoscale control of reversible chemical reactions, the polymerization and depolymerization between C60 molecules, has been investigated. Using a scanning tunneling microscope (STM), the polymerization and depolymerization can be controlled at designated positions in ultrathin films of C60 molecules. One of the two chemical reactions can be selectively induced by controlling the sample bias voltage (V(s)); the application of negative and positive values of V(s) results in polymerization and depolymerization, respectively. The selectivity between the two chemical reactions becomes extremely high when the thickness of the C60 film increases to more than three molecular layers. We conclude that STM-induced negative and positive electrostatic ionization are responsible for the control of the polymerization and depolymerization, respectively.
Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus
2014-12-01
Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Cell selection and characterization of a novel human endothelial cell specific nanobody.
Ahmadvand, Davoud; Rasaee, Mohammad J; Rahbarizadeh, Fatemeh; Kontermann, Roland E; Sheikholislami, Farzaneh
2009-05-01
Antibody-based targeting of angiogenesis and vascular targeting therapy of cancer are extremely attractive conceptually and open new important diagnostic and therapeutic opportunities. Compelling evidence suggests that CD105 represents an ideal target for anti-angiogenic therapy and its presence in solid tumor vasculature has prognostic value. Camelids produce functional antibodies devoid of light chains and constant heavy chain domain (CH1). Nanobodies, the antigen-binding fragments of such heavy chain antibodies, are therefore comprised in one single domain. The aim of this study was to explore the possibilities of using anti-endoglin nanobody as an angiogenesis inhibitor. The anti-CD105 nanobody (AR-86a) was isolated from immune library by selections on purified antigens and target cells. Immunocytochemistry and FACS analysis showed that the purified nanobody reacted specifically with human umbilical vein endothelial cells (HUVECs) but not with other cell lines such as MDA-MB-453, Mel III, T-47D, MCF-7, AGO and HT 29. Further, selected nanobody potently inhibited proliferation of human endothelial cells and formation of capillary-like structures. This selected high affinity anti-endoglin nanobody may offer high specificity towards tumors with reduced side effects, and may be less likely to elicit drug resistance compared to conventional therapy.
Xu, Xiaoyi; Li, Ao; Wang, Minghui
2015-08-01
Phosphorylation is a crucial post-translational modification, which regulates almost all cellular processes in life. It has long been recognised that protein phosphorylation has close relationship with diseases, and therefore many researches are undertaken to predict phosphorylation sites for disease treatment and drug design. However, despite the success achieved by these approaches, no method focuses on disease-associated phosphorylation sites prediction. Herein, for the first time the authors propose a novel approach that is specially designed to identify associations between phosphorylation sites and human diseases. To take full advantage of local sequence information, a combined feature selection method-based support vector machine (CFS-SVM) that incorporates minimum-redundancy-maximum-relevance filtering process and forward feature selection process is developed. Performance evaluation shows that CFS-SVM is significantly better than the widely used classifiers including Bayesian decision theory, k nearest neighbour and random forest. With the extremely high specificity of 99%, CFS-SVM can still achieve a high sensitivity. Besides, tests on extra data confirm the effectiveness and general applicability of CFS-SVM approach on a variety of diseases. Finally, the analysis of selected features and corresponding kinases also help the understanding of the potential mechanism of disease-phosphorylation relationships and guide further experimental validations.
Darvasi, A.; Soller, M.
1994-01-01
Selective genotyping is a method to reduce costs in marker-quantitative trait locus (QTL) linkage determination by genotyping only those individuals with extreme, and hence most informative, quantitative trait values. The DNA pooling strategy (termed: ``selective DNA pooling'') takes this one step further by pooling DNA from the selected individuals at each of the two phenotypic extremes, and basing the test for linkage on marker allele frequencies as estimated from the pooled samples only. This can reduce genotyping costs of marker-QTL linkage determination by up to two orders of magnitude. Theoretical analysis of selective DNA pooling shows that for experiments involving backcross, F(2) and half-sib designs, the power of selective DNA pooling for detecting genes with large effect, can be the same as that obtained by individual selective genotyping. Power for detecting genes with small effect, however, was found to decrease strongly with increase in the technical error of estimating allele frequencies in the pooled samples. The effect of technical error, however, can be markedly reduced by replication of technical procedures. It is also shown that a proportion selected of 0.1 at each tail will be appropriate for a wide range of experimental conditions. PMID:7896115
Probabilistic forecasting of extreme weather events based on extreme value theory
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert
2016-04-01
Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.
A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons.
Emlen, Douglas J; Warren, Ian A; Johns, Annika; Dworkin, Ian; Lavine, Laura Corley
2012-08-17
Many male animals wield ornaments or weapons of exaggerated proportions. We propose that increased cellular sensitivity to signaling through the insulin/insulin-like growth factor (IGF) pathway may be responsible for the extreme growth of these structures. We document how rhinoceros beetle horns, a sexually selected weapon, are more sensitive to nutrition and more responsive to perturbation of the insulin/IGF pathway than other body structures. We then illustrate how enhanced sensitivity to insulin/IGF signaling in a growing ornament or weapon would cause heightened condition sensitivity and increased variability in expression among individuals--critical properties of reliable signals of male quality. The possibility that reliable signaling arises as a by-product of the growth mechanism may explain why trait exaggeration has evolved so many different times in the context of sexual selection.
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
Error driven remeshing strategy in an elastic-plastic shakedown problem
NASA Astrophysics Data System (ADS)
Pazdanowski, Michał J.
2018-01-01
A shakedown based approach has been for many years successfully used to calculate the distributions of residual stresses in bodies made of elastic-plastic materials and subjected to cyclic loads exceeding their bearing capacity. The calculations performed indicated the existence of areas characterized by extremely high gradients and rapid changes of sign over small areas in the stress field sought. In order to account for these changes in sign, relatively dense nodal meshes had to be used during calculations in disproportionately large parts of considered bodies, resulting in unnecessary expenditure of computer resources. Therefore the effort was undertaken to limit the areas of high mesh densities and drive the mesh regeneration algorithm by selected error indicators.
NASA Astrophysics Data System (ADS)
Kuokstis, E.; Chen, C. Q.; Yang, J. W.; Shatalov, M.; Gaevski, M. E.; Adivarahan, V.; Khan, M. Asif
2004-04-01
Photoluminescence (PL) and optical gain (OG) spectra of a-plane GaN layers have been analyzed over a wide range of excitation intensities. The samples were fully coalesced layers grown by metalorganic chemical vapor deposition over r-plane sapphire substrates using epitaxial layer overgrowth (ELOG) and selective area lateral epitaxy (SALE) procedures. ELOG and SALE a-plane samples showed a strong stimulated emission line in backscattering-geometry PL spectra along with extremely high OG coefficient values (in SALE samples more than 2000 cm-1). Structures prepared with natural cleaved facet cavities based on these films were used to demonstrate optically pumped room-temperature lasing.
Ultra-efficient all-printed organic photodetectors
NASA Astrophysics Data System (ADS)
Kielar, Marcin; Dhez, Olivier; Hirsch, Lionel
2016-09-01
Organic photodetectors are able to transform plastic into intelligent surfaces making our daily life easier, smarter and more productive. The key element for a sensor is to reduce the dark current density in order to boost the limit of detection. The energetic requirements in order to select materials for ultra-high performance organic photodetectors are presented with the following experimental results: a detectivity of 3.36 × 1013 Jones has been achieved with an extremely low dark current density of 0.32 nA cm-2 and a responsivity as high as 0.34 A W-1. Flexible devices are all made at lowtemperature and with solution-processed materials. Their stability under operation is also presented.
Mirror therapy for motor function of the upper extremity in patients with stroke: A meta-analysis.
Zeng, Wen; Guo, Yonghong; Wu, Guofeng; Liu, Xueyan; Fang, Qian
2018-01-10
To evaluate the mean treatment effect of mirror therapy on motor function of the upper extremity in patients with stroke. Electronic databases, including the Cochrane Library, PubMed, MEDLINE, Embase and CNKSystematic, were searched for relevant studies published in English between 1 January 2007 and 22 June 2017. Randomized controlled trials and pilot randomized controlled trials that compared mirror therapy/mirror box therapy with other rehabilitation approaches were selected. Two authors independently evaluated the searched studies based on the inclusion/exclusion criteria and appraised the quality of included studies according to the criteria of the updated version 5.1.0 of the Cochrane Handbook for Systematic Review of Interventions. Eleven trials, with a total of 347 patients, were included in the meta-analysis. A moderate effect of mirror therapy (standardized mean difference 0.51, 95% confidence interval (CI) 0.29, 0.73) on motor function of the upper extremity was found. However, a high degree of heterogeneity (χ2 = 25.65, p = 0.004; I2 = 61%) was observed. The heterogeneity decreased a great deal (χ2 = 6.26, p = 0.62; I2 = 0%) after 2 trials were excluded though sensitivity analysis. Although the included studies had high heterogeneity, meta-analysis provided some evidence that mirror therapy may significantly improve motor function of the upper limb in patients with stroke. Further well-designed studies are needed.
Adherence evaluation of vented chest seals in a swine skin model.
Arnaud, Françoise; Maudlin-Jeronimo, Eric; Higgins, Adam; Kheirabadi, Bijan; McCarron, Richard; Kennedy, Daniel; Housler, Greggory
2016-10-01
Perforation of the chest (open pneumothorax) with and without lung injury can cause air accumulation in the chest, positive intrapleural pressure and lead to tension pneumothorax if untreated. The performance of chest seals to prevent tension physiology depends partially on their ability to adhere to the skin and seal the chest wound. Novel non-occlusive vented chest seals were assessed for their adhesiveness on skin of live swine under normal and extreme environmental conditions to simulate austere battlefield conditions. Chest seals were applied on the back of the swine on skin that was soiled by various environmental contaminants to represent battlefield situations. A peeling (horizontal rim peeling) and detachment and breaching (vertical pulling) techniques were used to quantify the adhesive performance of vented chest seals. Among eight initially selected vented seals, five (Bolin, Russell, Fast breathe, Hyfin and SAM) were further down-selected based on their superior adherence scores at ambient temperatures. The adherence of these seals was then assessed after approximately 17h storage at extreme cold (-19.5°C) and hot (71.5°C) temperatures. Adherence scores for peeling (above 90%) and detachment scores (less than 25%) were comparable for four vented chest seals when tested at ambient temperature, except for the Bolin seal which had higher breaching. Under extreme storage temperatures, adherence peeling scores were comparable to those at ambient temperatures for four chest seals. Scores were significantly lower for the Bolin seal at extreme temperatures. This seal also had the highest detachment and breaching scores. In contrast, the Russell, Fast breathe, Hyfin and SAM seals showed similar ability to stay air tight without breaching after hot storage. No significant difference was found in skin adherence of the five vented chest seals at ambient temperature and the four seals (Russell, Fast breathe, Hyfin and SAM) maintained superior adherence even after exposure to extreme temperatures compared to the Bolin. To select the most effective product from the 5 selected vented chest seals, further functional evaluation of the valve of these chest seals on a chest wound with the potential for tension in the pneumothorax or hemopneumothorax is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.
2011-01-01
Background Recovery patterns of upper extremity motor function have been described in several longitudinal studies, but most of these studies have had selected samples, short follow up times or insufficient outcomes on motor function. The general understanding is that improvements in upper extremity occur mainly during the first month after the stroke incident and little if any, significant recovery can be gained after 3-6 months. The purpose of this study is to describe the recovery of upper extremity function longitudinally in a non-selected sample initially admitted to a stroke unit with first ever stroke, living in Gothenburg urban area. Methods/Design A sample of 120 participants with a first-ever stroke and impaired upper extremity function will be consecutively included from an acute stroke unit and followed longitudinally for one year. Assessments are performed at eight occasions: at day 3 and 10, week 3, 4 and 6, month 3, 6 and 12 after onset of stroke. The primary clinical outcome measures are Action Research Arm Test and Fugl-Meyer Assessment for Upper Extremity. As additional measures, two new computer based objective methods with kinematic analysis of arm movements are used. The ABILHAND questionnaire of manual ability, Stroke Impact Scale, grip strength, spasticity, pain, passive range of motion and cognitive function will be assessed as well. At one year follow up, two patient reported outcomes, Impact on Participation and Autonomy and EuroQol Quality of Life Scale, will be added to cover the status of participation and aspects of health related quality of life. Discussion This study comprises a non-selected population with first ever stroke and impaired arm function. Measurements are performed both using traditional clinical assessments as well as computer based measurement systems providing objective kinematic data. The ICF classification of functioning, disability and health is used as framework for the selection of assessment measures. The study design with several repeated measurements on motor function will give us more confident information about the recovery patterns after stroke. This knowledge is essential both for optimizing rehabilitation planning as well as providing important information to the patient about the recovery perspectives. Trial registration ClinicalTrials.gov: NCT01115348 PMID:21612620
Parent-progeny sequencing indicates higher mutation rates in heterozygotes.
Yang, Sihai; Wang, Long; Huang, Ju; Zhang, Xiaohui; Yuan, Yang; Chen, Jian-Qun; Hurst, Laurence D; Tian, Dacheng
2015-07-23
Mutation rates vary within genomes, but the causes of this remain unclear. As many prior inferences rely on methods that assume an absence of selection, potentially leading to artefactual results, we call mutation events directly using a parent-offspring sequencing strategy focusing on Arabidopsis and using rice and honey bee for replication. Here we show that mutation rates are higher in heterozygotes and in proximity to crossover events. A correlation between recombination rate and intraspecific diversity is in part owing to a higher mutation rate in domains of high recombination/diversity. Implicating diversity per se as a cause, we find an ∼3.5-fold higher mutation rate in heterozygotes than in homozygotes, with mutations occurring in closer proximity to heterozygous sites than expected by chance. In a genome that is a patchwork of heterozygous and homozygous domains, mutations occur disproportionately more often in the heterozygous domains. If segregating mutations predispose to a higher local mutation rate, clusters of genes dominantly under purifying selection (more commonly homozygous) and under balancing selection (more commonly heterozygous), might have low and high mutation rates, respectively. Our results are consistent with this, there being a ten times higher mutation rate in pathogen resistance genes, expected to be under positive or balancing selection. Consequently, we do not necessarily need to evoke extremely weak selection on the mutation rate to explain why mutational hot and cold spots might correspond to regions under positive/balancing and purifying selection, respectively.
Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong
2010-05-14
This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.
Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu
2018-05-07
Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.
Separation of thorium ions from wolframite and scandium concentrates using graphene oxide.
Jankovský, Ondřej; Sedmidubský, David; Šimek, Petr; Klímová, Kateřina; Bouša, Daniel; Boothroyd, Chris; Macková, Anna; Sofer, Zdeněk
2015-10-14
The separation of rare metals from the ores and commercially available compounds is an important issue due to the need of their high purity in advanced materials and devices. Important examples of two highly important elements that co-exist in the ores are scandium and thorium. Scandium containing ores and consequently also commercially available scandium compounds often contain traces of thorium which is very difficult to separate. We used graphene oxide for the selective sorption of thorium ions from scandium and thorium mixtures originating from the mined ores as well as from commercially available scandium salts. Our results showed that graphene oxide has an extreme affinity towards thorium ions. After the sorption process the graphene oxide contained over 20 wt% of thorium while the amount of scandium sorbed on GO was very low. This phenomenon of high sorption selectivity of graphene oxide can be applied in industry for the purification of various chemicals containing scandium and for separation of thorium containing mixtures. Alternatively, this methodology can be used for preconcentration of thorium from low-grade ores and its further use in the new generation of nuclear reactors.
NASA Technical Reports Server (NTRS)
Kranz, David William
2010-01-01
The goal of this research project was be to compare and contrast the selected materials used in step measurements during pre-fits of thermal protection system tiles and to compare and contrast the accuracy of measurements made using these selected materials. The reasoning for conducting this test was to obtain a clearer understanding to which of these materials may yield the highest accuracy rate of exacting measurements in comparison to the completed tile bond. These results in turn will be presented to United Space Alliance and Boeing North America for their own analysis and determination. Aerospace structures operate under extreme thermal environments. Hot external aerothermal environments in high Mach number flights lead to high structural temperatures. The differences between tile heights from one to another are very critical during these high Mach reentries. The Space Shuttle Thermal Protection System is a very delicate and highly calculated system. The thermal tiles on the ship are measured to within an accuracy of .001 of an inch. The accuracy of these tile measurements is critical to a successful reentry of an orbiter. This is why it is necessary to find the most accurate method for measuring the height of each tile in comparison to each of the other tiles. The test results indicated that there were indeed differences in the selected materials used in step measurements during prefits of Thermal Protection System Tiles and that Bees' Wax yielded a higher rate of accuracy when compared to the baseline test. In addition, testing for experience level in accuracy yielded no evidence of difference to be found. Lastly the use of the Trammel tool over the Shim Pack yielded variable difference for those tests.
Characterization of single-domain antibodies with an engineered disulfide bond.
Hussack, Greg; Mackenzie, C Roger; Tanha, Jamshid
2012-01-01
Camelidae single-domain antibodies (VHHs) represent a unique class of emerging therapeutics. Similar to other recombinant antibody fragments (e.g., Fabs, scFvs), VHHs are amenable to library screening and selection, but benefit from superior intrinsic biophysical properties such as high refolding efficiency, high solubility, no tendency for aggregation, resistance to proteases and chemical denaturants, and high expression, making them ideal agents for antibody-based drug design. Despite these favorable biophysical characteristics, further improvements to VHH stability are desirable when considering applications in adverse environments like high heat, low humidity, pH extremes, and the acidic, protease-rich gastrointestinal tract. Recently, the introduction of a disulfide bond into the hydrophobic core of camelid VHHs increased antibody thermal and conformational stability. Here, we present additional protocols for characterizing the effects of the introduced disulfide bond on a panel of llama VHHs. Specifically, we employ mass spectrometry fingerprinting analysis of VHH peptides to confirm the presence of the introduced disulfide bond, size exclusion chromatography, and surface plasmon resonance to examine the effects on aggregation state and target affinity, and circular dichroism spectroscopy and protease digestion assays to assess the effects on thermal and proteolytic stability. The disulfide bond stabilization strategy can be incorporated into antibody library design and should lead to hyperstabilized single-domain antibodies (VHHs, VHs), and possibly Fabs and scFvs, if selection pressures such as denaturants or proteases are introduced during antibody selection.
Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael
2014-01-28
Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.
Sand-Jensen, Kaj
2014-07-01
The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10-14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2-3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3(-) uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by structural substances in large Nostoc colonies cause lower quantum efficiency and assimilation number and higher light compensation points than in unicells and other aquatic macrophytes. Extremely low growth and mortality rates of N. zetterstedtii reflect stress-selected adaptation to nutrient- and DIC-poor temperate lakes, while N. pruniforme exhibits a mixed ruderal- and stress-selected strategy with slow growth and year-long survival prevailing in sub-Arctic lakes and faster growth and shorter longevity in temperate lakes. Nostoc commune and its close relative N. flagelliforme have a mixed stress-disturbance strategy not found among higher plants, with stress selection to limiting water and nutrients and disturbance selection in quiescent dry or frozen stages. Despite profound ecological differences between species, active growth of temperate specimens is mostly restricted to the same temperature range (0-35 °C; maximum at 25 °C). Future studies should aim to unravel the processes behind the extreme persistence and low metabolism of Nostoc species under ambient resource supply on sediment and soil surfaces. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
Extreme Kinematics in Selected Hip Hop Dance Sequences.
Bronner, Shaw; Ojofeitimi, Sheyi; Woo, Helen
2015-09-01
Hip hop dance has many styles including breakdance (breaking), house, popping and locking, funk, streetdance, krumping, Memphis jookin', and voguing. These movements combine the complexity of dance choreography with the challenges of gymnastics and acrobatic movements. Despite high injury rates in hip hop dance, particularly in breakdance, to date there are no published biomechanical studies in this population. The purpose of this study was to compare representative hip hop steps found in breakdance (toprock and breaking) and house and provide descriptive statistics of the angular displacements that occurred in these sequences. Six expert female hip hop dancers performed three choreographed dance sequences, top rock, breaking, and house, to standardized music-based tempos. Hip, knee, and ankle kinematics were collected during sequences that were 18 to 30 sec long. Hip, knee, and ankle three-dimensional peak joint angles were compared in repeated measures ANOVAs with post hoc tests where appropriate (p<0.01). Peak angles of the breaking sequence, which included floorwork, exceeded the other two sequences in the majority of planes and joints. Hip hop maximal joint angles exceeded reported activities of daily living and high injury sports such as gymnastics. Hip hop dancers work at weight-bearing joint end ranges where muscles are at a functional disadvantage. These results may explain why lower extremity injury rates are high in this population.
Cornwell, Andrew S.; Liao, James Y.; Bryden, Anne M.; Kirsch, Robert F.
2013-01-01
We have developed a set of upper extremity functional tasks to guide the design and test the performance of rehabilitation technologies that restore arm motion in people with high tetraplegia. Our goal was to develop a short set of tasks that would be representative of a much larger set of activities of daily living while also being feasible for a unilateral user of an implanted Functional Electrical Stimulation (FES) system. To compile this list of tasks, we reviewed existing clinical outcome measures related to arm and hand function, and were further informed by surveys of patient desires. We ultimately selected a set of five tasks that captured the most common components of movement seen in these tasks, making them highly relevant for assessing FES-restored unilateral arm function in individuals with high cervical spinal cord injury (SCI). The tasks are intended to be used when setting design specifications and for evaluation and standardization of rehabilitation technologies under development. While not unique, this set of tasks will provide a common basis for comparing different interventions (e.g., FES, powered orthoses, robotic assistants) and testing different user command interfaces (e.g., sip-and-puff, head joysticks, brain-computer interfaces). PMID:22773199
Ko, Alexander E.; Bieman, Donald N.; Schal, Coby; Silverman, Jules
2015-01-01
BACKGROUND Bait formulations are considered the most effective method for reducing German cockroach infestations. An important property of some bait formulations is secondary kill, whereby active ingredient is translocated in insect-produced residues throughout the cockroach population, especially affecting relatively sedentary early instar nymphs. RESULTS Blattella germanica was collected from a location where baits containing hydramethylnon, fipronil, or indoxacarb became ineffective, and these AIs were topically applied to adult males. Results revealed the first evidence for hydramethylnon resistance, moderate resistance to fipronil and extremely high resistance to indoxacarb. Insecticide residues excreted by field-collected males that ingested commercial baits effectively killed nymphs of an insecticide-susceptible laboratory strain of B. germanica but failed to kill most nymphs of the field-collected strain. CONCLUSIONS We report three novel findings: 1) The first evidence for hydramethylnon resistance in any insect; 2) extremely high levels of indoxacarb resistance in a field population; and 3) reduced secondary mortality in an insecticide-resistant field-collected strain of B. germanica. We suggest that while secondary mortality is considered to be advantageous in cockroach interventions, the ingestion of sublethal doses of AI by nymphs may select for high insecticide resistance by increasing the frequency of AI resistance alleles within the population. PMID:26689433
ZIF-Derived Nitrogen-Doped Porous Carbons for Xe Adsorption and Separation
NASA Astrophysics Data System (ADS)
Zhong, Shan; Wang, Qian; Cao, Dapeng
2016-02-01
Currently, finding high capacity adsorbents with large selectivity to capture Xe is still a great challenge. In this work, nitrogen-doped porous carbons were prepared by programmable temperature carbonization of zeolitic imidazolate framework-8 (ZIF-8) and ZIF-8/xylitol composite precursors and the resultant samples are marked as Carbon-Z and Carbon-ZX, respectively. Further adsorption measurements indicate that ZIF-derived nitrogen-doped Carbon-ZX exhibits extremely high Xe capacity of 4.42 mmol g-1 at 298 K and 1 bar, which is higher than almost all other pristine MOFs such as CuBTC, Ni/DOBDC, MOF-5 and Al-MIL-53, and even more than three times of the matrix ZIF-8 at similar conditions. Moreover, Carbon-ZX also shows the highest Xe/N2 selectivity about ~120, which is much larger than all other reported MOFs. These remarkable features illustrate that ZIF-derived nitrogen-doped porous carbon is an excellent adsorbent for Xe adsorption and separation at room temperature.
NASA Astrophysics Data System (ADS)
Atutov, S. N.; Galeyev, A. E.; Plekhanov, A. I.; Yakovlev, A. V.
2018-03-01
A sensitive and versatile sensor for the detection of traces of atoms or molecules in air based on the emission spectroscopy of glow discharge in air has been developed and studied. The advantages of this sensor compared to other well-known methods are that it renders the use of ultrahigh vacuum or cryogenic temperatures superfluous. The sensor is insensitive to the presence of water vapor (for example, in exhaled air) because of the absence of strong water lines in the visible spectral range. It has a high spectral selectivity limited only by Doppler broadening of the emission lines. The high selectivity of the sensor combined with a wide spectral range allows the detection of many toxic impurities, which can be present in air. Moreover, the spectral range used covers almost all biomarkers in exhaled air, making the proposed sensor extremely interesting for medical applications. To our knowledge, the proposed method is the first based on a glow discharge in air.
Asher, G W
2011-04-01
The cervids are a complex assemblage of taxa showing extreme diversity in morphology, physiology, ecology and geographical distribution. Reproductive strategies adopted by various species are also diverse, and include a range from highly seasonal to completely aseasonal birth patterns. The recent growth in knowledge on cervid reproduction is strongly biased towards the larger-bodied, gregarious mixed grazer-browser species that have adapted well to human management and commercialisation. These species tend to represent 'K-selected' climax species characterised by very productive annual breeding success, singleton births and long breeding life (10+ years). Conversely, we know relatively little about the reproductive patterns of the 'r-selected' smaller-bodied, solitary (and often highly territorial), forest-dwelling browser species, often characterised by great fecundity (twinning) and shorter breeding life (<10 years). This group includes many of the endangered cervid taxa. This review extends earlier reviews to include more recent work on cervid reproductive cycles, particularly in relation to environmental factors influencing gestation length. Copyright © 2010 Elsevier B.V. All rights reserved.
Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins
Sunagar, Kartik; Jackson, Timothy N. W.; Undheim, Eivind A. B.; Ali, Syed. A.; Antunes, Agostinho; Fry, Bryan G.
2013-01-01
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx. PMID:24253238
Quantifying the relationship between extreme air pollution events and extreme weather events
NASA Astrophysics Data System (ADS)
Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi
2017-05-01
Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyapal, S.; Secrest, N. J.; McAlpine, W.
2014-04-01
In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures inmore » their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.« less
High-resolution downscaling for hydrological management
NASA Astrophysics Data System (ADS)
Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos
2017-04-01
Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management;
NASA Astrophysics Data System (ADS)
Rudnick, Gregory; Hodge, Jacqueline; Walter, Fabian; Momcheva, Ivelina; Tran, Kim-Vy; Papovich, Casey; da Cunha, Elisabete; Decarli, Roberto; Saintonge, Amelie; Willmer, Christopher; Lotz, Jennifer; Lentati, Lindley
2017-11-01
We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio > 5. Both galaxies have log({{ M }}\\star /{{ M }}⊙ ) > 11 and are gas rich, with {{ M }}{mol}/({{ M }}\\star +{{ M }}{mol}) ˜ 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-{{ M }}\\star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z< 1 clusters.
Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Justus, C. G.; Batts, G. W.
2001-01-01
Thermal analysis and design of Earth orbiting systems requires specification of three environmental thermal parameters: the direct solar irradiance, Earth's local albedo, and outgoing longwave radiance (OLR). In the early 1990s data sets from the Earth Radiation Budget Experiment were analyzed on behalf of the Space Station Program to provide an accurate description of these parameters as a function of averaging time along the orbital path. This information, documented in SSP 30425 and, in more generic form in NASA/TM-4527, enabled the specification of the proper thermal parameters for systems of various thermal response time constants. However, working with the engineering community and SSP-30425 and TM-4527 products over a number of years revealed difficulties in interpretation and application of this material. For this reason it was decided to develop this guidelines document to help resolve these issues of practical application. In the process, the data were extensively reprocessed and a new computer code, the Simple Thermal Environment Model (STEM) was developed to simplify the process of selecting the parameters for input into extreme hot and cold thermal analyses and design specifications. In the process, greatly improved values for the cold case OLR values for high inclination orbits were derived. Thermal parameters for satellites in low, medium, and high inclination low-Earth orbit and with various system thermal time constraints are recommended for analysis of extreme hot and cold conditions. Practical information as to the interpretation and application of the information and an introduction to the STEM are included. Complete documentation for STEM is found in the user's manual, in preparation.
Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K
2016-04-01
Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
Selection on an extreme weapon in the frog-legged leaf beetle (Sagra femorata).
O'Brien, Devin M; Katsuki, Masako; Emlen, Douglas J
2017-11-01
Biologists have been fascinated with the extreme products of sexual selection for decades. However, relatively few studies have characterized patterns of selection acting on ornaments and weapons in the wild. Here, we measure selection on a wild population of weapon-bearing beetles (frog-legged leaf beetles: Sagra femorata) for two consecutive breeding seasons. We consider variation in both weapon size (hind leg length) and in relative weapon size (deviations from the population average scaling relationship between hind leg length and body size), and provide evidence for directional selection on weapon size per se and stabilizing selection on a particular scaling relationship in this population. We suggest that whenever growth in body size is sensitive to external circumstance such as nutrition, then considering deviations from population-level scaling relationships will better reflect patterns of selection relevant to evolution of the ornament or weapon than will variation in trait size per se. This is because trait-size versus body-size scaling relationships approximate underlying developmental reaction norms relating trait growth with body condition in these species. Heightened condition-sensitive expression is a hallmark of the exaggerated ornaments and weapons favored by sexual selection, yet this plasticity is rarely reflected in the way we think about-and measure-selection acting on these structures in the wild. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
The effects of r- and K-selection on components of variance for two quantitative traits.
Long, T; Long, G
1974-03-01
The genetic and environmental components of variance for two quantitative characters were measured in the descendants of Drosophila melanogaster populations which had been grown for several generations at densities of 100, 200, 300, and 400 eggs per vial. Populations subject to intermediate densities had a greater proportion of phenotypic variance available for selection than populations from either extreme. Selection on either character would be least effective under pure r-selection, a frequent attribute of selection programs.
Xu, Chao; Fang, Jian; Shen, Hui; Wang, Yu-Ping; Deng, Hong-Wen
2018-01-25
Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in extreme phenotypic samples, EPS can boost the association power compared to random sampling. Most existing statistical methods for EPS examine the genetic factors individually, despite many quantitative traits have multiple genetic factors underlying their variation. It is desirable to model the joint effects of genetic factors, which may increase the power and identify novel quantitative trait loci under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized techniques, e.g., the least absolute shrinkage and selection operator (LASSO). Although there are extensive research and application related to LASSO, the statistical inference and testing for the sparse model under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function. The comprehensive simulation shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-LASSO can provide a consistent power for both low- and high-dimensional situations compared with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is close to other low-dimensional methods when the causal effect sizes are small and is superior when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. The source code is available at https://github.com/xu1912/EPSLASSO. hdeng2@tulane.edu. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Cold and Hot Extremozymes: Industrial Relevance and Current Trends
Sarmiento, Felipe; Peralta, Rocío; Blamey, Jenny M.
2015-01-01
The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed. PMID:26539430
The Number Density of Quiescent Compact Galaxies at Intermediate Redshift
NASA Astrophysics Data System (ADS)
Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor
2014-09-01
Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.
Stress-Survival Gene Identification From an Acid Mine Drainage Algal Mat Community
NASA Astrophysics Data System (ADS)
Urbina-Navarrete, J.; Fujishima, K.; Paulino-Lima, I. G.; Rothschild-Mancinelli, B.; Rothschild, L. J.
2014-12-01
Microbial communities from acid mine drainage environments are exposed to multiple stressors to include low pH, high dissolved metal loads, seasonal freezing, and desiccation. The microbial and algal communities that inhabit these niche environments have evolved strategies that allow for their ecological success. Metagenomic analyses are useful in identifying species diversity, however they do not elucidate the mechanisms that allow for the resilience of a community under these extreme conditions. Many known or predicted genes encode for protein products that are unknown, or similarly, many proteins cannot be traced to their gene of origin. This investigation seeks to identify genes that are active in an algal consortium during stress from living in an acid mine drainage environment. Our approach involves using the entire community transcriptome for a functional screen in an Escherichia coli host. This approach directly targets the genes involved in survival, without need for characterizing the members of the consortium.The consortium was harvested and stressed with conditions similar to the native environment it was collected from. Exposure to low pH (< 3.2), high metal load, desiccation, and deep freeze resulted in the expression of stress-induced genes that were transcribed into messenger RNA (mRNA). These mRNA transcripts were harvested to build complementary DNA (cDNA) libraries in E. coli. The transformed E. coli were exposed to the same stressors as the original algal consortium to select for surviving cells. Successful cells incorporated the transcripts that encode survival mechanisms, thus allowing for selection and identification of the gene(s) involved. Initial selection screens for freeze and desiccation tolerance have yielded E. coli that are 1 order of magnitude more resistant to freezing (0.01% survival of control with no transcript, 0.2% survival of E. coli with transcript) and 3 orders of magnitude more resistant to desiccation (0.005% survival of control cells with no transcripts, 5% survival of cells with transcript).This work is transformative because genetic functions can be selected without having prior knowledge of the genes or of the organisms involved. Work continues to identify the genes responsible for tolerance to extreme conditions and the bio-mechanisms involved.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Xia, Jun; She, Dunxian
2018-01-01
In recent decades, extreme precipitation events have been a research hotspot worldwide. Based on 12 extreme precipitation indices, the spatiotemporal variation and statistical characteristic of precipitation extremes in the middle reaches of the Yellow River Basin (MRYRB) during 1960-2013 were investigated. The results showed that the values of most extreme precipitation indices (except consecutive dry days (CDD)) increased from the northwest to the southeast of the MRYRB, reflecting that the southeast was the wettest region in the study area. Temporally, the precipitation extremes presented a drying trend with less frequent precipitation events. Generalized extreme value (GEV) distribution was selected to fit the time series of all indices, and the quantiles values under the 50-year return period showed a similar spatial extent with the corresponding precipitation extreme indices during 1960-2013, indicating a higher risk of extreme precipitation in the southeast of the MRYRB. Furthermore, the changes in probability distribution functions of indices for the period of 1960-1986 and 1987-2013 revealed a drying tendency in our study area. Both El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) were proved to have a strong influence on precipitation extremes in the MRYRB. The results of this study are useful to master the change rule of local precipitation extremes, which will help to prevent natural hazards caused.
Ban, Jie; Huang, Lei; Chen, Chen; Guo, Yuming; He, Mike Z; Li, Tiantian
2017-02-01
The public's risk perception of local extreme heat or cold plays a critical role in community health and prevention under climate change. However, there is limited evidence on such issues in China where extreme weather is occurring more frequently due to climate change. Here, a total of 2500 residents were selected using a three-step sampling method and investigated by a questionnaire in two representative cities. We investigated risk perception of extreme heat in Beijing and extreme cold in Harbin in 2013, aiming to examine their possible correlations with multiple epidemiological factors. We found that exposure, vulnerability, and adaptive ability were significant predictors in shaping public risk perceptions of local extreme temperature. In particular, a 1°C increase in daily temperature resulted in an increased odds of perceiving serious extreme heat in Beijing (OR=1.091; 95% CI: 1.032, 1.153), while a 1°C increase in daily temperature resulted in a decreased odds of perceiving serious extreme cold in Harbin (OR=0.965; 95% CI: 0.939, 0.992). Therefore for both extreme heat and cold, frequent local extreme temperature exposure may amplify a stronger communication. Health interventions for extreme temperature should consider exposure, vulnerability, and adaptive ability factors. This will help improve the public's perception of climatic changes and their willingness to balance adaption and mitigation appropriately. Copyright © 2016 Elsevier B.V. All rights reserved.
Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya
2017-01-25
A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.
Endoscopic management for congenital esophageal stenosis: A systematic review.
Terui, Keita; Saito, Takeshi; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Yoshida, Hideo
2015-03-16
Congenital esophageal stenosis (CES) is an extremely rare malformation, and standard treatment have not been completely established. By years of clinical research, evidence has been accumulated. We conducted systematic review to assess outcomes of the treatment for CES, especially the role of endoscopic modalities. A total of 144 literatures were screened and reviewed. CES was categorized in fibromuscular thickening, tracheobronchial remnants (TBR) and membranous web, and the frequency was 54%, 30% and 16%, respectively. Therapeutic option includes surgery and dilatation, and surgery tends to be reserved for ineffective dilatation. An essential point is that dilatation for TBR type of CES has low success rate and high rate of perforation. TBR can be distinguished by using endoscopic ultrasonography (EUS). Overall success rate of dilatation for CES with or without case selection by using EUS was 90% and 29%, respectively. Overall rate of perforation with or without case selection was 7% and 24%, respectively. By case selection using EUS, high success rate with low rate of perforation could be achieved. In conclusion, endoscopic dilatation has been established as a primary therapy for CES except TBR type. Repetitive dilatation with gradual step-up might be one of safe ways to minimize the risk of perforation.
Endoscopic management for congenital esophageal stenosis: A systematic review
Terui, Keita; Saito, Takeshi; Mitsunaga, Tetsuya; Nakata, Mitsuyuki; Yoshida, Hideo
2015-01-01
Congenital esophageal stenosis (CES) is an extremely rare malformation, and standard treatment have not been completely established. By years of clinical research, evidence has been accumulated. We conducted systematic review to assess outcomes of the treatment for CES, especially the role of endoscopic modalities. A total of 144 literatures were screened and reviewed. CES was categorized in fibromuscular thickening, tracheobronchial remnants (TBR) and membranous web, and the frequency was 54%, 30% and 16%, respectively. Therapeutic option includes surgery and dilatation, and surgery tends to be reserved for ineffective dilatation. An essential point is that dilatation for TBR type of CES has low success rate and high rate of perforation. TBR can be distinguished by using endoscopic ultrasonography (EUS). Overall success rate of dilatation for CES with or without case selection by using EUS was 90% and 29%, respectively. Overall rate of perforation with or without case selection was 7% and 24%, respectively. By case selection using EUS, high success rate with low rate of perforation could be achieved. In conclusion, endoscopic dilatation has been established as a primary therapy for CES except TBR type. Repetitive dilatation with gradual step-up might be one of safe ways to minimize the risk of perforation. PMID:25789088
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
D'Angelo, Marin M.
2004-01-01
NASA has concluded from previous studies that the twin engine tiltrotor is the most economical and technologically viable rotorcraft for near-term civil applications. Twin engine civil rotorcraft must be able to hover safely on one engine in an emergency. This emergency power requirement generally results in engines 20 to 50 percent larger than needed for normal engine operation, negatively impacting aircraft economics. This study identifies several contingency power enhancement concepts, and quantifies their potential to reduce aircraft operating costs. Many unique concepts were examined, and the selected concepts are simple, reliable, and have a high potential for near term realization. These engine concepts allow extremely high turbine temperatures during emergency operation by providing cooling to the power turbine and augmenting cooling of both turbines and structural hardware. Direct operating cost are reduced 3 to percent, which could yield a 30 to 80 percent increase in operating profits. The study consists of the definition of an aircraft economics model and a baseline engine, and an engine concept screening study, and a preliminary definition of the selected concepts. The selected concepts are evaluated against the baseline engine, and the critical technologies and development needs are identified, along with applications for this technology.
Kowalczyk, Agata; Sęk, Jakub P; Kasprzak, Artur; Poplawska, Magdalena; Grudzinski, Ireneusz P; Nowicka, Anna M
2018-06-13
Simple, selective and sensitive analytical devices are of a great importance for medical application. Herein, we developed highly selective immunosensor for electrochemical detection of C-reactive protein (CRP) in blood sample. Branched polyethylenimine functionalized with ferrocene residues (PEI-Fc) was the main element of the recognition layer, which allowed: (i) covalent binding of an antibody in its most favorable orientation and (ii) voltammetric detection of the C-reactive protein. Anchoring of PEI-Fc to the electrode surface through the electrodeposition process leads to the formation of thin, stable and reproducible layers, which is extremely important in the case of electrochemical immunosensing. The proposed analytical device is characterized by high selectivity and sensitivity and can be successfully used in the concentration range of CRP from 1 to 5·10 4 ng mL -1 . The determined limit of detection was circa 0.5 and 2.5 ng mL -1 for voltammetric and impedance analysis, respectively. The developed analytical device has also been successfully applied for the analysis of CRP level in rat blood samples. Copyright © 2018. Published by Elsevier B.V.
Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan
2013-03-07
Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.
A Variable-Selection Heuristic for K-Means Clustering.
ERIC Educational Resources Information Center
Brusco, Michael J.; Cradit, J. Dennis
2001-01-01
Presents a variable selection heuristic for nonhierarchical (K-means) cluster analysis based on the adjusted Rand index for measuring cluster recovery. Subjected the heuristic to Monte Carlo testing across more than 2,200 datasets. Results indicate that the heuristic is extremely effective at eliminating masking variables. (SLD)
Spectrophotometric determination of traces of boron in high purity silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, D.C.; Sarkar, A.K.; Singh, N.
1989-07-01
A reddish brown complex is formed between boron and curcumin in concentrated sulfuric acid and glacial acetic acid mixture (1:1). The colored complex is highly selective and stable for about 3 hours and has the maximum absorbance at 545 nm. The sensitivity of the method is extremely high and the detection limit is 3 parts per billion based on 0.004 absorbance value. The interference of some of the important cations and anions relevant to silicon were studied and it is found that 100 fold excess of most of these cations and anions do not interfere in the determination of boron.more » The method is successfully employed for the determination of boron in silicon used in semiconductor devices. The results have been verified by standard addition method.« less
Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform
De Palo, Maripina; Ciminelli, Caterina
2017-01-01
In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication. PMID:28783075
Autism as the Low-Fitness Extreme of a Parentally Selected Fitness Indicator.
Shaner, Andrew; Miller, Geoffrey; Mintz, Jim
2008-12-01
Siblings compete for parental care and feeding, while parents must allocate scarce resources to those offspring most likely to survive and reproduce. This could cause offspring to evolve traits that advertise health, and thereby attract parental resources. For example, experimental evidence suggests that bright orange filaments covering the heads of North American coot chicks may have evolved for this fitness-advertising purpose. Could any human mental disorders be the equivalent of dull filaments in coot chicks-low-fitness extremes of mental abilities that evolved as fitness indicators? One possibility is autism. Suppose that the ability of very young children to charm their parents evolved as a parentally selected fitness indicator. Young children would vary greatly in their ability to charm parents, that variation would correlate with underlying fitness, and autism could be the low-fitness extreme of this variation. This view explains many seemingly disparate facts about autism and leads to some surprising and testable predictions.
A Framework to Understand Extreme Space Weather Event Probability.
Jonas, Seth; Fronczyk, Kassandra; Pratt, Lucas M
2018-03-12
An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well-being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments. © 2018 Society for Risk Analysis.
An Incremental Type-2 Meta-Cognitive Extreme Learning Machine.
Pratama, Mahardhika; Zhang, Guangquan; Er, Meng Joo; Anavatti, Sreenatha
2017-02-01
Existing extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn. The what-to-learn component selects important training samples for model updates by virtue of the online certainty-based active learning method, which renders eT2ELM as a semi-supervised classifier. The how-to-learn element develops a synergy between extreme learning theory and the evolving concept, whereby the hidden nodes can be generated and pruned automatically from data streams with no tuning of hidden nodes. The when-to-learn constituent makes use of the standard sample reserved strategy. A generalized interval type-2 fuzzy neural network is also put forward as a cognitive component, in which a hidden node is built upon the interval type-2 multivariate Gaussian function while exploiting a subset of Chebyshev series in the output node. The efficacy of the proposed eT2ELM is numerically validated in 12 data streams containing various concept drifts. The numerical results are confirmed by thorough statistical tests, where the eT2ELM demonstrates the most encouraging numerical results in delivering reliable prediction, while sustaining low complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less
Extreme ultraviolet and X-ray spectroheliograph for OSO-H
NASA Technical Reports Server (NTRS)
Sterk, A. A.; Kieser, F.; Peck, S.; Knox, E.
1972-01-01
A complex scientific instrument was designed, fabricated, tested, and calibrated for launch onboard OSO-H. This instrument consisted of four spectroheliographs and an X-ray polarimeter. The instrument is designed to study solar radiation at selected wavelengths in the X-ray and the extreme ultraviolet ranges, make observations at the H-alpha wavelength, and measure the degree of polarization of X-ray emissions.
Solar-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components
NASA Technical Reports Server (NTRS)
Doschek, George A.
2002-01-01
This Monthly Progress Report covers the reporting period August 2002 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.
SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components
NASA Technical Reports Server (NTRS)
Doschek, George A.
2001-01-01
This Monthly Progress Report covers the reporting period through June 2001, Phase C/D, Detailed Design and Development Through Launch Plus Thirty Days, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.
SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components
NASA Technical Reports Server (NTRS)
Doschek, George A.
2001-01-01
This Monthly Progress Report covers the reporting period July 2001 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme Ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.
Wedge, David C; Rowe, William; Kell, Douglas B; Knowles, Joshua
2009-03-07
We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.
Selected highlights from the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Bowyer, S.; Malina, R. F.
1995-01-01
We present a few scientific highlights from the Extreme Ultraviolet Explorer (EUVE) all-sky and deep surveys, from the EUVE Righ Angle Program, and from the EUVE Guest Observer Program. The First EUVE Source Catalog includes 410 extreme ultraviolet (EUV) sources detected in the initial processing of the EUVE all-sky data. A program of optical identification indicates that counterparts include cool star coronae, flare stars, hot white dwarfs, central stars of planetary nebulae, B star photospheres and winds, an X-ray binary, extragalactic objects (active galactic nuclei, BL Lacertae), solar system objects (Moon, Mars, Io,), supernova remnants, and two novae.
Darwin's forgotten idea: the social essence of sexual selection.
West-Eberhard, Mary Jane
2014-10-01
Darwinian sexual selection can now be seen in the broader context of social selection, or social competition for resources (under sexual selection, mates or fertilization success). The social-interaction aspects of sexually selected traits give them special evolutionary properties of interest for neurobiological studies of stimulus-response systems because they can account for highly complex systems with little information content other than stimulatory effectiveness per se. But these special properties have a long history of being forgotten when other factors dominate the analysis of male-female interactions, such as the mistaken belief that differential responsiveness to signals produced by competing rivals ("female choice") requires an esthetic sense; that species recognition explains all species-specific sexual signals; and, more recently, that successful signals must reflect good survival genes; or that male-female conflict involves female resistance rather than stimulus evaluation. A "conflict paradox" results when male-female conflict is seen as driven by natural selection, whose costs should often move the hypothesized "sexually antagonistic co-evolution" of sensory-response systems toward the powerful domain of sexually synergistic co-evolution under sexual selection. Special properties of sexual selection apply to other forms of social competition as well, showing the wisdom of Darwin's setting it apart from natural selection as an explanation of many otherwise puzzling and extreme traits. Copyright © 2014. Published by Elsevier Ltd.
Nattee, Cholwich; Khamsemanan, Nirattaya; Lawtrakul, Luckhana; Toochinda, Pisanu; Hannongbua, Supa
2017-01-01
Malaria is still one of the most serious diseases in tropical regions. This is due in part to the high resistance against available drugs for the inhibition of parasites, Plasmodium, the cause of the disease. New potent compounds with high clinical utility are urgently needed. In this work, we created a novel model using a regression tree to study structure-activity relationships and predict the inhibition constant, K i of three different antimalarial analogues (Trimethoprim, Pyrimethamine, and Cycloguanil) based on their molecular descriptors. To the best of our knowledge, this work is the first attempt to study the structure-activity relationships of all three analogues combined. The most relevant descriptors and appropriate parameters of the regression tree are harvested using extremely randomized trees. These descriptors are water accessible surface area, Log of the aqueous solubility, total hydrophobic van der Waals surface area, and molecular refractivity. Out of all possible combinations of these selected parameters and descriptors, the tree with the strongest coefficient of determination is selected to be our prediction model. Predicted K i values from the proposed model show a strong coefficient of determination, R 2 =0.996, to experimental K i values. From the structure of the regression tree, compounds with high accessible surface area of all hydrophobic atoms (ASA_H) and low aqueous solubility of inhibitors (Log S) generally possess low K i values. Our prediction model can also be utilized as a screening test for new antimalarial drug compounds which may reduce the time and expenses for new drug development. New compounds with high predicted K i should be excluded from further drug development. It is also our inference that a threshold of ASA_H greater than 575.80 and Log S less than or equal to -4.36 is a sufficient condition for a new compound to possess a low K i . Copyright © 2016 Elsevier Inc. All rights reserved.
Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A
2016-10-01
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Goethe, John W; Woolley, Stephen B; Cardoni, Alex A; Woznicki, Brenda A; Piez, Deborah A
2007-10-01
Patients with major depression discontinue taking their antidepressants for many reasons. Although side effects are often cited as the reason for discontinuation, few prospective studies have addressed this question, and none has specifically examined discontinuation in patients with severe depression. Inpatients and outpatients treated with a selective serotonin reuptake inhibitor for major depressive disorder were identified after admission. Three months later, patients were contacted and interviewed to determine antidepressant usage and the side effects experienced, including when these were experienced and their severity. Between October 2001 and April 2003, 406 English- or Spanish-speaking patients aged 18 to 75 years were followed up. One in 4 patients discontinued the index antidepressant. Among specific side effects noted, only "change in weight" and "anxiety" were significant predictors of discontinuation after controlling for confounders. Experiencing 1 or more "extremely" bothersome side effects was associated with more than a doubling of the risk of discontinuation, but the presence of side effects and side effects less severe than "extremely" bothersome were not significant predictors. There were no differences among selective serotonin reuptake inhibitor antidepressants in either the presence/absence of side effects or in the discontinuation rates. The results suggest that the contribution of side effects to antidepressant discontinuation is more complex than previously suggested. Disparate findings from earlier studies may reflect aspects of study design, such as examining populations whose severity of depression varied widely or not controlling for important confounding factors. Future research should separately examine high-risk groups (or control for severity of depression) and carefully rule out other potential contributors to discontinuation.
Hawkins, Angela K; Garza, Elyssa R; Dietz, Valerie A; Hernandez, Oscar J; Hawkins, W Daryl; Burrell, A Millie
2017-01-01
Abstract Plants on serpentine soils provide extreme examples of adaptation to environment, and thus offer excellent models for the study of evolution at the molecular and genomic level. Serpentine outcrops are derived from ultramafic rock and have extremely low levels of essential plant nutrients (e.g., N, P, K, and Ca), as well as toxic levels of heavy metals (e.g., Ni, Cr, and Co) and low moisture availability. These outcrops provide habitat to a number of endemic plant species, including the annual mustard Caulanthus amplexicaulis var. barbarae (Cab) (Brassicaceae). Its sister taxon, C. amplexicaulis var. amplexicaulis (Caa), is intolerant to serpentine soils. Here, we assembled and annotated comprehensive reference transcriptomes of both Caa and Cab for use in protein coding sequence comparisons. A set of 29,443 reciprocal best Blast hit (RBH) orthologs between Caa and Cab was compared with identify coding sequence variants, revealing a high genome-wide dN/dS ratio between the two taxa (mean = 0.346). We show that elevated dN/dS likely results from the composite effects of genetic drift, positive selection, and the relaxation of negative selection. Further, analysis of paralogs within each taxon revealed the signature of a period of elevated gene duplication (∼10 Ma) that is shared with other species of the tribe Thelypodieae, and may have played a role in the striking morphological and ecological diversity of this tribe. In addition, distribution of the synonymous substitution rate, dS, is strongly bimodal, indicating a history of reticulate evolution that may have contributed to serpentine adaptation. PMID:29220486
Evolution caused by extreme events.
Grant, Peter R; Grant, B Rosemary; Huey, Raymond B; Johnson, Marc T J; Knoll, Andrew H; Schmitt, Johanna
2017-06-19
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
Health impacts of workplace heat exposure: an epidemiological review.
Xiang, Jianjun; Bi, Peng; Pisaniello, Dino; Hansen, Alana
2014-01-01
With predicted increasing frequency and intensity of extremely hot weather due to changing climate, workplace heat exposure is presenting an increasing challenge to occupational health and safety. This article aims to review the characteristics of workplace heat exposure in selected relatively high risk occupations, to summarize findings from published studies, and ultimately to provide suggestions for workplace heat exposure reduction, adaptations, and further research directions. All published epidemiological studies in the field of health impacts of workplace heat exposure for the period of January 1997 to April 2012 were reviewed. Finally, 55 original articles were identified. Manual workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress, especially those in low-middle income countries in tropical regions. At risk workers include farmers, construction workers, fire-fighters, miners, soldiers, and manufacturing workers working around process-generated heat. The potential impacts of workplace heat exposure are to some extent underestimated due to the underreporting of heat illnesses. More studies are needed to quantify the extent to which high-risk manual workers are physiologically and psychologically affected by or behaviourally adapt to workplace heat exposure exacerbated by climate change.