Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.
Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M
2016-08-23
Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study
Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.; ...
2018-01-12
Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less
Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baled, Hseen O.; Gamwo, Isaac K.; Enick, Robert M.
Here, viscosity is a critical fundamental property required in many applications in the chemical and oil industries. In this review the performance of seven select viscosity models, representative of various predictive and correlative approaches, is discussed and evaluated by comparison to experimental data of 52 pure hydrocarbons including straight-chain alkanes, branched alkanes, cycloalkanes, and aromatics. This analysis considers viscosity data to extremely high-temperature, high-pressure conditions up to 573 K and 300 MPa. Unsatisfactory results are found, particularly at high pressures, with the Chung-Ajlan-Lee-Starling, Pedersen-Fredenslund, and Lohrenz-Bray-Clark models commonly used for oil reservoir simulation. If sufficient experimental viscosity data are readilymore » available to determine model-specific parameters, the free volume theory and the expanded fluid theory models provide generally comparable results that are superior to those obtained with the friction theory, particularly at pressures higher than 100 MPa. Otherwise, the entropy scaling method by Lötgering-Lin and Gross is recommended as the best predictive model.« less
Hor, Jyo Lyn; Wang, Haonan; Fakhraai, Zahra; Lee, Daeyeon
2018-03-28
We explore the effect of confinement and polymer-nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer-nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas-Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer-nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers.
Specific decrease in solution viscosity of antibodies by arginine for therapeutic formulations.
Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2014-06-02
Unacceptably high viscosity is observed in high protein concentration formulations due to extremely large therapeutic dose of antibodies and volume restriction of subcutaneous route of administration. Here, we show that a protein aggregation suppressor, arginine hydrochloride (ArgHCl), specifically decreases viscosity of antibody formulations. The viscosities of bovine gamma globulin (BGG) solution at 250 mg/mL and human gamma globulin (HGG) solution at 292 mg/mL at a physiological pH were too high for subcutaneous injections, but decreased to an acceptable level (below 50 cP) in the presence of 1,000 mM ArgHCl. ArgHCl also decreased the viscosity of BGG solution at acidic and alkaline pHs. Interestingly, ArgHCl decreased the viscosity of antibody solutions (BGG, HGG, and human immunoglobulin G) but not globular protein solutions (α-amylase and α-chymotrypsin). These results indicate not only high potency of ArgHCl as an excipient to decrease the solution viscosity of high concentration antibodies formulations but also specific interactions between ArgHCl and antibodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.
2013-12-01
This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquidmore » density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.« less
Meijer, A S; de Wijn, A S; Peters, M F E; Dam, N J; van de Water, W
2010-10-28
We investigate coherent Rayleigh-Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the used pump laser. Experiments were done for both polar and nonpolar gases and the bulk viscosity was obtained from the spectra using the Tenti S6 model. Results are compared to simple classical kinetic models of molecules with internal degrees of freedom. At the extremely high (gigahertz) frequencies of our experiment, most internal vibrational modes remain frozen and the bulk viscosity is dominated by the rotational degrees of freedom. Our measurements show that the molecular dipole moments have unexpectedly little influence on the bulk viscosity at room temperature and moderate pressure.
High Temperature, high pressure equation of state density correlations and viscosity correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tapriyal, D.; Enick, R.; McHugh, M.
2012-07-31
Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil atmore » reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.« less
USDA-ARS?s Scientific Manuscript database
The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...
NASA Astrophysics Data System (ADS)
Yoshida, Masaki; Iwamori, Hikaru; Hamano, Yozo; Suetsugu, Daisuke
2017-09-01
A high-resolution numerical simulation model in two-dimensional cylindrical geometry was used to discuss the heat transport and coupling modes in two-layer Rayleigh-Bénard convection with a high Rayleigh number (up to the order of 109), an infinite Prandtl number, and large viscosity contrasts (up to 10-3) between an outer, highly viscous layer (HVL) and an inner, low-viscosity layer (LVL). In addition to mechanical and thermal interaction across the HVL-LVL interface, which has been investigated by Yoshida and Hamano ["Numerical studies on the dynamics of two-layer Rayleigh-Bénard convection with an infinite Prandtl number and large viscosity contrasts," Phys. Fluids 28(11), 116601 (2016)], the spatiotemporal analysis in this study provides new insights into (1) heat transport over the entire system between the bottom of the LVL and the top of the HVL, in particular that associated with thermal plumes, and (2) the convection regime and coupling mode of the two layers, including the transition mechanism between the mechanical coupling mode at relatively low viscosity contrasts and the thermal coupling mode at higher viscosity contrasts. Although flow in the LVL is highly time-dependent, it shares the spatially opposite/same flow pattern synchronized to the nearly stationary upwelling and downwelling plumes in the HVL, corresponding to the mechanical/thermal coupling mode. In the transitional regime between the mechanical and thermal coupling modes, the LVL exhibits periodical switching between the two phases (i.e., the mechanical and thermal coupling phases) with a stagnant period. A detailed inspection revealed that the switching was initiated by the instability in the uppermost boundary layer of the LVL. These results suggest that convection in the highly viscous mantle of the Earth controls that of the extremely low-viscosity outer core in a top-down manner under the thermal coupling mode, which may support a scenario of top-down hemispherical dynamics proposed by the recent geochemical study.
Compensatory escape mechanism at low Reynolds number
Gemmell, Brad J.; Sheng, Jian; Buskey, Edward J.
2013-01-01
Despite high predation pressure, planktonic copepods remain one of the most abundant groups on the planet. Their escape response provides one of most effective mechanisms to maximize evolutionary fitness. Owing to their small size (100 µm) compared with their predators (>1 mm), increasing viscosity is believed to have detrimental effects on copepods’ fitness at lower temperature. Using high-speed digital holography we acquire 3D kinematics of the nauplius escape including both location and detailed appendage motion. By independently varying temperature and viscosity we demonstrate that at natural thermal extremes, contrary to conventional views, nauplii achieve equivalent escape distance while maintaining optimal velocity. Using experimental results and kinematic simulations from a resistive force theory propulsion model, we demonstrate that a shift in appendage timing creates an increase in power stroke duration relative to recovery stroke duration. This change allows the nauplius to limit losses in velocity and maintain distance during escapes at the lower bound of its natural thermal range. The shift in power stroke duration relative to recovery stroke duration is found to be regulated by the temperature dependence of swimming appendage muscle groups, not a dynamic response to viscosity change. These results show that copepod nauplii have natural adaptive mechanisms to compensate for viscosity variations with temperature but not in situations in which viscosity varies independent of temperature, such as in some phytoplankton blooms. Understanding the robustness of escapes in the wake of environmental changes such as temperature and viscosity has implications in assessing the future health of performance compensation. PMID:23487740
Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering.
Pozdnyakova, I; Hennet, L; Brun, J-F; Zanghi, D; Brassamin, S; Cristiglio, V; Price, D L; Albergamo, F; Bytchkov, A; Jahn, S; Saboungi, M-L
2007-03-21
The dynamic structure factor S(Q,omega) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8 nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.
Longitudinal excitations in Mg-Al-O refractory oxide melts studied by inelastic x-ray scattering
NASA Astrophysics Data System (ADS)
Pozdnyakova, I.; Hennet, L.; Brun, J.-F.; Zanghi, D.; Brassamin, S.; Cristiglio, V.; Price, D. L.; Albergamo, F.; Bytchkov, A.; Jahn, S.; Saboungi, M.-L.
2007-03-01
The dynamic structure factor S(Q,ω) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.
High-fluorine rhyolite: An eruptive pegmatite magma at the Honeycomb Hills, Utah
NASA Astrophysics Data System (ADS)
Congdon, Roger D.; Nash, W. P.
1988-11-01
The Honeycomb Hills rhyolite dome in western Utah displays chemical and mineralogical features characteristic of a rare-element pegmatite magma. The lavas show extreme enrichments in such trace elements as Rb (≤1960 ppm), Cs (≤78), Li (≤344), Sn (≤33), Be (≤270), and Y (≤156). Phenocrysts (10%-50% by volume) include sanidine (Or66-70), plagioclase (Ab83-92), quartz, biotite approaching fluorsiderophyllite, and fluortopaz, as well as accessory phases common to highly differentiated granites and pegmatites, including zircon, thorite, fluocerite, columbite, fergusonite, and samarskite. Low temperatures (600 to 640 °C), coupled with high phenocryst and silica content, might normally preclude eruption due to the extremely high viscosity of the melt. However, high concentrations of fluorine (2%-3%) could domal lavas significantly reduce viscosity and allow eruption of domal lavas even after dewatering of the mama during the initial pyroclastic phase of the eruptive cycle. Fractionation of phenocrysts and accessory phases, for which partition coefficients have been measured, is sufficient to account for most compositional gradients inferred in the preeruptive magma body, although transport by a fluid phase formed a may have caused upward enrichments in Li, Be, and Cs. If the Honeycomb Hills magma had crystallized at depth, it would have formed a rare-element pegmatite.
Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell
NASA Astrophysics Data System (ADS)
Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.
2017-04-01
The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.
NASA Astrophysics Data System (ADS)
Jana, Amit Kumar; Roy, Partha; Nath, Deb Narayan
2014-02-01
Effect of viscosity variation on the magnetic field effect in pyrene-N,N-dimethylaniline exciplex luminescence has been studied at different permittivity values. The data is compatible to the model of Krissinel et al. (1999) [10] reported earlier to explain the effect probing the escape yield of radical pairs. It is shown that the data can also be explained on the basis of a simple model. It is interesting to note that the present letter also demonstrates the positive slope of MFE with diffusivity at extremely high viscous condition as predicted by Krissinel et al. (1999) [10] which has not been observed in earlier experiments.
Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica
NASA Astrophysics Data System (ADS)
Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry
2015-04-01
Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.
NASA Astrophysics Data System (ADS)
Hearn, E. H.
2013-12-01
Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.
NASA Astrophysics Data System (ADS)
Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.
2014-11-01
Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.
Production and Characterization of a Polymer from Arthrobacter sp.
Bodie, E A; Schwartz, R D; Catena, A
1985-09-01
An Arthrobacter sp. isolated from a glucose-sucrose agar plate was found to produce a neutral, extremely viscous, opalescent extracellular polymer. Growth, polymer production, and rheological properties and chemical composition of the isolated polymer were examined. The polymer was found to be substantially different from other arthrobacter polymers. Some unusual properties included irreversible loss of viscosity with high temperature and degradation of the polymer during fermentation and upon storage at 4 degrees C. Other characteristics included dependence on sucrose for polymer production, relative pH stability, increased viscosity with increased salt concentration, and pseudoplasticity. The polymer was found to be composed primarily (if not entirely) of d-fructose. The fructose content and other characteristics suggested that the polymer was a levan.
Production and Characterization of a Polymer from Arthrobacter sp
Bodie, Elizabeth A.; Schwartz, Robert D.; Catena, Anthony
1985-01-01
An Arthrobacter sp. isolated from a glucose-sucrose agar plate was found to produce a neutral, extremely viscous, opalescent extracellular polymer. Growth, polymer production, and rheological properties and chemical composition of the isolated polymer were examined. The polymer was found to be substantially different from other arthrobacter polymers. Some unusual properties included irreversible loss of viscosity with high temperature and degradation of the polymer during fermentation and upon storage at 4°C. Other characteristics included dependence on sucrose for polymer production, relative pH stability, increased viscosity with increased salt concentration, and pseudoplasticity. The polymer was found to be composed primarily (if not entirely) of d-fructose. The fructose content and other characteristics suggested that the polymer was a levan. PMID:16346883
The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe
Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong
2017-01-01
Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666
Bonsa, Anne-Marie; Paschek, Dietmar; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Verevkin, Sergey P; Ludwig, Ralf
2017-05-19
Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.
2017-08-01
Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.
Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.
2013-07-01
The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the value needed to facilitate convective loss of the radiogenic heat, which results in a very hot perovskite layer for the upper-bound rheology, a super-adiabatic perovskite layer for the lower-bound rheology, and an azimuthally-averaged viscosity of no more than 1026 Pa s. Convection in large super-Earths is characterised by large upwellings (even with zero basal heating) and small, time-dependent downwellings, which for large super-Earths merge into broad downwellings. In the context of planetary evolution, if, as is likely, a super-Earth was extremely hot/molten after its formation, it is thus likely that even after billions of years its deep interior is still extremely hot and possibly substantially molten with a "super basal magma ocean" - a larger version of the proposal of Labrosse et al. (Labrosse, S., Hernlund, J.W., Coltice, N. [2007]. Nature 450, 866-869), although this depends on presently unknown melt-solid density contrast and solidus.
Porphyrin and bodipy molecular rotors as microviscometers
NASA Astrophysics Data System (ADS)
Kimball, Joseph Daniel, III
Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The triad has an extinction coefficient in the range of 200,000 M -1 cm-1, making it an extremely useful and sensitive fluorescent molecular rotor. Their fluorescent lifetimes were proven to correlate linearly with viscosity. Thus they were both encapsulated into lipds to determine their viability for cellular studies. The dyes were readily uptaken into three cancer cell lines, SKOV3, Calu 3 and Du 145. The lifetimes were then recorded using FLIM to map the viscosity of the cellular cytoplasm, mitochondria, lysosomes and other various organelles. A longer than expected lifetime in the cytoplasm was observed. This could be due to binding onto cytoplasmic proteins distributed throughout the cytoplasm, not due to viscosity as the theory of molecular rotors predicts..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, Stephen A.; Nacham, Omprakash; Clark, Kevin D.
Magnetic ionic liquids (MILs) are distinguished from traditional ionic liquids (ILs) by the incorporation of a paramagnetic component within their chemical structure. Hydrophobic MILs are novel solvents that can be used in many applications, including liquid–liquid extraction (LLE) and catalysis. Low viscosity and low water solubility are essential features that determine their feasibility in LLE. Here, we synthesized extremely hydrophobic MILs by using transition and rare earth metal hexafluoroacetylacetonate chelated anions paired with the trihexyl(tetradecyl)phosphonium ([P 66614 +]) cation. Hydrophobic MILs exhibiting water solubilities less than 0.01% (v/v) were synthesized in a rapid two-step procedure. Furthermore, the viscosities of themore » MILs are among some of the lowest ever reported for hydrophobic MILs (276.5–927.9 centipoise (cP) at 23.7 °C) dramatically improving the ease of handling these liquids. For the first time, the magnetic properties of MILs possessing hexafluoroacetylacetonate chelated metal anions synthesized in this study are reported using a superconducting quantum interference device (SQUID) magnetometer. We also achieved an effective magnetic moments (μ eff) as high as 9.7 and 7.7 Bohr magnetons (μ B) by incorporating high spin dysprosium and gadolinium ions, respectively, into the anion component of the MIL. The low viscosity, high hydrophobicity, and large magnetic susceptibility of these MILs make them highly attractive and promising solvents for separations and purification, liquid electrochromic materials, catalytic studies, as well as microfluidic applications.« less
A constitutive relation for the viscous flow of an oriented fiber assembly
NASA Technical Reports Server (NTRS)
Pipes, R. B.; Hearle, J. W. S.; Beaussart, A. J.; Sastry, A. M.; Okine, R. K.
1991-01-01
A constitutive relation for an equivalent, homogeneous fluid is developed for the anisotropic viscous flow of an oriented assembly of discontinuous fibers suspended in a viscous fluid. The anisotropic viscous compliance matrix can be expressed in terms of three constants by assuming the equivalent fluid to be incompressible and the microstructure to have axial symmetry (transversely isotropic). By means of a micromechanics analysis, the three terms of the constitutive relation are expressed in terms of the viscosity of the matrix fluid, the fiber aspect ratio, and the fiber volume fraction. A comparison of the viscosity terms reveals that the elongational viscosity in the fiber direction varies as the square of the fiber aspect ratio and a complex function of the fiber volume fraction. Furthermore, the ratio of the axial elongational viscosity to the transverse elongational viscosity and both axial and transverse shear viscosities was shown to be 10 exp 4 - 10 exp 6 for fiber aspect ratio of 100-1000, except at extreme values of the fiber volume fraction.
Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts
NASA Technical Reports Server (NTRS)
Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul
2004-01-01
The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.
Liquid Dynamics in high melting materials studied by inelastic X-ray scattering
NASA Astrophysics Data System (ADS)
Sinn, Harald; Alatas, Ahmet; Said, Ayman; Alp, Esen E.; Price, David L.; Saboungi, Marie Louis; Scheunemann, Richard
2004-03-01
The transport properties of high melting materials are of interest for a variety of applications, including geo-sciences, nuclear waste confinement and aerospace technology. While traditional methods of measuring transport properties are often extremely difficult due to the high reactivity of the melts, the combination of containerless levitation and inelastic X-ray scattering offers new insights in the microscopic dynamics of these liquids. Data on the dynamic structure factor of liquid aluminum oxide and liquid boron between 2000-2800 degree Celsius are discussed and related to several macroscopic quantities like sound velocity, viscosity and diffusion.
Atomic and electronic structures of an extremely fragile liquid.
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-12-18
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.
Atomic and electronic structures of an extremely fragile liquid
Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi
2014-01-01
The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236
Cong, Xi Han; Shi, Fu Zhi; Ruan, Xin Min; Luo, Yu Xiang; Ma, Ting Chen; Luo, Zhi Xiang
2017-04-18
To provide scientific basis for reasonable application of nitrogen and create varieties with high N use-efficiency, an experiment was carried out to study the effects of nitrogen fertilizer application rate on grain yield, N use rate and quality of different rice varieties. Four different genotypic rice varieties, Nipponbare, N70, N178 and OM052 were used as tested material and three levels of nitrogen application rate (0, 120, 270 kg·hm -2 ) were conducted. Urea as nitrogen source was applied as basal (70%) and panicle (30%) fertilizer. The results showed that nitrogen fertilizer could raise yield mainly because of the increased effective panicles and filled grains per panicle. When the N application rate was 120 and 270 kg·hm -2 , OM052 had the largest grain yield among four varieties, being 41.1% and 76.8% higher, respectively compared with control. Difference in grain yield among four varieties was due to the difference of nitrogen use efficiency. Under 120 and 270 kg·hm -2 nitrogen levels, Nipponbare had the lowest grain yield and N agronomic efficiency (NAE, 40.90 g·g -1 and 18.56 g·g -1 ), which was a variety with low N use-efficiency. On the contrary, OM052 had the highest grain yield and NAE (145.9 g·g -1 and 81.24 g·g -1 ), was a variety with high N use-efficiency. N fertilizer application increased the amylose content and protein content, lengthened gel consistency, reduced chalky kernel, chalkiness, and alkali digestion value. With the increase of N fertilizer application, hot paste viscosity, peak viscosity, consistence viscosity and breakdown viscosity were decreased gradually, and setback viscosity was increased. Correlation analysis showed that the yield and yield components had more significant correlations with appearance quality, cooking and eating quality under low N level. This study confirmed that OM052 was a double high variety with extremely high N agronomic efficiency and yield. Reasonable application of nitrogen fertilizer could significantly increase effective panicles and filled grains per panicle, improve rice quality, and ensure high yield and superior quality simultaneously.
In situ polymerization of monomers for polyphenylquinoxaline/graphite
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Vannucci, R. D.
1973-01-01
Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.
NVP melt/magma viscosity: insight on Mercury lava flows
NASA Astrophysics Data System (ADS)
Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina
2016-04-01
After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy). The change of melt viscosity induced by crystallization of a NVP composition was measured in the temperature ranges from 1463 to 1229 °C. Results showed an increase in effective viscosity from 4.3 Pa s to 1090 Pa s as the crystal content increased from 0 vol% to ca. 25 vol.%. The crystallization processes in the nominally dry NVP began at 1308 °C. Interestingly, melts viscosity changes from 4 to 16 Pa s as temperature varies from 1463 to 1327 °C. The extreme Mercurian lava fluidity experimentally measured has revealed the potentiality of NVP lavas to cover huge areas as shown by satellite data. Keywords: Viscosity, Concentric cylinders, NVP, Mercury.
Chen, Ming-Hsuan; Bergman, Christine J; McClung, Anna M; Everette, Jace D; Tabien, Rodante E
2017-11-01
Resistant starch (RS), which is not hydrolyzed in the small intestine, has proposed health benefits. We evaluated 40 high amylose rice varieties for RS content in cooked rice and a 1.9-fold difference was found. Some varieties had more than two-fold greater RS content than a US long-grain intermediate-amylose rice. The high amylose varieties were grouped into four classes according to paste viscosity and gelatinization temperature based on genetic variants of the Waxy and Starch Synthase IIa genes, respectively. RS content was not different between the four paste viscosity-gelatinization temperature classes. Multiple linear regression analysis showed that apparent amylose content and pasting temperature were strong predictors of RS within each class. Two cooking methods, fixed water-to-rice ratio/time and in excess-water/minimum-cook-time, were compared using six rice varieties that were extremes in RS in each of the genetic variant classes, no difference in RS content due to cooking method was observed. Published by Elsevier Ltd.
46 CFR 153.2 - Definitions and acronyms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... viscosity NLS includes high viscosity Category B NLS and high viscosity Category C NLS. High viscosity Category B NLS means any Category B NLS having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High viscosity Category C NLS means any Category C NLS having a...
46 CFR 153.2 - Definitions and acronyms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... viscosity NLS includes high viscosity Category B NLS and high viscosity Category C NLS. High viscosity Category B NLS means any Category B NLS having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High viscosity Category C NLS means any Category C NLS having a...
Development of viscosity sensor with long period fiber grating technology
NASA Astrophysics Data System (ADS)
Lin, Jyh-Dong; Wang, Jian-Neng; Chen, Shih-Huang; Wang, Juei-Mao
2009-03-01
In this paper, we describe the development of a viscosity sensing system using a simple and low-cost long-period fiber grating (LPFG) sensor. The LPFG sensor was extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator. Viscosity can be simply defined as resistance to flow of a liquid. We have measured asphalt binder, 100-190000 centistokes, in comparison with optical sensing results. The system sensing asphalt binders exhibited increase trend in the resonance wavelength shift when the refractive index of the medium changed. The prototype sensor consisted of a LPFG sensing component and a cone-shaped reservoir where gravitational force can cause asphalt binders flow through the capillary. Thus the measured time for a constant volume of asphalt binders can be converted into either absolute or kinematic viscosity. In addition, a rotational viscometer and a dynamic shear rheometer were also used to evaluate the viscosity of this liquid, the ratio between the applied shear stress and rate of shear, as well as the viscoelastic property including complex shear modulus and phase angle. The measured time could be converted into viscosity of asphalt binder based on calculation. This simple LPFG viscosity sensing system is hopefully expected to benefit the viscosity measurement for the field of civil, mechanical and aerospace engineering.
Hot accretion flow with anisotropic viscosity
NASA Astrophysics Data System (ADS)
Wu, Mao-Chun; Bu, De-Fu; Gan, Zhao-Ming; Yuan, Ye-Fei
2017-12-01
In extremely low accretion rate systems, the ion mean-free path can be much larger than the gyroradius. Therefore, gas pressure is anisotropic with respect to magnetic field lines. The effects of pressure anisotropy can be modeled by an anisotropic viscosity with respect to magnetic field lines. Angular momentum can be transferred by anisotropic viscosity. In this paper, we investigate hot accretion flow with anisotropic viscosity. We consider the case that anisotropic viscous stress is much larger than Maxwell stress. We find that the flow is convectively unstable. We also find that the mass inflow rate decreases towards a black hole. Wind is very weak; its mass flux is 10-15% of the mass inflow rate. The inward decrease of inflow rate is mainly due to convective motions. This result may be useful to understand the accretion flow in the Galactic Center Sgr A* and M 87 galaxy.
Viscous cosmology for early- and late-time universe
NASA Astrophysics Data System (ADS)
Brevik, Iver; Grøn, Øyvind; de Haro, Jaume; Odintsov, Sergei D.; Saridakis, Emmanuel N.
From a hydrodynamicist’s point of view the inclusion of viscosity concepts in the macroscopic theory of the cosmic fluid would appear most natural, as an ideal fluid is after all an abstraction (exluding special cases such as superconductivity). Making use of modern observational results for the Hubble parameter plus standard Friedmann formalism, we may extrapolate the description of the universe back in time up to the inflationary era, or we may go to the opposite extreme and analyze the probable ultimate fate of the universe. In this review, we discuss a variety of topics in cosmology when it is enlarged in order to contain a bulk viscosity. Various forms of this viscosity, when expressed in terms of the fluid density or the Hubble parameter, are discussed. Furthermore, we consider homogeneous as well as inhomogeneous equations of state. We investigate viscous cosmology in the early universe, examining the viscosity effects on the various inflationary observables. Additionally, we study viscous cosmology in the late universe, containing current acceleration and the possible future singularities, and we investigate how one may even unify inflationary and late-time acceleration. Finally, we analyze the viscosity-induced crossing through the quintessence-phantom divide, we examine the realization of viscosity-driven cosmological bounces, and we briefly discuss how the Cardy-Verlinde formula is affected by viscosity.
Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2012-12-01
Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.
In situ polymerization of monomers for polyphenylquinoxaline/graphite fiber composites
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Delvigs, P.; Vannucci, R. D.
1974-01-01
Methods currently used to prepare fiber reinforced, high temperature resistant polyphenylquinoxaline (PPQ) composites employ extremely viscous, low solids content solutions of high molecular weight PPQ polymers. An improved approach, described in this report, consists of impregnating the fiber with a solution of the appropriate monomers instead of a solution of previously synthesized high molecular weight polymer. Polymerization of the monomers occurs in situ on the fiber during the solvent removal and curing stages. The in situ polymerization approach greatly simplifies the fabrication of PPQ graphite fiber composites. The use of low viscosity monomeric type solutions facilitates fiber wetting, permits a high solids content, and eliminates the need for prior polymer synthesis.
40 CFR 60.562-1 - Standards: Process emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... viscosity product is being produced using single or multiple end finishers or a high viscosity product is...-jet ejectors are used as vacuum producers and a high viscosity product is being produced using... low viscosity product is being produced using single or multiple end finishers or a high viscosity...
40 CFR 60.562-1 - Standards: Process emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... viscosity product is being produced using single or multiple end finishers or a high viscosity product is...-jet ejectors are used as vacuum producers and a high viscosity product is being produced using... low viscosity product is being produced using single or multiple end finishers or a high viscosity...
46 CFR 153.2 - Definitions and acronyms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... materials that are transported as bulk liquids by water in § 153.40. High viscosity NLS includes high viscosity Category B NLS and high viscosity Category C NLS. High viscosity Category B NLS means any Category B NLS having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is...
46 CFR 153.2 - Definitions and acronyms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... materials that are transported as bulk liquids by water in § 153.40. High viscosity NLS includes high viscosity Category B NLS and high viscosity Category C NLS. High viscosity Category B NLS means any Category B NLS having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is...
Lithospheric Structure of Antarctica and Implications for Geological and Cryospheric Evolution
NASA Astrophysics Data System (ADS)
Wiens, Douglas; Heeszel, David; Sun, Xinlei; Lloyd, Andrew; Nyblade, Andrew; Anandakrishnan, Sridhar; Aster, Richard; Chaput, Julien; Huerta, Audrey; Hansen, Samantha; Wilson, Terry
2013-04-01
Recent broadband seismic deployments, including the AGAP/GAMSEIS array of 24 broadband seismographs over the Gamburtsev Subglacial Mountains (GSM) in East Antarctica and the POLENET/ANET deployment of 33 seismographs across much of West Antarctica, reveal the detailed crust and upper mantle structure of Antarctica for the first time. The seismographs operate year-around even in the coldest parts of Antarctica, due to novel insulated boxes, power systems, and modified instrumentation developed in collaboration with the IRIS PASSCAL Instrument Center. We analyze the data using several different techniques to develop high-resolution models of Antarctic seismic structure. We use Rayleigh wave phase velocities at periods of 20-180 s determined using a modified two-plane wave decomposition of teleseismic Rayleigh waves to invert for the three dimensional shear velocity structure. In addition, Rayleigh wave group and phase velocities obtained by ambient seismic noise correlation methods provide constraints at shorter periods and shallower depths. Receiver functions provide precise estimates of crustal structure beneath the stations, and P and S wave tomography provides models of upper mantle structure down to ~ 500 km depth along transects of greater seismic station density. The new seismic results show that the high elevations of the GSM are supported by thick crust (~ 55 km), and are underlain by thick Precambrian continental lithosphere that initially formed during Archean to mid-Proterozoic times. The absence of lithospheric thermal anomalies suggests that the mountains were formed by a compressional orogeny during the Paleozoic, thus providing a locus for ice sheet nucleation throughout a long period of geological time. Within West Antarctica, the crust and lithosphere are extremely thin near the Transantarctic Mountain Front and topographic lows such as the Bentley Trench and Byrd Basin, which represent currently inactive Cenozoic rift systems. Slow seismic velocities beneath Marie Byrd Land at asthenospheric depths suggest a major thermal anomaly, possibly due to a mantle plume. Volcanic earthquakes detected in this region indicate the presence of currently active magma systems. The results suggest large lateral changes in parameters needed for glaciological models, including lithospheric thickness, mantle viscosity, and heat flow. Extremely high heat flow is predicted for much of West Antarctica, consistent with recent results from the WAIS ice drilling. Using the seismic results to estimate mantle viscosity, we find several orders of magnitude difference in viscosity between East and West Antarctica, with lowest viscosities found beneath Marie Byrd Land and the West Antarctic Rift System. Realistic glacial isostatic adjustment models must take these large lateral variations into account.
Li, Ye; Guan, Xiang-Hong; Wang, Rui; Li, Bin; Ning, Bo; Su, Wei; Sun, Tao; Li, Hong-Yan
2016-01-01
Background The aim of this study was to assess the preventive value of active ankle movements in the formation of lower-extremity deep venous thrombosis (DVT), attempting to develop a new method for rehabilitation nursing after orthopedic surgery. Material/Methods We randomly assigned 193 patients undergoing orthopedic surgery in the lower limbs into a case group (n=96) and a control group (n=97). The control group received routine nursing while the case group performed active ankle movements in addition to receiving routine nursing. Maximum venous outflow (MVO), maximum venous capacity (MVC), and blood rheology were measured and the incidence of DVT was recorded. Results On the 11th and 14th days of the experiment, the case group had significantly higher MVO and MVC than the control group (all P<0.05). The whole-blood viscosity at high shear rate and the plasma viscosity were significantly lower in the case group than in the control group on the 14th day (both P<0.05). During the experiment, a significantly higher overall DVT incidence was recorded in the control group (8 with asymptomatic DVT) compared with the case group (1 with asymptomatic DVT) (P=0.034). During follow-up, the case group presented a significantly lower DVT incidence (1 with symptomatic DVT and 4 with asymptomatic DVT) than in the control group (5 with symptomatic DVT and 10 with asymptomatic DVT) (P=0.031). Conclusions Through increasing MVO and MVC and reducing blood rheology, active ankle movements may prevent the formation of lower-extremity DVT after orthopedic surgery. PMID:27600467
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio
1986-01-01
Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.
Sakamoto, Yasunari; Sekino, Yusuke; Yamada, Eiji; Ohkubo, Hidenori; Higurashi, Takuma; Sakai, Eiji; Iida, Hiroshi; Hosono, Kunihiro; Endo, Hiroki; Nonaka, Takashi; Ikeda, Tamon; Fujita, Koji; Yoneda, Masato; Koide, Tomoko; Takahashi, Hirokazu; Goto, Ayumu; Abe, Yasunobu; Gotoh, Eiji; Maeda, Shin; Nakajima, Atsushi
2011-01-01
Background/Aims The administration of liquid nutrients to patients is often accompanied by complications such as gastroesophageal reflux. To prevent gastroesophageal reflux, high-viscosity liquid meals are used widely, however, it still remains controversial whether high-viscosity liquid meals have any effect on the rate of gastric emptying. The present study was conducted with the aim of determining whether high-viscosity liquid meals had any effect on the rate of gastric emptying and mosapride might accelerate the rate of gastric emptying of high-viscosity liquid meals. Methods Six healthy male volunteers underwent 3 tests at intervals of > 1 week. After fasting for > 8 hours, each subject received one of three test meals (liquid meal only, high-viscosity liquid meal [liquid meal plus pectin] only, or high-viscosity liquid meal 30 minutes after intake of mosapride). A 13C-acetic acid breath test was performed, which monitored the rate of gastric emptying for 4 hours. Using the Oridion Research Software (β version), breath test parameters were calculated. The study parameters were examined for all the 3 test conditions and compared using the Freidman test. Results Gastric emptying was significantly delayed following intake of a high-viscosity liquid meal alone as compared with a liquid meal alone; however, intake of mosapride prior to a high-viscosity liquid meal was associated with a significantly accelerated rate of gastric emptying as compared with a high-viscosity liquid meal alone. Conclusions This study showed that high-viscosity liquid meals delayed gastric emptying: however, mosapride recovered the delayed rate of gastric emptying by high-viscosity liquid meals. PMID:22148109
Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity.
Ostafinska, Aleksandra; Fortelný, Ivan; Hodan, Jiří; Krejčíková, Sabina; Nevoralová, Martina; Kredatusová, Jana; Kruliš, Zdeněk; Kotek, Jiří; Šlouf, Miroslav
2017-05-01
Blends of two biodegradable polymers, poly(lactic acid) (PLA) and poly(ϵ-caprolactone) (PCL), with strong synergistic improvement in mechanical performance were prepared by melt-mixing using the optimized composition (80/20) and the optimized preparation procedure (a melt-mixing followed by a compression molding) according to our previous study. Three different PLA polymers were employed, whose viscosity decreased in the following order: PLC ≈ PLA1 > PLA2 > PLA3. The blends with the highest viscosity matrix (PLA1/PCL) exhibited the smallest PCL particles (d∼0.6μm), an elastic-plastic stable fracture (as determined from instrumented impact testing) and the strongest synergistic improvement in toughness (>16× with respect to pure PLA, exceeding even the toughness of pure PCL). According to the available literature, this was the highest toughness improvement in non-compatiblized PLA/PCL blends ever achieved. The decrease in the matrix viscosity resulted in an increase in the average PCL particle size and a dramatic decrease in the overall toughness: the completely stable fracture (for PLA1/PCL) changed to the stable fracture followed by unstable crack propagation (for PLA2/PCL) and finally to the completely brittle fracture (for PLA3/PCL). The stiffness of all blends remained at well acceptable level, slightly above the theoretical predictions based on the equivalent box model. Despite several previous studies, the results confirmed that PLA and PCL could behave as compatible polymers, but the final PLA/PCL toughness is extremely sensitive to the PCL particle size distribution, which is influenced by both processing conditions and PLA viscosity. PLA/PCL blends with high stiffness (due to PLA) and toughness (due to PCL) are very promising materials for medical applications, namely for the bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui
2016-06-01
The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (P<0.05). Both groups showed significant improvements in pain relief and functional capacity status after surgery (P<0.05). It was concluded that high-viscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.
Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2017-03-31
The purpose of this study was to investigate the depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Depth of cure and flexural properties were determined according to ISO 4049, and volumetric shrinkage was measured using a dilatometer. The depths of cure of giomers were significantly lower than those of resin composites, regardless of photo polymerization times. No difference in flexural strength and modulus was found among either high or low viscosity bulk fill materials. Volumetric shrinkage of low and high viscosity bulk-fill resin composites was significantly less than low and high viscosity giomers. Depth of cure of both low and high viscosity bulk-fill materials is time dependent. Flexural strength and modulus of high viscosity or low viscosity bulk-fill giomer or resin composite materials are not different for their respective category. Resin composites exhibited less polymerization shrinkage than giomers.
Numerical Viscosity and the Survival of Gas Giant Protoplanets in Disk Simulations
NASA Astrophysics Data System (ADS)
Pickett, Megan K.; Durisen, Richard H.
2007-01-01
We present three-dimensional hydrodynamic simulations of a gravitationally unstable protoplanetary disk model under the condition of local isothermality. Ordinarily, local isothermality precludes the need for an artificial viscosity (AV) scheme to mediate shocks. Without AV, the disk evolves violently, shredding into dense (although short-lived) clumps. When we introduce our AV treatment in the momentum equation, but without heating due to irreversible compression, our grid-based simulations begin to resemble smoothed particle hydrodynamics (SPH) calculations, where clumps are more likely to survive many orbits. In fact, the standard SPH viscosity appears comparable in strength to the AV that leads to clump longevity in our code. This sensitivity to one numerical parameter suggests extreme caution in interpreting simulations by any code in which long-lived gaseous protoplanetary bodies appear.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C... Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C... Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C... Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C... Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity exceeds 25 mPa sec at 20 °C: Categories A, B, and C... Heated prewash for solidifying NLS, high viscosity NLS and required prewashes of NLS whose viscosity...
NASA Astrophysics Data System (ADS)
Ledevin, M.; Arndt, N.; Simionovici, A.
2014-05-01
A 100 m-thick complex of near-vertical carbonaceous chert dikes marks the transition from the Mendon to Mapepe Formations (3260 Ma) in the Barberton Greenstone Belt, South Africa. Fracturing was intense in this area, as shown by the profusion and width of the dikes (ca. 1 m on average) and by the abundance of completely shattered rocks. The dike-and-sill organization of the fracture network and the upward narrowing of some of the large veins indicate that at least part of the fluid originated at depth and migrated upward in this hydrothermal plumbing system. Abundant angular fragments of silicified country rock are suspended and uniformly distributed within the larger dikes. Jigsaw-fit structures and confined bursting textures indicate that hydraulic fracturing was at the origin of the veins. The confinement of the dike system beneath an impact spherule bed suggests that the hydrothermal circulations were triggered by the impact and located at the external margin of a large crater. From the geometry of the dikes and the petrography of the cherts, we infer that the fluid that invaded the fractures was thixotropic. On one hand, the injection of black chert into extremely fine fractures is evidence for low viscosity at the time of injection; on the other hand, the lack of closure of larger veins and the suspension of large fragments in a chert matrix provide evidence of high viscosity soon thereafter. The inference is that the viscosity of the injected fluid increased from low to high as the fluid velocity decreased. Such rheological behavior is characteristic of media composed of solid and colloidal particles suspended in a liquid. The presence of abundant clay-sized, rounded particles of silica, carbonaceous matter and clay minerals, the high proportion of siliceous matrix and the capacity of colloidal silica to form cohesive 3-D networks through gelation, account for the viscosity increase and thixotropic behavior of the fluid that filled the veins. Stirring and shearing of the siliceous mush as it was injected imparted a low viscosity by decreasing internal particle interactions; then, as the flow rate declined, the fluid became highly viscous as the inter-particulate bonds (siloxane bonds, Si-O-Si) were reconstituted. The gelation of the chert was rapid and the structure persisted at low temperature (T < 200 °C) before fractures were sealed and chert indurated.
Dorigo, B; Raspanti, D; Trapani, M; Albanese, B; Cameli, A M; Digiesi, V
1985-02-25
Ten subjects with peripheral arterial occlusive disease were treated with buflomedil, analysing the effect of every single intravenous administration of the drug, and the effect of the administration repeated for a period of 5 days. This controlled study was aimed at evaluating the state of the peripheral blood flow, not just relating to the flowmetric parameters, but also to those more directly connected to the metabolic and functional conditions of the microcirculation. During every single administration, blood flow, skin and muscular temperatures were recorded. As concerned the drug's chronic effect, endurance limit, skin and muscular temperatures, whole blood viscosity, plasma viscosity and red cell filterability were recorded before beginning the treatment and after 15 days. The results of this study show that during a single buflomedil infusion no modifications have been observed in blood flow and muscular temperature, whereas skin temperature showed a slight increase. On the contrary, after a 15 days treatment, muscular temperature and endurance limit significantly increased, without flowmetric changes. A significant decrease in values of blood viscosity at high shear-rate was recorded too. The overall results seem to indicate that after treatment with buflomedil there is an improvement of the metabolic muscular conditions, probably due to a stimulant effect of the drug on microcirculatory blood flow.
Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine
NASA Astrophysics Data System (ADS)
Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen
2018-04-01
To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (P<0.01), Can significantly reduce Naoluotong qingnaopian group, high dose group (P<0.01), plasma viscosity decreased qingnaopian plasma viscosity in low dose group (P<0.05). Conclusion: qingnaopian could improve the blood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.
The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.
Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Eddie; Stoyanov, Simeon D
2014-09-28
Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air-water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane ≫ tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase-water interfaces.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Dissipation, intermittency, and singularities in incompressible turbulent flows
NASA Astrophysics Data System (ADS)
Debue, P.; Shukla, V.; Kuzzay, D.; Faranda, D.; Saw, E.-W.; Daviaud, F.; Dubrulle, B.
2018-05-01
We examine the connection between the singularities or quasisingularities in the solutions of the incompressible Navier-Stokes equation (INSE) and the local energy transfer and dissipation, in order to explore in detail how the former contributes to the phenomenon of intermittency. We do so by analyzing the velocity fields (a) measured in the experiments on the turbulent von Kármán swirling flow at high Reynolds numbers and (b) obtained from the direct numerical simulations of the INSE at a moderate resolution. To compute the local interscale energy transfer and viscous dissipation in experimental and supporting numerical data, we use the weak solution formulation generalization of the Kármán-Howarth-Monin equation. In the presence of a singularity in the velocity field, this formulation yields a nonzero dissipation (inertial dissipation) in the limit of an infinite resolution. Moreover, at finite resolutions, it provides an expression for local interscale energy transfers down to the scale where the energy is dissipated by viscosity. In the presence of a quasisingularity that is regularized by viscosity, the formulation provides the contribution to the viscous dissipation due to the presence of the quasisingularity. Therefore, our formulation provides a concrete support to the general multifractal description of the intermittency. We present the maps and statistics of the interscale energy transfer and show that the extreme events of this transfer govern the intermittency corrections and are compatible with a refined similarity hypothesis based on this transfer. We characterize the probability distribution functions of these extreme events via generalized Pareto distribution analysis and find that the widths of the tails are compatible with a similarity of the second kind. Finally, we make a connection between the topological and the statistical properties of the extreme events of the interscale energy transfer field and its multifractal properties.
Bland, Michael T.; McKinnon, William B; Schenk, Paul M.
2015-01-01
The Cassini spacecraft’s Composite Infrared Spectrometer (CIRS) has observed at least 5 GW of thermal emission at Enceladus’ south pole. The vast majority of this emission is localized on the four long, parallel, evenly-spaced fractures dubbed tiger stripes. However, the thermal emission from regions between the tiger stripes has not been determined. These spatially localized regions have a unique morphology consisting of short-wavelength (∼1 km) ridges and troughs with topographic amplitudes of ∼100 m, and a generally ropy appearance that has led to them being referred to as “funiscular terrain.” Previous analysis pursued the hypothesis that the funiscular terrain formed via thin-skinned folding, analogous to that occurring on a pahoehoe flow top (Barr, A.C., Preuss, L.J. [2010]. Icarus 208, 499–503). Here we use finite element modeling of lithospheric shortening to further explore this hypothesis. Our best-case simulations reproduce funiscular-like morphologies, although our simulated fold wavelengths after 10% shortening are 30% longer than those observed. Reproducing short-wavelength folds requires high effective surface temperatures (∼185 K), an ice lithosphere (or high-viscosity layer) with a low thermal conductivity (one-half to one-third that of intact ice or lower), and very high heat fluxes (perhaps as great as 400 mW m−2). These conditions are driven by the requirement that the high-viscosity layer remain extremely thin (≲200 m). Whereas the required conditions are extreme, they can be met if a layer of fine grained plume material 1–10 m thick, or a highly fractured ice layer >50 m thick insulates the surface, and the lithosphere is fractured throughout as well. The source of the necessary heat flux (a factor of two greater than previous estimates) is less obvious. We also present evidence for an unusual color/spectral character of the ropy terrain, possibly related to its unique surface texture. Our simulations demonstrate that producing the funiscular ridges via folding remains plausible, but the relatively extreme conditions required to do so leaves their origin open to further investigation. The high heat fluxes required to produce the terrain by folding, which equate to an endogenic blackbody temperature near 50 K, should be observable by future nighttime CIRS observations, if funiscular deformation is occurring today.
Milliwave melter monitoring system
Daniel, William E [North Augusta, SC; Woskov, Paul P [Bedford, MA; Sundaram, Shanmugavelayutham K [Richland, WA
2011-08-16
A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.
Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions.
Pindrus, Mariya A; Shire, Steven J; Yadav, Sandeep; Kalonia, Devendra S
2017-04-01
To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.
Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes
NASA Technical Reports Server (NTRS)
Linehard, J. H.; Dhir, V. K.
1973-01-01
The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.
Extreme low temperature tolerance in woody plants
Strimbeck, G. Richard; Schaberg, Paul G.; Fossdal, Carl G.; Schröder, Wolfgang P.; Kjellsen, Trygve D.
2015-01-01
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane–membrane interactions. PMID:26539202
The Overshoot Phenomenon in Geodynamics Codes
NASA Astrophysics Data System (ADS)
Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.
2013-12-01
The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.
NASA Astrophysics Data System (ADS)
Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang
2018-06-01
In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.
Iwahashi, Makio; Kasahara, Yasutoshi
2007-01-01
Self-diffusion coefficients and viscosities for the saturated hydrocarbons having six carbon atoms such as hexane, 2-methylpentane (2MP), 3-methylpentane (3MP), 2,2-dimethylbutane (22DMB), 2,3-dimethylbutane (23DMB), methylcyclopentane (McP) and cyclohexane (cH) were measured at various constant temperatures; obtained results were discussed in connection with their molar volumes, molecular structures and thermodynamic properties. The values of self-diffusion coefficients as the microscopic property were inversely proportional to those of viscosities as the macroscopic property. The order of their viscosities was almost same to those of their melting temperatures and enthalpies of fusion, which reflect the attractive interactions among their molecules. On the other hand, the order of the self-diffusion coefficients inversely related to the order of the melting temperatures and the enthalpies of the fusion. Namely, the compound having the larger attractive interaction mostly shows the less mobility in its liquid state, e.g., cyclohexane (cH), having the largest attractive interaction and the smallest molar volume exhibits an extremely large viscosity and small self-diffusion coefficient comparing with other hydrocarbons. However, a significant exception was 22DMB, being most close to a sphere: In spite of the smallest attractive interaction and the largest molar volume of 22DMB in the all samples, it has the thirdly larger viscosity and the thirdly smaller self-diffusion coefficient. Consequently, the dynamical properties such as self-diffusion and viscosity for the saturated hydrocarbons are determined not only by their attractive interactions but also by their molecular structures.
Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy
NASA Astrophysics Data System (ADS)
Liang, Lifang; Wang, Xichao; Xing, Da; Chen, Tongsheng; Chen, Wei R.
2009-03-01
Noninvasive and reliable quantification of rheological characteristics in the nucleus is extremely useful for fundamental research and practical applications in medicine and biology. This study examines the use of fluorescence correlation spectroscopy (FCS) to noninvasively determine nucleoplasmic viscosity (ɛnu), an important parameter of nucleoplasmic rheology. Our FCS analyses show that ɛnu of lung adenocarcinoma (ASTC-a-1) and HeLa cells are 1.77+/-0.42 cP and 1.40+/-0.27 cP, respectively, about three to four times larger than the water viscosity at 37 °C. ɛnu was reduced by 31 to 36% upon hypotonic exposure and increased by 28 to 52% from 37 to 24 °C. In addition, we found that ɛnu of HeLa cells reached the lowest value in the S phase and that there was no significant difference of ɛnu between in the G1 and G2 phases. Last, nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity in both HeLa and ASTC-a-1 cells. These results indicate that FCS can be used as a noninvasive tool to investigate the microenvironment of living cells. This is the first report on the measurement of ɛnu in living cells synchronized in the G1, S, and G2 phases.
Whole-blood viscosity and the insulin-resistance syndrome.
Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E
1998-02-01
In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B
2011-12-01
Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.
Shear viscosity in an anisotropic unitary Fermi gas
NASA Astrophysics Data System (ADS)
Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.
2017-11-01
We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.
Morphogenetic Implications of Peristalsis-Driven Fluid Flow in the Embryonic Lung
Bokka, Kishore K.; Jesudason, Edwin C.; Lozoya, Oswaldo A.; Guilak, Farshid; Warburton, David; Lubkin, Sharon R.
2015-01-01
Epithelial organs are almost universally secretory. The lung secretes mucus of extremely variable consistency. In the early prenatal period, the secretions are of largely unknown composition, consistency, and flow rates. In addition to net outflow from secretion, the embryonic lung exhibits transient reversing flows from peristalsis. Airway peristalsis (AP) begins as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can transport fluid far from the immediately adjacent tissues. The sensation of internal fluid flows has been shown to have potent morphogenetic effects, as has the transport of morphogens. We hypothesize that these effects play an important role in lung morphogenesis. To test these hypotheses in a quantitative framework, we analyzed the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We found that if the airway is closed, fluid transport is minimal; by contrast, if the trachea is open, shear rates can be very high, particularly at the stenosis. We performed a parametric analysis of flow characteristics' dependence on tissue stiffnesses, smooth muscle force, geometry, and fluid viscosity, and found that most of these relationships are governed by simple ratios. We measured the viscosity of prenatal lung fluid with passive bead microrheology. This paper reports the first measurements of the viscosity of embryonic lung lumen fluid. In the range tested, lumen fluid can be considered Newtonian, with a viscosity of 0.016 ± 0.008 Pa-s. We analyzed the interaction between the internal flows and diffusion and conclude that AP has a strong effect on flow sensing away from the tip and on transport of morphogens. These effects may be the intermediate mechanisms for the enhancement of branching seen in occluded embryonic lungs. PMID:26147967
Vuksan, Vladimir; Jenkins, Alexandra L; Rogovik, Alexander L; Fairgrieve, Christopher D; Jovanovski, Elena; Leiter, Lawrence A
2011-11-01
The well-documented lipid-lowering effects of fibre may be related to its viscosity, a phenomenon that has been understudied, especially when fibre is given against the background of a typical North American (NA) diet. In this three-arm experiment, we compared the lipid-lowering effect of low-viscosity wheat bran (WB), medium-viscosity psyllium (PSY) and a high-viscosity viscous fibre blend (VFB), as part of a fibre intervention aimed at increasing fibre intake to recommended levels within the context of a NA diet in apparently healthy individuals. Using a randomised cross-over design, twenty-three participants (twelve males and eleven females; age 35 (SD 12) years; LDL-cholesterol (C) 2.9 (SEM 0.6) mmol/l) consuming a typical NA diet received a standard, fibre-enriched cereal, where approximately one-third of the fibre was either a low-viscosity (570 centipoise (cP)) WB, medium-viscosity (14,300 cP) PSY or a high-viscosity (136,300 cP) novel VFB, for 3 weeks separated by washout periods of ≥ 2 weeks. There were no differences among the treatments in the amount of food consumed, total dietary fibre intake, reported physical activity and body weight. Final intake of the WB, PSY and VFB was 10.8, 9.0 and 5.1 g, respectively. Reduction in LDL-C was greater with the VFB compared with the medium-viscosity PSY (-12.6 (SEM 3.5) %, P = 0.002) and low-viscosity WB (-14.6 (SEM 4.2) %, P = 0.003). The magnitude of LDL-C reduction showed a positive association with fibre apparent viscosity (r - 0.41, P = 0.001). Despite the smaller quantity consumed, the high-viscosity fibre lowered LDL-C to a greater extent than lower-viscosity fibres. These data support the inclusion of high-viscosity fibre in the diet to reduce plasma lipids among apparently healthy individuals consuming a typical NA diet.
Foam injection molding of poly(lactic acid) with physical blowing agents
NASA Astrophysics Data System (ADS)
Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.
2014-05-01
Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.
Zhou, Yun; Winkworth-Smith, Charles G; Wang, Yu; Liang, Jianfen; Foster, Tim J; Cheng, Yongqiang
2014-12-19
The effects of konjac glucomannan (KGM) on thermal behavior of wheat starch have been studied in the presence of low concentrations of Na2CO3 (0.1-0.2 wt% of starch). Confocal laser scanning microscopy (CLSM) allows the visualization of the starch gelatinization process and granule remnants in starch pastes. Heating the starch dispersion in KGM-Na2CO3 solution significantly delays granule swelling and inhibits amylose leaching, whereas Na2CO3 alone, at the same concentration, has little effect. Na2CO3 assists KGM in producing the extremely high viscosity of starch paste, attributing to a less remarkable breakdown of viscosity in subsequent heating, and protecting starch granules against crystallite melting. The distinct partially networked film around the surface of starch granules is evident in the CLSM images. We propose that Na2CO3 could trigger the formation of complexes between KGM and starch polymers, which exerts a protective effect on granular structure and modifying gelatinization characteristics of the mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Zhao; Wang, Wei; Gao, Wen-Shan; Gao, Fei; Wang, Hui; Ding, Wen-Yuan
2017-12-01
To compare the clinical outcomes and complications of high viscosity and low viscosity bone cement percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCF).From September 2009 to September 2015, 100 patients with OVCF were randomly divided into 2 groups: group H, using high viscosity cement (n = 50) or group L, using low viscosity cement (n = 50). The clinical outcomes were assessed by the visual analog scale (VAS), Oswestry Disability Index (ODI), kyphosis Cobb angle, vertebral height, and complications.Significant improvements in the VAS, ODI, kyphosis Cobb angle, and vertebral height were noted in both groups, and the VAS score in the H group showed greater benefit than in the L group. Cement leakage was observed less in group H. Postoperative assessment using computed tomography identified cement leakage in 27 of 98 (27.6%) vertebrae in group H and in 63 of 86 (73.3%) vertebrae in group L (P = .025).Compared with PVP using low viscosity bone cement, PVP using high viscosity bone cement can provide the same clinical outcomes with fewer complications and is recommended for routine clinical use.
Zhang, Liang; Wang, Jingcheng; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Wang, Yongxiang; Zhang, Shengfei; Cai, Jun; Huang, Jijun
2015-02-01
To compare the clinical outcome and complications of high viscosity and low viscosity poly-methyl methacrylate bone cement PVP for severe OVCFs. From December 2010 to December 2012, 32 patients with severe OVCFs were randomly assigned to either group H using high viscosity cement (n=14) or group L using low viscosity cement (n=18). The clinical outcomes were assessed by the Visual Analog Scale (VAS), Oswestry Disability Index (ODI), Short Form-36 General Health Survey (SF-36), kyphosis Cobb's angle, vertebral height, and complications. Significant improvement in the VAS, ODI, SF-36 scores, kyphosis Cobb's angle, and vertebral height were noted in both the groups, and there were no significant differences between the two groups. Cement leakage was seen less in group H. Postoperative assessment using computed tomography identified cement leakage in 5 of 17 (29.4%) vertebrae in group H and in 15 of 22 (68.2%) vertebrae in group L (P=0.025). The PVP using high viscosity bone cement can provide the same clinical outcome and fewer complications compared with PVP using low viscosity bone cement. Copyright © 2014. Published by Elsevier B.V.
Guo, Zhao; Wang, Wei; Gao, Wen-shan; Gao, Fei; Wang, Hui; Ding, Wen-Yuan
2017-01-01
Abstract To compare the clinical outcomes and complications of high viscosity and low viscosity bone cement percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCF). From September 2009 to September 2015, 100 patients with OVCF were randomly divided into 2 groups: group H, using high viscosity cement (n = 50) or group L, using low viscosity cement (n = 50). The clinical outcomes were assessed by the visual analog scale (VAS), Oswestry Disability Index (ODI), kyphosis Cobb angle, vertebral height, and complications. Significant improvements in the VAS, ODI, kyphosis Cobb angle, and vertebral height were noted in both groups, and the VAS score in the H group showed greater benefit than in the L group. Cement leakage was observed less in group H. Postoperative assessment using computed tomography identified cement leakage in 27 of 98 (27.6%) vertebrae in group H and in 63 of 86 (73.3%) vertebrae in group L (P = .025). Compared with PVP using low viscosity bone cement, PVP using high viscosity bone cement can provide the same clinical outcomes with fewer complications and is recommended for routine clinical use. PMID:29310386
Computational tool for the early screening of monoclonal antibodies for their viscosities
Agrawal, Neeraj J; Helk, Bernhard; Kumar, Sandeep; Mody, Neil; Sathish, Hasige A.; Samra, Hardeep S.; Buck, Patrick M; Li, Li; Trout, Bernhardt L
2016-01-01
Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies. PMID:26399600
A new readily processable polyimide
NASA Technical Reports Server (NTRS)
Harris, F. W.; Beltz, M. W.; Hergenrother, P. M.
1986-01-01
As part of an effort to develop tough solvent resistance thermoplastics for potential use as structural resins on aerospace vehicles, a new processable polyimide was evaluated. The synthesis involved the reaction of a new diamine, 1,3-bis 2-(3-aminophenoxy)ethyl ether, with 3,3',4,4'-benzophenonetetracarboxylic dianhydride to form the polyamic acid and subsequent conversion of it to the polyimide. Various physical properties such as thermal stability, solvent resistance, glass transition temperature, crystalline melt temperature, melt viscosity and mechanical properties such as fracture toughness, adhesive, film and composite properties are reported. Of particular interest is the extremely high titanium to titanium tensile shear strength obtained for this polyimide.
Botha, Sabine; Nass, Karol; Barends, Thomas R M; Kabsch, Wolfgang; Latz, Beatrice; Dworkowski, Florian; Foucar, Lutz; Panepucci, Ezequiel; Wang, Meitian; Shoeman, Robert L; Schlichting, Ilme; Doak, R Bruce
2015-02-01
Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming developments in beamline optics, detectors and synchrotron sources will enable the use of true microcrystals. This high-throughput, high-dose-rate methodology provides a new route to investigating the structure and dynamics of macromolecules at ambient temperature.
Dynamics of cratons in an evolving mantle
NASA Astrophysics Data System (ADS)
O'Neill, C. J.; Lenardic, A.; Griffin, W. L.; O'Reilly, Suzanne Y.
2008-04-01
The tectonic quiescence of cratons on a tectonically active planet has been attributed to their physical properties such as buoyancy, viscosity, and yield strength. Previous modelling has shown the conditions under which cratons may be stable for the present, but cast doubt on how they survived in a more energetic mantle of the past. Here we incorporate an endothermic phase change at 670 km, and a depth-dependent viscosity structure consistent with post-glacial rebound and geoid modelling, to simulate the dynamics of cratons in an "Earth-like" convecting system. We find that cratons are unconditionally stable in such systems for plausible ranges of viscosity ratios between the root and asthenosphere (50-150) and the root/oceanic lithosphere yield strength ratio (5-30). Realistic mantle viscosity structures have limited effect on the average background cratonic stress state, but do buffer cratons from extreme stress excursions. An endothermic phase change at 670 km introduces an additional time-dependence into the system, with slab breakthrough into the lower mantle associated with 2-3 fold stress increases at the surface. Under Precambrian mantle conditions, however, the dominant effect is not more violent mantle avalanches, or faster mantle/plate velocities, but rather the drastic viscosity drop which results from hotter mantle conditions in the past. This results in a large decrease in the cratonic stress field, and promotes craton survival under the evolving mantle conditions of the early Earth.
Lubricant-impregnated surfaces for drag reduction in viscous laminar flow
NASA Astrophysics Data System (ADS)
Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team
2013-11-01
For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).
Polysulfide and bio-based EP additive performance in vegetable vs. paraffinic base oils
USDA-ARS?s Scientific Manuscript database
Twist compression test (TCT) and 4-ball extreme pressure (EP) methods were used to investigate commercial polysulfide (PS) and bio-based polyester (PE) EP additives in paraffinic (150N) and refined soybean (SOY) base oils of similar viscosity. Binary blends of EP additive and base oil were investiga...
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.; Federrath, Christoph
2015-02-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The SGS energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pressure ({{β }p}=0.25,1,2.5,5,25) and sonic Mach numbers ({{M}s}=2,2.5,4). Furthermore, we make a comparison to traditional, phenomenological eddy-viscosity and α -β -γ closures. We find only mediocre performance of the kinetic eddy-viscosity and α -β -γ closures, and that the magnetic eddy-viscosity closure is poorly correlated with the simulation data. Moreover, three of five coefficients of the traditional closures exhibit a significant spread in values. In contrast, our new closures demonstrate consistently high correlations and constant coefficient values over time and over the wide range of parameters tested. Important aspects in compressible MHD turbulence such as the bi-directional energy cascade, turbulent magnetic pressure and proper alignment of the EMF are well described by our new closures.
Banerjee, Aparna; Bandopadhyay, Rajib
2016-06-01
This review is a concise compilation of all the major researches on dextran nanoparticle based biomedical applications. Dextran is a highly biocompatible and biodegradable neutral bacterial exopolysaccharide with simple repeating glucose subunits. It's simple yet unique biopolymeric nature made it highly suitable as nanomedicine, nanodrug carrier, and cell imaging system or nanobiosensor. Most importantly, it is extremely water soluble and shows no post drug delivery cellular toxicity. Complete metabolism of dextran is possible inside body thus possibility of renal failure is minimum. Dextran based nanoparticles have superior aqueous solubility, high cargo capacity and intrinsic viscosity, and short storage period. The main focus area of this review is- past and present of major biomedical applications of dextran based nanomaterials thus showing a paradigm shift in bacterial exopolysaccharide based nanobiotechnology. Copyright © 2016 Elsevier B.V. All rights reserved.
Kulcinskaja, Evelina; Marungruang, Nittaya; Matziouridou, Chrysoula; Nilsson, Ulf; Stålbrand, Henrik; Nyman, Margareta
2015-01-01
The aim of this study was to investigate how physico-chemical properties of two dietary fibres, guar gum and pectin, affected weight gain, adiposity, lipid metabolism, short-chain fatty acid (SCFA) profiles and the gut microbiota in male Wistar rats fed either low- or high-fat diets for three weeks. Both pectin and guar gum reduced weight gain, adiposity, liver fat and blood glucose levels in rats fed a high-fat diet. Methoxylation degree of pectin (low, LM and high (HM)) and viscosity of guar gum (low, medium or high) resulted in different effects in the rats, where total blood and caecal amounts of SCFA were increased with guar gum (all viscosities) and with high methoxylated (HM) pectin. However, only guar gum with medium and high viscosity increased the levels of butyric acid in caecum and blood. Both pectin and guar gum reduced cholesterol, liver steatosis and blood glucose levels, but to varying extent depending on the degree of methoxylation and viscosity of the fibres. The medium viscosity guar gum was the most effective preparation for prevention of diet-induced hyperlipidaemia and liver steatosis. Caecal abundance of Akkermansia was increased with high-fat feeding and with HM pectin and guar gum of all viscosities tested. Moreover, guar gum had distinct bifidogenic effects independent of viscosity, increasing the caecal abundance of Bifidobacterium ten-fold. In conclusion, by tailoring the viscosity and possibly also the degree of methoxylation of dietary fibre, metabolic effects may be optimized, through a targeted modulation of the gut microbiota and its metabolites. PMID:25973610
Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong
2016-03-07
Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.
Tomar, Dheeraj S; Kumar, Sandeep; Singh, Satish K; Goswami, Sumit; Li, Li
2016-01-01
Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored.
Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L
2015-09-01
The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.
Viscosity and compressibility of diacylglycerol under high pressure
NASA Astrophysics Data System (ADS)
Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.
2013-03-01
The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.
Experimental understanding of the viscosity reduction ability of TLCPs with different PEs
NASA Astrophysics Data System (ADS)
Tang, Youhong; Zuo, Min; Gao, Ping
2014-08-01
In this study, two thermotropic liquid crystalline polyesters (TLCPs) synthesized by polycondensation of p-hydroxybenzoic acid /hydroquinone/ poly dicarboxylic acid were used as viscosity reduction agents for polyethylene (PE). The TLCPs had different thermal, rheological and other physical properties that were quantitatively characterized. The two TLCPs were blended with high density PE (HDPE) and high molecular mass PE (HMMPE) by simple twin screw extrusion under the same weight ratio of 1.0 wt% and were each rheologically characterized at 190°C. The TLCPs acted as processing modifiers for the PEs and the bulk viscosity of the blends decreased dramatically. However, the viscosity reduction ability was not identical: one TLCP had obviously higher viscosity reduction ability on the HDPE, with a maximum viscosity reduction ratio of 68.1%, whereas the other TLCP had higher viscosity reduction ability on the HMMPE, with a maximum viscosity reduction ratio of 98.7%. Proposed explanations for these differences are evaluated.
Demonstration and Assessment of a Simple Viscosity Experiment for High School Science Classes
ERIC Educational Resources Information Center
Floyd-Smith, T. M.; Kwon, K. C.; Burmester, J. A.; Dale, F. F.; Vahdat, N.; Jones, P.
2006-01-01
The demonstration of a simple viscosity experiment for high school classes was conducted and assessed. The purpose of the demonstration was to elicit the interest of high school juniors and seniors in the field of chemical engineering. The demonstration consisted of a discussion on both engineering and the concept of viscosity as well as a…
Method of preparing a high solids content, low viscosity ceramic slurry
Tiegs, Terry N.; Wittmer, Dale E.
1995-01-01
A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.
Method of preparing a high solids content, low viscosity ceramic slurry
Tiegs, T.N.; Wittmer, D.E.
1995-10-10
A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.
Creating the Primordial Quark-Gluon Plasma at the LHC
NASA Astrophysics Data System (ADS)
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
Shear rheological characterization of motor oils
NASA Technical Reports Server (NTRS)
Bair, Scott; Winer, Ward O.
1988-01-01
Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.
Microbial transglutaminase and its application in the food industry. A review.
Kieliszek, Marek; Misiewicz, Anna
2014-05-01
The extremely high costs of manufacturing transglutaminase from animal origin (EC 2.3.2.13) have prompted scientists to search for new sources of this enzyme. Interdisciplinary efforts have been aimed at producing enzymes synthesised by microorganisms which may have a wider scope of use. Transglutaminase is an enzyme that catalyses the formation of isopeptide bonds between proteins. Its cross-linking property is widely used in various processes: to manufacture cheese and other dairy products, in meat processing, to produce edible films and to manufacture bakery products. Transglutaminase has considerable potential to improve the firmness, viscosity, elasticity and water-binding capacity of food products. In 1989, microbial transglutaminase was isolated from Streptoverticillium sp. Its characterisation indicated that this isoform could be extremely useful as a biotechnological tool in the food industry. Currently, enzymatic preparations are used in almost all industrial branches because of their wide variety and low costs associated with their biotechnical production processes. This paper presents an overview of the literature addressing the characteristics and applications of transglutaminase.
Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains
NASA Astrophysics Data System (ADS)
Mandare, Prashant N.
2007-12-01
Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.
Huang, Yuhong; Willats, William G; Lange, Lene; Jin, Yanling; Fang, Yang; Salmeán, Armando A; Pedersen, Henriette L; Busk, Peter Kamp; Zhao, Hai
2016-01-01
Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction of the sweet potato and the cassava was attributed to the degradation of homogalacturonan and the released 1,4-β-d-galactan and 1,5-α-l-arabinan. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
The sensitivity of conduit flow models to basic input parameters: there is no need for magma trolls!
NASA Astrophysics Data System (ADS)
Thomas, M. E.; Neuberg, J. W.
2012-04-01
Many conduit flow models now exist and some of these models are becoming extremely complicated, conducted in three dimensions and incorporating the physics of compressible three phase fluids (magmas), intricate conduit geometries and fragmentation processes, to name but a few examples. These highly specialised models are being used to explain observations of the natural system, and there is a danger that possible explanations may be getting needlessly complex. It is coherent, for instance, to propose the involvement of sub-surface dwelling magma trolls as an explanation for the change in a volcanoes eruptive style, but assuming the simplest explanation would prevent such additions, unless they were absolutely necessary. While the understanding of individual, often small scale conduit processes is increasing rapidly, is this level of detail necessary? How sensitive are these models to small changes in the most basic of governing parameters? Can these changes be used to explain observed behaviour? Here we will examine the sensitivity of conduit flow models to changes in the melt viscosity, one of the fundamental inputs to any such model. However, even addressing this elementary issue is not straight forward. There are several viscosity models in existence, how do they differ? Can models that use different viscosity models be realistically compared? Each of these viscosity models is also heavily dependent on the magma composition and/or temperature, and how well are these variables constrained? Magma temperatures and water contents are often assumed as "ball-park" figures, and are very rarely exactly known for the periods of observation the models are attempting to explain, yet they exhibit a strong controlling factor on the melt viscosity. The role of both these variables will be discussed. For example, using one of the available viscosity models a 20 K decrease in temperature of the melt results in a greater than 100% increase in the melt viscosity. With changes of this magnitude resulting from small alterations in the basic governing parameters does this render any changes in individual conduit processes of secondary importance? As important as the melt viscosity is to any conduit flow model, it is a meaningless parameter unless there is a conduit through which to flow. The shape and size of a volcanic conduit are even less well constrained than magma's temperature and water content, but have an equally important role to play. Rudimentary changes such as simply increasing or decreasing the radius of a perfectly cylindrical conduit can have large effects, and when coupled with the range of magma viscosities that may be flowing through them can completely change interpretations. Although we present results specifically concerning the variables of magma temperature and water content and the radius of a cylindrical conduit, this is just the start, by systematically identifying the effect each parameter has on the conduit flow models it will be possible to identify which areas are most requiring of future attention.
High-Resolution Lithosphere Viscosity and Dynamics Revealed by Magnetotelluric Imaging
NASA Astrophysics Data System (ADS)
Liu, L.; Hasterok, D. P.
2016-12-01
An accurate viscosity structure is critical to truthfully modeling continental lithosphere dynamics, especially at spatial scales of <200 km where active tectonic deformation and volcanism occur. However, the effective viscosity structure of the lithosphere remains a key challenge in geodynamics due to the intimate involvement of viscosity with time and its dependence on many factors including strain rate, plastic failure, composition, and grain size. Current efforts on inferring the detailed lithosphere viscosity structure are sparse and large uncertainties and discrepancies still exist. Here we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. The results indicate that lithosphere viscosity structure rather than the buoyancy structure is the dominant controlling factor for short-wavelength topography and intra-plate deformation in tectonically active regions. We further show that this viscosity is consistent with and more effective than that derived from laboratory-based rheology. We therefore propose that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.
Elementary excitations and crossover phenomenon in liquids.
Iwashita, T; Nicholson, D M; Egami, T
2013-05-17
The elementary excitations of vibration in solids are phonons. But in liquids phonons are extremely short lived and marginalized. In this Letter through classical and ab initio molecular dynamics simulations of the liquid state of various metallic systems we show that different excitations, the local configurational excitations in the atomic connectivity network, are the elementary excitations in high temperature metallic liquids. We also demonstrate that the competition between the configurational excitations and phonons determines the so-called crossover phenomenon in liquids. These discoveries open the way to the explanation of various complex phenomena in liquids, such as fragility and the rapid increase in viscosity toward the glass transition, in terms of these excitations.
Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process
2010-01-01
Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal feeds. PMID:20426816
40 CFR 60.562-1 - Standards: Process emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (B) If steam-jet ejectors are used as vacuum producers and a low viscosity product is being produced using single or multiple end finishers or a high viscosity product is being produced using a single end... producers and a high viscosity product is being produced using multiple end finishers, maintain an ethylene...
Viscosity of dilute suspensions of rodlike particles: A numerical simulation method
NASA Astrophysics Data System (ADS)
Yamamoto, Satoru; Matsuoka, Takaaki
1994-02-01
The recently developed simulation method, named as the particle simulation method (PSM), is extended to predict the viscosity of dilute suspensions of rodlike particles. In this method a rodlike particle is modeled by bonded spheres. Each bond has three types of springs for stretching, bending, and twisting deformation. The rod model can therefore deform by changing the bond distance, bond angle, and torsion angle between paired spheres. The rod model can represent a variety of rigidity by modifying the bond parameters related to Young's modulus and the shear modulus of the real particle. The time evolution of each constituent sphere of the rod model is followed by molecular-dynamics-type approach. The intrinsic viscosity of a suspension of rodlike particles is derived from calculating an increased energy dissipation for each sphere of the rod model in a viscous fluid. With and without deformation of the particle, the motion of the rodlike particle was numerically simulated in a three-dimensional simple shear flow at a low particle Reynolds number and without Brownian motion of particles. The intrinsic viscosity of the suspension of rodlike particles was investigated on orientation angle, rotation orbit, deformation, and aspect ratio of the particle. For the rigid rodlike particle, the simulated rotation orbit compared extremely well with theoretical one which was obtained for a rigid ellipsoidal particle by use of Jeffery's equation. The simulated dependence of the intrinsic viscosity on various factors was also identical with that of theories for suspensions of rigid rodlike particles. For the flexible rodlike particle, the rotation orbit could be obtained by the particle simulation method and it was also cleared that the intrinsic viscosity decreased as occurring of recoverable deformation of the rodlike particle induced by flow.
DWPF STARTUP FRIT VISCOSITY MEASUREMENT ROUND ROBIN RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Edwards, Tommy B.; Russell, Renee L.
2012-07-31
A viscosity standard is needed to replace the National Institute of Standards and Technology (NIST) glasses currently being used to calibrate viscosity measurement equipment. The current NIST glasses are either unavailable or less than ideal for calibrating equipment to measure the viscosity of high-level waste glasses. This report documents the results of a viscosity round robin study conducted on the Defense Waste Processing Facility (DWPF) startup frit. DWPF startup frit was selected because its viscosity-temperature relationship is similar to most DWPF and Hanford high-level waste glass compositions. The glass underwent grinding and blending to homogenize the large (100 lb) batch.more » Portions of the batch were supplied to the laboratories (named A through H) for viscosity measurements following a specified temperature schedule with a temperature range of 1150 C to 950 C and with an option to measure viscosity at lower temperatures if their equipment was capable of measuring at the higher viscosities. Results were used to fit the Vogel-Tamman-Fulcher and Arrhenius equations to viscosity as a function of temperature for the entire temperature range of 460 C through 1250 C as well as the limited temperature interval of approximately 950 C through 1250 C. The standard errors for confidence and prediction were determined for the fitted models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Daniel; Boresch, Stefan; Steinhauser, Othmar
Long-term molecular dynamics simulations are used to compare the single particle dipole reorientation time, the diffusion constant, the viscosity, and the frequency-dependent dielectric constant of the coarse-grained big multipole water (BMW) model to two common atomistic three-point water models, SPC/E and TIP3P. In particular, the agreement between the calculated viscosity of BMW and the experimental viscosity of water is satisfactory. We also discuss contradictory values for the static dielectric properties reported in the literature. Employing molecular hydrodynamics, we show that the viscosity can be computed from single particle dynamics, circumventing the slow convergence of the standard approaches. Furthermore, our datamore » indicate that the Kivelson relation connecting single particle and collective reorientation time holds true for all systems investigated. Since simulations with coarse-grained force fields often employ extremely large time steps, we also investigate the influence of time step on dynamical properties. We observe a systematic acceleration of system dynamics when increasing the time step. Carefully monitoring energy/temperature conservation is found to be a sufficient criterion for the reliable calculation of dynamical properties. By contrast, recommended criteria based on the ratio of fluctuations of total vs. kinetic energy are not sensitive enough.« less
Inoue, Naoto; Takai, Eisuke; Arakawa, Tsutomu; Shiraki, Kentaro
2014-05-01
Therapeutic protein solutions for subcutaneous injection must be very highly concentrated, which increases their viscosity through protein-protein interactions. However, maintaining a solution viscosity below 50 cP is important for the preparation and injection of therapeutic protein solutions. In this study, we examined the effect of various amino acids on the solution viscosity of very highly concentrated bovine serum albumin (BSA) and human serum albumin (HSA) at a physiological pH. Among the amino acids tested, l-arginine hydrochloride (ArgHCl) and l-lysine hydrochloride (LysHCl) (50-200 mM) successfully reduced the viscosity of both BSA and HSA solutions; guanidine hydrochloride (GdnHCl), NaCl, and other sodium salts were equally as effective, indicating the electrostatic shielding effect of these additives. Fourier transform infrared spectroscopy showed that BSA is in its native state even in the presence of ArgHCl, LysHCl, and NaCl at high protein concentrations. These results indicate that weakened protein-protein interactions play a key role in reducing solution viscosity. ArgHCl and LysHCl, which are also non-toxic compounds, will be used as additives to reduce the solution viscosity of concentrated therapeutic proteins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke
2016-09-01
Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.
Tomar, Dheeraj S.; Kumar, Sandeep; Singh, Satish K.; Goswami, Sumit; Li, Li
2016-01-01
ABSTRACT Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored. PMID:26736022
NASA Astrophysics Data System (ADS)
Schreiber, G. A.; Leffke, A.; Mager, M.; Helle, N.; Bögl, K. W.
1994-11-01
Forty-nine pepper samples were taken from retail food stores of different cities in Germany. Most of the black and all white pepper samples showed high viscosity values after jellification in alkaline solution. After irradiation with a γ-ray dose of 6 kGy, viscosity was largely reduced in each case. Some black pepper samples showed a low viscosity level already before irradiation. However, thermoluminescence analysis did not reveal any sign for irradiation treatment prior to examination. Furthermore, the low viscosity level of these samples could not be correlated with a low starch content. It is concluded that the viscosity levels of irradiated white pepper samples clearly reveal high dose irradiation treatment. In case of black peppers it is judged that the method can be used to screen for irradiated samples since it is fast, easy and cheap. However, a positive result should be confirmed by another technique, e.g. thermoluminescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, A.
HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistantmore » and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.« less
Effects of surface tension and viscosity on gold and silver sputtered onto liquid substrates
NASA Astrophysics Data System (ADS)
De Luna, Mark M.; Gupta, Malancha
2018-05-01
In this paper, we study DC magnetron sputtering of gold and silver onto liquid substrates of varying viscosities and surface tensions. We were able to separate the effects of viscosity from surface tension by depositing the metals onto silicone oils with a range of viscosities. The effects of surface tension were studied by depositing the metals onto squalene, poly(ethylene glycol), and glycerol. It was found that dispersed nanoparticles were formed on liquids with low surface tension and low viscosity whereas dense films were formed on liquids with low surface tension and high viscosity. Nanoparticles were formed on both the liquid surface and within the bulk liquid for high surface tension liquids. Our results can be used to tailor the metal and liquid interaction to fabricate particles and films for various applications in optics, electronics, and catalysis.
NASA Technical Reports Server (NTRS)
Balachandar, S.; Yuen, D. A.; Reuteler, D. M.
1995-01-01
We have applied spectral-transform methods to study three-dimensional thermal convection with temperature-dependent viscosity. The viscosity varies exponentially with the form exp(-BT), where B controls the viscosity contrast and T is temperature. Solutions for high Rayleigh numbers, up to an effective Ra of 6.25 x 10(exp 6), have been obtained for an aspect-ratio of 5x5x1 and a viscosity contrast of 25. Solutions show the localization of toroidal velocity fields with increasing vigor of convection to a coherent network of shear-zones. Viscous dissipation increases with Rayleigh number and is particularly strong in regions of convergent flows and shear deformation. A time-varying depth-dependent mean-flow is generated because of the correlation between laterally varying viscosity and velocity gradients.
Viscosity of fiber preloads affects food intake in adolescents.
Vuksan, V; Panahi, S; Lyon, M; Rogovik, A L; Jenkins, A L; Leiter, L A
2009-09-01
Dietary fiber that develops viscosity in the gastrointestinal tract is capable of addressing various aspects of food intake control. The aim of this study was to assess subsequent food intake and appetite in relation to the level of viscosity following three liquid preloads each containing 5 g of either a high (novel viscous polysaccharide; NVP), medium (glucomannan; GLM), or low (cellulose; CE) viscosity fiber. In this double-blind, randomized, controlled and crossover trial, 31 healthy weight adolescents (25 F:6 M; age 16.1+/-0.6 years; BMI 22.2+/-3.7 kg/m(2)) consumed one of the three preloads 90 min prior to an ad libitum pizza meal. Preloads were identical in taste, appearance, nutrient content and quantity of fiber, but different in their viscosities (10, 410, and 700 poise for CE, GLM, and NVP, respectively). Pizza intake was significantly lower (p=0.008) after consumption of the high-viscosity NVP (278+/-111 g) compared to the medium-viscosity GLM (313+/-123 g) and low-viscosity CE (316+/-138 g) preloads, with no difference between the GLM and CE preloads. Appetite scores, physical symptoms and 24-h intake did not differ among treatment groups. A highly viscous NVP preload leads to reduced subsequent food intake, in terms of both gram weight and calories, in healthy weight adolescents. This study provides preliminary evidence of an independent contribution of viscosity on food intake and may form a basis for further studies on factors influencing food intake in adolescents.
Superparamagnetic nanoparticle-based viscosity test
NASA Astrophysics Data System (ADS)
Wu, Kai; Liu, Jinming; Wang, Yi; Ye, Clark; Feng, Yinglong; Wang, Jian-Ping
2015-08-01
Hyperviscosity syndrome is triggered by high blood viscosity in the human body. This syndrome can result in retinopathy, vertigo, coma, and other unanticipated complications. Serum viscosity is one of the important factors affecting whole blood viscosity, which is regarded as an indicator of general health. In this letter, we propose and demonstrate a Brownian relaxation-based mixing frequency method to test human serum viscosity. This method uses excitatory and detection coils and Brownian relaxation-dominated superparamagnetic nanoparticles, which are sensitive to variables of the liquid environment such as viscosity and temperature. We collect the harmonic signals produced by magnetic nanoparticles and estimate the viscosity of unknown solutions by comparison to the calibration curves. An in vitro human serum viscosity test is performed in less than 1.5 min.
Very high-density planets: a possible remnant of gas giants.
Mocquet, A; Grasset, O; Sotin, C
2014-04-28
Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.
Thermodynamic properties, melting temperature and viscosity of the mantles of Super Earths
NASA Astrophysics Data System (ADS)
Stamenkovic, V.; Spohn, T.; Breuer, D.
2010-12-01
The recent dicscovery of extrasolar planets with radii of about twice the Earth radius and masses of several Earth masses such as e.g., Corot-7b (approx 5Mearth and 1.6Rearth, Queloz et al. 2009) has increased the interest in the properties of rock at extremely high pressures. While the pressure at the Earth’s core-mantle boundary is about 135GPa, pressures at the base of the mantles of extraterrestrial rocky planets - if these are at all differentiated into mantles and cores - may reach Tera Pascals. Although the properties and the mineralogy of rock at extremely high pressure is little known there have been speculations about mantle convection, plate tectonics and dynamo action in these “Super-Earths”. We assume that the mantles of these planets can be thought of as consisting of perovskite but we discuss the effects of the post-perovskite transition and of MgO. We use the Keane equation of state and the Slater relation (see e.g., Stacey and Davies 2004) to derive an infinite pressure value for the Grüneisen parameter of 1.035. To derive this value we adopted the infinite pressure limit for K’ (pressure derivative of the bulk modulus) of 2.41 as derived by Stacey and Davies (2004) by fitting PREM. We further use the Lindeman law to calculate the melting curve. We gauge the melting curve using the available experimental data for pressures up to 120GPa. The melting temperature profile reaches 6000K at 135GPa and increases to temperatures between 12,000K and 24,000K at 1.1TPa with a preferred value of 21,000K. We find the adiabatic temperature increase to reach 2,500K at 135GPa and 5,400K at 1.1TPa. To calculate the pressure dependence of the viscosity we assume that the rheology is diffusion controlled and calculate the partial derivative with respect to pressure of the activation enthalpy. We cast the partial derivative in terms of an activation volume and use the semi-empirical homologous temperature scaling (e.g., Karato 2008). We find that the activation volume decreases from 2.4cm^3/mol at 135GPa to 1.6cm^3/mol at 1.1TPa. An estimate of the viscosity increase across the mantle to a pressure of 1.1TPa using the adiabat calculated above results in an increase of the viscosity of 19 orders of magnitude. This value raises questions about the differentiation of these planets, heat transfer in their deep interiors, and magnetic field generation.(Ref.: Karato, S. 2008. Deformation of Earth Materials, Cambridge University Press.; Stacey, F.D., Davies, P.M. 2004. PEPI 142: 137; Queloz, D. et al., 2009. Astronomy and Astrophysics 506: 303.)
Wang, Chao; Song, Xinbo; Chen, Lingcheng; Xiao, Yi
2017-05-15
Viscosity, as one of the major factors of intracellular microenvironment, influences the function of proteins. To detect local micro-viscosity of a protein, it is a precondition to apply a viscosity sensor for specifically target to proteins. However, all the reported small-molecule probes are just suitable for sensing/imaging of macro-viscosity in biological fluids of entire cells or organelles. To this end, we developed a hybrid sensor BDP-V BG by connecting a viscosity-sensitive boron-dipyrromethene (BODIPY) molecular rotor (BDP-V) to O 6 -benzylguanine (BG) for specific detection of local micro-viscosity of SNAP-tag fused proteins. We measured and calculated the reaction efficiency between the sensor and SNAP-tag protein in vitro to confirm the high labeling specificity. We also found that the labeling reaction results in a 53-fold fluorescence enhancement for the rotor, which qualifies it as a wash-free sensor with ignorable background fluorescence. The high sensitivity of protein labeled sensor (BDP-V-SNAP) to the changes of local viscosity was evaluated by detecting the enhancement of fluorescence lifetimes. Further, with the sensor BDP-V BG, we achieved high specific labeling of cells expressing two SNAP-tag fused proteins (nuclear histone H2B and mitochondrial COX8A). Two-photon excited fluorescence lifetime imaging revealed that, the micro-viscosities nearby the SNAP-tag fused two proteins are distinct. The different changes of local micro-viscosity of SNAP-tag fused histone protein in apoptosis induced by three nucleus-targeted drugs were also characterized for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.
Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio
2017-08-01
It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose <155 mg/dL (NGT-1 h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P < 0.0001) in a multivariate regression analysis model including several atherosclerosis risk factors. Our results demonstrate a positive relationship between blood viscosity and 1-h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.
Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.
Yadav, Sandeep; Shire, Steven J; Kalonia, Devendra S
2010-12-01
The viscosity profiles of four different IgG(1) molecules were studied as a function of concentration at pH 6.0. At high concentrations, MAb-H and -A showed significantly higher viscosities as compared to MAb-G and -E. Zeta Potential (ξ) measurements showed that all the IgG(1) molecules carried a net positive charge at this pH. MAb-G showed the highest positive zeta potential followed by MAb-E, -H, and -A. A consistent interpretation of the impact of net charge on viscosity for these MAbs is not possible, suggesting that electroviscous effects cannot explain the differences in viscosity. Values of k(D) (dynamic light scattering) indicated that the intermolecular interactions were repulsive for MAb-E and -G; and attractive for MAb-H and -A. Solution storage modulus (G') in high concentration solutions was consistent with attractive intermolecular interactions for MAb-H and -A, and repulsive interactions for MAb-G and -E. Effect of salt addition on solution G' and k(D) indicated that the interactions were primarily electrostatic in nature. The concentration dependent viscosity data were analyzed using a modified Ross and Minton equation. The analysis explicitly differentiates between the effect of molecular shape, size, self-crowding, and electrostatic intermolecular interactions in governing high concentration viscosity behavior. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Lee, Juhyun; Chou, Tzu-Chieh; Kang, Dongyang; Kang, Hanul; Chen, Junjie; Baek, Kyung In; Wang, Wei; Ding, Yichen; Carlo, Dino Di; Tai, Yu-Chong; Hsiai, Tzung K
2017-05-16
Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s -1 ), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s -1 were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.
Study on improving viscosity of polymer solution based on complex reaction
NASA Astrophysics Data System (ADS)
Sun, G.; Li, D.; Zhang, D.; Xu, T. H.
2018-05-01
The current status of polymer flooding Technology on high salinity oil reservoir is not ideal. A method for increasing the viscosity of polymer solutions is urgently needed. This paper systematically studied the effect of ions with different mass concentrations on the viscosity of polymer solutions. Based on the theory of complex reaction, a countermeasure of increasing viscosity of polymer solution under conditions of high salinity reservoir was proposed. The results show that Ca2+ and Mg2+ have greater influence on the solution viscosity than K+ and Na+. When the concentration of divalent ions increases from 0 mg/L to 80 mg/L, the viscosity of the polymer solution decreases from 210 mPa·s to 38.6 mPa·s. The viscosity of the polymer solution prepared from the sewage treated with the Na2C2O4 increased by 25.3%. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity. Atomic force microscopy test results show that Na2C2O4 can effectively shield the divalent metal ions, so that the polymer molecules in the solution stretch more, thereby increasing the solution viscosity.
van den Bruinhorst, Adriaan; Spyriouni, Theodora; Hill, Jörg-Rüdiger; Kroon, Maaike C
2018-01-11
The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular. In order to minimize oligomer formation and water release, three different experimental preparation methods were explored, but none could prevent esterification. The experimental and calculated densities of the DESs were found to be in good agreement. The measured and modeled glass transition temperature showed similar trends with composition, as did the experimental viscosity and the calculated diffusivities. The MD simulations provided additional insight at the atomistic level, showing that at acid-rich compositions, the acid-acid hydrogen bonding (HB) interactions prevail. Malic acid-based DESs show stronger acid-acid HB interactions than glycolic acid-based ones, possibly explaining its extreme viscosity. Upon the addition of proline, the interspecies interactions become predominant, confirming the formation of the widely assumed HB network between the DESs constituents in the liquid phase.
Utilization of Low Gravity Environment for Measuring Liquid Viscosity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin
1998-01-01
The method of drop coalescence is used for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in order to allow for examining large volumes affording much higher accuracy for the viscosity calculations than possible for smaller volumes available under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. Results are presented for method validation experiments recently performed on board the NASA/KC-135 aircraft. While the numerical solution was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, glycerine at room temperature, was determined using the liquid coalescence method. The results from these experiments will be discussed.
Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster
NASA Astrophysics Data System (ADS)
Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom
2018-04-01
In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.
NASA Astrophysics Data System (ADS)
Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.
2017-02-01
The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.
Mechanisms for the Crystallization of ZBLAN
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C.; Tucker, Dennis S.; Kaukler, William; Antar, Basil
2003-01-01
The objective of this ground based study is to test the hypothesis that shear thinning (the non-Newtonian response of viscosity to shear rate) is a viable mechanism to explain the observation of enhanced glass formation in numerous low-g experiments. In 1-g, fluid motion results from buoyancy forces and surface tension driven convection. This fluid flow will introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids can be extremely low. It is believed that some fluids may have weak structure in the absence of flow. Very small shear rates could cause this structure to collapse in response to shear resulting in a lowering of the viscosity of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids decreases the viscosity, increasing the rate of nucleation and crystallization of glass forming melts. Shear in the melt can be reduced in low-g, thus enhancing undercooling and glass formation. The viscosity of a model glass (lithium di-silicate, L2S) often used for crystallization studies has been measured at very low shear rates using a dynamic mechanical thermal analyzer. Our results are consistent with increasing viscosity with a lowering of shear rates. The viscosity of L2S may vary as much as an order of magnitude depending on the shear rate in the temperature region of maximum nucleation and crystal growth. Classical equations for nucleation and crystal growth rates, are inversely related to the viscosity and viscosity to the third power respectively. An order of magnitude variation in viscosity (with shear) at a given temperature would have dramatic effects on glass crystallization Crystallization studies with the heavy metal fluoride glass ZBLAN (ZrF2-BaF2-LaF3-AlF3-NaF) to examine the effect of shear on crystallization are being initiated. Samples are to be melted and quenched under quiescent conditions at different shear rates to determine the effect on crystallization. The results from this study are expected to advance the current scientific understanding of glass formation in low-g and glass crystallization under glass molding conditions and will improve the scientific understanding of technological processes such as fiber pulling, bulk amorphous alloys, and glass fabrication processes.
Wang, Shujing; Zhang, Ning; Hu, Tao; Dai, Weiguo; Feng, Xiuying; Zhang, Xinyi; Qian, Feng
2015-12-07
Monoclonal antibodies display complicated solution properties in highly concentrated (>100 mg/mL) formulations, such as high viscosity, high aggregation propensity, and low stability, among others, originating from protein-protein interactions within the colloidal protein solution. These properties severely hinder the successful development of high-concentration mAb solution for subcutaneous injection. We hereby investigated the effects of several small-molecule excipients with diverse biophysical-chemical properties on the viscosity, aggregation propensity, and stability on two model IgG1 (JM1 and JM2) mAb formulations. These excipients include nine amino acids or their salt forms (Ala, Pro, Val, Gly, Ser, HisHCl, LysHCl, ArgHCl, and NaGlu), four representative salts (NaCl, NaAc, Na2SO4, and NH4Cl), and two chaotropic reagents (urea and GdnHCl). With only salts or amino acids in their salt-forms, significant decrease in viscosity was observed for JM1 (by up to 30-40%) and JM2 (by up to 50-80%) formulations, suggesting charge-charge interaction between the mAbs dictates the high viscosity of these mAbs formulations. Most of these viscosity-lowering excipients did not induce substantial protein aggregation or changes in the secondary structure of the mAbs, as evidenced by HPLC-SEC, DSC, and FT-IR analysis, even in the absence of common protein stabilizers such as sugars and surfactants. Therefore, amino acids in their salt-forms and several common salts, such as ArgHCl, HisHCl, LysHCl, NaCl, Na2SO4, and NaAc, could potentially serve as viscosity-lowering excipients during high-concentration mAb formulation development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis
2014-08-19
Techniques for measuring liquid structure, elastic wave velocity, and viscosity under high pressure have been integrated using a Paris–Edinburgh cell at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The Paris–Edinburgh press allows for compressing large volume samples (up to 2 mm in both diameter and length) up to ~7 GPa and 2000 °C. Multi-angle energy dispersive X-ray diffraction provides structure factors of liquid to a large Q of ~19 Å. Ultrasonic techniques have been developed to investigate elastic wave velocity of liquids combined with the X-ray imaging. Falling sphere viscometry, using high-speed X-ray radiography (>1000 frames/s), enables us tomore » investigate a wide range of viscosity, from those of high viscosity silicates or oxides melts to low viscosity (<1 mPa s) liquids and fluids such as liquid metals or salts. The integration of these multiple techniques has promoted comprehensive studies of structure and physical properties of liquids as well as amorphous materials at high pressures and high temperatures, making it possible to investigate correlations between structure and physical properties of liquids in situ.« less
NASA Technical Reports Server (NTRS)
Tin, Padetha; deGroh, Henry C., III.
2003-01-01
Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.
Liu, Tianyu; Liu, Xiaogang; Spring, David R.; Qian, Xuhong; Cui, Jingnan; Xu, Zhaochao
2014-01-01
Viscosity is a fundamental physical parameter that influences diffusion in biological processes. The distribution of intracellular viscosity is highly heterogeneous, and it is challenging to obtain a full map of cellular viscosity with detailed organelle information. In this work, we report 1 as the first fluorescent viscosity probe which is able to quantitatively map cellular viscosity with detailed organelle information based on the PET mechanism. This probe exhibited a significant ratiometric fluorescence intensity enhancement as solvent viscosity increases. The emission intensity increase was attributed to combined effects of the inhibition of PET due to restricted conformational access (favorable for FRET, but not for PET), and the decreased PET efficiency caused by viscosity-dependent twisted intramolecular charge transfer (TICT). A full map of subcellular viscosity was successfully constructed via fluorescent ratiometric detection and fluorescence lifetime imaging; it was found that lysosomal regions in a cell possess the highest viscosity, followed by mitochondrial regions. PMID:24957323
Effect of Qing Nao tablet on blood stasis model of mice
NASA Astrophysics Data System (ADS)
Kong, Xuejun; Hao, Shaojun; Wang, Hongyu; Liu, Xiaobin; Xie, Guoqi; Li, Wenjun; Zhang, Zhengchen
2018-04-01
To investigate the effect of Qing Nao tablet on mouse model of blood stasis syndrome, 60 mice, male and female, were randomly divided into 6 groups, were fed with large, small doses of Qing Nao tablet suspension, Naoluotong saline suspension and the same volume (group 2, 0.1ml/10g), administer 1 times daily, orally for 15 days. Intragastric administration for first days, in addition to the 1 group saline group every day in the hind leg intramuscular saline, the other 5 groups each rat day hind leg muscle injection of dexamethasone 0.8mg/kg intramuscular injection every day, 1 times, 15 days. 1 hour continuous intramuscular injection and intramuscular drug perfusion on the sixteenth day after mice. The eyeball blood, heparin after whole blood viscosity test. Compared with the control group, model group, high and low shear viscosity were significantly increased (P<0.01), indicating that the model was successful. Compared with the model group, high dose group and Qing Nao tablet Naoluotong group can significantly reduce the viscosity at high shear and (P<0.01), middle dose Qing Nao tablet group can significantly reduce high shear and shear viscosity (P<0.05); large, middle dose Qing Nao tablet group can significantly reduce the low shear viscosity (P<0.05), Naoluotong group can significantly reduce the low shear viscosity (P<0.01); low dose Qing Nao tablet group were lower high cut, low shear viscosity and trend The potential (P>0.05). The Qing Nao tablet has a good effect on the model of blood stasis in mice.
Electron treatment of wood pulp for the viscose process
NASA Astrophysics Data System (ADS)
Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.
2000-03-01
Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.
Wilson, Kate S; Gonzalez, Olivia; Dutcher, Susan K; Bayly, Philip V
2015-09-01
Changes in the flagellar waveform in response to increased viscosity were investigated in uniflagellate mutants of Chlamydomonas reinhardtii. We hypothesized that the waveforms of mutants lacking different dynein arms would change in different ways as viscosity was increased, and that these variations would illuminate the feedback pathways from force to dynein activity. Previous studies have investigated the effects of viscosity on cell body motion, propulsive force, and power in different mutants, but the effect on waveform has not yet been fully characterized. Beat frequency decreases with viscosity in wild-type uniflagellate (uni1) cells, and outer dynein arm deficient (oda2) mutants. In contrast, the inner dynein arm mutant ida1 (lacking I1/f) maintains beat frequency at high viscosity but alters its flagellar waveform more than either wild-type or oda2. The ida1 waveform is narrower than wild-type, primarily due to an abbreviated recovery stroke; this difference is amplified at high viscosity. The oda2 mutant in contrast, maintains a consistent waveform at high and low viscosity with a slightly longer power stroke than wild-type. Analysis of the delays and shear displacements between bends suggest that direct force feedback in the outer dynein arm system may initiate switching of dynein activity. In contrast, I1/f dynein appears to delay switching, most markedly at the initiation of the power stroke, possibly by controlling inter-doublet separation. © 2015 Wiley Periodicals, Inc.
Wilson, Kate S.; Gonzalez, Olivia; Dutcher, Susan K.; Bayly, P.V.
2015-01-01
Changes in the flagellar waveform in response to increased viscosity were investigated in uniflagellate mutants of Chlamydomonas reinhardtii. We hypothesized that the waveforms of mutants lacking different dynein arms would change in different ways as viscosity was increased, and that these variations would illuminate the feedback pathways from force to dynein activity. Previous studies have investigated the effects of viscosity on cell body motion, propulsive force, and power in different mutants, but the effect on waveform has not yet been fully characterized. Beat frequency decreases with viscosity in wild-type uniflagellate (uni1) cells, and outer dynein arm deficient (oda2) mutants. In contrast, the inner dynein arm mutant ida1 (lacking I1/f) maintains beat frequency at high viscosity but alters its flagellar waveform more than either wild-type or oda2. The ida1 waveform is narrower than wild-type, primarily due to an abbreviated recovery stroke; this difference is amplified at high viscosity. The oda2 mutant in contrast, maintains a consistent waveform at high and low viscosity with a slightly longer power stroke than wild-type. Analysis of the delays and shear displacements between bends suggest that direct force feedback in the outer dynein arm system may initiate switching of dynein activity. In contrast, I1/f dynein appears to delay switching, most markedly at the initiation of the power stroke, possibly by controlling inter-doublet separation. PMID:26314933
NASA Astrophysics Data System (ADS)
Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit
2017-06-01
Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.
The role of viscosity in TATB hot spot ignition
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Li, Ling-Ling; Li, Kun; Li, Meng-Yang; Shi, Lei; Liu, Yan-Hong; Zhang, Hong; Pan, Sheng-Lin; Wang, Nan; Zhou, Qian; Yu, Xiao-Qi
2018-05-01
The viscosity of lysosome is reported to be a key indicator of lysosomal functionality. However, the existing mechanical methods of viscosity measurement can hardly be applied at the cellular or subcellular level. Herein, a BODIPY-based two-photon fluorescent probe was presented for monitoring lysosomal viscosity with high spatial and temporal resolution. By installing two morpholine moieties to the fluorophore as target and rotational groups, the TICT effect between the two morpholine rings and the main fluorophore scaffold endowed the probe with excellent viscosity sensitivity. Moreover, Lyso-B succeeded in showing the impact of dexamethasone on lysosomal viscosity in real time.
Pais, Eszter; Alexy, Tamas; Holsworth, Ralph E; Meiselman, Herbert J
2006-01-01
The vegetable cheese-like food, natto, is extremely popular in Japan with a history extending back over 1000 years. A fibrinolytic enzyme, termed nattokinase, can be extracted from natto; the enzyme is a subtilisin-like serine protease composed of 275 amino acid residues and has a molecular weight of 27.7 kDa. In vitro and in vivo studies have consistently demonstrated the potent pro-fibrinolytic effect of the enzyme. However, no studies to date have evaluated the effects of nattokinase on various hemorheological parameters and thus we have begun to assess the effects of the enzyme on RBC aggregation and blood viscosity. Blood samples were incubated with nattokinase (final activities of 0, 15.6, 31.3, 62.5 and 125 units/ml) for 30 minutes at 37 degrees C. RBC aggregation was measured using a Myrenne MA-1 aggregometer and blood viscosity assessed over 1-1000 s(-1) with a computer controlled scanning capillary rheometer (Rheolog). Our in vitro results showed a significant, dose-dependent decrease of RBC aggregation and low-shear viscosity, with these beneficial effects evident at concentrations similar to those achieved in previous in vivo animal trials. Our preliminary data thus indicate positive in vitro hemorheological effects of nattokinase, and suggest its potential value as a therapeutic agent and the need for additional studies and clinical trials.
Torque Transient of Magnetically Drive Flow for Viscosity Measurement
NASA Technical Reports Server (NTRS)
Ban, Heng; Li, Chao; Su, Ching-Hua; Lin, Bochuan; Scripa, Rosalia N.; Lehoczky, Sandor L.
2004-01-01
Viscosity is a good indicator of structural changes for complex liquids, such as semiconductor melts with chain or ring structures. This paper discusses the theoretical and experimental results of the transient torque technique for non-intrusive viscosity measurement. Such a technique is essential for the high temperature viscosity measurement of high pressure and toxic semiconductor melts. In this paper, our previous work on oscillating cup technique was expanded to the transient process of a magnetically driven melt flow in a damped oscillation system. Based on the analytical solution for the fluid flow and cup oscillation, a semi-empirical model was established to extract the fluid viscosity. The analytical and experimental results indicated that such a technique has the advantage of short measurement time and straight forward data analysis procedures
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441
Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J
2015-01-01
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.
Electron-processing technology: A promising application for the viscose industry
NASA Astrophysics Data System (ADS)
Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.
1998-06-01
In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.
Bowen, Mayumi; Armstrong, Nick; Maa, Yuh-Fun
2012-12-01
Developing high-concentration monoclonal antibody (mAb) liquid formulations for subcutaneous (s.c.) administration is challenging because increased viscosity makes injection difficult. To overcome this obstacle, we investigated a nonaqueous powder suspension approach. Three IgG1 mAbs were spray dried and suspended at different concentrations in Miglyol® 840, benzyl benzoate, or ethyl lactate. Suspensions were characterized for viscosity, particle size, and syringeability; physical stability was visually inspected. Suspensions generally outperformed liquid solutions for injectability despite higher viscosity at the same mAb concentrations. Powder formulations and properties had little effect on viscosity or injectability. Ethyl lactate suspensions had lowest viscosity (<20 cP) and lowest syringe injection glide force (<15 N) at mAb concentrations as high as 333 mg/mL (500 mg powder/mL). Inverse gas chromatography analysis indicated that the vehicle was the most important factor impacting suspension performance. Ethyl lactate rendered greater heat of sorption (suggesting strong particle-suspension vehicle interaction may reduce particle-particle self-association, leading to low suspension viscosity and glide force) but lacked the physical suspension stability exhibited by the other vehicles. Specific mixtures of ethyl lactate and Miglyol® 840 improved overall performance in high mAb concentration suspensions. This study demonstrated the viability of high mAb concentration (>300 mg/mL) in suspension formulations for s.c. administration. Copyright © 2012 Wiley Periodicals, Inc.
Experimental and Theoretical Investigations on Viscosity of Fe-Ni-C Liquids at High Pressures
NASA Astrophysics Data System (ADS)
Chen, B.; Lai, X.; Wang, J.; Zhu, F.; Liu, J.; Kono, Y.
2016-12-01
Understanding and modeling of Earth's core processes such as geodynamo and heat flow via convection in liquid outer cores hinges on the viscosity of candidate liquid iron alloys under core conditions. Viscosity estimates from various methods of the metallic liquid of the outer core, however, span up to 12 orders of magnitude. Due to experimental challenges, viscosity measurements of iron liquids alloyed with lighter elements are scarce and conducted at conditions far below those expected for the outer core. In this study, we adopt a synergistic approach by integrating experiments at experimentally-achievable conditions with computations up to core conditions. We performed viscosity measurements based on the modified Stokes' floating sphere viscometry method for the Fe-Ni-C liquids at high pressures in a Paris-Edinburgh press at Sector 16 of the Advanced Photon Source, Argonne National Laboratory. Our results show that the addition of 3-5 wt.% carbon to iron-nickel liquids has negligible effect on its viscosity at pressures lower than 5 GPa. The viscosity of the Fe-Ni-C liquids, however, becomes notably higher and increases by a factor of 3 at 5-8 GPa. Similarly, our first-principles molecular dynamics calculations up to Earth's core pressures show a viscosity change in Fe-Ni-C liquids at 5 GPa. The significant change in the viscosity is likely due to a liquid structural transition of the Fe-Ni-C liquids as revealed by our X-ray diffraction measurements and first-principles molecular dynamics calculations. The observed correlation between structure and physical properties of liquids permit stringent benchmark test of the computational liquid models and contribute to a more comprehensive understanding of liquid properties under high pressures. The interplay between experiments and first-principles based modeling is shown to be a practical and effective methodology for studying liquid properties under outer core conditions that are difficult to reach with the current static high-pressure capabilities. The new viscosity data from experiments and computations would provide new insights into the internal dynamics of the outer core.
Research on viscosity of metal at high pressure
NASA Astrophysics Data System (ADS)
Li, Y.; Liu, F.; Ma, X.; Zhang, M.
2016-11-01
A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.
Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag
NASA Astrophysics Data System (ADS)
Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.
2017-12-01
The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.
Reducing the Viscosity of Blood by Pulsed Magnetic Field
NASA Astrophysics Data System (ADS)
Tao, R.; Huang, K.
2010-03-01
Blood viscosity is a major player in heart disease. When blood is viscous, in addition to a high blood pressure required for the blood circulation, blood vessel walls are also easy to be damaged. While this issue is very important, currently the only method to reduce the blood viscosity is to take medicine, such as aspirin. Here we report our new finding that the blood viscosity can be reduced by pulsed magnetic field. Blood is a suspension of red blood cells (erythrocytes), white blood cells (leukocytes) and platelets in plasma, a complex solution of gases, salts, proteins, carbohydrates, and lipids. The base liquid, plasma, has low viscosity. The effective viscosity of whole blood increases mainly due to the red blood cells, which have a volume fraction about 40% or above. Red blood cells contain iron and are sensitive to magnetic field. Therefore, when we apply a strong magnetic field, the red cells make their diameters align in the field direction to form short chains. This change in rheology reduces the effective viscosity as high as 20-30%. While this reduction is not permanent, it lasts for several hours and repeatable. The reduction rate can be controlled by selecting suitable magnetic field and duration of field application to make blood viscosity within the normal range.
ERIC Educational Resources Information Center
Robertson, C. T.
1973-01-01
Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)
The Larger the Viscosity, the Higher the Bounce
NASA Astrophysics Data System (ADS)
Stern, Menachem; Klein Schaarsberg, Martin; Peters, Ivo; Dodge, Kevin; Zhang, Wendy; Jaeger, Heinrich
A low-viscosity liquid drop can bounce upon impact onto a solid. A high-viscosity drop typically just flattens, i.e., it splats. Surprisingly, our experiments with a droplet made of densely packed glass beads in silicone oil display the opposite behavior: the low-viscosity oil suspension drop splats. The high-viscosity oil suspension bounces. Increasing solvent viscosity increases the rebound energy. To gain insight into the underlying mechanism, we model the suspension as densely packed elastic spheres experiencing viscous lubrication drag between neighbors. The model reproduces the observed trends. Plots of elastic compression and drag experienced by the particles show that rebounds are made possible by (1) a fraction of the impact energy being stored during initial contact via elastic compression, (2) a rapid broadening of local lubrication drag interactions at the initial impact site into a spatially uniform upward force throughout the drop. Including finite wall drag due to the presence of ambient air into the numerical model diminishes and eventually cuts off the rebound.
Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun
2015-10-10
Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.
A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells.
Zhu, Hao; Fan, Jiangli; Li, Miao; Cao, Jianfang; Wang, Jingyun; Peng, Xiaojun
2014-04-14
Cellular viscosity is a critical factor in governing diffusion-mediated cellular processes and is linked to a number of diseases and pathologies. Fluorescent molecular rotors (FMRs) have recently been developed to determine viscosity in solutions or biological fluid. Herein, we report a "distorted-BODIPY"-based probe BV-1 for cellular viscosity, which is different from the conventional "pure rotors". In BV-1, the internal steric hindrance between the meso-CHO group and the 1,7-dimethyl group forced the boron-dipyrrin framework to be distorted, which mainly caused nonradiative deactivation in low-viscosity environment. BV-1 gave high sensitivity (x=0.62) together with stringent selectivity to viscosity, thus enabling viscosity mapping in live cells. Significantly, the increase of cytoplasmic viscosity during apoptosis was observed by BV-1 in real time. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xia, Qiuyang
2016-03-28
In a recent paper by B. Le Reverend and J. Engmann, they used a model to explain the change in the perceived viscosity by phase separation. We improved this model by adding the drop in viscosity in the aqueous phase to it and we show how this will significantly change the conclusion in the original paper. The increase in viscosity due to phase separation is highly unlikely to happen because the drop in viscosity due to loss of oil is faster at a high oil concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.
2015-11-23
Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less
Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye
2003-10-01
A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.
Highly branched polyethylenes as lubricant viscosity and friction modifiers
Robinson, Joshua W.; Zhou, Yan; Qu, Jun; ...
2016-10-08
A series of highly branched polyethylene (BPE) were prepared and evaluated in a Group I base oil as potential viscosity and friction modifiers. The performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants' performance with respect to viscosity index and friction reduction. In conclusion, this study provides scientific insights into polymer design for future lubricant development activities.
The Role of Viscosity in TATB Hot Spot Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E; Zepeda-Ruis, L; Howard, W M
2011-08-02
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less
Detection of the supercycle in V4140 Sagittarii: First eclipsing ER Ursae Majoris-like object
NASA Astrophysics Data System (ADS)
Kato, Taichi; Hambsch, Franz-Josef; Cook, Lewis M.
2018-05-01
We observed the deeply eclipsing SU UMa-type dwarf nova V4140 Sgr and established the very short supercycle of 69.7(3) d. There were several short outbursts between superoutbursts. These values, together with the short orbital period (0.06143 d), were similar to, but not as extreme as, those of ER UMa-type dwarf novae. The object is thus the first, long sought, eclipsing ER UMa-like object. This ER UMa-like nature can naturally explain the high (apparent) quiescent viscosity and unusual temperature profile in quiescence, which were claimed observational features against the thermal-tidal instability model. The apparently unusual outburst behavior can be reasonably explained by a combination of this ER UMa-like nature and the high orbital inclination, and there is no need to introduce mass transfer bursts from its donor star.
Detection of the supercycle in V4140 Sagittarii: First eclipsing ER Ursae Majoris-like object
NASA Astrophysics Data System (ADS)
Kato, Taichi; Hambsch, Franz-Josef; Cook, Lewis M.
2018-06-01
We observed the deeply eclipsing SU UMa-type dwarf nova V4140 Sgr and established the very short supercycle of 69.7(3) d. There were several short outbursts between superoutbursts. These values, together with the short orbital period (0.06143 d), were similar to, but not as extreme as, those of ER UMa-type dwarf novae. The object is thus the first, long sought, eclipsing ER UMa-like object. This ER UMa-like nature can naturally explain the high (apparent) quiescent viscosity and unusual temperature profile in quiescence, which were claimed observational features against the thermal-tidal instability model. The apparently unusual outburst behavior can be reasonably explained by a combination of this ER UMa-like nature and the high orbital inclination, and there is no need to introduce mass transfer bursts from its donor star.
What We Have Learned About Clusters From a Decade of Arcsecond Resolution X-ray Observations
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
This talk will briefly review the main findings from Chandra high angular resolution observations of galaxy clusters, emphasizing results on cluster astrophysics. Chandra has discovered shock fronts in merging systems, providing information on the shock Mach number and velocity, and for best-observed shocks, constraining the microphysical properties of the intracluster medium (ICM). Cold fronts, a Chandra discovery, are ubiquitous both in merging clusters and in the cool ccres of relaxed systems. They reveal the structure and strength of the intracluster magnetic fields and constrain the ICM viscosity a combined with radio data, these observations also shed light on the production of ultra-relativistic particles that are known to coexist with thermal plasma. Finally, in nearly all cool cores, Chandra observes cavities in the ICM that are produced by the central AGN. All these phenomena will be extremely interesting for high-resolution SZ studies.
Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Chen, Shuru; Zhao, Wengao
Sodium (Na) metal is a promising anode for Na ion batteries. However, the high reactivity of Na metal with electrolytes and the low Na metal cycling efficiency have limited its practical application in rechargeable Na metal batteries. High concentration electrolytes (HCE, ≥4 M) consisting of sodium bis(fluorosulfonyl)imide (NaFSI) and ether solvent could ensure the stable cycling of Na metal with high coulombic efficiency, but suffer from high viscosity, poor wetting ability, and high salt cost. Here, we report that the salt concentration could be significantly reduced (≤ 1.5 M) by diluting with a hydrofluoroether (HFE) as ‘inert’ diluent, which maintainsmore » the solvation structures of HCE, thereby forming a localized high concentration electrolyte (LHCE). A LHCE (2.1 M NaFSI/DME-BTFE (solvent molar ratio 1:2)) has been demonstrated to enable the dendrite-free Na deposition with high coulombic efficiency of > 99%, fast-charging (20C) and stable cycling (90.8% retention after 40,000 cycles) of Na||Na3V2(PO4)3 batteries.« less
Viscosity Measurement of Highly Viscous Liquids Using Drop Coalescence in Low Gravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel
1999-01-01
The method of drop coalescence is being investigated for use as a method for determining the viscosity of highly viscous undercooled liquids. Low gravity environment is necessary in this case to minimize the undesirable effects of body forces and liquid motion in levitated drops. Also, the low gravity environment will allow for investigating large liquid volumes which can lead to much higher accuracy for the viscosity calculations than possible under 1 - g conditions. The drop coalescence method is preferred over the drop oscillation technique since the latter method can only be applied for liquids with vanishingly small viscosities. The technique developed relies on both the highly accurate solution of the Navier-Stokes equations as well as on data from experiments conducted in near zero gravity environment. In the analytical aspect of the method two liquid volumes are brought into contact which will coalesce under the action of surface tension alone. The free surface geometry development as well as its velocity during coalescence which are obtained from numerical computations are compared with an analogous experimental model. The viscosity in the numerical computations is then adjusted to bring into agreement of the experimental results with the calculations. The true liquid viscosity is the one which brings the experiment closest to the calculations. Results are presented for method validation experiments performed recently on board the NASA/KC-135 aircraft. The numerical solution for this validation case was produced using the Boundary Element Method. In these tests the viscosity of a highly viscous liquid, in this case glycerine at room temperature, was determined to high degree of accuracy using the liquid coalescence method. These experiments gave very encouraging results which will be discussed together with plans for implementing the method in a shuttle flight experiment.
Development of a miniaturized optical viscosity sensor with an optical surface tracking system
NASA Astrophysics Data System (ADS)
Abe, H.; Nagamachi, R.; Taguchi, Y.; Nagasaka, Y.
2010-02-01
A new viscosity sensor enabling non-contact measurement at high speed, with less sample volume and high stability is required in a broad field. For example, in the industrial field, process control by real time monitoring of viscosity can enhance the quality of coating films and the process yield such as conductive films and optical films. Therefore, we have developed a new miniaturized optical viscosity sensor, namely MOVS (Miniaturized Optical Viscosity Sensor), based on a laser-induced capillary wave (LiCW) method which can meet the requirements above. In the MOVS, viscosity is estimated by observing the damping oscillation of LiCW, which is generated by an interference of two excitation laser beams on a liquid surface. By irradiating a probing laser on LiCW, a first order diffracted beam containing information of sample viscosity, is generated. The intensity of the reflected beam is utilized to control the distance between liquid-level and the sensor. The newly integrated optical surface tracking system makes possible the stable viscosity measurement in the presence of disturbance such as evaporation and external vibration. MOVS consists of five U-grooves fabricated by MEMS (Micro Electro Mechanical Systems) process to possess the optical fibers (photonic crystal fibers and fusion-spliced lensed fibers). In this study, by integrating the optical surface tracking system on the chip, nanosecond order damping oscillation of LiCW is successfully observed in the presence of external forced vibration, high speed evaporation (speed of 1 micrometer per second) and drying process of a liquid film (thickness of hundreds micrometer order).
Implicit Space-Time Conservation Element and Solution Element Schemes
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen
1999-01-01
Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.
Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions.
Zaman, A A; Singh, P; Moudgil, B M
2002-07-15
Rheological behavior of surfactant-stabilized colloidal dispersions of silica particles under extreme conditions (low pH, high ionic strength) has been investigated in relation to interparticle forces and stability of the dispersion. The surfactant used as the dispersing agent was C(12)TAB, a cationic surfactant. Stability analysis through turbidity measurements indicated that there is a sharp increase in the stability of the dispersion when the surfactant concentration is in the range of 8 to 10 mM in the system. The state of the dispersion changes from an unstable regime to a stable regime above a critical concentration of C(12)TAB in the system. In the case of interaction forces measured between the silica substrate and AFM tip, no repulsive force was observed up to a surfactant concentration of 8 mM and a transition from no repulsive forces to steric repulsive forces occurred between 8 and 10 mM. Rheological measurements as a function of C(12)TAB concentration indicated a significant decrease in the viscosity and linear viscoelastic functions of the dispersion over the same range of surfactant concentration (8 to 10 mM C(12)TAB), showing a strong correlation between the viscosity behavior, interparticle forces, and structure development in the dispersion.
Mass Transport in the Warm, Dense Matter and High-Energy Density Regimes
NASA Astrophysics Data System (ADS)
Kress, J. D.; Burakovsky, L.; Ticknor, C.; Collins, L. A.; Lambert, F.
2011-10-01
Large-scale hydrodynamical simulations of fluids and plasmas under extreme conditions require knowledge of certain microscopic properties such as diffusion and viscosity in addition to the equation-of-state. To determine these dynamical properties, we employ quantum molecular dynamical (MD) simulations on large samples of atoms. The method has several advantages: 1) static, dynamical, and optical properties are produced consistently from the same simulations, and 2) mixture properties arise in a natural way since all intra- and inter-particle interactions are properly represented. We utilize two forms of density functional theory: 1) Kohn-Sham (KS-DFT) and 2) orbital-free (OF-DFT). KS-DFT is computationally intense due to its reliance on an orbital representation. As the temperature rises, the Thomas-Fermi approximation in OF-DFT begins to represent accurately the density functional, and provides an efficient and systematic means for extending the quantum simulations to very hot conditions. We have performed KS-DFT and OF-DFT calculations of the self-diffusion, mutual diffusion and shear viscosity for Al, Li, H, and LiH. We examine trends in these quantities and compare to more approximate forms such as the one-component plasma model. We also determine the validity of mixing rules that combine the properties of pure species into a composite result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu, David C.; Malhotra, Deepika; Koech, Phillip K.
2016-01-01
CO2 capture from power generation with aqueous solvents remains energy intensive due to the high water content of the current technology, or the high viscosity of non-aqueous alternatives. Quantitative reduced models, connecting molecular structure to bulk properties, are key for developing structure-property relationships that enable molecular design. In this work, we describe such a model that quantitatively predicts viscosities of CO2 binding organic liquids (CO2BOLs) based solely on molecular structure and the amount of bound CO2. The functional form of the model correlates the viscosity with the CO2 loading and an electrostatic term describing the charge distribution between the CO2-bearingmore » functional group and the proton-receiving amine. Molecular simulations identify the proton shuttle between these groups within the same molecule to be the critical indicator of low viscosity. The model, developed to allow for quick screening of solvent libraries, paves the way towards the rational design of low viscosity non-aqueous solvent systems for post-combustion CO2 capture. Following these theoretical recommendations, synthetic efforts of promising candidates and viscosity measurement provide experimental validation and verification.« less
An accurate estimation method of kinematic viscosity for standard viscosity liquids
NASA Astrophysics Data System (ADS)
Kurano, Y.; Kobayashi, H.; Yoshida, K.; Imai, H.
1992-07-01
Deming's method of least squares is introduced to make an accurate kinematic viscosity estimation for a series of 13 standard-viscosity liquids at any desired temperature. The empirical ASTM kinematic viscosity-temperature equation is represented in the form loglog( v+c)=a-b log T, where v (in mm2. s-1) is the kinematic viscosity at temperature T (in K), a and b are the constants for a given liquid, and c has a variable value. In the present application, however, c is assumed to have a constant value for each standard-viscosity liquid, as do a and b in the ASTM equation. This assumption has since been verified experimentally for all standard-viscosity liquids. The kinematic viscosities for the 13 standard-viscosity liquids have been measured with a high accuracy in the temperature range of 20 40°C using a series of the NRLM capillary master viscometers with an automatic flow time detection system. The deviations between measured and estimated kinematic viscosities were less than ±0.04% for the 10 standard-viscosity liquids JS2.5 to JS2000 and ±0.11% for the 3 standard-viscosity liquids JS15H to JS200H, respectively. From the above investigation, it was revealed that the uncertainty in the present estimation method is less than one-third that in the usual ASTM method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keska, Jerry K.; Hincapie, Juan; Jones, Richard
In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less
NASA Astrophysics Data System (ADS)
Lijesh K., P.; Kumar, Deepak; Muzakkir S., M.; Hirani, Harish
2018-05-01
A Fluid Film Bearings (FFBs) operating in hydrodynamic boundary regime can provide moderate load carrying capacity, negligible wear and friction. However in extreme operating conditions i.e. at high load and low speed, asperities of journal and bearing surfaces come in contact with each other resulting in high wear and friction. During the contact of the asperities, the temperature of the lubricant increases due to frictional heating, resulting in reduction of the viscosity of lubricant. Variation of lubricant viscosity results in low load carrying capacity of the FFB and therefore resulting in detoriation of FFB performance. In the present work it is hypothesized that, by adding multi-functional Multi Wall Carbon Nano-Tubes (MWCNT) (having high thermal conductivity and anti-friction properties) as nano-additive in the base mineral oil, the aforementioned problems can be overcome. To validate the proposed hypothesis, five different samples of lubricant is considered: Sample 1: Base oil, Sample 2: Base oil +0.05% MWCNT, Sample 3: Base oil +0.05% MWCNT +0.5%surfactant, Sample 4: Base oil +0.1% MWCNT +0.5% surfactant, and Sample 5: Base oil +0.15% MWCNT +0.5%surfactant. To evaluate the performance of the developed lubricants, experiments were performed on the reduced scale conformal block on disc test setup. The experimental condition and dimension of the block and disc were decide for the Sommerfeld number equal to 0.0025, which indicates mixed lubrication regime. The performance of lubricant is evaluated by measuring the frictional force and temperature rise of the lubricant during the experiment.
Improving the accuracy of central difference schemes
NASA Technical Reports Server (NTRS)
Turkel, Eli
1988-01-01
General difference approximations to the fluid dynamic equations require an artificial viscosity in order to converge to a steady state. This artificial viscosity serves two purposes. One is to suppress high frequency noise which is not damped by the central differences. The second purpose is to introduce an entropy-like condition so that shocks can be captured. These viscosities need a coefficient to measure the amount of viscosity to be added. In the standard scheme, a scalar coefficient is used based on the spectral radius of the Jacobian of the convective flux. However, this can add too much viscosity to the slower waves. Hence, it is suggested that a matrix viscosity be used. This gives an appropriate viscosity for each wave component. With this matrix valued coefficient, the central difference scheme becomes closer to upwind biased methods.
Viscosity Measurement Using Drop Coalescence in Microgravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)
2002-01-01
We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.
NASA Astrophysics Data System (ADS)
Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.
2010-11-01
We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.
SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munroe, Norman
With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) atmore » the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.« less
Electrically controlled adjustable-resistance exercise equipment employing magnetorheological fluid
NASA Astrophysics Data System (ADS)
Lukianovich, Alex; Ashour, Osama N.; Thurston, Wilbert L.; Rogers, Craig A.; Chaudhry, Zaffir A.
1996-05-01
Magnetorheological (MR) fluids consist of stable suspensions of magnetic particles in a carrying fluid. The magnetorheological effect is one of the direct influences on the mechanical properties of a fluid. It represents a reversible increase, due to an external magnetic field, of the effective viscosity. Besides the variation of the rheological properties (viscosity, elasticity, and plasticity), the magnetic properties of the fluid (permeability and susceptibility), as well as the thermal and acoustic properties, are strongly influenced when an external magnetic field is applied. MR fluids have many appealing applications in the area of vibration control. The distinguishing feature of any MR fluid device is the absence of moving mechanical parts and the extreme simplicity of construction and technology. The most important element of any MR fluid device is an MR valve, which is functionally a controllable hydraulic resistance. As a demonstration of such devices, two commercially available pieces of exercise equipment, a cross stepper and a bench press, were modified to incorporate MR fluid and an external MR valve. As the magnetic field strength operating across the MR valve is adjusted, the viscosity of the flowing MR fluid changes and, accordingly, the needed force is adjusted.
Grupi, Asaf; Minton, Allen P.
2014-01-01
The construction and operation of a novel viscometer/rheometer are described. The instrument is designed to measure the viscosity of a macromolecular solution while automatically varying both solute concentration and shear rate. Viscosity is calculated directly from Poiseuille's Law, given the measured difference in pressure between two ends of a capillary tube through which the solution is flowing at a known rate. The instrument requires as little as 0.75 ml of a solution to provide a full profile of viscosity as a function of concentration and shear rate, and can measure viscosities as high as 500 cP and as low as 1 cP, at shear rates between 10 and 2 × 103 s-1. The results of control experiments are presented to document the accuracy and precision of measurement at both low and high concentration of synthetic polymers and proteins. PMID:23130673
Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals
NASA Astrophysics Data System (ADS)
Moon, K. R.; Bae, S. Y.; Kim, B. K.
2015-04-01
Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.
Effect of Bamboo Viscose on the Wicking and Moisture Management Properties of Gauze
NASA Astrophysics Data System (ADS)
Akbar, Abdul R.; Su, Siwei; Amjad, Bilal; Cai, Yingjie; Lin, Lina
2017-12-01
Bamboo viscose or regenerated cellulose fibers were used to check their absorbency properties effect on the wicking and moisture management in gauzes. Bamboo viscose and cotton fibers were spun into five different yarn samples with different fiber proportion by ring spinning. Fifteen different gauze samples were made of these yarn samples. The gauze samples were subjected to wicking test to check the wicking ability. Water vapor transmission test was applied to check the vapor transmission rate. These tests were applied to measure the effectiveness of bamboo viscose, cotton and blended gauze samples in wound healing. Pure bamboo gauzes and gauzes with high content of bamboo fiber, i.e. 75B:25C and 50B:50C, shows better wicking and vapor transmission properties. It makes gauzes with high bamboo viscose suitable for wound care applications because of moisture absorbency.
NASA Astrophysics Data System (ADS)
Luchetti, Ana Carolina F.; Nardy, Antonio J. R.; Madeira, José
2018-04-01
The Cretaceous trachydacites and dacites of Chapecó type (ATC) and dacites and rhyolites of Palmas type (ATP) make up 2.5% of the 800.000 km3 of volcanic pile in the Paraná Magmatic Province (PMP), emplaced at the onset of Gondwana breakup. Together they cover extensive areas in southern Brazil, overlapping volcanic sequences of tholeiitic basalts and andesites; occasional mafic units are also found within the silicic sequence. In the central region of the PMP silicic volcanism comprises porphyritic ATC-type, trachydacite high-grade ignimbrites (strongly welded) overlying aphyric ATP-type, rhyolite high- to extremely high-grade ignimbrites (strongly welded to lava-like). In the southwestern region strongly welded to lava-like high-grade ignimbrites overlie ATP lava domes, while in the southeast lava domes are found intercalated within the ignimbrite sequence. Characteristics of these ignimbrites are: widespread sheet-like deposits (tens to hundreds of km across); absence of basal breccias and basal fallout layers; ubiquitous horizontal to sub-horizontal sheet jointing; massive, structureless to horizontally banded-laminated rock bodies locally presenting flow folding; thoroughly homogeneous vitrophyres or with flow banding-lamination; phenocryst abundance presenting upward and lateral decrease; welded glass blobs in an 'eutaxitic'-like texture; negligible phenocryst breakage; vitroclastic texture locally preserved; scarcity of lithic fragments. These features, combined with high eruption temperatures (≥ 1000 °C), low water content (≤ 2%) and low viscosities (104-7 Pa s) suggest that the eruptions were characterized by low fountaining, little heat loss during collapse, and high mass fluxes producing extensive deposits.
NASA Astrophysics Data System (ADS)
Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.
2016-06-01
This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.
Ragaee, S M; Campbell, G L; Scoles, G J; McLeod, J G; Tyler, R T
2001-05-01
Five rye lines exhibiting a wide range of extract viscosities were evaluated for the rheological and baking properties of their flours, individually and in blends with hard red spring wheat flour. Commercial cultivars of rye and triticale were included in the study as controls. Extract viscosities of rye flours were higher than those of corresponding wholemeals, indicating shifting of water-extractable arabinoxylan into flour during roller milling. Falling numbers of the rye flours correlated positively with their extract viscosities in the presence (r = 0.73, p < 0.05) or absence (r = 0.65, p < 0.05) of an enzyme inhibitor. Farinograms revealed the weakness of rye and triticale flours compared to wheat flour. Extract viscosities of rye flours were negatively correlated (r = -0.65, p < 0.05) with mixing tolerance index and positively correlated (r = 0.64, p < 0.05) with dough stability, suggesting a positive impact of extract viscosity on dough strength. Extract viscosity was negatively correlated (r = -0.74, p < 0.05) with loaf volume and specific volume (r = -0.73, p < 0.05) and positively correlated (r = 0.73, p < 0.05) with loaf weight of rye/wheat bread. Overall, the results indicated that 30% of flour from high or low extract viscosity rye could be incorporated into rye/wheat breads without seriously compromising bread quality. Inclusion of rye, particularly high extract viscosity rye, in chick diets seriously impeded growth performance and feed efficiency. Part of the arabinoxylan survived bread-making and exerted an effect on chicks, although substantially lower digesta viscosities were observed in chicks fed rye bread diets than in those fed rye wholemeals.
Low Melt Viscosity Resins for Resin Transfer Molding
NASA Technical Reports Server (NTRS)
Harris, Frank W.
2002-01-01
In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.
Hierarchical Cluster Formation in Concentrated Monoclonal Antibody Formulations
NASA Astrophysics Data System (ADS)
Godfrin, P. Douglas; Zarzar, Jonathan; Zarraga, Isidro Dan; Porcar, Lionel; Falus, Peter; Wagner, Norman; Liu, Yun
Reversible cluster formation has been identified as an underlying cause of large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations. As high solution viscosity prevents the use of subcutaneous injection as a delivery method for some mAbs, a fundamental understanding of the interactions responsible for high viscosities in concentrated mAb solutions is of significant relevance to mAb applications in human health care as well as of intellectual interest. Here, we present a detailed investigation of a well-studied IgG1 based mAb to relate the short time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. Using a combination of experimental techniques, it is found that upon adding Na2SO4, these antibodies dimerize in solution. Proteins form strongly bounded reversible dimers at dilute concentrations that, when concentrated, interact with each other to form loosely bounded, large, transient clusters. The combined effect of forming strongly bounded dimers and a large transient network is a significant increase in the solution viscosity. Strongly bounded, reversible dimers may exist in many IgG1 based mAb systems such that these results contribute to a more comprehensive understanding of the physical mechanisms producing high viscosities in concentrated protein solutions.
Khismatullin, Damir B.; Truskey, George A.
2012-01-01
Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5–30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo. PMID:22768931
Langille, B L; Crisp, B
1980-09-01
The temperature dependence of the viscosity of blood from frogs and turtles has been assessed for temperatures between 5 and 40 degrees C. Viscosity of turtles' blood was, on average, reduced from 3.50 +/- 0.16 to 2.13 +/- 0.10 cP between 10 and 30 degrees C, a decline of 39%. Even larger changes in viscosity were observed for frogs' blood with viscosity falling from 4.55 +/- 0.32 to 2.55 +/- 0.25 cP over the same temperature range, a change of 44%. Blood viscosity was highly correlated with hematocrit in both species at all temperatures. Viscosity of blood from both frogs and turtles showed a large standard deviation at all temperatures and this was attributed to large individual-to-individual variations in hematocrit. Turtles heat faster than they cool, regardless of whether tests are performed at temperatures above or below the range of thermal preference. The effect of temperature dependence of blood viscosity on heating and cooling rates is demonstrated.
Shear-induced aggregation dynamics in a polymer microrod suspension
NASA Astrophysics Data System (ADS)
Kumar, Pramukta S.
A non-Brownian suspension of micron scale rods is found to exhibit reversible shear-driven formation of disordered aggregates resulting in dramatic viscosity enhancement at low shear rates. Aggregate formation is imaged at low magnification using a combined rheometer and fluorescence microscope system. The size and structure of these aggregates are found to depend on shear rate and concentration, with larger aggregates present at lower shear rates and higher concentrations. Quantitative measurements of the early-stage aggregation process are modeled by a collision driven growth of porous structures which show that the aggregate density increases with a shear rate. A Krieger-Dougherty type constitutive relation and steady-state viscosity measurements are used to estimate the intrinsic viscosity of complex structures developed under shear. Higher magnification images are collected and used to validate the aggregate size versus density relationship, as well as to obtain particle flow fields via PIV. The flow fields provide a tantalizing view of fluctuations involved in the aggregation process. Interaction strength is estimated via contact force measurements and JKR theory and found to be extremely strong in comparison to shear forces present in the system, estimated using hydrodynamic arguments. All of the results are then combined to produce a consistent conceptual model of aggregation in the system that features testable consequences. These results represent a direct, quantitative, experimental study of aggregation and viscosity enhancement in rod suspension, and demonstrate a strategy for inferring inaccessible microscopic geometric properties of a dynamic system through the combination of quantitative imaging and rheology.
Terahertz spectroscopy properties of the selected engine oils
NASA Astrophysics Data System (ADS)
Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin
2010-11-01
Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.
Alkuraishy, Hayder M; Al-Gareeb, Ali I; Albuhadilly, Ali K
2014-01-01
Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females) with age range 50-65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P < 0.05), especially on low shear whole blood viscosity (P < 0.01), but they produced insignificant effects on total serum protein and high shear whole blood viscosity (P > 0.05). Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders.
Alkuraishy, Hayder M.; Al-Gareeb, Ali I.; Albuhadilly, Ali K.
2014-01-01
Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females) with age range 50–65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P < 0.05), especially on low shear whole blood viscosity (P < 0.01), but they produced insignificant effects on total serum protein and high shear whole blood viscosity (P > 0.05). Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders. PMID:25548768
Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)
NASA Astrophysics Data System (ADS)
Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander
2016-04-01
Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of kimberlite and basaltic magmas at the T, P - parameters of the Earth's crust and upper mantle. The Russian Foundation for Basic Research (project 15-05-01318) and the Russian Science Foundation (project 14-27-00054) are acknowledged for the financial support. [1] Persikov, E.S. & Bukhtiyarov, P.G. (2009) Russian Geology & Geophysics, 50, No 12, 1079-1090.
Factors affecting the viscosity of sodium hypochlorite and their effect on irrigant flow.
Bukiet, F; Soler, T; Guivarch, M; Camps, J; Tassery, H; Cuisinier, F; Candoni, N
2013-10-01
To assess the influence of concentration, temperature and surfactant addition to a sodium hypochlorite solution on its dynamic viscosity and to calculate the corresponding Reynolds number to determine the corresponding flow regimen. The dynamic viscosity of the irrigant was assessed using a rotational viscometer. Sodium hypochlorite with concentrations ranging from 0.6% to 9.6% was tested at 37 and 22 °C. A wide range of concentrations of three different surfactants was mixed in 2.4% sodium hypochlorite for viscosity measurements. The Reynolds number was calculated under each condition. Data were analysed using two-way anova. There was a significant influence of sodium hypochlorite concentration (P < 0.001) and temperature (P < 0.001) on dynamic viscosity: the latter significantly increased with sodium hypochlorite concentration and decreased with temperature. A significant influence of surfactant concentration on dynamic viscosity (P < 0.001) occurred, especially for high surfactant concentrations: 6.25% for benzalkonium chloride, 15% for Tween 80 and 6.25% for Triton X-100. Reynolds number values calculated for a given flow rate (0.14 mL s(-1)), and root canal diameter (sizes 45 and 70) clearly qualified the irrigant flow regimen as laminar. Dynamic viscosity increased with sodium hypochlorite and surfactant concentration but decreased with temperature. Under clinical conditions, all viscosities measured led to laminar flow. The transition between laminar and turbulent flow may be reached by modifying different parameters at the same time: increasing flow rate and temperature whilst decreasing irrigant viscosity by adding surfactants with a high value of critical micellar concentration. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.
In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions
Tomar, Dheeraj S.; Li, Li; Broulidakis, Matthew P.; Luksha, Nicholas G.; Burns, Christopher T.; Singh, Satish K.; Kumar, Sandeep
2017-01-01
ABSTRACT Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence—structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on VH, VL, and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development. PMID:28125318
In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions.
Tomar, Dheeraj S; Li, Li; Broulidakis, Matthew P; Luksha, Nicholas G; Burns, Christopher T; Singh, Satish K; Kumar, Sandeep
2017-04-01
Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence-structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on V H , V L , and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development.
Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors.
Mika, Jacek T; Thompson, Alexander J; Dent, Michael R; Brooks, Nicholas J; Michiels, Jan; Hofkens, Johan; Kuimova, Marina K
2016-10-04
The viscosity is a highly important parameter within the cell membrane, affecting the diffusion of small molecules and, hence, controlling the rates of intracellular reactions. There is significant interest in the direct, quantitative assessment of membrane viscosity. Here we report the use of fluorescence lifetime imaging microscopy of the molecular rotor BODIPY C10 in the membranes of live Escherichia coli bacteria to permit direct quantification of the viscosity. Using this approach, we investigated the viscosity in live E. coli cells, spheroplasts, and liposomes made from E. coli membrane extracts. For live cells and spheroplasts, the viscosity was measured at both room temperature (23°C) and the E. coli growth temperature (37°C), while the membrane extract liposomes were studied over a range of measurement temperatures (5-40°C). At 37°C, we recorded a membrane viscosity in live E. coli cells of 950 cP, which is considerably higher than that previously observed in other live cell membranes (e.g., eukaryotic cells, membranes of Bacillus vegetative cells). Interestingly, this indicates that E. coli cells exhibit a high degree of lipid ordering within their liquid-phase plasma membranes. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio
2016-08-01
We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.
Effect of chain extension on rheology and tensile properties of PHB and PHB-PLA blends
NASA Astrophysics Data System (ADS)
Bousfield, Glenn
Poly(3-hydroxybutyrate), referred to as PHB, is a bacterially-synthesized and biodegradable polymer which is being considered as a substitute for non-biodegradable bulk polymers like polypropylene. PHB is naturally extremely isotactic and naturally has a very high degree of crystallinity, resulting in a stiff but brittle material. The stability of PHB crystals also means that the melting point of the polymer is approximately 170°C, high with respect to similar polymers. For instance, the melting point of poly(4-hydroxybutyrate) is only 53°C (Saito, Nakamura, Hiramitsu, & Doi, 1996). Above 170°C, PHB is subject to a thermomechanical degradation mechanism, meaning that the polymer cannot be melted without degrading. One possible solution to the problem of degradation is to add a chain extender to the molten polymer to increase average molecular weight to counteract the molecular weight lost to degradation. In this work, a variety of chain extenders (JoncrylRTM ADR 4368-C, pyromellitic dianhydride, hexamethylene diisocyanate, polycarbodiimide) were compounded with a random copolymer of 98 mol% 3-hydroxybutyrate and 2 mol% 3-hydroxyvalerate (referred to as PHB) in concentrations ranging from 0.25% to 4%, to determine which chain extender functionality worked best with PHB. Molecular weight change was inferred from torque monitored during compounding, and from complex viscosity determined from parallel-plate rheology. None of the chain extenders changed the rate of degradation of PHB, although Joncryl increased the complex viscosity of the polymer. PHB was also blended with Poly(L-lactic acid), referred to as PLLA in PHB/PLLA ratios of 100/0, 75/25, 50/50, 25/75 and 0/100, to determine the effect of blending on the thermal stability of PHB. Again, thermal stability was determined by monitoring torque during compounding and by measuring complex viscosity through parallel-plate rheology. Blends in which PHB was the more abundant phase, as well as the 50% PHB/50% PLA blend continued to degrade, and the PLLA did not in these cases significantly increase complex viscosity. By contrast, the 25/75 PHB/PLLA blend had a complex viscosity equal to the neat PLLA blend, and both of the blends remained stable. All five blends were also produced with 1% Joncryl to observe the effect of Joncryl on the blends. In the 50/50 blend and the blends in which PLLA was the major component, complex viscosity increased by at least an order of magnitude, while in the 75/25 PHB/PLLA blend and the neat PHB blend, the effect of Joncryl was to increase complex viscosity only by a factor of 2. The effect of blending and of Joncryl on PHB-PLA blends was further investigated through uniaxial tensile stress testing of compression moulded samples of the blends, neat and with 1% Joncryl. The results showed an increase in tensile stress at yield and tensile strain at break for blends with the addition of Joncryl, although Young's modulus was somewhat diminished for these blends. In conclusion, chain extenders were not effective in reversing the effect of thermomechanical degradation, possibly because they do not change the resistance to bond rotation in PHB chains, or because they are not reactive with acrylates, although the exact cause has not been determined.
NASA Astrophysics Data System (ADS)
Pope, Francis; Athanasiadis, Thanos; Botchway, Stan; Davdison, Nicholas; Fitzgerald, Clare; Gallimore, Peter; Hosny, Neveen; Kalberer, Markus; Kuimova, Marina; Vysniauskas, Aurimas; Ward, Andy
2017-04-01
Organic aerosol particles play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states; however, diffusion rates of small molecules such as water appear not to be limited by these high viscosities. We have developed a technique for measuring viscosity that allows for the imaging of aerosol viscosity in micron sized aerosols through use of fluorescence lifetime imaging of viscosity sensitive dyes which are also known as 'molecular rotors'. These rotors can be introduced into laboratory generated aerosol by adding minute quantities of the rotor to aerosol precursor prior to aerosolization. Real world aerosols can also be studied by doping them in situ with the rotors. The doping is achieved through generation of ultrafine aerosol particles that contain the rotors; the ultrafine aerosol particles deliver the rotors to the aerosol of interest via impaction and coagulation. This work has been conducted both on aerosols deposited on microscope coverslips and on particles that are levitated in their true aerosol phase through the use of a bespoke optical trap developed at the Central Laser Facility. The technique allows for the direct observation of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles. The technique is non-destructive thereby allowing for multiple experiments to be carried out on the same sample. It can dynamically quantify and track viscosity changes during atmospherically relevant processes such oxidation and hygroscopic growth (1). This presentation will focus on the oxidation of aerosol particles composed of unsaturated and saturated organic species. It will discuss how the type of oxidant, oxidation rate and the composition of the oxidized products affect the time dependent aerosol viscosity. (1) Hosny, N. A., C. Fitzgerald, A. Vysniauskas, T. Athanasiadis, T. Berkemeier, N. Uygur, U. Pöschl, M. Shiraiwa, M. Kalberer, F.D. Pope and M.K. Kuimova (2016) 'Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging'. Chemical Science, 17, 32194-32203. http://dx.doi.org/doi:10.1039/C5SC02959G
Measurement and correlation of jet fuel viscosities at low temperatures
NASA Technical Reports Server (NTRS)
Schruben, D. L.
1985-01-01
Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.
Yang, Yang; Velayudhan, Ajoy; Thornhill, Nina F; Farid, Suzanne S
2017-09-01
The need for high-concentration formulations for subcutaneous delivery of therapeutic monoclonal antibodies (mAbs) can present manufacturability challenges for the final ultrafiltration/diafiltration (UF/DF) step. Viscosity levels and the propensity to aggregate are key considerations for high-concentration formulations. This work presents novel frameworks for deriving a set of manufacturability indices related to viscosity and thermostability to rank high-concentration mAb formulation conditions in terms of their ease of manufacture. This is illustrated by analyzing published high-throughput biophysical screening data that explores the influence of different formulation conditions (pH, ions, and excipients) on the solution viscosity and product thermostability. A decision tree classification method, CART (Classification and Regression Tree) is used to identify the critical formulation conditions that influence the viscosity and thermostability. In this work, three different multi-criteria data analysis frameworks were investigated to derive manufacturability indices from analysis of the stress maps and the process conditions experienced in the final UF/DF step. Polynomial regression techniques were used to transform the experimental data into a set of stress maps that show viscosity and thermostability as functions of the formulation conditions. A mathematical filtrate flux model was used to capture the time profiles of protein concentration and flux decay behavior during UF/DF. Multi-criteria decision-making analysis was used to identify the optimal formulation conditions that minimize the potential for both viscosity and aggregation issues during UF/DF. Biotechnol. Bioeng. 2017;114: 2043-2056. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Perodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Perodicals, Inc.
NASA Astrophysics Data System (ADS)
Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.
The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.
Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils
ERIC Educational Resources Information Center
Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.
2010-01-01
A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…
2013-01-01
within the fuel injectors regardless of viscosity or lubricity levels. 15. SUBJECT TERMS Fuel Lubricity, Viscosity, HPCR, Synthetic Jet Fuel, Denso... injectors regardless of viscosity or lubricity levels. UNCLASSIFIED v UNCLASSIFIED FOREWORD/ACKNOWLEDGMENTS The U.S. Army TARDEC...40 3.10 UPPER INJECTOR CONNECTING PIN
Anselmetti, Giovanni Carlo; Zoarski, Gregg; Manca, Antonio; Masala, Salvatore; Eminefendic, Haris; Russo, Filippo; Regge, Daniele
2008-01-01
The aim of this study was to assess the feasibility of and venous leakage reduction in percutaneous vertebroplasty (PV) using a new high-viscosity bone cement (PMMA). PV has been used effectively for pain relief in osteoporotic and malignant vertebral fractures. Cement extrusion is a common problem and can lead to complications. Sixty patients (52 female; mean age, 72.2 +/- 7.2) suffering from osteoporosis (46), malignancy (12), and angiomas (2), divided into two groups (A and B), underwent PV on 190 vertebrae (86 dorsal, 104 lumbar). In Group A, PV with high-viscosity PMMA (Confidence, Disc-O-Tech, Israel) was used. This PMMA was injected by a proprietary delivery system, a hydraulic saline-filled screw injector. In Group B, a standard low-viscosity PMMA was used. Postprocedural CT was carried out to detect PMMA leakages and complications. Fisher's exact test and Wilcoxon rank test were used to assess significant differences (p < 0.05) in leakages and to evaluate the clinical outcome. PV was feasible, achieving good clinical outcome (p < 0.0001) without major complications. In Group A, postprocedural CT showed an asymptomatic leak in the venous structures of 8 of 98 (8.2%) treated vertebrae; a discoidal leak occurred in 6 of 98 (6.1%). In Group B, a venous leak was seen in 38 of 92 (41.3%) and a discoidal leak in 12 of 92 (13.0%). Reduction of venous leak obtained by high-viscosity PMMA was highly significant (p < 0.0001), whereas this result was not significant (p = 0.14) related to the disc. The high-viscosity PMMA system is safe and effective for clinical use, allowing a significant reduction of extravasation rate and, thus, leakage-related complications.
Buck, Patrick M; Chaudhri, Anuj; Kumar, Sandeep; Singh, Satish K
2015-01-05
Therapeutic monoclonal antibody (mAb) candidates that form highly viscous solutions at concentrations above 100 mg/mL can lead to challenges in bioprocessing, formulation development, and subcutaneous drug delivery. Earlier studies of mAbs with concentration-dependent high viscosity have indicated that mAbs with negatively charged Fv regions have a dipole-like quality that increases the likelihood of reversible self-association. This suggests that weak electrostatic intermolecular interactions can form transient antibody networks that participate in resistance to solution deformation under shear stress. Here this hypothesis is explored by parametrizing a coarse-grained (CG) model of an antibody using the domain charges from four different mAbs that have had their concentration-dependent viscosity behaviors previously determined. Multicopy molecular dynamics simulations were performed for these four CG mAbs at several concentrations to understand the effect of surface charge on mass diffusivity, pairwise interactions, and electrostatic network formation. Diffusion coefficients computed from simulations were in qualitative agreement with experimentally determined viscosities for all four mAbs. Contact analysis revealed an overall greater number of pairwise interactions for the two mAbs in this study with high concentration viscosity issues. Further, using equilibrated solution trajectories, the two mAbs with high concentration viscosity issues quantitatively formed more features of an electrostatic network than the other mAbs. The change in the number of these network features as a function of concentration is related to the number of pairwise interactions formed by electrostatic complementarities between antibody domains. Thus, transient antibody network formation caused by domain-domain electrostatic complementarities is the most probable origin of high concentration viscosity for mAbs in this study.
Viscoelastic Transient of Confined Red Blood Cells
Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel
2015-01-01
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871
Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo
2012-07-15
The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.
Sungailaitė, Sandra; Ruzgys, Paulius; Šatkauskienė, Ingrida; Čepurnienė, Karolina; Šatkauskas, Saulius
2015-01-01
In the present study, we aimed to evaluate the efficiency of drug and gene electrotransfer into cells in vitro depending on medium viscosity. Experiments were performed using Chinese hamster ovary cells. Efficiency of molecular electrotransfer depending of medium viscosity was evaluated using two different electroporation conditions: a high-voltage (HV) pulse and a combination of a high-voltage pulse and a low-voltage pulse (HV + LV). To evaluate the efficiency of molecular electrotransfer, anticancer drug bleomycin and two different plasmids coding for green fluorescent protein and luciferase were used. We found that a slight increase in medium viscosity from 1.3-1.4 mPa·s significantly decreased the transfection efficiency, both in terms of transfected cells and total protein production, which was abolished completely with an increase in medium viscosity to 6.1 mPa·s. Notably, at this medium viscosity, electrotransfer of the small anticancer drug was still efficient. Using HV and HV + LV pulse combinations, we showed that a decrease of DNA electrotransfer, especially at lower medium viscosities, can be compensated for by the LV pulse to some extent. On the other hand, the addition of the LV pulse after the HV pulse did not have any positive effect on the efficiency of bleomycin electrotransfer. These findings demonstrate that transfection is very susceptible to medium viscosity and highlights the importance of the electrophoretic component in experiments when a considerable transfection level is needed. Copyright © 2015 John Wiley & Sons, Ltd.
Dear, Barton J; Hung, Jessica J; Truskett, Thomas M; Johnston, Keith P
2017-01-01
To explain the effects of cationic amino acids and other co-solutes on the viscosity, stability and protein-protein interactions (PPI) of highly concentrated (≥200 mg/ml) monoclonal antibody (mAb) solutions to advance subcutaneous injection. The viscosities of ≥200 mg/ml mAb1 solutions with various co-solutes and pH were measured by capillary rheometry in some cases up to 70,000 s -1 . The viscosities are analyzed in terms of dilute PPI characterized by diffusion interaction parameters (k D ) from dynamic light scattering (DLS). MAb stability was measured by turbidity and size exclusion chromatography (SEC) after 4 weeks of 40°C storage. Viscosity reductions were achieved by reducing the pH, or adding histidine, arginine, imidazole or camphorsulfonic acid, each of which contains a hydrophobic moiety. The addition of inorganic electrolytes or neutral osmolytes only weakly affected viscosity. Systems with reduced viscosities also tended to be Newtonian, while more viscous systems were shear thinning. Viscosity reduction down to 20 cP at 220 mg/ml mAb1 was achieved with co-solutes that are both charged and contain a hydrophobic interaction domain for sufficient binding to the protein surface. These reductions are related to the DLS diffusion interaction parameter, k D , only after normalization to remove the effect of charge screening. Shear rate profiles demonstrate that select co-solutes reduce protein network formation.
Experimental Study on the Viscosity and Adhesive Performance of Exogenous Liquid Fibrin Glue
HAYASHI, Takuro; HASEGAWA, Mitsuhiro; INAMASU, Joji; ADACHI, Kazuhide; NAGAHISA, Shinya; HIROSE, Yuichi
2014-01-01
Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast®, BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal®, BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance. PMID:25367586
Experimental study on the viscosity and adhesive performance of exogenous liquid fibrin glue.
Hayashi, Takuro; Hasegawa, Mitsuhiro; Inamasu, Joji; Adachi, Kazuhide; Nagahisa, Shinya; Hirose, Yuichi
2014-01-01
Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast(®), BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal(®), BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance.
Up to 50-fold increase in urine viscosity with iso-osmolar contrast media in the rat.
Seeliger, Erdmann; Becker, Klaus; Ladwig, Mechthild; Wronski, Thomas; Persson, Pontus B; Flemming, Bert
2010-08-01
To compare changes in urinary viscosity in the renal tubules following administration of a high-viscosity iso-osmolar contrast agent (iodixanol) to that observed following administration of a less viscous, higher osmolar contrast agent (iopromide) in anesthetized rats. A total of 43 rats were studied. Experiments were approved by the Berlin, Germany, animal protection administration. A viscometer was developed to measure viscosity in minute samples (7 microL). Urine was collected, viscosity was measured (at 37 degrees C), and glomerular filtration rate (GFR) was determined by means of creatinine clearance. Boluses of 1.5 mL of iodixanol (320 mg iodine per milliliter, iso-osmolar to plasma, high viscosity) or iopromide (370 mg iodine per milliliter, higher osmolality and lower viscosity than iodixanol) were injected into the thoracic aorta. There were five groups (seven rats per group). Groups 1 (iodixanol) and 2 (iopromide) had free access to water prior to the experiment; groups 3 (iodixanol) and 4 (iopromide) received an additional infusion of isotonic saline (4 mL/kg/h). Group 5 was treated as group 1 but received only 0.75 mL of iodixanol. The observation period was 100 minutes. Statistical comparisons were made by means of nonparametric procedures (Friedman test, Kruskal-Wallis test). Iodixanol increased urine viscosity from 0.69 to 36.7 mm(2)/sec; thus, urine became threefold more viscous than native iodixanol solution. The increase in urine viscosity after injection of iopromide was from 0.73 to 2.3 mm(2)/sec. While GFR was not significantly affected by iopromide, GFR transiently decreased by 50% after administration of iodixanol. Iopromide had a diuretic effect twofold greater than that of iodixanol. Saline infusion blunted the viscosity rise and transient decline in GFR caused by iodixanol, as did reducing the iodixanol dose by 50%. Contrast media, in particular iodixanol, increase urine viscosity (which is equal to tubular fluid viscosity in the collecting ducts); in response to iodixanol, GFR markedly decreases. Saline infusion attenuates this response, thus potentially explaining the protective effects of volume expansion in contrast medium-induced nephropathy.
Evaluation of Lama glama semen viscosity with a cone-plate rotational viscometer.
Casaretto, C; Martínez Sarrasague, M; Giuliano, S; Rubin de Celis, E; Gambarotta, M; Carretero, I; Miragaya, M
2012-05-01
Llama semen is highly viscous. This characteristic is usually evaluated subjectively by measuring the thread formed when carefully pippeting a sample of semen. The aims of this study were (i) to objectively determine and analyse llama semen viscosity, (ii) to compare semen viscosity between ejaculates of the same male as well as between different males, (iii) to study the correlation between viscosity and other semen characteristics and (iv) to evaluate the effect of collagenase on semen viscosity. Semen viscosity was evaluated using a cone-plate Brookfield rotational viscometer. A non Newtonian, pseudoplastic behaviour was observed in the 45 semen samples evaluated. Rheological parameters were determined obtaining the following results (mean ± SD): apparent viscosity at 11.5 s(-1): 46.71 ± 26.8 cpoise and at 115 s(-1): 12.61 ± 4.1 cpoise; structural viscosity (K) (dyne s cm(-2)): 2.18 ± 1.4 and coefficient of consistency (n): 0.45 ± 0.1. Statistical differences were found between different ejaculates of the same male for structural viscosity and apparent viscosity at 11.5 s(-1) (P < 0.01). Correlation was found only between coefficient of consistency (n) and sperm concentration (P < 0.01). Significant differences for coefficient of consistency (n) and viscosity at 115 s(-1) were found between samples incubated with and without collagenase (P < 0.05). © 2011 Blackwell Verlag GmbH.
Wang, Zhongxia; Yang, Lili; Liu, Hong; Tan, Xiutao
2002-04-01
Male SD rats are fed by high fat diet supplemented with refined konjac meal for 6 weeks and the effect of refined konjac meal on the serum lipid peroxides (LPO) and blood viscosity are observed. The results showed that the refined konjac meal can obviously decrease serum cholesterol, triglyceride and serum LPO of rats in comparison with those of rats fed only by high fat forage, and can elevate, at the same time, the high density lipoprotein-cholesterol and high density lipoprotein-cholesterol/triglyceride value. It is also shown that the refined konjac meal can decrease the blood viscosity, but has no effect on forage intake and weight gain of rats.
Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J
2014-05-02
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
NASA Astrophysics Data System (ADS)
Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.
2014-05-01
Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.
Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P
2016-01-01
To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grayson, James W.; Evoy, Erin; Song, Mijung; Chu, Yangxi; Maclean, Adrian; Nguyen, Allena; Upshur, Mary Alice; Ebrahimi, Marzieh; Chan, Chak K.; Geiger, Franz M.; Thomson, Regan J.; Bertram, Allan K.
2017-07-01
The viscosities of three polyols and three saccharides, all in the non-crystalline state, have been studied. Two of the polyols (2-methyl-1,4-butanediol and 1,2,3-butanetriol) were studied under dry conditions, the third (1,2,3,4-butanetetrol) was studied as a function of relative humidity (RH), including under dry conditions, and the saccharides (glucose, raffinose, and maltohexaose) were studied as a function of RH. The mean viscosities of the polyols under dry conditions range from 1.5 × 10-1 to 3.7 × 101 Pa s, with the highest viscosity being that of the tetrol. Using a combination of data determined experimentally here and literature data for alkanes, alcohols, and polyols with a C3 to C6 carbon backbone, we show (1) there is a near-linear relationship between log10 (viscosity) and the number of hydroxyl groups in the molecule, (2) that on average the addition of one OH group increases the viscosity by a factor of approximately 22 to 45, (3) the sensitivity of viscosity to the addition of one OH group is not a strong function of the number of OH functional groups already present in the molecule up to three OH groups, and (4) higher sensitivities are observed when the molecule has more than three OH groups. Viscosities reported here for 1,2,3,4-butanetetrol particles are lower than previously reported measurements using aerosol optical tweezers, and additional studies are required to resolve these discrepancies. For saccharide particles at 30 % RH, viscosity increases by approximately 2-5 orders of magnitude as molar mass increases from 180 to 342 g mol-1, and at 80 % RH, viscosity increases by approximately 4-5 orders of magnitude as molar mass increases from 180 to 991 g mol-1. These results suggest oligomerization of highly oxidized compounds in atmospheric secondary organic aerosol (SOA) could lead to large increases in viscosity, and may be at least partially responsible for the high viscosities observed in some SOA. Finally, two quantitative structure-property relationship models (Sastri and Rao, 1992; Marrero-Morejón and Pardillo-Fontdevila, 2000) were used to predict the viscosity of alkanes, alcohols, and polyols with a C3-C6 carbon backbone. Both models show reasonably good agreement with measured viscosities for the alkanes, alcohols, and polyols studied here except for the case of a hexol, the viscosity of which is underpredicted by 1-3 orders of magnitude by each of the models.
Hydrodynamic simulations of viscous accretion flows around black holes
NASA Astrophysics Data System (ADS)
Giri, Kinsuk; Chakrabarti, Sandip K.
2012-03-01
We study the time evolution of a rotating, axisymmetric, viscous accretion flow around black holes using a grid-based finite difference method. We use the Shakura-Sunyaev viscosity prescription. However, we compare with the results obtained when all the three independent components of the viscous stress are kept. We show that the centrifugal pressure supported shocks became weaker with the inclusion of viscosity. The shock is formed farther out when the viscosity is increased. When the viscosity is above a critical value, the shock disappears altogether and the flow becomes subsonic and Keplerian everywhere except in a region close to the horizon, where it remains supersonic. We also find that as the viscosity is increased, the amount of outflowing matter in the wind is decreased to less than a percentage of the inflow matter. Since the post-shock region could act as a reservoir of hot electrons or the so-called 'Compton cloud', the size of which changes with viscosity, the spectral properties are expected to depend on viscosity strongly: the harder states are dominated by low angular momentum and the low-viscosity flow with significant outflows while the softer states are dominated by the high-viscosity Keplerian flow having very few outflows.
Raut, Ashlesha S; Kalonia, Devendra S
2016-01-01
Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-Ig(TM)) protein solutions. The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-Ig(TM) protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-Ig(TM) protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity. DVD-Ig(TM) protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-Ig(TM) protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-Ig(TM) protein at certain pH and ionic strength conditions. Results show that more than one factor contributes to the increased viscosity of DVD-Ig(TM) protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.
Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
Nakagawa, H; Fukuda, H; Kawaida, M; Shiotani, A; Kanzaki, J
1998-01-01
To evaluate how the viscosity of the laryngeal mucus influences vocal fold vibration, two fluids of differing viscosity were applied separately to excised canine larynges and experimental phonation was induced. Vibration of the vocal folds was measured by use of a laryngostroboscope and an X-ray stroboscope. With the high viscosity fluid, the amplitude of vibration of the free edge and the peak glottal area was decreased while the open quotient was increased. Because the viscosity of this fluid affected the wave motion of the vocal fold mucosa, changes in viscosity of the mucus may be involved in causing such disorders as hoarseness, in the absence of apparent changes in the vocal folds themselves.
NASA Astrophysics Data System (ADS)
Babenko, A. A.; Istomin, S. A.; Zhuchkov, V. I.; Sychev, A. V.; Ryabov, V. V.; Upolovnikova, A. G.
2017-05-01
The simplex lattice method of planning experiments is used to study the viscosities of CaO-SiO2-Al2O3-8% MgO-4% B2O3 slags in a wide chemical composition range. For each viscosity, we developed an adequate mathematical model in the form of a reduced third-order polynomial. The results of mathematical simulation are presented in composition-viscosity diagrams. Composition regions with a high fluidity of slags, the viscosities of which are 0.8-1.2 Pa s in the temperature range 1500-1600°C, are indicated in the diagrams.
Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for High-Titania Slag Smelting Process
NASA Astrophysics Data System (ADS)
Hu, Kai; Lv, Xuewei; Li, Shengping; Lv, Wei; Song, Bing; Han, Kexi
2018-05-01
The present study demonstrates the dependence of viscosity on chemical composition and temperature of high-titania slag, a very important raw material for producing titanium dioxide. The results indicated that completely molten high-titania slag exhibits a viscosity of less than 1 dPa s with negligible dependence on temperature. However, it increases dramatically with decreasing temperature slightly below the critical temperature, i.e., the solidus temperature of the slag. Above the critical temperature, the slag samples displayed the same order of viscosity at 0.6 dPa s, regardless of their compositional variation. However, the FeO, CaO, and MgO were confirmed to decrease viscosity, while SiO2 and Ti2O3 increase it. The apparent activation energy for viscosity-temperature relation and liquidus temperature based on experiments and thermodynamic calculations are also presented. Conclusively, the critical temperatures of the slags are on average 15 K below their corresponding calculated liquidus temperatures. The increase in FeO content was found to considerably lower the critical temperature, while the increase in both Ti2O3 and TiO2 contents increases it. The main phases of the slag in solid state, as indicated by X-ray diffraction, are (Fe, Mg) x Ti y O5 (x + y = 3, pseudobrookite) and rutile.
Theory and Simulation of A Novel Viscosity Measurement Method for High Temperature Semiconductor
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rose; Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The properties of molten semiconductors are good indicators for material structure transformation and hysteresis under temperature variations. Viscosity, as one of the most important properties, is difficult to measure because of high temperature, high pressure, and vapor toxicity of melts. Recently, a novel method was developed by applying a rotating magnetic field to the melt sealed in a suspended quartz ampoule, and measuring the transient torque exerted by rotating melt flow on the ampoule wall. The method was designed to measure viscosity in short time period, which is essential for evaluating temperature hysteresis. This paper compares the theoretical prediction of melt flow and ampoule oscillation with the experimental data. A theoretical model was established and the coupled fluid flow and ampoule torsional vibration equations were solved numerically. The simulation results showed a good agreement with experimental data. The results also showed that both electrical conductivity and viscosity could be calculated by fitting the theoretical results to the experimental data. The transient velocity of the melt caused by the rotating magnetic field was found reach equilibrium in about half a minute, and the viscosity of melt could be calculated from the altitude of oscillation. This would allow the measurement of viscosity in a minute or so, in contrast to the existing oscillation cup method, which requires about an hour for one measurement.
Schroeder, Natalia; Marquart, Len F.; Gallaher, Daniel D.
2013-01-01
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination. PMID:23749206
Schroeder, Natalia; Marquart, Len F; Gallaher, Daniel D
2013-06-07
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.
2013-08-29
DuPont’s perfluoropolyether oil Krytox® GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 mPa∙s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox® GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox®more » GPL 102 viscosity is (27.2±1.3)mPa∙s. The rolling-ball viscometer viscosity results for Krytox® GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox® GPL 102 viscosity, yielding a value of (26.2±1)mPa∙s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox®GPL 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa ∙ s at 533 K and 241 MPa than any other fluid reported to date. Finally and nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL® 102 from the same lot to further establish the properties of Krytox GPL® 102.« less
Ramakrishna, Wusirika; Deng, Zhiping; Ding, Chang-Kui; Handa, Avtar K.; Ozminkowski, Richard H.
2003-01-01
We have characterized a novel small heat shock protein gene, viscosity 1 (vis1) from tomato (Lycopersicon esculentum) and provide evidence that it plays a role in pectin depolymerization and juice viscosity in ripening fruits. Expression of vis1 is negatively associated with juice viscosity in diverse tomato genotypes. vis1 exhibits DNA polymorphism among tomato genotypes, and the alleles vis1-hta (high-transcript accumulator; accession no. AY128101) and vis1-lta (low transcript accumulator; accession no. AY128102) are associated with thinner and thicker juice, respectively. Segregation of tomato lines heterogeneous for vis1 alleles indicates that vis1 influences pectin depolymerization and juice viscosity in ripening fruits. vis1 is regulated by fruit ripening and high temperature and exhibits a typical heat shock protein chaperone function when expressed in bacterial cells. We propose that VIS1 contributes to physiochemical properties of juice, including pectin depolymerization, by reducing thermal denaturation of depolymerizing enzymes during daytime elevated temperatures. PMID:12586896
High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes
NASA Astrophysics Data System (ADS)
Thomas, Michele Moisio; Drickamer, H. G.
1981-12-01
High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.
Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban
2018-01-01
A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p < .05) on the torque. The apparent viscosity of dough inside the extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.
Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation
Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W
2014-01-01
Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23°C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength (~4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized. PMID:19475558
Viscosity Measurement using Drop Coalescence in Microgravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel
1999-01-01
We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.
Phenomenological constraints on the bulk viscosity of QCD
NASA Astrophysics Data System (ADS)
Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Jeon, Sangyong; Gale, Charles
2017-11-01
While small at very high temperature, the bulk viscosity of Quantum Chromodynamics is expected to grow in the confinement region. Although its precise magnitude and temperature-dependence in the cross-over region is not fully understood, recent theoretical and phenomenological studies provided evidence that the bulk viscosity can be sufficiently large to have measurable consequences on the evolution of the quark-gluon plasma. In this work, a Bayesian statistical analysis is used to establish probabilistic constraints on the temperature-dependence of bulk viscosity using hadronic measurements from RHIC and LHC.
Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers
2015-10-01
and so on to viscosity . Kolmogorov’s theory considered the characterization of fully mixed turbulence at high Reynolds numbers. This number, Re, is a...size, and ν is the kinematic viscosity (m2/s) of air, ν = µ/ρa. Here, µ is the dynamic viscosity , and ρa is the air density: µ = µ0 ( Tµ + C T + C... viscosity is 1.79×10−5 m2/s. Stull (1988) observes, “The Reynolds number can be interpreted as the ratio of inertial to viscous forcings.” Under most
Viscosity of high-temperature iodine
NASA Technical Reports Server (NTRS)
Kang, Steve H.; Kunc, Joseph A.
1991-01-01
The viscosity coefficient of iodine in the temperature range 500 - 3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I + I2 and I + I collisions must be taken into account in calculation of viscosity at temperatures greater than 1000 deg. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity.
Response to Oil Sands Products Assessment
2015-09-01
volume of the spill, its duration, and the viscosity and density of the crude oil involved. The denser components of a Dilbit spill would be difficult...C-4 Figure C-2. Viscosity change for the three types of diluted bitumen. ......................................................... C...specific gravity) approaching or even exceeding the density of water. As a result of their high viscosity , bitumen cannot be produced by conventional
Drop splashing: the role of surface wettability and liquid viscosity
NASA Astrophysics Data System (ADS)
Almohammadi, Hamed; Amirfazli, Alidad; -Team
2017-11-01
There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.
FLUIDS, LUBRICANTS, FUELS AND RELATED MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaus, E.E.; Fenske, M.R.; Tewksbury, E.J.
1961-01-01
Work was carried out on a continuing program to characterize the capabilities of hydraulic fluids, lubricants, and functional fluids for aeronautic and astronautic applications under extreme environmental conditions. The effects of solvent type and solvent to oil ratio on the deep dewaxing process are shown. The yield and viscosity-temperature properties of the deep dewaxed oil are related to the type and degree of refining of the mineral oil fraction. The preparation of large volumes of super-refined mineral oil formulations for ""mock-up'' testing is reponted. Extensive technical liaison on processing, properties, and application is discussed. Physical and chemical stability of basemore » stocks, additives, and finished hydraulic fluid and lubricant formulations after 5 to 17 years in storage is described. A sample of hydraulic fluid taken from the "Lady Be Good" B-25 Bomber after 16 years in the North African desert is discussed. The design, construction, and preliminary testing of a versatile capillary pressure viscometer is reported. The use of this viscometer to measure the effect of gas solubility on viscosity and the analysis of flow profile in a capillary viscometer are discussed. The use of the pressure unit with a modified Lipkin pycnometer for the measure of bulk modulus is suggested. The thermal stability of esters is contrasted and compared as a function of chemical structure. Quantitative evaluations of the gas produced and the liquid phase are used to illustrate the effect of metal catalysts. The effects of fluid type, viscosity, vapor pressure, oxidation mechanism, oxidation inhibitor, and gaseous environment on evaporation are presented. The use of evaporation tests in studying the mechanism of oxidation is suggested. The relative lubricity properties of a series of high-temperature-bearing materials are reported. The relative effects of fluid volatility on lubricity are discussed. The similarities between high-temperature and the lowtemperatare lubricity properties of the residual fluids after high-temperature oxidation and thermal tests are pointed out. The wear properties of mineral oils and esters with and without lubricity additives are compared and contrasted with silicons and silicate fluids at 167 to 700 deg F. A simple, versatile, quantitative oxidation test is described for use with a variety of high-temperature oxidation tests. (auth)« less
Kim, Jong Won; Lee, Joon Seok
2016-01-01
Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP) films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf), and void content (Vc) were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). The tensile property, flexural property, interlaminar shear strength (ILSS), and scanning electron microscopy (SEM) were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites. PMID:28773572
Fluorine and the viscosity of jadeite-leucite and nepheline-kalsilite melts at atmospheric pressure
NASA Astrophysics Data System (ADS)
Robert, G.; Bruno, M.; Carty, O.; Smith, R. A.; Whittington, A. G.
2017-12-01
While fluorine has a lower abundance than H2O and CO2 in most magmatic and volcanic systems, F is as effective as water at reducing the viscosity of silica-rich melts. Previous studies have also shown that, just like water, the effect of F in reducing melt viscosity is strongest in the most highly polymerized melts. We measured the viscosity of fluorine-free and fluorine-bearing melts along the jadeite-leucite (Jd-Lct) and nepheline-kalsilite (Ne-Kls) joins of the NaAlSiO4-KAlSiO4-SiO2 system. All compositions studied are metaluminous to slightly peraluminous, and nominally fully polymerized (noting that non-bridging oxygen sites exist in metaluminous and peraluminous glasses, their proportion being a function of Al/Si ratio and cation charge). We test whether the effects of fluorine on viscosity have a dependence on Na/K or Al/Si ratios in these melts. In fluorine-free melts, the K-rich melts have the highest viscosity and T12 (temperature of the 1012 Pas isokom). The mixed-alkali effect results in a viscosity minimum at compositions with intermediate Na/K ratios. At 1200K, for the Na- end-member melts, the lowest Al/Si ratio melts (nepheline-kalsilite melts) have the highest viscosity. Available literature data and extrapolation of trends from our measurements suggest there is little difference in viscosity between the K- end-member melts at 1200K. At high temperatures, the jadeite-leucite melts generally have higher viscosities than the nepheline-kalsilite melts. Fluorine reduces the viscosity of all of the melts we studied, and, although it has been suggested that fluorine preferentially bonds with potassium over sodium, its effects on viscosity appears to be approximately independent of Na/K ratio in metaluminous melts. With increasing Al/Si ratio, more order is required to satisfy the aluminum avoidance principle, but this also does not seem to affect the magnitude of viscosity reduction due to the addition of fluorine, at least for melts with intermediate Na/K ratio. Adding 8 mol% F to melts with Na/(Na+K) ratio of 0.5 results in a T12 reduction of 186°C relative to F-free melts.
NASA Astrophysics Data System (ADS)
Wang, Jialei; Wang, Zheng-Xiong; Wei, Lai
2015-09-01
The penetration of time-dependant resonant magnetic perturbations (RMPs) is numerically studied by means of reduced magnetohydrodynamic simulations, taking into account the neoclassical poloidal viscosity (NPV) damping. It is found that with the increase of the RMP growth rate, the scalings of penetration threshold on resistivity as well as viscosity are significantly weakened in both viscoresistive and resistive-inertial regimes. In the high neoclassical viscosity regime, the scalings on neoclassical viscosity ν n c are numerically obtained in the cases of different RMP growth rate and viscosity ν. In the low neoclassical viscosity regime, ν n c almost has no effect on penetration threshold, which is unlike ν. Moreover, the synergistic effect of both ν n c and ν on the threshold is discussed as well. Finally, the role of the NPV in the torque balance is analysed. It is shown that the NPV tends to restore the velocity profile in the vicinity of the rational surface.
Fluid Merging Viscosity Measurement (FMVM) Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Ethridge, Edwin; Lehman, Daniel; Kaukler, William
2007-01-01
The concept of using low gravity experimental data together with fluid dynamical numerical simulations for measuring the viscosity of highly viscous liquids was recently validated on the International Space Station (ISS). After testing the proof of concept for this method with parabolic flight experiments, an ISS experiment was proposed and later conducted onboard the ISS in July, 2004 and subsequently in May of 2005. In that experiment a series of two liquid drops were brought manually together until they touched and then were allowed to merge under the action of capillary forces alone. The merging process was recorded visually in order to measure the contact radius speed as the merging proceeded. Several liquids were tested and for each liquid several drop diameters were used. It has been shown that when the coefficient of surface tension for the liquid is known, the contact radius speed can then determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Experimental and numerical results will be presented in which the viscosity of different highly viscous liquids were determined, to a high degree of accuracy, using this technique.
Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, Katherine
2009-01-01
The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less
Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah
2015-04-01
An understanding of the rheological behaviour of polymer melt suspensions is crucial in pharmaceutical manufacturing, especially when processed by spray congealing or melt extruding. However, a detailed comparison of the viscosities at each and every temperature and concentration between the various grades of adjuvants in the formulation will be tedious and time-consuming. Therefore, the statistical method, principal component analysis (PCA), was explored in this study. The composite formulations comprising polyethylene glycol (PEG) 3350 and hydroxypropyl methylcellulose (HPMC) of ten different grades (K100 LV, K4M, K15M, K100M, E15 LV, E50 LV, E4M, F50 LV, F4M and Methocel VLV) at various concentrations were prepared and their viscosities at different temperatures determined. Surface plots showed that concentration of HPMC had a greater effect on the viscosity compared to temperature. Particle size and size distribution of HPMC played an important role in the viscosity of melt suspensions. Smaller particles led to a greater viscosity than larger particles. PCA was used to evaluate formulations of different viscosities. The complex viscosity profiles of the various formulations containing HPMC were successfully classified into three clusters of low, moderate and high viscosity. Formulations within each group showed similar viscosities despite differences in grade or concentration of HPMC. Formulations in the low viscosity cluster were found to be sprayable. PCA was able to differentiate the complex viscosity profiles of different formulations containing HPMC in an efficient and time-saving manner and provided an excellent visualisation of the data.
Effects of nonuniform viscosity on ciliary locomotion
NASA Astrophysics Data System (ADS)
Shoele, Kourosh; Eastham, Patrick S.
2018-04-01
The effect of nonuniform viscosity on the swimming velocity of a free swimmer at zero Reynolds number is examined. Using the generalized reciprocal relation for Stokes flow with nonuniform viscosity, we formulate the locomotion problem in a fluid medium with spatially varying viscosity. Assuming the limit of small variation in the viscosity of the fluid as a result of nonuniform distribution of nutrients around a swimmer, we derive a perturbation model to calculate the changes in the swimming performance of a spherical swimmer as a result of position-dependent viscosity. The swimmer is chosen to be a spherical squirmer with a steady tangential motion on its surface modeling ciliary motion. The nutrient concentration around the body is described by an advection-diffusion equation. The roles of the surface stroke pattern, the specific relationship between the nutrient and viscosity, and the Péclet number of the nutrient in the locomotion velocity of the squirmer are investigated. Our results show that for a pure treadmill stroke, the velocity change is maximum at the limit of zero Péclet number and monotonically decreases toward zero at very high Péclet number. When higher surface stroke modes are present, larger modification in swimming velocity is captured at high Péclet number where two mechanisms of thinning the nutrient boundary layer and appearance of new stagnation points along the surface of squirmer are found to be the primary reasons behind the swimming velocity modifications. It is observed that the presence of nonuniform viscosity allows for optimal swimming speed to be achieved with stroke combinations other than pure treadmill.
Rumen bacteria: interaction with particulate dietary components and response to dietary variation.
Cheng, K J; Akin, D E; Costerton, J W
1977-02-01
The bovine rumen resembles many other ecosystems in that its component bacterial cells are universally surrounded and protected by extracellular structures. The most common form of these structures is a fibrous carbohydrate slime that extends away from the cell and may mediate the attachment of the bacterium to a surface. This attachment is relatively specific and it may occur at the surface of the rumen epithelium or on the cell walls of a specific tissue within the plant-derived food of the animal. The production of the extracellular slime is under nutritional control and slime may be overproduced when soluble carbohydrates are available in high concentration. This overproduction results in cell-cell adhesion among the rumen bacteria with the eventual formation of slime-enclosed microcolonies and, in extreme cases, the generation of sufficient viscosity to cause feedlot bloat.
Comparison of cavitation bubbles evolution in viscous media
NASA Astrophysics Data System (ADS)
Jasikova, Darina; Schovanec, Petr; Kotek, Michal; Kopecky, Vaclav
2018-06-01
There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB) method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.
Negative local resistance caused by viscous electron backflow in graphene.
Bandurin, D A; Torre, I; Krishna Kumar, R; Ben Shalom, M; Tomadin, A; Principi, A; Auton, G H; Khestanova, E; Novoselov, K S; Grigorieva, I V; Ponomarenko, L A; Geim, A K; Polini, M
2016-03-04
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We found that doped graphene exhibits an anomalous (negative) voltage drop near current-injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene's electron liquid is found to be ~0.1 square meters per second, an order of magnitude higher than that of honey, in agreement with many-body theory. Our work demonstrates the possibility of studying electron hydrodynamics using high-quality graphene. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Liu, Lei; Li, Zhi-Guo; Dai, Jia-Yu; Chen, Qi-Feng; Chen, Xiang-Rong
2018-06-01
Comprehensive knowledge of physical properties such as equation of state (EOS), proton exchange, dynamic structures, diffusion coefficients, and viscosities of hydrogen-deuterium mixtures with densities from 0.1 to 5 g /cm3 and temperatures from 1 to 50 kK has been presented via quantum molecular dynamics (QMD) simulations. The existing multi-shock experimental EOS provides an important benchmark to evaluate exchange-correlation functionals. The comparison of simulations with experiments indicates that a nonlocal van der Waals density functional (vdW-DF1) produces excellent results. Fraction analysis of molecules using a weighted integral over pair distribution functions was performed. A dissociation diagram together with a boundary where the proton exchange (H2+D2⇌2 HD ) occurs was generated, which shows evidence that the HD molecules form as the H2 and D2 molecules are almost 50% dissociated. The mechanism of proton exchange can be interpreted as a process of dissociation followed by recombination. The ionic structures at extreme conditions were analyzed by the effective coordination number model. High-order cluster, circle, and chain structures can be founded in the strongly coupled warm dense regime. The present QMD diffusion coefficient and viscosity can be used to benchmark two analytical one-component plasma (OCP) models: the Coulomb and Yukawa OCP models.
Stixrude, Lars
2014-04-28
We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.
Analytical and experimental study of flow phenomena in noncavitating rocket pump inducers
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.
1981-01-01
The flow processes in rocket pump inducers are summarized. The experimental investigations were carried out with air as the test medium. The major characteristics features of the rocket pump inducers are low flow coefficient (0.05 to 0.2) large stagger angle (70 deg to 85 deg) and high solidity blades of little or no camber. The investigations are concerned with the effect of viscosity not the effects of cavitation. Flow visualization, conventional and hot wire probe measurement inside and at the exit of the blade passage, were the analytical methods used. The experiment was carried out using four three and two bladed inducers with cambered blades. Both the passage and the exit flow were measured. The basic research and boundary layer investigation was carried out using a helical flat plate (of some dimensions as the inducer blades tested), and flat plate helical inducer (four bladed). Detailed mean and turbulence flow field inside the passage as well as the exit of the rotor were derived from these measurement. The boundary layer, endwall, and other passage data reveal extremely complex nature of the flow, with major effects of viscosity present across the entire passage. Several analyses were carried out to predict the flow field in inducers. These included an approximate analysis, the shear pumping analysis, and a numerical solution of exact viscous equations with approximate modeling for the viscous terms.
Viscosity of komatiite liquid at high pressure and temperature
NASA Astrophysics Data System (ADS)
O Dwyer, L.; Lesher, C. E.; Wang, Y.
2006-12-01
The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, A.; Morgan, B.
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
The effect of artificial bulk viscosity in simulations of forced compressible turbulence
Campos, A.; Morgan, B.
2018-05-17
The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less
2014-12-07
parameters of resin viscosity and preform permeability prior to resin gelation. However, there could be significant variations in these two parameters...during actual manufacturing due to differences in the resin batches, mixes, temperature, ambient conditions for viscosity ; in the preform rolls...optimal injection time and locations for given process parameters of resin viscosity and preform permeability prior to resin gelation. However, there
Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A
2011-11-01
Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should also be revised to consider the relevance of clinic synovial fluid viscosities and to avoid possible misleading results.
Abou Nader, Christelle; Loutfi, Hadi; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Lteif, Roger; Abboud, Marie
2017-01-01
In this paper, we report measurements of wine viscosity, correlated to polarized laser speckle results. Experiments were performed on white wine samples produced with a single grape variety. Effects of the wine making cellar, the grape variety, and the vintage on wine Brix degree, alcohol content, viscosity, and speckle parameters are considered. We show that speckle parameters, namely, spatial contrast and speckle decorrelation time, as well as the inertia moment extracted from the temporal history speckle pattern, are mainly affected by the alcohol and sugar content and hence the wine viscosity. Principal component analysis revealed a high correlation between laser speckle results on the one hand and viscosity and Brix degree values on the other. As speckle analysis proved to be an efficient method of measuring the variation of the viscosity of white mono-variety wine, one can therefore consider it as an alternative method to wine sensory analysis. PMID:29027936
Nader, Christelle Abou; Loutfi, Hadi; Pellen, Fabrice; Jeune, Bernard Le; Le Brun, Guy; Lteif, Roger; Abboud, Marie
2017-10-13
In this paper, we report measurements of wine viscosity, correlated to polarized laser speckle results. Experiments were performed on white wine samples produced with a single grape variety. Effects of the wine making cellar, the grape variety, and the vintage on wine Brix degree, alcohol content, viscosity, and speckle parameters are considered. We show that speckle parameters, namely, spatial contrast and speckle decorrelation time, as well as the inertia moment extracted from the temporal history speckle pattern, are mainly affected by the alcohol and sugar content and hence the wine viscosity. Principal component analysis revealed a high correlation between laser speckle results on the one hand and viscosity and Brix degree values on the other. As speckle analysis proved to be an efficient method of measuring the variation of the viscosity of white mono-variety wine, one can therefore consider it as an alternative method to wine sensory analysis.
NASA Astrophysics Data System (ADS)
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Viscosity of Common Seed and Vegetable Oils
NASA Astrophysics Data System (ADS)
Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.
1997-02-01
Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.
Influence of Functional Groups on the Viscosity of Organic Aerosol.
Rothfuss, Nicholas E; Petters, Markus D
2017-01-03
Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO 2 ) > carbonyl (CO) ≈ ester (COO) > methylene (CH 2 ). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.
Kim, Juyoung; Kim, Heonki; Annable, Michael D
2015-01-01
Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.
Viscosity Control Experiment Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Heidi E.; Bradley, Paul Andrew
Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modifymore » viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.« less
ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrma, Pavel R.
2008-04-15
A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values ofmore » -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550°C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450°C and viscosity range of 0.4 to 250 Pa.s.« less
Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy
NASA Astrophysics Data System (ADS)
Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui
2007-11-01
Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.
Investigation of Tokamak Solid Divertor Target Options.
1981-05-26
but materials are not known which could operate at the high resulting wall temperatures . Mist- steam flows would also demand a relatively high ...flux P = coolant density = bulk coolant viscosity w = coolant viscosity at average wall temperature = units conversion At high heat loads and moderate...therefore, the inner wall temperature will be over 300 OF, posing a high temp- erature materials challenge. E. Swirl and Mixed Flow Schemes Extensive work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A.
2014-12-09
In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.
Viscosity negatively affects the nutritional value of blue lupin seeds for broilers.
Konieczka, P; Smulikowska, S
2018-06-01
This study examines the impact of Lupinus angustifolius variety (C) and inclusion level (L) in broiler diets on the nutritional value, viscosity of ileal digesta and activity of gut microbiota. The experiment was conducted on 154 female 21-day-old broilers, allocated to 11 groups (kept individually). A reference lupin-free diet and 10 test diets containing one of five lupin seeds; Kadryl, Regent, Dalbor, Bojar and Tango, mixed with the reference diet at a ratio of 25 : 75 or 32 : 68 dry matter (DM) (low or high level of inclusion) were prepared. Diets were fed for 6 days, excreta were collected over last 4 days. Apparent metabolizable energy corrected to zero N balance (AMEN) of diets and AMEN of lupin seeds were calculated. Birds were sacrificed, ileal and caecal digesta were pooled by segments from two birds, and the activity of bacterial enzymes was determined. The ileal digesta viscosity was measured immediately (ileal viscosity immediate (IVI)) or after 6 days storage at -18°C (ileal viscosity frozen). AMEN of test diets were lower than the reference diet. Lupin AMEN values ranged from 6.04 MJ/kg DM for Regent at high level to 9.25 MJ/kg DM for Bojar at low level. High inclusion level numerically decreased AMEN value in all cultivars, except for Kadryl, for which it increased (significant C×L interaction). The IVI value was 2.6 mPa·s in the reference group, but ranged from 6.3 to 21.7 mPa·s in lupin-fed birds. It increased significantly with level for Regent, Dalbor and Tango but not for the other two cultivars (significant C×L interaction). There was a negative correlation between IVI and: apparent total tract N retention, fat digestibility from test diets, AMEN of diets and lupins. Ileal viscosity immediate was positively correlated with the activity of ileal α- and β-glucosidase and negatively with ileal α-galactosidase and caecal α-glucosidase. Ileal viscosity frozen ranged from 3.2 to 5 mPa·s and it was not correlated with lupins AMEN. This suggests that the digesta viscosity caused by narrow-leafed lupin is detrimental to its nutritional value and interfere with the gut microbial activity. In addition, the lupins viscosity was measured by two in vitro methods: the water extract viscosity (WEV) method and after incubation in conditions imitating in vivo digestion (enzyme-treated extract viscosity (EEV)). In vivo viscosity was weakly reflected by in vitro measurements as there was no correlation between IVI and WEV or EEV. Overall, findings suggest that the different cultivars of narrow-leafed lupin may have different value for practical application in broiler diets.
40 CFR 63.1329 - Process contact cooling towers provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... existing affected source that manufactures PET using a continuous terephthalic acid high viscosity multiple... viscosity multiple end finisher process, and who is subject or becomes subject to 40 CFR part 60, subpart...
40 CFR 63.1329 - Process contact cooling towers provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... existing affected source that manufactures PET using a continuous terephthalic acid high viscosity multiple... viscosity multiple end finisher process, and who is subject or becomes subject to 40 CFR part 60, subpart...
Fukuda, Masakazu; Watanabe, Atsushi; Hayasaka, Akira; Muraoka, Masaru; Hori, Yuji; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko
2017-03-01
In this study, we investigated the concentration range in which self-association starts to form in humanized IgG monoclonal antibody (mAb) solutions. Furthermore, on the basis of the results, we developed a practical method of screening for low-viscosity antibody solutions by using small-angle X-ray scattering (SAXS) measurements utilizing small quantities of samples. With lower-viscosity mAb3, self-association was not detected in the range of 1-80mg/mL. With higher-viscosity mAb1, on the other hand, self-association was detected in the range of 10-20mg/mL and was clearly enhanced by a decrease in temperature. The viscosities of mAb solutions at 160, 180, and 200mg/mL at 25°C quantitatively correlated very well with the particle size parameters obtained by SAXS measurements of mAb solutions at 15mg/mL at 5°C. The quantity of mAb sample required for the SAXS measurements was only 0.15mg, which is about one-hundredth of that required for actual viscosity measurements at a high concentration, and such quantities could be available even at an early stage of development. In conclusion, the SAXS analysis method proposed in this study is a valuable tool for the development of concentrated mAb therapeutics with high manufacturability and high usability for subcutaneous injection. Copyright © 2016 Elsevier B.V. All rights reserved.
Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus
2016-09-28
The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.
Study of high viscous multiphase phase flow in a horizontal pipe
NASA Astrophysics Data System (ADS)
Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.
2018-03-01
Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.
Viscosity of diesel engine fuel oil under pressure
NASA Technical Reports Server (NTRS)
Hersey, Mayo D
1929-01-01
In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Development of High Toughness, Low Viscosity Resin for Reinforcing Pothole Patching...''), Development of High Toughness, Low Viscosity Resin for Reinforcing Pothole Patching Materials, TIP Award No...
Higher-than-predicted saltation threshold wind speeds on Titan.
Burr, Devon M; Bridges, Nathan T; Marshall, John R; Smith, James K; White, Bruce R; Emery, Joshua P
2015-01-01
Titan, the largest satellite of Saturn, exhibits extensive aeolian, that is, wind-formed, dunes, features previously identified exclusively on Earth, Mars and Venus. Wind tunnel data collected under ambient and planetary-analogue conditions inform our models of aeolian processes on the terrestrial planets. However, the accuracy of these widely used formulations in predicting the threshold wind speeds required to move sand by saltation, or by short bounces, has not been tested under conditions relevant for non-terrestrial planets. Here we derive saltation threshold wind speeds under the thick-atmosphere, low-gravity and low-sediment-density conditions on Titan, using a high-pressure wind tunnel refurbished to simulate the appropriate kinematic viscosity for the near-surface atmosphere of Titan. The experimentally derived saltation threshold wind speeds are higher than those predicted by models based on terrestrial-analogue experiments, indicating the limitations of these models for such extreme conditions. The models can be reconciled with the experimental results by inclusion of the extremely low ratio of particle density to fluid density on Titan. Whereas the density ratio term enables accurate modelling of aeolian entrainment in thick atmospheres, such as those inferred for some extrasolar planets, our results also indicate that for environments with high density ratios, such as in jets on icy satellites or in tenuous atmospheres or exospheres, the correction for low-density-ratio conditions is not required.
Rheology and tribology of lubricants with polymeric viscosity modifiers
NASA Astrophysics Data System (ADS)
Babak, LotfizadehDehkordi
Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.
NASA Astrophysics Data System (ADS)
Kalkandelen, C.; Ozbek, B.; Ergul, N. M.; Akyol, S.; Moukbil, Y.; Oktar, F. N.; Ekren, N.; Kılıc, O.; Kılıc, B.; Gunduz, O.
2017-12-01
In the present study, gelatine scaffolds were manufactured by using modified 3D (3 Dimensional) printing machine and the effect of different parameters on scaffold structure were investigated. Such as; temperature, viscosity and surface tension of the gelatine solutions. The varying of gelatine solutions (1, 3, 5, 10, 15 and 20 wt.%) were prepared and characterized. It has been detected that, viscosity of those solutions were highly influenced by temperature and gelatine concentration. Specific CAD (Computer Assistant Design) model which has 67% porosity and original design were created via computer software. However, at high temperatures gelatine solutions caused like liquid but at the lower temperatures were observed the opposite behaviour. In addition to that, viscosity of 1,3,5 wt.% solutions were not enough to build a structure and 20 wt.% gelatine solution too hard to handle, because of the sudden viscosity changes with temperature. Even though, scaffold of the 20 wt.% gelatine solution printed hardly but it was observed the best printed solutions, which were 10 and 15 wt.% gelatine solutions. As a result, 3D printing of gelatine were found the values of the best temperature, viscosity, surface tension and gelatine concentration such as 25-35 °C, 36-163 cP, 46-59 mN/m and 15 wt.% gelatine concentration respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anselmetti, Giovanni Carlo, E-mail: giovanni.anselmetti@ircc.i; Zoarski, Gregg; Manca, Antonio
The aim of this study was to assess the feasibility of and venous leakage reduction in percutaneous vertebroplasty (PV) using a new high-viscosity bone cement (PMMA). PV has been used effectively for pain relief in osteoporotic and malignant vertebral fractures. Cement extrusion is a common problem and can lead to complications. Sixty patients (52 female; mean age, 72.2 {+-} 7.2) suffering from osteoporosis (46), malignancy (12), and angiomas (2), divided into two groups (A and B), underwent PV on 190 vertebrae (86 dorsal, 104 lumbar). In Group A, PV with high-viscosity PMMA (Confidence, Disc-O-Tech, Israel) was used. This PMMA wasmore » injected by a proprietary delivery system, a hydraulic saline-filled screw injector. In Group B, a standard low-viscosity PMMA was used. Postprocedural CT was carried out to detect PMMA leakages and complications. Fisher's exact test and Wilcoxon rank test were used to assess significant differences (p < 0.05) in leakages and to evaluate the clinical outcome. PV was feasible, achieving good clinical outcome (p < 0.0001) without major complications. In Group A, postprocedural CT showed an asymptomatic leak in the venous structures of 8 of 98 (8.2%) treated vertebrae; a discoidal leak occurred in 6 of 98 (6.1%). In Group B, a venous leak was seen in 38 of 92 (41.3%) and a discoidal leak in 12 of 92 (13.0%). Reduction of venous leak obtained by high-viscosity PMMA was highly significant (p < 0.0001), whereas this result was not significant (p = 0.14) related to the disc. The high-viscosity PMMA system is safe and effective for clinical use, allowing a significant reduction of extravasation rate and, thus, leakage-related complications.« less
40 CFR 63.1329 - Process contact cooling towers provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... viscosity multiple end finisher process that utilizes a process contact cooling tower shall comply with... high viscosity multiple end finisher process and who is subject or becomes subject to 40 CFR part 60...
40 CFR 63.1329 - Process contact cooling towers provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... viscosity multiple end finisher process that utilizes a process contact cooling tower shall comply with... high viscosity multiple end finisher process, and who is subject or becomes subject to 40 CFR part 60...
Hansen, J S; Daivis, Peter J; Todd, B D
2009-10-01
In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.
Kremer, J; Kilzer, A; Petermann, M
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
NASA Astrophysics Data System (ADS)
Kremer, J.; Kilzer, A.; Petermann, M.
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
Extreme learning machine for reduced order modeling of turbulent geophysical flows.
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Extreme learning machine for reduced order modeling of turbulent geophysical flows
NASA Astrophysics Data System (ADS)
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Boger, A.; Schenk, B.; Heini, P. F.
2009-01-01
Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. In order to enhance the safety for the patient, a rheometer system was developed to measure the cement viscosity intraoperatively. For this development, it is of great importance to know the proper viscosity to start the procedure determined by experienced surgeons and the relation between the time period when different injection devices are used and the cement viscosity. The purpose of the study was to investigate the viscosity ranges for different injection systems during conventional vertebroplasty. Clinically observed viscosity values and related time periods showed high scattering. In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break. PMID:19479285
Effect of matrix elasticity on the continuous foaming of food models.
Narchi, I; Vial, Ch; Djelveh, G
2008-12-01
The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.
USDA-ARS?s Scientific Manuscript database
An initial evaluation of several oils, including: soybean oil (SBO), high oleic SBO, and thermally modified SBO, compared their acid values and viscosities over 28 days stored at 85 deg C. As expected, the acid values and viscosities increased and the high oleic oil demonstrated a smaller effect. ...
USDA-ARS?s Scientific Manuscript database
Soluble fiber ß-glucan is one of the key dietary materials in healthy food products known for reducing serum cholesterol levels. The micro-structural heterogeneity and micro-rheology of high-viscosity barley ß-glucan solutions were investigated by the diffusing wave spectroscopy (DWS) technology. By...
Automation of a high-speed imaging setup for differential viscosity measurements
NASA Astrophysics Data System (ADS)
Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F.
2013-12-01
We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an "unknown" solution of hydroxyethyl cellulose.
Automation of a high-speed imaging setup for differential viscosity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurth, C.; Duane, B.; Whitfield, D.
We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have beenmore » reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.« less
NASA Astrophysics Data System (ADS)
Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji
2014-09-01
The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.
[Roles of additives and surface control in slurry atomization]. Quarterly report, March 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-08-01
Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particlemore » Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.« less
(Roles of additives and surface control in slurry atomization)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Our experimental results clearly demonstrate that the shape of particles with aspect ratio close to unity dictates the relative suspension viscosity. Suspensions of irregularly shaped particles have higher relative viscosities than suspensions of spherical particles at same volume fractions, in agreement with the reported results at high shear conditions. The relative viscosity of a Newtonian suspension is in excellent agreement with that predicted by the Krieger/Dougherty rigid sphere model using the maximum packing fraction determined from sedimentation as the sole parameter. The relative viscosity of a pseudoplastic suspension is independent of the particle density. It correlates well with the particlemore » Peclet number. The extent of particle diffusion at high shear rates decreases considerably as the particle size increases, and less energy is dissipated as a result. The interparticle electrostatic repulsion plays no significant role in the rheology of pseudoplastic nonaqueous and aqueous glycerol suspensions of noncolloidal particles.« less
Viscosity Measurement via Drop Coalescence: A Space Station Experiment
NASA Technical Reports Server (NTRS)
Antar, Basil; Ethridge, Edwin C.
2010-01-01
The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.
Modeling viscosity and diffusion of plasma mixtures across coupling regimes
NASA Astrophysics Data System (ADS)
Arnault, Philippe
2014-10-01
Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.
Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices
NASA Astrophysics Data System (ADS)
Herrmann, F.; Hahn, D.; Büttgenbach, S.
1999-05-01
Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.
Viscosity Measurement for Tellurium Melt
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.
2006-01-01
The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.
An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids
NASA Astrophysics Data System (ADS)
Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad
The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.
Fluid Merging Viscosity Measurement (FMVM)
NASA Technical Reports Server (NTRS)
2004-01-01
Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.
Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants
NASA Astrophysics Data System (ADS)
Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan
2010-11-01
Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.
Ultrasound aided smooth dispensing for high viscoelastic epoxy in microelectronic packaging.
Chen, Yun; Li, Han-Xiong; Shan, Xiuyang; Gao, Jian; Chen, Xin; Wang, Fuliang
2016-01-01
Epoxy dispensing is one of the most critical processes in microelectronic packaging. However, due its high viscoelasticity, dispensing of epoxy is extremely difficult, and a lower viscoelasticity epoxy is desired to improve the process. In this paper, a novel method is proposed to achieve a lowered viscoelastic epoxy by using ultrasound. The viscoelasticity and molecular structures of the epoxies were compared and analyzed before and after experimentation. Different factors of the ultrasonic process, including power, processing time and ultrasonic energy, were studied in this study. It is found that elasticity is more sensitive to ultrasonic processing while viscosity is little affected. Further, large power and long processing time can minimize the viscoelasticity to ideal values. Due to the reduced loss modulus and storage modulus after ultrasonic processing, smooth dispensing is demonstrated for the processed epoxy. The subsequently color temperature experiments show that ultrasonic processing will not affect LED's lighting. It is clear that the ultrasonic processing will have good potential to aide smooth dispensing for high viscoelastic epoxy in electronic industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of D-Penicillamine on the Viscosity of Hyaluronic Acid Solutions
NASA Astrophysics Data System (ADS)
Liang, Jing; Krause, Wendy E.; Colby, Ralph H.
2006-03-01
Polyelectrolyte hyaluronic acid (HA, hyaluronan) is an important component in synovial fluid. Its presence results in highly viscoelastic solutions with excellent lubricating and shock-absorbing properties. In comparison to healthy synovial fluid, diseased fluid has a reduced viscosity. In osteoarthritis this reduction in viscosity results from a decline in both the molecular weight and concentration of hyaluronic acid HA. Initial results indicate that D-penicillamine affects the rheology of bovine synovial fluid, a model synovial fluid solution, and its components, including HA. In order to understand how D-penicillamine modifies the viscosity of these solutions, the rheological properties of sodium hyaluronate (NaHA) in phosphate-buffered saline (PBS) with D-penicillamine were studied as function of time, D-penicillamine concentration (0 -- 0.01 M), and storage conditions. Penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions---reducing the zero shear rate viscosity of a 3 mg/mL NaHA in PBS by ca. 40% after 44 days.
Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.
Donovan, K J; Scott, K
2013-06-28
Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong
2015-01-01
Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields. PMID:25849654
Li, Cai-Yun; Li, Jing-Yan; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong
2015-04-02
Viscosity loss of high-molecular-weight partially hydrolyzed polyacrylamide (HPAM) solution was observed in a water injection pipeline before being injected into subterranean oil wells. In order to investigate the possible involvement of microorganisms in HPAM viscosity loss, both bacterial and archaeal community compositions of four samples collected from different points of the transportation pipeline were analyzed using PCR-amplification of the 16S rRNA gene and clone library construction method together with the analysis of physicochemical properties of HPAM solution and environmental factors. Further, the relationship between environmental factors and HPAM properties with microorganisms were delineated by canonical correspondence analysis (CCA). Diverse bacterial and archaeal groups were detected in the four samples. The microbial community of initial solution S1 gathered from the make-up tank is similar to solution S2 gathered from the first filter, and that of solution S3 obtained between the first and the second filter is similar to that of solution S4 obtained between the second filter and the injection well. Members of the genus Acinetobacter sp. were detected with high abundance in S3 and S4 in which HPAM viscosity was considerably reduced, suggesting that they likely played a considerable role in HPAM viscosity loss. This study presents information on microbial community diversity in the HPAM transportation pipeline and the possible involvement of microorganisms in HPAM viscosity loss and biodegradation. The results will help to understand the microbial community contribution made to viscosity change and are beneficial for providing information for microbial control in oil fields.
Design of Oil Viscosity Sensor Based on Plastic Optical Fiber
NASA Astrophysics Data System (ADS)
Yunus, Muhammad; Arifin, A.
2018-03-01
A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.
NASA Astrophysics Data System (ADS)
Cecep Erwan Andriansyah, Raden; Rahman, Taufik; Herminiati, Ainia; Rahman, Nurhaidar; Luthfiyanti, Rohmah
2017-12-01
The modified cassava flour can be made using the method of the autoclaving cooling cycle (AAC). The stability of the warming can be seen from the decreasing value of breakdown viscosity, while the stability of the stirring process can be seen by the decreasing value of setback viscosity. The stages of research include: (1) the making of cassava flour, (2) the making of modified cassava flour by the method of treatment of ACC with a variety of flour concentration and autoclaving time, (3) chemical analysis of the moisture, ash, fat, protein, carbohydrate; The functional properties of the pasting characteristics to the initial temperature of the pasting, peak viscosity, hot paste viscosity, breakdown viscosity, cold paste viscosity and setback viscosity. The result shows that cassava flour modified by treatment of flour concentration 16% and autoclaving time 41 minutes having pasting code and pasting viscosity which is resistant to high temperature. Flour with this character is flour that is expected to maintain the texture of processed products with a paste form that remains stable. Utilization of modified cassava flour by the ACC method can be applied to the pasting product such as noodle and spaghetti, hoping to support for food diversification program to reduce dependence on wheat flour in Indonesia.
Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang
2015-01-01
The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747
Effect of pressure on viscosity of liquid Fe-alloys up to 16 GPa
NASA Astrophysics Data System (ADS)
Terasaki, H.; Ohtani, E.; Suzuki, A.; Nishida, K.; Sakamaki, T.; Shindo, S.; Funakoshi, K.
2005-12-01
Viscosity of liquid Fe-alloy is closely related to a convection behavior of the Earth's liquid outer core and also time scale of planetary core formation. In previous studies, viscosity of liquid Fe-S has been measured up to 7 GPa using X-ray radiography falling sphere method [Terasaki et al. 2001]. However, some technical problems, such as chemical reaction between the metal marker sphere and the Fe-alloy sample and insufficient image recording time for less viscous material, have been suggested. In this study, we have measured the viscosity of Fe-S and Fe-C liquids without those problems by using novel techniques combined with in situ X-ray radiography falling sphere method and extended the pressure range to 16 GPa. Falling sphere viscometry was carried out under high pressure and temperature using high speed CCD camera with 1500 ton Kawai-type multi-anvil device at BL04B1, SPring-8 in Japan. Starting compositions of Fe-alloy were Fe78S22 and Fe86C14 which correspond to near eutectic compositions at the experimental pressures. Viscosity marker sphere, which was made of Re or Pt, was coated by alumina in order to prevent the reaction between the sphere and the Fe-alloy sample. Falling sphere images were obtained with recording rate of 50 - 125 frame/second. Viscosity of liquid Fe-S was measured up to 16.1 GPa and 1763 K. Measured viscosity coefficients were in the range of 8.8 - 9.2 mPa-s which indicates that the activation volume of viscous flow is approximately a half of the previous estimations (1.5 cm3/mol). Viscosity of liquid Fe-C was measured up to 5 GPa and 1843 K. Viscosity coefficients are 4.7 - 4.9 mPa-s. Activation volume of Fe-C liquid is estimated to be 0.8 cm3/mol. This pressure dependence is consistent with the result of Lucas (1964) measured at ambient pressure. Consequently, viscosity of Fe-alloy liquids are likely to stay small in the Earth's interior and there is no large difference in viscosity coefficient and activation volume between Fe-S and Fe-C eutectic liquids in the range of measurements.
AsS melt under pressure: one substance, three liquids.
Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H
2008-04-11
An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.
Representing ductile damage with the dual domain material point method
Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; ...
2015-12-14
In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less
The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes
NASA Astrophysics Data System (ADS)
Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.
2017-10-01
It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.
Conservative, special-relativistic smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Rosswog, Stephan
2010-11-01
We present and test a new, special-relativistic formulation of smoothed particle hydrodynamics (SPH). Our approach benefits from several improvements with respect to earlier relativistic SPH formulations. It is self-consistently derived from the Lagrangian of an ideal fluid and accounts for the terms that stem from non-constant smoothing lengths, usually called “grad-h terms”. In our approach, we evolve the canonical momentum and the canonical energy per baryon and thus circumvent some of the problems that have plagued earlier formulations of relativistic SPH. We further use a much improved artificial viscosity prescription which uses the extreme local eigenvalues of the Euler equations and triggers selectively on (a) shocks and (b) velocity noise. The shock trigger accurately monitors the relative density slope and uses it to fine-tune the amount of artificial viscosity that is applied. This procedure substantially sharpens shock fronts while still avoiding post-shock noise. If not triggered, the viscosity parameter of each particle decays to zero. None of these viscosity triggers is specific to special relativity, both could also be applied in Newtonian SPH.The performance of the new scheme is explored in a large variety of benchmark tests where it delivers excellent results. Generally, the grad-h terms deliver minor, though worthwhile, improvements. As expected for a Lagrangian method, it performs close to perfect in supersonic advection tests, but also in strong relativistic shocks, usually considered a particular challenge for SPH, the method yields convincing results. For example, due to its perfect conservation properties, it is able to handle Lorentz factors as large as γ = 50,000 in the so-called wall shock test. Moreover, we find convincing results in a rarely shown, but challenging test that involves so-called relativistic simple waves and also in multi-dimensional shock tube tests.
NASA Astrophysics Data System (ADS)
Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.
2017-12-01
Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.
Zhang, Yong; Otani, Akihito; Maginn, Edward J
2015-08-11
Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.
Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity
NASA Astrophysics Data System (ADS)
Li, Dunzhu; Gurnis, Michael; Stadler, Georg
2017-04-01
We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.
THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZuHone, J. A.; Markevitch, M.; Kunz, M. W.
2015-01-10
Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced bymore » a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.« less
Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Mullakaev, Marat S; Marnosov, Alexandr V; Ildiyakov, Alexandr V
2017-03-01
Reduction of oil viscosity is of great importance for the petroleum industry since it contributes a lot to the facilitation of pipeline transportation of oil. This study analyzes the capability of acoustic waves to decrease the viscosity of oil during its commercial production. Three types of equipment were tested: an ultrasonic emitter that is located directly in the well and affects oil during its production and two types of acoustic machines to be located at the wellhead and perform acoustic treatment after oil extraction: a setup for ultrasonic hydrodynamic treatment and a flow-through ultrasonic reactor. In our case, the two acoustic machines were rebuilt and tested in the laboratory. The viscosity of oil was measured before and after both types of acoustic treatment; and 2, 24 and 48h after ultrasonic treatment and 1 and 4h after hydrodynamic treatment in order to estimate the constancy of viscosity reduction. The viscosity reduction achieved by acoustic waves was compared to the viscosity reduction achieved by acoustic waves jointly with solvents. It was shown, that regardless of the form of powerful acoustic impact, a long lasting decrease in viscosity can be obtained only if sonochemical treatment is used. Using sonochemical treatment based on ultrasonic hydrodynamic treatment a viscosity reduction by 72,46% was achieved. However, the reduction in viscosity by 16%, which was demonstrated using the ultrasonic downhole tool in the well without addition of chemicals, is high enough to facilitate the production of viscous hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.
Inference of mantle viscosity for depth resolutions of GIA observations
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi
2016-11-01
Inference of the mantle viscosity from observations for glacial isostatic adjustment (GIA) process has usually been conducted through the analyses based on the simple three-layer viscosity model characterized by lithospheric thickness, upper- and lower-mantle viscosities. Here, we examine the viscosity structures for the simple three-layer viscosity model and also for the two-layer lower-mantle viscosity model defined by viscosities of η670,D (670-D km depth) and ηD,2891 (D-2891 km depth) with D-values of 1191, 1691 and 2191 km. The upper-mantle rheological parameters for the two-layer lower-mantle viscosity model are the same as those for the simple three-layer one. For the simple three-layer viscosity model, rate of change of degree-two zonal harmonics of geopotential due to GIA process (GIA-induced J˙2) of -(6.0-6.5) × 10-11 yr-1 provides two permissible viscosity solutions for the lower mantle, (7-20) × 1021 and (5-9) × 1022 Pa s, and the analyses with observational constraints of the J˙2 and Last Glacial Maximum (LGM) sea levels at Barbados and Bonaparte Gulf indicate (5-9) × 1022 Pa s for the lower mantle. However, the analyses for the J˙2 based on the two-layer lower-mantle viscosity model only require a viscosity layer higher than (5-10) × 1021 Pa s for a depth above the core-mantle boundary (CMB), in which the value of (5-10) × 1021 Pa s corresponds to the solution of (7-20) × 1021 Pa s for the simple three-layer one. Moreover, the analyses with the J˙2 and LGM sea level constraints for the two-layer lower-mantle viscosity model indicate two viscosity solutions: η670,1191 > 3 × 1021 and η1191,2891 ˜ (5-10) × 1022 Pa s, and η670,1691 > 1022 and η1691,2891 ˜ (5-10) × 1022 Pa s. The inferred upper-mantle viscosity for such solutions is (1-4) × 1020 Pa s similar to the estimate for the simple three-layer viscosity model. That is, these analyses require a high viscosity layer of (5-10) × 1022 Pa s at least in the deep mantle, and suggest that the GIA-based lower-mantle viscosity structure should be treated carefully in discussing the mantle dynamics related to the viscosity jump at ˜670 km depth. We also preliminarily put additional constraints on these viscosity solutions by examining typical relative sea level (RSL) changes used to infer the lower-mantle viscosity. The viscosity solution inferred from the far-field RSL changes in the Australian region is consistent with those for the J˙2 and LGM sea levels, and the analyses for RSL changes at Southport and Bermuda in the intermediate region for the North American ice sheets suggest the solution of η670,D > 1022, ηD,2891 ˜ (5-10) × 1022 Pa s (D = 1191 or 1691 km) and upper-mantle viscosity higher than 6 × 1020 Pa s.
Highly Branched Polyethylenes as Lubricant Viscosity and Friction Modifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Joshua W.; Zhou, Yan; Qu, Jun
2016-10-08
A series of highly branched polyethylenes (BPE) were prepared and used in a Group I base oil as potential viscosity and friction modifiers. The lubricating performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants’ performance, which provide scientific insights for polymer design in future lubricant development.
Pre-equilibrium dynamics and heavy-ion observables
NASA Astrophysics Data System (ADS)
Heinz, Ulrich; Liu, Jia
2016-12-01
To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU [C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199 (2016) 61] we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment < pT2 > of the proton transverse momentum spectrum, to identify optimized values for the switching time τs from pre-equilibrium to hydrodynamics, the specific shear viscosity η / s, the normalization factor of the temperature-dependent specific bulk viscosity (ζ / s) (T), and the switching temperature Tsw from viscous hydrodynamics to the hadron cascade UrQMD. With the optimized parameters, we predict and compare with experiment the pT-distributions of π, K, p, Λ, Ξ and Ω yields and their elliptic flow coefficients, focusing specifically on the mass-ordering of the elliptic flow for protons and Lambda hyperons which is incorrectly described by VISHNU without pre-equilibrium flow.
Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis
Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.
2015-01-01
Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505
Garraud, A.; Velez, C.; Shah, Y.; Garraud, N.; Kozissnik, B.; Yarmola, E. G.; Allen, K. D.; Dobson, J.; Arnold, D. P.
2015-01-01
Goal This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Methods Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a “collection volume” with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. Results The viscosity of the fluid strongly influences the velocity of the magnetic particles towards the magnet, hence the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Conclusion Numerical results showed good agreement with in vitro experimental magnetic collection results. Significance In the long-term, this work aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient. PMID:26208261
Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P
2016-02-01
This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.
High-Temperature Viscosity Of Commercial Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrma, Pavel R; See, Clem A; Lam, Oanh P
2005-01-01
Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa∙s to 750 Pa∙s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, andmore » Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pas.« less
Variation of velocity profile according to blood viscosity in a microfluidic channel
NASA Astrophysics Data System (ADS)
Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon
2014-11-01
The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).
Amagloh, Francis Kweku; Mutukumira, Anthony N.; Brough, Louise; Weber, Janet L.; Hardacre, Allan; Coad, Jane
2013-01-01
Background Cereal-based complementary foods from non-malted ingredients form a relatively high viscous porridge. Therefore, excessive dilution, usually with water, is required to reduce the viscosity to be appropriate for infant feeding. The dilution invariably leads to energy and nutrient thinning, that is, the reduction of energy and nutrient densities. Carbohydrate is the major constituent of food that significantly influences viscosity when heated in water. Objectives To compare the sweetpotato-based complementary foods (extrusion-cooked ComFa, roller-dried ComFa, and oven-toasted ComFa) and enriched Weanimix (maize-based formulation) regarding their 1) carbohydrate composition, 2) viscosity and water solubility index (WSI), and 3) sensory acceptance evaluated by sub-Sahara African women as model caregivers. Methods The level of simple sugars/carbohydrates was analysed by spectrophotometry, total dietary fibre by enzymatic-gravimetric method, and total carbohydrate and starch levels estimated by calculation. A Rapid Visco™ Analyser was used to measure viscosity. WSI was determined gravimetrically. A consumer sensory evaluation was used to evaluate the product acceptance of the roller-dried ComFa, oven-toasted ComFa, and enriched Weanimix. Results The sweetpotato-based complementary foods were, on average, significantly higher in maltose, sucrose, free glucose and fructose, and total dietary fibre, but they were markedly lower in starch content compared with the levels in the enriched Weanimix. Consequently, the sweetpotato-based complementary foods had relatively low apparent viscosity, and high WSI, than that of enriched Weanimix. The scores of sensory liking given by the caregivers were highest for the roller-dried ComFa, followed by the oven-toasted ComFa, and, finally, the enriched Weanimix. Conclusion The sweetpotato-based formulations have significant advantages as complementary food due to the high level of endogenous sugars and low starch content that reduce the viscosity, increase the solubility, impart desirable sensory characteristics, and potentially avoid excessive energy and nutrient thinning. PMID:23516115
Models for viscosity and shear localization in bubble-rich magmas
NASA Astrophysics Data System (ADS)
Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia
2016-09-01
Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ηBulk =log10 η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency, thereby, affecting magma ascent and the potential for explosivity.
NASA Astrophysics Data System (ADS)
Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin
2017-07-01
A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.
NASA Astrophysics Data System (ADS)
Harada, Y.; Goossens, S. J.; Matsumoto, K.; Yan, J.; Ping, J.; Noda, H.
2012-12-01
Generally, internal energy dissipation associated with tidal deformation and physical libration of a planetary body depends on its internal structure, especially viscosity structure. Here magnitude of the tidal dissipation is mainly represented by the quality factor (Q) and the Love number (k2). These values inevitably depend on its viscosity structure, and thus, give us clues of its thermal state and history. Although dependence of the tidal dissipation on the viscosity structure of the Moon has already been demonstrated by previous research, its parameter study unfortunately has certain limitations. First, it assumes the lunar interior as a uniform sphere. Second, only Q has been calculated. Third, in the past, there are no observational values which correspond to the calculation results. By resolving the above issues, we would be able to put a new constraint on the interior structure on the Moon. That is, it allows us to consider what kind of viscosity structure can explain both Q and k2 with no contradiction. Moreover, such consideration further enables us to tell what should be investigated in the framework of the lunar exploration project in the next generation. Therefore, parameter studies on visco-elastic deformation are performed based on more realistic interior structure, and then, these calculation results are compared with pre-existing values derived from selenodetic observation. Concretely speaking, by employing the density and elasticity structures from seismic inversion, and by defining the viscosity as a free parameter, Q and k2 are calculated for both monthly and annual periods. After that, by comparing these numerical results with the observational values, it is examined whether the viscosity value satisfying Q and k2 at the same time is admissible or not. For the sake of simplification, this study only prepares the viscosity structure in which just the viscosity of the lower-most part of the mantle is changed over several orders of magnitude. The viscosity in this part is probably lower than that in the upper portion because the knowledge of seismology also indicates the presence of a high attenuation zone. On the other hand, the viscosity of the upper portion is regarded to be uniform in here, and fixed to the maximum value of the above parameter range. As a result, it is clarified that the viscosity solution consistent with geodetic observations of both rotation and gravity field exists if the interior structure includes the specific low viscosity zone. There is just one narrow range of allowable viscosity with the observed Q, which can only be explained by this low viscosity zone. This viscosity range determines a numerical k2 which is consistent with the observed values. As a conclusion, the strong seismic attenuation zone inside the lunar interior is probably equivalent to the low viscosity zone. Particularly, it is the remarkable point that the value of the viscosity inferred here is too low considering solid rock whereas it is too high considering complete melt. Therefore, as has formerly been pointed out, the partial melting would occur in this lower-most part like that of the ultra-low velocity zone on the Earth. Moreover, this zone is expected to include the fluid phase with a ratio corresponding to the rheologically critical melt fraction.
Sorting process of nanoparticles and applications of same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Timothy P.; Henry, Anne-Isabelle; Van Duyne, Richard P.
In one aspect of the present invention, a method for sorting nanoparticles includes preparing a high-viscosity density gradient medium filled in a container, dispersing nanoparticles into an aqueous solution to form a suspension of the nanoparticles, each nanoparticle having one or more cores and a shell encapsulating the one or more cores, layering the suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container, and centrifugating the layered suspension of the nanoparticles on the top of the high-viscosity density gradient medium in the container at a predetermined speed for a predetermined period of timemore » to form a gradient of fractions of the nanoparticles along the container, where each fraction comprises nanoparticles in a respective one of aggregation states of the nanoparticles.« less
Reanalysis of the fragility of glycerol at very high pressures using new Tg data
NASA Astrophysics Data System (ADS)
Lyon, Kevin; Oliver, William
Direct measurements of the glass transition temperature of glycerol between 1 atm and 6.7 GPa from our lab allow reanalysis of high-pressure viscosity data, which were limited to approximately 107 poise. Previous attempts to determine Tg (P) and fragility by extrapolation of the viscosity data by many orders of magnitude led to inconclusive results. Tg (P) data constrain the value of viscosity at the glass transition providing for more accurate determinations of isobaric fragilities. Over most of the pressure range, a constant fragility is found in agreement with analysis of high-pressure dielectric data by Paluch et al.. Discrepancies in the pressure dependence of the fragility of glycerol at very low pressures exist in the literature and will also be discussed.
Dissipative advective accretion disc solutions with variable adiabatic index around black holes
NASA Astrophysics Data System (ADS)
Kumar, Rajiv; Chattopadhyay, Indranil
2014-10-01
We investigated accretion on to black holes in presence of viscosity and cooling, by employing an equation of state with variable adiabatic index and multispecies fluid. We obtained the expression of generalized Bernoulli parameter which is a constant of motion for an accretion flow in presence of viscosity and cooling. We obtained all possible transonic solutions for a variety of boundary conditions, viscosity parameters and accretion rates. We identified the solutions with their positions in the parameter space of generalized Bernoulli parameter and the angular momentum on the horizon. We showed that a shocked solution is more luminous than a shock-free one. For particular energies and viscosity parameters, we obtained accretion disc luminosities in the range of 10- 4 - 1.2 times Eddington luminosity, and the radiative efficiency seemed to increase with the mass accretion rate too. We found steady state shock solutions even for high-viscosity parameters, high accretion rates and for wide range of composition of the flow, starting from purely electron-proton to lepton-dominated accretion flow. However, similar to earlier studies of inviscid flow, accretion shock was not obtained for electron-positron pair plasma.
Viscosity-dependent variations in the cell shape and swimming manner of Leptospira.
Takabe, Kyosuke; Tahara, Hajime; Islam, Md Shafiqul; Affroze, Samia; Kudo, Seishi; Nakamura, Shuichi
2017-02-01
Spirochaetes are spiral or flat-wave-shaped Gram-negative bacteria that have periplasmic flagella between the peptidoglycan layer and outer membrane. Rotation of the periplasmic flagella transforms the cell body shape periodically, allowing the cell to swim in aqueous environments. Because the virulence of motility-deficient mutants of pathogenic species is drastically attenuated, motility is thought to be an essential virulence factor in spirochaetes. However, it remains unknown how motility practically contributes to the infection process. We show here that the cell body configuration and motility of the zoonotic spirochaete Leptospira changes depending on the viscosity of the medium. Leptospira swim and reverse the swimming direction by transforming the cell body. Motility analysis showed that the frequency of cell shape transformation was increased by increasing the viscosity of the medium. The increased cell body transformation induced highly frequent reversal of the swimming direction. A simple kinetic model based on the experimental results shows that the viscosity-induced increase in reversal limits cell migration, resulting in the accumulation of cells in high-viscosity regions. This behaviour could facilitate the colonization of the spirochaete on host tissues covered with mucosa.
Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C
2012-01-01
The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P < 0.05). Among the high viscosity composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.
NASA Technical Reports Server (NTRS)
Zhang, Shuxia; Yuen, David A.
1994-01-01
We have investigated the influences of lateral variations of viscosity on the moment of inertia tensor from viscous flows due to the density anomalies in the mantle inferred from seismic tomographic models. The scaling relations between the density and the seismic anomalies is taken as either a constant or a function increasing with depth in accord with the recent high-pressure experimental studies. The viscosity is taken as an exponential function of the 3D density anomaly. In models with an isoviscous background, the effects on the perturbed moment of inertia tensor from the lateral viscosity variations are smaller than those due to variations in the radial viscosity profiles. In mantle models with a background viscosity increasing with depth, the influences of the lateral viscosity variations are significant. The most striking feature in the latter case is that the two off-diagonal elements delta I(sub xz) and delta I(sub yz) in the inertia tensor exhibit greatest sensitivity to lateral variations of the viscosity. While the other elements of the inertia change by only about a few tens of percent in the range of lateral viscosity contrast considered (less than 300), delta I(sub xz) and delta I(sub yz) can vary up to 40 times even with a change in sign, depending on the radial viscosity stratification and the location of the strongest lateral variations. The increase in the velocity-density scaling relation with depth can reduce the influences of the lateral viscosity variations, but it does not change the overall sensitive nature of delta I(sub xz) and delta I(sub yz). This study demonstrates clearly that the lateral viscosity variations, especially in the upper mantle, must be considered in the determination of long-term polar wander, since the variations in the delta I(sub xz) and delta I(sub yz) terms are directly responsible for exciting rotational movements.
Shear and bulk viscosity of high-temperature gluon plasma
NASA Astrophysics Data System (ADS)
Zhang, Le; Hou, De-Fu
2018-05-01
We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)
Detterich, Jon; Alexy, Tamas; Rabai, Miklos; Wenby, Rosalinda; Dongelyan, Ani; Coates, Thomas; Wood, John; Meiselman, Herbert
2013-02-01
Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen-carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vasoocclusion, including percent hemoglobin (Hb)S, reticulocyte count, and circulating cell-free Hb, it increases blood viscosity, which reduces microvascular flow. The hematocrit-to-viscosity ratio (HVR) is an index of red blood cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear. To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately before transfusion and again 12 to 120 hours after transfusion. Comparable changes in Hb, hematocrit (Hct), reticulocyte count, and HbS with transfusion were observed in all subjects. Viscosity, Hct, and high-shear HVR increased with transfusion while low-shear HVR decreased significantly. Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by CTT and others may be made worse. © 2012 American Association of Blood Banks.
Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.
2012-01-01
Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333
DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts
Madhukar, M. S.; Martovetsky, N. N.
2015-01-16
Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less
Accuracy versus convergence rates for a three dimensional multistage Euler code
NASA Technical Reports Server (NTRS)
Turkel, Eli
1988-01-01
Using a central difference scheme, it is necessary to add an artificial viscosity in order to reach a steady state. This viscosity usually consists of a linear fourth difference to eliminate odd-even oscillations and a nonlinear second difference to suppress oscillations in the neighborhood of steep gradients. There are free constants in these differences. As one increases the artificial viscosity, the high modes are dissipated more and the scheme converges more rapidly. However, this higher level of viscosity smooths the shocks and eliminates other features of the flow. Thus, there is a conflict between the requirements of accuracy and efficiency. Examples are presented for a variety of three-dimensional inviscid solutions over isolated wings.
Astronaut Mike Fincke Conducts Fluid Merging Viscosity Measurement (FMVM) Experiment
NASA Technical Reports Server (NTRS)
2004-01-01
Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.
Structure-rheology relationship in a sheared lamellar fluid.
Jaju, S J; Kumaran, V
2016-03-01
The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers. At high Ericksen number where the viscous forces are large compared to the restoring forces due to layer compression and bending, shear tends to homogenize the concentration field, and the viscosity decreases significantly. At very high Ericksen number, shear even disrupts the layering of the lamellar phase. At low Ericksen number, shear results in the formation of well aligned layers with edge dislocations. However, these edge dislocations take a long time to anneal; the relatively small misalignment due to the defects results in a large increase in viscosity due to high layer stiffness and due to shear localization, because the layers between defects get pinned and move as a plug with no shear. An increase in the viscosity contrast between the hydrophilic and hydrophobic parts does not alter the structural characteristics during alignment. However, there is a significant increase in the viscosity, due to pinning of the layers between defects, which results in a plug flow between defects and a localization of the shear to a part of the domain.
NASA Astrophysics Data System (ADS)
Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.
2016-10-01
There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.
Thermophysical Property Measurements of Silicon-Transition Metal Alloys
NASA Technical Reports Server (NTRS)
Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.
2014-01-01
Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.
A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons.
Baek, Yeonju; Park, Sang Jun; Zhou, Xin; Kim, Gyungmi; Kim, Hwan Myung; Yoon, Juyoung
2016-12-15
We present here a viscosity sensitive fluorescent dye, namely thiophene dihemicyanine (TDHC), that enables the specific staining of mitochondria. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this dye demonstrated its unique ability for robust staining of mitochondria with high photostability and ultrahigh signal-to-noise ratio (SNR). Moreover, TDHC also showed high sensitivity towards mitochondria membrane potential (ΔΨm) and intramitochondria viscosity change. Consequently, this dye was utilized in real-time monitoring of mitochondria transport in primary cortical neurons. Finally, the Two-Photon Microscopy (TPM) imaging ability of TDHC was also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong
2018-01-01
Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.
NASA Astrophysics Data System (ADS)
Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.
2015-02-01
In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (< 100-150 °C) within the shallow crust. From the microscopic structure of the chert, the injected material was a slurry of abundant clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.
Communication: Simple liquids' high-density viscosity
NASA Astrophysics Data System (ADS)
Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-02-01
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Nonlinear Viscoelastic Breakup in a High-Velocity Airstream.
1981-03-01
viscoelasticity PMMA /Poly (ethyl/butylacrylate) Jet analysis Extensional viscosity 106 SdhACV a. -- N .MM~OMW I~*it l -,’ bi. ab Weiss and Worshern’s...Zero shear viscosity (viscosity-avg.) %/ poise Polymethyl- 6 x 106 2.1 100. methacrylate ( PMMA ) 1.5 16. 1.0 2.0 0.5 0.3 Copolymer 80% PMMA 20% Polyethyl...Measured 2.1% Poly(methylmethacrylate) /diethylmalonate ( PMMA /DEM) 210 1980 + 250 (400) 1.5% PMMA /DEM 110 1780 + 200 (250) 1.0% PMMA /DEM 60 1480 + 150
Gravimetric capillary method for kinematic viscosity measurements
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing
1992-01-01
A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less
Kwon, S R; Pallavi, Fnu; Shi, Y; Oyoyo, U; Mohraz, A; Li, Y
Whitening efficacy has been related to hydrogen peroxide (HP) diffusion into tooth structure. However, little information is available relating rheological properties to whitening efficacy. The purpose was to evaluate the whitening efficacy and HP penetration level of a 10% HP gel at three different viscosities and to compare them to a strip delivery system. Extracted molars (n=120) were randomly assigned into five groups (n=24/ group): NC_MED (negative control; median): medium viscosity gel without HP; LOW: 10% HP gel (low viscosity experimental gel, Ultradent Products Inc); MED: 10% HP gel (medium viscosity experimental gel, Ultradent); HIGH: 10% HP gel (high viscosity gel, Ultradent); and CWS: Crest 3D Whitestrips 1-Hour Express (Procter & Gamble). All teeth were subjected to five 60-minute whitening sessions. Instrumental color measurements were performed at baseline (T 0 ), and 1-day after each application (T 1 -T 5 ), and 1-month after whitening (T 6 ). HP penetration was estimated with leucocrystal violet and horseradish peroxidase. A Kruskal-Wallis test and post hoc Bonferroni test were performed to assess the difference in tooth color change and HP penetration among the groups (α=0.05). Hydrogen peroxide penetration levels and overall color changes at T 6 were 0.24 μg/mL / 2.80; 0.48 μg/mL / 8.48; 0.44 μg/mL / 7.72; 0.35 μg/mL / 8.49; 0.36 μg/mL / 7.30 for groups NC, LOW, MED, HIGH, and CWS, respectively. There was a significant difference for HP penetration, while there was no significant difference among the four experimental groups for tooth color change. Rheological properties should be considered when developing new whitening formulations.
Lack of age-related increase in carotid artery wall viscosity in cardiorespiratory fit men
Kawano, Hiroshi; Yamamoto, Kenta; Gando, Yuko; Tanimoto, Michiya; Murakami, Haruka; Ohmori, Yumi; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko
2013-01-01
Objectives: Age-related arterial stiffening and reduction of arterial elasticity are attenuated in individuals with high levels of cardiorespiratory fitness. Viscosity is another mechanical characteristic of the arterial wall; however, the effects of age and cardiorespiratory fitness have not been determined. We examined the associations among age, cardiorespiratory fitness and carotid arterial wall viscosity. Methods: A total of 111 healthy men, aged 25–39 years (young) and 40–64 years (middle-aged), were divided into either cardiorespiratory fit or unfit groups on the basis of peak oxygen uptake. The common carotid artery was measured noninvasively by tonometry and automatic tracking of B-mode images to obtain instantaneous pressure and diameter hysteresis loops, and we calculated the effective compliance, isobaric compliance and viscosity index. Results: In the middle-aged men, the viscosity index was larger in the unfit group than in the fit group (2533 vs. 2018 mmHg·s/mm, respectively: P < 0.05), but this was not the case in the young men. In addition, effective and isobaric compliance were increased, and viscosity index was increased with advancing age, but these parameters were unaffected by cardiorespiratory fitness level. Conclusion: These results suggest that the wall viscosity in the central artery is increased with advancing age and that the age-associated increase in wall viscosity may be attenuated in cardiorespiratory fit men. PMID:24029868
Lack of age-related increase in carotid artery wall viscosity in cardiorespiratory fit men.
Kawano, Hiroshi; Yamamoto, Kenta; Gando, Yuko; Tanimoto, Michiya; Murakami, Haruka; Ohmori, Yumi; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko
2013-12-01
Age-related arterial stiffening and reduction of arterial elasticity are attenuated in individuals with high levels of cardiorespiratory fitness. Viscosity is another mechanical characteristic of the arterial wall; however, the effects of age and cardiorespiratory fitness have not been determined. We examined the associations among age, cardiorespiratory fitness and carotid arterial wall viscosity. A total of 111 healthy men, aged 25-39 years (young) and 40-64 years (middle-aged), were divided into either cardiorespiratory fit or unfit groups on the basis of peak oxygen uptake. The common carotid artery was measured noninvasively by tonometry and automatic tracking of B-mode images to obtain instantaneous pressure and diameter hysteresis loops, and we calculated the effective compliance, isobaric compliance and viscosity index. In the middle-aged men, the viscosity index was larger in the unfit group than in the fit group (2533 vs. 2018 mmHg·s/mm, respectively: P<0.05), but this was not the case in the young men. In addition, effective and isobaric compliance were increased, and viscosity index was increased with advancing age, but these parameters were unaffected by cardiorespiratory fitness level. These results suggest that the wall viscosity in the central artery is increased with advancing age and that the age-associated increase in wall viscosity may be attenuated in cardiorespiratory fit men.
Applying Magneto-rheology to Reduce Blood Viscosity and Suppress Turbulence to Prevent Heart Attacks
NASA Astrophysics Data System (ADS)
Tao, R.
Heart attacks are the leading causes of death in USA. Research indicates one common thread, high blood viscosity, linking all cardiovascular diseases. Turbulence in blood circulation makes different regions of the vasculature vulnerable to development of atherosclerotic plaque. Turbulence is also responsible for systolic ejection murmurs and places heavier workload on heart, a possible trigger of heart attacks. Presently, neither medicine nor method is available to suppress turbulence. The only method to reduce the blood viscosity is to take medicine, such as aspirin. However, using medicine to reduce the blood viscosity does not help suppressing turbulence. In fact, the turbulence gets worse as the Reynolds number goes up with the viscosity reduction by the medicine. Here we report our new discovery: application of a strong magnetic field to blood along its flow direction, red blood cells are polarized in the magnetic field and aggregated into short chains along the flow direction. The blood viscosity becomes anisotropic: Along the flow direction the viscosity is significantly reduced, but in the directions perpendicular to the flow the viscosity is considerably increased. In this way, the blood flow becomes laminar, turbulence is suppressed, the blood circulation is greatly improved, and the risk for heart attacks is reduced. While these effects are not permanent, they last for about 24 hours after one magnetic therapy treatment.
NASA Astrophysics Data System (ADS)
Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey
2018-02-01
Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.
Are overall adiposity and abdominal adiposity separate or redundant determinants of blood viscosity?
Varlet-Marie, Emmanuelle; Raynaud de Mauverger, Eric; Brun, Jean-Frédéric
2015-01-01
In line with recent literature showing that both general adiposity and abdominal adiposity are independently associated with the risk of death, we recently reported that body mass index (BMI) and waist-to hip ratio (WHR) were independent predictors of blood viscosity, related to different determinants of viscosity (for BMI: plasma viscosity and red cell aggregation; for WHR: hematocrit). Since this report was challenged by a study showing that abdominal adiposity (as measured with waist circumference WC and not WHR) is the only independent determinant of viscosity, we re-assessed on our previous database correlations among viscosity factors, BMI, WHR and WC. Blood viscosity was correlated to BMI (r = 0.155 p = 0.004), WHR (r = 0.364; p = 0.027) and WC (r = 0.094; p = 0.05). Hematocrit was correlated to WHR (r = 0.524) but neither to BMI (r =-0.021) nor waist circumference (r = 0.053). WC was correlated with plasma viscosity (r = 0.154; p = 0.002) while WHR was not (r =-0.0102 NS). A stepwise regression analysis selected two determinants of whole blood viscosity at high shear rate: BMI (p = 0.0167) and WC (p = 0.0003) excluding WHR. Therefore, in this sample, abdominal fatness expressed by WC and whole body adiposity remain independent determinants of blood viscosity. WHR and WC have not the same meaning, WC measuring the size of abdominal fat while WHR measuring the shape of body distribution regardless the degree of fat excess. Interestingly, hematocrit is rather related to shape (even within a normal range of body size) than the extent of abdominal fatness, and is not related to whole body adiposity.
Sakae, Letícia Oba; Bezerra, Sávio José Cardoso; João-Souza, Samira Helena; Borges, Alessandra Buhler; Aoki, Idalina V; Aranha, Ana Cecília Côrrea; Scaramucci, Taís
2018-05-01
To evaluate the influence of the viscosity and frequency of application of solutions containing fluoride (F) and stannous chloride (SnCl 2 ) on enamel erosion prevention. Bovine enamel specimens were randomly distributed into 12 groups (n = 10), according to the following study factors: solution (C: deionized water; F: 500 ppm F - ; F + Sn: 500 ppm F - + 800 ppm Sn 2+ ); viscosity (low and high); and frequency of application (once and twice a day). Specimens were submitted to an erosive cycling model, consisting of 5 min immersion in 0.3% citric acid, followed by 60 min exposure to a mineral solution. This procedure was repeated 4×/day, for 5 days. Treatment with the experimental solutions was performed for 2 min, 1×/day or 2×/day. Enamel surface loss (SL) was determined by optical profilometry. Data were analyzed by 3-way ANOVA and Tukey tests (α = 0.05). There were significant differences between the levels of the factor solution (p < .001), viscosity (p < .001) and in the interaction between solution and viscosity (p = .01). Regarding solution, the mean SL ± standard deviation for the groups was F + Sn (4.90 ± 1.12) < F (7.89 ± 1.19) < C (14.20 ± 1.69). High viscosity solutions demonstrated less SL than low viscosity; however, only when applied once a day (p < .001). Applying the solutions twice a day yielded lower SL than once a day, but only for the low viscosity solutions (p = .003). Under the conditions of this short-term in vitro experiment, it could be concluded that increasing the viscosity of the oral rinse solutions reduced enamel loss by erosion; however, this effect was small and only observed when the solutions were applied once a day. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mafic-crystal distributions, viscosities, and lava structures of some Hawaiian lava flows
NASA Astrophysics Data System (ADS)
Rowland, Scott K.; Walker, George P. L.
1988-09-01
The distribution patterns of mafic phenocrysts in some Hawaiian basalt flows are consistent with simple in situ gravitational settling. We use the patterns to estimate the crystal settling velocity and hence viscosity of the lava, which in turn can be correlated with surface structures. Numerical modeling generates theoretical crystal concentration profiles through lava flow units of different thicknesses for differing settling velocities. By fitting these curves to field data, crystal-settling rates through the lavas can be estimated, from which the viscosities of the flows can be determined using Stokes' Law. Lavas in which the crystal settling velocity was relatively high (on the order of 5 × 10 -4 cm/sec) show great variations in phenocryst content, both from top to bottom of the same flow unit, and from one flow unit to another. Such lava is invariably pahoehoe, flow units of which are usually less than 1 m thick. Lavas in which the crystal-settling velocity was low show a small but measurable variation in phenocryst content. These lavas are part of a progression from a rough pahoehoe to toothpaste lava to a'a. Toothpaste lava is characterized by spiny texture as well as the ability to retain surface grooves during solidification, and flow units are usually thicker than 1 m. In the thickest of Hawaiian a'a flows, those of the distal type, no systematic crystal variations are observed, and high viscosity coupled with a finite yield strength prevented crystal settling. The amount of crystal settling in pahoehoe indicates that the viscosity ranged from 600 to 6000 Pa s. The limited amount of settling in toothpaste lava indicates a viscosity greater than this value, approaching 12,000 Pa s. We infer that distal-type a'a had a higher viscosity still and also possessed a yield strength.
Viscous plugging can enhance and modulate explosivity of strombolian eruptions
NASA Astrophysics Data System (ADS)
Del Bello, E.; Lane, S. J.; James, M. R.; Llewellin, E. W.; Taddeucci, J.; Scarlato, P.; Capponi, A.
2015-08-01
Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a 'viscous plug', which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp
2013-01-01
A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822
A mathematical model for the movement of food bolus of varying viscosities through the esophagus
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra
2011-09-01
This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.
A Comparison of the Viscosities of Thickened Liquids for Pediatric Dysphagia.
NASA Astrophysics Data System (ADS)
Wijesinghe, Ranjith; Clifton, Mekale; Tarlton, Morgan; Heinsohn, Erica; Ewing, Mary
It has been reported that Speech Language Pathologists in different facilities across the nation use a variety of thickening agents and recipes as therapeutic measures for infants and children diagnosed with dysphagia. Limited research has been completed in this area. Viscosity was tested to determine the thickness of each thickening agent mixed with infant formula. The values were then compared to the National Dysphagia Diet liquid levels to determine which thickening agent resulted in the desired viscosity levels. The thickeners were mixed with common infant formulas and soy formulas to determine if the type of formula impacted the viscosity. The main goal was to determine if the assumed thickness level (viscosity) of prescribed thickened liquids was actually being met. This topic is of high concern because of its impact on the safety and well-being of clients with dysphagia. A viscometer was used to collect the viscosity levels. Commercially available formulas selected for this study. The final results of our investigation will be presented during the APS meeting. This work is supported by a Ball State University Immersive Learning Grant.
Viscosities of Fe Ni, Fe Co and Ni Co binary melts
NASA Astrophysics Data System (ADS)
Sato, Yuzuru; Sugisawa, Koji; Aoki, Daisuke; Yamamura, Tsutomu
2005-02-01
Viscosities of three binary molten alloys consisting of the iron group elements, Fe, Ni and Co, have been measured by using an oscillating cup viscometer over the entire composition range from liquidus temperatures up to 1600 °C with high precision and excellent reproducibility. The viscosities measured showed good Arrhenius linearity for all the compositions. The viscosities of Fe, Ni and Co as a function of temperature are as follows: \\eqalign{ & \\log \\eta={-}0.6074 + 2493/T\\qquad for\\quad Fe\\\\ & \\log \\eta={-}0.5695 + 2157/T\\qquad for\\quad Ni \\\\ & \\log \\eta={-}0.6620 + 2430/T\\qquad for\\quad Co.} The isothermal viscosities of Fe-Ni and Fe-Co binary melts increase monotonically with increasing Fe content. On the other hand, in Ni-Co binary melt, the isothermal viscosity decreases slightly and then increases with increasing Co. The activation energy of Fe-Co binary melt increased slightly on mixing, and those of Fe-Ni and Ni-Co melts decreased monotonically with increasing Ni content. The above behaviour is discussed based on the thermodynamic properties of the alloys.
NASA Astrophysics Data System (ADS)
Brand, A. E.; Vershinina, S. V.; Vengerov, A. A.; Mostovaya, N. A.
2015-10-01
The article investigates the possibility of applying hydrodynamic cavitation treatment to reduce oil viscosity in Russian pipeline transportation system and increase its performance. The result of laboratory tests and suggestions on technology application are given
Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya
2015-01-01
Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055
Li, Lixiao; Kazoe, Yutaka; Mawatari, Kazuma; Sugii, Yasuhiko; Kitamori, Takehiko
2012-09-06
Understanding fluid and interfacial properties in extended nanospace (10-1000 nm) is important for recent advances of nanofluidics. We studied properties of water confined in fused-silica nanochannels of 50-1500 nm sizes with two types of cross-section: (1) square channel of nanoscale width and depth, and (2) plate channel of microscale width and nanoscale depth. Viscosity and wetting property were simultaneously measured from capillary filling controlled by megapascal external pressure. The viscosity increased in extended nanospace, while the wetting property was almost constant. Especially, water in the square nanochannels had much higher viscosity than the plate channel, which can be explained considering loosely coupled water molecules by hydrogen bond on the surface within 24 nm. This study suggests specificity of fluids two-dimensionally confined in extended nanoscale, in which the liquid is highly viscous by the specific water phase, while the wetting dynamics is governed by the well-known adsorbed water layer of several-molecules thickness.
Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya
2015-05-21
Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.
Helfield, Brandon; Black, John J.; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S.
2015-01-01
Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (~4 cP). In this study, ultra-high speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25 – 2 MPa). The propensity for individual microbubble (n=220) fragmentation was shown to significantly decrease in 4 cP fluid as compared to 1 cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4 cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g. ultraharmonic) with increasing pressure as compared to 1 cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. PMID:26674676
Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...
2015-05-21
Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Chun, Jaehun; Dixon, Derek R.
During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less
Arora, Simran Kaur; Patel, A A; Kumar, Naveen; Chauhan, O P
2016-04-01
The shear-thinning low, medium and high-viscosity fiber preparations (0.15-1.05 % psyllium husk, 0.07-0.6 % guar gum, 0.15-1.20 % gum tragacanth, 0.1-0.8 % gum karaya, 0.15-1.05 % high-viscosity Carboxy Methyl Cellulose and 0.1-0.7 % xanthan gum) showed that the consistency coefficient (k) was a function of concentration, the relationship being exponential (R(2), 0.87-0.96; P < 0.01). The flow behaviour index (n) (except for gum karaya and CMC) was exponentially related to concentration (R(2), 0.61-0.98). The relationship between k and sensory viscosity rating (SVR) was essentially linear in nearly all cases. The SVR could be predicted from the consistency coefficient using the regression equations developed. Also, the relationship of k with fiber concentration would make it possible to identify the concentration of a particular gum required to have desired consistency in terms of SVR.
Hooda, Seema; Metzler-Zebeli, Barbara U; Vasanthan, Thavaratnam; Zijlstra, Ruurd T
2011-09-01
Relative contributions of two functional properties, viscosity and fermentability of dietary fibre, on apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), digesta passage rate, N retention and SCFA concentration have not been established. Thus, eight ileal-cannulated pigs randomised in a double 4 × 4 Latin square were fed four diets based on maize starch and casein supplemented with 5 % of actual fibre in a 2 × 2 factorial arrangement: low-fermentable, low-viscous cellulose (CEL); low-fermentable, high-viscous carboxymethylcellulose (CMC); high-fermentable, low-viscous oat β-glucan (LBG); high-fermentable, high-viscous oat β-glucan (HBG). Viscosity and fermentability interacted to affect (P < 0·001) digesta viscosity and AID and ATTD of nutrients. These properties tended to interact to affect (P < 0·10) digesta passage rate and butyrate. Pigs fed the CMC diet had the lowest (P < 0·05) digesta passage rate and the highest (P < 0·001) AID of energy, crude protein and DM, and ATTD of energy and DM. Post-ileal DM digestibility was highest (P < 0·001) for pigs fed the CEL and HBG diets. Post-ileal DM digestibility had a negative, curvilinear relationship with the AID of energy and crude protein (R2 0·85 and 0·72, respectively; P < 0·001). Digesta viscosity had a less strong relationship with the AID of energy and crude protein (R2 0·45 and 0·36, respectively; P < 0·001). In conclusion, high-viscous, low-fermentable dietary fibre increases the proportion of a diet that is digested in the small intestine by reducing digesta passage rate.
Synthesis of high-temperature viscosity stabilizer used in drilling fluid
NASA Astrophysics Data System (ADS)
Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun
2018-02-01
Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.
Cyran, Malgorzata R; Ceglińska, Alicja; Kolasińska, Irena
2012-09-05
The water-extractable arabinoxylans (WE AXs) present in rye bread govern its viscous properties, which may be related to reduced risk of cardiovascular diseases and diabetes. Breads made from rye cultivars generally exhibit higher AX-dependent extract viscosities (Cyran, M. R.; Saulnier, L. Food Chemistry2012, 131, 667-676) when compared with those produced from inbred lines used for their breeding. To give further details about this trend, the WE AXs were isolated from breads of lines and structurally characterized by HPSEC and (1)H NMR spectroscopy. The extract viscosities of endosperm and whole-meal breads were usually comparable, in contrast to those made from rye cultivars with higher viscosity of endosperm bread. The WE AXs present in breads obtained from inbred lines were characterized by the higher degradation degrees than those in breads from cultivars, as indicated by their HPSEC-RI profiles. This was associated with considerably lower proportions of 2-Xylp in their backbones. Besides, a level of endoxylanase activity in flours from inbred lines was much higher than that in flours from cultivars. Breeding of hybrid rye cultivars for production of high-viscosity bread requires the proper components. They may be preliminarily selected from populations with high WE AX contents and relatively low levels of endoxylanase activity by using the overall viscosity test for starting flours. However, further measurement of AX-dependent extract viscosity in test breads made from such lines may verify their usefulness completely.
NASA Technical Reports Server (NTRS)
Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.; Zhu, S.
2004-01-01
A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of liquid metals and molten semiconductors. The experimental setup of the transient torque method is similar to that of the oscillation cup method. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate around its vertical axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with published data. The method is nonintrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer to measure just the viscosity of the melt or as a rotating magnetic field method to determine the electrical conductivity of a melt or a solid if desired.
Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador).
Chevrel, Magdalena Oryaëlle; Cimarelli, Corrado; deBiasi, Lea; Hanson, Jonathan B; Lavallée, Yan; Arzilli, Fabio; Dingwell, Donald B
2015-03-01
Viscosity has been determined during isothermal crystallization of an andesite from Tungurahua volcano (Ecuador). Viscosity was continuously recorded using the concentric cylinder method and employing a Pt-sheathed alumina spindle at 1 bar and from 1400°C to subliquidus temperatures to track rheological changes during crystallization. The disposable spindle was not extracted from the sample but rather left in the sample during quenching thus preserving an undisturbed textural configuration of the crystals. The inspection of products quenched during the crystallization process reveals evidence for heterogeneous crystal nucleation at the spindle and near the crucible wall, as well as crystal alignment in the flow field. At the end of the crystallization, defined when viscosity is constant, plagioclase is homogeneously distributed throughout the crucible (with the single exception of experiment performed at the lowest temperature). In this experiments, the crystallization kinetics appear to be strongly affected by the stirring conditions of the viscosity determinations. A TTT (Time-Temperature-Transformation) diagram illustrating the crystallization "nose" for this andesite under stirring conditions and at ambient pressure has been constructed. We further note that at a given crystal content and distribution, the high aspect ratio of the acicular plagioclase yields a shear-thinning rheology at crystal contents as low as 13 vol %, and that the relative viscosity is higher than predicted from existing viscosity models. These viscosity experiments hold the potential for delivering insights into the relative influences of the cooling path, undercooling, and deformation on crystallization kinetics and resultant crystal morphologies, as well as their impact on magmatic viscosity.
Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador)
Cimarelli, Corrado; deBiasi, Lea; Hanson, Jonathan B.; Lavallée, Yan; Arzilli, Fabio; Dingwell, Donald B.
2015-01-01
Abstract Viscosity has been determined during isothermal crystallization of an andesite from Tungurahua volcano (Ecuador). Viscosity was continuously recorded using the concentric cylinder method and employing a Pt‐sheathed alumina spindle at 1 bar and from 1400°C to subliquidus temperatures to track rheological changes during crystallization. The disposable spindle was not extracted from the sample but rather left in the sample during quenching thus preserving an undisturbed textural configuration of the crystals. The inspection of products quenched during the crystallization process reveals evidence for heterogeneous crystal nucleation at the spindle and near the crucible wall, as well as crystal alignment in the flow field. At the end of the crystallization, defined when viscosity is constant, plagioclase is homogeneously distributed throughout the crucible (with the single exception of experiment performed at the lowest temperature). In this experiments, the crystallization kinetics appear to be strongly affected by the stirring conditions of the viscosity determinations. A TTT (Time‐Temperature‐Transformation) diagram illustrating the crystallization “nose” for this andesite under stirring conditions and at ambient pressure has been constructed. We further note that at a given crystal content and distribution, the high aspect ratio of the acicular plagioclase yields a shear‐thinning rheology at crystal contents as low as 13 vol %, and that the relative viscosity is higher than predicted from existing viscosity models. These viscosity experiments hold the potential for delivering insights into the relative influences of the cooling path, undercooling, and deformation on crystallization kinetics and resultant crystal morphologies, as well as their impact on magmatic viscosity. PMID:27656114
Variation of the apparent viscosity of thickened drinks.
O'Leary, Mark; Hanson, Ben; Smith, Christina H
2011-01-01
In dysphagia care, thickening powders are widely added to drinks to slow their flow speed by increasing their viscosity. Current practice relies on subjective evaluation of viscosity using verbal descriptors. Several brands of thickener are available, with differences in constituent ingredients and instructions for use. Some thickened fluids have previously been shown to exhibit time-varying non-Newtonian flow behaviour, which may complicate attempts at subjective viscosity judgement. The aims were to quantify the apparent viscosity over time produced by thickeners having a range of constituent ingredients, and to relate the results to clinical practice. A comparative evaluation of currently available thickener products, including two which have recently been reformulated, was performed. Their subjective compliance to the National Descriptors standards was assessed, and their apparent viscosity was measured using a rheometer at shear rates representative of situations from slow tipping in a beaker (0.1 s⁻¹) to a fast swallow (100 s⁻¹). Testing was performed repeatedly up to 3 h from mixing. When mixed with water, it was found that most products compared well with subjective National Descriptors at three thickness levels. The fluids were all highly non-Newtonian; their apparent viscosity was strongly dependent on the rate of testing, typically decreasing by a factor of almost 100 as shear rate increased. All fluids showed some change in viscosity with time from mixing; this varied between products from -34% to 37% in the tests. This magnitude was less than the difference between thickness levels specified by the National Descriptors. The apparent viscosity of thickened fluids depends strongly on the shear rate at which it is examined. This inherent behaviour is likely to hinder subjective evaluation of viscosity. If quantitative measures of viscosity are required (for example, for standardization purposes), they must therefore be qualified with information of the test conditions. © 2010 Royal College of Speech & Language Therapists.
Polyfunctional dispersants for controlling viscosity of phyllosilicates
Chaiko, David J.
2006-07-25
This invention provides phyllosilicates and polyfunctional dispersants which can be manipulated to selectively control the viscosity of phyllosilicate slurries. The polyfunctional dispersants used in the present invention, which include at least three functional groups, increase the dispersion and exfoliation of phyllosilicates in polymers and, when used in conjunction with phyllosilicate slurries, significantly reduce the viscosity of slurries having high concentrations of phyllosilicates. The functional groups of the polyfunctional dispersants are capable of associating with multivalent metal cations and low molecular weight organic polymers, which can be manipulated to substantially increase or decrease the viscosity of the slurry in a concentration dependent manner. The polyfunctional dispersants of the present invention can also impart desirable properties on the phyllosilicate dispersions including corrosion inhibition and enhanced exfoliation of the phyllosilicate platelets.
Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system
NASA Astrophysics Data System (ADS)
Li, P.; Huang, J. Y.; Liu, G. Z.
2018-01-01
With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.
NASA Astrophysics Data System (ADS)
Juntarasakul, O.; Maneeintr, K.
2018-04-01
Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.
Kimura, Yuji; Haraguchi, Kazutoshi
2017-05-16
Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.
Ras Diffusion Is Sensitive to Plasma Membrane Viscosity
Goodwin, J. Shawn; Drake, Kimberly R.; Remmert, Catha L.; Kenworthy, Anne K.
2005-01-01
The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC16 and DiIC18. However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-β-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane. PMID:15923235
Code of Federal Regulations, 2014 CFR
2014-07-01
... has the same meaning as in § 157.03(e) of this chapter. Commandant means Commandant, U.S. Coast Guard... least 25 mPa.s at 20 °C and of at least 25 mPa.s at the time they are unloaded, high viscosity Category... having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High...
Code of Federal Regulations, 2012 CFR
2012-07-01
... has the same meaning as in § 157.03(e) of this chapter. Commandant means Commandant, U.S. Coast Guard... least 25 mPa.s at 20 °C and of at least 25 mPa.s at the time they are unloaded, high viscosity Category... having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High...
Code of Federal Regulations, 2013 CFR
2013-07-01
... has the same meaning as in § 157.03(e) of this chapter. Commandant means Commandant, U.S. Coast Guard... least 25 mPa.s at 20 °C and of at least 25 mPa.s at the time they are unloaded, high viscosity Category... having a viscosity of at least 25 mPa.s at 20 °C and at least 25 mPa.s at the time it is unloaded. High...
RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F.; Edwards, T.
2010-06-23
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and -30) completely crystallized with both magnetite and nepheline, and still had extremely low NL [B] values. These particular glasses have more CaO present than any of the other glasses in the matrix. It appears that while all of the glasses contain nepheline, the NL [B] values decrease as the CaO concentration increases from 2.3 wt% to 4.3 wt%. A different form of nepheline may be created at higher concentrations of CaO that does not significantly reduce glass durability. (4) The T{sub L} model appears to be under-predicting the measured values of higher waste loading glasses. Trends in T{sub L} with composition are not evident in the data from these studies. (5) A small number of glasses in the FY09 matrix have measured viscosities that are much lower than the viscosity range over which the current model was developed. The decrease in viscosity is due to a higher concentration of non-bridging oxygens (NBO). A high iron concentration is the cause of the increase in NBO. Durability, viscosity and T{sub L} data collected during FY07 and FY09 that specifically targeted higher waste loading glasses was compiled and assessed. It appears that additional data may be required to expand the coverage of the T{sub L} and viscosity models for higher waste loading glasses. In general, the compositional regions of the higher waste loading glasses are very different than those used to develop these models. On the other hand, the current durability model seems to be applicable to the new data. At this time, there is no evidence to modify this model; however additional experimental studies should be conducted to determine the cause of the anomalous durability data.« less
Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.
Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann
2016-05-15
A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.
Standard High Solids Vessel Design De-inventory Simulant Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiskum, Sandra K.; Burns, Carolyn A.M.; Gauglitz, Phillip A.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is working to develop a Standard High Solids Vessel Design (SHSVD) process vessel. To support testing of this new design, WTP engineering staff requested that a Newtonian simulant be developed that would represent the de-inventory (residual high-density tank solids cleanout) process. Its basis and target characteristics are defined in 24590-WTP-ES-ENG-16-021 and implemented through PNNL Test Plan TP-WTPSP-132 Rev. 1.0. This document describes the de-inventory Newtonian carrier fluid (DNCF) simulant composition that will satisfy the basis requirement to mimic the density (1.18 g/mL ± 0.1 g/mL) and viscosity (2.8 cP ± 0.5more » cP) of 5 M NaOH at 25 °C.1 The simulant viscosity changes significantly with temperature. Therefore, various solution compositions may be required, dependent on the test stand process temperature range, to meet these requirements. Table ES.1 provides DNCF compositions at selected temperatures that will meet the density and viscosity specifications as well as the temperature range at which the solution will meet the acceptable viscosity tolerance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barra, Giuseppina; Guadagno, Liberata; Simonet, Bartolome
Different industrial mixing methods and some of their combinations (1) ultrasound; (2) stirring; (3) (4) by roller machine, (5) by gears machine (6) Ultrasound radiation + high stirring were investigated for incorporating Multi walled Carbon nanotubes (MWCNT) into a resin based on an aeronautical epoxy precursor, cured with 4,4′ diamine-dibenzylsulfone (DDS). The effect of different parameters, ultrasound intensity, number of cycles, type of blade, gears speed on the nanofiller dispersion were analyzed. The inclusion of the nanofiller in the resin causes a drastic increase in the viscosity, preventing the homogenization of the resin and a drastic increase in temperature inmore » the zones closest to the ultrasound probe. To overcome these challenges, the application of high speed agitation simultaneously with the application of ultrasonic radiation was used. This allows on the one hand a homogeneous dispersion, on the other hand an improvement of the dissipation of heat generated by ultrasonic radiation. A comprehensive study with parameters like viscosity and temperature was performed. It is necessary a balance between viscosity and temperature. Viscosity must be low enough to facilitate the dispersion and homogenization of the nanofillers, whereas the temperature cannot be too high because of re-agglomerations.« less
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1988-01-01
A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation.
Glass viscosity calculation based on a global statistical modelling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fluegel, Alex
2007-02-01
A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurementmore » and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.« less
Two-phase model for prediction of cell-free layer width in blood flow
Namgung, Bumseok; Ju, Meongkeun; Cabrales, Pedro; Kim, Sangho
2014-01-01
This study aimed to develop a numerical model capable of predicting changes in the cell-free layer (CFL) width in narrow tubes with consideration of red blood cell aggregation effects. The model development integrates to empirical relations for relative viscosity (ratio of apparent viscosity to medium viscosity) and core viscosity measured on independent blood samples to create a continuum model that includes these two regions. The constitutive relations were derived from in vitro experiments performed with three different glass-capillary tubes (inner diameter = 30, 50 and 100 μm) over a wide range of pseudoshear rates (5-300 s−1). The aggregation tendency of the blood samples was also varied by adding Dextran 500 kDa. Our model predicted that the CFL width was strongly modulated by the relative viscosity function. Aggregation increased the width of CFL, and this effect became more pronounced at low shear rates. The CFL widths predicted in the present study at high shear conditions were in agreement with those reported in previous studies. However, unlike previous multi-particle models, our model did not require a high computing cost, and it was capable of reproducing results for a thicker CFL width at low shear conditions, depending on aggregating tendency of the blood. PMID:23116701
3D printing of photocurable poly(glycerol sebacate) elastomers.
Yeh, Yi-Cheun; Highley, Christopher B; Ouyang, Liliang; Burdick, Jason A
2016-10-07
Three-dimensional (3D) printed scaffolds have great potential in biomedicine; however, it is important that we are able to design such scaffolds with a range of diverse properties towards specific applications. Here, we report the extrusion-based 3D printing of biodegradable and photocurable acrylated polyglycerol sebacate (Acr-PGS) to fabricate scaffolds with elastic properties. Two Acr-PGS macromers were synthesized with varied molecular weights and viscosity, which were then blended to obtain photocurable macromer inks with a range of viscosities. The quality of extruded and photocured scaffolds was dependent on the initial ink viscosity, with flow of printed material resulting in a loss of structural resolution or sample breaking observed with too low or too high viscosity inks, respectively. However, scaffolds with high print resolution and up to ten layers were fabricated with an optimal ink viscosity. The mechanical properties of printed scaffolds were dependent on printing density, where the scaffolds with lower printing density possessed lower moduli and failure properties than higher density scaffolds. The 3D printed scaffolds supported the culture of 3T3 fibroblasts and both spreading and proliferation were observed, indicating that 3D printed Acr-PGS scaffolds are cytocompatible. These results demonstrate that Acr-PGS is a promising material for the fabrication of elastomeric scaffolds for biomedical applications.
Liu, Chao; Li, Ying; Li, Yiwei; Chen, Peng; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng
2016-01-01
Rapid mixing of highly viscous solutions is a great challenge, which helps to analyze the reaction kinetics in viscous liquid phase, particularly to discover the folding kinetics of macromolecules under molecular crowding conditions mimicking the conditions inside cells. Here, we demonstrated a novel microfluidic mixer based on Dean flows with three-dimensional (3D) microchannel configuration for fast mixing of high-viscosity fluids. The main structure contained three consecutive subunits, each consisting of a "U"-type channel followed by a chamber with different width and height. Thus, the two solutions injected from the two inlets would undergo a mixing in the first "U"-type channel due to the Dean flow effect, and simultaneous vortices expansions in both horizontal and vertical directions in the following chamber. Numerical simulations and experimental characterizations confirmed that the micromixer could achieve a mixing time of 122.4μs for solutions with viscosities about 33.6 times that of pure water. It was the fastest micromixer for high viscosity solutions compared with previous reports. With this highly efficient 3D microfluidic mixer, we further characterized the early folding kinetics of human telomere G-quadruplex under molecular crowding conditions, and unravelled a new folding process within 550μs. Copyright © 2015 Elsevier B.V. All rights reserved.
Peterson, Donald W.; Tilling, Robert I.
1980-01-01
Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.
Opto-mechano-fluidic viscometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kewen, E-mail: khan56@illinois.edu; Zhu, Kaiyuan; Bahl, Gaurav, E-mail: bahl@illinois.edu
2014-07-07
The recent development of opto-mechano-fluidic resonators has provided—by harnessing photon radiation pressure—a microfluidics platform for the optical sensing of fluid density and bulk modulus. Here, we show that fluid viscosity can also be determined through optomechanical measurement of the vibrational noise spectrum of the resonator mechanical modes. A linear relationship between the spectral linewidth and root-viscosity is predicted and experimentally verified in the low viscosity regime. Our result is a step towards multi-frequency measurement of viscoelasticity of arbitrary fluids, without sample contamination, using highly sensitive optomechanics techniques.
Apparatus and method for measuring viscosity
Murphy, R.J. Jr.
1986-02-25
The present invention is directed to an apparatus and method for measuring the viscosity of a fluid. This apparatus and method is particularly useful for the measurement of the viscosity of a liquid in a harsh environment characterized by high temperature and the presence of corrosive or deleterious gases and vapors which adversely affect conventional ball or roller bearings. The apparatus and method of the present invention employ one or more flexural or torsional bearings to suspend a bob capable of limited angular motion within a rotatable sleeve suspended from a stationary frame. 7 figs.
Apparatus and method for measuring viscosity
Murphy, Jr., Robert J.
1986-01-01
The present invention is directed to an apparatus and method for measuring the viscosity of a fluid. This apparatus and method is particularly useful for the measurement of the viscosity of a liquid in a harsh environment characterized by high temperature and the presence of corrosive or deleterious gases and vapors which adversely affect conventional ball or roller bearings. The apparatus and method of the present invention employ one or more flexural or torsional bearings to suspend a bob capable of limited angular motion within a rotatable sleeve suspended from a stationary frame.
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink.
Colosi, Cristina; Shin, Su Ryon; Manoharan, Vijayan; Massa, Solange; Costantini, Marco; Barbetta, Andrea; Dokmeci, Mehmet Remzi; Dentini, Mariella; Khademhosseini, Ali
2016-01-27
A novel bioink and a dispensing technique for 3D tissue-engineering applications are presented. The technique incorporates a coaxial extrusion needle using a low-viscosity cell-laden bioink to produce highly defined 3D biostructures. The extrusion system is then coupled to a microfluidic device to control the bioink arrangement deposition, demonstrating the versatility of the bioprinting technique. This low-viscosity cell-responsive bioink promotes cell migration and alignment within each fiber organizing the encapsulated cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Mokhtari, Simin
1990-01-01
For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.
From RHIC to LHC: Lessons on the QGP
NASA Astrophysics Data System (ADS)
Heinz, Ulrich
2011-10-01
Recent data from heavy-ion collisions at RHIC and LHC, together with significant advances in theory, have allowed us to make significant first steps in proceeding from a qualitative understanding of high energy collision dynamics to a quantitative characterization of the transport properties of the hot and dense QCD matter created in these collisions. The almost perfectly liquid nature of the Quark-Gluon Plasma (QGP) created at RHIC has recently also been confirmed at the much higher LHC energies, and we can now constrain the specific QGP shear viscosity (η / s) QGP to within a factor of 2.5 of its conjectured lower quantum bound. Viscous hydrodynamics, coupled to a microscopic hadron cascade at late times, has proven to be an extremely successful and highly predictive model for the QGP evolution at RHIC and LHC. The experimental discovery of higher order harmonic flow coefficients and their theoretically predicted differential sensitivity to shear viscosity promises additional gains in precision by about a factor 5 in (η / s) QGP for the very near future. The observed modification of jets and suppression of high-pT hadrons confirms the picture of the QGP as a strongly coupled colored liquid, and recent LHC data yield strong constraints on parton energy loss models, putting significant strain on some theoretical approaches, tuned to RHIC data, that are based on leading-order perturbative QCD. Thermal photon radiation provides important cross-checks on the early stages of dynamical evolution models and constrains the initial QGP temperature, but the recently measured strong photon elliptic flow challenges our present understanding of photon emission rates in the hadronic phase. Recent progress in developing a complete theoretical model for all stages of the QGP fireball expansion, from strong fluctuating gluon fields at its beginning to final hadronic freeze-out, and remaining challenges will be discussed. Work supported by DOE (grants DE-SC0004286 and DE-SC0004104 (JET Collaboration)).
Field emission electric propulsion thruster modeling and simulation
NASA Astrophysics Data System (ADS)
Vanderwyst, Anton Sivaram
Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the current and the mass efficiency are interrelated. The numerical simulations indicate that more electric power per Newton of thrust on a narrow needle with a thin, high surface tension fluid layer gives better performance.
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd M.
2017-02-01
The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.
Sharma, Vikas K.; Patapoff, Thomas W.; Kabakoff, Bruce; Pai, Satyan; Hilario, Eric; Zhang, Boyan; Li, Charlene; Borisov, Oleg; Kelley, Robert F.; Chorny, Ilya; Zhou, Joe Z.; Dill, Ken A.; Swartz, Trevor E.
2014-01-01
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. PMID:25512516
NASA Astrophysics Data System (ADS)
Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.
2016-12-01
Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in boudinage of the whole crust, which generates significant upward flow from the buoyant asthenosphere.
Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
Chen, Longquan; Bonaccurso, Elmar
2014-08-01
In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.
Flow properties of liquid crystal phases of the Gay-Berne fluid
NASA Astrophysics Data System (ADS)
Sarman, Sten
1998-05-01
We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.
Nanoscale Origin of the Dichotimous Viscosity-Pressure Behavior in Silicate Melts
NASA Astrophysics Data System (ADS)
Wang, Y.; Sakamaki, T.; Skiner, L.; Jing, Z.; Yu, T.; Kono, Y.; Park, C.; Shen, G.; Rivers, M. L.; Sutton, S. R.
2013-12-01
A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates physical properties such as viscosity and density. While viscosity of depolymerized silicate melts increases with pressure consistent with free volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3 - 5 GPa, above which it turns over to normal (positive) pressure dependence. We conducted high-pressure melt structure studies along the jadeite (Jd) - diopside (Di) join, using a Paris-Edinburgh Press at the HPCAT beamline 16-BM-B and measured Jd melt density using a DIA type apparatus based on x-ray absorption at GSECARS beamline 13-BM-D. Structures of polymerized (Jd and Jd50Di50) and depolymerized (Di) melts show distinct responses to pressure. For Jd melt, T-O, T-T bond lengths (where T denotes tetrahedrally coordinated Al and Si) and T-O-T angle all exhibit rapid, sometimes non-linear decrease with increasing pressure to ~3 GPa. For Di melt, these parameters vary linearly with pressure and change very little. Molecular dynamics calculations, constrained by the x-ray structural data, were employed to examine details of structural evolution in polymerized and depolymerized liquids. A structural model is developed to link structural evolution to changes in melt properties, such as density and viscosity, with pressure. We show that the pressure of the viscosity turnover corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in continual breakup of tetrahedral connectivity and viscosity decrease. Above the turnover pressure, Si and Al coordination increases to allow further packing, with increasing viscosity. This structural response prescribes the distribution of melt viscosity and density with depth, and may be the main controlling factor for magma transport rates in terrestrial planetary interiors.
Cantu, David C.; Lee, Juntaek; Lee, Mal -Soon; ...
2016-03-28
The deployment of transformational non-aqueous CO 2-capture solvent systems is encumbered by high viscosity even at intermediate uptakes. Using single-molecule CO 2 binding organic liquids as a prototypical example, we identify the key molecular features controlling bulk liquid viscosity and CO 2 uptake kinetics. Fast uptake kinetics arise from close proximity of the alcohol and amine sites that are involved in CO 2 binding. This process results in the concerted formation of a Zwitterion containing both an alkylcarbonate and a protonated amine. The hydrogen bonding between the two functional groups ultimately determines the solution viscosity. Based on molecular simulation, thismore » work reveals options to significantly reduce viscosity with molecular modifications that shift the proton transfer equilibrium towards a neutral acid/amine species as opposed to the ubiquitously accepted Zwitterionic state. Lastly, the molecular design concepts proposed here, for the alkyl-carbonate systems, are readily extensible to other CO 2 capture technologies, such as the carbamate- or imidazole-based solvent chemistries.« less
NASA Astrophysics Data System (ADS)
Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan
2017-11-01
Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.
Steady Shear Viscosities of Two Hard Sphere Colloidal Dispersions
NASA Astrophysics Data System (ADS)
Cheng, Zhengdong; Chaikin, Paul M.; Phan, See-Eng; Russel, William B.; Zhu, Jixiang
1996-03-01
Though hard spheres have the simplest inter-particle potential, the many body hydrodynamic interactions are complex and the rheological properties of dispersions are not fully understood in the concentrated regime. We studied two model systems: colloidal poly-(Methyl Methacrylate) spheres with a grafted layer of poly-(12-hydroxy stearic acid) (PMMA/PHSA) and spherical Silica particles (PST-5, Nissan Chemical Industries, Ltd, Tokyo, Japan). Steady shear viscosities were measured by a Zimm viscometer. The high shear relative viscosity of the dispersions compares well with other hard sphere systems, but the low shear relative viscosity of PMMA/PHSA dispersions is η / η 0 = 50 at φ = 0.5 , higher than η / η 0 = 22 for other hard sphere systems, consistent with recently published data (Phys. Rev. Lett. 75(1995)958). Bare Silica spheres are used to clarify the effect of the grafted layer. With the silica spheres, volume fraction can be determined independent of intrinsic viscosity measurements; also, higher concentrated dispersions can be made.
Spiders Tune Glue Viscosity to Maximize Adhesion.
Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali
2015-11-24
Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.
The Brittle-Ductile Transition in Crystal and Bubble-bearing Magmas
NASA Astrophysics Data System (ADS)
Caricchi, L.; Pistone, M.; Cordonnier, B.; Tripoli, B.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.
2011-12-01
The strain response of magma is critically dependent upon its viscosity, the magnitude of the applied stress and the experimental time-scale. The brittle-ductile transition in pure silicate melts is expected for an applied stress approaching 108±0.5 Pa (Dingwell, 1997). However, magmas are mostly mixture of crystal and bubble-bearing silicate melts. To date, there are no data to constrain the ductile-brittle transition for three-phase magmas. Thus, we conducted consistent torsion experiments at high temperature (673-973 K) and high pressure (200 MPa), in the strain rate range 1*10-5-4*10-3 s-1, using a HT-HP internally-heated Paterson-type rock deformation apparatus. The samples are composed of hydrous haplogranitic glass, quartz crystals (24-65 vol%) and CO2-rich gas-pressurized bubbles (9-12 vol%). The applied strain rate was increased until brittle failure occurred; micro-fracturing and healing processes commonly occurred before sample macroscopic fracturing. The experimental results highlight a clear relationship between the effective viscosity of the three-phase magmas, strain rate, temperature and the onset of brittle-ductile behavior. Crystal- and bubble-free melts at high viscosity (1011-1011.6 Pa*s at 673 K) show brittle behavior in the strain rate range between 1*10-4 and 5*10-4 s-1. For comparable viscosities crystal and bubble-bearing magmas show a transition to brittle behavior at lower strain rates. Synchrotron-based 3D imaging of fractured samples, show the presence of fractures with an antithetic trend with respect to shear strain directions. The law found in this study expresses the transition from ductile to brittle behavior for real magmas and could significantly improve our understanding of the control of brittle processes on extrusion of high-viscosity magmas and degassing at silicic volcanoes.
Dynamics and structures of transitional viscoelastic turbulence in channel flow
NASA Astrophysics Data System (ADS)
Shekar, Ashwin; Wang, Sung-Ning; Graham, Michael
2017-11-01
Introducing a trace amount of polymer into turbulent flows can result in a substantial reduction of drag. However, the mechanism is not fully understood at high levels of drag reduction. In this work we perform direct numerical simulations (DNS) of viscoelastic channel flow turbulence using a scheme that guarantees the positive-definiteness of polymer conformation tensor without artificial diffusion. Here we present the results of two parametric studies with the bulk Reynolds number fixed at 2000. First, the Weissenberg number (Wi) is kept at 100 and we vary the viscosity ratio (ratio ratio of the solvent viscosity and the total viscosity). Maximum drag reduction (MDR) is observed with viscosity ratio <0.95. As we decrease the viscosity ratio, i.e. increase polymer concentration, the mean velocity profile is almost invariant. However, this is accompanied by a decrease in velocity fluctuations but the flow stays turbulent. Turbulent kinetic energy budget analysis shows that, in this parameter regime, polymer becomes the major source of velocity fluctuations, replacing the energy transfer from the mean flow. In the second study, we fix the viscosity ratio at 0.95 and trace the Wi up to this regime and present the accompanying changes in flow quantities and structures.
Optimization of enzymatic hydrolysis of guar gum using response surface methodology.
Mudgil, Deepak; Barak, Sheweta; Khatkar, B S
2014-08-01
Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.
Influence of solution properties in the laser forward transfer of liquids
NASA Astrophysics Data System (ADS)
Dinca, V.; Patrascioiu, A.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.
2012-09-01
The influence of the viscosity of the printed solution on the laser-induced forward transfer (LIFT) of liquids is investigated. A set of water and glycerol mixtures with different glycerol content are prepared with the aim of having a collection of solutions covering a wide range of viscosities, from 1.9 to 850 mPa s. Arrays of micrometric droplets of those solutions are spotted through LIFT and characterized by means of optical microscopy, revealing that for all the analyzed solutions there always exists a range of laser fluences leading to the formation of regular circular droplets, with that range increasing and widening with viscosity. The dynamics of liquid ejection is investigated through time-resolved imaging with the aim of understanding the role of viscosity in the process, and its influence on the morphology of the deposited droplets. The acquired stop-action movies reveal that liquid transfer proceeds mainly through jetting, with the exception of LIFT at low viscosities and high laser fluences, in which bursting develops. From this study it is concluded that viscosity plays an important role in the stabilization of liquid ejection and transport, which contributes to the uniformity of the deposited droplets.
Canine gastric emptying of fiber meals: influence of meal viscosity and antroduodenal motility.
Russell, J; Bass, P
1985-12-01
Dietary fibers such as psyllium and guar gum have been shown to delay the gastric emptying of liquids and solids, presumably due to an increase in meal viscosity. For liquid test meals containing fats, delayed gastric emptying is associated with a reversal of the usual antral-to-duodenal contractile gradient. The present studies were performed to determine whether the gastric emptying of increasingly viscous psyllium and guar gum meals was associated with antroduodenal motility changes. Dogs were surgically fitted with mid-duodenal cannulas for the measurement of gastric emptying. Strain-gauge force transducers were used to monitor antral and duodenal contractile responses to the test meals. Low-viscosity fiber meals emptied from the stomach rapidly (E 1/2 approximately 10 min) compared with the high-viscosity meals (E 1/2 approximately 40 min). None of the test meals stimulated antral or duodenal motility despite differences in gastric emptying time. Other motor parameters such as the time of reappearance and the duration of the burst interval were also unchanged. We conclude a) as test meals' fiber content and viscosity increase, gastric emptying is slowed; and b) viscosity-related delays in gastric emptying are not due to an effect on postprandial antroduodenal motility.
NASA Astrophysics Data System (ADS)
Moghadasi, Jalil; Yousefi, Fakhri; Papari, Mohammad Mehdi; Faghihi, Mohammad Ali; Mohsenipour, Ali Asghar
2009-09-01
It is the purpose of this paper to extract unlike intermolecular potential energies of five carbon dioxide-based binary gas mixtures including CO2-He, CO2-Ne, CO2-Ar, CO2-Kr, and CO2-Xe from viscosity data and compare the calculated potentials with other models potential energy reported in literature. Then, dilute transport properties consisting of viscosity, diffusion coefficient, thermal diffusion factor, and thermal conductivity of aforementioned mixtures are calculated from the calculated potential energies and compared with literature data. Rather accurate correlations for the viscosity coefficient of afore-cited mixtures embracing the temperature range 200 K < T < 3273.15 K is reproduced from the present unlike intermolecular potentials energy. Our estimated accuracies for the viscosity are to within ±2%. In addition, the calculated potential energies are used to present smooth correlations for other transport properties. The accuracies of the binary diffusion coefficients are of the order of ±3%. Finally, the unlike interaction energy and the calculated low density viscosity have been employed to calculate high density viscosities using Vesovic-Wakeham method.
On the self-preservation of turbulent jet flows with variable viscosity
NASA Astrophysics Data System (ADS)
Danaila, Luminita; Gauding, Michael; Varea, Emilien; Turbulence; mixing Team
2017-11-01
The concept of self-preservation has played an important role in shaping the understanding of turbulent flows. The assumption of complete self-preservation imposes certain constrains on the dynamics of the flow, allowing to express one-point or two-point statistics by choosing an appropriate unique length scale. Determining this length scale and its scaling is of high relevance for modeling. In this work, we study turbulent jet flows with variable viscosity from the self-preservation perspective. Turbulent flows encountered in engineering and environmental applications are often characterized by fluctuations of viscosity resulting for instance from variations of temperature or species composition. Starting from the transport equation for the moments of the mixture fraction increment, constraints for self-preservation are derived. The analysis is based on direct numerical simulations of turbulent jet flows where the viscosity between host and jet fluid differs. It is shown that fluctuations of viscosity do not affect the decay exponents of the turbulent energy or the dissipation but modify the scaling of two-point statistics in the dissipative range. Moreover, the analysis reveals that complete self-preservation in turbulent flows with variable viscosity cannot be achieved. Financial support from Labex EMC3 and FEDER is gratefully acknowledged.
The effect of medium viscosity on kinetics of ATP hydrolysis by the chloroplast coupling factor CF1.
Malyan, Alexander N
2016-05-01
The coupling factor CF1 is a catalytic part of chloroplast ATP synthase which is exposed to stroma whose viscosity is many-fold higher than that of reaction mixtures commonly used to measure kinetics of CF1-catalyzed ATP hydrolysis. This study is focused on the effect of medium viscosity modulated by sucrose or bovine serum albumin (BSA) on kinetics of Ca(2+)- and Mg(2+)-dependent ATP hydrolysis by CF1. These agents were shown to reduce the maximal rate of Ca(2+)-dependent ATPase without changing the apparent Michaelis constant (К m), thus supporting the hypothesis on viscosity dependence of CF1 activity. For the sulfite- and ethanol-stimulated Mg(2+)-dependent reaction, the presence of sucrose increased К m without changing the maximal rate that is many-fold as high as that of Ca(2+)-dependent hydrolysis. The hydrolysis reaction was shown to be stimulated by low concentrations of BSA and inhibited by its higher concentrations, with the increasing maximal reaction rate estimated by extrapolation. Sucrose- or BSA-induced inhibition of the Mg(2+)-dependent ATPase reaction is believed to result from diffusion-caused deceleration, while its BSA-induced stimulation is probably caused by optimization of the enzyme structure. Molecular mechanisms of the inhibitory effect of viscosity are discussed. Taking into account high protein concentrations in the chloroplast stroma, it was suggested that kinetic parameters of ATP hydrolysis, and probably those of ATP synthesis in vivo as well, must be quite different from measurements taken at a viscosity level close to that of water.
Computing the Viscosity of Supercooled Liquids: Markov Network Model
Li, Ju; Kushima, Akihiro; Eapen, Jacob; Lin, Xi; Qian, Xiaofeng; Mauro, John C.; Diep, Phong; Yip, Sidney
2011-01-01
The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-equation description in which the system follows a transition-state pathway trajectory of hopping among local energy minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative connection is established between the temperature variation of the calculated viscosity and the underlying potential energy and inherent stress landscape, showing a different landscape topography or “terrain” is needed for low-temperature viscosity (of order 107 Pa·s) from that associated with high-temperature viscosity (10−5 Pa·s). Within this range our results clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this work explicitly demonstrates that a temperature-dependent “terrain” characterizing different parts of the same potential energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-dependent effective activation barrier is quantified. PMID:21464988
Singh, Lokendra P.; Issenmann, Bruno; Caupin, Frédéric
2017-01-01
The anomalous decrease of the viscosity of water with applied pressure has been known for over a century. It occurs concurrently with major structural changes: The second coordination shell around a molecule collapses onto the first shell. Viscosity is thus a macroscopic witness of the progressive breaking of the tetrahedral hydrogen bond network that makes water so peculiar. At low temperature, water at ambient pressure becomes more tetrahedral and the effect of pressure becomes stronger. However, surprisingly, no data are available for the viscosity of supercooled water under pressure, in which dramatic anomalies are expected based on interpolation between ambient pressure data for supercooled water and high pressure data for stable water. Here we report measurements with a time-of-flight viscometer down to 244K and up to 300MPa, revealing a reduction of viscosity by pressure by as much as 42%. Inspired by a previous attempt [Tanaka H (2000) J Chem Phys 112:799–809], we show that a remarkably simple extension of a two-state model [Holten V, Sengers JV, Anisimov MA (2014) J Phys Chem Ref Data 43:043101], initially developed to reproduce thermodynamic properties, is able to accurately describe dynamic properties (viscosity, self-diffusion coefficient, and rotational correlation time) as well. Our results support the idea that water is a mixture of a high density, “fragile” liquid, and a low density, “strong” liquid, the varying proportion of which explains the anomalies and fragile-to-strong crossover in water. PMID:28404733
NASA Astrophysics Data System (ADS)
Yu, T.; Long, H.; Young, C.; Wang, L.; Chen, J.
2005-12-01
From previous experimental and theoretical studies, sulfur has been considered one of the possible light elements in the core that might be responsible for the large density deficit when compared with the theoretical pure Fe core (Ganapathy and Anders, 1974; Ahrens and Jeanloz, 1987). Therefore, understanding the physical properties of liquid FeS will help us reveal the details of the Earth?|s core. This study focused on the liquid state of sulfur in iron due to sulfur?|s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5 wt% ~10 wt% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Modern development of the multi-anvil high pressure apparatus limits the pressure range of the experiments (<30 GPa). It is somewhat low if comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (>130 GPa) has to be applied, and may produce results that are far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the liquid-phase FeS at relatively low pressures still provides us a better picture of the physical behavior of the outer core comparing with data derived from solid state FeS experiments. Pervious studies on the viscosity of the Fe-FeS system (LeBlanc and Secco, 1996; Dobson et al., 2000; Urakawa et al., 2001; Secco et al., 2002) have presented different values of viscosity numbers with a maximum difference of two orders of magnitude. We have conducted the density measurements of liquid FeS (~36 wt% of S) up to 5.6 GPa in pressure and 1673K in temperature using the in-situ synchrotron-source x-ray absorption setup at Beamline X17B2, NSLS. The viscosity measurements were conducted by the x-ray radiograph technique combined with the falling sphere method. The falling sphere method applied at the experiment is suitable for liquids with viscosities between 10-3 Pa-s and 105 Pa-s (LeBlanc et al., 1999). We used tungsten spheres in our viscosity measurement experiments. We analyzed the sphere falling motion in the sample chamber at high pressure and high temperature. And by applying our density compression curve of liquid FeS to the Stokes?| viscometry method, we were able to derive the viscosity of liquid FeS.
Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.
Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin
2014-02-01
A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance.
External fuel vaporization study, phase 2
NASA Technical Reports Server (NTRS)
Szetela, E. J.; Chiappetta, L.
1981-01-01
An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.
Shear flow simulations of biaxial nematic liquid crystals
NASA Astrophysics Data System (ADS)
Sarman, Sten
1997-08-01
We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.
Viscosity effects in wind wave generation
NASA Astrophysics Data System (ADS)
Paquier, A.; Moisy, F.; Rabaud, M.
2016-12-01
We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier et al. [A. Paquier et al., Phys. Fluids 27, 122103 (2015), 10.1063/1.4936395] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the free-surface synthetic schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkle regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as ν-1 /2u*3 /2 over nearly the whole range of viscosities, whereas their size is essentially unchanged. We propose a simple model for this scaling, which compares well with the data. We show that the critical friction velocity u* for the onset of regular waves slowly increases with viscosity as ν0.2. Whereas the transition between wrinkles and waves is smooth at low viscosity, including for water, it becomes rather abrupt at high viscosity. A third wave regime is found at ν >(100 -200 ) ×10-6m2s-1 , characterized by a slow, nearly periodic emission of large-amplitude isolated fluid bumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Truex, Michael J.
Xanthan gum, a biopolymer, forms shear thinning fluids which can be used as delivery media to improve the distribution of remedial amendments injected into heterogeneous subsurface environments. The rheological behavior of the shear thinning solution needs to be known to develop an appropriate design for field injection. In this study, the rheological properties of xanthan gum solutions were obtained under various chemical and environmental conditions relevant to delivery of remedial amendments to groundwater. Higher xanthan concentration raised the absolute solution viscosity and increased the degree of shear thinning. Addition of remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) caused themore » dynamic viscosity of xanthan gum to decrease, but the solutions maintained shear-thinning properties. Use of simple salt (e.g. Na+, Ca2+) to increase the solution ionic strength also decreased the dynamic viscosity of xanthan and the degree of shear thinning, although the effect is a function of xanthan gum concentration and diminished as the xanthan gum concentration was increased. At high xanthan concentration, addition of salt to the solution increased dynamic viscosity. In the absence of sediments, xanthan gum solutions maintain their viscosity properties for months. However, xanthan gum solutions were shown to lose dynamic viscosity over a period of days to weeks when contacted with saturated site sediment. Loss of viscosity is attributed to physical and biodegradation processes.« less
Hall viscosity and electromagnetic response of electrons in graphene
NASA Astrophysics Data System (ADS)
Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni
The Hall viscosity is a dissipationless component of the viscosity tensor of an electron liquid with broken time- reversal symmetry, such as a two-dimensional electron gas (2DEG) in the quantum Hall state. Similar to the Hall conductivity, the Hall viscosity is an anomalous transport coefficient; however, while the former is connected with the current response, the latter stems from the stress response to a geometric deformation. For a Galilean-invariant system such as 2DEG, the current density is indeed the generator of the geometric deformation: therefore a connection between the Hall connectivity and viscosity is expected and by now well established. In the case of graphene, a non-Galilean-invariant system, the existence of such a connection is far from obvious, as the current operator is essentially different from the momentum operator. In this talk, I will first present our results of the geometric Hall viscosity of electrons in single-layer graphene. Then, from the expansion of the nonlocal Hall conductivity for small wave vectors, I demonstrate that, in spite of the lack of Galilean invariance, an effective mass can be defined such that the relationship between the Hall conductivity and the viscosity retains the form it has in Galilean-invariant systems, not only for a large number of occupied Landau levels, but also, with very high accuracy, for the undoped system.
Accurate high-speed liquid handling of very small biological samples.
Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F
1993-08-01
Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.
Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert
2016-01-01
We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866
Gas Bubble Pinch-off in Viscous and Inviscid Liquids
NASA Astrophysics Data System (ADS)
Taborek, P.
2005-11-01
We have used high-speed video to analyze pinch-off of nitrogen gas bubbles in fluids with a wide range of viscosity. If the external fluid is highly viscous (ηext>100 cP), the radius is proportional to the time before break, τ, and decreases smoothly to zero. If the external fluid has low viscosity (ηext<10 cP), the neck radius scales as &1/2circ; until an instability develops in the gas bubble which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an intermediate range, an elongated thread is formed which breaks apart into micron-sized bubbles. 100,000 frame-per-second videos will be presented which illustrate each of these flow regimes.
Does low post-perovskite viscosity have an effect on structures at the core-mantle boundary ?
NASA Astrophysics Data System (ADS)
Nakagawa, T.; Tackley, P. J.; Ammann, M. W.; Brodholt, J. P.; Dobson, D.
2009-12-01
According to recent high pressure experiments [e.g. Yamazaki et al., 2006], viscosity determination using geoid fitting [Tosi et al., 2009], and new ab initio DFT calculations [Ammann et al., 2009], the viscosity of the post-perovskite phase may be lower than the viscosity of the perovskite by up to 2-3 orders of magnitude. Both activation enthalpy and the pre-exponential factor in the viscosity law are expected to be different. Here we implement phase-dependent viscosity into 3-D spherical shell, thermo-chemical mantle convection model, to investigate an effect of low post-perovskite viscosity and its influence on the heterogeneous structures in the core-mantle boundary region, including lateral variations in heat flux across the core-mantle boundary. Rheological parameters are taken from first principle calculations for perovskite [Ammann et al., 2009] plus new calculations for post-perovskite, with post-perovskite viscosity being up to three orders of magnitude lower. A major finding from our simulations is that low PPV viscosity increases the lateral heterogeneity in CMB heat flux and stabilizes compositionally-dense anomalies by basaltic material above the CMB. In order to understand the relationship between local heat flux and seismic anomaly near the core-mantle boundary, the results of these mantle convection simulations are used to expand the simple theory for the scaling relationship between CMB heat flux and seismic anomalies found in our recent paper [Nakagawa and Tackley, 2008]. Stabilizing the dense piles above the CMB by low post-perovskite viscosity effects can explain the current inference of thermo-chemical-phase structures from both seismology and mineral physics . Here we also try to determine how seismic anomalies can predict heat flux across the CMB from our modeling results. References Ammann, M., J. P. Brodholt and D. P. Dobson, PCM, doi:10.1007/s00269-008-0265-z, 2009. Nakagawa, T., and P. J. Tackley, EPSL, 271, 348-358, 2008.
Experimental Investigation of the Viscosity of Iron-rich Silicate Melts under Pressure
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Lesher, C. E.; Pommier, A.; O'Dwyer Brown, L.
2017-12-01
The transport properties of silicate melts govern diffusive flow of momentum, heat, and mass in the interior of terrestrial planets. In particular, constraining melt viscosity is critical for dynamic modeling of igneous processes and is thus key to our understanding of magma convection and mixing, melt migration in the mantle, and crystal-liquid fractionation. Among the different constituents of silicate melts, iron is of significant importance as it highly influences some of their properties, such as surface tension, compressibility, and density. We present an experimental study of the viscosity of natural and synthetic iron-rich silicate melts under pressure. In situ falling-sphere measurements of viscosity have been conducted on hedenbergite (CaFeSi2O6) and iron-rich peridotite melts from 1 to 7 GPa and at temperatures between 1750 and 2100 K, using the multi-anvil apparatus at the GSECARS beamline at the Advanced Photon Source, Argonne National Lab. We used double reservoir capsules, with the bottom reservoir containing the sample, while a more refractory material is placed in the upper reservoir (e.g., diopside, enstatite, forsterite). This configuration allows the fall of two rhenium spheres across the sample at different temperatures. Melt viscosity is calculated using Stokes' law and the terminal velocity of the spheres. We observe that melt viscosity slightly decreases with increasing temperature and increasing pressure: for instance, the viscosity of the hedenbergite melt decreases from 1.26 Pa•s to 0.43 Pa•s over the 1 - 3.5 GPa pressure range and between 1820 and 1930 K. Our experimental data are used to develop a viscosity model of iron-rich silicate melts under pressure. Results will be compared with previous viscosity works on iron-free and iron-bearing silicate liquids in order to discuss the effect of iron on melt viscosity and structure at pressure and temperature conditions relevant to terrestrial mantles.
Viscosity of ammonia at high temperature and pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, S.B.K.; Storvick, T.S.
1979-04-01
The viscosity of ammonia on five isotherms in the temperature range 448 to 598 K and pressures to 121 bar are reported. The measurements were made in a steady-state, capillary flow viscometer. The measurements are estimated to be accurate to better than 0.4% over the full range. 5 figures, 1 table.
Release adiabat measurements on minerals: The effect of viscosity
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Ahrens, T. J.
1979-01-01
The current inversion of pressure-particle velocity data for release from a high pressure shock state to a pressure-density path is analyzed. It is assumed that the release process is isentropic. It was shown that for geological materials below stresses of 150 GPa, the effective viscosity must be 1000 kg/m/s in order that the viscous (irreversible) work carried out on the material in the shock state remains small compared to the mechanical work recovered upon adiabatic rarefaction. The available data pertaining to the offset of the Rayleigh line from the Hugoniot for minerals, the magnitude of the shear stress in the high pressure shock state for minerals, and the direct measurements of the viscosities of several engineering materials shocked to pressures below 150 GPa yield effective viscosities of 1000 kg/m/s or less. An inferance that this indicates that the conditions for isentropic release of minerals from shock states are achieved, and a conclusion that the application of the Riemann integral to obtain pressure-density states along the release adiabats of minerals in shock experiments is valid are made.
Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan
2014-11-14
Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.
Computational comparison of high and low viscosity micro-scale droplets splashing on a dry surface
NASA Astrophysics Data System (ADS)
Boelens, Arnout; Latka, Andrzej; de Pablo, Juan
2015-11-01
Depending on viscosity, a droplet splashing on a dry surface can splash immediately upon impact, a so called prompt splash, or after initially spreading on the surface, a late splash. One of the open questions in splashing is whether the mechanism behind both kinds of splashing is the same or not. Simulation results are presented comparing splashing of low viscosity ethanol with high viscosity silicone oil in air. The droplets are several hundred microns large. The simulations are 2D, and are performed using a Volume Of Fluid approach with a Finite Volume technique. The contact line is described using the Generalized Navier Boundary Condition. Both the gas phase and the liquid phase are assumed to be incompressible. The results of the simulations show good agreement with experiments. Observations that are reproduced include the effect of reduced ambient pressure suppressing splashing, and the details of liquid sheet formation and breakup. While the liquid sheet ejected in an early splash breaks up at its far edge, the liquid sheet ejected in a late splash breaks up close to the droplet.
NASA Astrophysics Data System (ADS)
Pramudita, Ria Ayu; Ryoo, Won Sun
2016-08-01
Apparent viscosities of CO2-in-water foams were measured in a wide range of shear rate from 50 to 105 inverse second for enhanced oil recovery (EOR) application. The CO2-in-water dispersions, made of 50:50 weight proportions of CO2 and water with 1 wt.% surfactant concentration, were prepared in high-pressure recirculation apparatus under pressure where CO2 density becomes 0.7, 0.8, and 0.9 g/mL at each temperature of 35, 45, and 55°C. The surfactants used for the foam generation were sodium dodecyl polypropoxy sulfates with average propoxylation degrees of 4.7 and 6.2. The foam viscosity showed shear thinning behaviors with power-law indices ranging from 0.80 to 0.85, and approached a Newtonian regime in the lower shear rate range at several tens of inverse second. Zero-shear viscosity values projected from experimental data based on Ellis model were as high as 57.4 mPa·s and enough to control the mobility of water and CO2 in oil reservoirs.
High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes
NASA Astrophysics Data System (ADS)
Thomas, Michele Moisio; Drickamer, H. G.
1981-03-01
High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.
Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin
2015-05-18
The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glassmore » network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.« less
High-Viscosity Oil Filtration in the Pool Under Thermal Action
NASA Astrophysics Data System (ADS)
Shagapov, V. Sh.; Yumagulova, Yu. A.; Gizzatullina, A. A.
2018-05-01
We have developed a mathematical model and constructed numerical solutions of the problem of heating a high-viscosity oil pool through one horizontal well or a system of wells and have shown the possibility of their further operation until the limiting profitable discharge of oil is attained. The expenditure of heat in heating the oil pool, the evolution of discharge of oil, and the mass of extracted oil over the considered period have been considered.
Estimating the Kinematic Viscosity of Petroleum Fractions
NASA Astrophysics Data System (ADS)
AlMulla, Hessa A.; Albahri, Tareq A.
2017-04-01
Kinematic viscosity correlation has been developed for liquid petroleum fractions at 37.78°C and 98.89°C (100 and 210°F) standard temperatures using a large variety of experimental data. The only required inputs are the specific gravity and the average boiling point temperature. The accuracy of the correlation was compared with several other correlations available in the literature. The proposed correlations proved to be more accurate in predicting the viscosity at 37.78°C and 98.89°C with average absolute deviations of 0.39 and 0.72 mm2/s, respectively. Another objective was to develop a relation for the variation of viscosity with temperature to predict the viscosity of petroleum fraction at a certain temperature from the knowledge of the viscosity for the same liquid at two other temperatures. The newly developed correlation represents a wide array of temperatures from 20°C to 150°C and viscosities from 0.14 mm2/s to 343.64 mm2/s. The results have been validated with experimental data consisting of 9558 data points, yielding an overall deviation of 0.248 mm2/s and R2 of 0.998. In addition, new formulas were developed to interconvert the viscosity of petroleum fractions from one unit of measure to another based on finding the best fit for a set of experimental data from the literature with R2 as high as 1.0 for many cases. Detailed analysis showed good agreement between the predicted values and the experimental data.
Soleimani, Sajjad; Dubini, Gabriele; Pennati, Giancarlo
2014-10-01
According to a number of clinical studies, coronary aspiration catheters are useful tools to remove a thrombus (blood clot) blocking a coronary artery. However, these thrombectomy devices may fail to remove the blood clot entirely. Few studies have been devoted to a systematic analysis of factors affecting clot aspiration. The geometric characteristics of the aspiration catheter, the physical properties of the thrombus, and the applied vacuum pressure are crucial parameters. In this study, the aspiration of a blood clot blocking a coronary bifurcation is computationally simulated. The clot is modeled as a highly viscous fluid, and a two-phase (blood and clot) problem is solved. The effects of geometric variations in the tip of the coronary catheter, including lateral hole size and location, are investigated considering different aspiration pressures and clot viscosities. A Bird-Carreau model is adopted for blood viscosity, while a power law model is used to describe the clot rheology. Computational results for blood clot aspiration show that the presence of holes in the lateral part of the tip of the catheter can be beneficial depending on clot viscosity, hole features, and applied aspiration pressure. In general, the holes are beneficial when the clot viscosity is low, while aspiration catheters without any extra lateral holes exhibit better performance for higher clot viscosity. However, when higher aspiration pressures are applied, the catheters tend to behave relatively similarly in removing clots with various viscosities, reducing the role of the clot viscosity. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Effect of renal replacement therapy on viscosity in end-stage renal disease patients.
Feriani, M; Kimmel, P L; Kurantsin-Mills, J; Bosch, J P
1992-02-01
Viscosity, an important determinant of microcirculatory hemodynamics, is related to hematocrit (HCT), and may be altered by renal failure or its treatment. To assess these factors, we studied the effect of dialysis on the viscosity of whole blood, plasma, and reconstituted 70% HCT blood of eight continuous ambulatory peritoneal dialysis (CAPD) and nine hemodialysis (HD) patients under steady shear flow conditions at different shear rates, before and after dialysis, compared with nine normal subjects. The density of the red blood cells (RBCs), a marker of cell hydration, was measured in HD patients by a nonaqueous differential floatation technique. Whole blood viscosity was higher in controls than patients, and correlated with HCT before treatment (P less than 0.05) at shear rates of 11.5 to 230 s-1) in HD patients, and 23 to 230 s-1 in all end-stage renal disease (ESRD) patients. In contrast, whole blood viscosity correlated with HCT in CAPD patients only at the lowest shear rates (2.3 and 5.75 s-1, P less than 0.05). Plasma viscosity was higher in CAPD patients than both HD patients before treatment and controls (P less than 0.05, analysis of variance [ANOVA]), despite lower plasma total protein, albumin, and similar fibrinogen concentration compared with HD patients. When all samples were reconstituted to 70% HCT, CAPD patients had higher whole blood viscosity than control subjects'. The high HCT blood viscosity of the ESRD patients was higher than control subjects' at capillary shear rates, suggesting increased RBC aggregation and decreased RBC deformability in patients with renal disease.(ABSTRACT TRUNCATED AT 250 WORDS)
Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V
2012-09-19
Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.
NASA Technical Reports Server (NTRS)
Pearson, W. E.
1974-01-01
The viscosity and thermal conductivity of nitrogen gas for the temperature range 5 K - 135 K have been computed from the second Chapman-Enskog approximation. Quantum effects, which become appreciable at the lower temperatures, are included by utilizing collision integrals based on quantum theory. A Lennard-Jones (12-6) potential was assumed. The computations yield viscosities about 20 percent lower than those predicted for the high end of this temperature range by the method of corresponding states, but the agreement is excellent when the computed values are compared with existing experimental data.
Can a grain size-dependent viscosity help yielding realistic seismic velocities of LLSVPs?
NASA Astrophysics Data System (ADS)
Schierjott, J.; Cheng, K. W.; Rozel, A.; Tackley, P. J.
2017-12-01
Seismic studies show two antipodal regions of low shear velocity at the core-mantle boundary (CMB), one beneath the Pacific and one beneath Africa. These regions, called Large Low Shear Velocity Provinces (LLSVPs), are thought to be thermally and chemically distinct and thus have a different density and viscosity. Whereas there is some general consensus about the density of the LLSVPs the viscosity is still a very debated topic. So far, in numerical studies the viscosity is treated as either depth- and/or temperature- dependent but the potential grain size- dependence of the viscosity is neglected most of the time. In this study we use a self-consistent convection model which includes a grain size- dependent rheology based on the approach by Rozel et al. (2011) and Rozel (2012). Further, we consider a primordial layer and a time-dependent basalt production at the surface to dynamically form the present-day chemical heterogeneities, similar to earlier studies, e.g by Nakagawa & Tackley (2014). With this model we perform a parameter study which includes different densities and viscosities of the imposed primordial layer. We detect possible thermochemical piles based on different criterions, compute their average effective viscosity, density, rheology and grain size and investigate which detecting criterion yields the most realistic results. Our preliminary results show that a higher density and/or viscosity of the piles is needed to keep them at the core-mantle boundary (CMB). Relatively to the ambient mantle grain size is high in the piles but due to the temperature at the CMB the viscosity is not remarkably different than the one of ordinary plumes. We observe that grain size is lower if the density of the LLSVP is lower than the one of our MORB material. In that case the average temperature of the LLSVP is also reduced. Interestingly, changing the reference viscosity is responsible for a change in the average viscosity of the LLSVP but not for a different average grain size. Finally, we compare the numerical results with seismological observations by computing 1D seismic velocity profiles (p-wave, shear-wave and bulk velocities) inside and outside our detected piles using thermodynamic data calculated from Perple_X .
NASA Astrophysics Data System (ADS)
Wong DeRieux, Wing-Sy; Li, Ying; Lin, Peng; Laskin, Julia; Laskin, Alexander; Bertram, Allan K.; Nizkorodov, Sergey A.; Shiraiwa, Manabu
2018-05-01
Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol-1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ˜ 1100 g mol-1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg/T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ˜ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon-Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon-Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2-5 orders of magnitude. Complementary measurements of viscosity and chemical composition are desired to further constrain RH-dependent viscosity in future studies.
Rheology and microstructure of dilute graphene oxide suspension
NASA Astrophysics Data System (ADS)
Tesfai, Waka; Singh, Pawan; Shatilla, Youssef; Iqbal, Muhammad Z.; Abdala, Ahmed A.
2013-10-01
Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and intrinsic viscosity of aqueous suspension of graphene and use the measured intrinsic viscosity to determine the aspect ratio of graphene oxide. Dilute suspension of graphene oxide (0.05 to 0.5 mg/mL) exhibits a shear thinning behavior at low shear rates followed by a shear-independent region that starts at shear rate between 5 and 100/s depending on the concentration. This shear thinning behavior becomes more pronounced with the increase of particle loading. Moreover, AFM imaging of the dried graphene oxide indicates the evolution of irregular and thin low fractal aggregates of 0.3-1.8 nm thickness at lower concentrations to oblate compact structures of 1-18 nm thickness of nanosheets at higher concentration. These observations elucidate the microstructure growth mechanisms of graphene oxide in multiphase systems, which are important for nanofluids applications and for dispersing graphene and graphene oxide in composite materials. The suspension has a very high intrinsic viscosity of 1661 due to the high graphene oxide aspect ratio. Based on this intrinsic viscosity, we predict graphene oxide aspect ratio of 2445. While the classical Einstein and Batchelor models underestimate the relative viscosity of graphene oxide suspension, Krieger-Dougherty prediction is in a good agreement with the experimental measurement.
NASA Astrophysics Data System (ADS)
Zaid, H. M.; Adil, M.; Lee, KC; Latiff, N. R. A.
2018-05-01
The shear dependent viscosity change in dielectric nanofluids under the applied electric field, provide potentials for prospect applications especially in enhanced oil recovery. When nanofluids are activated by an applied electric field, it behaves as a non-Newtonian fluid under electrorheological effect (ER) by creating the chains of nanoparticles. In this research, the effect of dielectric loss on the electrorheological characteristic of dielectric nanofluids (NFs) was studied, corresponding to the applied frequency of 167 and 18.8 MHz. For this purpose, electrorheological characteristics of ZnO (55.7 and 117.1 nm) nanofluids with various nanoparticles (NPs) concentration (0.1, 0.05, 0.01 wt. %) were measured. The measurement was done via solenoid based EM transmitter under salt water as a propagation medium. The result shows that the applied electric field caused an apparent increase on the relative viscosity of ZnO NFs due to electrorheological effect. However, the relative viscosity shows a higher increment at 167 MHz due to the greater dielectric loss, compared to 18.8 MHz. The high dielectric loss allows the dipole moments to rotationally polarize at the interfaces of nanoparticles, which create stronger chains that align with the applied electric field. Additionally, the relative viscosity demonstrated an increment with the increase in particle size of ZnO nanoparticles from 55.7 to 117.1 nm. While the viscosity of nanofluid also indicated the high dependence on particle loading.
Numerical investigation of deep-crust behavior under lithospheric extension
NASA Astrophysics Data System (ADS)
Korchinski, Megan; Rey, Patrice F.; Mondy, Luke; Teyssier, Christian; Whitney, Donna L.
2018-02-01
What are the conditions under which lithospheric extension drives exhumation of the deep orogenic crust during the formation of gneiss domes? The mechanical link between extension of shallow crust and flow of deep crust is investigated using two-dimensional numerical experiments of lithospheric extension in which the crust is 60 km thick and the deep-crust viscosity and density parameter space is explored. Results indicate that the style of extension of the shallow crust and the path, magnitude, and rate of flow of deep crust are dynamically linked through the deep-crust viscosity, with density playing an important role in experiments with a high-viscosity deep crust. Three main groups of domes are defined based on their mechanisms of exhumation across the viscosity-density parameter space. In the first group (low-viscosity, low-density deep crust), domes develop by lateral and upward flow of the deep crust at km m.y-1 velocity rates (i.e. rate of experiment boundary extension). In this case, extension in the shallow crust is localized on a single interface, and the deep crust traverses the entire thickness of the crust to the Earth's near-surface in 5 m.y. This high exhuming power relies on the dynamic feedback between the flow of deep crust and the localization of extension in the shallow crust. The second group (intermediate-viscosity, low-density deep crust) has less exhuming power because the stronger deep crust flows less readily and instead accommodates more uniform extension, which imparts distributed extension to the shallow crust. The third group represents the upper limits of viscosity and density for the deep crust; in this case the low buoyancy of the deep crust results in localized thinning of the crust with large upward motion of the Moho and lithosphere-asthenosphere boundary. These numerical experiments test the exhuming power of the deep crust in the formation of extensional gneiss domes.
Schuch, Anna; Deiters, Philipp; Henne, Julius; Köhler, Karsten; Schuchmann, Heike P
2013-07-15
We investigate breakup of W/O/W double emulsion droplets at high viscosity ratios and coalescence of inner water droplets dependent on the dispersed phase content (DPC) of the inner emulsion. The rheological analyses of the inner emulsions confirm the behavior expected from literature - increasing viscosity with increasing DPC and elastic behavior for high DPC. The resulting droplet sizes seem to be influenced only by the viscosity ratio calculated using the viscosity of the inner emulsion. An influence of the elastic properties of the inner emulsions could not be observed. Moreover, breakup of double emulsion droplets seems to follow the same rules as breakup of Newtonian droplets. In the second part of the paper we focus on the release of water from double emulsions by coalescence. A direct correlation between resulting double emulsion droplet sizes and encapsulation efficiency was found for each system. The initial inner dispersed phase content has a big influence on the release rate. This can partly be explained by the influence of the dispersed phase content on collision rate. Moreover, it was found that for high internal phase concentrations inner droplets coalesce with each other. The so formed bigger inner droplets seem to increase the overall release rate. Copyright © 2013 Elsevier Inc. All rights reserved.
Ginzburg, Irina; Silva, Goncalo; Talon, Laurent
2015-02-01
This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared by FEM for shear stress. But, in contrast with FEM, effective velocity conditions in LBM give rise to slip velocity jumps which depend on (i) neighbor permeability values, (ii) resolution, and (iii) control parameter Λ, ranging its reliable values from Poiseuille bounce-back solution in open flow to zero in Darcy's limit. We suggest an "upscaling" algorithm for Λ, from multilayers to multidimensions in random extremely dispersive samples. Finally, on the positive side for LBM besides its overall versatility, the implicit boundary layers allow for smooth accommodation of the flat discontinuous Darcy profiles, quite deficient in FEM.
Torque on a sphere inside a rotating cylinder.
NASA Technical Reports Server (NTRS)
Mena, B.; Levinson, E.; Caswell, B.
1972-01-01
A circular cylinder of finite dimensions is made to rotate around a sphere fixed in the center of the cylinder. The couple on the sphere is measured over a wide range of rotational speeds for both Newtonian and non-Newtonian fluids. For the Newtonian liquids a comparison of the experimental results is made with Collins' (1955) expansion of the couple as a series in even powers of the angular Reynolds number. For non-Newtonian liquids the apparatus proves to be extremely useful for an accurate determination of the zero shear rate viscosity using only a small amount of fluid.
NASA Astrophysics Data System (ADS)
Ishikawa, Takehiko; Yu, Jianding; Paradis, Paul-François
2006-05-01
In order to measure the surface tension and the viscosity of molten oxides, the oscillation drop technique has been applied on a pressurized hybrid electrostatic-aerodynamic levitator. To suppress the electrical discharge between the top and bottom electrodes, the drop excitation method which has been used with high vacuum electrostatic levitators has been modified. As a demonstration, the surface tension and viscosity of liquid BaTiO3 were measured using this new method. Over the 1500-2000K interval, the surface tension was measured as γ(T )=349-0.03 (T-Tm) (10-3N/m), where Tm=1893K is the melting temperature. Similarly, the viscosity was determined as η(T )=0.53exp[5.35×104/(RT)](10-3Pas) over the same temperature interval.
Guo, Dan; Cai, Jun; Zhang, Shengfei; Zhang, Liang; Feng, Xinmin
2017-01-01
Abstract Osteoporotic vertebral compression fractures with intraosseous vacuum phenomena could cause persistent back pains in patients, even after receiving conservative treatment. The aim of this study was to evaluate the efficacy of using high-viscosity bone cement via bilateral percutaneous vertebroplasty in treating patients who have osteoporotic vertebral compression fractures with intraosseous vacuum phenomena. Twenty osteoporotic vertebral compression fracture patients with intraosseous vacuum phenomena, who received at least 2 months of conservative treatment, were further treated by injecting high-viscosity bone cement via bilateral percutaneous vertebroplasty due to failure of conservative treatment. Treatment efficacy was evaluated by determining the anterior vertebral compression rates, visual analog scale (VAS) scores, and Oswestry disability index (ODI) scores at 1 day before the operation, on the first day of postoperation, at 1-month postoperation, and at 1-year postoperation. Three of 20 patients had asymptomatic bone cement leakage when treated via percutaneous vertebroplasty; however, no serious complications related to these treatments were observed during the 1-year follow-up period. A statistically significant improvement on the anterior vertebral compression rates, VAS scores, and ODI scores were achieved after percutaneous vertebroplasty. However, differences in the anterior vertebral compression rate, VAS score, and ODI score in the different time points during the 1-year follow-up period was not statistically significant (P > 0.05). Within the limitations of this study, the injection of high-viscosity bone cement via bilateral percutaneous vertebroplasty for patients who have osteoporotic vertebral compression fractures with intraosseous vacuum phenomena significantly relieved their back pains and improved their daily life activities shortly after the operation, thereby improving their life quality. In this study, the use of high-viscosity bone cement reduced the leakage rate and contributed to their successful treatment, as observed in patients during the 1-year follow-up period. PMID:28383423
NASA Astrophysics Data System (ADS)
de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero
2010-05-01
A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.
Un-Earth-like interiors of the Earth-like planets
NASA Astrophysics Data System (ADS)
Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.
2015-12-01
A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.
Byaruhanga, Yusuf B.; Muyanja, Charles M. B. K.; Aijuka, Matthew; Schüller, Reidar B.; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A.
2012-01-01
Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G′), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials. PMID:22610432
Mukisa, Ivan M; Byaruhanga, Yusuf B; Muyanja, Charles M B K; Aijuka, Matthew; Schüller, Reidar B; Sahlstrøm, Stefan; Langsrud, Thor; Narvhus, Judith A
2012-08-01
Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.
Yazdani, Alireza Z K; Bagchi, Prosenjit
2011-08-01
We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as "breathing" dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.
NASA Astrophysics Data System (ADS)
Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun
2013-03-01
Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.
NASA Astrophysics Data System (ADS)
Markevitch, Maxim
Clusters of galaxies are the largest virialized mass concentrations in the Universe, and have long been recognized as sensitive cosmological probes. It is becoming increasingly clear that to realize their full potential for cosmology, we need to drastically reduce uncertainties in the cluster mass estimates and their relation to various cluster observables that arise from our lack of knowledge of the microphysics of the intracluster medium (ICM). Such ICM properties as thermal conductivity, viscosity, strength and structure of the magnetic fields, the energy in the cosmic ray components and electron-ion equilibration rates are very uncertain. Each of these can have a significant impact on the cluster thermal balance and the quantities that we observe in the X-ray, SZ, and radio bands. Theoretical estimates of thermal conductivity and viscosity are particularly uncertain -- by orders of magnitude. The heat can be conducted only along the magnetic field lines, but by some estimates, even along the lines it can be effectively suppressed by small- scale field fluctuations. Even less understood is the physical nature and the magnitude of viscosity, which bears directly on the ICM heating and mixing processes and the damping of turbulence. We have identified a method to constrain these quantities by contrasting high-quality X-ray observations of merging clusters with our high-resolution magnetohydrodynamic simulations that would follow the evolution of the magnetic field and include various levels of anisotropic conduction and viscosity. Thermal conduction can best be constrained by comparing X-ray temperature maps for several well-observed merging clusters with the maps for their simulated analogs. The conduction at interesting levels is expected to erase any small-scale temperature nonuniformities on timescales comparable to that of the merger. Currently, the most readily observable effect of viscosity is the suppression of instabilities in the cluster `cold fronts' -- sharp, arc-like contact discontinuities often observed in the cluster high- resolution X-ray images. Most of the observed cold fronts are very smooth, but some are visibly affected by instabilities. We will constrain the viscosity (largely independently of its exact physical nature) by including various levels of viscosity in the simulation of a strategically selected sample of cold front clusters. The forthcoming Astro-H mission opens another avenue to study the ICM viscosity and related phenomena -- by directly observing turbulence in merging and relaxed clusters. The turbulence in our merger simulations with varying viscosity could be directly compared to the levels eventually observed by Astro-H. Over the past several years, we have developed most of the machinery necessary for the above simulations by adding the appropriate code for diffusive physics into FLASH -- the high-resolution, grid-based magnetohydrodynamic code. As part of the proposed project, we will (a) add a few missing physical ingredients to the code and (b) simulate a sample of merging clusters, carefully selected from the XMM and Chandra archives to provide the strongest constraints on thermal conduction and viscosity in the ICM. The comparison with observations will result in strict limits on these microphysical quantities, adding an important element into the astrophysical foundation for the use of clusters as cosmological tools. The proposed research is directly relevant to the ROSES ATP solicitation, because it is a theoretical/numerical study of the physical processes in galaxy clusters, which will lead to predictions that can be tested with observations by the NASA space astrophysics missions XMM, Chandra and Astro-H.
High-temperature apparatus for chaotic mixing of natural silicate melts.
Morgavi, D; Petrelli, M; Vetere, F P; González-García, D; Perugini, D
2015-10-01
A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10(6) Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.
Inverse methods-based estimation of plate coupling in a plate motion model governed by mantle flow
NASA Astrophysics Data System (ADS)
Ratnaswamy, V.; Stadler, G.; Gurnis, M.
2013-12-01
Plate motion is primarily controlled by buoyancy (slab pull) which occurs at convergent plate margins where oceanic plates undergo deformation near the seismogenic zone. Yielding within subducting plates, lateral variations in viscosity, and the strength of seismic coupling between plate margins likely have an important control on plate motion. Here, we wish to infer the inter-plate coupling for different subduction zones, and develop a method for inferring it as a PDE-constrained optimization problem, where the cost functional is the misfit in plate velocities and is constrained by the nonlinear Stokes equation. The inverse models have well resolved slabs, plates, and plate margins in addition to a power law rheology with yielding in the upper mantle. Additionally, a Newton method is used to solve the nonlinear Stokes equation with viscosity bounds. We infer plate boundary strength using an inexact Gauss-Newton method with line search for backtracking. Each inverse model is applied to two simple 2-D scenarios (each with three subduction zones), one with back-arc spreading and one without. For each case we examine the sensitivity of the inversion to the amount of surface velocity used: 1) full surface velocity data and 2) surface velocity data simplified using a single scalar average (2-D equivalent to an Euler pole) for each plate. We can recover plate boundary strength in each case, even in the presence of highly nonlinear flow with extreme variations in viscosity. Additionally, we ascribe an uncertainty in each plate's velocity and perform an uncertainty quantification (UQ) through the Hessian of the misfit in plate velocities. We find that as plate boundaries become strongly coupled, the uncertainty in the inferred plate boundary strength decreases. For very weak, uncoupled subduction zones, the uncertainty of inferred plate margin strength increases since there is little sensitivity between plate margin strength and plate velocity. This result is significant because it implies we can infer which plate boundaries are more coupled (seismically) for a realistic dynamic model of plates and mantle flow.
New Numerical Approaches To thermal Convection In A Compositionally Stratified Fluid
NASA Astrophysics Data System (ADS)
Puckett, E. G.; Turcotte, D. L.; Kellogg, L. H.; Lokavarapu, H. V.; He, Y.; Robey, J.
2016-12-01
Seismic imaging of the mantle has revealed large and small scale heterogeneities in the lower mantle; specifically structures known as large low shear velocity provinces (LLSVP) below Africa and the South Pacific. Most interpretations propose that the heterogeneities are compositional in nature, differing from the overlying mantle, an interpretation that would be consistent with chemical geodynamic models. The LLSVP's are thought to be very old, meaning they have persisted thoughout much of Earth's history. Numerical modeling of persistent compositional interfaces present challenges to even state-of-the-art numerical methodology. It is extremely difficult to maintain sharp composition boundaries which migrate and distort with time dependent fingering without compositional diffusion and / or artificial diffusion. The compositional boundary must persist indefinitely. In this work we present computations of an initial compositionally stratified fluid that is subject to a thermal gradient ΔT = T1 - T0 across the height D of a rectangular domain over a range of buoyancy numbers B and Rayleigh numbers Ra. In these computations we compare three numerical approaches to modeling the movement of two distinct, thermally driven, compositional fields; namely, a high-order Finte Element Method (FEM) that employs artifical viscosity to preserve the maximum and minimum values of the compositional field, a Discontinous Galerkin (DG) method with a Bound Preserving (BP) limiter, and a Volume-of-Fluid (VOF) interface tracking algorithm. Our computations demonstrate that the FEM approach has far too much numerical diffusion to yield meaningful results, the DGBP method yields much better resuts but with small amounts of each compositional field being (numerically) entrained within the other compositional field, while the VOF method maintains a sharp interface between the two compositions throughout the computation. In the figure we show a comparison of between the three methods for a computation made with B = 1.111 and Ra = 10,000 after the flow has reached 'steady state'. (R) the images computed with the standard FEM method (with artifical viscosity), (C) the images computed with the DGBP method (with no artifical viscosity or diffusion due to discretization errors) and (L) the images computed with the VOF algorithm.
Periodically sheared 2D Yukawa systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovács, Anikó Zsuzsa; Hartmann, Peter; Center for Astrophysics, Space Physics and Engineering Research
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
High-order centered difference methods with sharp shock resolution
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
In this paper we consider high-order centered finite difference approximations of hyperbolic conservation laws. We propose different ways of adding artificial viscosity to obtain sharp shock resolution. For the Riemann problem we give simple explicit formulas for obtaining stationary one and two-point shocks. This can be done for any order of accuracy. It is shown that the addition of artificial viscosity is equivalent to ensuring the Lax k-shock condition. We also show numerical experiments that verify the theoretical results.
NASA Astrophysics Data System (ADS)
Zingan, Valentin Nikolaevich
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.
Zhu, Yong; Hsu, Walter H; Hollis, James H
2013-01-01
Understanding the impact of rheological properties of food on postprandial appetite and glycemic response helps to design novel functional products. It has been shown that solid foods have a stronger satiating effect than their liquid equivalent. However, whether a subtle change in viscosity of a semi-solid food would have a similar effect on appetite is unknown. Fifteen healthy males participated in the randomized cross-over study. Each participant consumed a 1690 kJ portion of a standard viscosity (SV) and a high viscosity (HV) semi-solid meal with 1000 mg acetaminophen in two separate sessions. At regular intervals during the three hours following the meal, subjective appetite ratings were measured and blood samples collected. The plasma samples were assayed for insulin, glucose-dependent insulinotropic peptide (GIP), glucose and acetaminophen. After three hours, the participants were provided with an ad libitum pasta meal. Compared with the SV meal, HV was consumed at a slower eating rate (P = 0.020), with postprandial hunger and desire to eat being lower (P = 0.019 and P<0.001 respectively) while fullness was higher (P<0.001). In addition, consuming the HV resulted in lower plasma concentration of GIP (P<0.001), higher plasma concentration of glucose (P<0.001) and delayed gastric emptying as revealed by the acetaminophen absorption test (P<0.001). However, there was no effect of food viscosity on insulin or food intake at the subsequent meal. In conclusion, increasing the viscosity of a semi-solid food modulates glycemic response and suppresses postprandial satiety, although the effect may be short-lived. A slower eating rate and a delayed gastric emptying rate can partly explain for the stronger satiating properties of high viscous semi-solid foods.
NASA Technical Reports Server (NTRS)
Watanabe, Masahito; Ozawa, Shumpei; Mizuno, Akotoshi; Hibiya, Taketoshi; Kawauchi, Hiroya; Murai, Kentaro; Takahashi, Suguru
2012-01-01
Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are preparing the experiments of thermophysical properties measurements using the Materials-Science Laboratories ElectroMagnetic-Levitator (MSL-EML) facilities in the international Space station (ISS). Recently, it has been identified that dependence of surface tension on oxygen partial pressure (Po2) must be considered for industrial application of surface tension values. Effect of Po2 on surface tension would apparently change viscosity from the damping oscillation model. Therefore, surface tension and viscosity must be measured simultaneously in the same atmospheric conditions. Moreover, effect of the electromagnetic force (EMF) on the surface oscillations must be clarified to obtain the ideal surface oscillation because the EMF works as the external force on the oscillating liquid droplets, so extensive EMF makes apparently the viscosity values large. In our group, using the parabolic flight levitation experimental facilities (PFLEX) the effect of Po2 and external EMF on surface oscillation of levitated liquid droplets was systematically investigated for the precise measurements of surface tension and viscosity of high temperature liquids for future ISS experiments. We performed the observation of surface oscillations of levitated liquid alloys using PFLEX on board flight experiments by Gulfstream II (G-II) airplane operated by DAS. These observations were performed under the controlled Po2 and also under the suitable EMF conditions. In these experiments, we obtained the density, the viscosity and the surface tension values of liquid Cu. From these results, we discuss about as same as reported data, and also obtained the difference of surface oscillations with the change of the EMF conditions.
Zhang, James J; Hogstrom, Barry; Malinak, Jiri; Ikei, Nobuhiro
2016-05-01
It can be challenging to achieve adequate vessel opacification during percutaneous coronary interventions when using thin catheters, hand injection, and iso-osmolar contrast media (CM) such as iodixanol (Visipaque™). To explore these limitations and the possibility to overcome them with iosimenol, a novel CM. Three X-ray contrast media with different concentrations were used in this study. A series of in vitro experiments established the relationship between injection pressure and flow rate in angiography catheters under various conditions. The experiments were conducted with power and hand injections and included a double-blind evaluation of user perception. By using hand injection, it was generally not possible to reach a maximum injection pressure exceeding 50 psi. The time within which volunteers were able to complete the injections, the area under the pressure-time curve (AUC), and assessment of ease of injection all were in favor of iosimenol compared with iodixanol, especially when using the 4F thin catheter. Within the pressure ranges tested, the power injections demonstrated that the amount of iodine delivered at a fixed pressure was strongly related to viscosity but unrelated to iodine concentration. There are substantial limitations to the amount of iodine that can be delivered through thin catheters by hand injection when iso-osmolar CM with high viscosity is used. The only viable solution, besides increasing the injection pressure, is to use a CM with lower viscosity, since the cost of increasing the concentration, in terms of increased viscosity and consequent reduction in flow, is too high. Iosimenol, an iso-osmolar CM with lower viscosity than iodixanol might therefore be a better alternative when thinner catheters are preferred, especially when the radial artery is used as the access site. © The Foundation Acta Radiologica 2015.
Zhu, Yong; Hsu, Walter H.; Hollis, James H.
2013-01-01
Understanding the impact of rheological properties of food on postprandial appetite and glycemic response helps to design novel functional products. It has been shown that solid foods have a stronger satiating effect than their liquid equivalent. However, whether a subtle change in viscosity of a semi-solid food would have a similar effect on appetite is unknown. Fifteen healthy males participated in the randomized cross-over study. Each participant consumed a 1690 kJ portion of a standard viscosity (SV) and a high viscosity (HV) semi-solid meal with 1000 mg acetaminophen in two separate sessions. At regular intervals during the three hours following the meal, subjective appetite ratings were measured and blood samples collected. The plasma samples were assayed for insulin, glucose-dependent insulinotropic peptide (GIP), glucose and acetaminophen. After three hours, the participants were provided with an ad libitum pasta meal. Compared with the SV meal, HV was consumed at a slower eating rate (P = 0.020), with postprandial hunger and desire to eat being lower (P = 0.019 and P<0.001 respectively) while fullness was higher (P<0.001). In addition, consuming the HV resulted in lower plasma concentration of GIP (P<0.001), higher plasma concentration of glucose (P<0.001) and delayed gastric emptying as revealed by the acetaminophen absorption test (P<0.001). However, there was no effect of food viscosity on insulin or food intake at the subsequent meal. In conclusion, increasing the viscosity of a semi-solid food modulates glycemic response and suppresses postprandial satiety, although the effect may be short-lived. A slower eating rate and a delayed gastric emptying rate can partly explain for the stronger satiating properties of high viscous semi-solid foods. PMID:23818981
Stochastic Reconnection for Large Magnetic Prandtl Numbers
NASA Astrophysics Data System (ADS)
Jafari, Amir; Vishniac, Ethan T.; Kowal, Grzegorz; Lazarian, Alex
2018-06-01
We consider stochastic magnetic reconnection in high-β plasmas with large magnetic Prandtl numbers, Pr m > 1. For large Pr m , field line stochasticity is suppressed at very small scales, impeding diffusion. In addition, viscosity suppresses very small-scale differential motions and therefore also the local reconnection. Here we consider the effect of high magnetic Prandtl numbers on the global reconnection rate in a turbulent medium and provide a diffusion equation for the magnetic field lines considering both resistive and viscous dissipation. We find that the width of the outflow region is unaffected unless Pr m is exponentially larger than the Reynolds number Re. The ejection velocity of matter from the reconnection region is also unaffected by viscosity unless Re ∼ 1. By these criteria the reconnection rate in typical astrophysical systems is almost independent of viscosity. This remains true for reconnection in quiet environments where current sheet instabilities drive reconnection. However, if Pr m > 1, viscosity can suppress small-scale reconnection events near and below the Kolmogorov or viscous damping scale. This will produce a threshold for the suppression of large-scale reconnection by viscosity when {\\Pr }m> \\sqrt{Re}}. In any case, for Pr m > 1 this leads to a flattening of the magnetic fluctuation power spectrum, so that its spectral index is ∼‑4/3 for length scales between the viscous dissipation scale and eddies larger by roughly {{\\Pr }}m3/2. Current numerical simulations are insensitive to this effect. We suggest that the dependence of reconnection on viscosity in these simulations may be due to insufficient resolution for the turbulent inertial range rather than a guide to the large Re limit.
Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose
NASA Technical Reports Server (NTRS)
Plank, L. D.
1985-01-01
One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.
NASA Astrophysics Data System (ADS)
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched off a flurry of interest in holography as a toolkit for studying strongly-correlated many-body systems more generally. Holography also allows us to use results from quantum fluids to study classical and quantum gravity; for example, the phase structure of a quantum many-body system translates into a rich classification of black holes in the dual space-time. Given both the rapid progress in applied holography and the exciting developments in ultracold quantum gases and QCD plasmas discussed above, the time is ripe for new collaborations across traditional lines of specialization. This focus issue explores the convergence between three heretofore separate areas of physics. Over forty research groups have contributed original work, and there will be a review article which complements these advances, overviewing them and presenting them in the context of all three fields and their interconnections. The review concludes with a list of open questions. This sets the tone for the present focus issue; namely, interdisciplinary dialog, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted.
NASA Technical Reports Server (NTRS)
Maisel, J. E.; Webeler, R. W. H.; Grimes, H. H.
1973-01-01
Three torsional crystal parameters were examined for suitability in sensing pressure in gases up to 131 million newtons per square meter. The best parameters were found to be the change in crystal decrement at resonance and the change in crystal electrical resistance at resonance. The change in crystal resonant frequency did not appear to be a reliable pressure measuring parameter. Pure argon and pure helium gases were studied for use as working fluids. Helium functioned better over a wider pressure range. Calibration of the gage also provided a measure of the viscosity-density product of the gas as a function of pressure. These data, together with known extrapolated density data, permitted the determination of the viscosity of helium to 131 million N/square meter.
Anatomy of a laminar starting thermal plume at high Prandtl number
NASA Astrophysics Data System (ADS)
Davaille, Anne; Limare, Angela; Touitou, Floriane; Kumagai, Ichiro; Vatteville, Judith
2011-02-01
We present an experimental study of the dynamics of a plume generated from a small heat source in a high Prandtl number fluid with a strongly temperature-dependent viscosity. The velocity field was determined with particle image velocimetry, while the temperature field was measured using differential interferometry and thermochromic liquid crystals. The combination of these different techniques run simultaneously allows us to identify the different stages of plume development, and to compare the positions of key-features of the velocity field (centers of rotation, maximum vorticity locations, stagnation points) respective to the plume thermal anomaly, for Prandtl numbers greater than 103. We further show that the thermal structure of the plume stem is well predicted by the constant viscosity model of Batchelor (Q J R Met Soc 80: 339-358, 1954) for viscosity ratios up to 50.
NASA Astrophysics Data System (ADS)
Nakada, Masao; Okuno, Jun'ichi; Yokoyama, Yusuke
2016-02-01
Inference of globally averaged eustatic sea level (ESL) rise since the Last Glacial Maximum (LGM) highly depends on the interpretation of relative sea level (RSL) observations at Barbados and Bonaparte Gulf, Australia, which are sensitive to the viscosity structure of Earth's mantle. Here we examine the RSL changes at the LGM for Barbados and Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}), differential RSL for both sites (Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}}) and rate of change of degree-two harmonics of Earth's geopotential due to glacial isostatic adjustment (GIA) process (GIA-induced J˙2) to infer the ESL component and viscosity structure of Earth's mantle. Differential RSL, Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} and GIA-induced J˙2 are dominantly sensitive to the lower-mantle viscosity, and nearly insensitive to the upper-mantle rheological structure and GIA ice models with an ESL component of about (120-130) m. The comparison between the predicted and observationally derived Δ {{RSL}}_{{L}}^{{{Bar}},{{Bon}}} indicates the lower-mantle viscosity higher than ˜2 × 1022 Pa s, and the observationally derived GIA-induced J˙2 of -(6.0-6.5) × 10-11 yr-1 indicates two permissible solutions for the lower mantle, ˜1022 and (5-10) × 1022 Pa s. That is, the effective lower-mantle viscosity inferred from these two observational constraints is (5-10) × 1022 Pa s. The LGM RSL changes at both sites, {{RSL}}_{{L}}^{{{Bar}}} and {{RSL}}_{{L}}^{{{Bon}}}, are also sensitive to the ESL component and upper-mantle viscosity as well as the lower-mantle viscosity. The permissible upper-mantle viscosity increases with decreasing ESL component due to the sensitivity of the LGM sea level at Bonaparte Gulf ({{RSL}}_{{L}}^{{{Bon}}}) to the upper-mantle viscosity, and inferred upper-mantle viscosity for adopted lithospheric thicknesses of 65 and 100 km is (1-3) × 1020 Pa s for ESL˜130 m and (4-10) × 1020 Pa s for ESL˜125 m. The former solution of (1-3) × 1020 Pa s is consistent with the inferences from the postglacial differential RSL changes in the Australian region and also inversion study of far-field sea-level data. The inference of the viscosity structure based on these four observational constraints is, however, relatively insensitive to the viscosity structure of D″ layer.
Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships.
Ojovan, Michael I; Travis, Karl P; Hand, Russell J
2007-10-17
Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found.
Kitada, Katsuhiro; Oho, Takahiko
2012-06-01
The co-aggregation of oral bacteria leads to their clearance from the oral cavity. Poor oral hygiene and high saliva viscosity are common amongst the elderly; thus, they frequently suffer from pneumonia caused by the aspiration of oral microorganisms. To examine the direct effect of saliva viscosity on the co-aggregation of oral streptococci with actinomyces. Fifteen oral streptococcal and a single actinomyces strain were used. Co-aggregation was assessed by a visual assay in phosphate buffer and a spectrophotometric assay in the same buffer containing 0-60% glycerol or whole saliva. Nine oral streptococci co-aggregated with Actinomyces naeslundii ATCC12104 in the visual assay and were subsequently used for the spectrophotometric analysis. All tested strains displayed a decrease in co-aggregation with increasing amounts of glycerol in the buffer. The co-aggregation of Streptococcus oralis with A. naeslundii recovered to baseline level following the removal of glycerol. The per cent co-aggregation of S. oralis with A. naeslundii was significantly correlated with the viscosity in unstimulated and stimulated whole saliva samples (correlation coefficients: -0.52 and -0.48, respectively). This study suggests that saliva viscosity affects the co-aggregation of oral streptococci with actinomyces and that bacterial co-aggregation decreases with increasing saliva viscosity. © 2011 The Gerodontology Society and John Wiley & Sons A/S.
Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.
2017-01-01
Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time. PMID:28345664
Longitudinal spread of mechanical excitation through tectorial membrane traveling waves
Sellon, Jonathan B.; Farrahi, Shirin; Ghaffari, Roozbeh; Freeman, Dennis M.
2015-01-01
The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity. PMID:26438861