Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...
Anthropometric and computerized tomographic measurements of lower extremity lean body mass.
Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M
1987-02-01
The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.
European Extremely Large Telescope: progress report
NASA Astrophysics Data System (ADS)
Tamai, R.; Spyromilio, J.
2014-07-01
The European Extremely Large Telescope is a project of the European Southern Observatory to build and operate a 40-m class optical near-infrared telescope. The telescope design effort is largely concluded and construction contracts are being placed with industry and academic/research institutes for the various components. The siting of the telescope in Northern Chile close to the Paranal site allows for an integrated operation of the facility providing significant economies. The progress of the project in various areas is presented in this paper and references to other papers at this SPIE meeting are made.
Enzyme Activity Dynamics in Response to Climate Change: 2011 Drought-Heat Wave
USDA-ARS?s Scientific Manuscript database
Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...
Evaluation of extreme temperature events in northern Spain based on process control charts
NASA Astrophysics Data System (ADS)
Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.
2018-02-01
Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.
Wind and wave extremes over the world oceans from very large ensembles
NASA Astrophysics Data System (ADS)
Breivik, Øyvind; Aarnes, Ole Johan; Abdalla, Saleh; Bidlot, Jean-Raymond; Janssen, Peter A. E. M.
2014-07-01
Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240 h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the data set. The period (9 years) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for nonparametric 100 year return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.
Attribution of extreme rainfall from Hurricane Harvey, August 2017
NASA Astrophysics Data System (ADS)
van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi
2017-12-01
During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.
Properties of Extreme Precipitation and Their Uncertainties in 3-year GPM Precipitation Radar Data
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, C.
2017-12-01
Extreme high precipitation rates are often related to flash floods and have devastating impacts on human society and the environments. To better understand these rare events, 3-year Precipitation Features (PFs) are defined by grouping the contiguous areas with nonzero near-surface precipitation derived using Global Precipitation Measurement (GPM) Ku band Precipitation Radar (KuPR). The properties of PFs with extreme precipitation rates greater than 20, 50, 100 mm/hr, such as the geographical distribution, volumetric precipitation contribution, seasonal and diurnal variations, are examined. In addition to the large seasonal and regional variations, the rare extreme precipitation rates often have a larger contribution to the local total precipitation. Extreme precipitation rates occur more often over land than over ocean. The challenges in the retrieval of extreme precipitation might be from the attenuation correction and large uncertainties in the Z-R relationships from near-surface radar reflectivity to precipitation rates. These potential uncertainties are examined by using collocated ground based radar reflectivity and precipitation retrievals.
An Extreme Degree of Difficulty: The Educational Demographics of Urban Neighborhood High Schools
ERIC Educational Resources Information Center
Neild, Ruth Curran; Balfanz, Robert
2006-01-01
Despite the growth of a variety of alternatives to the neighborhood high school, most students in big-city school systems still attend large comprehensive high schools that serve a particular residential area. The authors contend that the extreme concentration of educational need at these schools is often overlooked by policymakers, school reform…
USDA-ARS?s Scientific Manuscript database
Extreme weather events such as severe droughts and heat waves may have permanent consequences on soil quality and functioning in agroecosystems. The Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, experienced a historically extreme drought and heat wave during 2011,...
Projected changes to precipitation extremes over the Canadian Prairies using multi-RCM ensemble
NASA Astrophysics Data System (ADS)
Masud, M. B.; Khaliq, M. N.; Wheater, H. S.
2016-12-01
Information on projected changes to precipitation extremes is needed for future planning of urban drainage infrastructure and storm water management systems and to sustain socio-economic activities and ecosystems at local, regional and other scales of interest. This study explores the projected changes to seasonal (April-October) precipitation extremes at daily, hourly and sub-hourly scales over the Canadian Prairie Provinces of Alberta, Saskatchewan, and Manitoba, based on the North American Regional Climate Change Assessment Program multi-Regional Climate Model (RCM) ensemble and regional frequency analysis. The performance of each RCM is evaluated regarding boundary and performance errors to study various sources of uncertainties and the impact of large-scale driving fields. In the absence of RCM-simulated short-duration extremes, a framework is developed to derive changes to extremes of these durations. Results from this research reveal that the relative changes in sub-hourly extremes are higher than those in the hourly and daily extremes. Overall, projected changes in precipitation extremes are larger for southeastern parts of this region than southern and northern areas, and smaller for southwestern and western parts of the study area. Keywords: climate change, precipitation extremes, regional frequency analysis, NARCCAP, Canadian Prairie provinces
Large Area Field of View for Fast Temporal Resolution Astronomy
NASA Astrophysics Data System (ADS)
Covarrubias, Ricardo A.
2018-01-01
Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.
Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.
2016-01-01
Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.
Observed increase in extreme daily rainfall in the French Mediterranean
NASA Astrophysics Data System (ADS)
Ribes, Aurélien; Thao, Soulivanh; Vautard, Robert; Dubuisson, Brigitte; Somot, Samuel; Colin, Jeanne; Planton, Serge; Soubeyroux, Jean-Michel
2018-04-01
We examine long-term trends in the historical record of extreme precipitation events occurring over the French Mediterranean area. Extreme events are considered in terms of their intensity, frequency, extent and precipitated volume. Changes in intensity are analysed via an original statistical approach where the annual maximum rainfall amounts observed at each measurement station are aggregated into a univariate time-series according to their dependence. The mean intensity increase is significant and estimated at + 22% (+ 7 to + 39% at the 90% confidence level) over the 1961-2015 period. Given the observed warming over the considered area, this increase is consistent with a rate of about one to three times that implied by the Clausius-Clapeyron relationship. Changes in frequency and other spatial features are investigated through a Generalised Linear Model. Changes in frequency for events exceeding high thresholds (about 200 mm in 1 day) are found to be significant, typically near a doubling of the frequency, but with large uncertainties in this change ratio. The area affected by severe events and the water volume precipitated during those events also exhibit significant trends, with an increase by a factor of about 4 for a 200 mm threshold, again with large uncertainties. All diagnoses consistently point toward an intensification of the most extreme events over the last decades. We argue that it is difficult to explain the diagnosed trends without invoking the human influence on climate.
Asquith, William H.; Slade, R.M.; Lanning-Rush, Jennifer
1996-01-01
The Highland Lakes on the Colorado River are in an area periodically threatened by large storms and floods. Many storms exceeding 10 inches (in.) in depth have been documented in the area, including some with depths approaching 40 in. These storms typically produce large peak discharges that often threaten lives and property. The storms sometimes occur with little warning. Steep stream slopes and thin soils characteristic of the area often cause large peak discharges and rapid movement of floods through watersheds. A procedure to predict the discharge associated with large floods is needed for the area so that appropriate peak discharges can be used in the design of flood plains, bridges, and other structures.The U.S. Geological Survey (USGS), in cooperation with the Lower Colorado River Authority (LCRA), studied flood peaks for streams in the vicinity of the Highland Lakes of central Texas. The Highland Lakes are a series of reservoirs constructed on the Colorado River. The chain of lakes (and year each was completed) comprises Lake Buchanan (1937), Inks Lake (1938), Lake Lyndon B. Johnson (1950), Lake Marble Falls (1951), Lake Travis (1942), and lake Austin (1890). The study area (fig. 1), which includes all or parts of 21 counties in the vicinity of the Highland Lakes, was selected because most streams in the area have flood characteristics similar to streams entering the Highland Lakes. The entire study area is in a region subject to large storms.The purpose of this report is to present (1) peak-flow frequency data for stations and equations to estimate peak-flow frequency for large streams with natural drainage basins in the vicinity of the Highland Lakes, and (2) a technique to estimate the extreme flood peak discharges for the large streams in the vicinity of the Highland Lakes. Peak-flow frequency in this report refers to the peak discharges for recurrence intervals of 2,5, 10,25,50, and 100 years. A large stream is defined as having a contributing drainage area of at least0.5 square mile (mi’); and a natural drainage basin has less than 10 percent impervious cover and less than 10 percent of its drainage area controlled by reservoirs.The mean annual precipitation in the study area for 1951–80 ranges from about 20 in, in western Kimble County to about 34 in. at the eastern edge of Williamson County (Riggio and others, 1987, p. 23). Many large storms and catastrophic floods have occurred along or in the adjacent area west of the Balcones escarpment (fig. 1) (Dalrymple and others, 1939, Breeding and Dalrymple, 1944; Breeding and Montgomery, 1954; Schroeder and others, 1979; Caran and Baker, 1986; Slade, 1986; and Hejl and others, 1996). About a dozen storms with precipitation depths exceeding 15 in. in a few days or less have been documented in this area during the past 60 years. Some of these storms have produced world-record precipitation depths for durations less than 48 hours. The documentation for these and for other large storms indicates that they are not uniformly distributed temporally or spatially; therefore, the recurrence intervals for such storms cannot be verified (Slade, 1986, p. 17). These large storms can cause flood peaks that would exceed those that can be predicted accurately by analyses of available precipitation or flood data.The peak-flow frequency was estimated for each of 55 qualified stations in the study area (table 1) following guidelines established by the Interagency Advisory Committee on Water Data (1982). Qualified streamflow-gaging stations for the study area are those with at least 8 years of data from natural drainage basins (sites 1–55, fig. 1). Equations to estimate peak-flow frequency for large streams with natural drainage basins in the vicinity of the Highland Lakes were developed. These equations were developed from selected stations on the basis of the relation between peak-flow frequency and basin characteristics for each station. The entire period of systematic record (through 1993) was used in the frequency analyses for each qualified station except for stations at which streamflow was regulated during part of the record. These stations are Leon River near Belton (site 1): Lampasas River near Youngsport (site 5); North Fork San Gabriel River near Georgetown (site 6); San Gabriel River at Laneport (site 12); Brady Creek at Brady (site 16); San Saba River at San Saba (site 18); Rebecca Creek near Spring Branch (site 51); and Cibolo Creek near Boerne (site 54). One or more reservoirs were completed in the basin of each of these stations during the period of systematic record. These reservoirs caused the annual peak discharges to become regulated. The annual peak discharges for 1994 and 1995 at Sandy Creek near Kingsland (site 28) were used to include data associated with extreme flooding that occurred in 1995.The extreme flood potential in the study area was investigated using an "envelope" or "extreme flood potential" curve. This curve is based on the relation between the contributing drainage area and (1) the maximum peak discharge of record for each qualified station (table 1); (2) substantial peak discharges documented for 84 sites without stations (sites 56–139, fig. 1, table 2); and (3) 100-year peak discharges from peak-flow frequency for stations (table 1). Peak discharges estimated from this curve represent the extreme flood potential for the study area.
Extreme heat reduces and shifts United States premium wine production in the 21st century
White, M. A.; Diffenbaugh, N. S.; Jones, G. V.; Pal, J. S.; Giorgi, F.
2006-01-01
Premium wine production is limited to regions climatically conducive to growing grapes with balanced composition and varietal typicity. Three central climatic conditions are required: (i) adequate heat accumulation; (ii) low risk of severe frost damage; and (iii) the absence of extreme heat. Although wine production is possible in an extensive climatic range, the highest-quality wines require a delicate balance among these three conditions. Although historical and projected average temperature changes are known to influence global wine quality, the potential future response of wine-producing regions to spatially heterogeneous changes in extreme events is largely unknown. Here, by using a high-resolution regional climate model forced by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 greenhouse gas emission scenario, we estimate that potential premium winegrape production area in the conterminous United States could decline by up to 81% by the late 21st century. While increases in heat accumulation will shift wine production to warmer climate varieties and/or lower-quality wines, and frost constraints will be reduced, increases in the frequency of extreme hot days (>35°C) in the growing season are projected to eliminate winegrape production in many areas of the United States. Furthermore, grape and wine production will likely be restricted to a narrow West Coast region and the Northwest and Northeast, areas currently facing challenges related to excess moisture. Our results not only imply large changes for the premium wine industry, but also highlight the importance of incorporating fine-scale processes and extreme events in climate-change impact studies. PMID:16840557
Fabrication of dense wavelength division multiplexing filters with large useful area
NASA Astrophysics Data System (ADS)
Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng
2006-08-01
Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.
NASA Astrophysics Data System (ADS)
Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.
2017-12-01
Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.
Kim, Chaeeun; Park, Jun-Cheol; Choi, Sun Young; Kim, Yonghun; Seo, Seung-Young; Park, Tae-Eon; Kwon, Se-Hun; Cho, Byungjin; Ahn, Ji-Hoon
2018-04-01
2D layered materials with sensitive surfaces are promising materials for use in chemical sensing devices, owing to their extremely large surface-to-volume ratios. However, most chemical sensors based on 2D materials are used in the form of laterally defined active channels, in which the active area is limited to the actual device dimensions. Therefore, a novel approach for fabricating self-formed active-channel devices is proposed based on 2D semiconductor materials with very large surface areas, and their potential gas sensing ability is examined. First, the vertical growth phenomenon of SnS 2 nanocrystals is investigated with large surface area via metal-assisted growth using prepatterned metal electrodes, and then self-formed active-channel devices are suggested without additional pattering through the selective synthesis of SnS 2 nanosheets on prepatterned metal electrodes. The self-formed active-channel device exhibits extremely high response values (>2000% at 10 ppm) for NO 2 along with excellent NO 2 selectivity. Moreover, the NO 2 gas response of the gas sensing device with vertically self-formed SnS 2 nanosheets is more than two orders of magnitude higher than that of a similar exfoliated SnS 2 -based device. These results indicate that the facile device fabrication method would be applicable to various systems in which surface area plays an important role. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration
NASA Astrophysics Data System (ADS)
Yang, Wenchang; Magnusdottir, Gudrun
2017-05-01
Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.
How do extreme streamflow due to hurricane IRMA compare during 1938-2017 in South Eastern US?
NASA Astrophysics Data System (ADS)
Anandhi, A.
2017-12-01
The question related to Irma, Harvey, Maria, and other hurricanes is: are hurricane more frequent and intense than they have been in the past. Recent hurricanes were unusually strong hitting the US Coastline or territories as a category 4 or 5, dropping unusually large amounts of precipitation on the affected areas creating extreme high-flow events in rivers and streams in affected areas. The objective of the study is to determine how extreme are streamflows from recent hurricanes (e.g. IRMA) when compared to streamflow's during 1938-2017 time-period. Additionally, in this study, the extreme precipitations are also compared during IRMA. Extreme high flows are selected from Indicators of Hydrologic Alteration (IHA). They are distributions, timing, duration, frequency, magnitude, pulses, and days of extreme events in rivers of the southeastern United States and Gulf of Mexico Hydrologic Region—03. Streamflow data from 30 stations in the region with at least 79 years of record (1938-2017) are used. Historical precipitation changes is obtained from meta-analysis of published literature. Our preliminary results indicate the extremeness of streamflow from recent hurricanes vary with the IHA indicator selected. Some potential implications of these extreme events on the region's ecosystem are also discussed using causal chains and loops.
Variability of Extreme Precipitation Events in Tijuana, Mexico During ENSO Years
NASA Astrophysics Data System (ADS)
Cavazos, T.; Rivas, D.
2007-05-01
We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-ENSO years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous warm California Current off Baja California, low-level moisture advection from the subtropical warm sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.
Miller, C.H.; Showail, A.A.; Bazzari, M.A.; Khoja, J.A.; Hajour, M.O.
1990-01-01
A detailed search for gold and associated minerals was begun in the Bi'r Jarbuah area in 1988. Crone electromagnetic (CEM), magnetic, and gravimetric surveys were run in the areas of greatest interest. Anomalous areas are most interesting in the southern part of the area where linear magnetic and gravity anomalies trend east-northeast and overlap in large part. They are most prominent at or near the south end of a diorite pluton where some quartz veins mined by the ancients also trend northeast. A second area, at the extreme southern end of the survey, contains a large CEM anomaly that coincides with northeast-trending magnetic and gravity anomalies. Although this second area is largely overlain by alluvium, a major quartz vein strikes to the northeast in the adjacent bedrock.
Benefits of restoring ecosystem services in urban areas
T. Elmqvist; H. Setala; S.N. Handel; S. van der Ploeg; J. Aronson; J.N. Blignaut; E. Gomez-Baggethun; D.J. Nowak; J. Kronenberg; R. de Groot
2015-01-01
Cities are a key nexus of the relationship between people and nature and are huge centers of demand for ecosystem services and also generate extremely large environmental impacts. Current projections of rapid expansion of urban areas present fundamental challenges and also opportunities to design more livable, healthy and resilient cities (e.g. adaptation to climate...
Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu Gao
2014-01-01
Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...
NASA Astrophysics Data System (ADS)
Platonov, Vladimir S.; Kislov, Alexander V.
2016-11-01
A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.
NASA Astrophysics Data System (ADS)
Anderson, F. S. B.; Middleton, F.; Colchin, R. J.; Million, D.
1989-04-01
A method of accurately supporting and positioning an electron source inside a large cross-sectional area magnetic field which provides very low electron beam occlusion is reported. The application of electrical discharge machining to the fabrication of a 1-m truss support structure has provided an extremely long, rigid and mechanically strong electron gun support. Reproducible electron gun positioning to within 1 mm has been achieved at any location within a 1×0.6-m2 area. The extremely thin sections of the support truss (≤1.5 mm) have kept the electron beam occlusion to less than 3 mm. The support and drive mechanism have been designed and fabricated at the University of Wisconsin for application to the mapping of the magnetic surface structure of the Advanced Toroidal Facility torsatron1 at the Oak Ridge National Laboratory.
Spacecraft Dynamics and Control Program at AFRPL
NASA Technical Reports Server (NTRS)
Das, A.; Slimak, L. K. S.; Schloegel, W. T.
1986-01-01
A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.
NASA Astrophysics Data System (ADS)
Mentaschi, Lorenzo; Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Dosio, Alessandro; Feyen, Luc
2017-03-01
In this study we conducted a comprehensive modeling analysis to identify global trends in extreme wave energy flux (WEF) along coastlines in the 21st century under a high emission pathway (Representative Concentration Pathways 8.5). For the end of the century, results show a significant increase up to 30% in 100 year return level WEF for the majority of the coastal areas of the southern temperate zone, while in the Northern Hemisphere large coastal areas are characterized by a significant negative trend. We show that the most significant long-term trends of extreme WEF can be explained by intensification of teleconnection patterns such as the Antarctic Oscillation, El Niño-Southern Oscillation, and North Atlantic Oscillation. The projected changes will have broad implications for ocean engineering applications and disaster risk management. Especially low-lying coastal countries in the Southern Hemisphere will be particularly vulnerable due to the combined effects of projected relative sea level rise and more extreme wave activities.
Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.
NASA Astrophysics Data System (ADS)
Reinstorf, F.
2016-12-01
Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management and possible impacts of climate change led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high resolution groundwater level simulation was carried out. A decision support process with a very intensive stakeholder interaction combined with high resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.
NASA Astrophysics Data System (ADS)
Reinstorf, Frido; Kramer, Stefanie; Koch, Thomas; Seifert, Sven; Monninkhoff, Bertram; Pfützner, Bernd
2017-04-01
Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management and possible impacts of climate change led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high resolution groundwater level simulation was carried out. A decision support process with a very intensive stakeholder interaction combined with high resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.
Generalized extreme gust wind speeds distributions
Cheng, E.; Yeung, C.
2002-01-01
Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.
Forest service large fire area burned and suppression expenditure trends, 1970-2002.
David E. Calkin; Krista M. Gebert; J. Greg Jones; Ronald P. Neilson
2005-01-01
Extreme fire seasons in recent years and associated high suppression expenditures have brought about a chorus of calls for reform of federal firefighting structure and policy. Given the political nature of the topic, a critical review of past trends in area burned, size of fires, and suppression expenditures is warranted. We examined data relating to emergency wildland...
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
Application of Radar-Rainfall Estimates to Probable Maximum Precipitation in the Carolinas
NASA Astrophysics Data System (ADS)
England, J. F.; Caldwell, R. J.; Sankovich, V.
2011-12-01
Extreme storm rainfall data are essential in the assessment of potential impacts on design precipitation amounts, which are used in flood design criteria for dams and nuclear power plants. Probable Maximum Precipitation (PMP) from National Weather Service Hydrometeorological Report 51 (HMR51) is currently used for design rainfall estimates in the eastern U.S. The extreme storm database associated with the report has not been updated since the early 1970s. In the past several decades, several extreme precipitation events have occurred that have the potential to alter the PMP values, particularly across the Southeast United States (e.g., Hurricane Floyd 1999). Unfortunately, these and other large precipitation-producing storms have not been analyzed with the detail required for application in design studies. This study focuses on warm-season tropical cyclones (TCs) in the Carolinas, as these systems are the critical maximum rainfall mechanisms in the region. The goal is to discern if recent tropical events may have reached or exceeded current PMP values. We have analyzed 10 storms using modern datasets and methodologies that provide enhanced spatial and temporal resolution relative to point measurements used in past studies. Specifically, hourly multisensor precipitation reanalysis (MPR) data are used to estimate storm total precipitation accumulations at various durations throughout each storm event. The accumulated grids serve as input to depth-area-duration calculations. Individual storms are then maximized using back-trajectories to determine source regions for moisture. The development of open source software has made this process time and resource efficient. Based on the current methodology, two of the ten storms analyzed have the potential to challenge HMR51 PMP values. Maximized depth-area curves for Hurricane Floyd indicate exceedance at 24- and 72-hour durations for large area sizes, while Hurricane Fran (1996) appears to exceed PMP at large area sizes for short-duration, 6-hour storms. Utilizing new methods and data, however, requires careful consideration of the potential limitations and caveats associated with the analysis and further evaluation of the newer storms within the context of historical storms from HMR51. Here, we provide a brief background on extreme rainfall in the Carolinas, along with an overview of the methods employed for converting MPR to depth-area relationships. Discussion of the issues and limitations, evaluation of the various techniques, and comparison to HMR51 storms and PMP values are also presented.
NASA Astrophysics Data System (ADS)
Miller, S. M.; Foti, R.; Montalto, F. A.
2015-12-01
New York City's coastlines are a mosaic of remnant natural habitat, man-made wetlands, manicured parkland, public beaches, housing, and industrial centers, all of which are extremely vulnerable to flooding, storm surge, and damaging wave action. Risks are projected to increase overtime as sea levels rise, population grows, and the frequency and severity of extreme events increases. In order to protect its citizens and infrastructure, New York City is planning to invest 20 billion into a coastal protection plan, including 200 million towards wetlands creation and restoration. Focusing on the role of wetlands and parkland in reducing damages during Hurricane Sandy, our study seeks to identify the primary causes of coastal vulnerability and to provide guidelines for the design of coastal protection measures. Our findings show that most of the small, fragmented NYC's wetlands did not provide significant protection from the violence of the hurricane. Large stretches of wetlands and parkland, on the other hand, were found to exacerbate storm surge along the coast, but did reduce surge penetration further inland. Much of the protection provided by wetlands and coastal green sites was in the form of cost avoidance. Wetlands existed in the most heavily hit areas and so averted damages that would have occurred if those areas had been developed. Our results suggest that, when positioned in the highest risk areas, coastal green infrastructure such as wetlands and parklands can reduce coastal flood risks associated with extreme events like Hurricane Sandy. Policy would ideally prioritize conservation, restoration, and enhancement of large contiguous areas of wetlands in the lowest elevation areas of the city. Where low-lying coastal development cannot be relocated, the risk of damage from storm surges is best reduced by elevating critical infrastructure.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
ERIC Educational Resources Information Center
Niagi, John; Warner, John; Andreesco, Silvana
2007-01-01
The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.
High Quantum Efficiency OLED Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiang, Joseph
The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution processmore » on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.« less
John Hogland; Nathaniel Anderson; Joseph St. Peter; Jason Drake; Paul Medley
2018-01-01
Accurate information is important for effective management of natural resources. In the field of forestry, field measurements of forest characteristics such as species composition, basal area, and stand density are used to inform and evaluate management activities. Quantifying these metrics accurately across large landscapes in a meaningful way is extremely important...
Analysis of extreme summers and prior late winter/spring conditions in central Europe
NASA Astrophysics Data System (ADS)
Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.
2013-05-01
Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation amounts during late winter/spring, might serve as precursor of extremely sunny and dry summer months to be expected.
NASA Astrophysics Data System (ADS)
Russo, Tess A.; Fisher, Andrew T.; Winslow, Dustin M.
2013-04-01
Studies of extreme precipitation have documented changes at the continental scale during the twentieth century, but few studies have quantified changes at small to regional spatial scales during the same time. We analyze historic data from over 600 precipitation stations in the San Francisco Bay Area (SFBA), California, to assess whether there have been statistically significant changes in extreme precipitation between 1890 and 2010. An annual exceedance probability analysis of extreme precipitation events in the SFBA, coupled with a Markov chain Monte Carlo algorithm, reveals an increase in the occurrence of large events. The depth-duration-frequency characteristics of maximum annual precipitation events having durations of 1 h to 60 days indicate on average an increase in storm intensity in the last 120 years, with the intensity of the largest (least frequent) events increasing the most. Mean annual precipitation (MAP) also increased during the study period, but the relative increase in extreme event intensity exceeds that of MAP, indicating that a greater fraction of precipitation fell during large events. Analysis of data from subareas within the SFBA region indicates considerable heterogeneity in the observed nonstationarity; for example, the 5 day, 25 year event exceedance depth changed by +26%, +16%, and -1% in San Francisco, Santa Rosa, and San Jose, respectively. These results emphasize the importance of analyzing local data for accurate risk assessment, emergency planning, resource management, and climate model calibration.
Hot spots of multivariate extreme anomalies in Earth observations
NASA Astrophysics Data System (ADS)
Flach, M.; Sippel, S.; Bodesheim, P.; Brenning, A.; Denzler, J.; Gans, F.; Guanche, Y.; Reichstein, M.; Rodner, E.; Mahecha, M. D.
2016-12-01
Anomalies in Earth observations might indicate data quality issues, extremes or the change of underlying processes within a highly multivariate system. Thus, considering the multivariate constellation of variables for extreme detection yields crucial additional information over conventional univariate approaches. We highlight areas in which multivariate extreme anomalies are more likely to occur, i.e. hot spots of extremes in global atmospheric Earth observations that impact the Biosphere. In addition, we present the year of the most unusual multivariate extreme between 2001 and 2013 and show that these coincide with well known high impact extremes. Technically speaking, we account for multivariate extremes by using three sophisticated algorithms adapted from computer science applications. Namely an ensemble of the k-nearest neighbours mean distance, a kernel density estimation and an approach based on recurrences is used. However, the impact of atmosphere extremes on the Biosphere might largely depend on what is considered to be normal, i.e. the shape of the mean seasonal cycle and its inter-annual variability. We identify regions with similar mean seasonality by means of dimensionality reduction in order to estimate in each region both the `normal' variance and robust thresholds for detecting the extremes. In addition, we account for challenges like heteroscedasticity in Northern latitudes. Apart from hot spot areas, those anomalies in the atmosphere time series are of particular interest, which can only be detected by a multivariate approach but not by a simple univariate approach. Such an anomalous constellation of atmosphere variables is of interest if it impacts the Biosphere. The multivariate constellation of such an anomalous part of a time series is shown in one case study indicating that multivariate anomaly detection can provide novel insights into Earth observations.
Quantification of temperature persistence over the Northern Hemisphere land-area
NASA Astrophysics Data System (ADS)
Pfleiderer, Peter; Coumou, Dim
2017-10-01
Extreme weather events such as heat waves and floods are damaging to society and their contribution to future climate impacts is expected to be large. Such extremes are often related to persistent local weather conditions. Weather persistence is linked to sea surface temperatures, soil-moisture (especially in summer) and large-scale circulation patterns and these factors can alter under past and future climate change. Though persistence is a key characteristic for extreme weather events, to date the climatology and potential changes in persistence have only been poorly documented. Here, we present a systematic analysis of temperature persistence for the northern hemisphere land area. We define persistence as the length of consecutive warm or cold days and use spatial clustering techniques to create regional persistence distributions. We find that persistence is longest in the Arctic and shortest in the mid-latitudes. Parameterizations of the regional persistence distributions show that they are characterized by an exponential decay with a drop in the decay rate for very persistent events, implying that feedback mechanisms are important in prolonging these events. For the mid-latitudes, we find that persistence in summer has increased over the past 60 years. The changes are particularly pronounced for prolonged events suggesting a lengthening in the duration of heat waves.
Influence of hurricane-related activity on North American extreme precipitation
NASA Astrophysics Data System (ADS)
Barlow, Mathew
2010-05-01
Individual hurricanes and their remnants can produce exceptionally intense rainfall, and the associated flooding, even independent of storm surge, is one of the leading causes of hurricane-related death in the U.S. Despite the catastrophic societal costs of hurricanes and the considerable recent attention to possible trends in strength and number, little is known about the general contribution of hurricane-related activity to extreme precipitation over North America and the underlying dynamical mechanisms. Here we show, based on a 25-year observational analysis, that there are important contributions to the occurrence of extreme precipitation events over more than half of North America, including a pronounced signal over northern and inland areas, associated with an average span of influence that extends to several hundred kilometers. Large-scale vertical velocity, maximum wind speed, and tropical/extratropical character are important factors in the strength and range of influence, and the pattern of influence depends on whether an absolute or relative measure of precipitation is considered. Associated changes in stability, moisture, and vertical motion are analyzed to investigate the dynamics of the influence: the largest changes are in vertical motion, with the hurricane-related activity bringing deep tropical values even to inland and high latitude areas, consistent with the occurrence of very heavy, tropical-like precipitation. While the maximum contribution of hurricane-related activity to mean precipitation is generally less than 25% even for the most-affected coastal regions, the contribution to extreme events is much larger: well over 50% for several regions and exceeding 25% for large swaths of the continent. Typical track density plots do not capture the activity's influence on extreme precipitation.
Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia
NASA Technical Reports Server (NTRS)
Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.
1994-01-01
Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.
Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana
NASA Astrophysics Data System (ADS)
Motsholapheko, M. R.; Kgathi, D. L.; Vanderpost, C.
Adaptation to flooding is now widely adopted as an appropriate policy option since flood mitigation measures largely exceed the capability of most developing countries. In wetlands, such as the Okavango Delta, adaptation is more appropriate as these systems serve as natural flood control mechanisms. The Okavango Delta system is subject to annual variability in flooding with extreme floods resulting in adverse impacts on rural livelihoods. This study therefore seeks to improve the general understanding of rural household livelihood adaptation to extreme flooding in the Okavango Delta. Specific objectives are: (1) to assess household access to forms of capital necessary for enhanced capacity to adapt, (2) to assess the impacts of extreme flooding on household livelihoods, and (3) to identify and assess household livelihood responses to extreme flooding. The study uses the sustainable livelihood and the socio-ecological frameworks to analyse the livelihood patterns and resilience to extreme flooding. Results from a survey of 623 households in five villages, key informant interviews, focus group discussions and review of literature, indicate that access to natural capital was generally high, but low for financial, physical, human and social capital. Households mainly relied on farm-based livelihood activities, some non-farm activities, limited rural trade and public transfers. In 2004 and 2009, extreme flooding resulted in livelihood disruptions in the study areas. The main impacts included crop damage, household displacement, destruction of household property, livestock drowning and mud-trapping, the destruction of public infrastructure and disruption of services. The main household coping strategies were labour switching to other livelihood activities, temporary relocation to less affected areas, use of canoes for early harvesting or evacuation and government assistance, particularly for the most vulnerable households. Household adaptive strategies included livelihood diversification, long-term mobility and training in non-agricultural skills. The study concludes that household capacity to adapt to extreme flooding in the study villages largely depends on access to natural capital. This is threatened by population growth, land use changes, policy shifts, upstream developments, global economic changes and flood variations due to climate variability and change.
Wildfires, mountain pine beetle and large-scale climate in Northern North America.
NASA Astrophysics Data System (ADS)
Macias Fauria, M.; Johnson, E. A.
2009-05-01
Research on the interactions between biosphere and atmosphere and ocean/atmosphere dynamics, concretely on the coupling between ecological processes and large-scale climate, is presented in two studies in Northern North America: the occurrence of large lightning wildfires and the forest area affected by mountain pine beetle (Dendroctonus ponderosae, MPB). In both cases, large-scale climatic patterns such as the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO) operate as low and low and high frequency frameworks, respectively, that control the occurrence, duration and spatial correlation over large areas of key local weather variables which affect specific ecological processes. Warm PDO phases tend to produce persistent (more than 10 days long) positive mid-troposphere anomalies (blocking highs) over western Canada and Alaska. Likewise, positive (negative) AO configurations increase the frequency of blocking highs at mid (high) latitudes of the Northern Hemisphere. Under these conditions, lack of precipitation and prevailing warm air meridional flow rapidly dry fuel over large areas and increase fire hazard. The spatiotemporal patterns of occurrence of large lightning wildfire in Canada and Alaska for 1959-1999 were largely explained by the action and possible interaction of AO and PDO, the AO being more influential over Eastern Canada, the PDO over Western Canada and Alaska. Changes in the dynamics of the PDO are linked to the occurrence of cold winter temperatures in British Columbia (BC), Western Canada. Reduced frequency of cold events during warm PDO winters is consistent with a northward-displaced polar jet stream inhibiting the outflow of cold Arctic air over BC. Likewise, the AO influences the occurrence of winter cold spells in the area. PDO, and to a lesser degree AO, were strongly related to MPB synchrony in BC during 1959-2002, operating through the control of the frequency of extreme cold winter temperatures that affect MPB larvae survival. The onset of a warm PDO phase in 1976 1) increased (decreased) the area burnt by wildfire in the Canadian Boreal Forest (BC) by increasing (decreasing) the frequency of blocking highs in the area, and 2) favored MPB outbreaks in BC by reducing the occurrence of extremely low winter temperatures. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s increased area burned in Eastern Canada and MPB activity in the southern and northern parts of BC. A possible recent PDO phase shift may largely reverse these trends.
Bugaboo Fire Rages in Georgia and Florida
NASA Technical Reports Server (NTRS)
2007-01-01
Subtropical Storm Andrea apparently did little to quench numerous large wildfires burning in the U.S. Southeast in early May 2007. On May 11, 2007, when the Moderate Resolution Imaging Spectroradiometer Terra satellite captured this image, the remnants of the storm had dwindled to a small ball of clouds in the Atlantic Ocean, and huge plumes of smoke snaked across Georgia, Florida, and the Gulf of Mexico. Areas where MODIS detected actively burning fires are outlined in red. A huge fire is burning in and near the Okefenokee Swamp, which straddles the state line between Georgia and Florida. For logistical purposes, fire officials are calling the part of the fire in Florida the Florida Bugaboo Fire and the part in Georgia the Bugaboo Scrub Fire. The distinction is simply administrative, however; in reality, it is single, continuous swath of burning timber, swamp land, grass, and scrubland. The blaze was more than 133,000 thousand acres as of May 11, and it appeared to be spreading on virtually all perimeters at the time of the image, with active fire locations detected in a circle that surrounds an already burned (or partially burned) area. According to reports form the Southern Area Coordination Center, the fire grew by at least 20,000 acres on May 10. Numerous communities were threatened and hundreds of people were evacuated, while parts of Interstate 10 were closed to all but emergency vehicles. To the northeast of the Bugaboo Fire, other large wildfires were burning in Georgia as well. The Floyds Prairie Fire, to the immediate north, was threatening endangered species and their habitat, while farther north the 116,000-plus-acre Sweat Farm Road/Big Turnaround Complex Fire was still burning in the area south of the city of Waycross, nearly a month after the fires first started in mid-April. Southern Georgia and Florida are in the grip of moderate to extreme drought. The state line area where the Bugaboo Fire is burning is one of the areas in extreme drought. The extremely dry fuels, including easily flammable pine forests and plantations, and the rugged, isolated stretches of terrain, make fire officials think that these fires will continue to burn for a long time. Although extreme fire behavior may decline, smoldering and creeping fire will probably continue until heavy rain - possibly a hurricane - drenches the area. The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides the image in additional resolutions. The group also provides twice-daily subset images of the United States in a variety of resolutions and formats, including and infrared-enhanced version that emphasizes the burn scars.
Large uncertainties in observed daily precipitation extremes over land
NASA Astrophysics Data System (ADS)
Herold, Nicholas; Behrangi, Ali; Alexander, Lisa V.
2017-01-01
We explore uncertainties in observed daily precipitation extremes over the terrestrial tropics and subtropics (50°S-50°N) based on five commonly used products: the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) dataset, the Global Precipitation Climatology Centre-Full Data Daily (GPCC-FDD) dataset, the Tropical Rainfall Measuring Mission (TRMM) multi-satellite research product (T3B42 v7), the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and the Global Precipitation Climatology Project's One-Degree Daily (GPCP-1DD) dataset. We use the precipitation indices R10mm and Rx1day, developed by the Expert Team on Climate Change Detection and Indices, to explore the behavior of "moderate" and "extreme" extremes, respectively. In order to assess the sensitivity of extreme precipitation to different grid sizes we perform our calculations on four common spatial resolutions (0.25° × 0.25°, 1° × 1°, 2.5° × 2.5°, and 3.75° × 2.5°). The impact of the chosen "order of operation" in calculating these indices is also determined. Our results show that moderate extremes are relatively insensitive to product and resolution choice, while extreme extremes can be very sensitive. For example, at 0.25° × 0.25° quasi-global mean Rx1day values vary from 37 mm in PERSIANN-CDR to 62 mm in T3B42. We find that the interproduct spread becomes prominent at resolutions of 1° × 1° and finer, thus establishing a minimum effective resolution at which observational products agree. Without improvements in interproduct spread, these exceedingly large observational uncertainties at high spatial resolution may limit the usefulness of model evaluations. As has been found previously, resolution sensitivity can be largely eliminated by applying an order of operation where indices are calculated prior to regridding. However, this approach is not appropriate when true area averages are desired (e.g., for model evaluations).
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.
2009-01-01
The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.
Amirataee, Babak; Montaseri, Majid; Rezaie, Hossein
2018-01-15
Droughts are extreme events characterized by temporal duration and spatial large-scale effects. In general, regional droughts are affected by general circulation of the atmosphere (at large-scale) and regional natural factors, including the topography, natural lakes, the position relative to the center and the path of the ocean currents (at small-scale), and they don't cover the exact same effects in a wide area. Therefore, drought Severity-Area-Frequency (S-A-F) curve investigation is an essential task to develop decision making rule for regional drought management. This study developed the copula-based joint probability distribution of drought severity and percent of area under drought across the Lake Urmia basin, Iran. To do this end, one-month Standardized Precipitation Index (SPI) values during the 1971-2013 were applied across 24 rainfall stations in the study area. Then, seven copula functions of various families, including Clayton, Gumbel, Frank, Joe, Galambos, Plackett and Normal copulas, were used to model the joint probability distribution of drought severity and drought area. Using AIC, BIC and RMSE criteria, the Frank copula was selected as the most appropriate copula in order to develop the joint probability distribution of severity-percent of area under drought across the study area. Based on the Frank copula, the drought S-A-F curve for the study area was derived. The results indicated that severe/extreme drought and non-drought (wet) behaviors have affected the majority of study areas (Lake Urmia basin). However, the area covered by the specific semi-drought effects is limited and has been subject to significant variations. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors
NASA Astrophysics Data System (ADS)
Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.
2009-05-01
Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.
The effect of wind tunnel wall interference on the performance of a fan-in-wing VTOL model
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1974-01-01
A fan-in-wing model with a 1.07-meter span was tested in seven different test sections with cross-sectional areas ranging from 2.2 sq meters to 265 sq meters. The data from the different test sections are compared both with and without correction for wall interference. The results demonstrate that extreme care must be used in interpreting uncorrected VTOL data since the wall interference may be so large as to invalidate even trends in the data. The wall interference is particularly large at the tail, a result which is in agreement with recently published comparisons of flight and large scale wind tunnel data for a propeller-driven deflected-slipstream configuration. The data verify the wall-interference theory even under conditions of extreme interference. A method yields reasonable estimates for the onset of Rae's minimum-speed limit. The rules for choosing model sizes to produce negligible wall effects are considerably in error and permit the use of excessively large models.
Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma
Tortorelli, Robert L.; McCabe, Lan P.
2001-01-01
Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the dividing line.
Riley, Karin L.; Loehman, Rachel A.
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
Nearly extremal apparent horizons in simulations of merging black holes
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Scheel, Mark; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilagyi, Bela; Chu, Tony; Demos, Nicholas; Hemberger, Daniel; Kidder, Lawrence; Pfeiffer, Harald; Afshari, Nousha; SXS Collaboration
2015-04-01
The spin S of a Kerr black hole is bounded by the surface area A of its apparent horizon: 8 πS <= A . We present recent results (arXiv:1411.7297) for the extremality of apparent horizons for merging, rapidly rotating black holes with equal masses and equal spins aligned with the orbital angular momentum. Measuring the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, we find that the inequality 8 πS < A is satisfied but is very close to equality on the common apparent horizon at the instant it first appears--even for initial spins as large as S /M2 = 0 . 994 . We compute the smallest value e0 that Booth and Fairhurst's extremality parameter can take for any scaling of the horizon's null normal vectors, concluding that the common horizons are at least moderately close to extremal just after they appear. We construct binary-black-hole initial data with marginally trapped surfaces with 8 πS > A and e0 > 1 , but these surfaces are always surrounded by apparent horizons with 8 πS < A and e0 < 1 .
Spontaneous De-Icing Phenomena on Extremely Cold Surfaces
NASA Astrophysics Data System (ADS)
Song, Dong; Choi, Chang-Hwan
2017-11-01
Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.
Wei, Jiao; Herrler, Tanja; Gu, Bin; Yang, Mei; Li, Qingfeng; Dai, Chuanchang; Xie, Feng
2018-05-01
The repair of extensive upper limb skin lesions in pediatric patients is extremely challenging due to substantial limitations of flap size and donor-site morbidity. We aimed to create an oversize preexpanded flap based on intercostal artery perforators for large-scale resurfacing of the upper extremity in children. Between March 2013 and August 2016, 11 patients underwent reconstructive treatment for extensive skin lesions in the upper extremity using a preexpanded intercostal artery perforator flap. Preoperatively, 2 to 4 candidate perforators were selected as potential pedicle vessels based on duplex ultrasound examination. After tissue expander implantation in the thoracodorsal area, regular saline injections were performed until the expanded flap was sufficient in size. Then, a pedicled flap was formed to resurface the skin lesion of the upper limb. The pedicles were transected 3 weeks after flap transfer. Flap survival, complications, and long-term outcome were evaluated. The average time of tissue expansion was 133 days with a mean final volume of 1713 mL. The thoracoabdominal flaps were based on 2 to 6 pedicles and used to resurface a mean skin defect area of 238 cm ranging from 180 to 357 cm. In all cases, primary donor-site closure was achieved. Marginal necrosis was seen in 5 cases. The reconstructed limbs showed satisfactory outcome in both aesthetic and functional aspects. The preexpanded intercostal artery perforator flap enables 1-block repair of extensive upper limb skin lesions. Due to limited donor-site morbidity and a pedicled technique, this resurfacing approach represents a useful tool especially in pediatric patients.
Extremely large breast abscess in a breastfeeding mother.
Martic, Krešimir; Vasilj, Oliver
2012-11-01
Puerperal mastitis often occurs in younger primiparous women. Most cases occur between 3 and 8 weeks postpartum. If mastitis results in the formation of a breast abscess, surgical drainage or needle aspiration is most commonly performed. We report a case of an extremely large breast abscess in a primiparous 20-year-old woman, which presented 6 weeks postpartum. Surgical incision and evacuation of 2 liters of exudate were performed, and intravenous antibiotics therapy was administered. On the sixth day after incision, we secondarily closed the wound. Examination after 3 months showed symmetrical breasts with a small scar in the incision area of the right breast. A high degree of suspicion and adequate diagnostic procedures are essential to avoid delay in the treatment of mastitis and breast abscess and thereby prevent unnecessary surgical treatment.
NASA Astrophysics Data System (ADS)
Rajczak, Jan; Schär, Christoph
2017-10-01
Projections of precipitation and its extremes over the European continent are analyzed in an extensive multimodel ensemble of 12 and 50 km resolution EURO-CORDEX Regional Climate Models (RCMs) forced by RCP2.6, RCP4.5, and RCP8.5 (Representative Concentration Pathway) aerosol and greenhouse gas emission scenarios. A systematic intercomparison with ENSEMBLES RCMs is carried out, such that in total information is provided for an unprecedentedly large data set of 100 RCM simulations. An evaluation finds very reasonable skill for the EURO-CORDEX models in simulating temporal and geographical variations of (mean and heavy) precipitation at both horizontal resolutions. Heavy and extreme precipitation events are projected to intensify across most of Europe throughout the whole year. All considered models agree on a distinct intensification of extremes by often more than +20% in winter and fall and over central and northern Europe. A reduction of rainy days and mean precipitation in summer is simulated by a large majority of models in the Mediterranean area, but intermodel spread between the simulations is large. In central Europe and France during summer, models project decreases in precipitation but more intense heavy and extreme rainfalls. Comparison to previous RCM projections from ENSEMBLES reveals consistency but slight differences in summer, where reductions in southern European precipitation are not as pronounced as previously projected. The projected changes of the European hydrological cycle may have substantial impact on environmental and anthropogenic systems. In particular, the simulations indicate a rising probability of summertime drought in southern Europe and more frequent and intense heavy rainfall across all of Europe.
Tu, Tongbi; Carr, Kara J; Ercan, Ali; Trinh, Toan; Kavvas, M Levent; Nosacka, John
2017-12-31
Extreme floods are regarded as one of the most catastrophic natural hazards and can result in significant morphological changes induced by pronounced sediment erosion and deposition processes over the landscape. However, the effects of extreme floods of different return intervals on the floodplain and river channel morphological evolution with the associated sediment transport processes are not well explored. Furthermore, different basin management action plans, such as engineering structure modifications, may also greatly affect the flood inundation, sediment transport, solute transport and morphological processes within extreme flood events. In this study, a coupled two-dimensional hydrodynamic, sediment transport and morphological model is applied to evaluate the impact of different river and basin management strategies on the flood inundation, sediment transport dynamics and morphological changes within extreme flood events of different magnitudes. The 10-year, 50-year, 100-year and 200-year floods are evaluated for the Lower Cache Creek system in California under existing condition and a potential future modification scenario. Modeling results showed that select locations of flood inundation within the study area tend to experience larger inundation depth and more sediment is likely to be trapped in the study area under potential modification scenario. The proposed two dimensional flow and sediment transport modeling approach implemented with a variety of inflow conditions can provide guidance to decision-makers when considering implementation of potential modification plans, especially as they relate to competing management strategies of large water bodies, such as the modeling area in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
OBrien, J. P.; O'Brien, T. A.
2015-12-01
Single climatic extremes have a strong and disproportionate effect on society and the natural environment. However, the joint occurrence of two or more concurrent extremes has the potential to negatively impact these areas of life in ways far greater than any single event could. California, USA, home to nearly 40 million people and the largest agricultural producer in the United States, is currently experiencing an extreme drought, which has persisted for several years. While drought is commonly thought of in terms of only precipitation deficits, above average temperatures co-occurring with precipitation deficits greatly exacerbate drought conditions. The 2014 calendar year in California was characterized both by extremely low precipitation and extremely high temperatures, which has significantly deepened the already extreme drought conditions leading to severe water shortages and wildfires. While many studies have shown the statistics of 2014 temperature and precipitation anomalies as outliers, none have demonstrated a connection with large-scale, long-term climate trends, which would provide useful relationships for predicting the future trajectory of California climate and water resources. We focus on understanding non-stationarity in the joint distribution of California temperature and precipitation anomalies in terms of large-scale, low-frequency trends in climate such as global mean temperature rise and oscillatory indices such as ENSO and the Pacific Decadal Oscillation among others. We consider temperature and precipitation data from the seven distinct climate divisions in California and employ a novel, high-fidelity kernel density estimation method to directly infer the multivariate distribution of temperature and precipitation anomalies conditioned on the large-scale state of the climate. We show that the joint distributions and associated statistics of temperature and precipitation are non-stationary and vary regionally in California. Further, we show that recurrence intervals of extreme concurrent events vary as a function of time and of teleconnections. This research has implications for predicting and forecasting future temperature and precipitation anomalies, which is critically important for city, water, and agricultural planning in California.
Spatial variability of extreme rainfall at radar subpixel scale
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2018-01-01
Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.
The Large Observatory For X-ray Timing (LOFT): The ESA Mission and Proposed US Contributions
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Feroci, M.; den Herder, J.; Bozzo, E.; Chakrabarty, D.; Wilson, C.; Consortium, LOFT; US-LOFT Collaboration
2013-04-01
High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer fundamental questions about matter under extreme conditions. The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionize the study of collapsed objects in our Galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of over 10 m2 (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits in a conventional platform and medium-class launcher. With this large area and a spectral resolution of <260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength. A second instrument onboard LOFT, the Wide Field Monitor (WFM), will discover and localize X-ray transients and impulsive events and monitor spectral state changes with unprecedented sensitivity and coverage. Through the LOFT Burst Alert System (LBAS), locations and times of impulsive events discovered by the WFM will be relayed to the ground within about 30 seconds. In this talk, we will present an overview of the design and status of the LOFT mission and describe the proposed US contributions currently under evaluation by NASA. NRL participation in LOFT is funded by NASA.
Characterization of extreme precipitation within atmospheric river events over California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, S.; Prabhat,; Byna, S.
Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less
Characterization of extreme precipitation within atmospheric river events over California
Jeon, S.; Prabhat,; Byna, S.; ...
2015-11-17
Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less
Extreme events in optics: Challenges of the MANUREVA project
NASA Astrophysics Data System (ADS)
Dudley, J. M.; Finot, C.; Millot, G.; Garnier, J.; Genty, G.; Agafontsev, D.; Dias, F.
2010-07-01
In this contribution we describe and discuss a series of challenges and questions relating to understanding extreme wave phenomena in optics. Many aspects of these questions are being studied in the framework of the MANUREVA project: a multidisciplinary consortium aiming to carry out mathematical, numerical and experimental studies in this field. The central motivation of this work is the 2007 results from optical physics [D. Solli et al., Nature 450, 1054 (2007)] that showed how a fibre-optical system can generate large amplitude extreme wave events with similar statistical properties to the infamous hydrodynamic rogue waves on the surface of the ocean. We review our recent work in this area, and discuss how this observation may open the possibility for an optical system to be used to directly study both the dynamics and statistics of extreme-value processes, a potential advance comparable to the introduction of optical systems to study chaos in the 1970s.
INDICATORS OF UV EXPOSURE IN CORAL AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING
A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Bleaching can destroy large areas of a reef with limited recovery or recruitment, and it may be induced by a variety of stressors ranging from exposure to temperature and salinity extrem...
Impact of landslides induced by 2014 northeast monsoon extreme rain in Malaysia
NASA Astrophysics Data System (ADS)
Fukuoka, Hiroshi; Koay, Swee Peng; Sakai, Naoki; Lateh, Habibah
2016-04-01
In December 2014, northeast monsoon brought extreme rainfalls to Malaysia, mainly in the eastern coast of Peninsular Malaysia and coastal area in Sabah and Sarawak. In this month, many of the rain gauge records in this area exceeded 1,000 mm, which is about 1/3 of average annual rainfall precipitation (2,850mm/year) in Malaysia. This unexpected heavy rainfall induced landslides and floods which brought about large-scale losses in Malaysia equivalent to several hundred million USD as thousands of residents had evacuated from hometown for months, and factories, schools and business activities were shut down for weeks. Among the major infrastructure of the nation, East-west Highway was subjected to damages by 21 landslides. Two large-scale landslides cut off the highway for a week. Authors had installed landslide monitoring instruments at reactivated landslide sites along the highway at N05° 36.042' E101° 35.546'. Records by in-situ inclinometers showed clear deformation from 17th December to 26th December, associated with certain change in piezometeres record for groundwater level monitoring. Several cracks occurred in the slope.
Large Scale Processes and Extreme Floods in Brazil
NASA Astrophysics Data System (ADS)
Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.
2016-12-01
Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).
Identifying the location of fire refuges in wet forest ecosystems.
Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B
2015-12-01
The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.
Use of NARCCAP results for extremes: British Columbia case studies
NASA Astrophysics Data System (ADS)
Murdock, T. Q.; Eckstrand, H.; Buerger, G.; Hiebert, J.
2011-12-01
Demand for projections of extremes has arisen out of local infrastructure vulnerability assessments and adaptation planning. Four preliminary analyses of extremes have been undertaken in British Columbia in the past two years in collaboration with users: BC Ministry of Transportation and Infrastructure, Engineers Canada, City of Castelgar, and Columbia Basin Trust. Projects have included analysis of extremes for stormwater management, highways, and community adaptation in different areas of the province. This need for projections of extremes has been met using an ensemble of Regional Climate Model (RCM) results from NARCCAP, in some cases supplemented by and compared to statistical downscaling. Before assessing indices of extremes, each RCM simulation in the NARCCAP ensemble driven by reanalysis (NCEP) was compared to historical observations to assess RCM skill. Next, the anomalies according to each RCM future projection were compared to those of their driving GCM to determine the "value added" by the RCMs. Selected results will be shown for several indices of extremes, including the Climdex set of indices that has been widely used elsewhere (e.g., Stardex) and specific parameters of interest defined by users. Finally, the need for threshold scaling of some indices and use of as large an ensemble as possible will be illustrated.
Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom
2015-09-21
Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.
The Major Magnetic Storm of March 13-14, 1989 and Associated Ionosphere Effects
1993-06-30
latitude. top-side ionospheric disturbance occurred on March 13 and 14. The mag- nitudes of the particle energy flux (ergs cm-’) (I erg -10’ J) and...Joule heating were not unusually large for a storm, but the area of the energy depesition, and thus the total energy deposition, was extremely large...all as more energy is transferred from the solar wind to the magnetosphere, but the cross polar-cap potential during this storm shows no evidence of
Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rikitake, T.
1979-08-07
The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less
Turbidity in extreme western Lake Superior. [contamination of Duluth, Minnesota water intake
NASA Technical Reports Server (NTRS)
Sydor, M.
1975-01-01
Data were obtained from ERTS images for western Lake Superior for 1972-74. Data examination showed that for easterly winds the turbidity originating along the Wisconsin shore and the resuspension areas are transported northward then out along a N.E. path where it disperses, and often, for large storms, contaminates the Duluth water intake. Contaminants such as dredging fines anywhere along these paths would likewise find their way to the intake areas in concentrations comparable to the relative red clay concentration.
Characteristics and present trends of wave extremes in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Pino, Cosimo; Lionello, Piero; Galati, Maria Barbara
2010-05-01
Wind generated surface waves are an important factor characterizing marine storminess and the marine environment. This contribution considers characteristics and trends of SWH (Significant Wave Height) extremes (both high and low extremes, such as dead calm duration are analyzed). The data analysis is based on a 44-year long simulation (1958-2001) of the wave field in the Mediterranean Sea. The quality of the model simulation is controlled using satellite data. The results show the different characteristics of the different parts of the basin with the variability being higher in the western (where the highest values are produced) than in the eastern areas of the basin (where absence of wave is a rare condition). In fact, both duration of storms and of dead calm episodes is larger in the east than in the west part of the Mediterranean. The African coast and the southern Ionian Sea are the areas were exceptional values of SWH are expected to occur in correspondence with exceptional meteorological events. Significant trends of storm characteristics are present only in sparse areas and suggest a decrease of both storm intensity and duration (a marginal increase of storm intensity is present in the center of the Mediterranean). The statistics of extremes and high SWH values is substantially steady during the second half of the 20th century. The influence of the large-scale teleconnection patterns (TlcP) that are known to be relevant for the Mediterranean climate on the intensity and spatial distribution of extreme SWH (Significant Wave Height) has been investigated. The analysis was focused on the monthly scale analysing the variability of links along the annual cycle. The considered TlcP are the North Atlantic Oscillation, the East-Atlantic / West-Russian pattern and the Scandinavian pattern and their effect on the intensity and the frequency of high/low SWH conditions. The results show it is difficult to establish a dominant TlcP for SWH extremes, because all 4 patterns considered are important for at least few months in the year and none of them is important for the whole year. High extremes in winter and fall are more influenced by the TlcPs than in other seasons and low extremes.
Long-lasting Extreme Magnetic Storm Activities in 1770 Found in Historical Documents
NASA Astrophysics Data System (ADS)
Hayakawa, Hisashi; Iwahashi, Kiyomi; Ebihara, Yusuke; Tamazawa, Harufumi; Shibata, Kazunari; Knipp, Delores J.; Kawamura, Akito D.; Hattori, Kentaro; Mase, Kumiko; Nakanishi, Ichiro; Isobe, Hiroaki
2017-12-01
Dim red aurora at low magnetic latitudes is a visual and recognized manifestation of magnetic storms. The great low-latitude auroral displays seen throughout East Asia on 1770 September 16-18 are considered to manifest one of the greatest storms. Recently found, 111 historical documents in East Asia attest that these low-latitude auroral displays appeared in succession for almost nine nights during 1770 September 10-19 in low magnetic latitude areas (<30°). This suggests that the duration of the great magnetic storm is much longer than usual. Sunspot drawings from 1770 reveal that the sunspot areas were twice as large as those observed in another great storm of 1859, which substantiates these unusual storm activities in 1770. These spots likely ejected several huge, sequential magnetic structures in short duration into interplanetary space, resulting in spectacular worldwide aurorae in mid-September of 1770. These findings provide new insight into the history, duration, and effects of extreme magnetic storms that may be valuable for those who need to mitigate against extreme events.
Zablocki, Charles J.; Hajnour, M.O.
1987-01-01
Telluric-electric and auto-magnetotelluric measurements obtained in and around the Raha fault zone in the Buqaya area indicate that it dips steeply to the southwest. Large contrasts in the electrical properties of Qarnayn and Maraghan metasedimentary rocks located on either side of the fault are characteristic of the rocks within the fault zone. However, no large electrical contrasts were detected along several segments of a southern branch of the main fault in the Shiaila area, indicating that the rocks on either side of the fault are of similar composition. Extremely low resistivity readings in the Buqaya and Shiaila areas are associated with fracturing and clay-bearing gouge that accompany known shear zones. The locations of several shallow plutons have been inferred from these studies, one of which is probably a source of gold-bearing quartz veins in the metasedimentary rocks of the Shiaila area.
Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx
NASA Astrophysics Data System (ADS)
Ptak, Andrew
2018-01-01
Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.
USDA-ARS?s Scientific Manuscript database
Solution blow spinning (SBS) is a process to produce non-woven fiber sheets with high porosity and an extremely large amount of surface area. In this study, a Box-Behnken experimental design (BBD) was used to optimize the processing parameters for the production of nanofibers from polymer solutions ...
ERIC Educational Resources Information Center
Bino, Vagi; Sakopa, Priscilla; Tau, Kila; Kull, Martha
2014-01-01
Qualitative and quantitative data are both being used to evaluate a large project in remote areas of Papua New Guinea. Results from teacher and student questionnaires are yet to be evaluated. The responses from teachers participating in the project workshops are reported here to be extremely positive towards the content and delivery of the…
An Old-Growth Definition for Western Hardwood Gallery Forests
Kelly Kindscher; Jenny Holah
1998-01-01
Western hardwood gallery forests are found across an extremely large, diverse geographical area that encompasses the Great Plains in the United States and Canada. Remnant forests of this type still exist in the "Prairie Peninsula," which historically projected an eastern finger into Ohio. The forests are restricted to floodplains of major rivers and are in...
Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko Noormets
2015-01-01
Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...
Investigation of the relationship between hurricane waves and extreme runup
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Stockdon, H. F.
2006-12-01
In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.
Determining hydroclimatic extreme events over the south-central Andes
NASA Astrophysics Data System (ADS)
RamezaniZiarani, Maryam; Bookhagen, Bodo; Schmidt, Torsten; Wickert, Jens; de la Torre, Alejandro; Volkholz, Jan
2017-04-01
The south-central Andes in NW Argentina are characterized by a strong rainfall asymmetry. In the east-west direction exists one of the steepest rainfall gradients on Earth, resulting from the large topographic differences in this region. In addition, in the north-south direction the rainfall intensity varies as the climatic regime shifts from the tropical central Andes to the subtropical south-central Andes. In this study, we investigate hydroclimatic extreme events over the south-central Andes using ERA-Interim reanalysis data of the ECMWF (European Centre for Medium-Range Weather Forecasts), the high resolution regional climate model (COSMO-CLM) data and TRMM (Tropical Rainfall Measuring Mission) data. We divide the area in three different study regions based on elevation: The high-elevation Altiplano-Puna plateau, an intermediate area characterized by intramontane basins, and the foreland area. We analyze the correlations between climatic variables, such as specific humidity, zonal wind component, meridional wind component and extreme rainfall events in all three domains. The results show that there is a high positive temporal correlation between extreme rainfall events (90th and 99th percentile rainfall) and extreme specific humidity events (90th and 99th percentile specific humidity). In addition, the temporal variations analysis represents a trend of increasing specific humidity with time during time period (1994-2013) over the Altiplano-Puna plateau which is in agreement with rainfall trend. Regarding zonal winds, our results indicate that 99th percentile rainfall events over the Altiplano-Puna plateau coincide temporally with strong easterly winds from intermountain and foreland regions in the east. In addition, the results regarding the meridional wind component represent strong northerly winds in the foreland region coincide temporally with 99th percentile rainfall over the Altiplano-Puna plateau.
European temperature responses to blocking and ridge regional patterns
NASA Astrophysics Data System (ADS)
Sousa, Pedro M.; Trigo, Ricardo M.; Barriopedro, David; Soares, Pedro M. M.; Santos, João A.
2018-01-01
Blocking occurrence and its impacts on European temperature have been studied in the last decade. However, most previous studies on blocking impacts have focused on winter only, disregarding its fingerprint in summer and differences with other synoptic patterns that also trigger temperature extremes. In this work, we provide a clear distinction between high-latitude blocking and sub-tropical ridges occurring in three sectors of the Euro-Atlantic region, describing their climatology and consequent impacts on European temperature during both winter and summer. Winter blocks (ridges) are generally associated to colder (warmer) than average conditions over large regions of Europe, in some areas with anomalies larger than 5 °C, particularly for the patterns occurring in the Atlantic and Central European sectors. During summer, there is a more regional response characterized by above average temperature for both blocking and ridge patterns, especially those occurring in continental areas, although negative temperature anomalies persist in southernmost areas during blocking. An objective analysis of the different forcing mechanisms associated to each considered weather regime has been performed, quantifying the importance of the following processes in causing the temperature anomalies: horizontal advection, vertical advection and diabatic heating. While during winter advection processes tend to be more relevant to explain temperature responses, in summer radiative heating under enhanced insolation plays a crucial role for both blocking and ridges. Finally, the changes in the distributions of seasonal temperature and in the frequencies of extreme temperature indices were also examined for specific areas of Europe. Winter blocking and ridge patterns are key drivers in the occurrence of regional cold and warm extreme temperatures, respectively. In summer, they are associated with substantial changes in the frequency of extremely warm days, but with different signatures in southern Europe. We conclude that there has been some misusage of the traditional blocking definition in the attribution of extreme events.
Extreme Events in the tropics - Hurricane Manuel and La Pintada Landslide
NASA Astrophysics Data System (ADS)
Ramirez-Herrera, M. T.; Gaidzik, K.
2016-12-01
Extreme events in regions of humid-warm tropical climate are repeatedly causing loss of life and economic devastation. Deadly landslides are commonly triggered by extreme storms. Many of them originate on mountain slopes along river systems in areas often populated, increasing the risk to human settlements, theirs activities, and the local envrionment. Frequently hit by hurricanes and tropical cyclones the mountainous areas of Guerrero in southern Mexico are particularly prone to landslide hazard. On 16 September 2013 a huge landslide caused 71 fatalities and destroyed a large part of the La Pintada village. The landslide initiated after extreme rainfall caused by Hurricane Manuel. We performed a post-landslide field survey, applied remote sensing techniques using LIDAR DEM and images, digital models derived from Structure from Motion (SfM), satellite images, orthophotomaps, eyewitness accounts, geotechnical laboratory tests of slope material, and slope stability analysis to examine physical characteristics and processes that influenced the failure of La Pintada landslide. Our results indicate that anomalous precipitation producing oversaturation of soil was the direct factor that initiated the deep-sited La Pintada landslide, in an area where big landslides have occurred in the past. We hypothesized that climate change has contributed to the short recurrence period of extreme meteorological events that trigger great landslides in this tropical area. The lack of high and dense vegetation on La Pintada slope, resulting in increased soil erosion, acted as a preparatory causal factor for landsliding, making the slope more prone to mass wasting. It is likely that human activity (including deforestation activities) also contributed to the decrease of slope stability by cutting the toe of the slope to build houses. Seismic activity, even if did not contribute directly to the initiation of the La Pintada landslide, might have promoted the decrease in slope stability in this tectonically active region.
Linking Teleconnections and Iowa's Climate
NASA Astrophysics Data System (ADS)
Rowe, S. T.; Villarini, G.; Lavers, D. A.; Scoccimarro, E.
2013-12-01
In recent years Iowa and the U.S. Midwest has experienced both extreme drought and flood periods. With a drought in 2012 bounded by major floods in 2011 and 2013, the rapid progression from one extreme to the next is on the forefront of the public mind. Given that Iowa is a major agricultural state, extreme weather conditions can have severe socioeconomic consequences. In this research we investigate the large-scale climate processes that occurred concurrently and before a range of dry/wet and cold/hot periods to improve process understanding of these events. It is essential to understand the large-scale climate processes, as these can then provide valuable insight toward the development of long-term climate forecasts for Iowa. In this study monthly and seasonal surface temperature and precipitation over 1950-2012 across Iowa are used. Precipitation and surface temperature data are retrieved from the Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group at Oregon State University. The large-scale atmospheric fields are obtained from the National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) Reanalysis 1 Project. Precipitation is stratified according to wet, normal, and dry conditions, while temperature according to hot, average, and cold periods. Different stratification criteria based on the precipitation and temperature distributions are examined. Mean sea-level pressure and sea-surface temperature composite maps for the northern hemisphere are then produced for the wet/dry conditions, and cold/hot conditions. Further analyses include correlation, anomalies, and assessment of large-scale planetary wave activity, shedding light on the differences and similarities among the opposite weather conditions. The results of this work will highlight regional weather patterns that are related to the climate over Iowa, providing valuable insight into the mechanisms controlling the occurrence of potentially extreme weather conditions over this area.
Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.
2016-01-01
India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092
Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S
2016-01-01
India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.
NASA Astrophysics Data System (ADS)
Peterson, D. A.; Hyer, E. J.; Campbell, J. R.; Fromm, M. D.; Hair, J. W.; Butler, C. F.; Fenn, M. A.
2014-12-01
A variety of regional smoke forecasting applications are currently available to identify air quality, visibility, and societal impacts during large fire events. However, these systems typically assume persistent fire activity, and therefore can have large errors before, during, and after short-term periods of extreme fire behavior. This study employs a wide variety of ground, airborne, and satellite observations, including data collected during a major NASA airborne and field campaign, to examine the conditions required for both extreme spread and pyrocumulonimbus (pyroCb) development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. Increasing values of fire radiative power (FRP) at the pixel and sub-pixel level are shown to systematically correspond to higher altitude smoke plumes, and an increased probability of injection above the boundary layer. Lidar data collected during the 2013 Rim Fire, one of the most severe fire events in California's history, show that high FRP observed during extreme spread can facilitate long-distance smoke transport, but fails to loft smoke to the altitude of a large pyroCb. The most extreme fire spread was also observed on days without pyroCb activity or significant regional convection. By incorporating additional fire events across North America, conflicting hypotheses surrounding the primary source of moisture during pyroCb development are examined. The majority of large pyroCbs, and therefore the highest direct injection altitude of smoke particles, is shown to occur with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict (1) extreme fire spread events and (2) injection of smoke to high altitudes. While (1) and (2) are related, results show that they are not predicted by the same set of conditions and variables. The combination of meteorology from numerical forecast models and satellite observations exhibits great potential for improving regional forecasts of fire behavior and smoke production in automated systems, especially in remote areas where detailed observations are unavailable
Okada, Kyoji; Hasegawa, Tadashi; Kawai, Akira; Ogose, Akira; Nishida, Jun; Yanagisawa, Michiro; Morita, Tetsuro; Tajino, Takahiro; Tsuchiya, Takashi
2011-09-01
Dedifferentiated liposarcomas usually occur in the retroperitoneal space and relatively rarely in the extremities. We identified 18 patients with primary dedifferentiated liposarcoma in the extremities from the files of Tohoku Musculoskeletal Tumor Society and analyzed demographics, histologic findings, treatments and prognostic factors. The average follow-up period was 58 months. The subjects were 12 men and 6 women with a mean age of 65 years. All tumors were in the thigh. Nine patients noticed a rapid enlargement of the long-standing tumor. Histologic subtypes of the dedifferentiated area were undifferentiated pleomorphic sarcoma (n = 12), osteosarcoma (n = 2), rhabdomyosarcoma (n = 2), leiomyosarcoma (n = 1) and malignant peripheral nerve sheath tumor (n = 1). In the patient with rhabdomyosarcoma-like dedifferentiated area, extensive necrosis was observed after the preoperative chemotherapy. One patient who underwent marginal excision developed a local recurrence, but inadequate surgical margin was not associated with a risk of local recurrence. Three patients had lung metastasis at initial presentation, and four other patients developed lung metastases during the follow-up period. The overall survival rate was 61.1% at 5 years. On univariate analyses, large size of the dedifferentiated area (>8 cm), high MIB-1-labeling index (>30%) for the dedifferentiated area and lung metastasis at initial presentation were significantly associated with poor prognosis. Primary dedifferentiated liposarcoma in the extremities predominantly occurred in the thigh and a rapid enlargement of long-standing tumors was a characteristic symptom. Although the local behavior of these tumors was less aggressive than that of retroperitoneal dedifferentiated liposarcomas, they had a relatively high metastatic potential.
Space Radar Image of Namib Desert in Southern Namib
1999-01-27
This is a C-band, VV polarization radar image of the Namib desert in southern Namibia, near the coast of South West Africa. The image is centered at about 25 degrees South latitude, 15.5 degrees East longitude. This image was one of the first acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) when it was taken on orbit 4 from the shuttle Endeavour on April 9, 1994. The area shown is approximately 78 kilometers by 20 kilometers. The dominant features in the image are complex sand dune patterns formed by the prevailing winds in this part of the Namib desert. The Namib desert is an extremely dry area formed largely because of the influence of the cold Benguela ocean current that flows northward along the coast of Namibia. The bright areas at the bottom of the image are exposed outcrops of Precambrian rocks. This extremely barren area is a region rich in diamonds that through the centuries have washed down from the mountains. The town of Luderitz is located just to the south of the area shown. http://photojournal.jpl.nasa.gov/catalog/PIA01720
An extraordinary directive radiation based on optical antimatter at near infrared.
Mocella, Vito; Dardano, Principia; Rendina, Ivo; Cabrini, Stefano
2010-11-22
In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
Multiscale Simulations of ALD in Cross Flow Reactors
Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.
2014-08-13
In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less
NASA Astrophysics Data System (ADS)
Rytuba, J. J.
2015-12-01
An increase in intensity and frequency of extreme events resulting from climate change is expected to result in extreme precipitation events on both regional and local scales. Extreme precipitation events have the potential to mobilize large volumes of mercury (Hg) mine tailings in watersheds where tailings reside in the floodplain downstream from historic Hg mines. The California Hg mineral belt produced one third of the worlds Hg from over 100 mines from the 1850's to 1972. In the absence of environmental regulations, tailings were disposed of into streams adjacent to the mines in order to have them transported from the mine site during storm events. Thus most of the tailings no longer reside at the mine site. Addition of tailings to the streams resulted in stream aggradation, increased over-bank flow, and deposition of tailings in the floodplain for up to 25 kms downstream from the mines. After cessation of mining, the decrease in tailings entering the streams resulted in degradation, incision of the streams into the floodplain, and inability of the streams to access the floodplain. Thus Hg tailings have remained stored in the floodplain since cessation of mining. Hg phases in these tailings consist of cinnabar, metacinnabar and montroydite based on EXAFS analysis. Size analysis indicates that Hg phases are fine grained, less than 1 um. The last regional scale extreme precipitation events to effect the entire area of the California Hg mineral belt were the ARkStorm events of 1861-1862 that occurred prior to large scale Hg mining. Extreme regional ARkStorm precipitation events as well as local summer storms, such as the July 2006 flood in the Clear Creek Hg mining district, are expected to increase in frequency and have the potential to remobilize the large volume of tailings stored in floodplain deposits. Although Hg mine remediation has decreased Hg release from mine sites in a period of benign climate, no remediation efforts have addressed the large source of Hg residing in floodplain deposits. This Hg source in a period of climate change poses a significant environmental risk to aquatic systems downstream from Hg mine-impacted watersheds. An extreme ARkStorm event is estimated to potentially remobilize an amount of Hg equivalent to that released in the past during the peak period of unregulated Hg mining in California.
The OPTICON technology roadmap for optical and infrared astronomy
NASA Astrophysics Data System (ADS)
Cunningham, Colin; Melotte, David; Molster, Frank
2010-07-01
The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.
Focus issue on the Study of Matter at Extreme Conditions
NASA Astrophysics Data System (ADS)
Saini, Naurang L.; Saxena, Surendra K.; Bansil, Arun
2015-09-01
Study of matter at extreme conditions encompasses many different approaches for understanding the physics, chemistry and materials science underlying processes, products and technologies important for society. Although extreme conditions have been associated traditionally with research in areas of geology, mineral and earth sciences, the field has expanded in the recent years to include work on energy related materials and quantum functional materials from hard to soft matter. With the motivation to engage a large number of scientists with various disciplinary interests, ranging from physics, chemistry, geophysics to materials science, the study of matter at extreme conditions has been the theme of a series of conferences hosted by the High Pressure Science Society of America (HiPSSA) and the Center for the Study of Matter at Extreme Conditions (CeSMEC) of Florida International University (FIU), Miami. These SMEC (Study of Matter at Extreme Conditions) conferences are aimed at providing a unique platform for leading researchers to meet and share cutting-edge developments, and to bridge established fields under this interdisciplinary umbrella for research on materials. The seventh meeting in the SMEC series was held during March 23-30, 2013, while sailing from Miami to the Caribbean Islands, and concluded with great enthusiasm.
The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed
Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling
2013-01-01
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898
Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu
2016-08-10
Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.
NASA Astrophysics Data System (ADS)
Wang, Mingna
2015-04-01
The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80°C at local noon. Moreover, the nighttime temperature also shows slightly cooler, approximately 0.2°C, because there is still considerable heat which is stored in the daytime released from urban surfaces at night. The results also suggest that increasing the albedo of urban roofs can reduce the urban mean temperature by approximately 0.51°C during summer extreme heat events. In urban areas, white roofs can counter 80% of the heat wave results from urban sprawl during the last 20 years. These results suggest that increasing the albedo of roofs in the Beijing-Tianjin-Hebei metropolitan area is an effective way of countering some hazards of heat waves. Using a regional climate model, we proposed that white roofs may be an effective strategy to complement urban heat wave mitigation efforts as a way of further slowing the rate of global temperature increase in response to continued greenhouse gas emissions.
Sensitivity Analysis of Expected Wind Extremes over the Northwestern Sahara and High Atlas Region.
NASA Astrophysics Data System (ADS)
Garcia-Bustamante, E.; González-Rouco, F. J.; Navarro, J.
2017-12-01
A robust statistical framework in the scientific literature allows for the estimation of probabilities of occurrence of severe wind speeds and wind gusts, but does not prevent however from large uncertainties associated with the particular numerical estimates. An analysis of such uncertainties is thus required. A large portion of this uncertainty arises from the fact that historical observations are inherently shorter that the timescales of interest for the analysis of return periods. Additional uncertainties stem from the different choices of probability distributions and other aspects related to methodological issues or physical processes involved. The present study is focused on historical observations over the Ouarzazate Valley (Morocco) and in a high-resolution regional simulation of the wind in the area of interest. The aim is to provide extreme wind speed and wind gust return values and confidence ranges based on a systematic sampling of the uncertainty space for return periods up to 120 years.
A k-Vector Approach to Sampling, Interpolation, and Approximation
NASA Astrophysics Data System (ADS)
Mortari, Daniele; Rogers, Jonathan
2013-12-01
The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.
The solar flare extreme ultraviolet to hard X-ray ratio
NASA Technical Reports Server (NTRS)
Mcclymont, A. N.; Canfield, R. C.
1986-01-01
Simultaneous measurements of the peak 10-1030 A extreme ultraviolet (EUV) flux enhancement and more than 10 keV hard X-ray (HXR) peak flux of many solar flare bursts, ranging over about four orders of magnitude in HXR intensity, are studied. A real departure from linearity is found in the relationship between the peak EUV and HXR fluxes in impulsive flare bursts. This relationship is well described by a given power law. Comparison of the predictions of the impulsive nonthermal thick-target electron beam model with observations shows that the model satisfactorily predicts the observed time differences between the HXR and EUV peaks and explains the data very well under given specific assumptions. It is concluded that the high-energy fluxes implied by the invariant area thick-target model cannot be completely ruled out, while the invariant area model with smaller low cutoff requires impossibly large beam densities. A later alternative thick-target model is suggested.
Islands in the sea: extreme female natal site fidelity in the Australian sea lion, Neophoca cinerea.
Campbell, R A; Gales, N J; Lento, G M; Baker, C S
2008-02-23
Pinnipeds (seals, fur seals, sea lions and walrus) form large breeding aggregations with females often remaining faithful to a natal site or area. In these cases, females are philopatric to regional areas on broad geographical scales of hundreds to thousands of kilometers. An investigation of variation in a control region sequence of mtDNA in the Australian sea lion (Neophoca cinerea) has shown a case of extreme female natal site fidelity that has resulted in almost fixed population differentiation across its range (PhiST=0.93). This high level of population subdivision over short geographical distances (approx. 60 km) is unparalleled in any social marine mammal and reflects the unique life-history traits of this rare species. The high level of population subdivision and exclusive female natal site fidelity has important ramifications for conservation management, and poses many interesting questions of both academic and applied interest.
Analysis on flood generation processes by means of a continuous simulation model
NASA Astrophysics Data System (ADS)
Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.
2006-03-01
In the present research, we exploited a continuous hydrological simulation to investigate on key variables responsible of flood peak formation. With this purpose, a distributed hydrological model (DREAM) is used in cascade with a rainfall generator (IRP-Iterated Random Pulse) to simulate a large number of extreme events providing insight into the main controls of flood generation mechanisms. Investigated variables are those used in theoretically derived probability distribution of floods based on the concept of partial contributing area (e.g. Iacobellis and Fiorentino, 2000). The continuous simulation model is used to investigate on the hydrological losses occurring during extreme events, the variability of the source area contributing to the flood peak and its lag-time. Results suggest interesting simplification for the theoretical probability distribution of floods according to the different climatic and geomorfologic environments. The study is applied to two basins located in Southern Italy with different climatic characteristics.
Pinon pine mortality event in the Southwest: An update for 2005
D. Allen-Reid; J. Anhold; D. Cluck; T. Eager; R. Mask; J. McMillin; S. Munson; J. Negron; T. Rogers; D. Ryerson; E. Smith; S. Smith; B. Steed; R. Thier
2008-01-01
(Please note, this is an abstract only) Drought conditions in the Southwest have persisted for a number of years resulting in large areas of pinon pine mortality. In 2002 drought conditions became extreme, facilitating an outbreak of pinon ips beetles (Ips confusus, Coleoptera: Scolytidae) that killed many millions of pinon pines over a six-state region by 2003. In...
Trends in the extremes of sulfur concentration distributions.
Iyer, H; Patterson, P; Malm, W C
2000-05-01
Understanding the response of air quality parameters such as visibility to the implementation of new air quality regulations, population growth and redistribution, and federal land managing practices is essential to the evaluation of air quality management plans on air quality in federal Class I areas. For instance, the reduction of SO2 emissions from large single point sources should result in the decrease of extreme sulfate concentrations, while population growth in geographic areas outside of urban centers could cause a slow widespread increase of sulfate and organic concentrations. The change in federal land managing practice of increased prescribed fire on a year-round basis in lieu of large naturally occurring wild fires could have the same effect; that is, the frequency of high sulfur days increase and low sulfur days decrease as the result of the management practice. Therefore, it is of interest to examine the trends associated with the proportion of days during which the concentration of some aerosol species is above or below a certain threshold and decide whether this proportion of days is increasing or decreasing or shows a lack of trend. This is a direct indication of whether the quality of the environment is improving or worsening, or neither.
Towards a real-time wide area motion imagery system
NASA Astrophysics Data System (ADS)
Young, R. I.; Foulkes, S. B.
2015-10-01
It is becoming increasingly important in both the defence and security domains to conduct persistent wide area surveillance (PWAS) of large populations of targets. Wide Area Motion Imagery (WAMI) is a key technique for achieving this wide area surveillance. The recent development of multi-million pixel sensors has provided sensors with wide field of view replete with sufficient resolution for detection and tracking of objects of interest to be achieved across these extended areas of interest. WAMI sensors simultaneously provide high spatial and temporal resolutions, giving extreme pixel counts over large geographical areas. The high temporal resolution is required to enable effective tracking of targets. The provision of wide area coverage with high frame rates generates data deluge issues; these are especially profound if the sensor is mounted on an airborne platform, with finite data-link bandwidth and processing power that is constrained by size, weight and power (SWAP) limitations. These issues manifest themselves either as bottlenecks in the transmission of the imagery off-board or as latency in the time taken to analyse the data due to limited computational processing power.
Ensemble-based evaluation of extreme water levels for the eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Eelsalu, Maris; Soomere, Tarmo
2016-04-01
The risks and damages associated with coastal flooding that are naturally associated with an increase in the magnitude of extreme storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. The relevant risks are even more contrast for semi-enclosed water bodies such as the Baltic Sea where subtidal (weekly-scale) variations in the water volume of the sea substantially contribute to the water level and lead to large spreading of projections of future extreme water levels. We explore the options for using large ensembles of projections to more reliably evaluate return periods of extreme water levels. Single projections of the ensemble are constructed by means of fitting several sets of block maxima with various extreme value distributions. The ensemble is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. A hindcast by the Rossby Centre Ocean model is sampled with a resolution of 6 h and a similar hindcast by the circulation model NEMO with a resolution of 1 h. As the annual maxima of water levels in the Baltic Sea are not always uncorrelated, we employ maxima for calendar years and for stormy seasons. As the shape parameter of the Generalised Extreme Value distribution changes its sign and substantially varies in magnitude along the eastern coast of the Baltic Sea, the use of a single distribution for the entire coast is inappropriate. The ensemble involves projections based on the Generalised Extreme Value, Gumbel and Weibull distributions. The parameters of these distributions are evaluated using three different ways: maximum likelihood method and method of moments based on both biased and unbiased estimates. The total number of projections in the ensemble is 40. As some of the resulting estimates contain limited additional information, the members of pairs of projections that are highly correlated are assigned weights 0.6. A comparison of the ensemble-based projection of extreme water levels and their return periods with similar estimates derived from local observations reveals an interesting pattern of match and mismatch. The match is almost perfect in measurement sites where local effects (e.g., wave-induced set-up or local surge in very shallow areas that are not resolved by circulation models) do not contribute to the observed values of water level. There is, however, substantial mismatch between projected and observed extreme values for most of the Estonian coast. The mismatch is largest for sections that are open to high waves and for several bays that are deeply cut into mainland but open for predominant strong wind directions. Detailed quantification of this mismatch eventually makes it possible to develop substantially improved estimates of extreme water levels in sections where local effects considerably contribute into the total water level.
Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past
NASA Astrophysics Data System (ADS)
Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.
2016-12-01
The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.
Data indexing techniques for the EUVE all-sky survey
NASA Technical Reports Server (NTRS)
Lewis, J.; Saba, V.; Dobson, C.
1992-01-01
This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.
Changing Global Risk Landscape - Challenges for Risk Management (Invited)
NASA Astrophysics Data System (ADS)
Wenzel, F.
2009-12-01
The exponentially growing losses related to natural disasters on a global scale reflect a changing risk landscape that is characterized by the influence of climate change and a growing population, particularly in urban agglomerations and coastal zones. In consequence of these trends we witness (a) new hazards such as landslides due to dwindling permafrost, new patterns of strong precipitation and related floods, potential for tropical cyclones in the Mediterranean, sea level rise and others; (b) new risks related to large numbers of people in very dense urban areas, and risks related to the vulnerability of infrastructure such as energy supply, water supply, transportation, communication, etc. (c) extreme events with unprecedented size and implications. An appropriate answer to these challenges goes beyond classical views of risk assessment and protection. It must include an understanding of risk as changing with time so that risk assessment needs to be supplemented by risk monitoring. It requires decision making under high uncertainty. The risks (i.e. potentials for future losses) of extreme events are not only high but also very difficult to quantify, as they are characterized by high levels of uncertainty. Uncertainties relate to frequency, time of occurrence, strength and impact of extreme events but also to the coping capacities of society in response to them. The characterization, quantification, reduction in the extent possible of the uncertainties is an inherent topic of extreme event research. However, they will not disappear, so a rational approach to extreme events must include more than reducing uncertainties. It requires us to assess and rate the irreducible uncertainties, to evaluate options for mitigation under large uncertainties, and their communication to societal sectors. Thus scientist need to develop methodologies that aim at a rational approach to extreme events associated with high levels of uncertainty.
Pasanen, Kati; Krosshaug, Tron; Vasankari, Tommi; Kannus, Pekka; Heinonen, Ari; Kujala, Urho M; Avela, Janne; Perttunen, Jarmo; Parkkari, Jari
2018-01-01
Background/aim Poor frontal plane knee control can manifest as increased dynamic knee valgus during athletic tasks. The purpose of this study was to investigate the association between frontal plane knee control and the risk of acute lower extremity injuries. In addition, we wanted to study if the single-leg squat (SLS) test can be used as a screening tool to identify athletes with an increased injury risk. Methods A total of 306 basketball and floorball players participated in the baseline SLS test and a 12-month injury registration follow-up. Acute lower extremity time-loss injuries were registered. Frontal plane knee projection angles (FPKPA) during the SLS were calculated using a two-dimensional video analysis. Results Athletes displaying a high FPKPA were 2.7 times more likely to sustain a lower extremity injury (adjusted OR 2.67, 95% CI 1.23 to 5.83) and 2.4 times more likely to sustain an ankle injury (OR 2.37, 95% CI 1.13 to 4.98). There was no statistically significant association between FPKPA and knee injury (OR 1.49, 95% CI 0.56 to 3.98). The receiver operating characteristic curve analyses indicated poor combined sensitivity and specificity when FPKPA was used as a screening test for lower extremity injuries (area under the curve of 0.59) and ankle injuries (area under the curve of 0.58). Conclusions Athletes displaying a large FPKPA in the SLS test had an elevated risk of acute lower extremity and ankle injuries. However, the SLS test is not sensitive and specific enough to be used as a screening tool for future injury risk. PMID:29387448
Extreme Value Analysis of hydro meteorological extremes in the ClimEx Large-Ensemble
NASA Astrophysics Data System (ADS)
Wood, R. R.; Martel, J. L.; Willkofer, F.; von Trentini, F.; Schmid, F. J.; Leduc, M.; Frigon, A.; Ludwig, R.
2017-12-01
Many studies show an increase in the magnitude and frequency of hydrological extreme events in the course of climate change. However the contribution of natural variability to the magnitude and frequency of hydrological extreme events is not yet settled. A reliable estimate of extreme events is from great interest for water management and public safety. In the course of the ClimEx Project (www.climex-project.org) a new single-model large-ensemble was created by dynamically downscaling the CanESM2 large-ensemble with the Canadian Regional Climate Model version 5 (CRCM5) for an European Domain and a Northeastern North-American domain. By utilizing the ClimEx 50-Member Large-Ensemble (CRCM5 driven by CanESM2 Large-Ensemble) a thorough analysis of natural variability in extreme events is possible. Are the current extreme value statistical methods able to account for natural variability? How large is the natural variability for e.g. a 1/100 year return period derived from a 50-Member Large-Ensemble for Europe and Northeastern North-America? These questions should be answered by applying various generalized extreme value distributions (GEV) to the ClimEx Large-Ensemble. Hereby various return levels (5-, 10-, 20-, 30-, 60- and 100-years) based on various lengths of time series (20-, 30-, 50-, 100- and 1500-years) should be analyzed for the maximum one day precipitation (RX1d), the maximum three hourly precipitation (RX3h) and the streamflow for selected catchments in Europe. The long time series of the ClimEx Ensemble (7500 years) allows us to give a first reliable estimate of the magnitude and frequency of certain extreme events.
The Extreme Ultraviolet spectrometer on bard the Hisaki satellite
NASA Astrophysics Data System (ADS)
Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.
2017-12-01
The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.
NASA Astrophysics Data System (ADS)
Tanaka, Yasuyuki T.; Buson, Sara; Kocevski, Daniel
2017-09-01
We searched for Fermi-LAT sources inside the extremely high-energy (EHE) IceCube-170922A neutrino event error region (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3, see also ATels 10773, 10787) with all-sky survey data from the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope.
NASA Astrophysics Data System (ADS)
Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd
2017-04-01
Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support for decision makers and emergency responders in the case of an event and, third, the development of open, interoperable tools for other researchers to be applied and further developed. The test area of the project is the Free State of Saxony (Germany) with a number of small and medium catchment areas. However, the whole system, comprising models, tools and sensor setups, is planned to be transferred and tested in other areas, within and outside Europe, as well. The team working on the project consists of eight researchers, including five PhD students and three postdocs. The EXTRUSO project is funded by the European Social Fund (ESF grant nr. 100270097) with a project duration of three years until June 2019. EASAC (2013): Trends in extreme weather events in Europe: implications for national and European Union adaption strategies. European Academies Science Advisory Council. Policy report 22, November 2013 The EXTRUSO project is funded by the European Social Fund (ESF), grant nr. 100270097
Extreme Precipitation, Public Health Emergencies, and Safe Drinking Water in the USA.
Exum, Natalie G; Betanzo, Elin; Schwab, Kellogg J; Chen, Thomas Y J; Guikema, Seth; Harvey, David E
2018-06-01
This review examines the effectiveness of drinking water regulations to inform public health during extreme precipitation events. This paper estimates the vulnerability of specific populations to flooding in their public water system, reviews the literature linking precipitation to waterborne outbreaks, examines the role that Safe Drinking Water Act and Public Notification (PN) Rule have in public health emergencies, and reviews the effectiveness of the PN Rule during the 2017 Hurricane Maria in Puerto Rico. Public water systems in large metropolitan areas have substantial portions of their customer base at risk for a waterborne outbreak during a flooding event. The PN Rule are ambiguous for who is responsible for declaring a "waterborne emergency" following a natural disaster like Hurricane Maria. Revisions to the current PN Rule that mandate public notification and water quality sampling during extreme precipitation events are necessary to ensure the public is aware of their drinking water quality following these events.
Kontoes, Charalampos; Keramitsoglou, Iphigenia; Papoutsis, Ioannis; Sifakis, Nicolas I.; Xofis, Panteleimon
2013-01-01
This paper presents the results of an operational nationwide burnt area mapping service realized over Greece for the years 2007–2011, through the implementation of the so-called BSM_NOA dedicated method developed at the National Observatory of Athens for post-fire recovery management. The method exploits multispectral satellite imagery, such as Landsat-TM, SPOT, FORMOSAT-2, WorldView and IKONOS. The analysis of fire size distribution reveals that a high number of fire events evolve to large and extremely large wildfires under favorable wildfire conditions, confirming the reported trend of an increasing fire-severity in recent years. Furthermore, under such conditions wildfires affect to a higher degree areas at high altitudes, threatening the existence of ecologically significant ecosystems. Finally, recent socioeconomic changes and land abandonment has resulted in the encroachment of former agricultural areas of limited productivity by shrubs and trees, resulting both in increased fuel availability and continuity, and subsequently increased burnability. PMID:23966201
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
2000-01-01
Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.
NASA Astrophysics Data System (ADS)
Westberg, David; Soja, Amber; Stackhouse, Paul, Jr.
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Boreal systems contain the largest pool of terrestrial carbon, and Russia holds 2/3 of the global boreal forests. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Meteorological parameters influence fire danger and fire is a catalyst for ecosystem change. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. Our data consists of NASA Langley Research Center (LaRC)-derived fire weather indices (FWI) and National Climatic Data Center (NCDC) surface station-derived FWI on a domain from 50°N-80°N latitude and 70°E-170°W longitude and the fire season from April through October for the years of 1999, 2002, and 2004. Both of these are calculated using the Canadian Forest Service (CFS) FWI, which is based on local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The large-scale (1°) LaRC product uses NASA Goddard Earth Observing System version 4 (GEOS-4) reanalysis and NASA Global Precipitation Climatology Project (GEOS-4/GPCP) data to calculate FWI. CFS Natural Resources Canada uses Geographic Information Systems (GIS) to interpolate NCDC station data and calculate FWI. We compare the LaRC GEOS- 4/GPCP FWI and CFS NCDC FWI based on their fraction of 1° grid boxes that contain satellite-derived fire counts and area burned to the domain total number of 1° grid boxes with a common FWI category (very low to extreme). These are separated by International Geosphere-Biosphere Programme (IGBP) 1°x1° resolution vegetation types to determine and compare fire regimes in each FWI/ecosystem class and to estimate the fraction of each of the 18 IGBP ecosystems burned, which are dependent on the FWI. On days with fire counts, the domain total of 1°x1° grid boxes with and without daily fire counts and area burned are totaled. The fraction of 1° grid boxes with fire counts and area burned to the total number of 1° grid boxes having common FWI category and vegetation type are accumulated, and a daily mean for the burning season is calculated. The mean fire counts and mean area burned plots appear to be well related. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to assess fire weather danger and fire regimes, so these data can be confidently used to predict future fire regimes using large-scale fire weather data. Specifically, we related large-scale fire weather, area burned, and the amount of fire-induced ecosystem change. Both the LaRC and CFS FWI showed gradual linear increase in fraction of grid boxes with fire counts and area burned with increasing FWI category, with an exponential increase in the higher FWI categories in some cases, for the majority of the vegetation types. Our analysis shows a direct correlation between increased fire activity and increased FWI, independent of time or the severity of the fire season. During normal and extreme fire seasons, we noticed the fraction of fire counts and area burned per 1° grid box increased with increasing FWI rating. Given this analysis, we are confident large-scale weather and climate data, in this case from the GEOS-4 reanalysis and the GPCP data sets, can be used to accurately assess future fire potential. This increases confidence in the ability of large-scale IPCC weather and climate scenarios to predict future fire regimes in boreal regions.
Podur, Justin J; Martell, David L
2009-07-01
Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.
Gronlund, Carina J; Sullivan, Kyle P; Kefelegn, Yonathan; Cameron, Lorraine; O'Neill, Marie S
2018-08-01
Cold and hot weather are associated with mortality and morbidity. Although the burden of temperature-associated mortality may shift towards high temperatures in the future, cold temperatures may represent a greater current-day problem in temperate cities. Hot and cold temperature vulnerabilities may coincide across several personal and neighborhood characteristics, suggesting opportunities for increasing present and future resilience to extreme temperatures. We present a narrative literature review encompassing the epidemiology of cold- and heat-related mortality and morbidity, related physiologic and environmental mechanisms, and municipal responses to hot and cold weather, illustrated by Detroit, Michigan, USA, a financially burdened city in an economically diverse metropolitan area. The Detroit area experiences sharp increases in mortality and hospitalizations with extreme heat, while cold temperatures are associated with more gradual increases in mortality, with no clear threshold. Interventions such as heating and cooling centers may reduce but not eliminate temperature-associated health problems. Furthermore, direct hemodynamic responses to cold, sudden exertion, poor indoor air quality and respiratory epidemics likely contribute to cold-related mortality. Short- and long-term interventions to enhance energy and housing security and housing quality may reduce temperature-related health problems. Extreme temperatures can increase morbidity and mortality in municipalities like Detroit that experience both extreme heat and prolonged cold seasons amidst large socioeconomic disparities. The similarities in physiologic and built-environment vulnerabilities to both hot and cold weather suggest prioritization of strategies that address both present-day cold and near-future heat concerns. Copyright © 2018. Published by Elsevier B.V.
Evaluating the extreme precipitation events using a mesoscale atmopshere model
NASA Astrophysics Data System (ADS)
Yucel, I.; Onen, A.
2012-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Mesoscale atmospheric models coupled with land surface models provide efficient forecasts for meteorological events in high lead time and therefore they should be used for flood forecasting and warning issues as they provide more continuous monitoring of precipitation over large areas. This study examines the performance of the Weather Research and Forecasting (WRF) model in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in West Black Sea Region of Turkey. Extreme precipitation events usually resulted in flood conditions as an associated hydrologic response of the basin. The performance of the WRF system is further investigated by using the three dimensional variational (3D-VAR) data assimilation scheme within WRF. WRF performance with and without data assimilation at high spatial resolution (4 km) is evaluated by making comparison with gauge precipitation and satellite-estimated rainfall data from Multi Precipitation Estimates (MPE). WRF-derived precipitation showed capabilities in capturing the timing of the precipitation extremes and in some extent spatial distribution and magnitude of the heavy rainfall events. These precipitation characteristics are enhanced with the use of 3D-VAR scheme in WRF system. Data assimilation improved area-averaged precipitation forecasts by 9 percent and at some points there exists quantitative match in precipitation events, which are critical for hydrologic forecast application.
2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea
NASA Astrophysics Data System (ADS)
Shim, T.; Kim, B.; Kim, S.
2012-12-01
In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of weakening of polar vortex also differs in each experiment. Unlike with our expectation, both EXP_65N and EXP_BK did not capture the abrupt increase of snow-cover in the observation over Siberian region in autumn 2009. Therefore, given the successful reproduction of key observed features of cold winter 2009/2010 by EXP_65N and EXP_BK, we conclude that Arctic sea-ice in autumn 2009 played a key role for the subsequent development of cold winter 2009/2010 and the role was largely independent with the autumn snow-cover.
Operational early warning platform for extreme meteorological events
NASA Astrophysics Data System (ADS)
Mühr, Bernhard; Kunz, Michael
2015-04-01
Operational early warning platform for extreme meteorological events Most natural disasters are related to extreme weather events (e.g. typhoons); weather conditions, however, are also highly relevant for humanitarian and disaster relief operations during and after other natural disaster like earthquakes. The internet service "Wettergefahren-Frühwarnung" (WF) provides various information on extreme weather events, especially when these events are associated with a high potential for large damage. The main focus of the platform is on Central Europe, but major events are also monitored worldwide on a daily routine. WF provides high-resolution forecast maps for many weather parameters which allow detailed and reliable predictions about weather conditions during the next days in the affected areas. The WF service became operational in February 2004 and is part of the Center for Disaster Management and Risk Reduction Technology (CEDIM) since 2007. At the end of 2011, CEDIM embarked a new type of interdisciplinary disaster research termed as forensic disaster analysis (FDA) in near real time. In case of an imminent extreme weather event WF plays an important role in CEDIM's FDA group. It provides early and precise information which are always available and updated several times during a day and gives advice and assists with articles and reports on extreme events.
Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season
NASA Astrophysics Data System (ADS)
Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.
2016-12-01
Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.
Variations/Changes in Daily Precipitation Extremes Derived from Satellite-Based Products
NASA Astrophysics Data System (ADS)
Gu, G.; Adler, R. F.
2017-12-01
Interannual/decadal-scale variations/changes in daily precipitation extremes are investigated by means of satellite-based high-spatiotemporal resolution precipitation products, including TRMM-TMPA, PERSIANN-CDR-Daily, GPCP 1DD, etc. Extreme precipitation indices at grids are first defined, including the maximum daily precipitation amount (Rx1day), the simple precipitation intensity index (SDII), the conditional (Rcond) daily precipitation rate (Pr>0 mm day-1), and monthly frequencies of rainy (FOCc) and wet (FOCw) days. Other two precipitation intensity indices, i.e., mean daily precipitation rates for Pr ≥10 mm day-1 (Pr10II) and for Pr ≥ 20 mm day-1 (Pr20II), are also constructed. Consistency analyses of daily extreme indices among these data sets are then performed by comparing corresponding averages over large domains such as tropical (30oN-30oS) land, ocean, land+ocean, for their common period (post-1997). This can provide a preliminary uncertainty analysis of these data sets in describing daily extreme precipitation events. Discrepancies can readily be found among these products regarding the magnitudes of area-averaged extreme indices. However, generally consistent temporal variations can be found among the indices derived from different satellite products. Interannual variability in daily precipitation extremes are then examined and compared at grids by exploring their relations with the El Nino-Southern Oscillation (ENSO). Linear correlation and composite analyses are used to examine the impact of ENSO on these extreme indices at grids and over large domains during the post-1997 period. Decadal-scale variability/change in daily extreme events is further examined by using the PERSIANN-CDR-Daily that can cover the entire post-1983 period, based on its general consistency with other two products during the post-1979 period. We specifically focus on exploring and discriminating the effects of decadal-scale internal variability such as the Pacific Decadal Oscillation (PDO) and anthropogenic forcings including the greenhouse-gases (GHG) related warming. Comparisons are also made over global land with the results from two gridded daily rain-gauge products, GPCC Full-record daily (1988-2013) and NOAA/CPC Unified daily (1979-present).
Schottky barrier diode and method thereof
NASA Technical Reports Server (NTRS)
Aslam, Shahid (Inventor); Franz, David (Inventor)
2008-01-01
Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.
Topographic relationships for design rainfalls over Australia
NASA Astrophysics Data System (ADS)
Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.
2016-02-01
Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.
Extremely Large Telescope Project Selected in ESFRI Roadmap
NASA Astrophysics Data System (ADS)
2006-10-01
In its first Roadmap, the European Strategy Forum on Research Infrastructures (ESFRI) choose the European Extremely Large Telescope (ELT), for which ESO is presently developing a Reference Design, as one of the large scale projects to be conducted in astronomy, and the only one in optical astronomy. The aim of the ELT project is to build before the end of the next decade an optical/near-infrared telescope with a diameter in the 30-60m range. ESO PR Photo 40/06 The ESFRI Roadmap states: "Extremely Large Telescopes are seen world-wide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge allowing detailed studies of inter alia planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the Dark Matter and Dark Energy which dominate the Universe. The European Extremely Large Telescope project will maintain and reinforce Europe's position at the forefront of astrophysical research." Said Catherine Cesarsky, Director General of ESO: "In 2004, the ESO Council mandated ESO to play a leading role in the development of an ELT for Europe's astronomers. To that end, ESO has undertaken conceptual studies for ELTs and is currently also leading a consortium of European institutes engaged in studying enabling technologies for such a telescope. The inclusion of the ELT in the ESFRI roadmap, together with the comprehensive preparatory work already done, paves the way for the next phase of this exciting project, the design phase." ESO is currently working, in close collaboration with the European astronomical community and the industry, on a baseline design for an Extremely Large Telescope. The plan is a telescope with a primary mirror between 30 and 60 metres in diameter and a financial envelope of about 750 m Euros. It aims at more than a factor ten improvement in overall performance compared to the current leader in ground based astronomy: the ESO Very Large Telescope at the Paranal Observatory. The draft Baseline Reference Design will be presented to the wider scientific community on 29 - 30 November 2006 at a dedicated ELT Workshop Meeting in Marseille (France) and will be further reiterated. The design is then to be presented to the ESO Council at the end of 2006. The goal is to start the detailed E-ELT design work by the first half of 2007. Launched in April 2002, the European Strategy Forum on Research Infrastructures was set-up following a recommendation of the European Union Council, with the role to support a coherent approach to policy-making on research infrastructures in Europe, and to act as an incubator for international negotiations about concrete initiatives. In particular, ESFRI has prepared a European Roadmap identifying new Research Infrastructure of pan-European interest corresponding to the long term needs of the European research communities, covering all scientific areas, regardless of possible location and likely to be realised in the next 10 to 20 years. The Roadmap was presented on 19 October. It is the result of an intensive two-year consultation and peer review process involving over 1000 high level European and international experts. The Roadmap identifies 35 large scale infrastructure projects, at various stages of development, in seven key research areas including Environmental Sciences; Energy; Materials Sciences; Astrophysics, Astronomy, Particle and Nuclear Physics; Biomedical and Life Sciences; Social Sciences and the Humanities; Computation and data Treatment.
NASA Astrophysics Data System (ADS)
Yin, Yixing; Chen, Haishan; Xu, Chongyu; Xu, Wucheng; Chen, Changchun
2014-05-01
The regionalization methods which 'trade space for time' by including several at-site data records in the frequency analysis are an efficient tool to improve the reliability of extreme quantile estimates. With the main aims of improving the understanding of the regional frequency of extreme precipitation and providing scientific and practical background and assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region, in this paper, L-moment-based index-flood (LMIF) method, one of the popular regionalization methods, is used in the regional frequency analysis of extreme precipitation; attention was paid to inter-site dependence and its influence on the accuracy of quantile estimates, which hasn't been considered for most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, Generalized extreme-value (GEV) and Generalized Normal (GNO) distributions were identified as the best-fit distributions for most of the sub regions. Estimated quantiles for each region were further obtained. Monte-Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root mean square errors (RMSEs) were bigger and the 90% error bounds were wider with inter-site dependence than those with no inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with return period of 100 years were obtained which indicated that there are two regions with the highest precipitation extremes (southeastern coastal area of Zhejiang Province and the southwest part of Anhui Province) and a large region with low precipitation extremes in the north and middle parts of Zhejiang Province, Shanghai City and Jiangsu Province. However, the central areas with low precipitation extremes are the most developed and densely populated regions in the study area, thus floods will cause great loss of human life and property damage. These findings will contribute to formulating the regional development strategies for policymakers and stakeholders in water resource management against the menaces of frequently emerged floods.
Clark's nutcracker spatial memory: the importance of large, structural cues.
Bednekoff, Peter A; Balda, Russell P
2014-02-01
Clark's nutcrackers, Nucifraga columbiana, cache and recover stored seeds in high alpine areas including areas where snowfall, wind, and rockslides may frequently obscure or alter cues near the cache site. Previous work in the laboratory has established that Clark's nutcrackers use spatial memory to relocate cached food. Following from aspects of this work, we performed experiments to test the importance of large, structural cues for Clark's nutcracker spatial memory. Birds were no more accurate in recovering caches when more objects were on the floor of a large experimental room nor when this room was subdivided with a set of panels. However, nutcrackers were consistently less accurate in this large room than in a small experimental room. Clark's nutcrackers probably use structural features of experimental rooms as important landmarks during recovery of cached food. This use of large, extremely stable cues may reflect the imperfect reliability of smaller, closer cues in the natural habitat of Clark's nutcrackers. This article is part of a Special Issue entitled: CO3 2013. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Emanuel, K.; Lin, N.
2012-12-01
Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad spectrum of characteristics in our synthetic database, although no large surge has been recorded historically as only one moderate storm passed by the area. Tampa black swans are identified as those that move northward parallel to the west Florida coast with high intensities and resonant with the Florida-shelf edge waves to generate extreme surges up to 10 m in Tampa Bay. The Arabian Sea area has sea surface temperatures warm enough to support the development of severe TCs, but TC development has been limited by low humidity and high wind shear, and only one recorded TC (super cyclonic storm Gonu in 2007) moved close to the Persian Gulf, making landfall in Oman and Iran. Our analysis shows that black swan TCs can originate within the Persian Gulf and make landfall with high intensities in populous places; extreme surges over 9 m for Abu Dubai and Doha and over 7 m for Dubai are possible. Darwin experienced immense devastation from Cyclone Tracy of 1974, but the damage was mainly due to the strong winds (the surge was only about 1.6 m). Our analysis includes extremely intense black swan TCs that make landfall just south of Darwin, generating surges above 10 m; these results may prompt the city to reconsider its TC risk. We are currently analyzing the join probability of the extreme wind and surge of these black swan TCs to more clearly assess their full damage potentials.
Cyber Surveillance for Flood Disasters
Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han
2015-01-01
Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609
Zhou, Xi; Xu, Huihua; Cheng, Jiyi; Zhao, Ni; Chen, Shih-Chi
2015-01-01
A continuous roll-to-roll microcontact printing (MCP) platform promises large-area nanoscale patterning with significantly improved throughput and a great variety of applications, e.g. precision patterning of metals, bio-molecules, colloidal nanocrystals, etc. Compared with nanoimprint lithography, MCP does not require a thermal imprinting step (which limits the speed and material choices), but instead, extreme precision with multi-axis positioning and misalignment correction capabilities for large area adaptation. In this work, we exploit a flexure-based mechanism that enables continuous MCP with 500 nm precision and 0.05 N force control. The fully automated roll-to-roll platform is coupled with a new backfilling MCP chemistry optimized for high-speed patterning of gold and silver. Gratings of 300, 400, 600 nm line-width at various locations on a 4-inch plastic substrate are fabricated at a speed of 60 cm/min. Our work represents the first example of roll-to-roll MCP with high reproducibility, wafer scale production capability at nanometer resolution. The precision roll-to-roll platform can be readily applied to other material systems. PMID:26037147
Beneficial effects of restoration practices can be thwarted by climate extremes.
Maccherini, Simona; Bacaro, Giovanni; Marignani, Michela
2018-06-01
The impacts of climate extremes on species, communities and ecosystems have become critical concerns to science and society. Under a changing climate, how restoration outcomes are affected by extreme climate variables is a largely unknown topic. We analyzed the effects of experimental factors (grazing and sowing of native species), extreme climate events (intense precipitation and extreme temperatures indexes) and their combination on the restoration progress of a dry, calcareous grassland in Tuscany (Italy) with a 1 year before/15 years continuous annual monitoring after, control/impact (BACI) experiment. Grazing had a beneficial effect on the diversity of the grassland, while sowing had a limited impact. The climatic index that most affected the entire plant community composition was the number of very heavy precipitation days. The interaction of grazing and extreme climatic indexes had a significant detrimental effect on restoration outcomes, increasing the cover of synanthropic and Cosmopolitan-Subcosmopolitan generalist species and decreasing the cover of more valuable species such endemic species. In the richest grazed plots, species richness showed a lower sensitivity to the average precipitation per wet day but in grazed site, restoration outcomes can be negatively influenced by the intensification of precipitation and temperature extremes. In a context of progressive tropicalization of the Mediterranean area, to assist managers setting achievable restoration goals, restoration practitioners should consider that climate extremes might interfere with the beneficial effects of restoration practices. Copyright © 2018 Elsevier B.V. All rights reserved.
Tree-Ring Dating of Extreme Lake Levels at the Subarctic?Boreal Interface
NASA Astrophysics Data System (ADS)
Bégin, Yves
2001-03-01
The dates of extreme water levels of two large lakes in northern Quebec have been recorded over the last century by ice scars on shoreline trees and sequences of reaction wood in shore trees tilted by wave erosion. Ice-scar chronologies indicate high water levels in spring, whereas tree-tilting by waves is caused by summer high waters. A major increase in both the amplitude and frequency of ice floods occurred in the 1930s. No such change was indicated by the tree-tilting chronologies, but wave erosion occurred in exceptionally rainy years. According to the modern record, spring lake-level rise is due to increased snowfalls since the 1930s. However, the absence of erosional marks in a large number of years since 1930 suggests a high frequency of low-water-level years resulting from dry conditions. Intercalary years with very large numbers of marked trees (e.g., 1935) indicate that the interannual range of summer lake levels has increased since the 1930s. Increased lake-flood frequency is postulated to be related to a slower expansion of arctic anticyclones, favoring the passage of cyclonic air masses over the area and resulting in abundant snowfall in early winter. Conditions in summer are due to the rate of weakening of the anticyclones controlling the position of the arctic front in summer. This position influences the path of the cyclonic air masses, which control summer precipitation and, consequently, summer lake levels in the area.
Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast
NASA Astrophysics Data System (ADS)
Agel, L. A.; Barlow, M. A.
2016-12-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.
NASA Astrophysics Data System (ADS)
Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Qu, X.; Huang, H. J.; Berg, N.; Jousse, A.; Schwartz, M.; Nakamura, M.; Cerezo-Mota, R.
2012-12-01
Using a combination of dynamical and statistical downscaling techniques, we projected mid-21st century warming in the Los Angeles region at 2-km resolution. To account for uncertainty associated with the trajectory of future greenhouse gas emissions, we examined projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5). To account for the considerable uncertainty associated with choice of global climate model, we downscaled results for all available global climate models in CMIP5. For the business-as-usual scenario, we find that by the mid-21st century, the most likely warming is roughly 2.6°C averaged over the region's land areas, with a 95% confidence that the warming lies between 0.9 and 4.2°C. The high resolution of the projections reveals a pronounced spatial pattern in the warming: High elevations and inland areas separated from the coast by at least one mountain complex warm 20 to 50% more than the areas near the coast or within the Los Angeles basin. This warming pattern is especially apparent in summertime. The summertime warming contrast between the inland and coastal zones has a large effect on the most likely expected number of extremely hot days per year. Coastal locations and areas within the Los Angeles basin see roughly two to three times the number of extremely hot days, while high elevations and inland areas typically experience approximately three to five times the number of extremely hot days. Under the mitigation emissions scenario, the most likely warming and increase in heat extremes are somewhat smaller. However, the majority of the warming seen in the business-as-usual scenario still occurs at all locations in the most likely case under the mitigation scenario, and heat extremes still increase significantly. This warming study is the first part of a series studies of our project. More climate change impacts on the Santa Ana wind, rainfall, snowfall and snowmelt, cloud and surface hydrology are forthcoming and could be found in www.atmos.ucla.edu/csrl.he ensemble-mean, annual-mean surface air temperature change and its uncertainty from the available CMIP5 GCMs under the RCP8.5 (left) and RCP2.6 (right) emissions scenarios, unit: °C.
Evaluation of solar cells for potential space satellite power applications
NASA Technical Reports Server (NTRS)
1977-01-01
The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.
A storm severity index based on return levels of wind speeds
NASA Astrophysics Data System (ADS)
Becker, Nico; Nissen, Katrin M.; Ulbrich, Uwe
2015-04-01
European windstorms related to extra-tropical cyclones cause considerable damages to infrastructure during the winter season. Leckebusch et al. (2008) introduced a storm severity index (SSI) based on the exceedances of the local 98th percentile of wind speeds. The SSI is based on the assumption that (insured) damage usually occurs within the upper 2%-quantile of the local wind speed distribution (i.e. if the 98th percentile is exceeded). However, critical infrastructure, for example related to the power network or the transportation system, is usually designed to withstand wind speeds reaching the local 50-year return level, which is much higher than the 98th percentile. The aim of this work is to use the 50-year return level to develop a modified SSI, which takes into account only extreme wind speeds relevant to critical infrastructure. As a first step we use the block maxima approach to estimate the spatial distribution of return levels by fitting the generalized extreme value (GEV) distribution to the wind speeds retrieved from different reanalysis products. We show that the spatial distributions of the 50-year return levels derived from different reanalyses agree well within large parts of Europe. The differences between the reanalyses are largely within the range of the uncertainty intervals of the estimated return levels. As a second step the exceedances of the 50-year return level are evaluated and compared to the exceedances of the 98th percentiles for different extreme European windstorms. The areas where the wind speeds exceed the 50-year return level in the reanalysis data do largely agree with the areas where the largest damages were reported, e.g. France in the case of "Lothar" and "Martin" and Central Europe in the case of "Kyrill". Leckebusch, G. C., Renggli, D., & Ulbrich, U. (2008). Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorologische Zeitschrift, 17(5), 575-587.
Extreme precipitation depths for Texas, excluding the Trans-Pecos region
Lanning-Rush, Jennifer; Asquith, William H.; Slade, Raymond M.
1998-01-01
Storm durations of 1, 2, 3, 4, 5, and 6 days were investigated for this report. The extreme precipitation depth for a particular area is estimated from an “extreme precipitation curve” (an upper limit or envelope curve developed from graphs of extreme precipitation depths for each climatic region). The extreme precipitation curves were determined using precipitation depth-duration information from a subset (24 “extreme” storms) of 213 “notable” storms documented throughout Texas. The extreme precipitation curves can be used to estimate extreme precipitation depth for a particular area. The extreme precipitation depth represents a limiting depth, which can provide useful comparative information for more quantitative analyses.
2017-09-02
A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942
Error driven remeshing strategy in an elastic-plastic shakedown problem
NASA Astrophysics Data System (ADS)
Pazdanowski, Michał J.
2018-01-01
A shakedown based approach has been for many years successfully used to calculate the distributions of residual stresses in bodies made of elastic-plastic materials and subjected to cyclic loads exceeding their bearing capacity. The calculations performed indicated the existence of areas characterized by extremely high gradients and rapid changes of sign over small areas in the stress field sought. In order to account for these changes in sign, relatively dense nodal meshes had to be used during calculations in disproportionately large parts of considered bodies, resulting in unnecessary expenditure of computer resources. Therefore the effort was undertaken to limit the areas of high mesh densities and drive the mesh regeneration algorithm by selected error indicators.
Evolution of precipitation extremes in two large ensembles of climate simulations
NASA Astrophysics Data System (ADS)
Martel, Jean-Luc; Mailhot, Alain; Talbot, Guillaume; Brissette, François; Ludwig, Ralf; Frigon, Anne; Leduc, Martin; Turcotte, Richard
2017-04-01
Recent studies project significant changes in the future distribution of precipitation extremes due to global warming. It is likely that extreme precipitation intensity will increase in a future climate and that extreme events will be more frequent. In this work, annual maxima daily precipitation series from the Canadian Earth System Model (CanESM2) 50-member large ensemble (spatial resolution of 2.8°x2.8°) and the Community Earth System Model (CESM1) 40-member large ensemble (spatial resolution of 1°x1°) are used to investigate extreme precipitation over the historical (1980-2010) and future (2070-2100) periods. The use of these ensembles results in respectively 1 500 (30 years x 50 members) and 1200 (30 years x 40 members) simulated years over both the historical and future periods. These large datasets allow the computation of empirical daily extreme precipitation quantiles for large return periods. Using the CanESM2 and CESM1 large ensembles, extreme daily precipitation with return periods ranging from 2 to 100 years are computed in historical and future periods to assess the impact of climate change. Results indicate that daily precipitation extremes generally increase in the future over most land grid points and that these increases will also impact the 100-year extreme daily precipitation. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety. Estimated increases in precipitation associated to very extreme precipitation events (e.g. 100 years) will drastically change the likelihood of flooding and their extent in future climate. These results, although interesting, need to be extended to sub-daily durations, relevant for urban flooding protection and urban infrastructure design (e.g. sewer networks, culverts). Models and simulations at finer spatial and temporal resolution are therefore needed.
NASA Astrophysics Data System (ADS)
Mao, W.; Sun, Z.; Felton, A. J.; Zhao, X.; Zhang, T.; Li, Y.; Smith, M. D.
2017-12-01
We used the method of `niche hypervolume' to study how plant communities accommodate extreme environmental changes. Due to the gradual decreases in precipitation, the desert-steppe ecotone in western of Inner Mongolia, an already arid region, has large shifts in species composition within short geographical ranges. Based on precipitation and species composition, we divided this study area into four categories: desert area (D), partial desert area (pD), partial steppe area (pS) and steppe area(S). We sampled along a climatic gradient of precipitation. We selected four transects, in each transect 100-125 quadrats were randomly selected, with 425 quadrats sampled in total. We assessed species composition of each sampling quadrat, and collected leaves of every species that appeared in every quadrat. We also studied the change of plant community weighted means of leaf traits (CWM) along the precipitation gradient. Leaf traits (phenotypic traits, i.e. SLA, LDMC and stoichiometry traits, i.e. LNC, LCC) were used to calculate the changes in `niche hypervolume'. Our results show that: 1) with decreases in precipitation, species richness and functional group types (PFTs) change. Species richness and functional groups were the highest in the pD area, while the species richness and functional groups in the desert area were the lowest. 2), CWM-SLA in the desert area was relatively small, while CWM-SLA in pD area, the pS area, and the steppe area are more similar. CWM-LNC decreases as precipitation decreases, consistent with CWM-LCC trends. While CWM-LDMC of the desert area was the highest, and CWM-LDMC in desert area was the lowest. The dynamics of CWM traits suggests that species in the desert region have slower growth rates, while species in the transitional zone and steppe area have relatively higher growth rates. Finally, the pD area had the highest niche hypervolume, while the steppe area had the lowest hypervolume, which may be closely related to the high level of PFTs. These results suggest that even in drought-prone ecosystems, plants yield multiple life strategies to adapt to stressful environments. While under extreme drought conditions, environmental filters will remove species with unsuitable traits, like perennial species in this study, leaving shrubs and other drought tolerant species to survive.
Stracciolini, Andrea; Yin, Amy X; Sugimoto, Dai
2015-11-01
Improving knowledge regarding injuries sustained by pediatric dancers is important in order to better understand injury risk. The aim of this study is to analyze dance injury etiology and body area by age in a cohort of young female dancers presenting to a pediatric sports/dance medicine clinic. The cross-sectional epidemiological study of a 5% probability sample of dancers evaluated between 1/1/2000 and 12/31/2009 with a musculoskeletal injury requiring physician evaluation. A total of 2,133 charts were reviewed from which 171 female dancers 8-17 years old (mean age 14.7 years) were identified. Data were stratified by age, < 12 years and ≥ 12 years, and analyzed based on injury body area, type, and etiology. Fisher's exact test was used to determine statistical significance. Injuries sustained by dancers in the younger age category (< 12 years) were largely to the foot-ankle/lower leg/knee (93.3%) versus thigh-hip/spine/upper extremity (6.7%). In comparison, dancers in the older age group (≥ 12 years) had a large proportion of injuries to the foot-ankle/lower leg/knee (67.3%) as well, but had a notably larger fraction of injuries to the thigh-hip/spine/upper extremity (32.7%; p = 0.04). Approximately two-thirds of the injuries sustained in the younger age group (< 12 years) were classified as bony. In comparison, injuries in the older age group (≥ 12 years) were roughly half bony and half soft tissue (51.3% and 48.7%, respectively; p = 0.29). Most injuries were overuse in etiology for both younger and older age groups (86.7% and 82.1%, respectively; p = 1.00). Through puberty, there was a decline in the injuries to the foot-ankle/lower leg/knee. Conversely, there was an increase in the thigh/hip-pelvis/spine/upper extremity injuries through growth. Injuries to young female dancers in this study cohort were mostly categorized as overuse in etiology, and differed by the age group and the body area. Increased information regarding dance injuries can help guide future injury prevention efforts.
Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep
2014-05-01
Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.
Literature Review and Annotated Bibliography: Water Requirements of Desert Ungulates
Cain, James W.; Krausman, Paul R.; Rosenstock, Steven S.; Turner, Jack C.
2005-01-01
Executive Summary Ungulates adapted to desert areas are able to survive extreme temperatures and limited water availability. This ability is largely due to behavioral, morphological, and physiological adaptations that allow these animals to avoid or tolerate extreme environmental conditions. The physiological adaptations possessed by ungulates for thermoregulation and maintenance of water balance have been the subject of numerous studies involving a wide range of species. In this report we review the behavioral, morphological, and physiological mechanisms used by ungulates and other desert mammals to maintain water and temperature balance in arid environments. We also review some of the more commonly used methods for studying the physiological mechanisms involved in water balance and thermoregulation, and the influence of dehydration on these mechanisms.
NASA Astrophysics Data System (ADS)
Martel, J. L.; Brissette, F.; Mailhot, A.; Wood, R. R.; Ludwig, R.; Frigon, A.; Leduc, M.; Turcotte, R.
2017-12-01
Recent studies indicate that the frequency and intensity of extreme precipitation will increase in future climate due to global warming. In this study, we compare annual maxima precipitation series from three large ensembles of climate simulations at various spatial and temporal resolutions. The first two are at the global scale: the Canadian Earth System Model (CanESM2) 50-member large ensemble (CanESM2-LE) at a 2.8° resolution and the Community Earth System Model (CESM1) 40-member large ensemble (CESM1-LE) at a 1° resolution. The third ensemble is at the regional scale over both Eastern North America and Europe: the Canadian Regional Climate Model (CRCM5) 50-member large ensemble (CRCM5-LE) at a 0.11° resolution, driven at its boundaries by the CanESM-LE. The CRCM5-LE is a new ensemble issued from the ClimEx project (http://www.climex-project.org), a Québec-Bavaria collaboration. Using these three large ensembles, change in extreme precipitations over the historical (1980-2010) and future (2070-2100) periods are investigated. This results in 1 500 (30 years x 50 members for CanESM2-LE and CRCM5-LE) and 1200 (30 years x 40 members for CESM1-LE) simulated years over both the historical and future periods. Using these large datasets, the empirical daily (and sub-daily for CRCM5-LE) extreme precipitation quantiles for large return periods ranging from 2 to 100 years are computed. Results indicate that daily extreme precipitations generally will increase over most land grid points of both domains according to the three large ensembles. Regarding the CRCM5-LE, the increase in sub-daily extreme precipitations will be even more important than the one observed for daily extreme precipitations. Considering that many public infrastructures have lifespans exceeding 75 years, the increase in extremes has important implications on service levels of water infrastructures and public safety.
Quantifying the influence of global warming on unprecedented extreme climate events
Singh, Deepti; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala
2017-01-01
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent. PMID:28439005
Quantifying the influence of global warming on unprecedented extreme climate events.
Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala
2017-05-09
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.
Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events
NASA Technical Reports Server (NTRS)
Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael;
2017-01-01
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.
NASA Astrophysics Data System (ADS)
Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei
2016-05-01
The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation extremes and a large region with low precipitation extremes. However, the regions with low precipitation extremes are the most developed and densely populated regions of the country, and floods will cause great loss of human life and property damage due to the high vulnerability. The study methods and procedure demonstrated in this paper will provide useful reference for frequency analysis of precipitation extremes in large regions, and the findings of the paper will be beneficial in flood control and management in the study area.
Extreme Binge Drinking among 12th-Grade Students in the U.S.: Prevalence and Predictors
Patrick, Megan E.; Schulenberg, John E.; Martz, Meghan E.; Maggs, Jennifer L.; O’Malley, Patrick M.; Johnston, Lloyd
2013-01-01
Importance The prevalence of underage alcohol use has been studied extensively but binge drinking among youth in the U.S. is not yet well understood. In particular, adolescents may drink much larger amounts than the threshold (5 drinks) often used in definitions of binge drinking. Delineating various levels of binge drinking, including extreme levels, and understanding predictors of such extreme binge drinking among adolescents will benefit public health efforts. Objective To examine the prevalence and predictors of 5+ binge drinking and of 10+ and 15+ extreme binge drinking among 12th graders in the U.S. Design A non-clinical nationally representative sample. Setting High school seniors in the annual Monitoring the Future study between 2005 and 2011. Participants The sample included 16,332 12th graders (modal age 18) in the U.S. Response rates were 79–85%. Main Outcome Measures Prevalence of consuming 5+, 10+, and 15+ drinks in a row in the past two weeks. Results Between 2005 and 2011, 20.2% of high school seniors reported 5+ binge drinking, 10.5% reported 10+ extreme binge drinking, and 5.6% reported 15+ extreme binge drinking in the past 2 weeks. Rates of 5+ binge drinking and 10+ extreme binge drinking have declined since 2005, but rates of 15+ extreme binge drinking have not. Students with college-educated parents were more likely to consume 5+ drinks but less likely to consume 15+ drinks than students whose parents were not college educated. Students from more rural areas were more likely than students from large metropolitan areas to drink 15+ drinks. Socializing with substance-using peers, number of evenings out with friends, substance-related attitudes, and other substance use (cigarettes, marijuana) predicted all three levels of binge and extreme binge drinking. Conclusions Binge drinking at the traditionally defined 5+ drinking level was common among high school seniors representative of all 12th graders in the contiguous U.S. A significant segment of students also reported extreme binge drinking at levels two and three times higher. These data suggest the importance of assessing multiple levels of binge drinking behavior and their predictors among adolescents in order to target effective screening and intervention efforts. PMID:24042318
Extreme-value dependence: An application to exchange rate markets
NASA Astrophysics Data System (ADS)
Fernandez, Viviana
2007-04-01
Extreme value theory (EVT) focuses on modeling the tail behavior of a loss distribution using only extreme values rather than the whole data set. For a sample of 10 countries with dirty/free float regimes, we investigate whether paired currencies exhibit a pattern of asymptotic dependence. That is, whether an extremely large appreciation or depreciation in the nominal exchange rate of one country might transmit to another. In general, after controlling for volatility clustering and inertia in returns, we do not find evidence of extreme-value dependence between paired exchange rates. However, for asymptotic-independent paired returns, we find that tail dependency of exchange rates is stronger under large appreciations than under large depreciations.
The role of climate variability in extreme floods in Europe
NASA Astrophysics Data System (ADS)
Guimarães Nobre, Gabriela; Aerts, Jeroen C. J. H.; Jongman, Brenden; Ward, Philip J.
2017-04-01
Between 1980 and 2015, Europe experienced 18% of worldwide weather-related loss events, which accounted for over US500 billion in damage. Consequently, it is urgent to further develop adaptation strategies to mitigate the consequences of weather-related disasters, such as floods. Europe's capability to prepare for such disasters is challenged by a large range of uncertainties and a limited understanding of the driving forces of hydrometeorological hazards. One of the major sources of uncertainty is the relationship between climate variability and weather-related losses. Previous studies show that climate variability drives temporal changes in hydrometereological variables in Europe. However, their influence on flood risk has received little attention. We investigated the influence of the positive and negative phases of El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO), on the seasonal frequency and intensity of extreme rainfall, and anomalies in flood occurrence and damage compared to the neutral phases of the indices of climate variability. Using statistical methods to analyze relationships between the indices of climate variability and four indicators of flooding, we found that positive and negative phases of NAO and AO are associated with more (or less) frequent and intense seasonal extreme rainfall over large areas of Europe. The relationship between ENSO and both the occurrence of extreme rainfall and intensity of extreme rainfall in Europe is much smaller than the relationship with NAO or AO, but still significant in some regions. We observe that flood damage and flood occurrence have strong links with climate variability, especially in southern and eastern Europe. Therefore, when investigating flooding across Europe, all three indices of climate variability should be considered. Seasonal forecasting of flooding could be enhanced by the inclusion of climate variability indicators .
Design solutions for dome and main structure (mount) of giant telescopes
NASA Astrophysics Data System (ADS)
Murga, Gaizka; Bilbao, Armando; de Bilbao, Lander; Lorentz, Thomas E.
2016-07-01
During the last recent years, designs for several giant telescopes ranging from 20 to 40m in diameter are being developed: European Extremely Large Telescope Telescope (TMT). (E-ELT), Giant Magellan Telescope (GMT) and Thirty Meter It is evident that simple direct up-scaling of solutions that were more or less successful in the 8 to 10m class telescopes can not lead to viable designs for the future giant telescopes. New solutions are required to provide adequate load sharing, to cope with the large-scale derived deflections and to provide the required compliance, or to respond to structure-mechanism control interaction issues, among others. From IDOM experience in the development of the Dome and Main Structure of the European Extremely Large Telescope and our participation in some other giant telescopes, this paper reviews several design approaches for the main mechanisms and key structural parts of enclosures and mounts/main structures for giant telescopes, analyzing pros and cons of the different alternatives and outlining the preferred design schemes. The assessment is carried out mainly from a technical and performance-based angle but it also considers specific logistical issues for the assembly of these large telescopes in remote and space-limited areas, together with cost and schedule related issues.
Workshop report on large-scale matrix diagonalization methods in chemistry theory institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C.H.; Shepard, R.L.; Huss-Lederman, S.
The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute brought together 41 computational chemists and numerical analysts. The goal was to understand the needs of the computational chemistry community in problems that utilize matrix diagonalization techniques. This was accomplished by reviewing the current state of the art and looking toward future directions in matrix diagonalization techniques. This institute occurred about 20 years after a related meeting of similar size. During those 20 years the Davidson method continued to dominate the problem of finding a few extremal eigenvalues for many computational chemistry problems. Work on non-diagonally dominant and non-Hermitian problems asmore » well as parallel computing has also brought new methods to bear. The changes and similarities in problems and methods over the past two decades offered an interesting viewpoint for the success in this area. One important area covered by the talks was overviews of the source and nature of the chemistry problems. The numerical analysts were uniformly grateful for the efforts to convey a better understanding of the problems and issues faced in computational chemistry. An important outcome was an understanding of the wide range of eigenproblems encountered in computational chemistry. The workshop covered problems involving self- consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation (IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock method (SCF), the symmetric matrices can range from order hundreds to thousands. These matrices often include large clusters of eigenvalues which can be as much as 25% of the spectrum. However, if Cl methods are also used, the matrix size can be between 10{sup 4} and 10{sup 9} where only one or a few extremal eigenvalues and eigenvectors are needed. Working with very large matrices has lead to the development of« less
NASA Astrophysics Data System (ADS)
Lorente-Plazas, Raquel; Mauger, Guillaume; Salathé, Eric; Mitchell, Todd P.
2017-04-01
Flooding is one of the natural hazard that causes the significant economic, ecosystem and human losses every year. Large percentage of floodings in the western of the US caused by heavy precipitation events are associated to atmospheric rivers (ARs). With the warmer climate is expected an increase of saturated water pressure which could increase the intensity and frequency of the ARs. In this work we attend to address two questions: 1) what are the large-scale drivers that promotes differences in ARs promoting heavy precipitation at different locations and 2) how climate change will influence on ARs and extreme precipitation. The methods applied in our analysis consist on a dynamical downscaling using the Weather Research and Forecasting (WRF) model. The target region is the western coastline U.S. on a domain with 12-km grid spacing. Regional climate simulations (RCM) encompass a historical period (1970-2010) and future projections (2020-2060) using NNRP and ECHAM as initial and boundary conditions. Clustering methods are applied to the RCM to identify regions with similar precipitation variability. At each region, the extreme events of precipitation according to 99 percentile are identified and associated to integrated vapor transport (ITV). Results show how heaviest precipitation in each region is associated to different AR patterns. When an AR impacts coastline, the direction and intensity of the IVT determine the areas affected by heavy precipitation. Coastal mountains play a key role intensifying the precipitation in the coastline and avoiding the inland penetration of the IVT. The shape of the atmospheric rivers is related to differences in 500 hPa geopotential between the mean and the extreme precipitation. Areas with heaviest precipitation are located in the interface of Z500 differences.
Metal and Oxide Additives as Agents for Munitions Self-Remediation
2010-07-01
properties of TiO2 can be modified by adding various dopants which serve to expand the range of light energy adsorbed into the visible part of the...spectrum. Photocatalyst development is an extremely active area of research with respect to both substrate and dopant . The selection of an anatase...based photocatalyst is largely due to its established dominance and chemical stability (Diebold 2003). Tungsten trioxide (WO3) is one of many dopants
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young
2017-06-22
Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...
2017-05-10
Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less
Migration and risk: net migration in marginal ecosystems and hazardous areas
NASA Astrophysics Data System (ADS)
de Sherbinin, Alex; Levy, Marc; Adamo, Susana; MacManus, Kytt; Yetman, Greg; Mara, Valentina; Razafindrazay, Liana; Goodrich, Benjamin; Srebotnjak, Tanja; Aichele, Cody; Pistolesi, Linda
2012-12-01
The potential for altered ecosystems and extreme weather events in the context of climate change has raised questions concerning the role that migration plays in either increasing or reducing risks to society. Using modeled data on net migration over three decades from 1970 to 2000, we identify sensitive ecosystems and regions at high risk of climate hazards that have seen high levels of net in-migration and out-migration over the time period. This paper provides a literature review on migration related to ecosystems, briefly describes the methodology used to develop the estimates of net migration, then uses those data to describe the patterns of net migration for various ecosystems and high risk regions. The study finds that negative net migration generally occurs over large areas, reflecting its largely rural character, whereas areas of positive net migration are typically smaller, reflecting its largely urban character. The countries with largest population such as China and India tend to drive global results for all the ecosystems found in those countries. Results suggest that from 1970 to 2000, migrants in developing countries have tended to move out of marginal dryland and mountain ecosystems and out of drought-prone areas, and have moved towards coastal ecosystems and areas that are prone to floods and cyclones. For North America results are reversed for dryland and mountain ecosystems, which saw large net influxes of population in the period of record. Uncertainties and potential sources of error in these estimates are addressed.
Extreme seismicity and disaster risks: Hazard versus vulnerability (Invited)
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2013-12-01
Although the extreme nature of earthquakes has been known for millennia due to the resultant devastation from many of them, the vulnerability of our civilization to extreme seismic events is still growing. It is partly because of the increase in the number of high-risk objects and clustering of populations and infrastructure in the areas prone to seismic hazards. Today an earthquake may affect several hundreds thousand lives and cause significant damage up to hundred billion dollars; it can trigger an ecological catastrophe if occurs in close vicinity to a nuclear power plant. Two types of extreme natural events can be distinguished: (i) large magnitude low probability events, and (ii) the events leading to disasters. Although the first-type events may affect earthquake-prone countries directly or indirectly (as tsunamis, landslides etc.), the second-type events occur mainly in economically less-developed countries where the vulnerability is high and the resilience is low. Although earthquake hazards cannot be reduced, vulnerability to extreme events can be diminished by monitoring human systems and by relevant laws preventing an increase in vulnerability. Significant new knowledge should be gained on extreme seismicity through observations, monitoring, analysis, modeling, comprehensive hazard assessment, prediction, and interpretations to assist in disaster risk analysis. The advanced disaster risk communication skill should be developed to link scientists, emergency management authorities, and the public. Natural, social, economic, and political reasons leading to disasters due to earthquakes will be discussed.
Data Mining of Extremely Large Ad Hoc Data Sets to Produce Inverted Indices
2016-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited DATA MINING OF...COVERED Master’s Thesis 4. TITLE AND SUBTITLE DATA MINING OF EXTREMELY LARGE AD HOC DATA SETS TO PRODUCE INVERTED INDICES 5. FUNDING NUMBERS 6...INTENTIONALLY LEFT BLANK iii Approved for public release; distribution is unlimited DATA MINING OF EXTREMELY LARGE AD HOC DATA SETS TO PRODUCE
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs
NASA Astrophysics Data System (ADS)
de Winter, R.; Ruessink, G.; Sterl, A.
2012-12-01
Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.
Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining.
Zhu, Zhiwei; To, Suet; Zhang, Shaojian
2015-08-10
Fast/slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of micro-lens array (MLA). However, it is still a challenge to process MLA in large scale due to certain inherent limitations of this technique. In the present study, a novel ultra-precision diamond cutting method, as the end-fly-cutting-servo (EFCS) system, is adopted and investigated for large-scale generation of MLA. After a detailed discussion of the characteristic advantages for processing MLA, the optimal toolpath generation strategy for the EFCS is developed with consideration of the geometry and installation pose of the diamond tool. A typical aspheric MLA over a large area is experimentally fabricated, and the resulting form accuracy, surface micro-topography and machining efficiency are critically investigated. The result indicates that the MLA with homogeneous quality over the whole area is obtained. Besides, high machining efficiency, extremely small volume of control points for the toolpath, and optimal usage of system dynamics of the machine tool during the whole cutting can be simultaneously achieved.
Climate extremes in urban area and their impact on human health: the summer heat waves
NASA Astrophysics Data System (ADS)
Baldi, Marina
2014-05-01
In the period 1951-2012 the average global land and ocean temperature has increased by approximately 0.72°C [0.49-0.89] when described by a linear trend, and is projected to rapidly increase. Each of the past three decades has been warmer than all the previous decades, with the decade of the 2000's as the warmest, and, since 1880, nine of the ten warmest years are in the 21st century, the only exception being 1998, which was warmed by the strongest El Niño event of the past century. In parallel an increase in the frequency and intensity of extremely hot days is detected with differences at different scales, which represent an health risk specially in largely populated areas as documented for several regions in the world including the Euro-Mediterranean region. If it is still under discussion if heat wave episodes are a direct result of the warming of the lower troposphere, or if, more likely, they are a regional climate event, however heat episodes have been studied in order to define their correlation with large scale atmospheric patterns and with changes in the regional circulation. Whatever the causes and the spatio-temporal extension of the episodes, epidemiological studies show that these conditions pose increasing health risks inducing heat-related diseases including hyperthermia and heat stress, cardiovascular and respiratory illnesses in susceptible individuals with a significant increase in morbidity and mortality especially in densely populated urban areas. In several Mediterranean cities peaks of mortality associated with extremely high temperature (with simultaneous high humidity levels) have been documented showing that, in some cases, a large increase in daily mortality has been reached compared to the average for the period. The number of fatalities during the summer 2003 heat wave in Europe was estimated to largely exceed the average value of some between 22000 and 50000 cases. In the same summer it was also unusually hot across much of Asia, and Shanghai, which is particularly prone to heat waves, recorded the hottest summer in over 50 years. During the event, the maximum number of daily deaths was 317, 42% above the non-heat day average, even though an heat warning system in operation. In this study results from the analysis of heat waves events in Italian cities is presented. Indices representative of extremely hot conditions have been taken into account and results of the analysis of indices such as the number of summer days (SU), number of tropical nights (TR), maxima and minima of daily maximum and minimum temperatures (TXx, TXn, TNx, TNn, respectively), exceedances over fixed thresholds is presented. Results show a clear increase in the past decades of the numbers of days affected by heat events. Some considerations are also presented about the impact on human health of the longest events occurred in the Country.
Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA
NASA Astrophysics Data System (ADS)
Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid
2018-06-01
There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971-2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).
Statistical methods for the analysis of climate extremes
NASA Astrophysics Data System (ADS)
Naveau, Philippe; Nogaj, Marta; Ammann, Caspar; Yiou, Pascal; Cooley, Daniel; Jomelli, Vincent
2005-08-01
Currently there is an increasing research activity in the area of climate extremes because they represent a key manifestation of non-linear systems and an enormous impact on economic and social human activities. Our understanding of the mean behavior of climate and its 'normal' variability has been improving significantly during the last decades. In comparison, climate extreme events have been hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws than averages. In this context, the motivation for this paper is twofold. Firstly, we recall the basic principles of Extreme Value Theory that is used on a regular basis in finance and hydrology, but it still does not have the same success in climate studies. More precisely, the theoretical distributions of maxima and large peaks are recalled. The parameters of such distributions are estimated with the maximum likelihood estimation procedure that offers the flexibility to take into account explanatory variables in our analysis. Secondly, we detail three case-studies to show that this theory can provide a solid statistical foundation, specially when assessing the uncertainty associated with extreme events in a wide range of applications linked to the study of our climate. To cite this article: P. Naveau et al., C. R. Geoscience 337 (2005).
NASA Astrophysics Data System (ADS)
Yucel, Ismail; Onen, Alper
2013-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Regional hydrometeorological system model which couples the atmosphere with physical and gridded based surface hydrology provide efficient predictions for extreme hydrological events. This modeling system can be used for flood forecasting and warning issues as they provide continuous monitoring of precipitation over large areas at high spatial resolution. This study examines the performance of the Weather Research and Forecasting (WRF-Hydro) model that performs the terrain, sub-terrain, and channel routing in producing streamflow from WRF-derived forcing of extreme precipitation events. The capability of the system with different options such as data assimilation is tested for number of flood events observed in basins of western Black Sea Region in Turkey. Rainfall event structures and associated flood responses are evaluated with gauge and satellite-derived precipitation and measured streamflow values. The modeling system shows skills in capturing the spatial and temporal structure of extreme rainfall events and resulted flood hydrographs. High-resolution routing modules activated in the model enhance the simulated discharges.
NASA Astrophysics Data System (ADS)
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2015-04-01
Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dain, Sergio; Max Planck Institute for Gravitational Physics
2010-11-15
We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggestsmore » that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the nontrivial family of spinning Bowen-York initial data.« less
Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion.
Servino, Ricardo Nogueira; Gomes, Luiz Eduardo de Oliveira; Bernardino, Angelo Fraga
2018-07-01
Extreme weather events are likely to become more frequent in the 21st century bringing significant impacts to coastal ecosystems. However, the capacity to detect and measure those impacts are still limited, with effects largely unstudied. In June 2016, a hailstorm with wind gusts of over 100 km·h -1 caused an unprecedented mangrove dieback on Eastern Brazil. To quantify the scale of impact and short-term recovery of mangroves (15-mo), we used satellite imagery and field sampling to evaluate changes in forest structure in control and impacted areas after the hailstorm. Satellite imagery revealed mangrove dieback in over 500 ha, corresponding to 29.3% of the total forest area suddenly impacted after the hailstorm. Fifteen months after the hailstorm, some impacted areas show an initial recovery, while others continued to degrade. The El Niño years of 2014-2016 created mild drought conditions in Eastern Brazil. As observed in wetlands of semi-arid regions during the same period, mangrove recovery may have been impaired by continued physiological stress and climate change effects. Economic losses in the study site from typical mangrove ecosystem services including food provision, climate regulation, raw materials and nurseries are estimated to at least US$ 792,624 yr -1 . This is the first evidence of an extreme weather impact on mangroves in Brazil that typically provide unique ecological and economic subsistence to coastal populations. Our results reveal that there is a pressing need for long-term monitoring and climate change adaptation actions for coastal wetlands in Brazil, and to provide broad estimates of ecosystem values associated with these ecosystems given many areas are already experiencing chronic stress from local impacts, drought and high temperatures. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey
2017-04-01
Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value
NASA Astrophysics Data System (ADS)
Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri
2013-02-01
Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a representative expression of the balance between erosion and deposition, and importantly sediment redistribution, which is extremely difficult to quantify using more traditional channel planform or cross-sectional surveys. The ability of LiDAR to make a rapid and accurate assessment of key geomorphic processes over large spatial scales contributes to our understanding of key processes and, as demonstrated here, to the assessment of major geomorphological hazards such as extreme flood events.
Dynamical systems proxies of atmospheric predictability and mid-latitude extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal
2017-04-01
Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.
Aucott, W.R.; Meadows, R.S.; Patterson, G.G.
1987-01-01
Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)
NASA Astrophysics Data System (ADS)
Felley, J. D.; Vecchione, M.; Wilson, R. R., Jr.
2008-01-01
Videotapes from manned submersibles diving in the area of the Charlie-Gibbs Fracture Zone of the Mid-Atlantic Ridge were used to investigate the distribution of fishes, large crustaceans, epifaunal and sessile organisms, and environmental features along a series of transects. Submersibles MIR 1 and MIR 2 conducted paired dives in an area of mixed sediment and rock (beginning depth ca. 3000 m) and on a large pocket of abyssal-like sediments (depth ca. 4000 m). In the shallower area, the submersibles passed over extremely heterogeneous terrain with a diversity of nekton, epifaunal forms and sessile forms. In the first pair of dives, MIR 1 rose along the Mid-Atlantic Ridge from 3000 to 1700 m, while MIR 2 remained near the 3000 m isobath. Nekton seen in these relatively shallow dives included large and small macrourids (genus Coryphaenoides), shrimp (infraorder Penaeidea), Halosauropsis macrochir, Aldrovandia sp., Antimora rostrata, and alepocephalids. The last two were more characteristic of the upper areas of the slope reached by MIR 1, as it rose along the Mid-Atlantic Ridge to depths less than 3000 m. Distributions of some forms seemed associated with depth and/or the presence of hard substrate. Sessile organisms such as sponges and large cnidaria were more likely to be found in rocky areas. The second pair of dives occurred in an abyssal area and the submersibles passed over sediment-covered plains, with little relief and many fewer countable organisms and features. The most evident of these were holes, mounds, small cerianthid anemones, small macrourids and the holothurian Benthodytes sp. A few large macrourids and shrimp also were seen in these deeper dives, as well as squat lobsters ( Munidopsis sp.). Sponges and larger cnidaria were mostly associated with a few small areas of rocky substrate. Holes and mounds showed distributions suggesting large-scale patterning. Over all dives, most sessile and epifaunal forms showed clumped distributions. However, large holothurians and large nekton often had distributions not significantly different from random.
Climate change in the Brazilian northeast
NASA Astrophysics Data System (ADS)
Rodrigues, Regina R.; Haarsma, Reindert J.; Hoelzemann, Judith J.
2012-10-01
Climate Change, Impacts and Vulnerabilities in Brazil: Preparing the Brazilian Northeast for the Future; Natal, Brazil, 27 May to 01 June 2012 The variability of the semiarid climate of the Brazilian northeast has enormous environmental and social implications. Because most of the population in this area depends on subsistence agriculture, periods of severe drought in the past have caused extreme poverty and subsequent migration to urban centers. From the ecological point of view, frequent and prolonged droughts can lead to the desertification of large areas. Understanding the causes of rainfall variability, in particular periods of severe drought, is crucial for accurate forecasting, mitigation, and adaptation in this important region of Brazil.
Water resources of the Myakka River basin area, southwest Florida
Joyner, Boyd F.; Sutcliffe, Horace
1976-01-01
Ground water in the Myakka River basin area of southwest Floria is obtained from a water-table aquifer and from five zones in an artesian aquifer. Wells in the water-table aquifer yield generally less than 50 gpm and dissolved solids concentration is less than 500 mg/liter except in coastal areas and the peninsula southwest of the Myakka River estuary. Wells in the Venice area that tap zone 1 usually yield less than 30 gmp. The quality of water is good except in the peninsula area. Zone 2 is the most highly developed aquifer in the heavily populated coastal areas. Wells yield as much as 200 gpm. In most areas, water is of acceptable quality. Wells that tap zone 3 yield as much as 500 gmp. Fluoride concentration ranges from 1 to 3.5 mg/liter. Zone 4 yields as much as 1,500 gpm to large diameter wells. Except in the extreme northeastern part of the area water from zone 4 usually contains high concentrations of fluoride and sulfate. Zone 5 is the most productive aquifer in the area, but dissolved solids concentrations usually are too high for public supply except in the extreme northeast. Surface water derived from natural drainage is of good quality except for occasional high color in summer. Most of the streams in the Myakka River basin area have small drainage basins, are of short channel length, and do not yield high volumes of flow. During the dry season, streamflow is maintained by groundwater discharge, and, as a result, chloride, sulfate, and dissolved solids concentrations and the hardness of the water are above drinking water standards for some streams. (Woodard-USGS)
One-dimensional representation of Earth to show SRTM coverage
2000-02-04
JSC2000E01555 (January 2000) --- A one-dimensional representation of Earth indicates only a portion of the total anticipated coverage area for the Shuttle Radar Topography Mission (SRTM). The primary objective of SRTM is to acquire a high-resolution topographic map of the Earth's land mass (between 60 degrees north and 56 degrees south latitude) and to test new technologies for deployment of large rigid structures and measurement of their distortions to extremely high precision.
Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate
NASA Astrophysics Data System (ADS)
Mankin, Justin S.; Seager, Richard; Smerdon, Jason E.; Cook, Benjamin I.; Williams, A. Park; Horton, Radley M.
2018-04-01
Present and future freshwater availability and drought risks are physically tied to the responses of surface vegetation to increasing CO2. A single-model large ensemble identifies the occurrence of colocated warming- and CO2-induced leaf area index increases with summer soil moisture declines. This pattern of "greening" and "drying," which occurs over 42% of global vegetated land area, is largely attributable to changes in the partitioning of precipitation at the land surface away from runoff and toward terrestrial vegetation ecosystems. Changes in runoff and ecosystem partitioning are inversely related, with changes in runoff partitioning being governed by changes in precipitation (mean and extremes) and ecosystem partitioning being governed by ecosystem water use and surface resistance to evapotranspiration (ET). Projections show that warming-influenced and CO2-enriched terrestrial vegetation ecosystems use water that historically would have been partitioned to runoff over 48% of global vegetated land areas, largely in Western North America, the Amazon, and Europe, many of the same regions with colocated greening and drying. These results have implications for how water available for people will change in response to anthropogenic warming and raise important questions about model representations of vegetation water responses to high CO2.
Modelling deforestation trends in Costa Rica and predicting future forest sustainability
NASA Astrophysics Data System (ADS)
Stan, Kayla; Sanchez, Arturo
2017-04-01
Deforestation in Costa Rica has historically varied between the original degradation of primary forest due to land-based industries, followed by secondary regrowth. The regeneration of forests largely came into effect with incentive based programs such as payments for ecosystem services, creation of large protected areas, and a new industry of ecotourism in the country. Given the changes that have occurred within the last 50 years from heavy deforestation pressures to regeneration patterns, and a correlation between deforestation and policy/economic influences, it is important to understand the historical changes that have occurred and how the forests will change in the future, which provides the objective of this study. Future projections are increasingly important given changes in the global socio-political structure, climatic change, and the ever increasing globalization of capitalistic endeavours. The trajectory of the forest in the country can also serve as a way to track both these global pressures on the natural landscape in Costa Rica, and as a proxy for how to manage deforestation in other similar political and geographic areas of the tropics. To determine the historical deforestation trends and link them to the different biogeophysical and socioeconomic variables, forest maps from 1960-2013 were used in the Dinamica Environment for Geoprocessing Objects (Dinamica EGO) to create deforestation models for Costa Rica. Dinamica EGO is a cellular automata model which utilizes Bayesian statistics and expert opinion to replicate both patterns and quantities of land cover change over time with both static and dynamic variables. Additional legislative variables can be used to track how political pressures shift deforestation both spatially and temporally. The historical model was built and analyzed for changes in landscape metrics such as patch size and distance between 1960 and 2013. After validation of the model's ability to replicate patterns, first between 2005 and 2013, and then back to 1997, a future model was created to determine future country wide changes. There was a significant decrease in patch size between 1960 and 2013 in forests and a non-significant decrease is patch size for non-forests. The historical model validated at 85% accuracy within 600m for both the 2005-2013 and 1997-2005 iterations. Future scenario building determines the point in time and area at which the forest area equilibrates, indicating the approximate maximal forest extent under extreme scenarios. None of the scenarios were sufficiently damaging to decrease the forest area below present day levels. The Puntarenas province is the only region which had deforestation in the most extreme scenario. Using the inclusion and exclusion of protected areas within the model, it was determined which of the parks suffers from high pressure of deforestation should there be policy removing protected area status. These parks are predominantly limited to small areas on coastal regions, while the large central parks suffer relatively little pressure from deforestation. This indicates that even under the most extreme scenarios, the secondary forests are likely to remain permanently and continue to regenerate as time progresses.
NASA Astrophysics Data System (ADS)
Giannakaki, Paraskevi; Calanca, Pierluigi
2017-04-01
Russia has become one of the leading wheat exporters worldwide. Major breakdowns in Russian wheat production induced by extreme weather events are therefore of high significance not only for the domestic but also for the global market. Wheat production in south-western Russia, the main growing area, suffers in particular from the adverse effects of drought and heat waves. For this reason knowledge of the occurrence of this type of extreme events and of the processes that lead to adverse conditions is of paramount importance for risk management. The negative impacts of heat waves and drought are particularly severe when anomalous conditions persist in time. As an example, a blocking event in summer 2010 resulted in one of the warmest and worst drought conditions in Russia's recent history. The latter caused a decline in Russian wheat production by more than 30%, which in turn prompted the Russian government to issue an export ban that lasted until summer 2011. In view of this, the question of course arises of how much of the negative variations in Russian wheat production levels can be explained by blocking events and other features of the large-scale atmospheric circulation. Specific questions are: how often are blocking events over Russia associated with extreme high temperatures and dry conditions? Which of the teleconnection patterns are correlated with drought and heat stress conditions in the area? Answering these questions can contribute to a develop strategies for agricultural risk management. In this contribution we present results of a study that aims at characterizing the occurrence of adverse weather conditions in south-western Russia in relation to atmospheric blocking and teleconnection patterns such as East Atlantic/Western Russia pattern, the Polar/Eurasia pattern, the North Atlantic Oscillation and the Scandinavia pattern. The analysis relies on weather data for 1980-2014 from 130 stations distributed across the wheat production area. The account for similarities in the occurrence of extreme heat, stations are clustered according to 90th percentile of daily maximum temperature. The results indicate that adverse conditions in the area are significantly correlated with the occurrence of blocking events and with the phase of some teleconnection patterns.
McClelland, Erin; Amlôt, Richard; Rogers, M Brooke; Rubin, G James; Tesh, John; Pearce, Julia M
2017-02-01
In recent years, a series of large-scale, high-profile natural disasters and terrorist attacks have demonstrated the need for thorough and effective disaster preparedness. While these extreme events affect communities and societies as a whole, they also carry specific risks for particular population groups. Crises such as Hurricane Katrina and the 2011 earthquake and tsunami disaster in Japan have illustrated the risk of significant and disproportionate morbidity and mortality among older adults during disasters. Age does not necessarily equate to vulnerability, but many physical and psychological consequences of the aging process can increase the risk of adverse outcomes. As the older population grows, so too does the need to ensure that adequate, practical, and appropriate measures exist to offset the specific risks from extreme events associated with this subpopulation. Effective risk and crisis communication plays a key role in mitigating the extent to which older adults are differentially affected during extreme events. By identifying the specific issues affecting older adults, this review highlights important areas for action for practitioners and policy-makers, particularly in the realm of crisis communication. (Disaster Med Public Health Preparedness. 2017;11:127-134).
Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil
NASA Astrophysics Data System (ADS)
Salvador, Mozar de A.; de Brito, J. I. B.
2017-06-01
During the 1980s, a new agricultural frontier arouse in Brazil, which occupied part of the states of Maranhão, Tocantins, Piauí, and Bahia. Currently, this new frontier is known as the MATOPIBA region. The region went through intense transformations in its social and environmental characteristics, with the emergence of extensive areas of intensive agriculture and large herds. The purpose of this research was to study the climatic variabilities of temperature in the MATOPIBA region through extreme climate indexes of ClimAp tool. Data from 11 weather stations were analyzed for yearly air temperature (maximum and minimum) in the period of 1970 to 2012. To verify the trend in the series, we used methods of linear regression analysis and Kendall-tau test. The annual analysis of maximum and minimum temperatures and of the temperature extremes indexes showed a strong positive trend in practically every series (with p value less than 0.05). These results indicated that the region went through to a significant heating process in the last 3 decades. The indices of extreme also showed a significant positive trend in most of the analyzed stations, indicating a higher frequency of warm days during the year.
TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments
NASA Technical Reports Server (NTRS)
Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.
2016-01-01
"Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment
NASA Astrophysics Data System (ADS)
Rupa, Chandra; Mujumdar, Pradeep
2016-04-01
In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings algorithm within a Gibbs sampler) is used to obtain the samples of parameters from the posterior distribution of parameters. The spatial maps of return levels for specified return periods, along with the associated uncertainties, are obtained for the summer, monsoon and annual maxima rainfall. Considering various covariates, the best fit model is selected using Deviance Information Criteria. It is observed that the geographical covariates outweigh the climatological covariates for the monsoon maxima rainfall (latitude and longitude). The best covariates for summer maxima and annual maxima rainfall are mean summer precipitation and mean monsoon precipitation respectively, including elevation for both the cases. The scale invariance theory, which states that statistical properties of a process observed at various scales are governed by the same relationship, is used to disaggregate the daily rainfall to hourly scales. The spatial maps of the scale are obtained for the study area. The spatial maps of IDF relationships thus generated are useful in storm water designs, adequacy analysis and identifying the vulnerable flooding areas.
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses
NASA Astrophysics Data System (ADS)
Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.
2014-12-01
Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.
Kim, Nam Sook; Hong, Sang Hee; An, Joon Geon; Shin, Kyung-Hoon; Shim, Won Joon
2015-06-15
The occurrence and distribution of tributyltin (TBT) and alternative biocides were investigated in sediment from semi-enclosed bays, fishing ports, and large commercial harbors in Korea. Extremely high concentration of TBT (55,264ngSn/g) was detected near a large shipyard, even after a total ban on its use in Korea. Diuron was the biocide with the highest detection frequency and concentration levels, followed by Irgarol 1051. Sea-Nine 211 was detected at 3 of 32 stations surveyed. Dichlofluanid, zinc and copper pyrithiones levels were below the detection limits at all the stations surveyed. The relatively high levels of Diuron (9-62.3ng/g) and Irgarol 1051 (1.5-11.5ng/g) were detected in harbor and shipyard areas. Diuron and Irgarol 1051 levels including TBT in sediments from hot spots in Korea exceeded global sediment quality guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays
Wu, Hao; Tang, Biao; Hayes, Robert A.; Dou, Yingying; Guo, Yuanyuan; Jiang, Hongwei; Zhou, Guofu
2016-01-01
Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities. PMID:28773826
Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays.
Wu, Hao; Tang, Biao; Hayes, Robert A; Dou, Yingying; Guo, Yuanyuan; Jiang, Hongwei; Zhou, Guofu
2016-08-19
Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities.
High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.
Snellen, Ignas
2014-04-28
Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.
Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.
Ibbotson, Lindsey A; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J
2015-02-09
Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges.
MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection
NASA Astrophysics Data System (ADS)
Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.
2008-09-01
Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.
NASA Astrophysics Data System (ADS)
Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai
2013-05-01
A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c
Assessing the impact of climate and land use changes on extreme floods in a large tropical catchment
NASA Astrophysics Data System (ADS)
Jothityangkoon, Chatchai; Hirunteeyakul, Chow; Boonrawd, Kowit; Sivapalan, Murugesu
2013-05-01
In the wake of the recent catastrophic floods in Thailand, there is considerable concern about the safety of large dams designed and built some 50 years ago. In this paper a distributed rainfall-runoff model appropriate for extreme flood conditions is used to generate revised estimates of the Probable Maximum Flood (PMF) for the Upper Ping River catchment (area 26,386 km2) in northern Thailand, upstream of location of the large Bhumipol Dam. The model has two components: a continuous water balance model based on a configuration of parameters estimated from climate, soil and vegetation data and a distributed flood routing model based on non-linear storage-discharge relationships of the river network under extreme flood conditions. The model is implemented under several alternative scenarios regarding the Probable Maximum Precipitation (PMP) estimates and is also used to estimate the potential effects of both climate change and land use and land cover changes on the extreme floods. These new estimates are compared against estimates using other hydrological models, including the application of the original prediction methods under current conditions. Model simulations and sensitivity analyses indicate that a reasonable Probable Maximum Flood (PMF) at the dam site is 6311 m3/s, which is only slightly higher than the original design flood of 6000 m3/s. As part of an uncertainty assessment, the estimated PMF is sensitive to the design method, input PMP, land use changes and the floodplain inundation effect. The increase of PMP depth by 5% can cause a 7.5% increase in PMF. Deforestation by 10%, 20%, 30% can result in PMF increases of 3.1%, 6.2%, 9.2%, respectively. The modest increase of the estimated PMF (to just 6311 m3/s) in spite of these changes is due to the factoring of the hydraulic effects of trees and buildings on the floodplain as the flood situation changes from normal floods to extreme floods, when over-bank flows may be the dominant flooding process, leading to a substantial reduction in the PMF estimates.
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
Impacts of urbanization on Indian summer monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Shastri, Hiteshri; Paul, Supantha; Ghosh, Subimal; Karmakar, Subhankar
2015-01-01
areas have different climatology with respect to their rural surroundings. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth over the last 30 years. Here we take up an observational study to understand the influence of urbanization on the characteristics of precipitation (specifically extremes) in India. We identify 42 urban regions and compare their extreme rainfall characteristics with those of surrounding rural areas. We observe that, on an overall scale, the urban signatures on extreme rainfall are not prominently and consistently visible, but they are spatially nonuniform. Zonal analysis reveals significant impacts of urbanization on extreme rainfall in central and western regions of India. An additional examination, to understand the influences of urbanization on heavy rainfall climatology, is carried with station level data using a statistical method, quantile regression. This is performed for the most populated city of India, Mumbai, in pair with a nearby nonurban area, Alibaug; both having similar geographic location. The derived extreme rainfall regression quantiles reveal the sensitivity of extreme rainfall events to the increased urbanization. Overall the study identifies the climatological zones in India, where increased urbanization affects regional rainfall pattern and extremes, with a detailed case study of Mumbai. This also calls attention to the need of further experimental investigation, for the identification of the key climatological processes, in different regions of India, affected by increased urbanization.
NASA Astrophysics Data System (ADS)
Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.
2011-12-01
Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results show that the vulnerability of water availability may increase in areas that have less storage and become more dominated by rain instead of snow. Native trout habitat was found to improve in some areas from warmer temperatures suggesting future refugia habitat may need to be a focus of conservation efforts. The climate extreme vulnerability tool provides Forest Service resource managers science based information that guides adaptation strategy development; prioritize conservation projects; guides monitoring efforts, and helps promote more resilient ecosystems undergoing the effects of climate change.
Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.
Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C
Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.
2018-03-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.
Extreme Mean and Its Applications
NASA Technical Reports Server (NTRS)
Swaroop, R.; Brownlow, J. D.
1979-01-01
Extreme value statistics obtained from normally distributed data are considered. An extreme mean is defined as the mean of p-th probability truncated normal distribution. An unbiased estimate of this extreme mean and its large sample distribution are derived. The distribution of this estimate even for very large samples is found to be nonnormal. Further, as the sample size increases, the variance of the unbiased estimate converges to the Cramer-Rao lower bound. The computer program used to obtain the density and distribution functions of the standardized unbiased estimate, and the confidence intervals of the extreme mean for any data are included for ready application. An example is included to demonstrate the usefulness of extreme mean application.
2014-09-09
influences of changes in extreme sea levels as they affect the four mission areas of USACE: storm damage reduction, flood risk mitigation, ecosystems...winds and surface pressure can occur on the scale of the inundation area under investigation, cyclonic climatologies and more sophisticated inundation...Federal and State agencies (particularly the Bureau of Meteorology) providing forecast data (e.g. DIPNR, 2005, Appendix N). In more developed areas of
An Unusual Hydrophobic Core Confers Extreme Flexibility to HEAT Repeat Proteins
Kappel, Christian; Zachariae, Ulrich; Dölker, Nicole; Grubmüller, Helmut
2010-01-01
Alpha-solenoid proteins are suggested to constitute highly flexible macromolecules, whose structural variability and large surface area is instrumental in many important protein-protein binding processes. By equilibrium and nonequilibrium molecular dynamics simulations, we show that importin-β, an archetypical α-solenoid, displays unprecedentedly large and fully reversible elasticity. Our stretching molecular dynamics simulations reveal full elasticity over up to twofold end-to-end extensions compared to its bound state. Despite the absence of any long-range intramolecular contacts, the protein can return to its equilibrium structure to within 3 Å backbone RMSD after the release of mechanical stress. We find that this extreme degree of flexibility is based on an unusually flexible hydrophobic core that differs substantially from that of structurally similar but more rigid globular proteins. In that respect, the core of importin-β resembles molten globules. The elastic behavior is dominated by nonpolar interactions between HEAT repeats, combined with conformational entropic effects. Our results suggest that α-solenoid structures such as importin-β may bridge the molecular gap between completely structured and intrinsically disordered proteins. PMID:20816072
Extremely acid Permian lakes and ground waters in North America
Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.
1998-01-01
Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.
Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.
Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H
2014-01-01
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.
On the Complexity of Nutrient Transport in a Large Watershed in Ohio
NASA Astrophysics Data System (ADS)
Schwartz, F. W.; Allen, G.
2009-12-01
This paper examines key features of the hydrobiologic setting in controlling the cycling of nutrients through the major streams and rivers of a large agriculturally dominated watershed in central Ohio. The particular focus is on the roles of extreme rainfall events in generating nutrients, and role of reservoirs in attenuating nutrient concentrations. The study also highlights major gaps in process knowledge even in the face in the face of extensive regulatory and other monitoring. Although it has been recognized that reservoirs can significantly affect surface-water flows in watersheds, there is a growing recognition of the need for expanded and complementary studies to understand their role in nutrient transport. The study area is located in central Ohio and includes the entire Upper Scioto and the northern portion of the Lower Scioto River basins, an area encompassing approximately 9984 km2. Five of the sub-watersheds contain major surface-water storage reservoirs. Two watersheds are without reservoirs. There is intensive agriculture within the study area with corn and soybeans as the dominant crops. Tile drainage of fields provides an efficient and rapid connection of agricultural lands to surface waters, facilitating the loading of fertilizers and agrochemicals to surface streams. Storm flows in spring months that coincide with fertilizer applications often provide nitrate concentrations in excess of 10 mg/L as N. In spite of years of routine sampling for regulatory purposes, little is known about nutrient loading patterns during the few, brief, extreme events each year. Interpretations of a high resolution temporal chemical record of sampling on the Scioto River is frustrated by the complexity of loading and mixing as tributaries from sub-watersheds join the main stem of the Scioto River and nutrient utilization within the large reservoirs. Even with literally thousands of individual chemical measurements, extensive stream and precipitation data, the details of processes affecting nutrient transport remain uncertain.
Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range
Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.
2014-01-01
Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103
Hydroclimatic Extremes and Cholera Dynamics in the 21st Century
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.; Islam, S.
2012-12-01
Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.
The value of flexibility in conservation financing.
Lennox, Gareth D; Fargione, Joseph; Spector, Sacha; Williams, Gwyn; Armsworth, Paul R
2017-06-01
Land-acquisition strategies employed by conservation organizations vary in their flexibility. Conservation-planning theory largely fails to reflect this by presenting models that are either extremely inflexible-parcel acquisitions are irreversible and budgets are fixed-or extremely flexible-previously acquired parcels can readily be sold. This latter approach, the selling of protected areas, is infeasible or problematic in many situations. We considered the value to conservation organizations of increasing the flexibility of their land-acquisition strategies through their approach to financing deals. Specifically, we modeled 2 acquisition-financing methods commonly used by conservation organizations: borrowing and budget carry-over. Using simulated data, we compared results from these models with those from an inflexible fixed-budget model and an extremely flexible selling model in which previous acquisitions could be sold to fund new acquisitions. We then examined 3 case studies of how conservation organizations use borrowing and budget carry-over in practice. Model comparisons showed that borrowing and budget carry-over always returned considerably higher rewards than the fixed-budget model. How they performed relative to the selling model depended on the relative conservation value of past acquisitions. Both the models and case studies showed that incorporating flexibility through borrowing or budget carry-over gives conservation organizations the ability to purchase parcels of higher conservation value than when budgets are fixed without the problems associated with the selling of protected areas. © 2016 Society for Conservation Biology.
Further Discussion: Parametric Study of Wind Generated Supermicron Particle Effects in Large Fires
NASA Technical Reports Server (NTRS)
Toon, O. B.; Ackerman, T. P.
1987-01-01
In their reply (Porch et al., 1987) to our comments (Turco et al., 1987) on their smoke-scavenging-by-dust paper, Porch et al. attempt to justify a number of parameter assumptions in their original article, again revealing the extreme nature of those assumptions, particularly in the situation where all are taken simultaneously. In critiquing Porch et al.'s calculations, have not applied "opinion", but rather physical reality and common sense expressed through basic experimental results and logical physical bounds. A few examples of the unrealistic conditions required by the Porch et al. scavenging scheme, as described in their paper and comments, should suffice here. ) Porch et al. have fabricated a "fetch" region for dust particles in large fire plumes that logically must extend over an area up to 50 times greater than the fire area itself. Alternatively, they have invoked significant "necking down' of the fire plume, so that its cross-sectional area is at most a few percent of the fire area. Such severe constriction is seen only in very small fires with strong, organized vorticity, and then only over a limited plume rise region. No "fetch" has ever been noted in any large-scale fires we have observed, or for which accounts are available. Indeed, as we deduced in our original comments, complete dust scavenging even within the fire zone would probably occur less than 10% of the time for large urban fires.
In-Flight Decision-Making by General Aviation Pilots Operating in Areas of Extreme Thunderstorms.
Boyd, Douglas D
2017-12-01
General aviation (comprised mainly of noncommercial, light aircraft) accounts for 94% of civil aviation fatalities in the United States. Although thunderstorms are hazardous to light aircraft, little research has been undertaken on in-flight pilot decision-making regarding their avoidance. The study objectives were: 1) to determine if the thunderstorm accident rate has declined over the last two decades; and 2) assess in-flight (enroute/landing) airman decision-making regarding adherence to FAA separation minima from thunderstorms. Thunderstorm-related accidents were identified from the NTSB database. To determine en route/arriving aircraft real-time thunderstorm proximity/relative position and airplane location, using a flight-tracking (Flight Aware®) website, were overlaid on a graphical weather image. Statistics employed Poisson and Chi-squared analyses. The thunderstorm-related accident rate was undiminished over the 1996-2014 period. In a prospective analysis the majority (enroute 77%, landing 93%) of flights violated the FAA-recommended separation distance from extreme convection. Of these, 79 and 69% (en route and landing, respectively) selected a route downwind of the thunderstorm rather than a less hazardous upwind flight path. Using a mathematical product of binary (separation distance, relative aircraft-thunderstorm position) and nominal (thunderstorm-free egress area) parameters, airmen were more likely to operate in the thunderstorm hazard zone for landings than en route operations. The thunderstorm-related accident rate, carrying a 70% fatality rate, remains unabated, largely reflecting nonadherence to the FAA-recommended separation minima and selection of a more hazardous route (downwind) for circumnavigation of extreme convective weather. These findings argue for additional emphasis in ab initio pilot training/recurrency on thunderstorm hazards and safe practices (separation distance and flight path).Boyd DD. In-flight decision-making by general aviation pilots operating in areas of extreme thunderstorms. Aerosp Med Hum Perform. 2017; 88(12):1066-1072.
Hydroclimatology of the 2008 Midwest floods
NASA Astrophysics Data System (ADS)
Budikova, D.; Coleman, J. S. M.; Strope, S. A.; Austin, A.
2010-12-01
The late spring/early summer flooding that occurred in the American Midwest between May and June 2008 resulted from a combination of large-scale atmospheric circulation patterns that supported a steady influx of moisture into the area. A low pressure system centered over the central-western United States steered a strong jet and associated storms along its eastern edge from the west to southwest and an anomalously strong Great Plains Low Level Jet brought continuous warm and moist air into the area from the Gulf of Mexico into the area. We examine and quantify here the impact these circulation patterns had on the hydroclimatology of the Midwest highlighting the magnitude, frequency, geographic distribution, and temporal evolution of precipitation that ultimately magnified the flooding. Historical precipitation records were used to assess the regional rainfall characteristics at various geographic and time scales. Five distinct hydroclimatic characteristics contributed to the definition of the 2008 flood including persistent high surface soil moisture conditions prior to flooding exasperated by anomalously high rainfall, extreme rainfall totals covering extensive areas, increased frequency of shorter-term, smaller-magnitude events, persistent multiday heavy precipitation events, and extreme flood-producing rain storms. The major flooding lasted for approximately 24 days and most greatly impacted the state of Iowa, southern Wisconsin, and central Indiana. Its occurrence during the May-June period makes the event especially unusual for this region.
Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.
Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci
2015-01-01
Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.
Convective weather hazards in the Twin Cities Metropolitan Area, MN
NASA Astrophysics Data System (ADS)
Blumenfeld, Kenneth A.
This dissertation investigates the frequency and intensity of severe convective storms, and their associated hazards, in the Twin Cities Metropolitan Area (TCMA), Minnesota. Using public severe weather reports databases and high spatial density rain gauge data, annual frequencies and return-periods are calculated for tornadoes, damaging winds, large hail, and flood-inducing rainfall. The hypothesis that severe thunderstorms and tornadoes are less likely in the central TCMA than in surrounding areas also is examined, and techniques for estimating 100-year rainfall amounts are developed and discussed. This research finds that: (i) storms capable of significant damage somewhere within the TCMA recur annually (sometimes multiple times per year), while storms virtually certain to cause such damage recur every 2-3 years; (ii) though severe weather reports data are not amenable to classical comparative statistical testing, careful treatment of them suggests all types and intensity categories of severe convective weather have been and should continue to be approximately as common in the central TCMA as in surrounding areas; and (iii) applications of Generalized Extreme Value (GEV) statistics and areal analyses of rainfall data lead to significantly larger (25-50%) estimates of 100-year rainfall amounts in the TCMA and parts of Minnesota than those currently published and used for precipitation design. The growth of the TCMA, the popular sentiment that downtown areas somehow deter severe storms and tornadoes, and the prior underestimation of extreme rainfall thresholds for precipitation design, all act to enhance local susceptibility to hazards from severe convective storms.
Restoring ecosystem services to littoral zones of rivers in the urban core of Chongqing, China.
Xian, Xu-Dong; Feng, Yi-Long; Willison, J H Martin; Ai, Li-Jiao; Wang, Ping; Wu, Zhi-Neng
2015-08-01
Two examples of the creation of naturalized areas in the littoral zone of the Three Gorges Reservoir in the urban core of Chongqing City, China, are described. The areas were created for the purpose of restoring ecological functions and services. Plants were selected based on surveys of natural wetland vegetation in the region, and experiments were conducted to discover the capacity of species of interest to survive the sometimes extreme hydrological regimes at the sites. Novel methods were developed to stabilize the plants against the rigors of extreme summer floods and constant swash, notably zigzag berms of rocks wrapped in iron mesh. The areas include native reeds, grasses, shrubs, and trees. Plant communities in the areas are zoned according to flooding stress, and their structure is less stable at lower elevations that are subjected to greater stress. The tall grass Saccharum spontaneum (widespread in Southern Asia) and the tree Pterocarya stenoptera (native to Southwest China) are notable for their utility at these sites in the center of a large city. Communities of tall reeds and grasses have become so dense and stable that they now provide the ecosystem services of capturing river sediments and resisting erosion of the river banks. It is recommended that extensive greening of the riparian zones in urban areas of the Three Gorges Reservoir be conducted for the purpose of providing ecosystem services, based in part on the experiences described here.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
2010-03-01
and each unit was given regular training in addition to two months of intense ski training from a group that included many of the famous skiers in... knowledge of first aid and care in extreme conditions that came from mountain training were invaluable to troops in the European theater. The 10th Mountain...of conflict between the civilians who had come into the army with superior skills and knowledge of mountaineering, and the military officials over
Reduced graphene oxide wrapped Ag nanostructures for enhanced SERS activity
NASA Astrophysics Data System (ADS)
Nair, Anju K.; Kala, M. S.; Thomas, Sabu; Kalarikkal, Nandakumar
2018-04-01
Graphene - metal nanoparticle hybrids have received great attention due to their unique electronic properties, large specific surface area, very high conductivity and more charge transfer. Thus, it is extremely advantages to develop a simple and efficient process to disperse metal nanostructures over the surface of graphene sheets. Herein, we report a hydrothermal assisted strategy for developing reduced graphene oxide /Ag nanomorphotypes (cube, wire) for surface enhanced Raman scattering (SERS) applications, considering the advantages of synergistic effect of graphene and plasmonic properties of Ag nanomorphotypes.
Lidar vegetation mapping in national parks: Gulf Coast Network
Brock, John C.; Palaseanu-Lovejoy, Monica; Segura, Martha
2011-01-01
Airborne lidar (Light Detection and Ranging) is an active remote sensing technique used to collect accurate elevation data over large areas. Lidar provides an extremely high level of regional topographic detail, which makes this technology an essential component of U.S. Geological Survey (USGS) science strategy. The USGS Coastal and Marine Geology Program (CMGP) has collaborated with the National Aeronautics and Space Administration (NASA) and the National Park Service (NPS) to acquire dense topographic lidar data in a variety of coastal environments.
Ionene modified small polymeric beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor)
1977-01-01
Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.
Breakthroughs in photonics 2013: X-ray optics
Soufli, Regina
2014-04-01
Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.
NASA Astrophysics Data System (ADS)
Black, R. X.
2017-12-01
We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft
NASA Technical Reports Server (NTRS)
Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell
2015-01-01
Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.
Vulva reconstruction after pelvic exenteration, using a unique combination of two flaps
van Bommel, Annelotte C M; Schreuder, Henk W R; Schellekens, Pascal P A
2011-01-01
A 64-year-old woman with recurrence of carcinoma of the vulva in an irradiated area received an en-bloc total pelvic exenteration. Reconstruction of the pelvic defect was performed with an anterolateral thigh (ALT) flap and a rectus abdominis muscle (RAM) flap (PM/RAM). This combination of flaps is unique, with excellent results. In a large defect, often irradiated in advance, well-vascularised tissue should be placed. Multiple flaps can be used to reconstruct these large pelvic defects, each with their own advantages and disadvantages. The combination of flaps used in this case uses the good properties of both flaps: the reliable and well-vascularised PM/RAM in combination with the ALT flap to provide much bulk in extreme large defects. PMID:22692483
Optics Requirements For The Generation-X X-Ray Telescope
NASA Technical Reports Server (NTRS)
O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.;
2008-01-01
US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.
Climate Impacts on Extreme Energy Consumption of Different Types of Buildings
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205
Climate impacts on extreme energy consumption of different types of buildings.
Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming
2015-01-01
Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.
Applying complex networks to evaluate precipitation patterns over South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique; Kurths, Jürgen; Rammig, Anja
2016-04-01
The climate of South America exhibits pronounced differences between the wet- and the dry-season, which are accompanied by specific synoptic events like changes in the location of the South American Low Level Jet (SALLJ) and the establishment of the South American Convergence Zone (SACZ). The onset of these events can be related to the presence of typical large-scale precipitation patterns over South America, as previous studies have shown[1,2]. The application of complex network methods to precipitation data recently received increased scientific attention for the special case of extreme events, as it is possible with such methods to analyze the spatiotemporal correlation structure as well as possible teleconnections of these events[3,4]. In these approaches the correlation between precipitation datasets is calculated by means of Event Synchronization which restricts their applicability to extreme precipitation events. In this work, we propose a method which is able to consider not only extreme precipitation but complete time series. A direct application of standard similarity measures in order to correlate precipitation time series is impossible due to their intricate statistical properties as the large amount of zeros. Therefore, we introduced and evaluated a suitable modification of Pearson's correlation coefficient to construct spatial correlation networks of precipitation. By analyzing the characteristics of spatial correlation networks constructed on the basis of this new measure, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections of correlated areas, and detect central regions for precipitation correlation. By analyzing the change of the network over the year[5], we are also able to determine local and global changes in precipitation correlation patterns. Additionally, global network characteristics as the network connectivity yield indications for beginning and end of wet- and dry season. In order to identify large-scale synoptic events like the SACZ and SALLJ onset, detecting the changes of correlation over time between certain regions is of significant relevance. [1] Nieto-Ferreira et al. Quarterly Journal of the Royal Meteorological Society (2011) [2] Vera et al. Bulletin of the American Meteorological Society (2006) [3] Quiroga et al. Physical review E (2002) [4] Boers et al. nature communications (2014) [5] Radebach et al. Physical review E (2013)
Contributions of natural climate changes and human activities to the trend of extreme precipitation
NASA Astrophysics Data System (ADS)
Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing
2018-06-01
This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.
Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchett, John M; Ahrens, James P; Lo, Li - Ta
2010-10-15
Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less
Changes and Attribution of Extreme Precipitation in Climate Models: Subdaily and Daily Scales
NASA Astrophysics Data System (ADS)
Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G. A.
2017-12-01
Extreme precipitation events are responsible for numerous hazards, including flooding, soil erosion, and landslides. Because of their significant socio-economic impacts, the attribution and projection of these events is of crucial importance to improve our response, mitigation and adaptation strategies. Here we present results from our ongoing work.In terms of attribution, we use idealized experiments [pre-industrial control experiment (PI) and 1% per year increase (1%CO2) in atmospheric CO2] from ten general circulation models produced under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the fraction of attributable risk to examine the CO2 effects on extreme precipitation at the sub-daily and daily scales. We find that the increased CO2 concentration substantially increases the odds of the occurrence of sub-daily precipitation extremes compared to the daily scale in most areas of the world, with the exception of some regions in the sub-tropics, likely in relation to the subsidence of the Hadley Cell. These results point to the large role that atmospheric CO2 plays in extreme precipitation under an idealized framework. Furthermore, we investigate the changes in extreme precipitation events with the Community Earth System Model (CESM) climate experiments using the scenarios consistent with the 1.5°C and 2°C temperature targets. We find that the frequency of annual extreme precipitation at a global scale increases in both 1.5°C and 2°C scenarios until around 2070, after which the magnitudes of the trend become much weaker or even negative. Overall, the frequency of global annual extreme precipitation is similar between 1.5°C and 2°C for the period 2006-2035, and the changes in extreme precipitation in individual seasons are consistent with those for the entire year. The frequency of extreme precipitation in the 2°C experiments is higher than for the 1.5°C experiment after the late 2030s, particularly for the period 2071-2100.
Drought in the Horn of Africa: attribution of a damaging and repeating extreme event
NASA Astrophysics Data System (ADS)
Marthews, Toby; Otto, Friederike; Mitchell, Daniel; Dadson, Simon; Jones, Richard
2015-04-01
We have applied detection and attribution techniques to the severe drought that hit the Horn of Africa in 2014. The short rains failed in late 2013 in Kenya, South Sudan, Somalia and southern Ethiopia, leading to a very dry growing season January to March 2014, and subsequently to the current drought in many agricultural areas of the sub-region. We have made use of the weather@home project, which uses publicly-volunteered distributed computing to provide a large ensemble of simulations sufficient to sample regional climate uncertainty. Based on this, we have estimated the occurrence rates of the kinds of the rare and extreme events implicated in this large-scale drought. From land surface model runs based on these ensemble simulations, we have estimated the impacts of climate anomalies during this period and therefore we can reliably identify some factors of the ongoing drought as attributable to human-induced climate change. The UNFCCC's Adaptation Fund is attempting to support projects that bring about an adaptation to "the adverse effects of climate change", but in order to formulate such projects we need a much clearer way to assess how much climate change is human-induced and how much is a consequence of climate anomalies and large-scale teleconnections, which can only be provided by robust attribution techniques.
Li, Y; Kinoshita, H; Watanabe, T; Irie, S; Shirayone, S; Okazaki, S
2000-07-01
A scanning critical illumination system is designed to couple a synchrotron radiation source to a three-aspherical-mirror imaging system for extreme ultraviolet lithography. A static illumination area of H x V = 8 mm x 3 mm (where H is horizontal and V is vertical) can be obtained. Uniform intensity distribution and a large ring field of H x V = 150 mm x 3 mm can be achieved by scanning of the mirror of the condenser. The coherence factor (sigma) of this illumination system is approximately 0.6, with the same beam divergence in both the horizontal and the vertical directions. We describe the performance of the imaging optics at sigma = 0.6 to confirm that the illumination optics can meet the requirements for three-aspherical-mirror imaging optics with a feature size of 0.06 microm.
Biomedical imaging with THz waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2010-03-01
We discuss biomedical imaging using radio waves operating in the terahertz (THz) range between 300 GHz to 3 THz. Particularly, we present the concept for two THz imaging systems. One system employs single antenna, transmitter and receiver operating over multi-THz-frequency simultaneously for sensing and imaging small areas of the human body or biological samples. Another system consists of multiple antennas, a transmitter, and multiple receivers operating over multi-THz-frequency capable of sensing and imaging simultaneously the whole body or large biological samples. Using THz waves for biomedical imaging promises unique and substantial medical benefits including extremely small medical devices, extraordinarily fine spatial resolution, and excellent contrast between images of diseased and healthy tissues. THz imaging is extremely attractive for detection of cancer in the early stages, sensing and imaging of tissues near the skin, and study of disease and its growth versus time.
Particle transport and deposition: basic physics of particle kinetics
Tsuda, Akira; Henry, Frank S.; Butler, James P.
2015-01-01
The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235
Dual redundant display in bubble canopy applications
NASA Astrophysics Data System (ADS)
Mahdi, Ken; Niemczyk, James
2010-04-01
Today's cockpit integrator, whether for state of the art military fast jet, or piston powered general aviation, is striving to utilize all available panel space for AMLCD based displays to enhance situational awareness and increase safety. The benefits of a glass cockpit have been well studied and documented. The technology used to create these glass cockpits, however, is driven by commercial AMLCD demand which far outstrips the combined worldwide avionics requirements. In order to satisfy the wide variety of human factors and environmental requirements, large area displays have been developed to maximize the usable display area while also providing necessary redundancy in case of failure. The AMLCD has been optimized for extremely wide viewing angles driven by the flat panel TV market. In some cockpit applications, wide viewing cones are desired. In bubble canopy cockpits, however, narrow viewing cones are desired to reduce canopy reflections. American Panel Corporation has developed AMLCD displays that maximize viewing area, provide redundancy, while also providing a very narrow viewing cone even though commercial AMLCD technology is employed suitable for high performance AMLCD Displays. This paper investigates both the large area display architecture with several available options to solve redundancy as well as beam steering techniques to also limit canopy reflections.
Disaster Risks Reduction for Extreme Natural Hazards
NASA Astrophysics Data System (ADS)
Plag, H.; Jules-Plag, S.
2013-12-01
Mega disasters associated with extreme natural hazards have the potential to escalate the global sustainability crisis and put us close to the boundaries of the safe operating space for humanity. Floods and droughts are major threats that potentially could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis frequently cause disasters that eventually could exceed the immediate coping capacity of the global economy, particularly since we have built mega cities in hazardous areas that are now ready to be harvested by natural hazards. Unfortunately, the more we learn to cope with the relatively frequent hazards (50 to 100 years events), the less we are worried about the low-probability, high-impact events (a few hundred and more years events). As a consequence, threats from the 500 years flood, drought, volcano eruption are not appropriately accounted for in disaster risk reduction (DRR) discussions. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because exposure of human assets to hazards was much lower in the past. The most extreme events that occurred during the last 2,000 years would today cause unparalleled damage on a global scale and could worsen the sustainability crisis. Simulation of these extreme hazards under present conditions can help to assess the disaster risk. Recent extreme earthquakes have illustrated the destruction they can inflict, both directly and indirectly through tsunamis. Large volcano eruptions have the potential to impact climate, anthropogenic infrastructure and resource supplies on global scale. During the last 2,000 years several large volcano eruptions occurred, which under today's conditions are associated with extreme disaster risk. The comparison of earthquakes and volcano eruptions indicates that large volcano eruptions are the low-probability geohazards with potentially the highest impact on our civilization. Integration of these low-probability, high-impact events in DRR requires an approach focused on resilience and antifragility, as well as the ability to cope with, and recover from failure of infrastructure and social systems. Resilience does not primarily result from the robustness of infrastructure but mainly is a function of the social capital. While it is important to understand the hazards (the contribution of geosciences), it is equally important to understand the processes that let us cope with the hazards, or lead to failure (the contribution of social sciences and engineering). For the latter, we need a joint effort of social sciences and engineering and a revised science-policy relationship. Democratizing knowledge about extreme geohazards is very important in order to inform deliberations of DRR through increased resilience and reduced fragility. The current science-society dialog is not fully capable of supporting deliberative governance. Most scientific knowledge is created independent of those who could put it to use, and a transition to co-design and co-development of knowledge involving a broad stakeholder base is necessary for DRR, particularly for extreme events. This transition may have the consequence of more responsibility and even liability for science.
Offshore oil and the coastline
NASA Astrophysics Data System (ADS)
Bell, Peter M.
A radical, accelerated 5-year plan to offer 875 million acres (of which 20 million could actually be leased for oil and gas extraction purposes) on the outer continental shelf (OCS) could result in the release of large volumes of drilling wastes and spillage (Environ. Sci. Tech., Nov. 1981). The actual leasing, under the 5-year plan proposed by Secretary of the Interior James G. Watt, could amount to 4-5 million acres per year—about 10 times as much, on the average, as had been leased over the past 25 years. Regulations on the environmental effects may be less complicated yet more effective in that impact statements will cover large areas instead of the tract-by-tract statements now required. A number of the new offshore leasing areas, for example, the Alaska Coast (Cook Inlet, Beaufort Bay, Gulf of Alaska), the Blake Plateau and Baltimore Canyon, and the Georges Bank, are extremely valuable in terms of renewable resources and potentially fragile in terms of environmental conditions. Fishing interests in these areas have produced considerable controversy over the planned sale of petroleum rights.
Stone, Brian; Hess, Jeremy J.; Frumkin, Howard
2010-01-01
Background Extreme heat events (EHEs) are increasing in frequency in large U.S. cities and are responsible for a greater annual number of climate-related fatalities, on average, than any other form of extreme weather. In addition, low-density, sprawling patterns of urban development have been associated with enhanced surface temperatures in urbanized areas. Objectives In this study. we examined the association between urban form at the level of the metropolitan region and the frequency of EHEs over a five-decade period. Methods We employed a widely published sprawl index to measure the association between urban form in 2000 and the mean annual rate of change in EHEs between 1956 and 2005. Results We found that the rate of increase in the annual number of EHEs between 1956 and 2005 in the most sprawling metropolitan regions was more than double the rate of increase observed in the most compact metropolitan regions. Conclusions The design and management of land use in metropolitan regions may offer an important tool for adapting to the heat-related health effects associated with ongoing climate change. PMID:21114000
Human contribution to the United States extreme heatwaves in the coming decades
NASA Astrophysics Data System (ADS)
Russo, E.; Marchese, A. F.; Immè, G.; Russo, S.
2015-12-01
In the past decades many intense and long heatwaves have hit large areas across the United States producing notable impacts on human mortality,regional economies, and natural ecosystems.Evidence indicates that anthropogenic climate change will alter the magnitude and frequency of these events. Here, by means of the Heat Wave Magnitude Index daily (HWMId) applied to daily maximum temperature from the United States reanalysis dataset (NLDAS-2), we grade the heat waves occurred in the U.S. since 1980, demonstrating that the two worst events within the studied period occurred in the summer of 1980 and 2011. Moreover, by referring to these two events as extremes, we show that model predictions from the North American COordinated Regional climate Downscaling EXperiment (CORDEX) under different IPCC AR5 scenarios, suggest an increased risk of occurrence of extreme heat waves in the near future (2021-2050). In particular, under the most severe scenario, events of the same severity, as the 1980 and 2011 U.S. heat waves, will become more likely in the studied region.
NASA Astrophysics Data System (ADS)
Bonnoli, G.; Tavecchio, F.; Ghisellini, G.; Sbarrato, T.
2015-07-01
High-energy observations of extreme BL Lac objects, such as 1ES 0229+200 or 1ES 0347-121, recently focused interest both for blazar and jet physics and for the implication on the extragalactic background light and intergalactic magnetic field estimate. However, the number of these extreme highly peaked BL Lac objects (EHBL) is still rather small. Aiming at increase their number, we selected a group of EHBL candidates starting from the BL Lac sample of Plotkin et al. (2011), considering those undetected (or only barely detected) by the Large Area Telescope onboard Fermi and characterized by a high X-ray versus radio flux ratio. We assembled the multiwavelength spectral energy distribution of the resulting nine sources, profiting of publicly available archival observations performed by Swift, GALEX, and Fermi satellites, confirming their nature. Through a simple one-zone synchrotron self-Compton model we estimate the expected very high energy flux, finding that in the majority of cases it is within the reach of present generation of Cherenkov arrays or of the forthcoming Cherenkov Telescope Array.
Mineral Resources of the Mount Nutt Wilderness Study Area, Mohave County, Arizona
Gray, Floyd; Jachens, Robert C.; Miller, Robert J.; Turner, Robert L.; Livo, Eric K.; Knepper, Daniel H.; Mariano, John; Almquist, Carl L.
1990-01-01
The Mount Nutt Wilderness Study Area (AZ-020-024) is located in the Black Mountains about 15 mi west of Kingman, Arizona. At the request of the U.S. Bureau of Land Management, approximately 27,210 acres of the wilderness study area was evaluated for mineral resources (known) and mineral resource potential (undiscovered). In this report, the area studied is referred to as the 'wilderness study area' or simply 'the study area'; any reference to the Mount Nutt Wilderness Study Area refers only to that part of the wilderness study area (27,210 acres) for which a mineral survey was requested. The U.S. Geological Survey and the U.S. Bureau of Mines conducted geological, geochemical, and geophysical surveys to assess the identified mineral resources and mineral resource potential of the study area. Fieldwork for this report was carried out in 1987 and 1988. A gold resource totaling at least 56,000 troy oz has been identified at two sites in Secret Pass Canyon, less than 0.5 mi north of the study area. No other metallic mineral resources were identified inside the study area. An area near the center of the study area contains fire agate, a gem stone. On the basis of tonnage, site accessibility, and current production methods, this area is considered an indicated subeconomic fire-agate resource for the foreseeable future. Sand and gravel are present in the study area. An area surrounding the Tincup mine and including a small portion of the extreme north-central part of the study area has high potential for gold and low potential for silver, lead, and mercury. Three areas in the extreme northwestern, north-central, and southwestern parts of the study area have moderate potential for gold and low potential for silver, lead, and mercury. A small area near the known fire-agate resource in the south-central part of the study area has low potential for fire agate. Large areas in the eastern and central parts of the study area have low potential for perlite and zeolite resources. The entire study area has no potential for oil and gas and no potential for geothermal resources.
Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions
NASA Astrophysics Data System (ADS)
García-Herrera, R.; Díaz, J.; Trigo, R. M.; Hernández, E.
2005-02-01
This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP), 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air flows over the central Iberian plateau, which had been previously heated.
Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.
Extreme Event impacts on Seafloor Ecosystems
NASA Astrophysics Data System (ADS)
Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic
2013-04-01
The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.
Estimating extreme river discharges in Europe through a Bayesian network
NASA Astrophysics Data System (ADS)
Paprotny, Dominik; Morales-Nápoles, Oswaldo
2017-06-01
Large-scale hydrological modelling of flood hazards requires adequate extreme discharge data. In practise, models based on physics are applied alongside those utilizing only statistical analysis. The former require enormous computational power, while the latter are mostly limited in accuracy and spatial coverage. In this paper we introduce an alternate, statistical approach based on Bayesian networks (BNs), a graphical model for dependent random variables. We use a non-parametric BN to describe the joint distribution of extreme discharges in European rivers and variables representing the geographical characteristics of their catchments. Annual maxima of daily discharges from more than 1800 river gauges (stations with catchment areas ranging from 1.4 to 807 000 km2) were collected, together with information on terrain, land use and local climate. The (conditional) correlations between the variables are modelled through copulas, with the dependency structure defined in the network. The results show that using this method, mean annual maxima and return periods of discharges could be estimated with an accuracy similar to existing studies using physical models for Europe and better than a comparable global statistical model. Performance of the model varies slightly between regions of Europe, but is consistent between different time periods, and remains the same in a split-sample validation. Though discharge prediction under climate change is not the main scope of this paper, the BN was applied to a large domain covering all sizes of rivers in the continent both for present and future climate, as an example. Results show substantial variation in the influence of climate change on river discharges. The model can be used to provide quick estimates of extreme discharges at any location for the purpose of obtaining input information for hydraulic modelling.
Big Cats in Our Backyards: Persistence of Large Carnivores in a Human Dominated Landscape in India
Athreya, Vidya; Odden, Morten; Linnell, John D. C.; Krishnaswamy, Jagdish; Karanth, Ullas
2013-01-01
Protected areas are extremely important for the long term viability of biodiversity in a densely populated country like India where land is a scarce resource. However, protected areas cover only 5% of the land area in India and in the case of large carnivores that range widely, human use landscapes will function as important habitats required for gene flow to occur between protected areas. In this study, we used photographic capture recapture analysis to assess the density of large carnivores in a human-dominated agricultural landscape with density >300 people/km2 in western Maharashtra, India. We found evidence of a wide suite of wild carnivores inhabiting a cropland landscape devoid of wilderness and wild herbivore prey. Furthermore, the large carnivores; leopard (Panthera pardus) and striped hyaena (Hyaena hyaena) occurred at relatively high density of 4.8±1.2 (sd) adults/100 km2 and 5.03±1.3 (sd) adults/100 km2 respectively. This situation has never been reported before where 10 large carnivores/100 km2 are sharing space with dense human populations in a completely modified landscape. Human attacks by leopards were rare despite a potentially volatile situation considering that the leopard has been involved in serious conflict, including human deaths in adjoining areas. The results of our work push the frontiers of our understanding of the adaptability of both, humans and wildlife to each other’s presence. The results also highlight the urgent need to shift from a PA centric to a landscape level conservation approach, where issues are more complex, and the potential for conflict is also very high. It also highlights the need for a serious rethink of conservation policy, law and practice where the current management focus is restricted to wildlife inside Protected Areas. PMID:23483933
Bayesian hierarchical modelling of North Atlantic windiness
NASA Astrophysics Data System (ADS)
Vanem, E.; Breivik, O. N.
2013-03-01
Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.
NASA Astrophysics Data System (ADS)
Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.
2014-12-01
A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.
How Unusual Was The Storm Surge Season Of 2013-14 in the UK?
NASA Astrophysics Data System (ADS)
Haigh, I. D.; Wadey, M.; Gallop, S. L.; Nicholls, R. J.; Horsburgh, K.
2014-12-01
When significant coastal flooding occurs along low-lying, highly populated, and/or developed coastlines, the impacts can be devastating and long lasting with wide ranging social, economic, and environmental consequences. The UK has a long history of severe coastal flooding, with major events including those that occurred in 1607, 1703 and 1953. The problems associated with coastal flooding again reached the forefront during the latest winter of 2013-2014 when the UK experienced a series of very severe events. What is noteworthy about this most recent winter period is the: (1) large number of significantly coastal flooding events occurring one after another over a relatively short period of time; and (2) the large areas of coastline affected. Extreme events are rarely assessed in terms of 'clustering', despite the fact this leads to amplified flood damages. The spatial dependence in flood hazard (i.e. simultaneous flooding in multiple locations) is now receiving more attention, motivated by concern from re-insurance, infrastructure reliability and emergency response, but understanding in this area is still limited. In this paper we assess extreme high water events and their temporal clustering and footprint around the UK, using records from the UK national network of 40 tide gauges, the longest of which extends back 100 years. We identify 100 distinct events, during which water levels exceeded the 1 in 5 year return period. We examine these events in detail and assess the coastal flooding that occurred during each event.
A dynamical systems approach to studying midlatitude weather extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide
2017-04-01
Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.
The LOFT Mission Concept - A Status Update
NASA Technical Reports Server (NTRS)
Feroci, M.; Bozzo, E.; Brandt, S.; Hernanz, M.; van Der Klis, M.; Liu , L. -P.; Orleanski, P.; Pohl, M.; Santangelo, A.; Schanne, S.;
2016-01-01
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, is greater than 8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
Joint Interpretation of Insar and GPS Data Related To The Eruptive Event of July 2001 At Mt. Etna
NASA Astrophysics Data System (ADS)
Ferretti, A.; Colesanti, C.; Basilico, M.; Locatelli, R.; Novali, F.; Bonforte, A.; Coltelli, M.; Guglielmino, F.; Palano, M.; Puglisi, G.
The eruptive background of the July 2001 eruption at Mt. Etna, proved extremely complex and dynamic from the very beginning. The development of the ground defor- mation pattern due to the eruptive event was monitored through both GPS continuous measurements on network of permanent and static stations, and daily measurements both static and kinematic GPS, made by INGV-CT on geodetic network. These mea- surements show diffuse and intense ground deformations on large part of volcanic area. After the ERS-2 gyroscope problems in January 2001, the attitude accuracy of the platform was compromised due to the variability of the baseline and Doppler cen- troid values. Since January, a dedicated and passionate ESA team started a complex recovery procedure aimed at improving the satellite stability. The results obtained are extremely promising. In fact, POLIMI team, in cooperation with TRE (POLIMI com- mercial spin-off), was able to obtain, albeit with a very simple ad hoc processing, a clear surface deformation map related to the 11 July-15 August 2001 passages. Fur- ther work, after this preliminary interferogram, could be carried out to unwrap the very crowded fringe pattern on the top of the volcano. A preliminary analysis of the differential product shows an extremely interesting pattern that will appear associated to a decimetres ground deformation at the summit area of the volcano and at the Valle del Bove area. The GPS data and the preliminary results of SAR interferogram are in agreement with the deformation pattern expected in such kind of event, where the displacements are caused by deep magmatic sources and locally modulated by major structural features.
NASA Technical Reports Server (NTRS)
Collow, Allie Marquardt; Bosilovich, Mike; Ullrich, Paul; Hoeck, Ian
2017-01-01
Extreme precipitation events can have a large impact on society through flooding that can result in property destruction, crop losses, economic losses, the spread of water-borne diseases, and fatalities. Observations indicate there has been a statistically significant increase in extreme precipitation events over the past 15 years in the Northeastern United States and other localized regions of the country have become crippled with record flooding events, for example, the flooding that occurred in the Southeast United States associated with Hurricane Matthew in October 2016. Extreme precipitation events in the United States can be caused by various meteorological influences such as extratropical cyclones, tropical cyclones, mesoscale convective complexes, general air mass thunderstorms, upslope flow, fronts, and the North American Monsoon. Reanalyses, such as the Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), have become a pivotal tool to study the meteorology surrounding extreme precipitation events. Using days classified as an extreme precipitation events based on a combination of observational gauge and radar data, two techniques for the classification of these events are used to gather additional information that can be used to determine how events have changed over time using atmospheric data from MERRA-2. The first is self organizing maps, which is an artificial neural network that uses unsupervised learning to cluster like patterns and the second is an automated detection technique that searches for characteristics in the atmosphere that define a meteorological phenomena. For example, the automated detection for tropical cycles searches for a defined area of suppressed sea level pressure, alongside thickness anomalies aloft, indicating the presence of a warm core. These techniques are employed for extreme precipitation events in preselected regions that were chosen based an analysis of the climatology of precipitation.
Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R
2016-02-01
Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.
Goldfarb, Charles A.; Wall, Lindley B.; Bohn, Deborah C.; Moen, Patrick; Van Heest, Ann E.
2014-01-01
Purpose To examine the relative presentation frequency of children with upper limb congenital anomalies at 3 Midwestern referral centers using the Oberg, Manske, and Tonkin (OMT) classification and to assess the utility of this new classification system. Methods 641 individuals with 653 congenital upper extremity anomalies were identified at 3 hospitals in 2 large metropolitan areas during a 1-year interval. Patients were identified prospectively and the specific upper extremity anomaly and any associated syndromes were confirmed using medical records and radiographs. We applied the OMT classification that categorizes anomalies using a dysmorphology outline as malformations, dysplasias, deformations, and syndromes, and assessed its utility and ease of use. Results There were 480 extremities (74%) with a limb malformation including 184 involving the entire limb. Arthrogryposis was the most common of these (53 extremities). Anomalies affecting only the hand plate accounted for 62% (296) of the malformations. Of these, radial polydactyly (15%) was the most common specific anomaly, followed by symbrachydactyly (13%) and cleft hand (11%). Dysplasias were noted in 86 extremities; 55 of these were multiple hereditary exostoses. There were 87 extremities with deformations and 58 of these were trigger digits. A total of 98 children had a syndrome or association. Constriction ring sequence was most common. The OMT was straightforward to use and most anomalies could be easily assigned. There were a few conditions, such as Madelung deformity and symbrachydactyly, that would benefit from clarification on how to best classify them. Conclusions Malformations were the most common congenital anomalies in the 653 upper extremities evaluated over a 1-year period at 3 institutions. We were able to classify all individuals using the OMT classification system. PMID:25534840
Goldfarb, Charles A; Wall, Lindley B; Bohn, Deborah C; Moen, Patrick; Van Heest, Ann E
2015-01-01
To examine the relative presentation frequency of children with upper limb congenital anomalies at 3 Midwestern referral centers using the Oberg, Manske, and Tonkin (OMT) classification and to assess the utility of this new classification system. 641 individuals with 653 congenital upper extremity anomalies were identified at 3 hospitals in 2 large metropolitan areas during a 1-year interval. Patients were identified prospectively and the specific upper extremity anomaly and any associated syndromes were confirmed using medical records and radiographs. We applied the OMT classification that categorizes anomalies using a dysmorphology outline as malformations, dysplasias, deformations, and syndromes, and assessed its utility and ease of use. There were 480 extremities (74%) with a limb malformation including 184 involving the entire limb. Arthrogryposis was the most common of these (53 extremities). Anomalies affecting only the hand plate accounted for 62% (296) of the malformations. Of these, radial polydactyly (15%) was the most common specific anomaly, followed by symbrachydactyly (13%) and cleft hand (11%). Dysplasias were noted in 86 extremities; 55 of these were multiple hereditary exostoses. There were 87 extremities with deformations and 58 of these were trigger digits. A total of 109 children had a syndrome or association. Constriction ring sequence was most common. The OMT was straightforward to use and most anomalies could be easily assigned. There were a few conditions, such as Madelung deformity and symbrachydactyly, that would benefit from clarification on how to best classify them. Malformations were the most common congenital anomalies in the 653 upper extremities evaluated over a 1-year period at 3 institutions. We were able to classify all individuals using the OMT classification system. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Changes in the extreme wave heights over the Baltic Sea
NASA Astrophysics Data System (ADS)
Kudryavtseva, Nadia; Soomere, Tarmo
2017-04-01
Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.
Assessment of extreme value distributions for maximum temperature in the Mediterranean area
NASA Astrophysics Data System (ADS)
Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus
2015-04-01
Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D. Jones, and M. New (2008), A European daily high-resolution gridded data set of surface temperature and precipitation for 1950 - 2006, J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.
Impacts of climate change on large forest wildfire of Washington and Oregon
NASA Astrophysics Data System (ADS)
Yang, Z.; Davis, R. J.; Yost, A.; Cohen, W. B.
2014-12-01
Climate changes in the 21st century were projected to have major impact on wildfire. The state of Washington and Oregon contains a tightly coupled forest ecosystem and fire regime. The objective of this study was to examine the impact of future climate changes for large wildfire in the two states. MAXENT algorithm was used to develop a large forest wildfire suitability model using historical fire for the 1971-2000 time period and validated for 1981-2010 time period . Input variables include climate (e.g. July-August temperature) and topographic variables (e.g. elevation). The model test AUC of 0.77±0.1. Using the predicted versus expected curve and methods described by Hirzel and others (Hirzel et al. 2006), we reclassified the model into four classes; low suitability (0-0.36), moderate suitability 0.36-0.5), high suitability (0.5-0.75), and very high suitability (0.75-1.0). To examine the future climate change impact, climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from 33 different climate models were used to predict the large wildfire suitability from 1971-2100 using the NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset. Results from ensembles of all the climate scenarios showed that the area with high and very high suitability for large wildfire increased under all 4 climate scenarios from 1971 to 2100. However, under RCP 2.6, the area start to decline from 2080 while the other three scenarios keep increasing. On the extreme case of RCP 8.5, very high suitable area increases from less than 1% during 1971-2000 to 14.9% during 2070-2100. Details about temporal patterns for the study area and changes by ecoregions will be presented.
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
NASA Astrophysics Data System (ADS)
Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.
2015-05-01
On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than the extreme waves associated with hurricane season. These results are of great importance when evaluating the threat of extreme waves in the coastal and port infrastructure, for purposes of the design of new constructions, and in the coastal flood processes due to run-up because, according to the site of interest in the coast, the forces that shape extreme waves are not the same.
Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets
Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci
2015-01-01
Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951–1980) exceeding 3σ (σ is based on the local internal variability) are defined as “extremely hot”. The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, “extremely hot” summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, “extremely hot” summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by “extremely hot” summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low. PMID:26090931
Effect of low temperatures on osserous and cartilaginous tissues
NASA Technical Reports Server (NTRS)
Pankov, Y. Y.; Babiychuk, G. A.; Malyshkina, S. V.; Zhigun, A. I.
1983-01-01
The use of extreme cold to treat tumoral afflictions of the extremities is discussed. Cryogenic methods and instruments are discussed, and the levels of accumulated knowledge in this area (as well as the areas still in question) are evaluated. The overall promise for cryogenic methods of treatment is acknowledged, and areas which need further development are noted.
[Individual Progress Program for the Extremely Gifted Student in the Greater Seattle Area.
ERIC Educational Resources Information Center
Norsen, Barbara G.; Wick, Christine
The Individual Progress Program (IPP) is an approach designed to serve extremely advanced gifted students (grades 1 through 9) in the Seattle area. IPP is intended to meet students' unmet educational needs by allowing them to progress at their own accelerated pace through a broadly based curriculum while also pursuing interest areas. The program…
Computational data sciences for assessment and prediction of climate extremes
NASA Astrophysics Data System (ADS)
Ganguly, A. R.
2011-12-01
Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.
Changes in extremes due to half a degree warming in observations and models
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.
2017-12-01
Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.
Role of absorbing aerosols on hot extremes in India in a GCM
NASA Astrophysics Data System (ADS)
Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.
2017-12-01
Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.
NASA Astrophysics Data System (ADS)
Dou, A.; Ding, L.; Chen, M.; Wang, X.
2018-04-01
The remote sensing has played an important role in many earthquake emergencies by rapidly providing the building damage, road damage, landslide and other disaster information. The earthquake in the mountains often caused to the loosening of the mountains and the blowing of the dust in the epicentre area. The dust particles are more serious in the epicentre area than the other disaster area. Basis on the analysis of abnormal spectrum characteristics, the dust detection methods from medium and high resolutions satellite imagery are studied in order to determinate the extreme earthquake disaster area. The results indicate the distribution of extreme disaster can be acquired using the dust detection information from imagery, which can provide great help for disaster intensity assessment.
Critical appraisal of the 1977 diagnostic criteria for Minamata disease.
Yorifuji, Takashi; Tsuda, Toshihide; Inoue, Sachiko; Takao, Soshi; Harada, Masazumi; Kawachi, Ichiro
2013-01-01
Large-scale food poisoning caused by methylmercury was identified in Minamata, Japan, in the 1950s (Minamata disease). Although the diagnostic criteria for the disease remain current, few studies have been carried out to assess the diagnostic accuracy of the criteria. From a 1971 population-based investigation, data from 2 villages were selected: Minamata (high-exposure area; n = 779) and Ariake (low-exposure area; n = 755). The authors examined the prevalence of neurologic signs characteristic of methylmercury poisoning and the validity of the criteria. A substantial number of residents in the exposed area exhibited neurologic signs even after excluding officially certified patients. Using paresthesia of the extremities as the gold standard of diagnosis, the criteria had a sensitivity of 66%. The current diagnostic criteria as well as the official certification system substantially underestimate the incidence of Minamata disease.
NASA Astrophysics Data System (ADS)
Kern, Anikó; Marjanović, Hrvoje; Barcza, Zoltán
2017-04-01
Extreme weather events frequently occur in Central Europe, affecting the state of the vegetation in large areas. Droughts and heat-waves affect all plant functional types, but the response of the vegetation is not uniform and depends on other parameters, plant strategies and the antecedent meteorological conditions as well. Meteorologists struggle with the definition of extreme events and selection of years that can be considered as extreme in terms of meteorological conditions due to the large variability of the meteorological parameters both in time and space. One way to overcome this problem is the definition of extreme weather based on its observed effect on plant state. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Leaf Area Index (LAI), the Fraction of Photosynthetically Active Radiation (FPAR) and the Gross Primary Production (GPP) are different measures of the land vegetation derived from remote sensing data, providing information about the plant state, but it is less known how weather anomalies affect these measures. We used the vegetation related official products created from the measurements of the MODerate resolution Imaging Spectroradiometer (MODIS) on board satellite Terra to select and characterize the extreme years in Central European countries during the 2000-2016 time period. The applied Collection-6 MOD13 NDVI/EVI, MOD15 LAI/FPAR and MOD17 GPP datasets have 500 m × 500 m spatial resolution covering the region of the Carpathian-Basin. After quality and noise filtering (and temporal interpolation in case of MOD13) 8-day anomaly values were derived to investigate the different years. The freely available FORESEE meteorological database was used to study climate variability in the region. Daily precipitation and maximum/minimum temperature fields at 1/12° × 1/12° grid were resampled to the 8-day temporal and 500 m × 500 m spatial resolution of the MODIS products. To discriminate the different behavior of the various plant functional types MODIS (MCD12) and CORINE (CLC2012) land cover datasets were applied and handled together. Based on the determination of the reliable pixels with different plant types the response of broadleaf forests, coniferous forests, grasslands and croplands were discriminated and investigated. Characteristic time periods were selected based on the remote sensing data to define anomalies, and then the meteorological data were used to define critical time periods within the year that has the strongest effect on the observed anomalies. Similarities/dissimilarities between the behaviors of the different remotely sensed measures are also studied to elucidate the consistency of the indices. The results indicate that the diverse remote sensing indices typically co-vary but reveal strong plant functional type dependency. The study suggest that the selection of extreme years based on annual data is not the best choice, as shorter time periods within the years explain the anomalies to a higher degree than annual data. The results can be used to select anomalous years outside of the satellite era as well. Keywords: Remote sensing, meteorology; extreme years; MODIS, NDVI; EVI; LAI; FPAR; GPP; phenology
D Webgis and Visualization Issues for Architectures and Large Sites
NASA Astrophysics Data System (ADS)
De Amicis, R.; Conti, G.; Girardi, G.; Andreolli, M.
2011-09-01
Traditionally, within the field of archaeology and, more generally, within the cultural heritage domain, Geographical Information Systems (GIS) have been mostly used as support to cataloguing activities, essentially operating as gateways to large geo-referenced archives of specialised cultural heritage information. Additionally GIS have proved to be essential to help cultural heritage institutions improve management of their historical information, providing the means for detection of otherwise hard-to-discover spatial patterns, supporting with computation tools necessary to perform spatial clustering, proximity and orientation analysis. This paper presents a platform developed to answer to both the aforementioned issues, by allowing geo-referenced cataloguing of multi-media resources of cultural relevance as well as access, in a user-friendly manner, through an interactive 3D geobrowser which operates as single point of access to the available digital repositories. The solution has been showcased in the context of "Festival dell'economia" (the Fair of Economics) a major event recently occurred in Trento, Italy and it has allowed visitors of the event to interactively access an extremely large repository of information, as well as their metadata, available across the area of the Autonomous Province of Trento, in Italy. Within the event, an extremely large repository was made accessible, via the network, through web-services, from a 3D interactive geobrowser developed by the authors. The 3D scene was enriched with a number of Points of Interest (POIs) linking to information available within various databases. The software package was deployed with a complex hardware set-up composed of a large composite panoramic screen covering a horizontal field of view of 240 degrees.
Red, redder, reddest: SCUBA-2 imaging of colour-selected Herschel sources
NASA Astrophysics Data System (ADS)
Duivenvoorden, S.; Oliver, S.; Scudder, J. M.; Greenslade, J.; Riechers, D. A.; Wilkins, S. M.; Buat, V.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Coppin, K. E. K.; Dannerbauer, H.; De Zotti, G.; Dunlop, J. S.; Eales, S. A.; Efstathiou, A.; Farrah, D.; Geach, J. E.; Holland, W. S.; Hurley, P. D.; Ivison, R. J.; Marchetti, L.; Petitpas, G.; Sargent, M. T.; Scott, D.; Symeonidis, M.; Vaccari, M.; Vieira, J. D.; Wang, L.; Wardlow, J.; Zemcov, M.
2018-06-01
High-redshift, luminous, dusty star-forming galaxies (DSFGs) constrain the extremity of galaxy formation theories. The most extreme are discovered through follow-up on candidates in large area surveys. Here, we present extensive 850 μm SCUBA-2 follow-up observations of 188 red DSFG candidates from the Herschel Multitiered Extragalactic Survey (HerMES) Large Mode Survey, covering 274 deg2. We detected 87 per cent with a signal-to-noise ratio >3 at 850 μm. We introduce a new method for incorporating the confusion noise in our spectral energy distribution fitting by sampling correlated flux density fluctuations from a confusion limited map. The new 850 μm data provide a better constraint on the photometric redshifts of the candidates, with photometric redshift errors decreasing from σz/(1 + z) ≈ 0.21 to 0.15. Comparison spectroscopic redshifts also found little bias (<(z - zspec)/(1 + zspec)> = 0.08). The mean photometric redshift is found to be 3.6 with a dispersion of 0.4 and we identify 21 DSFGs with a high probability of lying at z > 4. After simulating our selection effects we find number counts are consistent with phenomenological galaxy evolution models. There is a statistically significant excess of WISE-1 and SDSS sources near our red galaxies, giving a strong indication that lensing may explain some of the apparently extreme objects. Nevertheless, our sample includes examples of galaxies with the highest star formation rates in the Universe (≫103 M⊙ yr-1).
Gene expression changes governing extreme dehydration tolerance in an Antarctic insect
Teets, Nicholas M.; Peyton, Justin T.; Colinet, Herve; Renault, David; Kelley, Joanna L.; Kawarasaki, Yuta; Lee, Richard E.; Denlinger, David L.
2012-01-01
Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world’s southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions. PMID:23197828
Gene expression changes governing extreme dehydration tolerance in an Antarctic insect.
Teets, Nicholas M; Peyton, Justin T; Colinet, Herve; Renault, David; Kelley, Joanna L; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L
2012-12-11
Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world's southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions.
Achieving the Earth Science Enterprise Vision for the 21st Century: Platform Challenges
NASA Technical Reports Server (NTRS)
Lemmerman, Loren; Komar, George (Technical Monitor)
2001-01-01
The ESE observational architecture of the future vision is dramatically different from that of today. The vision suggests observations from multiple orbits, collaborating space assets, and even seamless integration of space and other assets. Observations from GEO or from Libration points rather than from LEO suggest spacecraft carrying instruments with large deployable apertures. Minimization of launch costs suggests that these large apertures have long life, be extremely mass and volume efficient, and have low life cycle cost. Another significant challenge associated with high latitude orbits is high precision pointing and control. Finally, networks of spacecraft flying in predetermined constellation will be required either to apply complementary assets to an observation or to extend the virtual aperture beyond that attainable with a single spacecraft. These changes dictate development of new technology on several fronts, which are outlined in this paper. A section on high speed communications will outline requirements and approaches now envisioned. Sensorwebs will be developed from the viewpoint of work already begun for both space and for terrestrial networks. Precision guidance, navigation and control will be addressed from the perspective of precision flying for repeat pass interferometry and extreme pointing stability for advanced altimetry. A separate section will address requirements for distributed systems. Large lightweight deployables will be discussed with an emphasis on inflatable technology and its predicted benefits for large aperture instruments. For each technology area listed, current state-of-the-art, technological approaches for future development, and projected levels of performance are outlined.
Kito, Munehisa; Yoshimura, Yasuo; Isobe, Ken'ichi; Aoki, Kaoru; Suzuki, Shuichiro; Tanaka, Atsushi; Okamoto, Masanori; Sano, Kenji; Kato, Hiroyuki
2016-09-01
Wide resection is the generally recommended surgical treatment for dedifferentiated liposarcoma (DDLPS) in the extremities. However, it may be appropriate to distinguish the surgical margin of low-grade atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDLPS) area from the high-grade dedifferentiated area, because the low- and high-grade areas can be clearly separated, both radiologically and histologically. This study re-evaluated the details of surgical margin of DDLPS in the extremities, and aimed to investigate the optimal surgical margin and the usefulness of adjuvant therapy for DDLPS in the extremities. Seven patients diagnosed with DDLPS in the extremities and treated between 1995 and 2013 were analyzed. The use of adjuvant therapy before and after surgery was assessed, and the surgical margins for the ALT/WDLPS and dedifferentiated areas were re-evaluated by using the specimens resected at surgery. Subsequently, the recurrence rates, metastatic rates, and oncological outcomes were examined. Four and three patients had wide (adequate wide margin, n = 3; inadequate wide margin, n = 1) and marginal margins for the dedifferentiated area, respectively, while three and four patients had wide (adequate wide margin, n = 2; inadequate wide margin, n = 1) and marginal margins for the ALT/WDLPS area, respectively. Postoperative radiotherapy was performed in three patients with an inadequate wide margin or a marginal margin for the dedifferentiated area. No patient had local recurrence. Distant metastases occurred in two patients. These patients died of their disease. The other five patients were disease-free. The ALT/WDLPS and dedifferentiated areas in the tumor margin may be better to be considered separately in determining the appropriate resection extent for DDLPS in the extremities. Postoperative radiotherapy may provide good local control for cases with a narrow surgical margin. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Grinberg, Silvia
2010-01-01
In this article, I offer some reflections on a video documentary workshop for students in the first year of middle school. The workshop, which was held in 2008, took place in a school in an area of extreme urban poverty in the metropolitan area of Buenos Aires, Argentina, specifically in one of the more and more common spaces usually called…
The extreme ultraviolet spectroscope for planetary science, EXCEED
NASA Astrophysics Data System (ADS)
Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Kimura, T.; Uemizu, K.; Uji, K.; Yoshikawa, I.
2013-09-01
The extreme ultraviolet spectroscope EXtrem ultraviolet spetrosCope for ExosphEric Dynamics (EXCEED) on board the SPRINT-A mission will be launched in the summer of 2013 by the new Japanese solid propulsion rocket Epsilon as its first attempt, and it will orbit around the Earth with an orbital altitude of around 1000 km. EXCEED is dedicated to and optimized for observing the terrestrial planets Mercury, Venus and Mars, as well as Jupiter for several years. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. In this paper, the performance of each optical component will be described as determined from the results of test evaluation of flight models. In addition, the results of the optical calibration of the overall instrument are also shown. As a result, the spectral resolution of EXCEED is found to be 0.3-0.5 nm Full Width at Half Maximum (FWHM) over the entire spectral band (52-148 nm) and the spatial resolution achieve was 10". The evaluated effective area is around 3 cm2. Based on these specifications, the possibility of EXCEED detecting atmospheric ions or atoms around Mercury, Venus, and Mars will be discussed. In addition, we estimate the spectra that might be detected from the Io plasma torus around Jupiter for various hypothetical plasma parameters.
Bauder, J A S; Morawetz, L; Warren, A D; Krenn, H W
2015-01-01
Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep-tubed flowers, the scarcity of long-proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross-sectional area of the food canal and body size on intake rate. Long-proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower-visiting behaviour revealed that suction times increased with proboscis length, suggesting that long-proboscid skippers drink a larger amount of nectar from deep-tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides. PMID:25682841
A clitoral verrucous carcinoma in an area of lichen planus has aggressive features.
Tjalma, Wiebren A A; Siozopoulou, Vasiliki; Huizing, Manon T
2017-01-06
Verrucous carcinoma of the vulva is extremely rare. It is a slow growing, low malignant variant of a squamous cell carcinoma with a cauliflower appearance. Women with lichen planus have an increased risk of developing vulval cancer. A 79-year-old woman consulted for vulval itching. On clinical examination, a 3-cm large verrucous clitoral cancer in an area of lichen planus was seen. Based on her last clinical examination, the growth was estimated to be 1 cm 2 per month with an invasion depth after 6 months of 5 mm. A tumor developing in an area of lichen planus appears to have more aggressive features. This is the first time that the growth of a verrucous carcinoma has been documented in an area of lichen planus. Clinicians and patients should be aware of the aggressive behavior of cancers developing in areas of lichen planus and adjust their surgical management together with the follow-up strategy.
Gallego, Alejandro; O'Hara Murray, Rory; Berx, Barbara; Turrell, William R; Beegle-Krause, C J; Inall, Mark; Sherwin, Toby; Siddorn, John; Wakelin, Sarah; Vlasenko, Vasyl; Hole, Lars R; Dagestad, Knut Frode; Rees, John; Short, Lucy; Rønningen, Petter; Main, Charlotte E; Legrand, Sebastien; Gutierrez, Tony; Witte, Ursula; Mulanaphy, Nicole
2018-02-01
As oil reserves in established basins become depleted, exploration and production moves towards relatively unexploited areas, such as deep waters off the continental shelf. The Faroe-Shetland Channel (FSC, NE Atlantic) and adjacent areas have been subject to increased focus by the oil industry. In addition to extreme depths, metocean conditions in this region characterise an environment with high waves and strong winds, strong currents, complex circulation patterns, sharp density gradients, and large small- and mesoscale variability. These conditions pose operational challenges to oil spill response and question the suitability of current oil spill modelling frameworks (oil spill models and their forcing data) to adequately simulate the behaviour of a potential oil spill in the area. This article reviews the state of knowledge relevant to deepwater oil spill modelling for the FSC area and identifies knowledge gaps and research priorities. Our analysis should be relevant to other areas of complex oceanography. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee
2015-07-01
[Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.
The Pace of Perceivable Extreme Climate Change
NASA Astrophysics Data System (ADS)
Tan, X.; Gan, T. Y.
2015-12-01
When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.
Extreme cyclone events in the Arctic during wintertime: Variability and Trends
NASA Astrophysics Data System (ADS)
Rinke, Annette; Maturilli, Marion; Graham, Robert; Matthes, Heidrun; Handorf, Doerthe; Cohen, Lana; Hudson, Stephen; Moore, John
2017-04-01
Extreme cyclone events are of significant interest as they can transport much heat, moisture, and momentum poleward. Associated impacts are warming and sea-ice breakup. Recently, several examples of such extreme weather events occurred in winter (e.g. during the N-ICE2015 campaign north of Svalbard and the Frank North Atlantic storm during the end of December 2015). With Arctic amplification and associated reduced sea-ice cover and warmer sea surface temperatures, the occurrence of extreme cyclones events could be a plausible scenario. We calculate the spatial patterns, and changes and trends of the number of extreme cyclone events in the Arctic based on ERA-Interim six-hourly sea level pressure (SLP) data for winter (November-February) 1979-2015. Further, we analyze the SLP data from the Ny Alesund station for the same 37 year period. We define an extreme cyclone event by a extreme low central pressure (SLP below 985 hPa, which is the 5th percentile of the Ny Alesund/N-ICE2015 SLP data) and a deepening of at least 6 hPa/6 hours. Areas of highest frequency of occurrence of extreme cyclones are south/southeast of Greenland (corresponding to the Islandic low), between Norway and Svalbard and in the Barents/Kara Seas. The time series of the number of occurrence of extreme cyclone events for Ny Alesund/N-ICE show considerable interannual variability. The trend is not consistent through the winter, but we detect an increase in early winter and a slight decrease in late winter. The former is due to the increased occurrence of longer events at the expense of short events. Furthermore, the difference patterns of the frequency of events for months following the September with high and low Arctic sea-ice extent ("Low minus high sea ice") conforms with the change patterns of extreme cyclones numbers (frequency of events "2000-2015 minus 1979-1994") and with the trend patterns. This indicates that the changes in extreme cyclone occurrence in early winter are associated with sea-ice changes (regional feedback). In contrast, different mechanisms via large-scale circulation changes/teleconnections seem to play a role in late winter.
Lux in obscuro II: photon orbits of extremal AdS black holes revisited
NASA Astrophysics Data System (ADS)
Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin
2017-12-01
A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
Liu, Zheng-jia; Yu, Xing-xiu; Li, Lei; Huang, Mei
2011-08-01
Based on the ecological sensitivity-resilience-pressure (SRP) conceptual model, and selecting 13 indices including landscape diversity index, soil erosion, and elevation, etc. , the vulnerability of the eco-environment in Yimeng mountainous area of Shandong Province was assessed under the support of GIS and by using principal component analysis and hierarchy analytical method. According to the eco-environmental vulnerability index (EVI) values, the eco-environment vulnerability of study area was classified into 5 levels, i.e., slight (<1.8), light (1.8-2.8), moderate (2.8-3.5), heavy (3.5-4.0), and extreme vulnerability (>4.0). In the study area, moderately vulnerable area occupied 43.3% of the total, while the slightly, lightly, heavily, and extremely vulnerable areas occupied 6.1%, 33.8%, 15.9%, and 0.9%, respectively. The heavily and extremely vulnerable areas mainly located in the topographically complicated hilly area or the hill-plain ecotone with frequent human activities.
Optimizing oil spill cleanup efforts: A tactical approach and evaluation framework.
Grubesic, Tony H; Wei, Ran; Nelson, Jake
2017-12-15
Although anthropogenic oil spills vary in size, duration and severity, their broad impacts on complex social, economic and ecological systems can be significant. Questions pertaining to the operational challenges associated with the tactical allocation of human resources, cleanup equipment and supplies to areas impacted by a large spill are particularly salient when developing mitigation strategies for extreme oiling events. The purpose of this paper is to illustrate the application of advanced oil spill modeling techniques in combination with a developed mathematical model to spatially optimize the allocation of response crews and equipment for cleaning up an offshore oil spill. The results suggest that the detailed simulations and optimization model are a good first step in allowing both communities and emergency responders to proactively plan for extreme oiling events and develop response strategies that minimize the impacts of spills. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.
Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram
2017-05-10
Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.
Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems
NASA Astrophysics Data System (ADS)
Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex
2010-02-01
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.
The use of ERTS-1 satellite data in Great Lakes mesometeorological studies
NASA Technical Reports Server (NTRS)
Lyons, W. A. (Principal Investigator)
1972-01-01
The author has identified the following significant results. In the original proposal, it was hoped that ERTS could, with its extremely high resolution and multispectral capability, detect many meteorological phenomena occurring at the low end of the mesoscale motion spectrum (1 - 100 km). This included convective cloud phenomena, internal wave patterns, air pollution, snow squalls, etc. For meteorologists, ERTS-1 has more than lived up to initial hopes. First-look inspection of images has produced a large number of truly remarkable finds. Some of the most significant are: (1) Images of Lake Ontario during late summer have revealed several extremely good examples of lake breeze frontal cloud patterns. (2) Detection of suspended particulates from Chicago-Gary industrial complex in the 50,000 to 150,000 tons/year category. (3) Inadvertant weather modification due to anthropogenic condensation and ice nuclei from urban areas.
Du, Ling; Mikle, Nathaniel; Zou, Zhenhua; Huang, Yuanyuan; Shi, Zheng; Jiang, Lifen; McCarthy, Heather R; Liang, Junyi; Luo, Yiqi
2018-07-01
Quantifying the ecological patterns of loss of ecosystem function in extreme drought is important to understand the carbon exchange between the land and atmosphere. Rain-use efficiency [RUE; gross primary production (GPP)/precipitation] acts as a typical indicator of ecosystem function. In this study, a novel method based on maximum rain-use efficiency (RUE max ) was developed to detect losses of ecosystem function globally. Three global GPP datasets from the MODIS remote sensing data (MOD17), ground upscaling FLUXNET observations (MPI-BGC), and process-based model simulations (BESS), and a global gridded precipitation product (CRU) were used to develop annual global RUE datasets for 2001-2011. Large, well-known extreme drought events were detected, e.g. 2003 drought in Europe, 2002 and 2011 drought in the U.S., and 2010 drought in Russia. Our results show that extreme drought-induced loss of ecosystem function could impact 0.9% ± 0.1% of earth's vegetated land per year and was mainly distributed in semi-arid regions. The reduced carbon uptake caused by functional loss (0.14 ± 0.03 PgC/yr) could explain >70% of the interannual variation in GPP in drought-affected areas (p ≤ 0.001). Our results highlight the impact of ecosystem function loss in semi-arid regions with increasing precipitation variability and dry land expansion expected in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Collow, A.; Bosilovich, M. G.; Koster, R. D.
2016-12-01
Over the past two decades a statistically significant increase in the frequency of summertime extreme precipitation events has been observed over the northeastern United States - the largest such increase in the US in terms of area and magnitude. In an effort to characterize synoptic scale patterns and changes to the atmospheric circulation associated with extreme precipitation events in this region, atmospheric fields from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) are composited on days that exceed the 90th percentile of precipitation from the CPC-Unified daily gauge-based precipitation observations. Changes over time in composites of sea level pressure, 500 hPa height, and the vertical profile of equivalent potential temperature indicate that the observed increase in extreme precipitation events is associated with extratropical cyclones, including cut off low pressure and frontal systems. Analysis of the Eady maximum growth rate, an indicator for storm tracks, shows that storms tracks in recent years have shifted southward. In addition, mean summertime transient meridional winds have decreased over time, slowing baroclinic systems and causing stationary systems to become more frequent, in agreement with previous studies examining blocking due to high pressure systems. The Atlantic Ocean provides a significant supply of moisture that converges over the region when a cyclonic circulation is situated to the south, and the statistically significant increase in Eady maximum growth rate over time there provides an increasingly improved thermodynamic environment for extreme precipitation events.
Determinants of health-related quality of life in psoriasis patients in Malaysia.
Nyunt, Wint Wint Thu; Low, Wah Yun; Ismail, Rokiah; Sockalingam, Sargunan; Min, Aung Ko Ko
2015-03-01
Psoriasis is a chronic dermatological disorder that has a negative impact on quality of life (QoL). This hospital-based cross-sectional study determined factors associated with health-related QoL (HRQoL) impairment in adult psoriasis patients. HRQoL was assessed using the Dermatology Life Quality Index (DLQI). Disease severity was assessed using the Psoriasis Area and Severity Index (PASI). A total of 223 patients, aged 18 to 83 years, were recruited. For 67 (30%) patients, psoriasis had very large to extremely large effect on their life (DLQI score = 11-30). The median DLQI score was 7 (interquartile range = 7). Factors significantly associated with severe impact on HRQoL (DLQI ≥ 10) were disease severity, single status, working status, sports activities, nail dystrophy, exposed area involvement, itch, disturbed sleep, stress, and infection. The factor predictive of severe impact of psoriasis on HRQoL was disease severity. A holistic approach in the management, including psychosocial issues, is absolutely crucial for the optimal care of psoriasis patients. © 2013 APJPH.
Genetic analysis of floating Enteromorpha prolifera in the Yellow Sea with AFLP marker
NASA Astrophysics Data System (ADS)
Liu, Cui; Zhang, Jing; Sun, Xiaoyu; Li, Jian; Zhang, Xi; Liu, Tao
2011-09-01
Extremely large accumulation of green algae Enteromorpha prolifera floated along China' coastal region of the Yellow Sea ever since the summer of 2008. Amplified Fragment Length Polymorphism (AFLP) analysis was applied to assess the genetic diversity and relationships among E. prolifera samples collected from 9 affected areas of the Yellow Sea. Two hundred reproducible fragments were generated with 8 AFLP primer combinations, of which 194 (97%) were polymorphic. The average Nei's genetic diversity, the coefficiency of genetic differentiation (Gst), and the average gene flow estimated from Gst in the 9 populations were 0.4018, 0.6404 and 0.2807 respectively. Cluster analysis based on the unweighed pair group method with arithmetic averages (UPGMA) showed that the genetic relationships within one population or among different populations were all related to their collecting locations and sampling time. Large genetic differentiation was detected among the populations. The E. prolifera originated from different areas and were undergoing a course of mixing.
Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials
Ibbotson, Lindsey A.; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J.
2015-01-01
Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges. PMID:25660667
Synthesis and Characterization of Highly Crystalline Graphene Aerogels
Worsley, Marcus A.; Pham, Thang T.; Yan, Aiming; ...
2014-10-06
Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain significantly inferior to individual graphene sheets due to their poor crystallinity. Here, we report a straightforward method to synthesize highly crystalline GO-based graphene aerogels via high-temperature processing common in commercial graphite production. The crystallization of the graphene aerogels versus annealing temperature ismore » characterized using Raman and X-ray absorption spectroscopy, X-ray diffraction, and electron microscopy. Nitrogen porosimetry shows that the highly crystalline graphene macrostructure maintains a high surface area and ultrafine pore size. Because of their enhanced crystallinity, these graphene aerogels exhibit a ~200 °C improvement in oxidation temperature and an order of magnitude increase in electrical conductivity.« less
Sweatt, W.C.
1998-09-08
A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D{sub source} {approx_equal} 0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors. 11 figs.
2016-10-21
A pair of large coronal holes rotated into view over the past few days (Oct. 20-21, 2016). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light, such as in the wavelength used here. These holes are areas of open magnetic field that spew solar wind into space. Sometimes, when they are facing Earth, they can cause geomagnetic disturbances that generate aurora. The lines you see were drawn to represent how solar scientists are modeling the magnetic field lines. Movies are available at the Photojournal http://photojournal.jpl.nasa.gov/catalog/PIA15378
Reflective optical imaging system for extreme ultraviolet wavelengths
Viswanathan, Vriddhachalam K.; Newnam, Brian E.
1993-01-01
A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 .mu.m, and preferably less than 100 .mu.m. An image resolution of features less than 0.05-0.1 .mu.m, is obtained over a large area field; i.e., 25.4 mm .times.25.4 mm, with a distortion less than 0.1 of the resolution over the image field.
Reflective optical imaging system for extreme ultraviolet wavelengths
Viswanathan, V.K.; Newnam, B.E.
1993-05-18
A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, the mechanism on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, solar arrays has been released. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, one of twin solar arrays is positioned on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
Polygenic determinants in extremes of high-density lipoprotein cholesterol[S
Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude
2017-01-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971
Polygenic determinants in extremes of high-density lipoprotein cholesterol.
Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2017-11-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Printed Carbon Nanotube Electronics and Sensor Systems.
Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali
2016-06-01
Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Do, Hong; Gudmundsson, Lukas; Leonard, Michael; Westra, Seth; Senerivatne, Sonia
2017-04-01
In-situ observations of daily streamflow with global coverage are a crucial asset for understanding large-scale freshwater resources which are an essential component of the Earth system and a prerequisite for societal development. Here we present the Global Streamflow Indices and Metadata archive (G-SIM), a collection indices derived from more than 20,000 daily streamflow time series across the globe. These indices are designed to support global assessments of change in wet and dry extremes, and have been compiled from 12 free-to-access online databases (seven national databases and five international collections). The G-SIM archive also includes significant metadata to help support detailed understanding of streamflow dynamics, with the inclusion of drainage area shapefile and many essential catchment properties such as land cover type, soil and topographic characteristics. The automated procedure in data handling and quality control of the project makes G-SIM a reproducible, extendible archive and can be utilised for many purposes in large-scale hydrology. Some potential applications include the identification of observational trends in hydrological extremes, the assessment of climate change impacts on streamflow regimes, and the validation of global hydrological models.
Forest loss and Borneo’s climate
NASA Astrophysics Data System (ADS)
McAlpine, Clive A.; Johnson, Alex; Salazar, Alvaro; Syktus, Jozef; Wilson, Kerrie; Meijaard, Erik; Seabrook, Leonie; Dargusch, Paul; Nordin, Haziq; Sheil, Douglas
2018-04-01
The equatorial island of Borneo is a deforestation hotspot. However, the influence of forest loss on the island’s climate remains largely unexplored. Here, we examine how forest loss is related to changes in ground-based records of temperature (1961–2007) and precipitation (1951–2007), and MODIS data for temperature (2002–2016). Analyses were performed for the entire island, lowland areas (<200 m ASL), and nine selected watersheds. We found a strong island-wide relationship between forest loss and increases in daily temperature and reductions in daily precipitation. The relationship between deforestation and changes in local climate was most pronounced for watersheds in southeast Borneo, which have lost 40%–75% of their forests since 1973. These watersheds also had a significantly higher frequency of temperatures above 31 °C. Watersheds in north and northwest Borneo, which have lost 5%–25% of their forest cover, maintained a more stable climate with a similar distribution of mean and extreme warm temperatures between forest and modified forest areas. Watersheds with >15% forest loss had a >15% reduction in rainfall. We conclude that loss of forest in Borneo has increased local daily temperatures and temperature extremes, and reduced daily precipitation.
A Review: Fundamental Aspects of Silicate Mesoporous Materials
ALOthman, Zeid A.
2012-01-01
Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.
NASA Astrophysics Data System (ADS)
Li, Jinchang; Zhao, Yanfang; Liu, Haixia; Su, Zhizhu
2016-03-01
Sandy desertification (SDN) cycles in the southwestern Mu Us Desert since the late 1920s were recorded based on the evolution of Nitraria tangutorum nebkhas. Particle size changes of the nebkha excavated during the study, together with AMS 14C and 137Cs dating controls, indicated that the SDN of the study area was reverse on the whole over the past 80 years, but multiple SDN cycles also occurred. SDN mainly occurred during the late 1920s to the early 1940s, late 1940s to early 1950s, late 1950s to early 1960s, mid- and late 1980s, and early 2000s. The formation of nebkhas in the study area was triggered by severe SDN caused by extreme drought events that occurred in the 1920s to the 1930s. Over the past 80 years, the general SDN trend in the southwestern Mu Us Desert was mainly controlled by the westerly circulation strength, and severe SDN resulted mainly from extreme drought events in a large spatial scale, whereas slight SDN cycles were mainly due to local climate fluctuations and human activities.
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
NASA Astrophysics Data System (ADS)
Barud-Zubillaga, Alberto
During the 2006 El Paso-Juarez flood there were many concerns regarding the capability of the existing stormwater system to handle 50- and 100-year flood events in El Paso, Texas and Juarez, Mexico area. Moreover in 2008, a considerable wet year from the normal 223 mm of annual precipitation for El Paso demonstrated that the area could very well received large amounts of precipitation at localized areas in short periods of time, representing a great flood threat to residents living in areas prone to flood. Some climate change projections for the area are exactly what had occurred over the last two decades; an increased number of torrential rainstorms over smaller concentrated pieces of land separated by longer years of drought between rainstorms. This study consisted in three projects focused on three critical regions within the El Paso-Juarez area that were greatly affected by the 2006 Flood. The goal was to identify if natural arroyos or the existent built stormwater system, could properly managed the projected precipitation patterns. The three projects described in this dissertation touch on the following points: (a) the importance of a reliable precipitation model that could accurately describes precipitation patterns in the region under extreme drought and wet climates conditions; (b) differences in land use/land cover characteristics as factors promoting or disrupting the possibility for flooding, and (c) limitations and capabilities of existent stormwater systems and natural arroyos as means to control flooding. Conclusions and recommendations are shown below, which apply not only to each particular project, but also to all study areas and similar areas in the El Paso-Juarez region. Urbanization can improve or worsen a pre-existing natural stormwater system if built under its required capacity. Such capacity should be calculated considering extreme weather conditions, based on a denser network of precipitation stations to capture the various microclimates found in the region and taking into account climate change predictions. Development of new areas needs to consider not only the watershed of study but its relation to other watersheds around them. Basin parameters seemed to be of low impact while comparing them with precipitation rates. High resolution DEMs, such as those derived from LiDAR can dramatically improve the accuracy and reliability of a hydrological model. Hardware capabilities and limitations however should be considered. The overall recommendations derived from this dissertation are to direct new studies, policies and regulations at the three levels of government---local, state and federal---to: limit urban development to areas of no or low potential for flooding; implementing some type of ecological, green corridors, or conservation easements to preserve these areas; build semi-natural or hybrid stormwater infrastructure to slowdown, collect, and ultimately, transport runoff to the Rio Grande or any other waterway; consider extreme wet and dry scenarios for designation of flood-prone areas and future construction of stormwater infrastructure; and design stormwater infrastructure to retrofit the existing natural and irrigation drains.
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
Rush, P S; Shiau, J M; Hibler, B P; Longley, B J; Downs, T M; Bennett, D D
2016-12-01
Glandular and pseudoglandular tumors of the penile skin are extremely uncommon and can present diagnostic challenges. Primary adenosquamous carcinoma of the penis is an extremely rare tumor, composed of distinct areas of malignant squamous and glandular cells, making it a diagnostically challenging entity. The World Health Organization (WHO) recognizes several subtypes of squamous cell carcinoma (SCC), each with its own distinctive pathologic appearance, clinical associations and prognosis. Among these variants is the exceedingly uncommon adenosquamous carcinoma (ASC), representing 1%-2% of all SCC of the penis. Recent large studies have interrogated the presence of human papillomavirus (HPV) in malignant penile tumors and have shown specific morphologic patterns and clinical presentations to associate with HPV status. However, given the rarity of the adenosquamous variant of SCC, it has largely been excluded from these studies. The glandular components of these lesions can present a confusing appearance, particularly when a large tumor is represented on a small biopsy. Here we describe a difficult histologic presentation of this rare tumor, with the first published characterization of the HPV status of this subtype. This case represents a distinctly unusual case of metastatic HPV-positive primary cutaneous adenosquamous carcinoma of the penis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Solar cycle variations in polar cap area measured by the superDARN radars
NASA Astrophysics Data System (ADS)
Imber, S. M.; Milan, S. E.; Lester, M.
2013-10-01
present a long-term study, from January 1996 to August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere Super Dual Auroral Radar Network (SuperDARN). The HMB represents the equatorward extent of ionospheric convection and is used in this study as a measure of the global magnetospheric dynamics. We find that the yearly distribution of HMB latitudes is single peaked at 64° magnetic latitude for the majority of the 17 year interval. During 2003, the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17 year interval. In contrast, during the period 2008-2011, HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first long-term study of the polar cap area and the results demonstrate that there is a close relationship between the solar activity cycle and the area of the polar cap on a large-scale, statistical basis.
Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars
NASA Astrophysics Data System (ADS)
Imber, S. M.; Milan, S. E.; Lester, M.
2013-12-01
We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.
The Paleo-Indian Entry into South America According to Mitogenomes
Brandini, Stefania; Bergamaschi, Paola; Cerna, Marco Fernando; Gandini, Francesca; Bastaroli, Francesca; Bertolini, Emilie; Cereda, Cristina; Ferretti, Luca; Gómez-Carballa, Alberto; Battaglia, Vincenza; Salas, Antonio; Semino, Ornella; Olivieri, Anna; Torroni, Antonio
2018-01-01
Abstract Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka. PMID:29099937
Identifying Population Vulnerable to Extreme Heat Events in San Jose, California.
NASA Astrophysics Data System (ADS)
Rivera, A. L.
2016-12-01
The extreme heat days not only make cities less comfortable for living but also they are associated with increased morbidity and mortality. Mapping studies have demonstrated spatial variability in heat vulnerability. A study conducted between 2000 and 2011 in New York City shows that deaths during heat waves was more likely to occur in black individuals, at home in census tracts which received greater public assistance. This map project intends to portray areas in San Jose California that are vulnerable to extreme heat events. The variables considered to build a vulnerability index are: land surface temperature, vegetated areas (NDVI), and people exposed to these area (population density).
NASA Astrophysics Data System (ADS)
Walz, M. A.; Donat, M.; Leckebusch, G. C.
2017-12-01
As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.
An analysis on Wildland Urban Interface in North Sardinia
NASA Astrophysics Data System (ADS)
Arca, B.; Pellizzaro, G.; Canu, A.; Pintus, G. V.; Ferrara, R.; Duce, P.
2012-04-01
Climate variability and drought, typical of the Mediterranean climate, together with different anthropogenic disturbances (modifications of land use, deforestation, grazing, forest fires, etc.) makes the Mediterranean basin ecosystems extremely sensitive and vulnerable. In the last three decades, an increasing number of fires threatening the wildland urban interface (WUI) was observed. In Sardinia, this phenomenon is particularly evident in tourist and coastal areas where a large number of resorts is built within and surrounded by Mediterranean vegetation that is highly prone to events of wildfire. In these situations, the related risk of damage for villages, tourist resorts, other human activities and people is elevated especially in summer when the presence of human people is highest and meteorological conditions are extreme. In addition, fire can have significant effect on the hydrological response of the WUI causing the intensification of the erosive processes. Therefore, the development of planning policies is required in order to implement strategies to prevent and reduce wildfire and soil erosion risk in wildland urban interface areas. The main aims of this work are i) to assess presence and characteristics of wildland urban interface in a touristic areas of North Sardinia and ii) to evaluate fire danger and soil erosion risk in the studied area. The study was carried out in a coastal area located in North Sardinia, characterized by strong touristic development in the last thirty years. In that area, the characterization and mapping of the WUI were performed. In addition several simulation were carried out by the Farsite fire area simulator with the aim to study the spatial pattern of the fire danger factors in the vegetated areas closer to the WUI. Finally, maps of soil erosion were produced for the identification of the areas at high erosion risk in the WUI. This work is supported by MIIUR - Metodologie e indicatori per la valutazione del rischio di Incendio nelle aree di Interfaccia Urbano Rurale in ambiente mediterraneo. Legge Regionale 7 agosto 2007, n. 7.
Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism
NASA Astrophysics Data System (ADS)
Meessen, Patrick; Ortín, Tomás; Perz, Jan; Shahbazi, C. S.
2012-09-01
We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.
Charge reconstruction in large-area photomultipliers
NASA Astrophysics Data System (ADS)
Grassi, M.; Montuschi, M.; Baldoncini, M.; Mantovani, F.; Ricci, B.; Andronico, G.; Antonelli, V.; Bellato, M.; Bernieri, E.; Brigatti, A.; Brugnera, R.; Budano, A.; Buscemi, M.; Bussino, S.; Caruso, R.; Chiesa, D.; Corti, D.; Dal Corso, F.; Ding, X. F.; Dusini, S.; Fabbri, A.; Fiorentini, G.; Ford, R.; Formozov, A.; Galet, G.; Garfagnini, A.; Giammarchi, M.; Giaz, A.; Insolia, A.; Isocrate, R.; Lippi, I.; Longhitano, F.; Lo Presti, D.; Lombardi, P.; Marini, F.; Mari, S. M.; Martellini, C.; Meroni, E.; Mezzetto, M.; Miramonti, L.; Monforte, S.; Nastasi, M.; Ortica, F.; Paoloni, A.; Parmeggiano, S.; Pedretti, D.; Pelliccia, N.; Pompilio, R.; Previtali, E.; Ranucci, G.; Re, A. C.; Romani, A.; Saggese, P.; Salamanna, G.; Sawy, F. H.; Settanta, G.; Sisti, M.; Sirignano, C.; Spinetti, M.; Stanco, L.; Strati, V.; Verde, G.; Votano, L.
2018-02-01
Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction in the case of large PE pile-up, providing an unbiased charge estimator at the permille level up to 15 detected PEs. The method is based on a signal filtering technique (Wiener filter) which suppresses the noise due to both PMT and readout electronics, and on a Fourier-based deconvolution able to minimize the influence of signal distortions—such as an overshoot. The analysis of simulated PMT waveforms shows that the slope of a linear regression modeling the relation between reconstructed and true charge values improves from 0.769 ± 0.001 (without deconvolution) to 0.989 ± 0.001 (with deconvolution), where unitary slope implies perfect reconstruction. A C++ implementation of the charge reconstruction algorithm is available online at [1].
Liu, Yang; Zhang, Mingqing; Fang, Xiuqi
2018-03-20
By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Mingqing; Fang, Xiuqi
2018-03-01
By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.
Particle transport and deposition: basic physics of particle kinetics.
Tsuda, Akira; Henry, Frank S; Butler, James P
2013-10-01
The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.
Lozano-Sanchez, Pablo; Elliott, Joanne M
2008-02-01
Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.
How extreme weather events can influence the way of thinking about forest management?
NASA Astrophysics Data System (ADS)
Ziemblińska, Klaudia; Merbold, Lutz; Urbaniak, Marek; Haeni, Matthias; Olejnik, Janusz
2014-05-01
One third of the total area of Poland, which is covered by forests, is currently managed by "The State National Forest Holding" - the biggest organization in Europe managing forests. Common management practice is based on clear-cutting the vegetation to maintaining forests and ensuring regrowth. While sufficient information exists on the quantity of harvested biomass and particularly its economic value, little knowledge exists on the overall environmental impact of such management including the carbon budgets of forests in Poland. At the same time these forests are very vulnerable to extreme events such as wind throws. Large wind throws can be used as an experimental platform to study both, the effects of extreme events itself but also the effects of management such as clear-cuts, due to the fact that after such kind of natural disasters similar steps then following clear-cuts are implemented. These activities include the removal of whole trees, collection of branches and pulling out stems with heavy machinery, causing additional disturbance. In this study, we aim at providing information to fill the current knowledge gap of changing C budget after clear-cuts and wind throws. We hypothesize large C losses after clear-cuts and ask whether one can improve current forest management to "save" C and/or enhance C sequestration? To answer this specific question we used the eddy covariance (EC) method to adequately measure the net ecosystem exchange of carbon dioxide (NEE) between a deforested area and the atmosphere (treatment) and compare it to measurements from an intact forest of the same type (control). Both sites have the same soil type (brunic arenosoil - after FAO classification) which is sandy and relatively not fertile. Moreover, main species and composition were similar. The treatment area was chosen after the occurrence of a 20min-lasting tornado in July 2012 in Western Poland. The storm resulted in the destruction of more than 500 ha of 75-year old pine forest and provided a unique situation to assess the C budget of a pine forest after wind throw leading to the construction of the Trzebciny EC tower (treatment site). Measurements of CO2 and H2O exchange continue since the beginning of 2013. Measurements from both sites were directly compared to an already established monitoring station (65-year old Tuczno forest, control). We observed a huge difference in NEE between an intact middle age coniferous forest (control site, net gain of 463 g(C-CO2) m-2 in 2013) and an area of similar forest that was destroyed by a tornado and cleared thereafter (treatment site, net loss of about 518 g(C-CO2) m-2 in 2013). Our results provide a great opportunity to re-evaluate current forest management in Poland and will provide a first step towards adjusting forestry management and policy to become less susceptible to climate change (especially extreme events).
NASA Astrophysics Data System (ADS)
Nunes, Ana
2015-04-01
Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah
2018-05-01
Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.
Barbera, J; Macintyre, A; Gostin, L; Inglesby, T; O'Toole, T; DeAtley, C; Tonat, K; Layton, M
2001-12-05
Concern for potential bioterrorist attacks causing mass casualties has increased recently. Particular attention has been paid to scenarios in which a biological agent capable of person-to-person transmission, such as smallpox, is intentionally released among civilians. Multiple public health interventions are possible to effect disease containment in this context. One disease control measure that has been regularly proposed in various settings is the imposition of large-scale or geographic quarantine on the potentially exposed population. Although large-scale quarantine has not been implemented in recent US history, it has been used on a small scale in biological hoaxes, and it has been invoked in federally sponsored bioterrorism exercises. This article reviews the scientific principles that are relevant to the likely effectiveness of quarantine, the logistic barriers to its implementation, legal issues that a large-scale quarantine raises, and possible adverse consequences that might result from quarantine action. Imposition of large-scale quarantine-compulsory sequestration of groups of possibly exposed persons or human confinement within certain geographic areas to prevent spread of contagious disease-should not be considered a primary public health strategy in most imaginable circumstances. In the majority of contexts, other less extreme public health actions are likely to be more effective and create fewer unintended adverse consequences than quarantine. Actions and areas for future research, policy development, and response planning efforts are provided.
Pelvic confined idiopathic retroperitoneal fibrosis mimicking a large tumor.
Salemis, N S; Tsiambas, E; Tsohataridis, E
2009-01-01
Idiopathic retroperitoneal fibrosis (IRF) entirely confined to the pelvic cavity is an extremely rare clinical entity. Herein, is described the case of a 36- year old male who presented with clinical and imaging manifestations of a large pelvic tumor. Exploratory laparotomy revealed a large mass in the right pelvis originating from the retroperitoneal space, displacing the right iliac vessels, the right ureter and the urinary bladder completely to the left. A laborious resection of the mass measuring 14 x 10cm was performed. Histopathological examination and detailed immunohistochemistry analysis were suggestive of idiopathic retroperitoneal fibrosis with no evidence of malignancy. This is a very rare case regarding localization and clinical presentation of idiopathic retroperitoneal fibrosis. We conclude that IRF should be included in the differential diagnosis of patients presenting with a pelvic mass even if there is no involvement of the typical para aortic area.
NASA Technical Reports Server (NTRS)
Britcher, C. P.
1983-01-01
Wind tunnel magnetic suspension and balance systems (MSBSs) have so far failed to find application at the large physical scales necessary for the majority of aerodynamic testing. Three areas of technology relevant to such application are investigated. Two variants of the Spanwise Magnet roll torque generation scheme are studied. Spanwise Permanent Magnets are shown to be practical and are experimentally demonstrated. Extensive computations of the performance of the Spanwise Iron Magnet scheme indicate powerful capability, limited principally be electromagnet technology. Aerodynamic testing at extreme attitudes is shown to be practical in relatively conventional MSBSs. Preliminary operation of the MSBS over a wide range of angles of attack is demonstrated. The impact of a requirement for highly reliable operation on the overall architecture of Large MSBSs is studied and it is concluded that system cost and complexity need not be seriously increased.
Temperate mountain grasslands: a climate-herbivore hypothesis for origins and persistence
Weigl, Peter D; Knowles, Travis W
2014-01-01
Temperate montane grasslands and their unique biotas are declining worldwide as they are increasingly being invaded by forests. The origin and persistence of these landscapes have been the focus of such controversy that in many areas their conservation is in doubt. In the USA some biologists have largely dismissed the grass balds of the Southern Appalachians as human artifacts or anomalous and transitory elements of regional geography, worthy of only limited preservation efforts. On the basis of information from biogeography, community ecology, regional history and palaeontology and from consideration of two other montane grassland ecosystems—East Carpathian poloninas and Oregon Coast Range grass balds—we hypothesize that these landscapes are more widespread than was formerly recognized; they are, in many cases, natural and ancient and largely owe their origin and persistence to past climatic extremes and the activities of large mammalian herbivores. PMID:24118866
Moody, John A.
2016-03-21
Extreme rainfall in September 2013 caused destructive floods in part of the Front Range in Boulder County, Colorado. Erosion from these floods cut roads and isolated mountain communities for several weeks, and large volumes of eroded sediment were deposited downstream, which caused further damage of property and infrastructures. Estimates of peak discharge for these floods and the associated rainfall characteristics will aid land and emergency managers in the future. Several methods (an ensemble) were used to estimate peak discharge at 21 measurement sites, and the ensemble average and standard deviation provided a final estimate of peak discharge and its uncertainty. Because of the substantial erosion and deposition of sediment, an additional estimate of peak discharge was made based on the flow resistance caused by sediment transport effects.Although the synoptic-scale rainfall was extreme (annual exceedance probability greater than 1,000 years, about 450 millimeters in 7 days) for these mountains, the resulting peak discharges were not. Ensemble average peak discharges per unit drainage area (unit peak discharge, [Qu]) for the floods were 1–2 orders of magnitude less than those for the maximum worldwide floods with similar drainage areas and had a wide range of values (0.21–16.2 cubic meters per second per square kilometer [m3 s-1 km-2]). One possible explanation for these differences was that the band of high-accumulation, high-intensity rainfall was narrow (about 50 kilometers wide), oriented nearly perpendicular to the predominant drainage pattern of the mountains, and therefore entire drainage areas were not subjected to the same range of extreme rainfall. A linear relation (coefficient of determination [R2]=0.69) between Qu and the rainfall intensity (ITc, computed for a time interval equal to the time-of-concentration for the drainage area upstream from each site), had the form: Qu=0.26(ITc-8.6), where the coefficient 0.26 can be considered to be an area-averaged peak runoff coefficient for the September 2013 rain storms in Boulder County, and the 8.6 millimeters per hour to be the rainfall intensity corresponding to a soil moisture threshold that controls the soil infiltration rate. Peak discharge estimates based on the sediment transport effects were generally less than the ensemble average and indicated that sediment transport may be a mechanism that limits velocities in these types of mountain streams such that the Froude number fluctuates about 1 suggesting that this type of floodflow can be approximated as critical flow.
Assessment of global flood exposures - developing an appropriate approach
NASA Astrophysics Data System (ADS)
Millinship, Ian; Booth, Naomi
2015-04-01
Increasingly complex probabilistic catastrophe models have become the standard for quantitative flood risk assessments by re/insurance companies. On the one hand, probabilistic modelling of this nature is extremely useful; a large range of risk metrics can be output. However, they can be time consuming and computationally expensive to develop and run. Levels of uncertainty are persistently high despite, or perhaps because of, attempts to increase resolution and complexity. A cycle of dependency between modelling companies and re/insurers has developed whereby available models are purchased, models run, and both portfolio and model data 'improved' every year. This can lead to potential exposures in perils and territories that are not currently modelled being largely overlooked by companies, who may then face substantial and unexpected losses when large events occur in these areas. We present here an approach to assessing global flood exposures which reduces the scale and complexity of approach used and begins with the identification of hotspots where there is a significant exposure to flood risk. The method comprises four stages: i) compile consistent exposure information, ii) to apply reinsurance terms and conditions to calculate values exposed, iii) to assess the potential hazard using a global set of flood hazard maps, and iv) to identify potential risk 'hotspots' which include considerations of spatially and/or temporally clustered historical events, and local flood defences. This global exposure assessment is designed as a scoping exercise, and reveals areas or cities where the potential for accumulated loss is of significant interest to a reinsurance company, and for which there is no existing catastrophe model. These regions are then candidates for the development of deterministic scenarios, or probabilistic models. The key advantages of this approach will be discussed. These include simplicity and ability of business leaders to understand results, as well as ease and speed of analysis and the advantages this can offer in terms of monitoring changing exposures over time. Significantly, in many areas of the world, this increase in exposure is likely to have more of an impact on increasing catastrophe losses than potential anthropogenically driven changes in weather extremes.
NASA Astrophysics Data System (ADS)
Barbosa, Humberto
Previous studies on severe storms and related flash foods over large urban areas of Southeastern Brazil have proceeded through the analyses of specific individual case studies. These urban areas, especially in austral summer, are prone to severe convective rainfall that affects targets that are difficult to protect, such as vulnerable communities. The synoptic case on 24 October 2007 showed severe thunderstorms with heavy rains produced widespread street flooding and major damage across the Rio de Janeiro metropolitan area and surrounding locations. The suspected cause determining heavy rains were associated with the intrusion of the cold front towards this urban area, and the interaction that occurred between it and the tropical moist air mass moved from the Amazon deep convection. In this context, METEOSAT Second Generation is an important tool to monitoring the dynamical evolution of cloud structures. This event presented the need to explore possible applications of METEOSAT-9 image analyses in this particular location to account for the possibility of tracking the weather disturbances. One way of supporting the exploratory analyses was by applying the RGB air masses and IR 10.8 images. The results showed that both the RGB air masses and IR 10.8 analyses attain clear and good approach in monitoring and evaluating severe storms that can cause widespread daily rains over the large urban areas located at Southeastern Brazil.
NASA Astrophysics Data System (ADS)
Wouters, Hendrik; De Ridder, Koen; Poelmans, Lien; Willems, Patrick; Brouwers, Johan; Hosseinzadehtalaei, Parisa; Tabari, Hossein; Vanden Broucke, Sam; van Lipzig, Nicole P. M.; Demuzere, Matthias
2017-09-01
Urban areas are usually warmer than their surrounding natural areas, an effect known as the urban heat island effect. As such, they are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine unprecedented long-term (35 years) urban climate model integrations at the convection-permitting scale (2.8 km resolution) with information from an ensemble of general circulation models to assess temperature-based heat stress for Belgium, a densely populated midlatitude maritime region. We discover that the heat stress increase toward the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heat waves, and urban expansion. Cities experience a heat stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat stress surpasses everywhere the urban hot spots of today. Our results demonstrate the need to combine information from climate models, acting on different scales, for climate change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas.
Impact of an extreme climatic event on community assembly.
Thibault, Katherine M; Brown, James H
2008-03-04
Extreme climatic events are predicted to increase in frequency and magnitude, but their ecological impacts are poorly understood. Such events are large, infrequent, stochastic perturbations that can change the outcome of entrained ecological processes. Here we show how an extreme flood event affected a desert rodent community that has been monitored for 30 years. The flood (i) caused catastrophic, species-specific mortality; (ii) eliminated the incumbency advantage of previously dominant species; (iii) reset long-term population and community trends; (iv) interacted with competitive and metapopulation dynamics; and (v) resulted in rapid, wholesale reorganization of the community. This and a previous extreme rainfall event were punctuational perturbations-they caused large, rapid population- and community-level changes that were superimposed on a background of more gradual trends driven by climate and vegetation change. Captured by chance through long-term monitoring, the impacts of such large, infrequent events provide unique insights into the processes that structure ecological communities.
De Santo, Elizabeth M
2013-07-30
International targets for marine protected areas (MPAs) and networks of MPAs set by the World Summit on Sustainable Development and United Nations Convention on Biological Diversity failed to meet their 2012 deadline and have been extended to 2020. Whilst targets play an important role in building momentum for conservation, they are also responsible for the recent designation of several extremely large no-take MPAs, which pose significant long-term monitoring and enforcement challenges. This paper critically examines the effectiveness of MPA targets, focusing on the underlying risks to achieving Millennium Development Goals posed by the global push for quantity versus quality of MPAs. The observations outlined in this paper have repercussions for international protected area politics with respect to (1) the science-policy interface in environmental decision-making, and (2) social justice concerns in global biodiversity conservation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai
2013-06-07
A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m(2) g(-1) shows an extremely high energy density, i.e., 118 W h kg(-1) at a power density of 100 W kg(-1). This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.
View of Hadley-Apennine area, looking north, photographed by Apollo 15
NASA Technical Reports Server (NTRS)
1971-01-01
An oblique view of the Hadley-Apennine area, looking north, as photographed by the Fairchild metric camera in the SIM bay of the Apollo 15 Command/Service Module in lunar orbit. Hadley Rille meanders through the lower center of the picture. The Apennine Mountains are at lower right. The Apollo 15 Lunar Module touchdown point is on the east side of the 'chicken beak' of Hadley Rille. The Caucasus Mountains are at upper right. The dark mare area at the extreme upper right is a portion of the Sea of Serenity. The Marsh of Decay is at lower left. The large crater near the horizon is Aristillus, which is about 55 kilometers (34.18 statute miles) in diameter. The crater just to the south of Aristillus is Autolycus, which is about 40 kilometers (35 statute miles) in diameter. The crater Cassini is barely visible on the horizon at upper right.
An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev
2013-06-07
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.
Large rainfall changes consistently projected over substantial areas of tropical land
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.
2016-02-01
Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.
Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling
2014-01-01
Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm tide or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm tide and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt’s tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm tide is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm tide is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm tide, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment. PMID:25310006
Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling
2014-01-01
Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm tide are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm tide or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm tide and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt's tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm tide is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm tide is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm tide, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment.
NASA Astrophysics Data System (ADS)
Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David
2017-06-01
Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.
NASA Astrophysics Data System (ADS)
Steeb, Nicolas; Rickenmann, Dieter; Badoux, Alexandre; Rickli, Christian; Waldner, Peter
2017-02-01
The extreme flood event that occurred in August 2005 was the most costly (documented) natural hazard event in the history of Switzerland. The flood was accompanied by the mobilization of > 69,000 m3 of large wood (LW) throughout the affected area. As recognized afterward, wood played an important role in exacerbating the damages, mainly because of log jams at bridges and weirs. The present study aimed at assessing the risk posed by wood in various catchments by investigating the amount and spatial variability of recruited and transported LW. Data regarding LW quantities were obtained by field surveys, remote sensing techniques (LiDAR), and GIS analysis and was subsequently translated into a conceptual model of wood transport mass balance. Detailed wood budgets and transport diagrams were established for four study catchments of Swiss mountain streams, showing the spatial variability of LW recruitment and deposition. Despite some uncertainties with regard to parameter assumptions, the sum of reconstructed wood input and observed deposition volumes agree reasonably well. Mass wasting such as landslides and debris flows were the dominant recruitment processes in headwater streams. In contrast, LW recruitment from lateral bank erosion became significant in the lower part of mountain streams where the catchment reached a size of about 100 km2. According to our analysis, 88% of the reconstructed total wood input was fresh, i.e., coming from living trees that were recruited from adjacent areas during the event. This implies an average deadwood contribution of 12%, most of which was estimated to have been in-channel deadwood entrained during the flood event.
Universal EUV in-band intensity detector
Berger, Kurt W.
2004-08-24
Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.
Analysis of present and future potential compound flooding risk along the European coast
NASA Astrophysics Data System (ADS)
Bevacqua, Emanuele; Maraun, Douglas; Voukouvalas, Evangelos; Vousdoukas, Michalis I.; Widmann, Martin; Manning, Colin; Vrac, Mathieu
2017-04-01
The coastal zone is the natural border between the sea and the mainland, and it is constantly under the influence of marine and land-based natural and human-induced pressure. Compound floods are extreme events occurring in coastal areas where the interaction of joint high sea level and large amount of precipitation causes extreme floodings. Typically the risk of flooding in coastal areas is defined analysing either sea level or precipitation driven floodings, however compound floods should be considered to avoid an underestimation of the risk. In the future, the human pressure at the coastal zone is expected to increase, urging for a comprehensive analysis of the compound flooding risk under different climate change scenarios. In this study we introduce the concept of "potential risk" as we investigate how often large amount of precipitation and high sea level may co-occur, and not the effective impact due to the interaction of these two hazards. The effective risk of compound flooding in a specific place depends also on the local orography and on the existing protections. The estimation of the potential risk of compound flooding is useful to individuate places where an effective risk of compound flooding may exist, and where further studies would be useful to get more precise information on the local risk. We estimate the potential risk of compound flooding along the European coastal zone incorporating the ERA-Interim meteorological reanalysis for the past and present state, and the future projections from two RCP scenarios (namely the RCP4.5 and RCP8.5 scenarios) as derived from 8 CMIP5 models of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Sea level data are estimated by forcing the hydrodynamic model Delft3D-Flow with 6-hourly wind and atmospheric pressure fields. Based on sea level (storm surge and astronomical tide) and precipitation joint occurrence analysis, a map of the potential compound flooding risk along the European coast is proposed and critical places with high potential risk are identified. For these critical places, we plan to asses the potential compound flood risk driven by coinciding extreme values of sea level and river discharge. Finally, we analyse the atmospheric large scale processes that lead to compound floods and their variation under future climate change scenarios.
Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian
2014-01-01
Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434
Resistance of the boreal forest to high burn rates.
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-09-23
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.
Illumination design for semiconductor backlight inspection and application extensions
NASA Astrophysics Data System (ADS)
Zhou, Wei; Rutherford, Todd; Hart, Darcy
2013-09-01
High speed strobe based illumination scheme is one of the most critical factors for high throughput semiconductor defect inspection applications. HB LEDs are always the first and best options for such applications due to numerous unique advantages such as excellent spatial and temporal stability, fast responding time, large and linear intensity dynamic range and no heat issue for the extremely low duty cycle applications. For some applications where a large area is required to be illuminated simultaneously, it remains a great challenge to efficiently package a large amount of HB-LEDs in a highly confined 3D space, to generate a seamless illuminated area with high luminance efficiency and spatial uniformity. A novel 3D structured collimation lens is presented in this paper. The non-circular edge shape reduces the intensity drop at the channel boundaries, while the secondary curvatures on the top of the collimator lens efficiently guides the light into desired angular space. The number of the edges and the radius of the top surface curvature are control parameters for the system level performance and the manufacture cost trade-off. The proposed 3D structured LED collimation lens also maintains the benefits of traditional LED collimation lens such as coupling efficiency and mold manufacture capability. The applications can be extended into other non-illumination area like parallelism measurement and solar panel concentrator etc.
Resistance of the boreal forest to high burn rates
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-01-01
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981
NASA Astrophysics Data System (ADS)
Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.
2016-12-01
Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River Basin (2015) are obtained using generated data. We compared 100-year probable rainfall calculated by this method with other traditional method. New developed method enables us to generate extreme rainfall events considering time and spatial scale and produce extreme rainfall scenario.
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
NASA Astrophysics Data System (ADS)
Dhakal, N.; Jain, S.
2013-12-01
Rare and unusually large events (such as hurricanes and floods) can create unusual and interesting trends in statistics. Generalized Extreme Value (GEV) distribution is usually used to statistically describe extreme rainfall events. A number of the recent studies have shown that the frequency of extreme rainfall events has increased over the last century and as a result, there has been change in parameters of GEV distribution with the time (non-stationary). But what impact does a single unusually large rainfall event (e.g., hurricane Irene) have on the GEV parameters and consequently on the level of risks or the return periods used in designing the civil infrastructures? In other words, if such a large event occurs today, how will it influence the level of risks (estimated based on past rainfall records) for the civil infrastructures? To answer these questions, we performed sensitivity analysis of the distribution parameters of GEV as well as the return periods to unusually large outlier events. The long-term precipitation records over the period of 1981-2010 from 12 USHCN stations across the state of Maine were used for analysis. For most of the stations, addition of each outlier event caused an increase in the shape parameter with a huge decrease on the corresponding return period. This is a key consideration for time-varying engineering design. These isolated extreme weather events should simultaneously be considered with traditional statistical methodology related to extreme events while designing civil infrastructures (such as dams, bridges, and culverts). Such analysis is also useful in understanding the statistical uncertainty of projecting extreme events into future.
NASA Astrophysics Data System (ADS)
Wang, Mingna; Yan, Xiaodong; Liu, Jiyuan; Zhang, Xuezhen
2013-11-01
This paper addresses the contribution of urban land use change to near-surface air temperature during the summer extreme heat events of the early twenty-first century in the Beijing-Tianjin-Hebei metropolitan area. This study uses the Weather Research Forecasting model with a single urban canopy model and the newest actual urban cover datasets. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60 °C. This change is most obvious at night with an increase up to 0.95 °C, for which the total contribution of anthropogenic heat is 34 %. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs, an effective way of reducing urban heat island, which can reduce the urban mean temperature by approximately 0.51 °C and counter approximately 80 % of the heat wave results from urban sprawl during the last 20 years.
Geologic assessments and characterization of marine sand resources - Gulf of Mexico region
Williams, S. Jeffress; Cichon, Helana A.
1993-01-01
The U.S. Geological Survey conducts geologic surveys and research in marine areas of the United States and its territories and possessions. An objective in some of the investigations is locating and evaluating marine sand and gravel resources and interpretation of the origins of the sand body deposits. Results from such studies over the past 30 years show that many extremely large deposits are located close to expanding metropolitan areas, which have a need for aggregate materials for construction, and near-developed coastal areas, where beach replenishment may be used to mitigate coastal erosion. The Gulf of Mexico continental shelf from the Florida Peninsula to the Mexico border is an enormous area, but little attention has been directed on sand and gravel resources. Based on limited surveys, the total sand and gravel resources for the entire Gulf of Mexico is estimated to be 269 billion cubic meters. However, the sand tends to be fine-grained and is often mixed with mud; gravel deposits, except for shell, are mostly nonexistent.
NASA Astrophysics Data System (ADS)
Kabir, Sumaiya; Razzak, S. M. Abdur
2018-07-01
In our paper an enhanced effective mode area octagonal photonic crystal fiber (PCF) is presented. This PCF ensures large effective mode area along with ultra-low confinement loss and bending loss. Both the elimination of air-holes from the rings near the core region and inclusion of low index fluorine doped silica rods in an octagonal pattern are the vital design features. We have used full vectorial finite element method (FEM) based software with circularly perfectly matched layer (PML) to simulate the guiding properties of PCF. Our proposed fiber achieves effective mode area of 1110 μm2. Moreover, it offers ultra-low confinement loss of 1.14 × 10-15 dB/m and can be bent as small as 30 cm without any significant bending loss of 6.49 × 10-9 dB/m. The PCF also ensures low non-linearity with small amount of splice loss. However, our proposed PCF can be used in applications like fiber amplifiers and lasers.
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Rumsey, H. C.
1972-01-01
Radar scans of Venus have yielded a brightness map of a large portion of the surface. The bright area in the south (alpha) and the twin such areas in the north (beta and delta) were first discovered by spectral analysis of radar echos. When range-gating is also applied, their shapes are revealed, and they are seen to be roundish and about 1000 km across. Although radar brightness can be the result of either intrinsic reflectivity or surface roughness, polarization studies show these features to be rough (to the scale of the wavelength, 12.5 cm). Dark, circular areas can also be seen, many with bright central spots. The dark areas are probably smooth. The blurring of the equatorial strip is an artifact of the range-Doppler geometry; all resolution disappears at the equator. Another artifact of the method is the 'ghost', in the south, of the images of beta and delta. Such ghosts appear only at the eastern and western extremes of the map.
Spatial clustering and meteorological drivers of summer ozone in Europe
NASA Astrophysics Data System (ADS)
Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.
2017-04-01
We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested but do not seem to exert a large impact on the variability of surface O3 over most regions. The identification of these independent regions where surface ozone presents a coherent behaviour and responds similarly to specific meteorological modes of variability has multiple applications. For instance, the performance of chemical transport models (CTMs) and chemistry-climate models (CCMs) can be separately assessed over such regions to identify areas where they present large biases that need to be corrected. Our results can also be used to test the models' sensitivity to the day-to-day changing meteorology and to climate change over specific regions.
Extreme Wildfire Spread and Behaviour: Case Studies from North Sardinia, Italy
NASA Astrophysics Data System (ADS)
Salis, M.; Arca, B.; Ager, A.; Fois, C.; Bacciu, V.; Duce, P.; Spano, D.
2012-04-01
Worldwide, fire seasons are usually characterized by the occurrence of one or more days with extreme environmental conditions, such as heat waves associated with strong winds. On these days, fires can quickly get out of hand originating large and severe wildfires. In these cases, containment and extinguishment phases are critical, considering that the imperative goal is to keep fire crews, people and animals safe. In this work we will present a set of large and severe wildfires occurred with extreme environmental conditions in the northern area of Sardinia. The most recent wildfire we will describe was ignited on July 13, 2011 in the Oschiri municipality (40°43' N; 9°06' E), and burned about 2,500 ha of wooded and herbaceous pastures and oakwoods in few hours. The second wildfire we will present was ignited on July 23, 2009 in the Bonorva municipality (40°25' N; 8° 46' E), and was responsible for the death of two people and several damages to houses, animals and farms. This wildfire lasted on July 25, and burned about 10,000 ha of wooded and herbaceous pastures; the most of the area was burned during the first day. The last wildfire we will describe was ignited on July 23, 2007 in the Oniferi municipality (40°16' N; 9° 16' E) and burned about 9,000 ha of wooded and herbaceous pastures and oakwoods; about 8,000 ha were burned after 11 hours of propagation. All these wildfires were ignited in days characterized by very hot temperatures associated to the effect of air masses moving from inland North Africa to the Mediterranean Basin, and strong winds from west-south west. This is one of the typical weather pattern associated with large and severe wildfires in North Sardinia, and is well documented in the last years. Weather conditions, fuels and topography factors related to each case study will be accurately analyzed. Moreover, a detailed overview of observed fire spread and behavior and post-fire vegetation recovery will be presented. The fire spread and behavior data collected during the events will be also compared with the results obtained with FARSITE (Finney, 1994) and FLAMMAP (Finney, 2003) models. The main goal of this paper is to thoroughly describe the fire behavior of relevant and recent case studies, in order to learn from it and lessen the chance of making potential mistakes or hazardous firefighting operations in the same environmental conditions. Furthermore, a crucial point is to teach and prepare people and fire crews not to be surprised by severe or abrupt fire behavior under extreme environmental conditions. For these reasons, the combination of analysis, knowledge and awareness of historical case studies, field experience and computer modeling represent a key learning technique.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Xia, Jun; She, Dunxian
2018-01-01
In recent decades, extreme precipitation events have been a research hotspot worldwide. Based on 12 extreme precipitation indices, the spatiotemporal variation and statistical characteristic of precipitation extremes in the middle reaches of the Yellow River Basin (MRYRB) during 1960-2013 were investigated. The results showed that the values of most extreme precipitation indices (except consecutive dry days (CDD)) increased from the northwest to the southeast of the MRYRB, reflecting that the southeast was the wettest region in the study area. Temporally, the precipitation extremes presented a drying trend with less frequent precipitation events. Generalized extreme value (GEV) distribution was selected to fit the time series of all indices, and the quantiles values under the 50-year return period showed a similar spatial extent with the corresponding precipitation extreme indices during 1960-2013, indicating a higher risk of extreme precipitation in the southeast of the MRYRB. Furthermore, the changes in probability distribution functions of indices for the period of 1960-1986 and 1987-2013 revealed a drying tendency in our study area. Both El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) were proved to have a strong influence on precipitation extremes in the MRYRB. The results of this study are useful to master the change rule of local precipitation extremes, which will help to prevent natural hazards caused.
The evolution of extreme precipitations in high resolution scenarios over France
NASA Astrophysics Data System (ADS)
Colin, J.; Déqué, M.; Somot, S.
2009-09-01
Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics and that both regional and global simulations were run at the same resolution, ARP50 can be regarded as a reference with which FRA50, EUR50 and EUR50-SN should each be compared. After an analysis of the differences between the regional simulations and ARP50 in annual and seasonal mean, we focus on the representation of rainfall extremes comparing two dimensional fields of various index inspired from STARDEX and quantile-quantile plots. The results show a good agreement with the ARP50 reference for all three regional simulations and little differences are found between them. This result indicates that the use of small domains is not significantly detrimental to the modelling of extreme precipitation events. It also shows that the spectral nudging technique has no detrimental effect on the extreme precipitation. Therefore, high resolution scenarios performed on a relatively small domain such as the ones run for SCAMPEI, can be regarded as good tools to explore their possible evolution in the future climate. Preliminary results on the response of precipitation extremes over South-East France are given.
Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat
NASA Astrophysics Data System (ADS)
Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano
2010-11-01
In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.
Extreme precipitation events in the Iberian Peninsula and its association with Atmospheric Rivers
NASA Astrophysics Data System (ADS)
Ramos, Alexandre M.; Liberato, Margarida L. R.; Trigo, Ricardo M.
2015-04-01
Extreme precipitation events in the Iberian Peninsula during the winter half of the year have major socio-economic impacts associated with floods, landslides, extensive property damage and life losses. In recent years, a number of works have shed new light on the role played by Atmospheric Rivers (ARs) in the occurrence of extreme precipitation events in both Europe and USA. ARs are relatively narrow regions of concentrated WV responsible for horizontal transport in the lower atmosphere corresponding to the core section of the broader warm conveyor belt occurring over the oceans along the warm sector of extra-tropical cyclones. Over the North Atlantic ARs are usually W-E oriented steered by pre-frontal low level jets along the trailing cold front and subsequently feed the precipitation in the extra-tropical cyclones. It was shown that more than 90% of the meridional WV transport in the mid-latitudes occurs in the AR, although they cover less than 10% of the area of the globe. The large amount of WV that is transported can lead to heavy precipitation and floods. An automated ARs detection algorithm is used for the North Atlantic Ocean Basin allowing the identification and a comprehensive characterization of the major AR events that affected the Iberian Peninsula over the 1948-2012 period. The extreme precipitation days in the Iberian Peninsula were assessed recently by us (Ramos et al., 2014) and their association (or not) with the occurrence of AR is analyzed in detail here. The extreme precipitation days are ranked by their magnitude and are obtained after considering 1) the area affected and 2) the precipitation intensity. Different rankings are presented for the entire Iberian Peninsula, Portugal and also for the six largest Iberian river basins (Minho, Duero, Tagus, Guadiana, Guadalquivir and Ebro) covering the 1950-2008 period (Ramos et al., 2014). Results show that the association between ARs and extreme precipitation days in the western domains (Portugal, Minho, Tagus and Duero) is noteworthy, while for the eastern and southern basins (Ebro, Guadiana and Guadalquivir) the impact of ARs is reduced. In addition, meteorological large scale influence associated with ARs was also analyzed. The anomalies between the extended winter (ONDJFM) long term mean and the composite for the persistent ARs time steps were computed for the IVT and SLP fields. Negative SLP anomalies are found centered in Ireland with slight positive anomalies of SLP located over northern Africa. It was found that the ARs hitting the IP are strongly correlated with the EA pattern, while the influence of other patterns such as the NAO or SCAND is weak. Main results presented are currently in print (Ramos et al., 2015) Ramos et al (2014), A ranking of high-resolution daily precipitation extreme events for the Iberian Peninsula. Atmospheric Science Letters, doi: 10.1002/asl2.507. Ramos et al. (2015), Daily precipitation extreme events in the Iberian Peninsula and its association with Atmospheric Rivers. Journal Hydrometeorology, in press. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010). A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).
NASA Astrophysics Data System (ADS)
Jennings, Keith; Jones, Julia A.
2015-09-01
This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.
Modeling, Forecasting and Mitigating Extreme Earthquakes
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.
2012-12-01
Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).
Do the enigmatic ``Infrared-Faint Radio Sources'' include pulsars?
NASA Astrophysics Data System (ADS)
Hobbs, George; Middelberg, Enno; Norris, Ray; Keith, Michael; Mao, Minnie; Champion, David
2009-04-01
The Australia Telescope Large Area Survey (ATLAS) team have surveyed seven square degrees of sky at 1.4GHz. During processing some unexpected infrared-faint radio sources (IFRS sources) were discovered. The nature of these sources is not understood, but it is possible that some of these sources may be pulsars within our own galaxy. We propose to observe the IFRS sources with steep spectral indices using standard search techniques to determine whether or not they are pulsars. A pulsar detection would 1) remove a subset of the IFRS sources from the ATLAS sample so they would not need to be observed with large optical/IR telescopes to find their hosts and 2) be intrinsically interesting as the pulsar would be a millisecond pulsar and/or have an extreme spatial velocity.
Dedifferentiated Liposarcoma of Sigmoid Mesocolon - A Case Report.
Constantinoiu, Silviu; Achim, Ion-Florin; Cretu, Oana-Eliza; Dumitru, Tatiana; Constantin, Adrian; Enache, Simona; Mates, Ioan Nicolae
2016-01-01
Dedifferentiated liposarcoma is a liposarcoma that contains a well-differentiated liposarcoma component juxtaposed to areas of high-grade non-lipogenic sarcoma and was believed to occur from well-differentiated liposarcoma after several years. Dedifferentiated liposarcoma most commonly occurs in the retroperitoneum, while an intraperitoneal location is extremely rare, only seven cases have been reported in literature. Many pathologists recognize that a large number of intra-abdominal poorly differentiated sarcomas are dedifferentiated liposarcomas. We present the case of a 73 years old patient known with multiple cardiovascular comorbidities, stroke sequelae and a large abdominal mass evolving for 3 years. He was referred to our clinic for abdominal pain and bowel disorders. Instead of all clinical and imagistic aspects suggested a gastrointestinal stromal tumour, the histological exam revealed the diagnosis of a dedifferentiated liposarcoma. Celsius.
Extreme rainfall events: Learning from raingauge time series
NASA Astrophysics Data System (ADS)
Boni, G.; Parodi, A.; Rudari, R.
2006-08-01
SummaryThis study analyzes the historical records of annual rainfall maxima recorded in Northern Italy, cumulated over time windows (durations) of 1 and 24 h and considered paradigmatic descriptions of storms of both short and long duration. Three large areas are studied: Liguria, Piedmont and Triveneto (Triveneto includes the Regions of Veneto, Trentino Alto Adige and Friuli Venezia Giulia). A regional frequency analysis of annual rainfall maxima is carried out through the Two Components Extreme Value (TCEV) distribution. A hierarchical approach is used to define statistically homogeneous areas so that the definition of a regional distribution becomes possible. Thanks to the peculiar nature of the TCEV distribution, a frequency-based threshold criterion is proposed. Such criterion allows to distinguish the observed ordinary values from the observed extra-ordinary values of annual rainfall maxima. A second step of this study focuses on the analysis of the probability of occurrence of extra-ordinary events over a period of one year. Results show the existence of a four month dominant season that maximizes the number of occurrences of annual rainfall maxima. Such results also show how the seasonality of extra-ordinary events changes whenever a different duration of events is considered. The joint probability of occurrence of extreme storms of short and long duration is also analyzed. Such analysis demonstrates how the joint probability of occurrence significantly changes when all rainfall maxima or only extra-ordinary maxima are used. All results undergo a critical discussion. Such discussion seems to lead to the point that the identified statistical characteristics might represent the landmark of those mechanisms causing heavy precipitation in the analyzed regions.
Impact of Atmospheric Blocking on South America in Austral Summer
NASA Astrophysics Data System (ADS)
Rodrigues, Regina; Woollings, Tim
2017-04-01
In this study, we investigate atmospheric blocking over east South America in austral summer for the period of 1979-2014. Our results show that blocking over this area is a consequence of propagating Rossby waves that grow to large amplitudes and eventually break anticyclonically over subtropical South America (SSA). The SSA blocking can prevent the establishment of the South Atlantic Convergence Zone (SACZ). As such, years with more blocking days coincide with years with fewer SACZ days and reduced precipitation. Convection mainly over the Indian Ocean associated with Madden-Julian Oscillation (MJO) phases 1 and 2 can trigger the wave train that leads to SSA blocking whereas convection over the western/central Pacific associated with phases 6 and 7 is more likely to lead to SACZ events. We find that MJO is a key source of long-term variability in SSA blocking frequency. The wave packets associated with SSA blocking and SACZ episodes differ not only in their origin but also in their phase and refraction pattern. The tropopause-based methodology used here is proven to reliably identify events that lead to extremes of surface temperature and precipitation over SSA. Up to 80% of warm surface air temperature extremes occur simultaneously with SSA blocking events. They are also responsible for the warming of western South Atlantic. The frequency of SSA blocking days is highly anti-correlated with the rainfall over southeast Brazil. The worst droughts in this area, during the summers of 1984, 2001 and 2014, are linked to record high numbers of SSA blocking days. The persistence of these events is also important in generating the extreme impacts.
Schmelz, Helmut A; Geraedts, Max
2018-06-14
Growing numbers of patients in orthopaedic and trauma surgery are obese. The risks involved are e.g. surgical complications, higher costs for longer hospital stays or special operating tables. It is a moot point whether revenues in the German DRG system cover the individual costs in relation to patients' body mass index (BMI) and in which area of hospital care potentially higher costs occur. Data related to BMI, individual costs and revenues were extracted from the hospital information system for 13,833 patients of a large hospital who were operated in 2007 to 2010 on their upper or lower extremities. We analysed differences in cost revenue relations dependent on patients' BMI and surgical site, and differences in the distribution of hospital cost areas in relation to patients' BMI by t and U tests. Individual costs of morbidly obese (BMI ≥ 40) and underweight patients (BMI < 18.5) significantly (p < 0.05) exceeded individual DRG revenues. Significantly higher cost revenue relations were detected for all operations on the lower and upper extremities except for ankle joint surgeries in which arthroscopical procedures predominate. Most of the incremental costs resulted from higher spending for nursing care, medication and special appliances. Costs for doctors and medical ancillary staff did not increase in relation to patients' BMI. To avoid BMI related patient discrimination, supplementary fees to cover extra costs for morbidly obese or underweight patients with upper or lower extremities operations should raise DRG revenues. Moreover, hospitals should be organisationally prepared for these patients. Georg Thieme Verlag KG Stuttgart · New York.
Bauder, J A S; Morawetz, L; Warren, A D; Krenn, H W
2015-03-01
Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep-tubed flowers, the scarcity of long-proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross-sectional area of the food canal and body size on intake rate. Long-proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower-visiting behaviour revealed that suction times increased with proboscis length, suggesting that long-proboscid skippers drink a larger amount of nectar from deep-tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
Self-Trapping Self-Repelling Random Walks
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2017-10-01
Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.
NASA Astrophysics Data System (ADS)
Hirsch, Annette L.; Guillod, Benoit P.; Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon
2018-03-01
The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land-use change (LUC). Land-based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI-Land: the half a degree additional warming, prognosis, and projected impacts—land-use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI-Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low-emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.
NASA Astrophysics Data System (ADS)
Abbasnia, Mohsen; Toros, Hüseyin
2018-05-01
This study aimed to analyze extreme temperature and precipitation indices at seven stations in the Marmara Region of Turkey for the period 1961-2016. The trend of temperature indices showed that the warm-spell duration and the numbers of summer days, tropical nights, warm nights, and warm days have increased, while the cold-spell duration and number of ice days, cool nights, and cool days have decreased across the Marmara Region. Additionally, the diurnal temperature range has slightly increased at most of the stations. A majority of stations have shown significant warming trends for warm days and warm nights throughout the study area, whereas warm extremes and night-time based temperature indices have shown stronger trends compared to cold extremes and day-time indices. The analysis of precipitation indices has mostly shown increasing trends in consecutive dry days and increasing trends in annual rainfall, rainfall intensity for inland and urban stations, especially for stations in Sariyer and Edirne, which are affected by a fast rate of urbanization. Overall, a large proportion of study stations have experienced an increase in annual precipitation and heavy precipitation events, although there was a low percentage of results that was significant. Therefore, it is expected that the rainfall events will tend to become shorter and more intense, the occurrence of temperature extremes will become more pronounced in favor of hotter events, and there will be an increase in the atmospheric moisture content over the Marmara Region. This provides regional evidence for the importance of ongoing research on climate change.
Temporal and spatial scaling impacts on extreme precipitation
NASA Astrophysics Data System (ADS)
Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.
2015-01-01
Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.
Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon
2018-01-01
Abstract The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land‐use change (LUC). Land‐based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI‐Land: the half a degree additional warming, prognosis, and projected impacts—land‐use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI‐Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low‐emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.
Robots remove explosive waste from flooded site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
Explosive industrial waste can remain hazardous for years, making remediation extremely dangerous, particularly when using traditional methods involving people and manually operated equipment. The work is even more complex if the waste is submerged. Authorities in 1988 faced an unusual challenge when they decided to clean up a flooded area that had been used for more than 30 years as a dump for explosive materials. They devised an innovative but highly effective solution. Instead of using divers, two robots perform the cleanup while site personnel remain 600 feet away from the restricted area. The robots were developed by Sonsub Environmentalmore » Services Inc. (Houston), which is responsible for their operation. The robots initially located and cleared a small area underwater to set up a metal-processing system, which also was designed by Sonsub. The system is similar to a metal-recycling shredder. The robots then assembled the 25-foot-tall, 20-ton system 60 feet below the surface on the pit floor. A large, surface robot carried sections of the shredder to the cleared area and lowered them, while a smaller, submersible robot guided them into position. This required extreme precision by the smaller robot, which had to ensure that sections mated properly. Both robots now retrieve waste from the pit bottom and feed it into the shredder. The larger robot has a 40-foot jointed arm for lifting up to 1,000 pounds of debris, a manipulator hand for sorting through rock piles and removing small containers, and a grapple for picking up items from the pit floor.« less
NASA Astrophysics Data System (ADS)
Egüen, M.; Polo, M. J.; Gulliver, Z.; Contreras, E.; Aguilar, C.; Losada, M. A.
2015-06-01
Spain is one of the world's countries with a large number of reservoirs per inhabitant. This intense regulation of the fluvial network during the 20th century has resulted in a decrease in flood events, a higher availability of water resources, and a high development of the irrigated crop area, even in the drier regions. For decades, flood perception was reduced since the development of reservoirs protected the floodplains of river; this resulted in later occupation of soil by urban, agricultural and industrial uses. In recent years, an increasing perception of flood events is observed, associated to the higher damage associated to extreme events in the now occupied areas, especially in coastal watersheds. This work shows the change on flood risk in the coastal areas of three hydrographic basins in Andalusia (South Spain) during the reservoir expansion period: the Guadalete, Guadalquivir and Guadalhorce river basins. The results differentiate the impact of the regulation level on both the cumulative distribution functions of the fluvial discharge near the river mouth, for different time scales, and the associated damage related to the enhanced soil occupation during this period. The different impact on the final medium and long term flood risk is also assessed in terms of the storage capacity per unit area throughout the basins, the effective annual runoff/precipitation index, the frequency of sea storms, and the human factor (change in social perception of floods), for different intervals in the flood extreme regime. The implications for adaptation actions is also assessed.
Early and late hot extremes, and elongation of the warm period over Greece
NASA Astrophysics Data System (ADS)
Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos
2017-04-01
The eastern Mediterranean has been assigned as one of the most responsive areas in climate change, mainly with respect to the occurrence of warmer and drier conditions. In Greece in particular, observations suggest prominent increases in the summer air temperature which in some areas amount to approximately 1 0C/decade since the mid 1970s, while Regional Climate Models simulate further increases in the near and distant future. These changes are coupled with simultaneous increase in the occurrence of hot extremes. In addition to changes in the frequency and intensity of hot extrems, timing of occurrence is also of special interest. Early heat waves in particular, have been found to increase thermal risk in humans. The study explores variations and trends in timing, namely the date of first and last occurrence of hot extremes within the year, and subsequently the hot extremes period (season), defined as the time interval (number of days) between first and last hot extremes occurrence, over Greece. A case study for the area of Athens covering a longer than 100-years period (1897-2015) was conducted first, which will be extended to other Greek areas. Several heat related climatic indices were used, based either on predefined temperature thresholds such as 'tropical days' (daily maximum air temperature, Tmax >30 0C), 'tropical nights' (daily minimum air temperature, Tmin >20 0C), 'hot days' (Tmax >35 0C), or on local climate statistics such as days with Tmax (or Tmin) > 95th percentile. The analysis revealed significant changes in the period of hot extremes and specifically elongation of the period, attributed to early rather than late hot extremes occurrence. An earlier shift of the first tropical day and the first tropical night occurrence by approximately 2 days/decade was found over the study period. An overall elongation of the 'hot days' season by 2.6 days/decade was also observed, which is more prominent since the early 1980s. Over the last three decades, earlier shift of occurrence of days with Tmax > 37 0C and Tmin > 26 0C (corresponding to the 95th percentiles of summer Tmax and Tmin respectively for Athens) was striking, amounting to 8 days/decade. Our findings for the hot extremes period will be used to validate respective simulations of Regional Climate Models downscaled over the areas of interest.
Osland, Michael J; Day, Richard H; Hall, Courtney T; Brumfield, Marisa D; Dugas, Jason L; Jones, William R
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Mercogliano, P.; Rianna, G.
2017-12-01
Eminent works highlighted how available observations display ongoing increases in extreme rainfall events while climate models assess them for future. Although the constraints in rainfall networks observations and uncertainties in climate modelling currently affect in significant way investigations, the huge impacts potentially induced by climate changes (CC) suggest adopting effective adaptation measures in order to take proper precautions. In this regard, design storms are used by engineers to size hydraulic infrastructures potentially affected by direct (e.g. pluvial/urban flooding) and indirect (e.g. river flooding) effects of extreme rainfall events. Usually they are expressed as IDF curves, mathematical relationships between rainfall Intensity, Duration, and the return period (frequency, F). They are estimated interpreting through Extreme Theories Statistical Theories (ETST) past rainfall records under the assumption of steady conditions resulting then unsuitable under climate change. In this work, a methodology to estimate future variations in IDF curves is presented and carried out for the city of Naples (Southern Italy). In this regard, the Equidistance Quantile Matching Approach proposed by Sivrastav et al. (2014) is adopted. According it, daily-subdaily maximum precipitation observations [a] and the analogous daily data provided by climate projections on current [b] and future time spans [c] are interpreted in IDF terms through Generalized Extreme Value (GEV) approach. After, quantile based mapping approach is used to establish a statistical relationship between cumulative distribution functions resulting by GEV of [a] and [b] (spatial downscaling) and [b] and [c] functions (temporal downscaling). Coupling so-obtained relations permits generating IDF curves under CC assumption. To account for uncertainties in future projections, all climate simulations available for the area in Euro-Cordex multimodel ensemble at 0.11° (about 12 km) are considered under three different concentration scenarios (RCP2.6, RCP4.5 and RCP8.5). The results appear largely influenced by models, RCPs and time horizon of interest; nevertheless, clear indications of increases are detectable although with different magnitude on the different precipitation durations.
Spatial variation of statistical properties of extreme water levels along the eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Pindsoo, Katri; Soomere, Tarmo; Rocha, Eugénio
2016-04-01
Most of existing projections of future extreme water levels rely on the use of classic generalised extreme value distributions. The choice to use a particular distribution is often made based on the absolute value of the shape parameter of the Generalise Extreme Value distribution. If this parameter is small, the Gumbel distribution is most appropriate while in the opposite case the Weibull or Frechet distribution could be used. We demonstrate that the alongshore variation in the statistical properties of numerically simulated high water levels along the eastern coast of the Baltic Sea is so large that the use of a single distribution for projections of extreme water levels is highly questionable. The analysis is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. The output of the Rossby Centre Ocean model is sampled with a resolution of 6 h and the output of the circulation model NEMO with a resolution of 1 h. As the maxima of water levels of subsequent years may be correlated in the Baltic Sea, we also employ maxima for stormy seasons. We provide a detailed analysis of spatial variation of the parameters of the family of extreme value distributions along an approximately 600 km long coastal section from the north-western shore of Latvia in the Baltic Proper until the eastern Gulf of Finland. The parameters are evaluated using maximum likelihood method and method of moments. The analysis also covers the entire Gulf of Riga. The core parameter of this family of distributions, the shape parameter of the Generalised Extreme Value distribution, exhibits extensive variation in the study area. Its values evaluated using the Hydrognomon software and maximum likelihood method, vary from about -0.1 near the north-western coast of Latvia in the Baltic Proper up to about 0.05 in the eastern Gulf of Finland. This parameter is very close to zero near Tallinn in the western Gulf of Finland. Thus, it is natural that the Gumbel distribution gives adequate projections of extreme water levels for the vicinity of Tallinn. More importantly, this feature indicates that the use of a single distribution for the projections of extreme water levels and their return periods for the entire Baltic Sea coast is inappropriate. The physical reason is the interplay of the complex shape of large subbasins (such as the Gulf of Riga and Gulf of Finland) of the sea and highly anisotropic wind regime. The 'impact' of this anisotropy on the statistics of water level is amplified by the overall anisotropy of the distributions of the frequency of occurrence of high and low water levels. The most important conjecture is that long-term behaviour of water level extremes in different coastal sections of the Baltic Sea may be fundamentally different.
Updated Intensity - Duration - Frequency Curves Under Different Future Climate Scenarios
NASA Astrophysics Data System (ADS)
Ragno, E.; AghaKouchak, A.
2016-12-01
Current infrastructure design procedures rely on the use of Intensity - Duration - Frequency (IDF) curves retrieved under the assumption of temporal stationarity, meaning that occurrences of extreme events are expected to be time invariant. However, numerous studies have observed more severe extreme events over time. Hence, the stationarity assumption for extreme analysis may not be appropriate in a warming climate. This issue raises concerns regarding the safety and resilience of the existing and future infrastructures. Here we employ historical and projected (RCP 8.5) CMIP5 runs to investigate IDF curves of 14 urban areas across the United States. We first statistically assess changes in precipitation extremes using an energy-based test for equal distributions. Then, through a Bayesian inference approach for stationary and non-stationary extreme value analysis, we provide updated IDF curves based on climatic model projections. This presentation summarizes the projected changes in statistics of extremes. We show that, based on CMIP5 simulations, extreme precipitation events in some urban areas can be 20% more severe in the future, even when projected annual mean precipitation is expected to remain similar to the ground-based climatology.
NASA Astrophysics Data System (ADS)
Yang, Y.; Gan, T. Y.; Tan, X.
2017-12-01
In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malony, Allen D; Shende, Sameer
This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at UO delivered excellent results in all research work areas: * scalable parallel monitoring * kernel-level performance measurement * parallel I/0 system measurement * large-scale and hybrid application performance measurement * onlne scalable performance data reduction and analysis * binary instrumentation
Sweatt, William C.
1998-01-01
A projection lithography camera is presented with a wide ringfield optimized so as to make efficient use of extreme ultraviolet radiation from a large area radiation source (e.g., D.sub.source .apprxeq.0.5 mm). The camera comprises four aspheric mirrors optically arranged on a common axis of symmetry with an increased etendue for the camera system. The camera includes an aperture stop that is accessible through a plurality of partial aperture stops to synthesize the theoretical aperture stop. Radiation from a mask is focused to form a reduced image on a wafer, relative to the mask, by reflection from the four aspheric mirrors.
Reed, Robert N.; Hart, Kristen M.; Rodda, Gordon H.; Mazzotti, Frank J.; Snow, Ray W.; Cherkiss, Michael; Rozar, Rondald; Goetz, Scott
2011-01-01
Conclusions: The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications: Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons.
Artificial hairy surfaces with a nearly perfect hydrophobic response.
Hsu, Shu-Hau; Sigmund, Wolfgang M
2010-02-02
A nearly perfect hydrophobic interface by dint of mimicking hairs of arthropods was achieved for the first time. These Gamma-shape artificial hairs were made via a membrane casting technique on polypropylene substrates. This extreme hydrophobicity merely arises from microstructure modification, and no further chemical treatments are needed. The ultralow adhesion to water droplets was evaluated through video assessment, and it is believed to be attributed to the mechanical response of the artificial hairs. The principle of this fabrication technique is accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces.
Infantile fibrosarcoma of the penis in a 2-year-old boy.
Taib, Fahisham; Mohamad, Norsarwany; Mohamed Daud, Mohamed Ashraf; Hassan, Aniza; Singh, Mutum Samarendra; Nasir, Ariffin
2012-10-01
Fibrosarcoma is rare in the pediatric age group. It generally involves the extremities and the trunk but rarely involves the genital area. We report a case of a large fungating infantile fibrosarcoma of the penis in a 2-year-old Malay boy. Partial recovery of the penile structure was achieved after chemotherapy. The difficulty in managing the social and surgical aspect of this case is discussed in our report. To the best of our knowledge, this is the first case report of infantile fibrosarcoma involving the penis in an Asian region. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Thomson, Shaun; Hansen, Patricia; Straka, Sharon; Chen, Philip; Triolo, Jack; Bettini, Ron; Carosso, Paolo; Carosso, Nancy
1997-01-01
The use of molecular adsorbers, in order to aid in the reduction of the spacecraft contamination levels, is discussed. Molecular adsorbers are characterized by an extremely large surface area, molecularly-porous substructure, and processing charged sites capable of retaining molecular contaminant species. Molecular adsorbers were applied on two Hubble Space Telescope servicing missions, as well as on the tropical rainfall measuring mission. The use of molecular adsorbers carries the potential for low cost, easy fabrication and integration of reliable means for reducing the contamination level around spacecraft.
Atom chip microscopy: A novel probe for strongly correlated materials
NASA Astrophysics Data System (ADS)
Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin
2010-03-01
Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.
2008-03-04
KENNEDY SPACE CENTER, FLA. -- The shipping container holding NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is moved into the Astrotech payload processing facility near the Kennedy Space Center to begin prelaunch activities. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians guide one of twin solar arrays toward NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism on the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-04
KENNEDY SPACE CENTER, FLA. -- NASA's Gamma-Ray Large Area Space Telescope, or GLAST, arrives at Kennedy Space Center in a shipping container aboard a truck to begin final preparations for launch. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-04
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility near the Kennedy Space Center, workers maneuver the shipping container holding NASA's Gamma-Ray Large Area Space Telescope, or GLAST, into place. The GLAST will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, completes the test of the deployment mechanism on its solar arrays. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, a General Dynamics technician studies one of twin solar arrays that will be installed on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians prepare to install the twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians install the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians lift one of twin solar arrays that will be installed on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-21
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism of the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann
2008-03-20
CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician finishes the installation of the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians move the second of twin solar arrays toward NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
2008-03-20
KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians install one of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes
Zanobetti, Antonella; O’Neill, Marie S.; Gronlund, Carina J.; Schwartz, Joel D
2015-01-01
Background Extremes of temperature have been associated with short-term increases in daily mortality. We identified subpopulations with increased susceptibility to dying during temperature extremes, based on personal demographics, small-area characteristics and preexisting medical conditions. Methods We examined Medicare participants in 135 U.S. cities and identified preexisting conditions based on hospitalization records prior to their deaths, from 1985–2006. Personal characteristics were obtained from the Medicare records, and area characteristics were assigned based on zip-code of residence. We conducted a case-only analysis of over 11 million deaths, and evaluated modification of the risk of dying associated with extremely hot days and extremely cold days, continuous temperatures, and water-vapor pressure. Modifiers included preexisting conditions, personal characteristics, zip-code-level population characteristics, and land-cover characteristics. For each effect modifier, a city-specific logistic regression model was fitted and then an overall national estimate was calculated using meta-analysis. Results People with certain preexisting conditions were more susceptible to extreme heat, with an additional 6% (95% confidence interval= 4% – 8%) increase in the risk of dying on an extremely hot day in subjects with previous admission for atrial fibrillation, an additional 8% (4%–12%) in subjects with Alzheimer disease, and an additional 6% (3%–9%) in subjects with dementia. Zip-code level and personal characteristics were also associated with increased susceptibility to temperature. Conclusions We identified several subgroups of the population who are particularly susceptible to temperature extremes, including persons with atrial fibrillation. PMID:24045717
NASA Astrophysics Data System (ADS)
Beers, A.; Ray, C.
2015-12-01
Climate change is likely to affect mountainous areas unevenly due to the complex interactions between topography, vegetation, and the accumulation of snow and ice. This heterogeneity will complicate relationships between species presence and large-scale drivers such as precipitation and make predicting habitat extent and connectivity much more difficult. We studied the potential for fine-scale variation in climate and habitat use throughout the year in the American pika (Ochotona princeps), a talus specialist of mountainous western North America known for strong microhabitat affiliation. Not all areas of talus are likely to be equally hospitable, which may reduce connectivity more than predicted by large-scale occupancy drivers. We used high resolution remotely sensed data to create metrics of the terrain and land cover in the Niwot Ridge (NWT) LTER site in Colorado. We hypothesized that pikas preferentially use heterogeneous terrain, as it might foster greater snow accumulation, and used radio telemetry to test this with radio-collared pikas. Pikas use heterogeneous terrain during snow covered periods and less heterogeneous area during the summer. This suggests that not all areas of talus habitat are equally suitable as shelter from extreme conditions but that pikas need more than just shelter from winter cold. With those results we created a predictive map using the same habitat metrics to model the extent of suitable habitat across the NWT area. These strong effects of terrain on pika habitat use and territory occupancy show the great utility that high resolution remotely sensed data can have in ecological applications. With increasing effects of climate change in mountainous regions, this modeling approach is crucial for quantifying habitat connectivity at both small and large scales and to identify potential refugia for threatened or isolated species.
Representative landscapes in the forested area of Canada.
Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara
2012-01-01
Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.
Representative Landscapes in the Forested Area of Canada
NASA Astrophysics Data System (ADS)
Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara
2012-01-01
Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.
The persistence of the large volumes in black holes
NASA Astrophysics Data System (ADS)
Ong, Yen Chin
2015-08-01
Classically, black holes admit maximal interior volumes that grow asymptotically linearly in time. We show that such volumes remain large when Hawking evaporation is taken into account. Even if a charged black hole approaches the extremal limit during this evolution, its volume continues to grow; although an exactly extremal black hole does not have a "large interior". We clarify this point and discuss the implications of our results to the information loss and firewall paradoxes.
Remote Infrared Thermal Sensing of Sewer Voids, Four-Year Update
NASA Astrophysics Data System (ADS)
Weil, Gary J.
1988-01-01
When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along for the ride. These collapses endanger public health and safety. Repairing a sewer before such a cave-in is obviously the preferred method. Emergency repairs cost far more than prevention measures - often millions of dollars more. Many combined sewers in the St. Louis area, as in many of America's cities, are more than 125 years old and are subject to structural failure. In 1981 alone, St. Louis had 4,000 sewer collapses and an astronomical repair bill. These and similar problems have been described as "a crisis of national proportions. The question addressed by this paper is how to detect unseen problem areas in sewer systems before they give way. At the present, progressive sewer administrations may use crawl crews to inspect sewers when problems are suspected. This can be extremely costly and dangerous, and a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Infrared Thermography has been found by sewer districts and independent evaluation engineering firms to be an extremely accurate method of finding sewer voids, before they can cause expensive and dangerous problems. This technique uses a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently. This paper reviews our initial paper presented to The International Society for Optical Engineering in October of 1983 and presents an update of our experience, both successes and failures, in several large-scale void detection projects. Infrared Thermographic techniques of non-destructive testing will have major implications for cities and for the engineering profession because it promises to make the crisis of infrastructure repair and rehabilitation more manageable. Intelligent, systematic use of this relatively low cost void detection method, Infrared Thermography, may revolutionize the way sewer problems are handled in the future.
NASA Astrophysics Data System (ADS)
Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle
2017-04-01
In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a-priori information (topography, lithology, …) and rainfall metrics available from meteorological forecast may allow to better anticipate and mitigates landsliding associated with extreme rainfall events.
Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.
2012-01-01
In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268
NASA Astrophysics Data System (ADS)
Muszynski, G.; Kashinath, K.; Wehner, M. F.; Prabhat, M.; Kurlin, V.
2017-12-01
We investigate novel approaches to detecting, classifying and characterizing extreme weather events, such as atmospheric rivers (ARs), in large high-dimensional climate datasets. ARs are narrow filaments of concentrated water vapour in the atmosphere that bring much of the precipitation in many mid-latitude regions. The precipitation associated with ARs is also responsible for major flooding events in many coastal regions of the world, including the west coast of the United States and western Europe. In this study we combine ideas from Topological Data Analysis (TDA) with Machine Learning (ML) for detecting, classifying and characterizing extreme weather events, like ARs. TDA is a new field that sits at the interface between topology and computer science, that studies "shape" - hidden topological structure - in raw data. It has been applied successfully in many areas of applied sciences, including complex networks, signal processing and image recognition. Using TDA we provide ARs with a shape characteristic as a new feature descriptor for the task of AR classification. In particular, we track the change in topology in precipitable water (integrated water vapour) fields using the Union-Find algorithm. We use the generated feature descriptors with ML classifiers to establish reliability and classification performance of our approach. We utilize the parallel toolkit for extreme climate events analysis (TECA: Petascale Pattern Recognition for Climate Science, Prabhat et al., Computer Analysis of Images and Patterns, 2015) for comparison (it is assumed that events identified by TECA is ground truth). Preliminary results indicate that our approach brings new insight into the study of ARs and provides quantitative information about the relevance of topological feature descriptors in analyses of a large climate datasets. We illustrate this method on climate model output and NCEP reanalysis datasets. Further, our method outperforms existing methods on detection and classification of ARs. This work illustrates that TDA combined with ML may provide a uniquely powerful approach for detection, classification and characterization of extreme weather phenomena.
The Climatology of Extreme Surge-Producing Extratropical Cyclones in Observations and Models
NASA Astrophysics Data System (ADS)
Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.
2016-12-01
Extreme coastal storms devastate heavily populated areas around the world by producing powerful winds that can create a large storm surge. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). At The Battery in New York City, 17 of the 20 largest storm surge events were a consequence of extratropical cyclones (ETCs), which are more prevalent than tropical cyclones in the northeast region of the United States. Therefore, we analyze the climatology of ETCs that are capable of producing a large storm surge along the northeastern coast of the United States. For a historical analysis, water level data was collected from National Oceanic and Atmospheric Administration (NOAA) tide gauges at three separate locations (Sewell's Pt., VA, The Battery, NY, and Boston, MA). We perform a k-means cluster analysis of sea level pressure from the ECMWF 20th Century Reanalysis dataset (ERA-20c) to explore the natural sets of observed storms with similar characteristics. We then composite cluster results with features of atmospheric circulation to observe the influence of interannual and multidecadal variability such as the North Atlantic Oscillation. Since observational records contain a small number of well-documented ETCs, the capability of a high-resolution coupled climate model to realistically simulate such extreme coastal storms will also be assessed. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. We employ a tracking algorithm to identify ETCs in a multi-century simulation under present-day conditions. Quantitative comparisons of cyclolysis, cyclogenesis, and cyclone densities of simulated ETCs and storms from recent history (using reanalysis products) are conducted.
Synoptic-scale characteristics and atmospheric controls of summer heat waves in China
NASA Astrophysics Data System (ADS)
Wang, Weiwen; Zhou, Wen; Li, Xiuzhen; Wang, Xin; Wang, Dongxiao
2016-05-01
Summer heat waves with persistent extreme high temperatures have been occurring with increasing frequency in recent decades. These extreme events have disastrous consequences for human health, economies, and ecosystems. In this study, we examine three summers with intense and protracted heat waves: the summers of 2003, 2006, and 2013, with high temperatures located mainly in southeastern, southwestern, and eastern China, respectively. The synoptic-scale characteristics of these heat waves and associated atmospheric circulation anomalies are investigated. In the early heat wave episode of 2003, a heat center was located in the southeast coastal provinces during the first 20 days of July. The maximum southward displacement of the East Asian jet stream (EAJS) induced anticyclonic anomalies to the south, associated with southwestward intensification of the western North Pacific subtropical high (WNPSH), and extreme high temperatures were found only to the south of the Yangtze River. In the later episode, a poleward displacement of the EAJS and an enhanced WNPSH over the midlatitudes of eastern China resulted in a "heat dome" over the region, and the heat wave extended northward to cover a larger area of eastern China. The coupling between the westward-enhanced WNPSH and poleward-displaced EAJS was found in the East China heat wave of 2013 as well. But the area of high temperatures reached far to the north in August 2013, with below-normal temperatures located in a small region of South China. In the 2006 southwestern drought and heat wave, extreme poleward displacement of the EAJS, associated with extraordinary westward extension of the WNSPH, resulted in further blocking of the moisture supply from the southwest monsoon. Large-scale moisture deficiencies, dry conditions, and downslope winds were common features of all investigated heat wave episodes. But in 2006, low-level heat lows associated with a well-mixed layer due to intensive daytime heating and atmospheric turbulence were emphasized.
Ramesh, Tharmalingam; Kalle, Riddhika; Rosenlund, Havard; Downs, Colleen T
2017-03-01
Identifying the primary causes affecting population densities and distribution of flagship species are necessary in developing sustainable management strategies for large carnivore conservation. We modeled drivers of spatial density of the common leopard ( Panthera pardus ) using a spatially explicit capture-recapture-Bayesian approach to understand their population dynamics in the Maputaland Conservation Unit, South Africa. We camera-trapped leopards in four protected areas (PAs) of varying sizes and disturbance levels covering 198 camera stations. Ours is the first study to explore the effects of poaching level, abundance of prey species (small, medium, and large), competitors (lion Panthera leo and spotted hyenas Crocuta crocuta ), and habitat on the spatial distribution of common leopard density. Twenty-six male and 41 female leopards were individually identified and estimated leopard density ranged from 1.6 ± 0.62/100 km 2 (smallest PA-Ndumo) to 8.4 ± 1.03/100 km 2 (largest PA-western shores). Although dry forest thickets and plantation habitats largely represented the western shores, the plantation areas had extremely low leopard density compared to native forest. We found that leopard density increased in areas when low poaching levels/no poaching was recorded in dry forest thickets and with high abundance of medium-sized prey, but decreased with increasing abundance of lion. Because local leopard populations are vulnerable to extinction, particularly in smaller PAs, the long-term sustainability of leopard populations depend on developing appropriate management strategies that consider a combination of multiple factors to maintain their optimal habitats.
2012-03-19
THREE EXTREMITY ARMOR SYSTEMS: DETERMINATION OF PHYSIOLOGICAL, BIOMECHANICAL, AND PHYSICAL PERFORMANCE EFFECTS AND QUANTIFICATION OF BODY AREA...PHYSICAL PERFORMANCE EFFECTS AND QUANTIFICATION OF BODY AREA COVERAGE 5a. CONTRACT NUMBER MIPR #M9545006MPR6CC7 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER NATICK/TR-12/014 9
Modelling probabilities of heavy precipitation by regional approaches
NASA Astrophysics Data System (ADS)
Gaal, L.; Kysely, J.
2009-09-01
Extreme precipitation events are associated with large negative consequences for human society, mainly as they may trigger floods and landslides. The recent series of flash floods in central Europe (affecting several isolated areas) on June 24-28, 2009, the worst one over several decades in the Czech Republic as to the number of persons killed and the extent of damage to buildings and infrastructure, is an example. Estimates of growth curves and design values (corresponding e.g. to 50-yr and 100-yr return periods) of precipitation amounts, together with their uncertainty, are important in hydrological modelling and other applications. The interest in high quantiles of precipitation distributions is also related to possible climate change effects, as climate model simulations tend to project increased severity of precipitation extremes in a warmer climate. The present study compares - in terms of Monte Carlo simulation experiments - several methods to modelling probabilities of precipitation extremes that make use of ‘regional approaches’: the estimation of distributions of extremes takes into account data in a ‘region’ (‘pooling group’), in which one may assume that the distributions at individual sites are identical apart from a site-specific scaling factor (the condition is referred to as ‘regional homogeneity’). In other words, all data in a region - often weighted in some way - are taken into account when estimating the probability distribution of extremes at a given site. The advantage is that sampling variations in the estimates of model parameters and high quantiles are to a large extent reduced compared to the single-site analysis. We focus on the ‘region-of-influence’ (ROI) method which is based on the identification of unique pooling groups (forming the database for the estimation) for each site under study. The similarity of sites is evaluated in terms of a set of site attributes related to the distributions of extremes. The issue of the size of the region is linked with a built-in test on regional homogeneity of data. Once a pooling group is delineated, weights based on a dissimilarity measure are assigned to individual sites involved in a pooling group, and all (weighted) data are employed in the estimation of model parameters and high quantiles at a given location. The ROI method is compared with the Hosking-Wallis (HW) regional frequency analysis, which is based on delineating fixed regions (instead of flexible pooling groups) and assigning unit weights to all sites in a region. The comparison of the performance of the individual regional models makes use of data on annual maxima of 1-day precipitation amounts at 209 stations covering the Czech Republic, with altitudes ranging from 150 to 1490 m a.s.l. We conclude that the ROI methodology is superior to the HW analysis, particularly for very high quantiles (100-yr return values). Another advantage of the ROI approach is that subjective decisions - unavoidable when fixed regions in the HW analysis are formed - may efficiently be suppressed, and almost all settings of the ROI method may be justified by results of the simulation experiments. The differences between (any) regional method and single-site analysis are very pronounced and suggest that the at-site estimation is highly unreliable. The ROI method is then applied to estimate high quantiles of precipitation amounts at individual sites. The estimates and their uncertainty are compared with those from a single-site analysis. We focus on the eastern part of the Czech Republic, i.e. an area with complex orography and a particularly pronounced role of Mediterranean cyclones in producing precipitation extremes. The design values are compared with precipitation amounts recorded during the recent heavy precipitation events, including the one associated with the flash flood on June 24, 2009. We also show that the ROI methodology may easily be transferred to the analysis of precipitation extremes in climate model outputs. It efficiently reduces (random) variations in the estimates of parameters of the extreme value distributions in individual gridboxes that result from large spatial variability of heavy precipitation, and represents a straightforward tool for ‘weighting’ data from neighbouring gridboxes within the estimation procedure. The study is supported by the Grant Agency of AS CR under project B300420801.
Başgül, A; Kavak, Z N; Gökaslan, H; Küllü, S
2002-01-01
BACKGROUND: Hydatidosis is a common zoonosis that affects a large number of humans and animals, especially in poorly developed countries. The infesting parasite has four forms named Echinococcus granulosis, E. multilocularis, E. vogeli and E. oligarthrus (very rare in humans). The most frequently involved organs are liver followed by the lung. The involvement of the genital tract is rare and the occurrence in the uterus is an extreme rarity. We report a case of hydatid cyst in the uterus. CASE: A 70-year-old female with a history of hydatid cysts of the liver, was admitted to hospital after complaining of low abdominal pains. On physical and gynecological examinations, no pathological finding was detected. However, the uterus was significantly large for a postmenopausal patient. Transvaginal sonography (TS) revealed a cystic mass in the uterus with a size of 7 x 6 cm. After further examinations a subtotal hysterectomy was performed. Microscopic examination showed scolices of Echinococcus granulosis. CONCLUSION: Hydatid cysts in the genital tract are rare and the occurrence in the uterus is an extreme rarity. Differentiation between hydatid cyst and malignant disease of the related organ is difficult. To avoid misdiagnosis, a careful examination of pelvic masses should be carried out in endemic areas for detection of hydatid cysts. PMID:12530482
Coexistence of splenic hemangioma and vascular malformation of the vertebrae.
Jalaeikhoo, Hasan; Ariana, Mehdi; Kashfi, Seyed Mohammad Hossein; Azimzadeh, Pedram; Narimani, Ahmad; Dadpay, Masoomeh; Keyhani, Manouchehr
2016-02-09
Cavernous hemangioma is an encapsulated mass of dilated, endothelial lined vascular channels filled with slowly flowing blood. Cavernous hemangioma of the spleen is a rare condition with less than 100 reports so far. Hemangioma of the vertebral is a benign vascular legion around one or two vertebrae. These are usually asymptomatic and discovered incidentally. In this study we reported an extreme rare case of splenic hemangioma coexistence with vascular malformation of the vertebrae. To our knowledge this is the first report of coexistence of splenic hemangioma and hemangioma of the vertebra. A 20-year-old iranian male with splenomegaly, abdominal pain, diarrhea and pancytopenia who was first highly suspicious for malignancy referred to our center for evaluation of the diagnostic workup. After full examination we detected a very rare case with a giant, solitary cavernous hemangioma of the spleen and multiple hemangiomas in his vertebrae. Histopathology of the spleen showed a large cavernous hemangioma occupying almost the entire spleen with large areas of infarction necrosis with multiple hemangiomas of the vertebrae. It is extremely rare to have a splenic hemangioma concurrent with vertebra hemangioma and this is clinically very important to consider splenic hemangioma in differential diagnosis of splenomegaly for a better therapeutic management in related patients.
Climate, icing, and wild arctic reindeer: past relationships and future prospects.
Hansen, Brage Bremset; Aanes, Ronny; Herfindal, Ivar; Kohler, Jack; Saether, Bernt-Erik
2011-10-01
Across the Arctic, heavy rain-on-snow (ROS) is an "extreme" climatic event that is expected to become increasingly frequent with global warming. This has potentially large ecosystem implications through changes in snowpack properties and ground-icing, which can block the access to herbivores' winter food and thereby suppress their population growth rates. However, the supporting empirical evidence for this is still limited. We monitored late winter snowpack properties to examine the causes and consequences of ground-icing in a Svalbard reindeer (Rangifer tarandus platyrhynchus) metapopulation. In this high-arctic area, heavy ROS occurred annually, and ground-ice covered from 25% to 96% of low-altitude habitat in the sampling period (2000-2010). The extent of ground-icing increased with the annual number of days with heavy ROS (> or = 10 mm) and had a strong negative effect on reindeer population growth rates. Our results have important implications as a downscaled climate projection (2021-2050) suggests a substantial future increase in ROS and icing. The present study is the first to demonstrate empirically that warmer and wetter winter climate influences large herbivore population dynamics by generating ice-locked pastures. This may serve as an early warning of the importance of changes in winter climate and extreme weather events in arctic ecosystems.
The Extremely Warm Early Winter 2000 in Europe: What is the Forcing
NASA Technical Reports Server (NTRS)
Otterman, J.; Angell, J. K.; Atlas, R.; Ardizzone, J.; Demaree, G.; Jusem, J. C.; Koslowsky, D.; Terry, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
High variability characterizes the winter climate of central Europe: interannual fluctuations in the surface-air temperature as large as 18 C over large areas are fairly common. The extraordinary early-winter 2000 in Europe appears to be a departure to an unprecedented extreme of the existing climate patterns. Such anomalous events affect agriculture, forestry, fuel consumption, etc., and thus deserve in-depth analysis. Our analysis indicates that the high anomalies of the surface-air temperature are predominantly due to the southwesterly flow from the eastern North Atlantic, with a weak contribution by southerly flow from the western Mediterranean. Backward trajectories based on the SSM/I and NCEP Reanalysis datasets traced from west-central Europe indicate that the warm air masses flowing into Europe originate in the southern North Atlantic, where the surface-air temperatures exceed by 15c or more the climatic norms in Europe for late-November or early-December. Because such large ocean-to-continent temperature differences characterize the winter conditions, we refer to this episode which started in late November as occurring in the early winter. In this season, with the sun low over the horizon in Europe, absorption of insolation by the surface has little significance. The effect of cloudiness, a corollary to the low-level maritime-air advection, is a warming by a reduction of heat loss (greenhouse effect). In contrast, in the summer, clouds, by reducing absorption of insolation, produce a cooling, effect at the surface.
Spectral theory of extreme statistics in birth-death systems
NASA Astrophysics Data System (ADS)
Meerson, Baruch
2008-03-01
Statistics of rare events, or large deviations, in chemical reactions and systems of birth-death type have attracted a great deal of interest in many areas of science including cell biochemistry, astrochemistry, epidemiology, population biology, etc. Large deviations become of vital importance when discrete (non-continuum) nature of a population of ``particles'' (molecules, bacteria, cells, animals or even humans) and stochastic character of interactions can drive the population to extinction. I will briefly review the novel spectral method [1-3] for calculating the extreme statistics of a broad class of birth-death processes and reactions involving a single species. The spectral method combines the probability generating function formalism with the Sturm-Liouville theory of linear differential operators. It involves a controlled perturbative treatment based on a natural large parameter of the problem: the average number of particles/individuals in a stationary or metastable state. For extinction (the first passage) problems the method yields accurate results for the extinction statistics and for the quasi-stationary probability distribution, including the tails, of metastable states. I will demonstrate the power of the method on the example of a branching and annihilation reaction, A ->-2.8mm2mm2A,,A ->-2.8mm2mm , representative of a rather general class of processes. *M. Assaf and B. Meerson, Phys. Rev. Lett. 97, 200602 (2006). *M. Assaf and B. Meerson, Phys. Rev. E 74, 041115 (2006). *M. Assaf and B. Meerson, Phys. Rev. E 75, 031122 (2007).
Numminen, Jura; Bizaki, Argyro; Kujansivu, Jarno; Huovinen, Sanna; Rautiainen, Markus
2016-03-01
Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare, low-grade, malignant, soft-tissue tumor that typically affects the distal extremities of middle-aged patients. In most cases, it presents as a painless, slowly growing mass within the subcutaneous tissue. It is associated with a low rate of metastasis but a high rate of local recurrence. In addition to the distal extremities, MIFS has been reported in the thigh, arm, forearm, groin, upper back, neck, and temporal area. As far as we know, no case has been previously reported in the nasal area. We report for the first time a case of MIFS presenting on the dorsum of the nose. The painless, 3.0-cm tumor was initially mistaken for reticular erythematous mucinosis, a benign skin condition that occurs when fibroblasts produce abnormally large amounts of mucopolysaccharides. The tumor was surgically removed in its entirety with surgical margins of 3 to 5 mm. During 4 years of follow-up, no clinical or radiologic evidence of a recurrence or metastasis was seen. We discuss the imaging and histologic features of MIFS, as well as its clinical management and follow-up, and we review related reports in the literature.
Climate and topography explain range sizes of terrestrial vertebrates
NASA Astrophysics Data System (ADS)
Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei
2016-05-01
Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.
Mantzouni, Irene; MacKenzie, Brian R
2010-06-22
Climate change will have major consequences for population dynamics and life histories of marine biota as it progresses in the twenty-first century. These impacts will differ in magnitude and direction for populations within individual marine species whose geographical ranges span large gradients in latitude and temperature. Here we use meta-analytical methods to investigate how recruitment (i.e. the number of new fish produced by spawners in a given year which subsequently grow and survive to become vulnerable to fishing gear) has reacted to temperature fluctuations, and in particular to extremes of temperature, in cod populations throughout the north Atlantic. Temperature has geographically explicit effects on cod recruitment. Impacts differ depending on whether populations are located in the upper (negative effects) or in the lower (positive effects) thermal range. The probabilities of successful year-classes in populations living in warm areas is on average 34 per cent higher in cold compared with warm seasons, whereas opposite patterns exist for populations living in cold areas. These results have implications for cod dynamics, distributions and phenologies under the influence of ocean warming, particularly related to not only changes in the mean temperature, but also its variability (e.g. frequency of exceptionally cold or warm seasons).
The impact of an extreme case of irrigation on the southeastern United States climate
NASA Astrophysics Data System (ADS)
Selman, Christopher; Misra, Vasubandhu
2017-02-01
The impacts of irrigation on southeast United States diurnal climate are investigated using simulations from a regional climate model. An extreme case is assumed, wherein irrigation is set to 100 % of field capacity over the growing season of May through October. Irrigation is applied to the root zone layers of 10-40 and 40-100 cm soil layers only. It is found that in this regime there is a pronounced decrease in monthly averaged temperatures in irrigated regions across all months. In non-irrigated areas a slight warming is simulated. Diurnal maximum temperatures in irrigated areas warm, while diurnal minimum temperatures cool. The daytime warming is attributed to an increase in shortwave flux at the surface owing to diminished low cloud cover. Nighttime and daily mean cooling result as a consequence repartitioning of energy into latent heat flux over sensible heat flux, and of a higher net downward ground heat flux. Excess heat is transported into the deep soil layer, preventing a rapidly intensifying positive feedback loop. Both diurnal and monthly average precipitations are reduced over irrigated areas at a magnitude and spatial pattern similar to one another. Due to the excess moisture availability, evaporation is seen to increase, but this is nearly balanced by a corresponding reduction in sensible heat flux. Concomitant with additional moisture availability is an increase in both transient and stationary moisture flux convergences. However, despite the increase, there is a large-scale stabilization of the atmosphere stemming from a cooled surface.
The Paleo-Indian Entry into South America According to Mitogenomes.
Brandini, Stefania; Bergamaschi, Paola; Cerna, Marco Fernando; Gandini, Francesca; Bastaroli, Francesca; Bertolini, Emilie; Cereda, Cristina; Ferretti, Luca; Gómez-Carballa, Alberto; Battaglia, Vincenza; Salas, Antonio; Semino, Ornella; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio
2018-02-01
Recent and compelling archaeological evidence attests to human presence ∼14.5 ka at multiple sites in South America and a very early exploitation of extreme high-altitude Andean environments. Considering that, according to genetic evidence, human entry into North America from Beringia most likely occurred ∼16 ka, these archeological findings would imply an extremely rapid spread along the double continent. To shed light on this issue from a genetic perspective, we first completely sequenced 217 novel modern mitogenomes of Native American ancestry from the northwestern area of South America (Ecuador and Peru); we then evaluated them phylogenetically together with other available mitogenomes (430 samples, both modern and ancient) from the same geographic area and, finally, with all closely related mitogenomes from the entire double continent. We detected a large number (N = 48) of novel subhaplogroups, often branching into further subclades, belonging to two classes: those that arose in South America early after its peopling and those that instead originated in North or Central America and reached South America with the first settlers. Coalescence age estimates for these subhaplogroups provide time boundaries indicating that early Paleo-Indians probably moved from North America to the area corresponding to modern Ecuador and Peru over the short time frame of ∼1.5 ka comprised between 16.0 and 14.6 ka. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hydroclimatic Controls on Agroecosystem Resiliency in the Northern High Plains
NASA Astrophysics Data System (ADS)
Munoz-Arriola, F.; Amaranto, A.; Solomatine, D.; Corzo, G.
2016-12-01
Water-controlled ecosystems play a critical role in sustaining intensive food production. More frequent and intense droughts and extreme precipitation challenge genetic progresses to increase crop yields. This work aims to identify the agroecosystem's resiliency to droughts and extreme precipitation in the Northern High Plains (NHP). NHP is characterized by its extensive use of groundwater to fulfill crop irrigation requirements. Groundwater "subsidizes" water deficits and supports intensification of crop production. However, it is unclear how sensitive are agroecosystems to hydroclimatological variations at large-scale, which may affect water discharge and recharge at basin scale and crop production at field scale. Our objective is to develop diagnostic and prognostic conceptual models for groundwater withdrawals in response to climate variability and consumptive use of water. The present study is located in the irrigated agricultural areas of the NHP. We use observed changes in the water table as tracers to changes natural forcing (i.e. observed precipitation) and anthropogenic water demands (i.e. simulated evapotranspiration) though the development of two different diagnostic/prognostic models using Artificial Neural Network (ANN) and Support Vector Machine (SVM). Water-table data was obtained from the Nebraska Geological Survey, and gridded daily hydroclimatic data from Livneh et al (2015), which together with MODIS-LAI provided the inputs for a Variable Infiltration Capacity model to simulate evapotranspiration at a 1/16th degree resolution. A regionalization procedure based on K-Clustering was applied to precipitation data (1950-2013) to identify areas of common and natural variability. Inconsistent output and input sampling frequencies used a time adaptation algorithm to assist the training of the ANN and SVM models. Results showed that both the ANN and the SVM diagnose and predicted ground water. Selected dry and wet (identified Extreme-Precipitation-Event) years are evaluated to isolate hydroclimate and water management drivers and resilient agroecosystems. This methodology will contribute to identify areas of physical vulnerability and agroecosystem resiliency.
NASA Astrophysics Data System (ADS)
Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu
2017-10-01
Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.
NASA Astrophysics Data System (ADS)
Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony
2017-12-01
This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south-eastern parts of Ethiopia extending to the south-west covering Somali and Oromia regions. Similar trends are also observed in the greatest 3-, 5- and 10-day rainfall amounts. Changes in the consecutive dry and wet days showed that consecutive wet days during Belg and Kiremt seasons decreased significantly in many areas in Ethiopia while consecutive dry days increased. The consistency in the trends over large spatial areas confirms the robustness of the trends and serves as a basis for understanding the projected changes in the climate. These results were discussed in relation to their significance to agriculture.
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziwen; Xue, Zhongying; Zhang, Miao
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
Germanium-Assisted Direct Growth of Graphene on Arbitrary Dielectric Substrates for Heating Devices
Wang, Ziwen; Xue, Zhongying; Zhang, Miao; ...
2017-05-31
Direct growth of graphene on dielectric substrates is a prerequsite for the development of graphene-based electronic and optoelectronic devices. However, the current graphene synthesis directly on dielectric substrates always involves metal contamination problem, and the direct production of graphene patterns still remains unattainable and challenging. We propose herein a semiconducting Ge-assisted chemical vapor deposition approach to directly grow monolayer graphene on arbitrary dielectric substrates. By pre-patterning of catalytic Ge layer, the graphene with desired pattern can be achieved with extreme ease. Due to the catalysis of Ge, monolayer graphene is able to form on Ge covered dielectric substrates including SiOmore » 2/Si, quartz glass and sapphire substrates. Optimization of the process parameters leads to the complete sublimation of catalytic Ge layer during or immediately after monolayer graphene formation, thus resulting in direct deposition of large-area continuous graphene on dielectric substrates. The large-area, highly conductive graphene synthesized on transparent dielectric substrate using the proposed approach has exhibited wide applications, e.g., in defogger and in thermochromic displays, with both devices possessing excellent performances.« less
NASA Astrophysics Data System (ADS)
Sonntag, Sebastian; Pongratz, Julia; Reick, Christian H.; Schmidt, Hauke
2016-06-01
We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in temperature extremes are also large in densely populated areas.
NASA Astrophysics Data System (ADS)
Fukuda, Kenjiro; Takeda, Yasunori; Yoshimura, Yudai; Shiwaku, Rei; Tran, Lam Truc; Sekine, Tomohito; Mizukami, Makoto; Kumaki, Daisuke; Tokito, Shizuo
2014-06-01
Thin, ultra-flexible devices that can be manufactured in a process that covers a large area will be essential to realizing low-cost, wearable electronic applications including foldable displays and medical sensors. The printing technology will be instrumental in fabricating these novel electronic devices and circuits; however, attaining fully printed devices on ultra-flexible films in large areas has typically been a challenge. Here we report on fully printed organic thin-film transistor devices and circuits fabricated on 1-μm-thick parylene-C films with high field-effect mobility (1.0 cm2 V-1 s-1) and fast operating speeds (about 1 ms) at low operating voltages. The devices were extremely light (2 g m-2) and exhibited excellent mechanical stability. The devices remained operational even under 50% compressive strain without significant changes in their performance. These results represent significant progress in the fabrication of fully printed organic thin-film transistor devices and circuits for use in unobtrusive electronic applications such as wearable sensors.
Photonic crystal enhanced silicon cell based thermophotovoltaic systems
Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...
2015-01-30
We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less
The LAAS network observation for studying time correlations in extensive air showers
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki; Iyono, A.; Kimura, Hitoomi; Konishi, Takeharu; Nakamura, Toru; Nakatsuka, Takao; Ohara, Soji; Ohmori, Nobuharu; Saito, Katsuhiko; Takahashi, Nobusuke; Tsuji, Shuhei; Wada, Tomonori; Yamamoto, Isao; Yamashita, Yoshihiko; Yanagimoto, Yukio
2003-02-01
The Large Area Air Shower (LAAS) group has been performing a network observation of extensive air showers (EAS) since 1996 in Japan. Ten compact EAS arrays are operating simultaneously at distant stations (up to ≍1000 km) and detecting EAS with mean energy of ≍1015 eV. Each station has 4--12 scintillation counters and a Global Positioning System (GPS), which provides time stamps of EAS triggers with an accuracy of 1μs. As a consequence of the comparable time stamps, uniformly-adjusted detectors and a standardized data format among all stations, we can treat the independent observations as a gigantic EAS detector system as a whole. The primary purpose of the network observation is to study large-scale correlations in ultra-high-energy cosmic rays. On the other hand, three nearby stations within 1~km distance at Okayama area have a possibility to detect extremely-high-energy EAS (≍1019 eV) as coincident triggers of the three stations. The present status of the network and some results from computer simulations are reported here.
Reduced Urban Heat Island intensity under warmer conditions
NASA Astrophysics Data System (ADS)
Scott, Anna A.; Waugh, Darryn W.; Zaitchik, Ben F.
2018-06-01
The Urban Heat Island (UHI), the tendency for urban areas to be hotter than rural regions, represents a significant health concern in summer as urban populations are exposed to elevated temperatures. A number of studies suggest that the UHI increases during warmer conditions, however there has been no investigation of this for a large ensemble of cities. Here we compare urban and rural temperatures in 54 US cities for 2000–2015 and show that the intensity of the Urban Heat Island, measured here as the differences in daily-minimum or daily-maximum temperatures between urban and rural stations or ΔT, in fact tends to decrease with increasing temperature in most cities (38/54). This holds when investigating daily variability, heat extremes, and variability across climate zones and is primarily driven by changes in rural areas. We relate this change to large-scale or synoptic weather conditions, and find that the lowest ΔT nights occur during moist weather conditions. We also find that warming cities have not experienced an increasing Urban Heat Island effect.
Advances in wind erosion modelling in Europe
NASA Astrophysics Data System (ADS)
Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos
2017-04-01
Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly concentrated in hotspots.
Extreme ultraviolet patterning of tin-oxo cages
NASA Astrophysics Data System (ADS)
Haitjema, Jarich; Zhang, Yu; Vockenhuber, Michaela; Kazazis, Dimitrios; Ekinci, Yasin; Brouwer, Albert M.
2017-07-01
We report on the extreme ultraviolet (EUV) patterning performance of tin-oxo cages. These cage molecules were already known to function as a negative tone photoresist for EUV radiation, but in this work, we significantly optimized their performance. Our results show that sensitivity and resolution are only meaningful photoresist parameters if the process conditions are optimized. We focus on contrast curves of the materials using large area EUV exposures and patterning of the cages using EUV interference lithography. It is shown that baking steps, such as postexposure baking, can significantly affect both the sensitivity and contrast in the open-frame experiments as well as the patterning experiments. A layer thickness increase reduced the necessary dose to induce a solubility change but decreased the patterning quality. The patterning experiments were affected by minor changes in processing conditions such as an increased rinsing time. In addition, we show that the anions of the cage can influence the sensitivity and quality of the patterning, probably through their effect on physical properties of the materials.
López-Guimerà, Gemma; Neumark-Sztainer, Dianne; Hannan, Peter; Fauquet, Jordi; Loth, Katie; Sánchez-Carracedo, David
2013-01-01
The aim of the current study was to examine and compare dieting and unhealthy weight-control behaviours (UWCB) in population-based samples in two large urban areas in Spain (Barcelona) and in the USA (Twin Cities of Minneapolis and St. Paul, Minnesota). Additionally, use of UWCB across weight categories was explored in both samples. Participants included 1501 adolescents from Barcelona (48% girls, 52% boys) and 2793 adolescents from the Twin Cities (53% girls, 47% boys). The main outcome measures were dieting, UWCB (less extreme and extreme) and weight status. Although dieting and UWCB were prevalent in both samples, particularly among girls, the prevalence was higher in the US sample. In both countries, the report of dieting and use of UWCB was highest among overweight and obese youth. Prevention interventions that address the broad spectrum of eating and weight-related problems should be warranted in light of the high prevalence and co-occurrence of overweight and unhealthy weight-related behaviours. PMID:23055262
Intramuscular (Infiltrating) Lipoma of the Floor of the Mouth
Bodner, Lipa; Shaco-Levy, Ruthy
2018-01-01
Lipoma is a very common soft tissue neoplasm, but only infrequently found in the oral region. Intramuscular lipoma (IML) is a relatively common variant of lipoma. The most common site for IML is the large muscles of the extremities, and it is quite rare in the oral cavity. A case of IML affecting the floor of the mouth/tongue of a 42-year-old female is described. The patient presented with a 4 cm diameter yellow mass in the right side of the sublingual area. Axial and coronal magnetic resonance imaging demonstrated its infiltrating nature that can be distinguished from the ordinary well-encapsulated lesion. The lesion was excised with adequate surgical margins. Histopathologically, the lesion was composed of mature adipose tissue that infiltrated the muscle in a diffuse manner. No lipoblasts, atypical cells, or high mitotic index were found. There was no evidence of recurrence two years postoperatively. Review of the literature yielded that IML occurring in the sublingual region is extremely rare.
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
Barnard, Patrick L.; Hoover, Daniel; Hubbard, David M.; Snyder, Alex; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero, Peter; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.
2017-01-01
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast. PMID:28195580
Extreme multi-basin flooding linked with extra-tropical cyclones
NASA Astrophysics Data System (ADS)
De Luca, Paolo; Hillier, John K.; Wilby, Robert L.; Quinn, Nevil W.; Harrigan, Shaun
2017-11-01
Fluvial floods are typically investigated as ‘events’ at the single basin-scale, hence flood management authorities may underestimate the threat of flooding across multiple basins driven by large-scale and nearly concurrent atmospheric event(s). We pilot a national-scale statistical analysis of the spatio-temporal characteristics of extreme multi-basin flooding (MBF) episodes, using peak river flow data for 260 basins in Great Britain (1975-2014), a sentinel region for storms impacting northwest and central Europe. During the most widespread MBF episode, 108 basins (~46% of the study area) recorded annual maximum (AMAX) discharge within a 16 day window. Such episodes are associated with persistent cyclonic and westerly atmospheric circulations, atmospheric rivers, and precipitation falling onto previously saturated ground, leading to hydrological response times <40 h and documented flood impacts. Furthermore, peak flows tend to occur after 0-13 days of very severe gales causing combined and spatially-distributed, yet differentially time-lagged, wind and flood damages. These findings have implications for emergency responders, insurers and contingency planners worldwide.
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
Barnard, Patrick; Hoover, Daniel J.; Hubbard, David M.; Snyder, Alexander; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero,; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.
2017-01-01
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
Si-compatible cleaning process for graphene using low-density inductively coupled plasma.
Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong
2012-05-22
We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.
The Role of Ambient Ozone in Epidemiologic Studies of Heat-Related Mortality
Snowden, Jonathan M.; Kontgis, Caitlin; Tager, Ira B.
2012-01-01
Background: A large and growing literature investigating the role of extreme heat on mortality has conceptualized the role of ambient ozone in various ways, sometimes treating it as a confounder, sometimes as an effect modifier, and sometimes as a co-exposure. Thus, there is a lack of consensus about the roles that temperature and ozone together play in causing mortality. Objectives: We applied directed acyclic graphs (DAGs) to the topic of heat-related mortality to graphically represent the subject matter behind the research questions and to provide insight on the analytical options available. Discussion: On the basis of the subject matter encoded in the graphs, we assert that the role of ozone in studies of temperature and mortality is a causal intermediate that is affected by temperature and that can also affect mortality, rather than a confounder. Conclusions: We discuss possible questions of interest implied by this causal structure and propose areas of future work to further clarify the role of air pollutants in epidemiologic studies of extreme temperature. PMID:22899622
Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces
Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.
2016-10-11
A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.
Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño.
Barnard, Patrick L; Hoover, Daniel; Hubbard, David M; Snyder, Alex; Ludka, Bonnie C; Allan, Jonathan; Kaminsky, George M; Ruggiero, Peter; Gallien, Timu W; Gabel, Laura; McCandless, Diana; Weiner, Heather M; Cohn, Nicholas; Anderson, Dylan L; Serafin, Katherine A
2017-02-14
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
NASA Astrophysics Data System (ADS)
Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.
2015-09-01
The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.
Industrial radiography with cosmic-ray muons: A progress report
NASA Astrophysics Data System (ADS)
Gilboy, W. B.; Jenneson, P. M.; Simons, S. J. R.; Stanley, S. J.; Rhodes, D.
2007-09-01
Cosmic-ray produced muons arrive at the surface of the earth with enormous energies ranging up to 1012 GeV. There have been sporadic attempts to exploit their extreme penetration through matter to probe the internal structures of very large objects, including an Egyptian pyramid and a volcano but their very low intensity per unit area ( ≈1 cm-2 per min) generally restricts the practicably attainable spatial resolution to large dimensions. Nevertheless the more intense low energy region of the muon spectrum has recently been shown to be capable of detecting high-Z objects with dimensions of the order of 10 cm hidden inside large transport containers in measurement times of minutes. These various developments have encouraged further studies of potential industrial uses of cosmic-ray muons in industrial applications. In order to gain maximum benefit from the low muon flux large area detectors are required and plastic scintillators offer useful advantages in size, cost and simplicity. Scintillator slabs up to 1 m2 square and 76.2 mm thick are undergoing testing for applications in the nuclear industry. The most direct approach employs photomultiplier tubes at each corner to measure the relative sizes of muon induced pulses to determine the location of each muon track passing through the scintillator. The performance of this technique is reported and its imaging potential is assessed.
Global Bedload Flux Modeling and Analysis in Large Rivers
NASA Astrophysics Data System (ADS)
Islam, M. T.; Cohen, S.; Syvitski, J. P.
2017-12-01
Proper sediment transport quantification has long been an area of interest for both scientists and engineers in the fields of geomorphology, and management of rivers and coastal waters. Bedload flux is important for monitoring water quality and for sustainable development of coastal and marine bioservices. Bedload measurements, especially for large rivers, is extremely scarce across time, and many rivers have never been monitored. Bedload measurements in rivers, is particularly acute in developing countries where changes in sediment yields is high. The paucity of bedload measurements is the result of 1) the nature of the problem (large spatial and temporal uncertainties), and 2) field costs including the time-consuming nature of the measurement procedures (repeated bedform migration tracking, bedload samplers). Here we present a first of its kind methodology for calculating bedload in large global rivers (basins are >1,000 km. Evaluation of model skill is based on 113 bedload measurements. The model predictions are compared with an empirical model developed from the observational dataset in an attempt to evaluate the differences between a physically-based numerical model and a lumped relationship between bedload flux and fluvial and basin parameters (e.g., discharge, drainage area, lithology). The initial study success opens up various applications to global fluvial geomorphology (e.g. including the relationship between suspended sediment (wash load) and bedload). Simulated results with known uncertainties offers a new research product as a valuable resource for the whole scientific community.
NASA Astrophysics Data System (ADS)
Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio
2013-04-01
Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge stations located in the North Adriatic coastal areas from 1989 to 2011. These data, together with the sea-level rise scenarios for the considered future timeframe, represent the input for the application of the Joint Probability method (Pugh and Vassie, 1979), which allows the evaluation of the maximum height of extreme storm surge events with different return period and the number of extreme events per year. The methodology uses Geographic Information Systems to manage, process, analyse, and visualize data and employs Multi-Criteria Decision Analysis to integrate stakeholders preferences and experts judgments into the analysis in order to obtain a total risk index in the considered region. The final outputs are represented by GIS-based risk maps which allow the communication of the potential consequences of extreme storm surge to decision makers and stakeholders. Moreover, they can support the establishment of relative priorities for intervention through the identification of suitable areas for human settlements, infrastructures and economic activities. Finally the produced output can represent a basis for definition of storm surge hazard and storm surge risk management plans according to the Floods Directive. The preliminary results of the RRA application in the CLIMDAT project will be here presented and discussed.
Impacts of future urban expansion on summer climate and heat-related human health in eastern China.
Cao, Qian; Yu, Deyong; Georgescu, Matei; Wu, Jianguo; Wang, Wei
2018-03-01
China is the largest and most rapidly urbanizing nation in the world, and is projected to add an additional 200 million city dwellers by the end of 2030. While this rapid urbanization will lead to vast expansion of built-up areas, the possible climate effect and associated human health impact remain poorly understood. Using a coupled urban-atmospheric model, we first examine potential effects of three urban expansion scenarios to 2030 on summer climate in eastern China. Our simulations indicate extensive warming up to 5°C, 3°C, and 2°C in regard to low- (>0%), high- (>75%), and 100% probability urban growth scenarios, respectively. The partitioning of available energy largely explains the changes in 2-m air temperatures, and increased sensible heat flux with higher roughness length of the underlying urban surface is responsible for the increase of nighttime planetary boundary layer height. In the extreme case (the low-probability expansion pathway), the agglomeration of impervious surfaces substantially reduces low-level atmospheric moisture, consequently resulting in large-scale precipitation reduction. However, the effect of near-surface warming far exceeds that of moisture reduction and imposes non-negligible thermal loads on urban residents. Our study, using a scenario-based approach that accounts for the full range of urban growth uncertainty by 2030, helps better evaluate possible regional climate effects and associated human health outcomes in the most rapidly urbanizing areas of China, and has practical implications for the development of sustainable urban regions that are resilient to changes in both mean and extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Guangsheng; Hayes, Daniel J.; McGuire, A. David
2017-01-01
Burn area and the frequency of extreme fire events have been increasing during recent decades in North America, and this trend is expected to continue over the 21st century. While many aspects of the North American carbon budget have been intensively studied, the net contribution of fire disturbance to the overall net carbon flux at the continental scale remains uncertain. Based on national scale, spatially explicit and long-term fire data, along with the improved model parameterization in a process-based ecosystem model, we simulated the impact of fire disturbance on both direct carbon emissions and net terrestrial ecosystem carbon balance in North America. Fire-caused direct carbon emissions were 106.55 ± 15.98 Tg C/yr during 1990–2012; however, the net ecosystem carbon balance associated with fire was −26.09 ± 5.22 Tg C/yr, indicating that most of the emitted carbon was resequestered by the terrestrial ecosystem. Direct carbon emissions showed an increase in Alaska and Canada during 1990–2012 as compared to prior periods due to more extreme fire events, resulting in a large carbon source from these two regions. Among biomes, the largest carbon source was found to be from the boreal forest, primarily due to large reductions in soil organic matter during, and with slower recovery after, fire events. The interactions between fire and environmental factors reduced the fire-caused ecosystem carbon source. Fire disturbance only caused a weak carbon source as compared to the best estimate terrestrial carbon sink in North America owing to the long-term legacy effects of historical burn area coupled with fast ecosystem recovery during 1990–2012.
Optical phased array configuration for an extremely large telescope.
Meinel, Aden Baker; Meinel, Marjorie Pettit
2004-01-20
Extremely large telescopes are currently under consideration by several groups in several countries. Extrapolation of current technology up to 30 m indicates a cost of over dollars 1 billion. Innovative concepts are being explored to find significant cost reductions. We explore the concept of an Optical Phased Array (OPA) telescope. Each element of the OPA is a separate Cassegrain telescope. Collimated beams from the array are sent via an associated set of delay lines to a central beam combiner. This array of small telescope elements offers the possibility of starting with a low-cost array of a few rings of elements, adding structure and additional Cass elements until the desired diameter telescope is attained. We address the salient features of such an extremely large telescope and cost elements relative to more conventional options.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
NASA Astrophysics Data System (ADS)
Guimarães Nobre, Gabriela; Arnbjerg-Nielsen, Karsten; Rosbjerg, Dan; Madsen, Henrik
2016-04-01
Traditionally, flood risk assessment studies have been carried out from a univariate frequency analysis perspective. However, statistical dependence between hydrological variables, such as extreme rainfall and extreme sea surge, is plausible to exist, since both variables to some extent are driven by common meteorological conditions. Aiming to overcome this limitation, multivariate statistical techniques has the potential to combine different sources of flooding in the investigation. The aim of this study was to apply a range of statistical methodologies for analyzing combined extreme hydrological variables that can lead to coastal and urban flooding. The study area is the Elwood Catchment, which is a highly urbanized catchment located in the city of Port Phillip, Melbourne, Australia. The first part of the investigation dealt with the marginal extreme value distributions. Two approaches to extract extreme value series were applied (Annual Maximum and Partial Duration Series), and different probability distribution functions were fit to the observed sample. Results obtained by using the Generalized Pareto distribution demonstrate the ability of the Pareto family to model the extreme events. Advancing into multivariate extreme value analysis, first an investigation regarding the asymptotic properties of extremal dependence was carried out. As a weak positive asymptotic dependence between the bivariate extreme pairs was found, the Conditional method proposed by Heffernan and Tawn (2004) was chosen. This approach is suitable to model bivariate extreme values, which are relatively unlikely to occur together. The results show that the probability of an extreme sea surge occurring during a one-hour intensity extreme precipitation event (or vice versa) can be twice as great as what would occur when assuming independent events. Therefore, presuming independence between these two variables would result in severe underestimation of the flooding risk in the study area.
Flood protection diversification to reduce probabilities of extreme losses.
Zhou, Qian; Lambert, James H; Karvetski, Christopher W; Keisler, Jeffrey M; Linkov, Igor
2012-11-01
Recent catastrophic losses because of floods require developing resilient approaches to flood risk protection. This article assesses how diversification of a system of coastal protections might decrease the probabilities of extreme flood losses. The study compares the performance of portfolios each consisting of four types of flood protection assets in a large region of dike rings. A parametric analysis suggests conditions in which diversifications of the types of included flood protection assets decrease extreme flood losses. Increased return periods of extreme losses are associated with portfolios where the asset types have low correlations of economic risk. The effort highlights the importance of understanding correlations across asset types in planning for large-scale flood protection. It allows explicit integration of climate change scenarios in developing flood mitigation strategy. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Jones, D.; Spillman, C. M.
2012-04-01
Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and adaptive capacity of Australia and Pacific Island Countries under climate change. Acknowledgement The research discussed in this paper was conducted with the support of the PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.
Landslide susceptibility in the Tully Valley area, Finger Lakes region, New York
Jager, Stefan; Wieczorek, Gerald E.
1994-01-01
As a consequence of a large landslide in the Tully Valley, Onondaga County, New York, an investigation was undertaken to determine the factors responsible for the landslide in order to develop a model for regional landslide susceptibility. The April 27, 1993 Tully Valley landslide occurred within glacial lake clays overlain by till and colluvium on gentle slopes of 9-12 degrees. The landslide was triggered by extreme climatic events of prolonged heavy rainfall combined with rapid melting of a winter snowpack. A photoinventory and field checking of landslides within a 415 km2 study area, including the Tully Valley, revealed small recently-active landslides and other large dormant prehistoric landslides, probably Pleistocene in age. Similar to the larger Tully Valley landslide, the smaller recently-active landslides occurred in red, glacial lake clays very likely triggered by seasonal rainfall. The large dormant landslides have been stable for long periods as evidenced by slope denudational processes that have modified the landslides. These old and ancient landslides correspond with proglacial lake levels during the Pleistocene, suggesting that either inundation or rapid drainage was responsible for triggering these landslides. A logistic regression analysis was performed within a Geographic Information System (GIS) environment to develop a model of landslide susceptibility for the Tully Valley study area. Presence of glacial clays, slope angle, and glacial lake levels were used as explanatory variables for landslide incidence. The spatial probability of landsliding, categorized as low, moderate and high, is portrayed within 90-m square cells on the susceptibility map.
Conrad, James E.; Hill, Randall H.; Jachens, Robert C.; Neubert, John T.
1990-01-01
At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-02D-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area. An area surrounding the Portland mine and including the southern part of the Black Mountains North Wilderness Study Area and the extreme northwestern part of the Burns Spring Wilderness Study Area has high resource potential for gold and moderate resource potential for silver, lead, and mercury. The area surrounding this and including much of the northern part of the Burns Spring Wilderness Study Area has moderate potential for gold, silver, and lead. The northeastern corner of the Black Mountains North Wilderness Study Area has moderate potential for gold and low potential for silver, copper, and molybdenum resources. The central part, including the narrow strip of land just west of the central part, of the Black Mountains North Wilderness Study Area and the southern and extreme eastern parts of the Burns Spring Wilderness Study Area have low resource potential for gold. The central and southern parts of the Black Mountains North Wilderness Study Area and all but the southwestern part of the Burns Spring Wilderness Study Area have moderate resource potential for perlite. Moderate resource potential for zeolites is assigned to a large area around the Portland mine that includes parts of both study areas, to a narrow strip of land just west of the central part of the Black Mountains North Wilderness Study Area, and to all but the southwest corner of the Burns Spring Wilderness Study Area. There is no potential for oil and gas in either study area. Sand and gravel are present in both study areas, but abundant quantities of these resources are available closer to existing markets.
NASA Astrophysics Data System (ADS)
Lin, Ying-Tong; Chang, Kuo-Chen; Yang, Ci-Jian
2017-04-01
As the result of global warming in the past decades, Taiwan has experienced more and more extreme typhoons with hazardous massive landslides. In this study, we use object-oriented analysis method to classify landslide area at Baolai village by using Formosat-2 satellite images. We used for multiresolution segmented to generate the blocks, and used hierarchical logic to classified 5 different kinds of features. After that, classification the landslide into different type of landslide. Beside, we use stochastic procedure to integrate landslide susceptibility maps. This study assumed that in the extreme event, 2009 Typhoon Morakot, which precipitation goes to 1991.5mm in 5 days, and the highest landslide susceptible area. The results show that study area's landslide area was greatly changes, most of landslide was erosion by gully and made dip slope slide, or erosion by the stream, especially at undercut bank. From the landslide susceptibility maps, we know that the old landslide area have high potential to occur landslides in the extreme event. This study demonstrates the changing of landslide area and the landslide susceptible area. Keywords: Formosat-2, object-oriented, segmentation, classification, landslide, Baolai Village, SW Taiwan, FS
Moritz, Max A.; Keeley, Jon E.; Johnson, Edward A.; Schaffner, Andrew A.
2004-01-01
This year's catastrophic wildfires in southern California highlight the need for effective planning and management for fire-prone landscapes. Fire frequency analysis of several hundred wildfires over a broad expanse of California shrublands reveals that there is generally not, as is commonly assumed, a strong relationship between fuel age and fire probabilities. Instead, the hazard of burning in most locations increases only moderately with time since the last fire, and a marked age effect of fuels is observed only in limited areas. Results indicate a serious need for a re-evaluation of current fire management and policy, which is based largely on eliminating older stands of shrubland vegetation. In many shrubland ecosystems exposed to extreme fire weather, large and intense wildfires may need to be factored in as inevitable events.
Gao, Li; Zhang, Yihui; Zhang, Hui; Doshay, Sage; Xie, Xu; Luo, Hongying; Shah, Deesha; Shi, Yan; Xu, Siyi; Fang, Hui; Fan, Jonathan A; Nordlander, Peter; Huang, Yonggang; Rogers, John A
2015-06-23
Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with "wavy" geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body.
Sea, soil, sky - Testing solar's limits
NASA Astrophysics Data System (ADS)
Hopkinson, J.
1981-12-01
The potentials and actualities of large scale biomass, ocean thermal, and satellite solar power systems are discussed. Biomass is an energy already on-line in installations ranging from home-sized wood-burning stoves to utility sized generators fueled by sawdust and forest residue. Uses of wheat straw, fast-growing trees such as eucalyptus and alder, and euphorbia as biofuels are examined, noting restrictions imposed by land use limitations and the necessity for genetic engineering for more suitable plants. Pyrolysis and thermochemical gasification of biomass to form gaseous, solid, and liquid fuels are explored, and mention is made of utility refuse and sewage incineration for power generation. OTEC, satellite solar power systems, and tidal generator plants are considered as promising for further investigation and perhaps useful in limited applications, while solar pond power plants require extremely large areas to be effective.
A Test-Length Correction to the Estimation of Extreme Proficiency Levels
ERIC Educational Resources Information Center
Magis, David; Beland, Sebastien; Raiche, Gilles
2011-01-01
In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…
Examining global extreme sea level variations on the coast from in-situ and remote observations
NASA Astrophysics Data System (ADS)
Menendez, Melisa; Benkler, Anna S.
2017-04-01
The estimation of extreme water level values on the coast is a requirement for a wide range of engineering and coastal management applications. In addition, climate variations of extreme sea levels on the coastal area result from a complex interacting of oceanic, atmospheric and terrestrial processes across a wide range of spatial and temporal scales. In this study, variations of extreme sea level return values are investigated from two available sources of information: in-situ tide-gauge records and satellite altimetry data. Long time series of sea level from tide-gauge records are the most valuable observations since they directly measure water level in a specific coastal location. They have however a number of sources of in-homogeneities that may affect the climate description of extremes when this data source is used. Among others, the presence of gaps, historical time in-homogeneities and jumps in the mean sea level signal are factors that can provide uncertainty in the characterization of the extreme sea level behaviour. Moreover, long records from tide-gauges are sparse and there are many coastal areas worldwide without in-situ available information. On the other hand, with the accumulating altimeter records of several satellite missions from the 1990s, approaching 25 recorded years at the time of writing, it is becoming possible the analysis of extreme sea level events from this data source. Aside the well-known issue of altimeter measurements very close to the coast (mainly due to corruption by land, wet troposphere path delay errors and local tide effects on the coastal area), there are other aspects that have to be considered when sea surface height values estimated from satellite are going to be used in a statistical extreme model, such as the use of a multi-mission product to get long observed periods and the selection of the maxima sample, since altimeter observations do not provide values uniform in time and space. Here, we have compared the extreme values of 'still water level' and 'non-tidal-residual' of in-situ records from the GESLA2 dataset (Woodworth et al. 2016) against the novel coastal altimetry datasets (Cipollini et al. 2016). Seasonal patterns, inter-annual variability and long-term trends are analyzed. Then, a time-dependent extreme model (Menendez et al. 2009) is applied to characterize extreme sea level return values and their variability on the coastal area around the world.
NASA Technical Reports Server (NTRS)
Lillesand, T.; Seeley, M.
1983-01-01
Stress in sunflowers was assessed in western and northwestern Minnesota. Weekly ground observations (acquired in 1980 and 1981) were analyzed in concert with large scale aerial photography and concurrent LANDSAT data. Using multidate supervised and unsupervised classification procedures, it was found that all crops grown in association with sunflowers in the study area are spectrally separable from one another. Under conditions of extreme drought, severely stressed plants were differentiable from those not severely stressed, but between-crop separation was not possible. Initial regression analyses to estimate sunflower seed yield showed a sensitivity to environmental stress during the flowering and seed development stages. One of the most important biological factors related to sunflower production in the Red River Valley area was found to be the extent and severity of insect infestations.
Trends in Southern Ocean Eddy Kinetic Energy
NASA Astrophysics Data System (ADS)
Chambers, Don
2016-04-01
A recent study by Hogg et al. (JGR, 2015) has demonstrated a 20-year trend in eddy kinetic energy (EKE) computed from satellite altimetry data. However, this estimate is based on an averaging over large spatial areas. In this study, we use the same methods to examine regional EKE trends throughout the Southern Ocean, from 1993-2015. We do find significant positive trends in several areas of the Southern Ocean, mainly in regions with high mean EKE associated with interactions between jets and bathymetry. At the same time, however, there are also regions with significant negative trends. Overall, EKE in the majority of the Southern Ocean has not changed. These results suggest that the estimates of Hogg et al. may have been biased by these regional extremes, and that more work is needed to quantify climatic changes in EKE.
Trends in Southern Ocean Eddy Kinetic Energy
NASA Astrophysics Data System (ADS)
Chambers, D. P.
2016-02-01
A recent study by Hogg et al. (JGR, 2015) has demonstrated a 20-year trend in eddy kinetic energy (EKE) computed from satellite altimetry data. However, this estimate is based on an averaging over large spatial areas. In this study, we use the same methods to examine regional EKE trends throughout the Southern Ocean, from 1993-2015. We do find significant positive trends in several areas of the Southern Ocean, mainly in regions with high mean EKE associated with interactions between jets and bathymetry. At the same time, however, there are also regions with significant negative trends. Overall, EKE in the majority of the Southern Ocean has not changed. These results suggest that the estimates of Hogg et al. may have been biased by these regional extremes, and that more work is needed to quantify climatic changes in EKE.
Ultrathin and lightweight organic solar cells with high flexibility
Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried
2012-01-01
Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014
Multigap resistive plate chambers for EAS study in the EEE Project
NASA Astrophysics Data System (ADS)
An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Garbini, M.; Giuliano, A.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Pace, E.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Williams, C.; Zichichi, A.; Zuyeuski, R.
2007-10-01
The EEE (Extreme Energy Events) Project, conceived by its leader Antonino Zichichi, is an experiment to study very high-energetic air showers (EAS) through the detection of the shower's muon component using a network of tracking detectors, installed in Italian high schools. The single tracking telescope is composed of three large area (˜2m) Multi-gap Resistive Plate Chambers (MRPCs). The data collected by the telescopes will be used for studies of air showers and also for the search of time correlations between sites which are far apart. The first telescope, recently installed in the Liceo B. Touschek in Grottaferrata (Rome), is successfully running, and other telescopes are going to be installed in a short time in other towns, opening up the way for the first search of long-distance coincidences over a total area of ˜10km.
Wildfire spread, hazard and exposure metric raster grids for central Catalonia.
Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina
2018-04-01
We provide 40 m resolution wildfire spread, hazard and exposure metric raster grids for the 0.13 million ha fire-prone Bages County in central Catalonia (northeastern Spain) corresponding to node influence grid (NIG), crown fraction burned (CFB) and fire transmission to residential houses (TR). Fire spread and behavior data (NIG, CFB and fire perimeters) were generated with fire simulation modeling considering wildfire season extreme fire weather conditions (97 th percentile). Moreover, CFB was also generated for prescribed fire (Rx) mild weather conditions. The TR smoothed grid was obtained with a geospatial analysis considering large fire perimeters and individual residential structures located within the study area. We made these raster grids available to assist in the optimization of wildfire risk management plans within the study area and to help mitigate potential losses from catastrophic events.
Snowmelt-runoff Model Utilizing Remotely-sensed Data
NASA Technical Reports Server (NTRS)
Rango, A.
1985-01-01
Remotely sensed snow cover information is the critical data input for the Snowmelt-Runoff Model (SRM), which was developed to simulatke discharge from mountain basins where snowmelt is an important component of runoff. Of simple structure, the model requires only input of temperature, precipitation, and snow covered area. SRM was run successfully on two widely separated basins. The simulations on the Kings River basin are significant because of the large basin area (4000 sq km) and the adequate performance in the most extreme drought year of record (1976). The performance of SRM on the Okutadami River basin was important because it was accomplished with minimum snow cover data available. Tables show: optimum and minimum conditions for model application; basin sizes and elevations where SRM was applied; and SRM strengths and weaknesses. Graphs show results of discharge simulation.
An Intelligent Surveillance Platform for Large Metropolitan Areas with Dense Sensor Deployment
Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A.; Smilansky, Zeev
2013-01-01
This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage. PMID:23748169
NASA Astrophysics Data System (ADS)
Xie, Zunyi; Huete, Alfredo; Ma, Xuanlong; Restrepo-Coupe, Natalia; Devadas, Rakhesh; Clarke, Kenneth; Lewis, Megan
2016-12-01
Arid wetlands are important for biodiversity conservation, but sensitive and vulnerable to climate variability and hydroclimatic events. Amplification of the water cycle, including the increasing frequency and severity of droughts and wet extremes, is expected to alter spatial and temporal hydrological patterns in arid wetlands globally, with potential threats to ecosystem services and their functioning. Despite these pressing challenges, the ecohydrological interactions and resilience of arid wetlands to highly variable water regimes over long time periods remain largely unknown. Recent broad-scale drought and floods over Australia provide unique opportunities to improve our understanding of arid wetland ecosystem responses to hydroclimatic extremes. Here we analysed the ecohydrological dynamics of the Coongie Lakes arid wetland in central Australia, one of the world's largest Ramsar-designated wetlands, using more than two decades (1988-2011) of vegetation and floodwater extent retrievals derived from Landsat satellite observations. To explore the impacts of large-scale hydrological fluctuations on the arid wetland, we further coupled Landsat measurements with Total Water Storage Anomaly (TWSA) data obtained from the Gravity Recovery and Climate Experiment (GRACE) satellites. Pronounced seasonal and inter-annual variabilities of flood and vegetation activities were observed over the wetland, with variations in vegetation growth extent highly correlated with flood extent (r = 0.64, p < 0.05) that ranged from nearly zero to 3456 km2. We reported the hydrological dynamics and associated ecosystem responses to be largely driven by the two phases (El Niño and La Niña) of the El Nino-Southern Oscillation (ENSO) ocean-atmosphere system. Changes in flood and vegetation extent were better explained by GRACE-TWSA (r = 0.8, lag = 0 month) than rainfall (r = 0.34, lag = 3 months) over the water source area, demonstrating that TWS is a valuable hydrological indicator for complex dryland river systems. The protracted Millennium Drought from 2001 to 2009 resulted in long-term absence of major flood events, which substantially suppressed wetland vegetation growth. However, the 2010-11 La Niña induced flooding events led to an exceptionally large resurgence of vegetation, with a mean vegetation growth extent anomaly exceeding the historical average (1988-2011) by more than 1.5 standard deviations, suggesting a significant resilience of arid wetland ecosystems to climate variability. This study showed the ecological functioning of arid wetlands is particularly sensitive to large-scale hydrological fluctuations and extreme drought conditions, and vulnerable to future altered water regimes due to climate change. The methods developed herein can be applied to arid wetlands located in other dryland river systems across the globe.
NASA Astrophysics Data System (ADS)
Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.
2016-12-01
Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.