Sample records for extremely large solar

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show thatmore » while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.« less

  2. Evaluation of solar cells for potential space satellite power applications

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.

  3. The solar origins of two high-latitude interplanetary disturbances

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Acton, L. W.; Alexander, D.; Harvey, K. L.; Kurokawa, H.; Kahler, S.; Lemen, J. R.

    1995-01-01

    Two extremely similar interplanetary forward/reverse shock events, with bidirectional electron streaming were detected by Ulysses in 1994. Ground-based and Yohkoh/SXT observations show two strikingly different solar events that could be associated with them: an LDE flare on 20 Feb. 1994, and a extremely large-scale eruptive event on 14 April 1994. Both events resulted in geomagnetic storms and presumably were associated with coronal mass ejections. The sharply contrasting nature of these solar events argues against an energetic causal relationship between them and the bidirectional streaming events observed by Ulysses during its S polar passage. We suggest instead that for each pair of events. a common solar trigger may have caused independent instabilities leading to the solar and interplanetary phenomena.

  4. The role of activity complexes in the distribution of solar magnetic fields.

    NASA Astrophysics Data System (ADS)

    García de La Rosa, J. I.; Reyes, R. C.

    Using published data on the large-scale distribution of solar activity, the authors conclude that the longlived coronal holes are formed and maintained by the unbalanced magnetic flux which developes at both extremes of the complexes of activity.

  5. Mesosiderite clasts with the most extreme positive europium anomalies among solar system rocks

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Rubin, Alan E.; Davis, Andrew M.

    1992-01-01

    Pigeonite-plagioclase gabbros that occur as clasts in mesosiderites (brecciated stony-iron meteorites) show extreme fractionations of the rare-earth elements (REEs) with larger positive europium anomalies than any previously known for igneous rocks from the earth, moon, or meteorite parent bodies and greater depletions of light REEs relative to heavy REEs than known for comparable cumulate gabbros. The REE pattern for merrillite in one of these clasts is depleted in light REEs and has a large positive europium anomaly as a result of metamorphic equilibration with the silicates. The extreme REE ratios exhibited by the mesosiderite clasts demonstrate that multistage igneous processes must have occurred on some asteroids in the early solar system. Melting of the crust by large-scale impacts or electrical induction from an early T-Tauri-phase sun may be responsible for these processes.

  6. Analysis of extreme summers and prior late winter/spring conditions in central Europe

    NASA Astrophysics Data System (ADS)

    Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.

    2013-05-01

    Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation amounts during late winter/spring, might serve as precursor of extremely sunny and dry summer months to be expected.

  7. MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2013-09-01

    Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.

  8. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  9. Solar Flare Aimed at Earth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  10. The Influence of Extremely Large Solar Proton Events in a Changing Stratosphere. Stratospheric Influence of Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Fleming, Eric L.; Vitt, Francis M.

    1999-01-01

    Two periods of extremely large solar proton events (SPEs) occurred in the past thirty years, which forced significant long-term polar stratospheric changes. The August 2-10, 1972 and October 19-27, 1989 SPEs happened in stratospheres that were quite different chemically. The stratospheric chlorine levels were relatively small in 1972 (approximately 1.2 ppbv) and were fairly substantial in 1989 at about (approximately 3 ppbv). Although these SPEs produced both HO(x) and NO(y) constituents in the mesosphere and stratosphere, only the NO(y) constituents had lifetimes long enough to affect ozone for several months to years past the events. Our recently improved two-dimensional chemistry and transport atmospheric model was used to compute the effects of these gigantic SPEs in a changing stratosphere. Significant upper stratospheric ozone depletions > 10% are computed to last for a few months past these SPEs. The long-lived SPE-produced NO(y) constituents were transported to lower levels during winter after these huge SPEs and caused impacts in the middle and lower stratosphere. During periods of high halogen loading these impacts resulted in interference with the chlorine and bromine loss cycles for ozone destruction. The chemical state of the atmosphere, including the stratospheric sulfate aerosol density, substantially affected the predicted stratospheric influence of these extremely large SPEs.

  11. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  12. MODIS Measures Fraction of Sunlight Absorbed by Plants

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  13. How calibration and reference spectra affect the accuracy of absolute soft X-ray solar irradiance measured by the SDO/EVE/ESP during high solar activity

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid; Wieman, Seth; Woods, Thomas

    2016-10-01

    The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.

  14. Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.

    2014-01-01

    We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV) spicules.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id; Arif, Johan; Nurzaman, Muhamad Zamzam

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicatemore » technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.« less

  16. Lightweight Integrated Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Lockett, Tiffany Russell

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including CubeSats, which are currently extremely power limited. The Lightweight Integrated Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultraflexible solar arrays adhered to an inflatable or deployable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume.

  17. TransFormers for Ensuring Long-Term Operations in Lunar Extreme Environments

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Stoica, A.; Alkalai, L.; Wilcox, B.; Quadrelli, M.

    2016-01-01

    "Surviving Extreme Space Environments" (EE) is one of NASA's Space Technology Grand Challenges. Power generation and thermal control are the key survival ingredients that allow a robotic explorer to cope with the EE using resources available to it, for example, by harvesting the local solar energy or by utilizing an onboard radioisotope thermoelectric generator (RTG). TransFormers (TFs) are a new technology concept designed to transform a localized area within a harsh extreme environment into a survivable micro-environment by projecting energy to the precise location where robots or humans operate. For example, TFs placed at a location on the rim of Shackleton Crater, which is illuminated by solar radiation for most of the year, would be able to reflect solar energy onto robots operating in the dark cold crater. TFs utilize a shape transformation mechanism to un-fold from a compact volume to a large reflective surface, and to control how much-and where-the energy is projected, and by adjusting for the changing position of the sun. TFs would enable in-situ resource utilization (ISRU) activities within locations of high interest that would normally be unreachable because of their extreme environment

  18. Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.

    2001-12-01

    Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).

  19. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation.

    PubMed

    Yin, Zhe; Wang, Huimin; Jian, Muqiang; Li, Yanshen; Xia, Kailun; Zhang, Mingchao; Wang, Chunya; Wang, Qi; Ma, Ming; Zheng, Quan-Shui; Zhang, Yingying

    2017-08-30

    The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 μm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

  20. Characterization of the Martian magnetic topology response to extreme solar transient events with MGS data

    NASA Astrophysics Data System (ADS)

    Xu, S.; Curry, S.; Mitchell, D. L.; Luhmann, J. G.; Lillis, R. J.; Dong, C.

    2017-12-01

    Characterizing how the solar cycle affects the physics of the Mars-solar wind interaction can improve our understanding of Mars' atmospheric evolution and the plasma environment at Mars. In particular, solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) significantly change the solar-wind interaction, including the magnetic topology and ion acceleration. However, both the Mars Express and Mars Atmosphere Volatile EvolutioN (MAVEN) missions have encountered relatively few extreme solar transient events due to the recent low solar activity (2004-2017). In contrast, Mars Global Surveyor (MGS) was operating during a relatively active solar maximum (1999-2003). Based on new results from MAVEN, this study reanalyzes MGS data to better understand how the Martian plasma environment responds to extreme solar events. In particular, we aim to investigate how the magnetic topology during these extreme events differs from the topology during quiet times. We conduct orbit comparisons of the magnetic topology inferred from MGS electron pitch angle distributions during quiet periods and extreme events to determine how the open and closed field patterns respond to extreme events.

  1. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated to last for up to five months past the largest events. However, the computed total column ozone and stratospheric temperature changes connected with the solar events were not found to be statistically significant. Thus, solar proton events do not likely contribute significantly to measured total column ozone fluctuations and stratospheric temperature changes.

  2. Gradient spectral analysis of solar radio flare superevents

    NASA Astrophysics Data System (ADS)

    Rosa, R. R.; Veronese, T. B.; Sych, R. A.; Bolzan, M. A.; Sandri, S. A.; Drummond, I. A.; Becceneri, J. C.; Sawant, H. S.

    2011-12-01

    Some of complex solar active regions exhibit rare and sudden transitions that occur over time intervals that are short compared to the characteristic time scales of their evolution. Usually, extreme radio emission is driven by a latent nonlinear process involving magnetic reconnection among coronal loops and such extreme events (e.g., X-class flares and coronal mass ejections) express the presence of plasma and magnetic activity usually hidden inside the solar convective layer. Recently, the scaling exponent obtained from Detrended Fluctuation Analysis has been used to characterize the formation of solar flare superevents - SFS (integrated flux of radiation greater than 1.5 J/m2) when it is observed in the decimetric range of 1-3 GHz (Veronese et al., 2011). Here, we show a complementary computational analisys of four X-class solar flares observed in 17GHz from Nobeyama Radioheliograph. Our analysis is based on the combination of DFA and Gradient Spectral Analysis (GSA) which can be used to characterize the evolution of SFSs under the condition that the emission threshold is large enough (fmax > 300 S.F.U.) and the solar flux unit variability is greater than 50% of the average taken from the minimum flux to the extreme value. Preliminary studies of the gradient spectra of Nobeyama data in 17 GHz can be found in Sawant et al. (JASTP 73(11), 2011). Future applications of GSA on the images which will be observed from the Brazilian Decimetric Array (BDA) are discusssed.

  3. Sea, soil, sky - Testing solar's limits

    NASA Astrophysics Data System (ADS)

    Hopkinson, J.

    1981-12-01

    The potentials and actualities of large scale biomass, ocean thermal, and satellite solar power systems are discussed. Biomass is an energy already on-line in installations ranging from home-sized wood-burning stoves to utility sized generators fueled by sawdust and forest residue. Uses of wheat straw, fast-growing trees such as eucalyptus and alder, and euphorbia as biofuels are examined, noting restrictions imposed by land use limitations and the necessity for genetic engineering for more suitable plants. Pyrolysis and thermochemical gasification of biomass to form gaseous, solid, and liquid fuels are explored, and mention is made of utility refuse and sewage incineration for power generation. OTEC, satellite solar power systems, and tidal generator plants are considered as promising for further investigation and perhaps useful in limited applications, while solar pond power plants require extremely large areas to be effective.

  4. Stationarity of extreme bursts in the solar wind

    NASA Astrophysics Data System (ADS)

    Moloney, N. R.; Davidsen, J.

    2014-05-01

    Recent results have suggested that the statistics of bursts in the solar wind vary with solar cycle. Here, we show that this variation is basically absent if one considers extreme bursts. These are defined as threshold-exceeding events over the range of high thresholds for which their number decays as a power law. In particular, we find that the distribution of duration times and energies of extreme bursts in the solar wind ɛ parameter and similar observables are independent of the solar cycle and in this sense stationary, and show robust asymptotic power laws with exponents that are independent of the specific threshold. This is consistent with what has been observed for solar flares and, thus, provides evidence in favor of a link between solar flares and extreme bursts in the solar wind.

  5. Variability of space climate and its extremes with successive solar cycles

    NASA Astrophysics Data System (ADS)

    Chapman, Sandra; Hush, Phillip; Tindale, Elisabeth; Dunlop, Malcolm; Watkins, Nicholas

    2016-04-01

    Auroral geomagnetic indices coupled with in situ solar wind monitors provide a comprehensive data set, spanning several solar cycles. Space climate can be considered as the distribution of space weather. We can then characterize these observations in terms of changing space climate by quantifying how the statistical properties of ensembles of these observed variables vary between different phases of the solar cycle. We first consider the AE index burst distribution. Bursts are constructed by thresholding the AE time series; the size of a burst is the sum of the excess in the time series for each time interval over which the threshold is exceeded. The distribution of burst sizes is two component with a crossover in behaviour at thresholds ≈ 1000 nT. Above this threshold, we find[1] a range over which the mean burst size is almost constant with threshold for both solar maxima and minima. The burst size distribution of the largest events has a functional form which is exponential. The relative likelihood of these large events varies from one solar maximum and minimum to the next. If the relative overall activity of a solar maximum/minimum can be estimated, these results then constrain the likelihood of extreme events of a given size for that solar maximum/minimum. We next develop and apply a methodology to quantify how the full distribution of geomagnetic indices and upstream solar wind observables are changing between and across different solar cycles. This methodology[2] estimates how different quantiles of the distribution, or equivalently, how the return times of events of a given size, are changing. [1] Hush, P., S. C. Chapman, M. W. Dunlop, and N. W. Watkins (2015), Robust statistical properties of the size of large burst events in AE, Geophys. Res. Lett.,42 doi:10.1002/2015GL066277 [2] Chapman, S. C., D. A. Stainforth, N. W. Watkins, (2013) On estimating long term local climate trends , Phil. Trans. Royal Soc., A,371 20120287 DOI:10.1098/rsta.2012.0287

  6. Is the S-Web the Secret to Observed Heliospheric Particle Distributions?

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Daldorff, L. K. S.; Wyper, P. F.; Ukhorskiy, A. Y.; Sorathia, K.

    2017-12-01

    Particle transport in the heliosphere remains an unsolved problem across energy regimes. Observations of slow solar wind show that plasma escapes from the closed-field corona, but ends up far away from the heliospheric current sheet, even though the release mechanisms are expected to occur at the HCS. Similarly, some impulsive SEP events have extreme longitudinal extents of 100 degrees or more. Recent theoretical and numerical work has shown that interchange reconnection near a coronal-hole corridor can release plasma from originally closed magnetic field lines into a large swath spread across the heliosphere, forming what is known as an S-Web arc. This is a promising mechanism for explaining both the slow solar wind, with its large latitudinal extent, and impulsive SEP particles, with their large longitudinal extent. Here we compute, for the first time, the dynamics of the S-Web when the photospheric driver is applied over a large portion of the solar surface compared to the scale of the driving. We examine the time scales for the interchange reconnection and compute the angular extent of the plasma released, in the context of understanding both the slow solar wind and flare-accelerated SEPs. We will make predictions for Solar Orbiter and Parker Solar Probe and discuss how these new measurements will help to both pinpoint the source of the slow solar wind and illuminate the transport mechanisms of wide-spread impulsive SEP events.

  7. Flexible Models for Solar Sail Control

    NASA Technical Reports Server (NTRS)

    Weaver Smith, Suzanne; Song, Haiping; Baker, John R.; Black, Jonathan; Muheim, Danniella M.

    2005-01-01

    Solar sails employ a unique form of propulsion, gaining momentum from incident and reflected photons. However, the momentum transferred by an individual photon is extremely small. Consequently, a solar sail must have an extremely large surface area and also be extremely light. The flexibility of the sail then must be considered when designing or evaluating control laws. In this paper, solar sail flexibility and its influence on control effectiveness is considered using idealized two-dimensional models to represent physical phenomena rather than a specific design. Differential equations of motion are derived for a distributed parameter model of a flexible solar sail idealized as a rotating central hub with two opposing flexible booms. This idealization is appropriate for solar sail designs in which the vibrational modes of the sail and supporting booms move together allowing the sail mass to be distributed along the booms in the idealized model. A reduced analytical model of the flexible response is considered. Linear feedback torque control is applied at the central hub. Two translational disturbances and a torque disturbance also act at the central hub representing the equivalent effect of deflecting sail shape about a reference line. Transient simulations explore different control designs and their effectiveness for controlling orientation, for reducing flexible motion and for disturbance rejection. A second model also is developed as a two-dimensional "pathfinder" model to calculate the effect of solar sail shape on the resultant thrust, in-plane force and torque at the hub. The analysis is then extended to larger models using the finite element method. The finite element modeling approach is verified by comparing results from a two-dimensional finite element model with those from the analytical model. The utility of the finite element modeling approach for this application is then illustrated through examples based on a full finite element model.

  8. A solar simulator-pumped gas laser for the direct conversion of solar energy

    NASA Technical Reports Server (NTRS)

    Weaver, W. R.; Lee, J. H.

    1981-01-01

    Most proposed space power systems are comprised of three general stages, including the collection of the solar radiation, the conversion to a useful form, and the transmission to a receiver. The solar-pumped laser, however, effectively eliminates the middle stage and offers direct photon-to-photon conversion. The laser is especially suited for space-to-space power transmission and communication because of minimal beam spread, low power loss over large distances, and extreme energy densities. A description is presented of the first gas laser pumped by a solar simulator that is scalable to high power levels. The lasant is an iodide C3F7I that as a laser-fusion driver has produced terawatt peak power levels.

  9. Z-rich solar particle event characteristics 1972-1976

    NASA Technical Reports Server (NTRS)

    Zwickl, R. D.; Roelof, E. C.; Gold, R. E.; Krimigis, S. M.; Armstrong, T. P.

    1978-01-01

    It is found in the reported investigation that Z-rich solar particle events usually have large and prolonged anisotropies in addition to an extremely variable charge composition that varies not only from event to event but also throughout the event. These observations suggest that one can no longer regard the event-averaged composition of solar particle events at low energies as providing an unbiased global sample of the solar atmospheric composition. The variability from event to event and among classes of events is just too great. However, the tendency for the Z-rich events to be associated with both the low-speed solar wind at or just before the onset of solar wind streams and with active regions located in the western hemisphere, indicates that charge composition studies of solar particle events can yield a better knowledge of the flare acceleration process as well as the inhomogeneous nature of magnetic field structure and particle composition in the solar atmosphere.

  10. Observations of an Eruptive Solar Flare in the Extended EUV Solar Corona

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel B.; Darnel, Jonathan M.

    2018-01-01

    We present observations of a powerful solar eruption, accompanied by an X8.2 solar flare, from NOAA Active Region 12673 on 2017 September 10 by the Solar Ultraviolet Imager (SUVI) on the GOES-16 spacecraft. SUVI is noteworthy for its relatively large field of view, which allows it to image solar phenomena to heights approaching 2 solar radii. These observations include the detection of an apparent current sheet associated with magnetic reconnection in the wake of the eruption, and evidence of an extreme-ultraviolet wave at some of the largest heights ever reported. We discuss the acceleration of the nascent coronal mass ejection to approximately 2000 km s‑1 at about 1.5 solar radii. We compare these observations with models of eruptions and eruption-related phenomena. We also describe the SUVI data and discuss how the scientific community can access SUVI observations of the event.

  11. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide

    2011-01-01

    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  12. Detection of Quasi-Periodic Pulsations in Solar EUV Time Series

    NASA Astrophysics Data System (ADS)

    Dominique, M.; Zhukov, A. N.; Dolla, L.; Inglis, A.; Lapenta, G.

    2018-04-01

    Quasi-periodic pulsations (QPPs) are intrinsically connected to the mechanism of solar flares. They are regularly observed in the impulsive phase of flares since the 1970s. In the past years, the studies of QPPs regained interest with the advent of a new generation of soft X-ray/extreme ultraviolet radiometers that pave the way for statistical surveys. Since the amplitude of QPPs in these wavelengths is rather small, detecting them implies that the overall trend of the time series needs to be removed before applying any Fourier or wavelet transform. This detrending process is known to produce artificial detection of periods that must then be distinguished from real ones. In this paper, we propose a set of criteria to help identify real periods and discard artifacts. We apply these criteria to data taken by the Extreme Ultraviolet Variability Experiment (EVE)/ESP onboard the Solar Dynamics Observatory (SDO) and the Large Yield Radiometer (LYRA) onboard the PRoject for On-Board Autonomy 2 (PROBA2) to search for QPPs in flares stronger than M5.0 that occurred during Solar Cycle 24.

  13. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  14. A nonlinear background removal method for seismo-ionospheric anomaly analysis under a complex solar activity scenario: A case study of the M9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    He, Liming; Wu, Lixin; Pulinets, Sergey; Liu, Shanjun; Yang, Fan

    2012-07-01

    A precise determination of ionospheric total electron content (TEC) anomaly variations that are likely associated with large earthquakes as observed by global positioning system (GPS) requires the elimination of the ionospheric effect from irregular solar electromagnetic radiation. In particular, revealing the seismo-ionospheric anomalies when earthquakes occurred during periods of high solar activity is of utmost importance. To overcome this constraint, a multiresolution time series processing technique based on wavelet transform applicable to global ionosphere map (GIM) TEC data was used to remove the nonlinear effect from solar radiation for the earthquake that struck Tohoku, Japan, on 11 March, 2011. As a result, it was found that the extracted TEC have a good correlation with the measured solar extreme ultraviolet flux in 26-34 nm (EUV26-34) and the 10.7 cm solar radio flux (F10.7). After removing the influence of solar radiation origin in GIM TEC, the analysis results show that the TEC around the forthcoming epicenter and its conjugate were significantly enhanced in the afternoon period of 8 March 2011, 3 days before the earthquake. The spatial distributions of the TEC anomalous and extreme enhancements indicate that the earthquake preparation process had brought with a TEC anomaly area of size approximately 1650 and 5700 km in the latitudinal and longitudinal directions, respectively.

  15. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  16. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  17. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was tomore » remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.« less

  18. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections.

    PubMed

    Liu, Ying D; Luhmann, Janet G; Kajdič, Primož; Kilpua, Emilia K J; Lugaz, Noé; Nitta, Nariaki V; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D; Farrugia, Charles J; Galvin, Antoinette B

    2014-03-18

    Space weather refers to dynamic conditions on the Sun and in the space environment of the Earth, which are often driven by solar eruptions and their subsequent interplanetary disturbances. It has been unclear how an extreme space weather storm forms and how severe it can be. Here we report and investigate an extreme event with multi-point remote-sensing and in situ observations. The formation of the extreme storm showed striking novel features. We suggest that the in-transit interaction between two closely launched coronal mass ejections resulted in the extreme enhancement of the ejecta magnetic field observed near 1 AU at STEREO A. The fast transit to STEREO A (in only 18.6 h), or the unusually weak deceleration of the event, was caused by the preconditioning of the upstream solar wind by an earlier solar eruption. These results provide a new view crucial to solar physics and space weather as to how an extreme space weather event can arise from a combination of solar eruptions.

  19. Forecasts and Warnings of Extreme Solar Storms at the Sun

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    2015-12-01

    The most pressing space weather forecasts and warnings are those of the most intense solar flares and coronal mass ejections. However, in trying to develop these forecasts and warnings, we are confronted to many fundamental questions. Some of those are: How to define an observable measure for an extreme solar storm? How extreme can a solar storm become and how long is the build up time? How to make forecasts and warnings? Many have contributed to clarifying these general questions. In his presentation we will describe our latest results on the topological complexity of magnetic fields and the use of SDO SHARP parameters. The complexity concept will then be used to discuss the second question. Finally we will describe probability estimates of extreme solar storms.

  20. Solar space heating system at the Seeley G. Mudd Education Building, Pacific School of Religion, 1798 Scenic Avenue, Berkeley California 94708. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Large areas of south facing glass allow winter sunlight to penetrate the building, while overhangs provide summer shading. High ceilings allow deep penetration of this light for space heating and natural lighting. Massive construction stores solar radiation for evening warmth and provides a buffer from extreme temperature fluctuations. Natural ventilation will provide cooling. The system consists of 720 square feet of roof-mounted, liquid, flat plate solar collectors and three 350 gallon fiberglass storage tanks. The acceptance and performance tests are discussed. Also discusseed are: collector selection, construction contract, costs, and economics.

  1. What We Don’t Know About Quartz Clocks in Space

    DTIC Science & Technology

    2009-11-01

    radiation is not only a concern during solar storms. The region in space where the inner Van Allen radiation belt makes its closest approach to the...considerable energy. Natural space debris consists of meteorites, micrometeorites, asteroids , comets, etc. that are extremely large to very small dust grains

  2. Structure and Dynamics of the 2009 July 22 Eclipse White-light Corona

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Rušin, V.; Saniga, M.; Druckmüllerová, H.; Babcock, B. A.

    2011-11-01

    The white-light corona (WLC) during the total solar eclipse of 2009 July 22 was observed by several teams in the Moon's shadow stretching from India and China across the Pacific Ocean with its many isolated islands. We present a comparison of the WLC as observed by eclipse teams located in China (Shanghai region) and on the Enewetak Atoll in the Marshall Islands, with observations taken 112 minutes apart, combined with near-simultaneous space observations. The eclipse was observed at the beginning of solar cycle 24, during a deep solar minimum (officially estimated as 2008 December according to the smoothed sunspot number, but very extended). The solar corona shows several different types of features (coronal holes, polar rays, helmet streamers, faint loops, voids, etc.), though it was extremely sparse in streamers as shown from Large-Angle Spectroscopic Coronagraph data. No large-scale dynamical phenomena were seen when comparing the observations from the two sites, confirming that the corona was quiescent. We measure a Ludendorff flattening coefficient of 0.238, typical of solar minimum.

  3. Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.

    2018-05-01

    The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.

  4. The impact of the gulf war on the Arabian environment—I. Particulate pollution and reduction of solar irradiance

    NASA Astrophysics Data System (ADS)

    El-Shobokshy, Mohammad S.; Al-Saedi, Yaseen G.

    This paper investigates some of the air pollution problems which have been created as a result of the Gulf war in early 1991. Temporary periods of increased dust storm activity have been observed in Saudi Arabia. This is presumably due to disturbance of the desert surface by the extremely large number of tanks and other war machines before and during the war. The concentrations of inhalable dust particles (<15 μm) increased during the months just after the war by a factor of about 1.5 of their values during the same months of the previous year, 1990. The total horizontal solar energy flux in Riyadh has been significantly reduced during dry days with no clouds. This is attributed to the presence of soot particles, which have been generated at an extremely high rate from the fired oil fields in Kuwait. The direct normal solar insolation were also measured at the photovoltaic solar power plant in Riyadh during these days and significant reductions were observed due to the effective absorption of solar radiation by soot particles. The generated power from the plant has been reduced during days with a polluted atmosphere by about 50-80% of the expected value for such days, if the atmosphere were dry and clear.

  5. Solar cycle variations in polar cap area measured by the superDARN radars

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-10-01

    present a long-term study, from January 1996 to August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere Super Dual Auroral Radar Network (SuperDARN). The HMB represents the equatorward extent of ionospheric convection and is used in this study as a measure of the global magnetospheric dynamics. We find that the yearly distribution of HMB latitudes is single peaked at 64° magnetic latitude for the majority of the 17 year interval. During 2003, the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17 year interval. In contrast, during the period 2008-2011, HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first long-term study of the polar cap area and the results demonstrate that there is a close relationship between the solar activity cycle and the area of the polar cap on a large-scale, statistical basis.

  6. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings

    PubMed Central

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  7. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  8. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  9. Toroidal Varied-Line Space (TVLS) Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Oegerle, William (Technical Monitor)

    2002-01-01

    It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  10. Large Area Field of View for Fast Temporal Resolution Astronomy

    NASA Astrophysics Data System (ADS)

    Covarrubias, Ricardo A.

    2018-01-01

    Scientific CMOS (sCMOS) technology is especially relevant for high temporal resolution astronomy combining high resolution, large field of view with very fast frame rates, without sacrificing ultra-low noise performance. Solar Astronomy, Near Earth Object detections, Space Debris Tracking, Transient Observations or Wavefront Sensing are among the many applications this technology can be utilized. Andor Technology is currently developing the next-generation, very large area sCMOS camera with an extremely low noise, rapid frame rates, high resolution and wide dynamic range.

  11. A brief visit from a red and extremely elongated interstellar asteroid.

    PubMed

    Meech, Karen J; Weryk, Robert; Micheli, Marco; Kleyna, Jan T; Hainaut, Olivier R; Jedicke, Robert; Wainscoat, Richard J; Chambers, Kenneth C; Keane, Jacqueline V; Petric, Andreea; Denneau, Larry; Magnier, Eugene; Berger, Travis; Huber, Mark E; Flewelling, Heather; Waters, Chris; Schunova-Lilly, Eva; Chastel, Serge

    2017-12-21

    None of the approximately 750,000 known asteroids and comets in the Solar System is thought to have originated outside it, despite models of the formation of planetary systems suggesting that orbital migration of giant planets ejects a large fraction of the original planetesimals into interstellar space. The high predicted number density of icy interstellar objects (2.4 × 10 -4 per cubic astronomical unit) suggests that some should have been detected, yet hitherto none has been seen. Many decades of asteroid and comet characterization have yielded formation models that explain the mass distribution, chemical abundances and planetary configuration of the Solar System today, but there has been no way of telling whether the Solar System is typical of planetary systems. Here we report observations and analysis of the object 1I/2017 U1 ('Oumuamua) that demonstrate its extrasolar trajectory, and that thus enable comparisons to be made between material from another planetary system and from our own. Our observations during the brief visit by the object to the inner Solar System reveal it to be asteroidal, with no hint of cometary activity despite an approach within 0.25 astronomical units of the Sun. Spectroscopic measurements show that the surface of the object is spectrally red, consistent with comets or organic-rich asteroids that reside within the Solar System. Light-curve observations indicate that the object has an extremely oblong shape, with a length about ten times its width, and a mean radius of about 102 metres assuming an albedo of 0.04. No known objects in the Solar System have such extreme dimensions. The presence of 'Oumuamua in the Solar System suggests that previous estimates of the number density of interstellar objects, based on the assumption that all such objects were cometary, were pessimistically low. Planned upgrades to contemporary asteroid survey instruments and improved data processing techniques are likely to result in the detection of more interstellar objects in the coming years.

  12. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Belton, M. J. S.; Takacs, P. Z.; Sandel, B. R.; Shemansky, D. E.; Holberg, J. B.; Ajello, J. M.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.

    1979-01-01

    Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S(+2), S(+3), O(+2) indicating an electron temperature of 100,000 K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (greater than or equal to 1000 K) with a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.

  13. Substantial Coronal Holes

    NASA Image and Video Library

    2016-10-21

    A pair of large coronal holes rotated into view over the past few days (Oct. 20-21, 2016). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light, such as in the wavelength used here. These holes are areas of open magnetic field that spew solar wind into space. Sometimes, when they are facing Earth, they can cause geomagnetic disturbances that generate aurora. The lines you see were drawn to represent how solar scientists are modeling the magnetic field lines. Movies are available at the Photojournal http://photojournal.jpl.nasa.gov/catalog/PIA15378

  14. Learning Sustainability by Developing a Solar Dryer for Microalgae Retrieval

    ERIC Educational Resources Information Center

    Malheiro, Benedita; Ribeiro, Cristina; Silva, Manuel F.; Caetano, Nídia; Paulo Ferreira,; Guedes, Pedro

    2015-01-01

    The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather…

  15. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  16. An Innovative Very Low Thermal Power Waste Heat Recovery System for Thermal Control of Deep Space Missions: A Thermal Flask in Space

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    2015-01-01

    Future missions to deep space, such as those to the outer planets (Jupiter, Saturn, etc.), which would rely on solar photovoltaic power, would need extremely large solar arrays to produce sufficient power for their operations because solar intensity is so low at those locations. Hence any additional power that would be needed for thermal control is extremely limited. Previous deep space missions like Juno (to Jupiter) required almost 200 W of electrical power for thermal control. This is prohibitively large for many future mission concepts, and leads to them needing very large solar arrays. For Saturn, where the solar flux is 1/4th the flux at Jupiter, this would entail an extremely large increase in the solar array size to accommodate the need for thermal survival power, which would be prohibitively large in size and mass, and very expensive. Hence there is a need to come up with a thermal architecture and design options that would not need such prohibitively large thermal power levels. One solution relies on harvesting the pre-existing waste heat from all the heat dissipation that would be present from operation of electronics, instruments, etc. for their own functionality. For example, for a generic Saturn mission, the various electronics would already dissipate about 200 Watts of heat that is simply "thrown away" to space from the spacecraft surfaces. The amount of thermal power that would be required for the safe thermal control of components within the spacecraft in deep space would be roughly of this magnitude for this class of spacecraft. So it makes good sense to try to harvest the waste heat and employ it to maintain the temperatures of all the components within their allowable limits. In particular, propulsion systems typically need to be kept above their freezing limits, around room temperature (15 C). Electronics needs to be kept typically above -40 C and batteries above -20 C. The next question becomes how to harvest this waste heat and direct it to the components that would need it for their survival. The proposed system utilizes a mechanically pumped, single phase fluid loop to pick up the waste heat from components attached to this loop's tubing and then directed to a thermal flask that has tubing attached to it. The thermal flask is cylindrically shaped and contains essentially all systems and components in the spacecraft within it, with the exception of the solar array, antennae, thrusters and various apertures of instruments, etc. to allow them an unobstructed view of space. Waste heat from the heat-dissipating components warms up the fluid and is carried to the flask surface and deposited on it via the fluid loop's flow. The entire flask is covered with Multi-Layered Insulation (MLI) to minimize the heat loss from the flask and allow it to remain warm. Hence the flask essentially creates a thermal environment within which the spacecraft components reside. The temperature of the components within the flask is then essentially the same as the temperature of the flask. This approach could be a very enabling feature for deep space missions. This paper describes the approach utilized for this thermal architecture, along with its mechanical and implementation aspects. Additionally it will compare and contrast this approach with the more conventional solutions utilized earlier.

  17. Solar rotation effects on the thermospheres of Mars and Earth.

    PubMed

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  18. Identifying "Carrington Events" in Solar, Solar Wind, and Magnetospheric Data

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Riley, P.; Luhmann, J. G.; Lai, H.

    2016-12-01

    Extreme space weather begins when extraordinary levels of stored magnetic energy in the photosphere rapidly destabilizes. This destabilization generally releases a rapidly expelled plasma and magnetic flux rope. Large fluxes of highly relativistic particles signal the event and at Earth precede the expelled flux rope. The most recent such solar event did not encounter the Earth, but was recorded by STEREO A on July 23, 2012. The energy density in the relativistic particles that preceded the rapidly expanding magnetic cloud was so intense that the compression front expanded with a sub fast mode speed (i.e. `subsonically') and the compression front became a slow mode wave. The peak magnetic field in the rope was 109 nT, larger than any previously reported field at 1 AU in the solar wind. An equally fast disturbance left the Sun on September 1, 1859, and caused intense induced currents when it reached the Earth. It is likely that at least some of the magnetospheric currents were caused by the accompanying magnetic cloud, but magnetospheric diagnostics were scarce during this event. This first space weather event became the defining occurrence of extreme space weather. A second modern event not generally recognized as "Carrington" class, but arguably super-Carrington, arrived on August 4, 1972. Between the Apollo 16 and 17 missions. It was a strong producer of geomagnetic induced currents, but produced only a weak ring current, possibly because the part of the magnetic cloud in contact with the Earth had a polarity that did not couple the solar wind momentum flux to the magnetosphere. The pressure wave reached 1 AU in the shortest time of any recorded solar event and brought an energetic particle flux that would have harmed the astronauts had they been in space. To identify which solar events are capable of producing the most extreme space weather events, we must identify those that are expelled toward the Earth at the highest speeds. How these events manifest their extreme behavior at Earth depends on the magnetic configuration of the rope that interacts with the Earth's magnetosphere. Thus, predicting the magnetic structure of the rope is also important. In this talk, we compare these three Carrington class events to understand both how they might affect modern society, and how their effects might be predicted and mitigated.

  19. Detecting cold, wide orbit planets in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Deacon, Niall; Kraus, Adam

    2018-05-01

    Direct imaging exoplanet studies have recently unveiled a previously unexpected population of massive planets in wide orbits (>100AU). Although most of these discoveries have been around younger stars and have been of similar temperatures to field brown dwarfs, one object (WD 0806-661B), is the coldest planet known outside our solar system. In Spitzer Cycle 11 we surveyed stars and brown dwarfs within 8pc to identify massive planetary companions in the 150-1500AU separation range. Only 56 of our 196 stars were observed with two epochs of observation. We propose second epoch observations for 80 targets with first, but little or no second epoch observations. We will 1) Measure the fraction of wide planetary mass companions to stars in the Solar neighbourhood. 2) Identify approximately 5 planets, three of which will have temperatures below 300K making them ideal targets to study water clouds in cold atmospheres with both JWST and the next generation of ground-based extremely large telescopes. 3) Identify all planets around our target stars with masses above 8 Jupiter masses in our chosen projected separation range with lower mass limits for closer and younger stars. Our survey will be the most complete survey for wide planets to-date and will provide both a measurement of the wide planet population and a legacy of cold, well-constrained targets for future observations with JWST and Extremely Large Telescopes.

  20. The solar flare extreme ultraviolet to hard X-ray ratio

    NASA Technical Reports Server (NTRS)

    Mcclymont, A. N.; Canfield, R. C.

    1986-01-01

    Simultaneous measurements of the peak 10-1030 A extreme ultraviolet (EUV) flux enhancement and more than 10 keV hard X-ray (HXR) peak flux of many solar flare bursts, ranging over about four orders of magnitude in HXR intensity, are studied. A real departure from linearity is found in the relationship between the peak EUV and HXR fluxes in impulsive flare bursts. This relationship is well described by a given power law. Comparison of the predictions of the impulsive nonthermal thick-target electron beam model with observations shows that the model satisfactorily predicts the observed time differences between the HXR and EUV peaks and explains the data very well under given specific assumptions. It is concluded that the high-energy fluxes implied by the invariant area thick-target model cannot be completely ruled out, while the invariant area model with smaller low cutoff requires impossibly large beam densities. A later alternative thick-target model is suggested.

  1. Fluxes of MeV particles at Earth's orbit and their relationship with the global structure of the solar corona: Observations from SOHO

    NASA Technical Reports Server (NTRS)

    Posner, A.; Bothmer, V.; Kunow, H.; Heber, B.; Mueller-Mellin, R.; Delaboudiniere, J.-P.; Thompson, B. J.; Brueckner, G. E.; Howard, R. A.; Michels, D. J.

    1997-01-01

    The SOHO satellite, launched on 2 December 1995, combines a unique set of instruments which allow comparative studies of the interior of the sun, the outer corona and solar to be carried out. In its halo orbit around the L1 Lagrangian point of the sun-earth system, SOHO's comprehensive suprathermal and energetic particle analyzer (COSTEP) measures in situ energetic particles in the energy range of 44 keV/particle to greater than 53 MeV/n. The MeV proton, electron and helium nuclei measurements from the COSTEP electron proton helium instrument (EPHIN) were used to investigate the relationships of intensity increases of these particle species with the large-scale structures of the solar corona and heliosphere, including temporal variations. Coronal observatons are provided by the large angle spectroscopic coronagraph (LASCO) and the extreme ultraviolet imaging telescope (EIT). It was found that during times of minimum solar activity, intensity increases of the particles have two well defined sources: corotating interaction regions (CIRs) in the heliosphere related to coronal holes at the sun and coronal mass ejections.

  2. Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4.

    PubMed

    Mekhaldi, Florian; Muscheler, Raimund; Adolphi, Florian; Aldahan, Ala; Beer, Jürg; McConnell, Joseph R; Possnert, Göran; Sigl, Michael; Svensson, Anders; Synal, Hans-Arno; Welten, Kees C; Woodruff, Thomas E

    2015-10-26

    The origin of two large peaks in the atmospheric radiocarbon ((14)C) concentration at AD 774/5 and 993/4 is still debated. There is consensus, however, that these features can only be explained by an increase in the atmospheric (14)C production rate due to an extraterrestrial event. Here we provide evidence that these peaks were most likely produced by extreme solar events, based on several new annually resolved (10)Be measurements from both Arctic and Antarctic ice cores. Using ice core (36)Cl data in pair with (10)Be, we further show that these solar events were characterized by a very hard energy spectrum with high fluxes of solar protons with energy above 100 MeV. These results imply that the larger of the two events (AD 774/5) was at least five times stronger than any instrumentally recorded solar event. Our findings highlight the importance of studying the possibility of severe solar energetic particle events.

  3. Ultrathin and lightweight organic solar cells with high flexibility

    PubMed Central

    Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2012-01-01

    Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014

  4. GISOT: a giant solar telescope

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; von der Lühe, Oskar F.; Bettonvil, Felix C.; Jägers, Aswin P.; Snik, Frans

    2004-10-01

    A concept is presented for an extremely large high-resolution solar telescope with an aperture of 11 m and diffraction limited for visual wavelengths. The structure of GISOT will be transparent to wind and placed on a transparent stiff tower. For efficient wind flushing, all optics, including the primary mirror, will be located above the elevation axis. The aperture will be of the order of 11 m, not rotatively symmetrical, but of an elongated shape with dimensions 11 x 4 m. It consists of a central on-axis 4 m mirror with on both sides 3 pieces of 2 m mirrors. The optical layout will be kept simple to guarantee quality and minimize stray light. A Coudé room for instruments is planned below the telescope. The telescope will not be housed in a dome-like construction, which interferes with the open principle. Instead the telescope will be protected by a foldable tent construction with a diameter of the order of 30 m, which doesn"t form any obstruction during observations, but can withstand the severe weather circumstances on mountain sites. Because of the nature of the solar scene, extremely high resolution in only one dimension is sufficient to solve many exciting problems in solar physics and in this respect the concept of GISOT is very promising.

  5. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  6. Role of absorbing aerosols on hot extremes in India in a GCM

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.

    2017-12-01

    Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.

  7. A regressive storm model for extreme space weather

    NASA Astrophysics Data System (ADS)

    Terkildsen, Michael; Steward, Graham; Neudegg, Dave; Marshall, Richard

    2012-07-01

    Extreme space weather events, while rare, pose significant risk to society in the form of impacts on critical infrastructure such as power grids, and the disruption of high end technological systems such as satellites and precision navigation and timing systems. There has been an increased focus on modelling the effects of extreme space weather, as well as improving the ability of space weather forecast centres to identify, with sufficient lead time, solar activity with the potential to produce extreme events. This paper describes the development of a data-based model for predicting the occurrence of extreme space weather events from solar observation. The motivation for this work was to develop a tool to assist space weather forecasters in early identification of solar activity conditions with the potential to produce extreme space weather, and with sufficient lead time to notify relevant customer groups. Data-based modelling techniques were used to construct the model, and an extensive archive of solar observation data used to train, optimise and test the model. The optimisation of the base model aimed to eliminate false negatives (missed events) at the expense of a tolerable increase in false positives, under the assumption of an iterative improvement in forecast accuracy during progression of the solar disturbance, as subsequent data becomes available.

  8. The Major Magnetic Storm of March 13-14, 1989 and Associated Ionosphere Effects

    DTIC Science & Technology

    1993-06-30

    latitude. top-side ionospheric disturbance occurred on March 13 and 14. The mag- nitudes of the particle energy flux (ergs cm-’) (I erg -10’ J) and...Joule heating were not unusually large for a storm, but the area of the energy depesition, and thus the total energy deposition, was extremely large...all as more energy is transferred from the solar wind to the magnetosphere, but the cross polar-cap potential during this storm shows no evidence of

  9. The Interplanetary and Magnetospheric Causes of Extreme DB/dt at Equatorial Locations

    NASA Technical Reports Server (NTRS)

    Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.

    2016-01-01

    The 1 min resolution solar wind and geomagnetic data obtained from seven equatorial low-latitude stations during four extreme geomagnetic activities are used to investigate the extreme dB/dt perturbations. Simulations of the magnetospheric-ionospheric environment were also performed for varying amplitudes of the solar proton density. Simulations were carried out using the Space Weather Modeling Framework BATS-R-US + RCM model. Both the observations and simulations demonstrated that the appearance time of the extreme dB/dt perturbations at equatorial stations during disturbed conditions is instantaneous and equitable to those experienced at auroral regions yielding time lags of the order of a few seconds. We find that the rapid dB/dt enhancements are caused by the electric field of magnetospheric current origin, which is being enhanced by solar wind density and ram pressure variations and boosted by the equatorial electro jet. Our results indicate that the solar wind proton density variations could be used as a predictor of extreme dB/dt enhancement at equatorial latitudes.

  10. The interplanetary and magnetospheric causes of extreme dB/dt at equatorial locations

    NASA Astrophysics Data System (ADS)

    Adebesin, Babatunde O.; Pulkkinen, Antti; Ngwira, Chigomezyo M.

    2016-11-01

    The 1 min resolution solar wind and geomagnetic data obtained from seven equatorial/low-latitude stations during four extreme geomagnetic activities are used to investigate the extreme dB/dt perturbations. Simulations of the magnetospheric-ionospheric environment were also performed for varying amplitudes of the solar proton density. Simulations were carried out using the Space Weather Modeling Framework/BATS-R-US + RCM model. Both the observations and simulations demonstrated that the appearance time of the extreme dB/dt perturbations at equatorial stations during disturbed conditions is instantaneous and equitable to those experienced at auroral regions yielding time lags of the order of a few seconds. We find that the rapid dB/dt enhancements are caused by the electric field of magnetospheric current origin, which is being enhanced by solar wind density and ram pressure variations and boosted by the equatorial electrojet. Our results indicate that the solar wind proton density variations could be used as a predictor of extreme dB/dt enhancement at equatorial latitudes.

  11. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  12. SDO Pick of the Week

    NASA Image and Video Library

    2017-12-08

    Magnetic arcs of solar material spewing from our favorite sphere of hot plasma, the sun. Magnetic arcs of solar material held their shapes fairly well as they spiraled above two solar active regions over 18 hours on Jan. 11-12, 2017. The charged solar material, called plasma, traces out the magnetic field lines above the active regions when viewed in wavelengths of extreme ultraviolet light, captured here by NASA’s Solar Dynamics Observatory. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold for easy viewing. Credit: NASA/SDO

  13. Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Oh, Chang Jin; Lowman, Andrew E.; Smith, Greg A.; Su, Peng; Huang, Run; Su, Tianquan; Kim, Daewook; Zhao, Chunyu; Zhou, Ping; Burge, James H.

    2016-07-01

    Daniel K. Inouye Solar Telescope (formerly known as Advanced Technology Solar Telescope) will be the largest optical solar telescope ever built to provide greatly improved image, spatial and spectral resolution and to collect sufficient light flux of Sun. To meet the requirements of the telescope the design adopted a 4m aperture off-axis parabolic primary mirror with challenging specifications of the surface quality including the surface figure, irregularity and BRDF. The mirror has been completed at the College of Optical Sciences in the University of Arizona and it meets every aspect of requirement with margin. In fact this mirror may be the smoothest large mirror ever made. This paper presents the detail fabrication process and metrology applied to the mirror from the grinding to finish, that include extremely stable hydraulic support, IR and Visible deflectometry, Interferometry and Computer Controlled fabrication process developed at the University of Arizona.

  14. ULF/ELF Waves in Near-Moon Space

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomoko

    2016-02-01

    The reflection of the solar wind protons is equivalent to a beam injection against the solar wind flow. It is expected to produce a ring beam with a 3D distribution function in many cases. The reflected protons are responsible for the generation of ultra-low-frequency (ULF) waves at ˜0.01 Hz and narrowband waves at ˜1 Hz in the extremely low frequency (ELF) range through resonant interaction with magnetohydrodynamic waves and whistler mode waves in the solar wind, respectively. This chapter discusses these commonly observed waves in the near-Moon space. The sinusoidal waveforms and sharp spectra of the monochromatic ELF waves are impressive, but commonly observed are non-monochromatic waves in the ELF range ˜0.03-10 Hz. Some of the solar wind protons reflected by the dayside lunar surface or crustal magnetic field gyrate around the solar wind magnetic field and can access the center of the wake owing to the large Larmour radius.

  15. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  16. A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer

    NASA Astrophysics Data System (ADS)

    Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.

    2016-10-01

    The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.

  17. The Suess-Urey mission (return of solar matter to Earth).

    PubMed

    Rapp, D; Naderi, F; Neugebauer, M; Sevilla, D; Sweetnam, D; Burnett, D; Wiens, R; Smith, N; Clark, B; McComas, D; Stansbery, E

    1996-01-01

    The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.

  18. GOES-R SUVI EUV Flatfields Generated Using Boustrophedon Scans

    NASA Astrophysics Data System (ADS)

    Shing, L.; Edwards, C.; Mathur, D.; Vasudevan, G.; Shaw, M.; Nwachuku, C.

    2017-12-01

    The Solar Ultraviolet Imager (SUVI) is mounted on the Solar Pointing Platform (SPP) of the Geostationary Operational Environmental Satellite, GOES-R. SUVI is a Generalized Cassegrain telescope with a large field of view that employs multilayer coatings optimized to operate in six extreme ultraviolet (EUV) narrow bandpasses centered at 9.4, 13.1, 17.1, 19.5, 28.4 and 30.4 nm. The SUVI CCD flatfield response was determined using two different techniques; The Kuhn-Lin-Lorentz (KLL) Raster and a new technique called, Dynamic Boustrophedon Scans. The new technique requires less time to collect the data and is also less sensitive to Solar features compared with the KLL method. This paper presents the flatfield results of the SUVI using this technique during Post Launch Testing (PLT).

  19. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells

    PubMed Central

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook

    2015-01-01

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933

  20. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells.

    PubMed

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook

    2015-03-19

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.

  1. Extreme geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Ngwira, Chigomezyo

    2016-12-01

    We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically extreme values and theoretical upper limits of the solar wind parameters and of d B/d t, the time derivative of magnetic field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is based on a review of various papers, including those presented during Extreme Space Weather Workshops held in Japan in 2011, 2012, 2013, and 2014. Large-amplitude d B/d t values are the major cause of hazards associated with three different types of GICs: (1) slow d B/d t with ring current evolution (RC-type), (2) fast d B/d t associated with auroral electrojet activity (AE-type), and (3) transient d B/d t of sudden commencements (SC-type). We set "caution," "warning," and "emergency" alert levels during the main phase of superstorms with the peak Dst index of less than -300 nT (once per 10 years), -600 nT (once per 60 years), or -900 nT (once per 100 years), respectively. The extreme d B/d t values of the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-type GICs, a "transient alert" is also proposed for d B/d t values of 40 nT/s at low latitudes and 110 nT/s at high latitudes, especially when the solar energetic particle flux is unusually high.

  2. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in our sample was found to be higher. We found that a part of the filament, which erupted the day before, is in the process of reestablishing its initial configuration.

  3. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via modelling the ionosphere and detecting and forecasting its disturbances. At present a couple of nations, such as the US, UK, Japan, Canada and China, are taken the threats from extreme space weather events seriously and support the development of observing strategies and fundamental research. However, (extreme) space weather events are in all their consequences on the modern highly technologized society, causative global problems which have to be treated globally and not regionally or even nationally. Consequently, space weather monitoring must include (1) all space-geodetic observation techniques and (2) geodetic evaluation methods such as data combination, real-time modelling and forecast. In other words, geodetic space weather monitoring comprises the basic ideas of GGOS and will provide products such as forecasts of severe solar events in order to initiate necessary activities to protect the infrastructure of modern society.

  4. Planetary and deep space requirements for photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Bennett, R. B.; Stella, P. M.

    1995-01-01

    In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100 watts, up to several kilowatts (at Earth) in the case of solar electric propulsion missions. Thus, mass and stowage volume minimization will be required over a range of array sizes. Concentrator designs, inflatable structures, and the combination of solar arrays with the telecommunications system have been proposed. Performance, launch vehicle constraints, an cost will be the principal parameters in the design trade space. Other special applications will also be discussed, including requirements relating to planetary landers and probes. In those cases, issues relating to shock loads on landing, operability in (possibly dusty) atmospheres, and extreme temperature cycles must be considered, in addition to performance, stowed volume, and costs.

  5. On Feature Extraction from Large Scale Linear LiDAR Data

    NASA Astrophysics Data System (ADS)

    Acharjee, Partha Pratim

    Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are presented. Significant power demand is located in urban areas, where, theoretically, a large amount of building surface area is also available for solar panel installation. Therefore, property owners and power generation companies can benefit from a citywide solar potential map, which can provide available estimated annual solar energy at a given location. An efficient solar potential measurement is a prerequisite for an effective solar energy system in an urban area. In addition, the solar potential calculation from rooftops and building facades could open up a wide variety of options for solar panel installations. However, complex urban scenes make it hard to estimate the solar potential, partly because of shadows cast by the buildings. LiDAR-based 3D city models could possibly be the right technology for solar potential mapping. Although, most of the current LiDAR-based local solar potential assessment algorithms mainly address rooftop potential calculation, whereas building facades can contribute a significant amount of viable surface area for solar panel installation. In this paper, we introduce a new algorithm to calculate solar potential of both rooftop and building facades. Solar potential received by the rooftops and facades over the year are also investigated in the test area.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Bei; Liu, Ying D.; Hu, Huidong

    We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particlesmore » at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.« less

  7. Space Solar Power Multi-body Dynamics and Controls, Concepts for the Integrated Symmetrical Concentrator Configuration

    NASA Technical Reports Server (NTRS)

    Glaese, John R.; McDonald, Emmett J.

    2000-01-01

    Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.

  8. The Universality of the Rapid Neutron-capture Process Revealed by a Possible Disrupted Dwarf Galaxy Star

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2017-12-01

    The rapid neutron-capture or r-process is thought to produce the majority of the heavy elements (Z> 30) in extremely metal-poor stars. The same process is also responsible for a significant fraction of the heavy elements in the Sun. This universality of the r-process is one of its characteristic features, as well as one of the most important clues to its astrophysical origin. We report the discovery of an extremely metal-poor field giant with [{Sr},{Ba}/{{H}}]≈ -6.0 and [{Sr},{Ba}/{Fe}]≈ -3.0, the lowest abundances of strontium and barium relative to iron ever observed. Despite its low abundances, the star 2MASS J151113.24-213003.0 has [{Sr}/{Ba}]=-0.11+/- 0.14, therefore its neutron-capture abundances are consistent with the main solar r-process pattern that has [{Sr}/{Ba}]=-0.25. It has been suggested that extremely low neutron-capture abundances are a characteristic of dwarf galaxies, and we find that this star is on a highly eccentric orbit with an apocenter ≳100 kpc that lies in the disk of satellites in the halo of the Milky Way. We show that other extremely metal-poor stars with low [Sr, Ba/H] and [Sr, Ba/Fe] plus solar [Sr/Ba] tend to have orbits with large apocenters, consistent with a dwarf galaxy origin for this class of object. The nucleosynthesis event that produced the neutron-capture elements in 2MASS J151113.24-213003.0 must produce both strontium and barium together in the solar ratio. We exclude contributions from the s-process in intermediate-mass asymptotic giant branch or fast-rotating massive metal-poor stars, pair-instability supernovae, the weak r-process, and neutron-star mergers. We argue that the event was a Pop III or extreme Pop II core-collapse supernova explosion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  10. An atlas of solar events: 1996 2005

    NASA Astrophysics Data System (ADS)

    Artzner, G.; Auchère, F.; Delaboudinière, J. P.; Bougnet, M.

    2006-01-01

    Coronal mass ejections (CMEs) are observed in the plane of the sky in coronographic images. As the solar surface is masked by an occulting disk it is not clear whether halo CMEs are directed towards or away from the Earth. Observations of the solar corona on the solar disk by the extreme ultraviolet imaging telescope (EIT) on board the Solar Heliospheric Observatory SoHO can help to resolve this. Quasi-continuous observations of the solar corona were obtained from April 1997 up to the current date at a 12 min cadence in the coronal line of FeXII, as part of a “CME watch program”. At a slower 6 h cadence an additional synoptic program investigates the chromosphere and the corona at four different wavelengths. Large coronal solar events appear when viewing animations of the CME watch program. Fainter events do appear when viewing running difference animations of the CME watch program. When looking for additional spectral information from raw running differences of the synoptic program it is difficult to disentangle intrinsic solar events from the parasitic effect of the solar rotation. We constructed at www.ias.u-psud.fr/medoc/EIT/movies/ an atlas of more than 40,000 difference images from the synoptic programme, corrected for an average solar rotation, as well as more than 200,000 instantaneous and difference images from the CME watch program. We present case studies of specific events in order to investigate the source of darkenings or dimmings in difference images, due to the removal of emitting material, the presence of obscuring material or large changes in temperature. As the beneficial effect of correcting for the solar rotation vanishes at the solar limb, we do not investigate the case of prominence Doppler dimming. As a by-product of the atlas of solar events we obtain a number of quiet time sequences well suited to precisely measure the differential solar rotation by the apparent displacement of tracers.

  11. Precipitation response to solar geoengineering in a high-resolution tropical-cyclone permitting coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Irvine, P. J.; Keith, D.; Dykema, J. A.; Vecchi, G. A.; Horowitz, L. W.

    2016-12-01

    Solar geoengineering may limit or even halt the rise in global-average surface temperatures. Evidence from the geoMIP model intercomparison project shows that idealized geoengineering can greatly reduce temperature changes on a region-by-region basis. If solar geoengineering is used to hold radiative forcing or surface temperatures constant in the face of rising CO2, then the global evaporation and precipitation rates will be reduced below pre-industrial. The spartial and frequency distribution of the precipitation response is, however, much less well understood. There is limited evidence that solar geoengineering may reduce extreme precipitation events more that it reduces mean precipitation, but that evidence is based on relatively course resolution models that may to a poor job representing the distribution of extreme precipitation in the current climate. The response of global and regional climate, as well as tropical cyclone (TC) activity, to increasing solar geoengineering is explored through experiments with climate models spanning a broad range of atmospheric resolutions. Solar geoengineering is represented by an idealized adjustment of the solar constant that roughly halves the rate of increase in radiative forcing in a scenario with increasing CO2 concentration. The coarsest resolution model has approximately a 2-degree global resolution, representative of the typical resolution of past GCMs used to explore global response to CO2 increase, and its response is compared to that of two tropical cyclone permitting GCMs of approximately 0.5 and 0.25 degree resolution (FLOR and HiFLOR). The models have exactly the same ocean and sea-ice components, as well as the same parameterizations and parameter settings. These high-resolution models are used for real-time seasonal prediction, providing a unified framework for seasonal-to-multidecadal climate modeling. We assess the extreme precipitation response, comparing the frequency distribution of extreme events with and without solar geoengineering. We compare our results to two prior studies of the response of climate extremes to solar geoengineering.

  12. A Change in the Solar He II EUV Global Network Structure as an Indicator of the Geo-Effectiveness of Solar Minima

    NASA Technical Reports Server (NTRS)

    Didkovsky, L.; Gurman, J. B.

    2013-01-01

    Solar activity during 2007 - 2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +/- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008 - 2011.We interpret this higher concentration of spatial power in the transition region's global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He II EUV irradiance in addition to the estimations based on its absolute levels.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gen; Lee, Martin A., E-mail: gjk44@wildcats.unh.edu

    The effects of scatter-dominated interplanetary transport on the spectral properties of the differential fluence of large gradual solar energetic particle (SEP) events are investigated analytically. The model assumes for simplicity radial constant solar wind and radial magnetic field. The radial diffusion coefficient is calculated with quasilinear theory by assuming a spectrum of Alfvén waves propagating parallel to the magnetic field. Cross-field transport is neglected. The model takes into consideration several essential features of gradual event transport: nearly isotropic ion distributions, adiabatic deceleration in a divergent solar wind, and particle radial scattering mean free paths increasing with energy. Assuming an impulsivemore » and spherically symmetric injection of SEPs with a power-law spectrum near the Sun, the predicted differential fluence spectrum exhibits at 1 AU three distinctive power laws for different energy domains. The model naturally reproduces the spectral features of the double power-law proton differential fluence spectra that tend to be observed in extremely large SEP events. We select nine western ground-level events (GLEs) out of the 16 GLEs during Solar Cycle 23 and fit the observed double power-law spectra to the analytical predictions. The compression ratio of the accelerating shock wave, the power-law index of the ambient wave intensity, and the proton radial scattering mean free path are determined for the nine GLEs. The derived parameters are generally in agreement with the characteristic values expected for large gradual SEP events.« less

  14. High C/O Chemistry and Weak Thermal Inversion in the Extremely Irradiated Atmosphere of Exoplanet WASP-12b

    NASA Technical Reports Server (NTRS)

    Madhusudhan, Nikku; Harrington, Joseph; Nymeyer, Sarah; Campo, Christopher J.; Wheatley, Peter J.; Deming, Drake; Blecie, Jasmina; Hardy, Ryan A.; Lust, Nate B.; Anderson, David R.; hide

    2010-01-01

    The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior as opposed to the silicate-dominated composition as found on Earth; the solar C/O is 0.54. Theory, shows that high C/O leads to a diversity of carbon-rich planets that can have very different interiors and atmospheres from those in the solar system. Here we report the detection of C/O greater than or equal to 1 in a planetary atmosphere. The transiting hot Jupiter WASP-12b has a dayside atmosphere depleted in water vapour and enhanced in methane by over two orders of magnitude compared to a solar-abundance chemical equilibrium model at the expected temperatures. The observed concentrations of the prominent molecules CO, CH4, and H2O are consistent with theoretical expectations for an atmosphere with the observed C/O = 1. The C/O ratios are not known for giant planets in the solar system, although they are expected to equal the solar value. If high C/O ratios are common, then extrasolar planets are likely very different in interior composition, and formed very differently, from expectations based on solar composition, potentially explaining the large diversity in observed radii. We also find that the extremely irradiated atmosphere (greater than 2500 K) of WASP-12b lacks a prominent thermal inversion, or a stratosphere, and has very efficient day-night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.

  15. Great Ball of Fire - Activity from August 1 CME Subsides

    NASA Image and Video Library

    2010-08-06

    NASA image release August 6, 2010 On August 1, 2010, almost the entire Earth-facing side of the sun erupted in a tumult of activity. This image from the Solar Dynamics Observatory of the news-making solar event on August 1 shows the C3-class solar flare (white area on upper left), a solar tsunami (wave-like structure, upper right), multiple filaments of magnetism lifting off the stellar surface, large-scale shaking of the solar corona, radio bursts, a coronal mass ejection and more. This multi-wavelength extreme ultraviolet snapshot from the Solar Dynamics Observatory shows the sun's northern hemisphere in mid-eruption. Different colors in the image represent different gas temperatures. Earth's magnetic field is still reverberating from the solar flare impact on August 3, 2010, which sparked aurorae as far south as Wisconsin and Iowa in the United States. Analysts believe a second solar flare is following behind the first flare and could re-energize the fading geomagnetic storm and spark a new round of Northern Lights. Credit: NASA/SDO/AIA NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  16. Extremely Severe Space Weather and Geomagnetically Induced Currents in Regions with Locally Heterogeneous Ground Resistivity

    NASA Technical Reports Server (NTRS)

    Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi

    2016-01-01

    Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.

  17. Areas of Polar Coronal Holes from 1996 Through 2010

    NASA Technical Reports Server (NTRS)

    Webber, Hess S. A.; Karna, N.; Pesnell, W. D.; Kirk, M. S.

    2014-01-01

    Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.

  18. SOHO EIT Carrington maps from synoptic full-disk data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Newmark, J. S.; Gurman, J. B.; Delaboudiniere, J. P.; Clette, F.; Gibson, S. E.

    1997-01-01

    The solar synoptic maps, obtained from observations carried out since May 1996 by the extreme-ultraviolet imaging telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO), are presented. The maps were constructed for each Carrington rotation with the calibrated data. The off-limb maps at 1.05 and 1.10 solar radii were generated for three coronal lines using the standard applied to coronagraph synoptic maps. The maps reveal several aspects of the solar structure over the entire rotation and are used in the whole sun month modeling campaign. @txt extreme-ultraviolet imaging telescope

  19. Magnetic Flux Cancellation as the Trigger Mechanism of Solar Coronal Jets

    NASA Technical Reports Server (NTRS)

    McGlasson, Riley A.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Coronal jets are narrow eruptions in the solar corona, and are often observed in extreme ultraviolet (EUV) and X-Ray images. They occur everywhere on the solar disk: in active regions, quiet regions, and coronal holes (Raouafi et al. 2016). Recent studies indicate that most coronal jets in quiet regions and coronal holes are driven by the eruption of a minifilament (Sterling et al. 2015), and that this eruption follows flux cancellation at the magnetic neutral line under the pre-eruption minifilament (Panesar et al. 2016). We confirm this picture for a large sample of jets in quiet regions and coronal holes using multithermal extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). We report observations of 60 randomly selected jet eruptions. We have analyzed the magnetic cause of these eruptions and measured the base size and the duration of each jet using routines in SolarSoft IDL. By examining the evolutionary changes in the magnetic field before, during, and after jet eruption, we found that each of these jets resulted from minifilament eruption triggered by flux cancellation at the neutral line. In agreement with the above studies, we found our jets to have an average base diameter of 7600 +/- 2700 km and an average jet-growth duration of 9.0 +/- 3.6 minutes. These observations confirm that minifilament eruption is the driver and that magnetic flux cancellation is the primary trigger mechanism for nearly all coronal hole and quiet region coronal jet eruptions.

  20. If We Can't Predict Solar Cycle 24, What About Solar Cycle 34?

    NASA Technical Reports Server (NTRS)

    Pesnell. William Dean

    2008-01-01

    Predictions of solar activity in Solar Cycle 24 range from 50% larger than SC 23 to the onset of a Grand Minimum. Because low levels of solar activity are associated with global cooling in paleoclimate and isotopic records, anticipating these extremes is required in any longterm extrapolation of climate variability. Climate models often look forward 100 or more years, which would mean 10 solar cycles into the future. Predictions of solar activity are derived from a number of methods, most of which, such as climatology and physics-based models, will be familiar to atmospheric scientists. More than 50 predictions of the maximum amplitude of SC 24 published before solar minimum will be discussed. Descriptions of several methods that result in the extreme predictions and some anticipation of even longer term predictions will be presented.

  1. LEMUR: Large European Module for Solar Ultraviolet Research

    NASA Technical Reports Server (NTRS)

    Teriaca, Luca; Vincenzo, Andretta; Auchere, Frederic; Brown, Charles M.; Buchlin, Eric; Cauzzi, Gianna; Culhane, J. Len; Curdt, Werner; Davila, Joseph M.; Del Zanna, Giulio; hide

    2012-01-01

    The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 Angstrom and 1270 Angstrom. The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s - 1 or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.

  2. Sea shell solar collector

    DOEpatents

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  3. Extreme value analysis of the time derivative of the horizontal magnetic field and computed electric field

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Viljanen, Ari; Wik, Magnus

    2016-05-01

    High-frequency ( ≈ minutes) variability of ground magnetic fields is caused by ionospheric and magnetospheric processes driven by the changing solar wind. The varying magnetic fields induce electrical fields that cause currents to flow in man-made conductors like power grids and pipelines. Under extreme conditions the geomagnetically induced currents (GIC) may be harmful to the power grids. Increasing our understanding of the extreme events is thus important for solar-terrestrial science and space weather. In this work 1-min resolution of the time derivative of measured local magnetic fields (|dBh/dt|) and computed electrical fields (Eh), for locations in Europe, have been analysed with extreme value analysis (EVA). The EVA results in an estimate of the generalized extreme value probability distribution that is described by three parameters: location, width, and shape. The shape parameter controls the extreme behaviour. The stations cover geomagnetic latitudes from 40 to 70° N. All stations included in the study have contiguous coverage of 18 years or more with 1-min resolution data. As expected, the EVA shows that the higher latitude stations have higher probability of large |dBh/dt| and |Eh| compared to stations further south. However, the EVA also shows that the shape of the distribution changes with magnetic latitude. The high latitudes have distributions that fall off faster to zero than the low latitudes, and upward bounded distributions can not be ruled out. The transition occurs around 59-61° N magnetic latitudes. Thus, the EVA shows that the observed series north of ≈ 60° N have already measured values that are close to the expected maxima values, while stations south of ≈ ° N will measure larger values in the future.

  4. Solar neutrino detection in a large volume double-phase liquid argon experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, D.; Agnes, P.; Giganti, C.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all threemore » cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ''neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ∼15% precision, and significantly improve the precision of the {sup 7}Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.« less

  5. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    NASA Astrophysics Data System (ADS)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  6. Type II Radio Bursts as Indicators of Space Weather Drivers

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.

    2015-12-01

    Interplanetary type II radio bursts are important indicators of shock-driving coronal mass ejections (CMEs). CME-driven shocks are responsible for large solar energetic particle (SEP) events and sudden commencement/sudden impulse events recorded by ground magnetometers. The excellent overlap of the spatial domains probed by SOHO/STEREO coronagraphs with the spectral domains of Wind/WAVES and STEREO/WAVES has contributed enormously in understanding CMEs and shocks as space weather drivers. This paper is concerned with type II bursts of solar cycle 23 and 24 that had emission components down to kilometric wavelengths. CMEs associated with these bursts seem to be the best indicators of large SEP events, better than the halo CMEs. However, there are some differences between the type II bursts of the two cycles, which are explained based on the different states of the heliosphere in the two cycles. Finally, the type II burst characteristics of some recent extreme events are discussed.

  7. Doing Solar Science With Extreme-ultraviolet and X-ray High Resolution Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.

    2005-12-01

    In this talk I will demonstrate how high resolution extreme-ultraviolet (EUV) and/or X-ray imaging spectroscopy can be used to provide unique information for solving several current key problems of the solar atmosphere, e.g., the morphology and reconnection site of solar flares, the structure of the transition region, and coronal heating. I will describe the spectra that already exist relevant to these problems and what the shortcomings of the data are, and how an instrument such as the Extreme-ultraviolet Imaging Spectrometer (EIS) on Solar-B as well as other proposed spectroscopy missions such as NEXUS and RAM will improve on the existing observations. I will discuss a few particularly interesting properties of the spectra and atomic data for highly ionized atoms that are important for the science problems.

  8. Solar Radio Burst Statistics and Implications for Space Weather Effects

    NASA Astrophysics Data System (ADS)

    Giersch, O. D.; Kennewell, J.; Lynch, M.

    2017-11-01

    Solar radio bursts have the potential to affect space and terrestrial navigation, communication, and other technical systems that are sometimes overlooked. However, over the last decade a series of extreme L band solar radio bursts in December 2006 have renewed interest in these effects. In this paper we point out significant deficiencies in the solar radio data archives of the National Centers for Environmental Information (NCEI) that are used by most researchers in analyzing and producing statistics on solar radio burst phenomena. In particular, we examine the records submitted by the United States Air Force (USAF) Radio Solar Telescope Network (RSTN) and its predecessors from the period 1966 to 2010. Besides identifying substantial missing burst records we show that different observatories can have statistically different burst distributions, particularly at 245 MHz. We also point out that different solar cycles may show statistically different distributions and that it is a mistake to assume that the Sun shows similar behavior in different sunspot cycles. Large solar radio bursts are not confined to the period around sunspot maximum, and prediction of such events that utilize historical data will invariably be an underestimate due to archive data deficiencies. It is important that researchers and forecasters use historical occurrence frequency with caution in attempting to predict future cycles.

  9. Understanding the Physical Nature of Coronal "EIT Waves"

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Bloomfield, D. S.; Chen, P.-F.; Downs, C.; Gallagher, P. T.; Kwon, R.-Y.; Vanninathan, K.; Veronig, A.; Vourlidas, A.; Vrsnak, B.; Warmuth, A.; Zic, T.

    2016-10-01

    For almost 20 years the physical nature of globally-propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed throughout the years to explain observations that did not fit with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory with the fast-mode wave interpretation have been challenged by differing viewpoints from the Solar Terrestrial Relations Observatory spacecraft and higher spatial/temporal resolution data from the Solar Dynamics Observatory. In this paper, we reexamine the theories proposed to explain "EIT waves" to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that "EIT waves" are best described as fast-mode large-amplitude waves/shocks, which are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.

  10. Understanding the Physical Nature of Coronal "EIT Waves".

    PubMed

    Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T

    2017-01-01

    For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.

  11. Coronal Rain, Solar Storm

    NASA Image and Video Library

    2010-03-19

    Explanation: In this picture, the Sun's surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet's magnetic field about 31 hours later. The result ... a strong geomagnetic storm. Credit: NASA/GSFC/TRACE To learn more go to: nasascience.nasa.gov/missions/trace To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  12. Driving the Heliospheric Jellyfish

    NASA Astrophysics Data System (ADS)

    Leamon, R. J.; Mcintosh, S. W.

    2016-12-01

    Recent observational work has demonstrated that the enigmatic sunspotcycle and global magnetic environment of the Sun which source theeruptive events and modulate the solar wind, respectively, can beexplained in terms of the intra- and extra-hemispheric interaction ofmagnetic activity bands that belong to the 22-year magnetic polaritycycle. Those activity bands appear to be anchored deep in the Sun'sconvective interior and governed by the rotation of our star's radiativezone. We have also observed that those magnetic bands exhibit strongquasi-annual variability in the rotating convecting system which resultsin a significant local modulation of solar surface magnetism, forcingthe production of large eruptive events in each hemisphere that mouldsthe global-scale solar magnetic field and the solar-wind-inflatedheliosphere. Together with significant changes in the Sun's ultraviolet(UV), extreme ultraviolet (EUV), and X-Ray irradiance, these eruptivefluctuations ensnare all the Heliosphere (all of Heliophysics) like thetentacles of a jellyfish, and can be inferred in variations of suchwide-ranging phenomena as the South Atlantic Anomaly, the thermosphere,the radiation belts, and the can address ``Has Voyager left theHeliosphere?''

  13. A review on solar cells from Si-single crystals to porous materials and quantum dots

    PubMed Central

    Badawy, Waheed A.

    2013-01-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed. PMID:25750746

  14. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    PubMed

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  15. The Heliogyro Reloaded

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Thompson, M. W.; Lisman, P. D.; Walkemeyer, P. E.; Guerrant, D. V.; Lawrence, D. A.

    2011-01-01

    The heliogyro is a high-performance, spinning solar sail architecture that uses long - order of kilometers - reflective membrane strips to produce thrust from solar radiation pressure. The heliogyro s membrane blades spin about a central hub and are stiffened by centrifugal forces only, making the design exceedingly light weight. Blades are also stowed and deployed from rolls; eliminating deployment and packaging problems associated with handling extremely large, and delicate, membrane sheets used with most traditional square-rigged or spinning disk solar sail designs. The heliogyro solar sail concept was first advanced in the 1960s by MacNeal. A 15 km diameter version was later extensively studied in the 1970s by JPL for an ambitious Comet Halley rendezvous mission, but ultimately not selected due to the need for a risk-reduction flight demonstration. Demonstrating system-level feasibility of a large, spinning heliogyro solar sail on the ground is impossible; however, recent advances in microsatellite bus technologies, coupled with the successful flight demonstration of reflectance control technologies on the JAXA IKAROS solar sail, now make an affordable, small-scale heliogyro technology flight demonstration potentially feasible. In this paper, we will present an overview of the history of the heliogyro solar sail concept, with particular attention paid to the MIT 200-meter-diameter heliogyro study of 1989, followed by a description of our updated, low-cost, heliogyro flight demonstration concept. Our preliminary heliogyro concept (HELIOS) should be capable of demonstrating an order-of-magnitude characteristic acceleration performance improvement over existing solar sail demonstrators (HELIOS target: 0.5 to 1.0 mm/s2 at 1.0 AU); placing the heliogyro technology in the range required to enable a variety of science and human exploration relevant support missions.

  16. Coronal Elemental Abundances in Solar Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Baker, Deborah; Brooks, David H.; van Driel-Gesztelyi, Lidia; James, Alexander W.; Démoulin, Pascal; Long, David M.; Warren, Harry P.; Williams, David R.

    2018-03-01

    The chemical composition of solar and stellar atmospheres differs from the composition of their photospheres. Abundances of elements with low first ionization potential (FIP) are enhanced in the corona relative to high-FIP elements with respect to the photosphere. This is known as the FIP effect and it is important for understanding the flow of mass and energy through solar and stellar atmospheres. We used spectroscopic observations from the Extreme-ultraviolet Imaging Spectrometer on board the Hinode observatory to investigate the spatial distribution and temporal evolution of coronal plasma composition within solar emerging flux regions inside a coronal hole. Plasma evolved to values exceeding those of the quiet-Sun corona during the emergence/early-decay phase at a similar rate for two orders of magnitude in magnetic flux, a rate comparable to that observed in large active regions (ARs) containing an order of magnitude more flux. During the late-decay phase, the rate of change was significantly faster than what is observed in large, decaying ARs. Our results suggest that the rate of increase during the emergence/early-decay phase is linked to the fractionation mechanism that leads to the FIP effect, whereas the rate of decrease during the later decay phase depends on the rate of reconnection with the surrounding magnetic field and its plasma composition.

  17. Solar Power Satellites - A Review of the Space Transportation Options.

    DTIC Science & Technology

    1980-03-01

    already exists with such systems, gained mainly through liquid-metal breeder reactor programmes. 0 For example, inlet temperatures of 970 C can be handled...alternatives exist. In addition, there would be extreme reluctance on the part of most governments to allow large C- reactors , producing gigawatts of power, to...antenna. The reactors employed are high-temperature gas- cooled breeders , which convert U238 into fissile plutonium. Each of the modules includes a

  18. Quantifying variability in fast and slow solar wind: From turbulence to extremes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.

    2017-12-01

    Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L.F. (2001), J. Geophys. Res., 106(A8)

  19. Space weather influence on the agriculture technology and wheat prices in the medieval England (1259-1703) through cosmic ray/solar activity cycle variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.; Yom Din, G.

    2003-04-01

    The database of Professor Rogers (1887), which includes wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray intensity variations. The main object of our statistical analysis is investigation of bursts of prices. Our study shows that bursts and troughs of wheat prices take place at extreme states (maximums or minimums) of solar activity cycles. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by cosmic ray intensity solar cycle variations, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. The medians of both samples have the values of 11.00 and 10.7 years; standard deviations are 1.44 and 1.53 years for prices and for solar activity, respectively. The hypothesis that the frequency distributions are the same for both of the samples have significance level >95%. In the next step we analyzed direct links between wheat prices and cosmic ray cycle variations in the 17th Century, for which both wheat prices and cosmic ray intensity (derived from Be-10 isotope data) are available. We show that for all seven solar activity minimums (cosmic ray intensity maximums) the observed prices were higher than prices for the seven intervals of maximal solar activity (100% sign correlation). This result, combined with the conclusion of similarity of statistical properties of the price and solar activity extremes can be considered as direct evidence of a causal connection between wheat prices bursts and solar activity/cosmic ray intensity extremes.

  20. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  1. Image-based optimization of coronal magnetic field models for improved space weather forecasting

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.; MacNeice, P. J.

    2017-12-01

    The existing space weather forecasting frameworks show a significant dependence on the accuracy of the photospheric magnetograms and the extrapolation models used to reconstruct the magnetic filed in the solar corona. Minor uncertainties in the magnetic field magnitude and direction near the Sun, when propagated through the heliosphere, can lead to unacceptible prediction errors at 1 AU. We argue that ground based and satellite coronagraph images can provide valid geometric constraints that could be used for improving coronal magnetic field extrapolation results, enabling more reliable forecasts of extreme space weather events such as major CMEs. In contrast to the previously developed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions up to 1-2 solar radii above the photosphere. By applying the developed image processing techniques to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code developed S. Jones at al. (ApJ 2016, 2017). Our tracing results are shown to be in a good qualitative agreement with the large-scale configuration of the optical corona, and lead to a more consistent reconstruction of the large-scale coronal magnetic field geometry, and potentially more accurate global heliospheric simulation results. Several upcoming data products for the space weather forecasting community will be also discussed.

  2. Miniature Extreme Ultraviolet Solar Radiometers

    NASA Astrophysics Data System (ADS)

    McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.

    2015-12-01

    Free-standing zone plates for use in EUV solar radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total solar irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their small size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for small CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.

  3. Influence of mass moment of inertia on normal modes of preloaded solar array mast

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Lin, Paul

    1992-01-01

    Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies.

  4. A Topside Equatorial Ionospheric Density and Composition Climatology During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J. H.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R. F.; Rowland, D. E.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth's ionosphere and thermosphere when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Climatological altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the C/NOFS satellite to characterize the shape of the top side ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. [2009], here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  5. Topside Equatorial Ionospheric Density and Composition During and After Extreme Solar Minimum

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Simoes, F.; Ivanov, S.; Heelis, R. A.; Bilitza, D.; Pfaff, R.; Rowland, D.

    2011-01-01

    During the recent solar minimum, solar activity reached the lowest levels observed during the space age. This extremely low solar activity has accompanied a number of unexpected observations in the Earth s ionosphere-thermosphere system when compared to previous solar minima. Among these are the fact that the ionosphere is significantly contracted beyond expectations based on empirical models. Altitude profiles of ion density and composition measurements near the magnetic dip equator are constructed from the Communication/Navigation Outage Forecast System (C/NOFS) satellite to characterize the shape of the topside ionosphere during the recent solar minimum and into the new solar cycle. The variation of the profiles with respect to local time, season, and solar activity are compared to the IRI-2007 model. Building on initial results reported by Heelis et al. (2009), here we describe the extent of the contracted ionosphere, which is found to persist throughout 2009. The shape of the ionosphere during 2010 is found to be consistent with observations from previous solar minima.

  6. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  7. Magnetic Flux Cancellation as the Trigger of Solar Coronal Jets

    NASA Astrophysics Data System (ADS)

    McGlasson, R.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2017-12-01

    Coronal jets are narrow eruptions in the solar corona, and are often observed in extreme ultraviolet (EUV) and X-ray images. They occur everywhere on the solar disk: in active regions, quiet regions, and coronal holes (Raouafi et al. 2016). Recent studies indicate that most coronal jets in quiet regions and coronal holes are driven by the eruption of a minifilament (Sterling et al. 2015), and that this eruption follows flux cancellation at the magnetic neutral line under the pre-eruption minifilament (Panesar et al. 2016). We confirm this picture for a large sample of jets in quiet regions and coronal holes using multithermal (304 Å 171 Å, 193 Å, and 211 Å) extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO) /Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). We report observations of 60 randomly selected jet eruptions. We have analyzed the magnetic cause of these eruptions and measured the base size and the duration of each jet using routines in SolarSoft IDL. By examining the evolutionary changes in the magnetic field before, during, and after jet eruption, we found that each of these jets resulted from minifilament eruption triggered by flux cancellation at the neutral line. In agreement with the above studies, we found our jets to have an average base diameter of 7600 ± 2700 km and an average duration of 9.0 ± 3.6 minutes. These observations confirm that minifilament eruption is the driver and magnetic flux cancellation is the primary trigger mechanism for nearly all coronal hole and quiet region coronal jet eruptions.

  8. A Normal Incidence X-ray Telescope (NIXT) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    The solar corona, and the coronae of solar-type stars, consist of a low-density magnetized plasma at temperatures exceeding 10(exp 6) K. The primary coronal emission is therefore in the UV and soft X-ray range. The observed close connection between solar magnetic fields and the physical parameters of the corona implies a fundamental role for the magnetic field in coronal structuring and dynamics. Variability of the corona occurs on all temporal and spatial scales - at one extreme, as the result of plasma instabilities, and at the other extreme driven by the global magnetic flux emergence patterns of the solar cycle.

  9. The star-forming complex LMC-N79 as a future rival to 30 Doradus

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Meixner, Margaret; Jones, Olivia C.; Indebetouw, Remy; Rahman, Mubdi

    2017-11-01

    Within the early Universe, `extreme' star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z ≳ 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past 0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.

  10. Simultaneous Observations of a Large-scale Wave Event in the Solar Atmosphere: From Photosphere to Corona

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Liu, Yu

    2012-06-01

    For the first time, we report a large-scale wave that was observed simultaneously in the photosphere, chromosphere, transition region, and low corona layers of the solar atmosphere. Using the high temporal and high spatial resolution observations taken by the Solar Magnetic Activity Research Telescope at Hida Observatory and the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory, we find that the wave evolved synchronously at different heights of the solar atmosphere, and it propagated at a speed of 605 km s-1 and showed a significant deceleration (-424 m s-2) in the extreme-ultraviolet (EUV) observations. During the initial stage, the wave speed in the EUV observations was 1000 km s-1, similar to those measured from the AIA 1700 Å (967 km s-1) and 1600 Å (893 km s-1) observations. The wave was reflected by a remote region with open fields, and a slower wave-like feature at a speed of 220 km s-1 was also identified following the primary fast wave. In addition, a type-II radio burst was observed to be associated with the wave. We conclude that this wave should be a fast magnetosonic shock wave, which was first driven by the associated coronal mass ejection and then propagated freely in the corona. As the shock wave propagated, its legs swept the solar surface and thereby resulted in the wave signatures observed in the lower layers of the solar atmosphere. The slower wave-like structure following the primary wave was probably caused by the reconfiguration of the low coronal magnetic fields, as predicted in the field-line stretching model.

  11. The He-3/He-4 ratios for solar energetic particle events during the Combined Release and Radiation Effects Satellite Mission

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Wefel, John P.

    1995-01-01

    Helium data measured by the University of Chicago instrument, ONR-604, are employed to determine the ratio of He-3 to He-4 for solar energetic particle (SEP) events over an energy range 50-110 MeV/nucleon during the 1990/1991 Combined Release and Radiation Effects Satellite mission. The Sun in this period is extremely active. A total of 29 separate SEP events have been identified; among them 16 major events have been analyzed to obtain He-3/He-4 ratios, with a mass resolution of 0.10 amu. Thirteen events have a He-3/He-4 ratio larger than 0.005, one order of magnitude greater than the solar coronal value. The He-3/He-4 ratio at energies of 50-110 MeV/nucleon is independent of the size of the SEP event, for the moderately large flares analyzed here. The helium energy spectra are represented by power laws. During the 1991 June flare period, different large-particle injections associated with different solar flares, but occurring from the same active region, have a similar average spectral index and a similar He-3/He-4 ratio. The spectral index of He-4 varies from event to event, i.e., from as small as 1.5 to as large as 7.5. A correlation is found between the inferred spectral index from gamma-ray measurements and our measured spectral indices for the 1991 June 11 and June 15 events, suggesting that the high-energy SEPs may come from the same acceleration event as the particles that interact at the Sun and produce the gamma rays. The implications of these results for particle acceleration and propagation at the flare site and in the solar corona are discussed.

  12. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    PubMed

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  13. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  14. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion.

    PubMed

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-08-14

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ∼1 kW m(-2). The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.

  15. Long Duration Gamma-Ray Flares & Solar Energetic Particles — Is there a Connection?

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G.; Stochaj, S.

    2017-12-01

    Little is known still about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nearly a dozen SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of particle acceleration and transport models.

  16. Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun

    2015-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  17. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  18. Investigating the Origins of Two Extreme Solar Particle Events: Proton Source Profile and Associated Electromagnetic Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharov, Leon; Usoskin, Ilya; Pohjolainen, Silja

    We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associatedmore » with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.« less

  19. The Extreme-ultraviolet Emission from Sun-grazing Comets

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, William D.

    2012-01-01

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  20. Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind

    PubMed Central

    Lugaz, Noé; Farrugia, Charles J.; Huang, Chia-Lin; Winslow, Reka M.; Spence, Harlan E.; Schwadron, Nathan A.

    2016-01-01

    The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000–100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets. PMID:27694887

  1. Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind.

    PubMed

    Lugaz, Noé; Farrugia, Charles J; Huang, Chia-Lin; Winslow, Reka M; Spence, Harlan E; Schwadron, Nathan A

    2016-10-03

    The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.

  2. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  3. Probabilistic Forecast of Solar Particle Fluence for Mission Durations and Exposure Assessment in Consideration of Integral Proton Fluence at High Energies

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Tylka, A. J.; Dietrich, W. F.; Cucinotta, F. A.

    2012-12-01

    The occasional occurrence of solar particle events (SPEs) with large amounts of energy is non-predictable, while the expected frequency is strongly influenced by solar cycle activity. The potential for exposure to large SPEs with high energy levels is the major concern during extra-vehicular activities (EVAs) on the Moon, near Earth object, and Mars surface for future long duration space missions. We estimated the propensity for SPE occurrence with large proton fluence as a function of time within a typical future solar cycle from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Φ30. The database includes a comprehensive collection of historical data set for the past 5 solar cycles. Using all the recorded proton fluence of SPEs, total fluence distributions of Φ30, Φ60, and Φ100 were simulated ranging from its 5th to 95th percentile for each mission durations. In addition to the total particle intensity of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the radiation cancer risk associated with energetic particles for large events. For radiation exposure assessments of major SPEs, we used the spectral functional form of a double power law in rigidity (the so-called Band function), which have provided a satisfactory representation of the combined satellite and neutron monitor data from ~10 MeV to ~10 GeV. The dependencies of exposure risk were evaluated as a function of proton fluence at a given energy threshold of 30, 60, and 100 MeV, and overall risk prediction was improved as the energy level threshold increases from 30 to 60 to 100 MeV. The results can be applied to the development of approaches of improved radiation protection for astronauts, as well as the optimization of mission planning and shielding for future space missions.

  4. NASA's Solar Eclipse Composite Image July 11, 2010

    NASA Image and Video Library

    2017-12-08

    Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  5. Solar Corona Explorer: A mission for the physical diagnosis of the solar corona

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mission objectives and spacecraft requirements for the Solar Corona Explorer (SCE), a proposed free flying, unmanned solar research craft to be tenatively launched in 1987, were defined. The SCE's purpose is to investigate structure, dynamics and evolution of the corona, globally and in the required physical detail, to study the close coupling between the inner corona and the heliosphere. Investigative objectives are: (1) to understand the corona as the source of varying interplanetary plasma and of varying solar X-ray and extreme ultraviolet fluxes; (2) to develop the capabilities to model the corona with sufficient precision to forecast the Earth's variable environment in space, on the scales from weeks to years; (3) to develop an understanding of the physical processes that determine the dynamics and physical state of the coronal plasma, particularly acceleration processes; and (4) to develop insight and test theory on the Sun applicable to stellar coronae and winds, and in particular, to understand why cool stars put such a large fraction of their energy into X-rays. Considered related factors are: (1) duration of the mission; (2) onboard measuring instrumentation; (3) ground support equipment and procedures; and (4) programs of interpretation and modeling.

  6. The association of a J-burst with a solar jet

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.

    2017-10-01

    Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts observed at low frequencies, in a similar way to the J-burst analysed here. The movie attached to Fig. 4 is available at http://www.aanda.org

  7. Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer.

    PubMed

    Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; Kim, Ju Seong; Seo, Se Won; Kim, Dong Hoe; Zhu, Kai; Park, Taiho; Kim, Jin Young

    2017-06-22

    Given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22 %, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-type planar PSC with a large active area of >1 cm 2 . It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x , and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0 % (19.2 % for 0.1 cm 2 ) without showing hysteresis effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly Efficient and Uniform 1 cm 2 Perovskite Solar Cells with an Electrochemically Deposited NiO x Hole-Extraction Layer

    DOE PAGES

    Park, Ik Jae; Kang, Gyeongho; Park, Min Ah; ...

    2017-05-10

    Here, given that the highest certified conversion efficiency of the organic-inorganic perovskite solar cell (PSC) already exceeds 22%, which is even higher than that of the polycrystalline silicon solar cell, the significance of new scalable processes that can be utilized for preparing large-area devices and their commercialization is rapidly increasing. From this perspective, the electrodeposition method is one of the most suitable processes for preparing large-area devices because it is an already commercialized process with proven controllability and scalability. Here, a highly uniform NiO x layer prepared by electrochemical deposition is reported as an efficient hole-extraction layer of a p-i-n-typemore » planar PSC with a large active area of >1 cm 2. It is demonstrated that the increased surface roughness of the NiO x layer, achieved by controlling the deposition current density, facilitates the hole extraction at the interface between perovskite and NiO x, and thus increases the fill factor and the conversion efficiency. The electrochemically deposited NiO x layer also exhibits extremely uniform thickness and morphology, leading to highly efficient and uniform large-area PSCs. As a result, the p-i-n-type planar PSC with an area of 1.084 cm 2 exhibits a stable conversion efficiency of 17.0% (19.2% for 0.1 cm 2) without showing hysteresis effects.« less

  9. Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Krucker, Säm; Christe, Steven; Buitrago-Casas, Juan Camilo; Narukage, Noriyuki; Vievering, Juliana

    2017-11-01

    The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.

  10. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    PubMed

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII.

  12. Configuration of and Motions in the Solar Corona at the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Rusin, Vojtech; Vanur, Roman; Economou, Thanasis; Voulgaris, Aristeidis; Seiradakis, John H.; Seaton, Daniel; Dantowitz, Ronald; Lockwood, Christian A.; Nagle-McNaughton, Timothy; Perez, Cielo; Meadors, Erin N.; Marti, Connor J.; Yu, Ross; Rosseau, Brendan; Ide, Charles A.; Daly, Declan M.; Davis, Allen Bradford; Lu, Muzhou; Steele, Amy; Lee, Duane; Freeman, Marcus J.; Sliski, David; Rousseva, Ana; Greek Salem (Oregon) Team; Voulgaris, Aristeidis; Seiradakis, John Hugh; Koukioglou, Stavros; Kyriakou, Nikos; Vasileiadou, Anna; Greek Carbondale (Illinois) Team; Economou, Thanasis; Kanouras, Spyros; Irakleous, Christina; Golemis, Adrianos; Tsioumpanika, Nikoleta; Plexidas, Nikos; Tzimkas, Nikos; Kokkinidou, Ourania

    2018-06-01

    We report on high-contrast data reduction of white-light images from the August 21, 2017, total solar eclipse. We show the configuration of the solar corona at this declining phase of the solar-activity cycle, with the projection onto the plane of the sky of the three-dimensional coronal streamers plus extensive polar plumes. We discuss the relation of the white-light coronal loops visible in our observations with extreme-ultraviolet observations from NASA’s Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and NOAA’s GOES-16 Solar Ultraviolet Imager (SUVI). We show differences and motions over a 65-minute interval between observations from our main site at Willamette University in Salem, Oregon, and a subsidiary site in Carbondale, Illinois. We discuss, in particular, a giant demarcation about 1 solar radius outward in the southwest that crosses the radial streamers.Our observations of the eclipse were sponsored in large part by the Committee for Research and Exploration of the National Geographic Society and by the Solar Terrestrial Program of the National Geographic Society. Additional support was received from the NASA Massachusetts Space Grant Consortium, the Sigma Xi honorary scientific society, the University of Pennsylvania (for DS), the Slovak Academy of Sciences VEGA project 2/0003/16, and the Freeman Foote Expeditionary and Brandi funds at Williams College. We thank Stephen Thorsett, Rick Watkins, and Honey Wilson of Willamette University for their hospitality. See http://totalsolareclipse.org or http://sites.williams.edu/eclipse/2017-usa/.

  13. Slicing of silicon into sheet material: Silicon sheet growth development for the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1978-01-01

    The limits of blade tolerance were defined. The standard blades are T-2 thickness tolerance. Good results were obtained by using a slurry fluid consisting of mineral oil and a lubricity additive. Adjustments of the formulation and fine tuning of the cutting process with the new fluid are necessary. Test results and consultation indicate that the blade breakage encountered with water based slurries is unavoidable. Two full capacity (974 wafer) runs were made on the large prototype saw. Both runs resulted in extremely low yield. However, the reasons for the low yield were lack of proper technique rather than problems with machine function. The test on the effect of amount of material etched off of an as-sawn wafer on solar cell efficiency were completed. The results agree with previous work at JPL in that the minimum material removed per side that gives maximum efficiency is on the order of 10 microns.

  14. Statistical Modeling of Extreme Values and Evidence of Presence of Dragon King (DK) in Solar Wind

    NASA Astrophysics Data System (ADS)

    Gomes, T.; Ramos, F.; Rempel, E. L.; Silva, S.; C-L Chian, A.

    2017-12-01

    The solar wind constitutes a nonlinear dynamical system, presenting intermittent turbulence, multifractality and chaotic dynamics. One characteristic shared by many such complex systems is the presence of extreme events, that play an important role in several Geophysical phenomena and their statistical characterization is a problem of great practical relevance. This work investigates the presence of extreme events in time series of the modulus of the interplanetary magnetic field measured by Cluster spacecraft on February 2, 2002. One of the main results is that the solar wind near the Earth's bow shock can be modeled by the Generalized Pareto (GP) and Generalized Extreme Values (GEV) distributions. Both models present a statistically significant positive shape parameter which implyies a heavy tail in the probability distribution functions and an unbounded growth in return values as return periods become too long. There is evidence that current sheets are the main responsible for positive values of the shape parameter. It is also shown that magnetic reconnection at the interface between two interplanetary magnetic flux ropes in the solar wind can be considered as Dragon Kings (DK), a class of extreme events whose formation mechanisms are fundamentally different from others. As long as magnetic reconnection can be classified as a Dragon King, there is the possibility of its identification and even its prediction. Dragon kings had previously been identified in time series of financial crashes, nuclear power generation accidents, stock market and so on. It is believed that they are associated with the occurrence of extreme events in dynamical systems at phase transition, bifurcation, crises or tipping points.

  15. Propensity and Risk Assessment for Solar Particle Events: Consideration of Integral Fluence at High Proton Energies

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, alan H.; Cucinotta, Francis A.

    2008-01-01

    For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy > 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies >60 and >100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.

  16. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  17. Ground Deployment Demonstration and Material Testing for Solar Sail

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li

    2016-07-01

    Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.

  18. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  19. Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.

    2016-12-01

    The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10.1002/2016GL068920.

  20. The Coronal Analysis of SHocks and Waves (CASHeW) framework

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen A.; Davey, Alisdair; Kendrick, Alexander; Hammer, Michael; Keith, Celeste

    2017-11-01

    Coronal bright fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed (mostly in extreme ultraviolet (EUV) light) as transient bright fronts of finite width, propagating away from the eruption source location. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between waves in the low corona and coronal mass ejection (CME)-driven shocks. EUV imaging with the atmospheric imaging assembly instrument on the solar dynamics observatory has proven particularly useful for detecting large-scale short-lived CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the coronal analysis of shocks and waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the interactive data language. In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.

  1. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  2. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Fan, Peixun; Wu, Hui; Zhong, Minlin; Zhang, Hongjun; Bai, Benfeng; Jin, Guofan

    2016-07-01

    Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area.Efficient solar energy harvesting and photothermal conversion have essential importance for many practical applications. Here, we present a laser-induced cauliflower-shaped hierarchical surface nanostructure on a copper surface, which exhibits extremely high omnidirectional absorption efficiency over a broad electromagnetic spectral range from the UV to the near-infrared region. The measured average hemispherical absorptance is as high as 98% within the wavelength range of 200-800 nm, and the angle dependent specular reflectance stays below 0.1% within the 0-60° incident angle. Such a structured copper surface can exhibit an apparent heating up effect under the sunlight illumination. In the experiment of evaporating water, the structured surface yields an overall photothermal conversion efficiency over 60% under an illuminating solar power density of ~1 kW m-2. The presented technology provides a cost-effective, reliable, and simple way for realizing broadband omnidirectional light absorptive metal surfaces for efficient solar energy harvesting and utilization, which is highly demanded in various light harvesting, anti-reflection, and photothermal conversion applications. Since the structure is directly formed by femtosecond laser writing, it is quite suitable for mass production and can be easily extended to a large surface area. Electronic supplementary information (ESI) available: XRD patterns of the fs laser structured Cu surface as produced and after the photothermal conversion test, directly measured temperature values on Cu surfaces, temperature rise on Cu surfaces at varied solar irradiation angles, comparison of the white light and IR images of the structured Cu surface with the polished Cu surface, temperature rise on the peripheral zones of the blue coating surface. See DOI: 10.1039/c6nr03662g

  3. Circadian system of mice integrates brief light stimuli.

    PubMed

    Van Den Pol, A N; Cao, V; Heller, H C

    1998-08-01

    Light is the primary sensory stimulus that synchronizes or entrains the internal circadian rhythms of animals to the solar day. In mammals photic entrainment of the circadian pacemaker residing in the suprachiasmatic nuclei is due to the fact that light at certain times of day can phase shift the pacemaker. In this study we show that the circadian system of mice can integrate extremely brief, repeated photic stimuli to produce large phase shifts. A train of 2-ms light pulses delivered as one pulse every 5 or 60 s, with a total light duration of 120 ms, can cause phase shifts of several hours that endure for weeks. Single 2-ms pulses of light were ineffective. Thus these data reveal a property of the mammalian circadian clock: it can integrate and store latent sensory information in such a way that a series of extremely brief photic stimuli, each too small to cause a phase shift individually, together can cause a large and long-lasting change in behavior.

  4. An Eccentric Binary Millisecond Pulsar in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Champion, David J.; Ransom, Scott M.; Lazarus, Patrick; Camilo, Fernando; Bassa, Cess; Kaspi, Victoria M.; Nice, David J.; Freire, Paulo C. C.; Stairs, Ingrid H.; vanLeeuwen, Joeri; hide

    2008-01-01

    Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (M.) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 +/- 0.04 Solar Mass, an unusually high value.

  5. Convective penetration in a young sun

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  6. JPL Closeup

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Voyager, Infrared Astronomical Satellite, Galileo, Viking, Solar Mesosphere Explorer, Wide-field/Planetary Camera, Venus Mapper, International Solar Polar Mission - Solar Interplanetary Satellite, Extreme Ultraviolet Explores, Starprobe, International Halley Watch, Marine Mark II, Samex, Shuttle Imaging Radar-A, Deep Space Network, Biomedical Technology, Ocean Studies and Robotics are summarized.

  7. Evolution of spatial and temporal correlations in the solar wind - Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Klein, L. W.; Matthaeus, W. H.; Roberts, D. A.; Goldstein, M. L.

    1992-01-01

    Observations of solar wind magnetic field spectra from 1-22 AU indicate a distinctive structure in frequency which evolves with increasing heliocentric distance. At 1 AU extremely low frequency correlations are associated with temporal variations at the solar period and its first few harmonics. For periods of l2-96 hours, a l/f distribution is observed, which we interpret as an aggregate of uncorrelated coronal structures which have not dynamically interacted by 1 AU. At higher frequencies the familiar Kolmogorov-like power law is seen. Farther from the sun the frequency break point between the shallow l/f and the steeper Kolmogorov spectrum evolves systematically towards lower frequencies. We suggest that the Kolmogorov-like spectra emerge due to in situ turbulence that generates spatial correlations associated with the turbulent cascade and that the background l/f noise is a largely temporal phenomenon, not associated with in situ dynamical processes. In this paper we discuss these ideas from the standpoint of observations from several interplanetary spacecraft.

  8. Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.

    2017-12-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  9. Rosetta photoelectron emission and solar ultraviolet flux at comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, Fredrik L.; Odelstad, E.; Paulsson, J. J. P.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Eparvier, F.; Andersson, L.

    2017-07-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  10. SKYLAB (SL)-3 - EXPERIMENTS (APOLLO TELESCOPE MOUNT [ATM])

    NASA Image and Video Library

    1974-06-01

    S74-23458 (19 Dec. 1973) --- This photograph of the sun, taken on Dec. 19, 1973, during the third and final manned Skylab mission (Skylab 4), shows one of the most spectacular solar flares ever recorded, spanning more than 588,000 kilometers (365,000 miles) across the solar surface. The last picture, taken some 17 hours earlier, showed this feature as a large quiescent prominence on the eastern side of the sun. The flare gives the distinct impression of a twisted sheet of gas in the process of unwinding itself. Skylab photographs such quiescent features erupt from the sun. In this photograph the solar poles are distinguished by a relative absence of supergranulation network, and a much darker tone than the central portions of the disk. Several active regions are seen on the eastern side of the disk. The photograph was taken in the light of ionized helium by the extreme ultraviolet spectroheliograph instrument of the United States Naval Research Laboratory. Photo credit: NASA

  11. AWARE - The Automated EUV Wave Analysis and REduction algorithm

    NASA Astrophysics Data System (ADS)

    Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.

    2016-10-01

    Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.

  12. Differential Rotation via Tracking of Coronal Bright Points.

    NASA Astrophysics Data System (ADS)

    McAteer, James; Boucheron, Laura E.; Osorno, Marcy

    2016-05-01

    The accurate computation of solar differential rotation is important both as a constraint for, and evidence towards, support of models of the solar dynamo. As such, the use of Xray and Extreme Ultraviolet bright points to elucidate differential rotation has been studied in recent years. In this work, we propose the automated detection and tracking of coronal bright points (CBPs) in a large set of SDO data for re-evaluation of solar differential rotation and comparison to other results. The big data aspects, and high cadence, of SDO data mitigate a few issues common to detection and tracking of objects in image sequences and allow us to focus on the use of CBPs to determine differential rotation. The high cadence of the data allows to disambiguate individual CBPs between subsequent images by allowing for significant spatial overlap, i.e., by the fact that the CBPs will rotate a short distance relative to their size. The significant spatial overlap minimizes the effects of incorrectly detected CBPs by reducing the occurrence of outlier values of differential rotation. The big data aspects of the data allows to be more conservative in our detection of CBPs (i.e., to err on the side of missing CBPs rather than detecting extraneous CBPs) while still maintaining statistically larger populations over which to study characteristics. The ability to compute solar differential rotation through the automated detection and tracking of a large population of CBPs will allow for further analyses such as the N-S asymmetry of differential rotation, variation of differential rotation over the solar cycle, and a detailed study of the magnetic flux underlying the CBPs.

  13. STRUCTURE AND DYNAMICS OF THE 2010 JULY 11 ECLIPSE WHITE-LIGHT CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasachoff, J. M.; Rusin, V.; Saniga, M.

    The white-light corona (WLC) during the total solar eclipse on 2010 July 11 was observed by several teams in the Moon's shadow stretching across the Pacific Ocean and a number of isolated islands. We present a comparison of the WLC as observed by eclipse teams located on the Tatakoto Atoll in French Polynesia and on Easter Island, 83 minutes later, combined with near-simultaneous space observations. The eclipse was observed at the beginning of the solar cycle, not long after solar minimum. Nevertheless, the solar corona shows a plethora of different features (coronal holes, helmet streamers, polar rays, very faint loopsmore » and radial-oriented thin streamers, a coronal mass ejection, and a puzzling 'curtain-like' object above the north pole). Comparing the observations from the two sites enables us to detect some dynamic phenomena. The eclipse observations are further compared with a hairy-ball model of the magnetic field and near-simultaneous images from the Atmospheric Imaging Assembly on NASA's Solar Dynamics Observatory, the Extreme Ultraviolet Imager on NASA's Solar Terrestrial Relations Observatory, the Sun Watcher, using Active Pixel System Detector and Image Processing on ESA's PRoject for Onboard Autonomy, and the Naval Research Laboratory's Large Angle and Spectrometric Coronagraph on ESA's Solar and Heliospheric Observatory. The Ludendorff flattening coefficient is 0.156, matching the expected ellipticity of coronal isophotes at 2 Rs{sub un}, for this rising phase of the solar-activity cycle.« less

  14. Spectral Analyses and Radiation Exposures from Several Ground-Level Enhancement (GLE) Solar Proton Events: A Comparison of Methodologies

    NASA Technical Reports Server (NTRS)

    Atwell, William; Tylka, Allan; Dietrich, William; Badavi, Francis; Rojdev, Kristina

    2011-01-01

    Several methods for analyzing the particle spectra from extremely large solar proton events, called Ground-Level Enhancements (GLEs), have been developed and utilized by the scientific community to describe the solar proton energy spectra and have been further applied to ascertain the radiation exposures to humans and radio-sensitive systems, namely electronics. In this paper 12 GLEs dating back to 1956 are discussed, and the three methods for describing the solar proton energy spectra are reviewed. The three spectral fitting methodologies are EXP [an exponential in proton rigidity (R)], WEIB [Weibull fit: an exponential in proton energy], and the Band function (BAND) [a double power law in proton rigidity]. The EXP and WEIB methods use low energy (MeV) GLE solar proton data and make extrapolations out to approx.1 GeV. On the other hand, the BAND method utilizes low- and medium-energy satellite solar proton data combined with high-energy solar proton data deduced from high-latitude neutron monitoring stations. Thus, the BAND method completely describes the entire proton energy spectrum based on actual solar proton observations out to 10 GeV. Using the differential spectra produced from each of the 12 selected GLEs for each of the three methods, radiation exposures are presented and discussed in detail. These radiation exposures are then compared with the current 30-day and annual crew exposure limits and the radiation effects to electronics.

  15. A FAST PROPAGATING EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A MINI-FILAMENT ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Ruisheng; Jiang Yunchun; Yang Jiayan

    The fast extreme-ultraviolet (EUV) waves (>1000 km s{sup -1}) in the solar corona were very rare in the past. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory observations, we present a fast EUV wave associated with a mini-filament eruption, a C1.0 flare, and a coronal mass ejection (CME) on 2011 September 30. The event took place at the periphery between two active regions (ARs). The mini-filament rapidly erupted as a blowout jet associated with a flare and a CME. The CME front was likely developed from the large-scale overlying loops. The wave onset wasmore » nearly simultaneous with the start of the jet and the flare. The wave departed far from the flare center and showed a close location relative to the rapid jet. The wave had an initial speed of about 1100 km s{sup -1} and a slight deceleration in the last phase, and the velocity decreased to about 500 km s{sup -1}. The wave propagated in a narrow angle extent, likely to avoid the ARs on both sides. All the results provide evidence that the fast EUV wave was a fast-mode MHD wave. The wave resisted being driven by the CME, because it opened up the large-scale loops and its front likely formed later than the wave. The wave was most likely triggered by the jet, due to their close timing and location relations.« less

  16. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  17. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  18. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  19. An Overview of the Solar-C Mission

    NASA Astrophysics Data System (ADS)

    Lemen, J. R.; Tarbell, T. D.; Cirtain, J. W.; DeLuca, E. E.; Doschek, G. A.

    2013-12-01

    Solar-C is a new mission in solar and heliospheric physics that is being proposed to JAXA for launch in 2020. It will be led by Japan with major contributions from the US and Europe. The main scientific objectives of the mission are to: * Determine the properties and evolution of the three dimensional magnetic field, especially on small spatial scales, using direct spectro-polarimetric measurements in the photosphere and chromosphere, and accurate model extrapolations and dynamic simulations into the corona that are based, for the first time, on boundary fields observed in a low plasma beta region; * Observe and understand fundamental physical processes such as magnetic reconnection, magneto-hydrodynamic waves, shocks, turbulence, and plasma instabilities * Reveal the mechanisms responsible for the heating and dynamics of the chromosphere and corona and the acceleration of the solar wind, and understand how plasma and energy are transferred between different parts of the solar atmosphere; * Determine the physical origin of the large-scale explosions and eruptions (flares, jets, and CMEs) that drive short-term solar, heliospheric, and geospace variability. To achieve the science objectives, Solar-C will deploy a carefully coordinated suite of three complementary instruments: the Solar Ultra-violet Visible and IR Telescope (SUVIT), the high-throughput EUV Spectroscopic Telescope (EUVST), and an X-ray Imaging Telescope/Extreme Ultraviolet Telescope (XIT). For the first time, it will simultaneously observe the entire atmosphere---photosphere, chromosphere, transition region, and corona---and do so with essentially the same spatial and temporal resolution at all locations. As is the case for other solar observatories, the Solar-C mission will have an open data policy. We provide an overview of the mission and its contributions to the future of solar physics and space weather research.

  20. THE UBIQUITOUS PRESENCE OF LOOPLIKE FINE STRUCTURE INSIDE SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil

    Although most of the solar surface outside active regions (ARs) is pervaded by small-scale fields of mixed polarity, this magnetic “carpet” or “junkyard” is thought to be largely absent inside AR plages and strong network. However, using extreme-ultraviolet images and line-of-sight magnetograms from the Solar Dynamics Observatory, we find that unipolar flux concentrations, both inside and outside ARs, often have small, loop-shaped Fe ix 17.1 and Fe xii 19.3 nm features embedded within them, even though no minority-polarity flux is visible in the corresponding magnetograms. Such looplike structures, characterized by horizontal sizes of ∼3–5 Mm and varying on timescales ofmore » minutes or less, are seen inside bright 17.1 nm moss, as well as in fainter moss-like regions associated with weaker network outside ARs. We also note a tendency for bright coronal loops to show compact, looplike features at their footpoints. Based on these observations, we suggest that present-day magnetograms may be substantially underrepresenting the amount of minority-polarity flux inside plages and strong network, and that reconnection between small bipoles and the overlying large-scale field could be a major source of coronal heating both in ARs and in the quiet Sun.« less

  1. High-Energy Solar Energetic Particles & Long Duration Gamma-Ray Flares — Is there a Connection?

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Boezio, M.; Bruno, A.; Christian, E. R.; Martucci, M.; Mergè, M.; Mocchiutti, E.; Munini, R.; Ricci, M.; Ryan, J. M.; Share, G. H.; Stochaj, S.

    2016-12-01

    Little is known about the origin of the high-energy and sustained emission from Long Duration Gamma-Ray Flares (LDGRFs), identified with Compton Gamma-Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/LAT has identified dozens of flares with LDGRF emission, the nature of this emission has been a challenge to explain both due to the extreme energies and long durations. The highest energy emission has generally been attributed to pion production from the interaction of high-energy protons with the ambient matter, suggesting that particle acceleration occurs over large volumes extending high in the corona, either from stochastic acceleration within large coronal loops or from back precipitation from CME-driven shocks. It is possible to test these models by making direct comparisons between the accelerated ion population at the flare derived from the observations of Fermi/LAT with PAMELA measurements of solar energetic particles in the energy range corresponding to the pion-related emission observed with Fermi. For nine SEP events, we compare the two populations (SEPs in space and the interacting population at the Sun) and discuss the implications in terms of the contending theories for LDGF emission. On behalf of the PAMELA Collaboration

  2. Solar sphere viewed through the Skylab solar physics experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the Sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on August 21, 1973.

  3. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats.

    PubMed

    Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee

    2016-08-01

    Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming.

  4. Technology perspectives in the future exploration of extreme environments

    NASA Astrophysics Data System (ADS)

    Cutts, J.; Balint, T.; Kolawa, El.; Peterson, C.

    2007-08-01

    Solar System exploration is driven by high priority science goals and objectives at diverse destinations, as described in the NRC Decadal Survey and in NASA's 2006 Solar System Exploration (SSE) Roadmap. Proposed missions to these targets encounter extreme environments, including high or low temperatures, high pressure, corrosion, high heat flux, radiation and thermal cycling. These conditions are often coupled, such as low temperature and high radiation at Europa; and high temperature and high pressure near the surface of Venus. Mitigation of these environmental conditions frequently reaches beyond technologies developed for terrestrial applications, for example, by the automotive and oil industries. Therefore, space agencies require dedicated technology developments to enable these future missions. Within NASA, proposed missions are divided into three categories. Competed small (Discovery class) and medium (New Frontiers class) missions are cost capped, thus limiting significant technology developments. Therefore, large (Flagship class) missions are required not only to tackle key science questions which can't be addressed by smaller missions, but also to develop mission enabling technologies that can feed forward to smaller missions as well. In a newly completed extreme environment technology assessment at NASA, we evaluated technologies from the current State of Practice (SoP) to advanced concepts for proposed missions over the next decades. Highlights of this report are discussed here, including systems architectures, such as hybrid systems; protection systems; high temperature electronics; power generation and storage; mobility technologies; sample acquisition and mechanisms; and the need to test these technologies in relevant environments. It is expected that the findings - documented in detail in NASA's Extreme Environments Technologies report - would help identifying future technology investment areas, and in turn enable or enhance planned SSE missions, while reducing mission cost and risk.

  5. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  6. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  7. Probalistic Assessment of Radiation Risk for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2008-01-01

    For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.

  8. Space Radiation Hazards on Human Missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Townsend, L.

    2004-12-01

    One of the most significant health risks for humans exploring Earth's moon and Mars is exposure to the harsh space radiation environment. Crews on these exploration missions will be exposed to a complex mixture of very energetic particles. Chronic exposures to the ever-present background galactic cosmic ray (GCR) spectrum consisting of various fluxes of all naturally - occurring chemical elements are combined with infrequent, possibly acute exposures to large fluxes of solar energetic particles, consisting of protons and heavier particles. The GCR environment is primarily a concern for stochastic effects, such as the induction of cancer, with subsequent mortality in many cases, and late deterministic effects, such as cataracts and possible damage to the central nervous system. An acute radiation syndrome response ("radiation sickness") is not possible from the GCR environment since the organ doses are well below levels of concern. Unfortunately, the actual risks of cancer induction and mortality for the very important high-energy heavy ion component of the GCR spectrum are essentially unknown. The sporadic occurrence of extremely large solar energetic particle events, usually associated with intense solar activity, is also a major concern for Lunar and Mars missions because of the possible manifestation of acute effects from the accompanying high doses of such radiations, especially acute radiation syndrome effects such as nausea, emesis, hemorrhaging or possibly even death. Large solar energetic particle events can also contribute significantly to crew risks from cancer mortality. In this presentation an overview of current estimates of critical organ doses and equivalent doses for crews of Lunar and Mars bases and on those on transits between Earth and Mars is presented. Possible methods of mitigating these radiation exposures by shielding, thereby reducing the associated health risks to crews, are also described.

  9. Extreme Magnetic Storms: Their Characteristics and Possible Consequences for Humanity

    NASA Astrophysics Data System (ADS)

    Falkowski, B. J.; Tsurutani, B.; Lakhina, G. S.; Deng, Y.; Mannucci, A. J.

    2015-12-01

    The solar and interplanetary conditions necessary to create an extreme magnetic storm will be discussed. The Carrington 1859 event was not the largest possible. It will be shown that different facets of fast ICMEs/extreme magnetic storms will have different limitations. Some possible adverse effects of such extreme space weather events on society will be addressed.

  10. The Major Solar Eruptive Event in July 2012: Defining Extreme Space Weather Scenarios (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2013-12-01

    A key goal for the space weather community is to define extreme conditions that might plausibly afflict human technology. On 23 July 2012 solar active region 1520 (~133°W heliographic longitude) gave rise to a powerful coronal mass ejection (CME) with an initial speed that was determined to be >3000 km/s. The eruption was directed away from Earth toward 144°W longitude. STEREO-A sensors detected the CME arrival only about 18 hours later and made in situ measurements of the solar wind and interplanetary magnetic field. We have posed the question of what would have happened if this huge interplanetary event had been Earthward directed. Using a well-proven geomagnetic storm forecast model, we find that the 23-24 July event would certainly have produced a geomagnetic storm that was comparable to the largest events of the 20th Century (Dst ~ -500nT). Using plausible assumptions about seasonal and time-of-day orientation of the Earth's magnetic dipole, the most extreme modeled value of storm-time disturbance would have been Dst=-1182nT. This is probably considerably larger than the famous Carrington storm of 1859. This finding has far reaching implications because it demonstrates that extreme space weather conditions such as those during March of 1989 or September of 1859 can happen even during a modest solar activity cycle such as the one presently underway. We argue that this extreme event should immediately be employed by the space weather community to model severe space weather effects on technological systems such as the electric power grid.

  11. The Influence of the Several Very Large Solar Proton Events in Years 2000-2003 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Sinnhuber, Miriam; Anderson, John; McPeters, Richard D.; FLeming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's neutral middle atmosphere. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, April 2002, and October 2003. Smaller, but still substantial, proton fluxes impacted the Earth during other months from year 2000 to 2003. The Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model was used in computing the influence of the SPEs. The impact of these extremely large SPEs was calculated to be especially large in the upper stratosphere and mesosphere. The results of the GSFC 2D Model will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  12. Solar sphere viewed through the Skylab solar physics experiment

    NASA Image and Video Library

    1973-08-21

    S73-32867 (21 Aug. 1973) --- The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on Aug. 21, 1973. Photo credit: NASA

  13. Evidence for Alfvén Waves in Source Flares of Impulsive Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.; Gomez-Herrero, R.; Nitta, N.

    2017-12-01

    Impulsive solar energetic particle events, characterised by a peculiar elemental composition with the rare elements like 3He and ultra-heavy ions enhanced by factors up to ten thousand above their thermal abundance, have been puzzling for almost 50 years. The solar sources of these events have been commonly associated with coronal jets, believed to be a signature of magnetic reconnection involving field lines open to interplanetary space. Here we present some of the most intense events, highly enriched in both 3He and heavier ions. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. During the last decade, it has been established that the helical motions in coronal jets represent propagating Alfvén waves. Revealing such magnetic-untwisting waves in the solar sources of highly enriched events in this study is consistent with a stochastic acceleration mechanism. An examination of jets in previously reported impulsive solar energetic particle events indicates that they tend to be large-scale blowout jets, sometimes cleanly showing a twisted configuration.The work of R. Bucik is supported by the Deutsche Forschungsgemeinschaft grant BU 3115/2-1.

  14. The rate of planet formation and the solar system's small bodies

    NASA Technical Reports Server (NTRS)

    Safronov, Viktor S.

    1991-01-01

    The evolution of random velocities and the mass distribution of preplanetary body at the early stage of accumulation are currently under review. Arguments were presented for and against the view of an extremely rapid, runaway growth of the largest bodies at this stage with parameter values of Theta approximately greater than 10(exp 3). Difficulties are encountered assuming such a large Theta: (1) bodies of the Jovian zone penetrate the asteroid zone too late and do not have time to hinder the formation of a normal-sized planet in the asteroidal zone and thereby remove a significant portion of the mass of solid matter and (2) Uranus and Neptune cannot eject bodies from the solar system into the cometary cloud. Therefore, the values Theta less than 10(exp 2) appear to be preferable.

  15. Modelling the dynamics of a hypothetical Planet X by way of gravitational N-body simulator

    NASA Astrophysics Data System (ADS)

    Cowley, Michael; Hughes, Stephen

    2017-03-01

    This paper describes a novel activity to model the dynamics of a Jupiter-mass, trans-Neptunian planet of a highly eccentric orbit. Despite a history rooted in modern astronomy, ‘Planet X’, a hypothesised hidden planet lurking in our outer Solar System, has often been touted by conspiracy theorists as the cause of past mass extinction events on Earth, as well as other modern-day doomsday scenarios. Frequently dismissed as pseudoscience by astronomers, these stories continue to draw the attention of the public by provoking mass media coverage. Targeted at junior undergraduate levels, this activity allows students to debunk some of the myths surrounding Planet X by using simulation software to demonstrate that such a large-mass planet with extreme eccentricity would be unable to enter our Solar System unnoticed, let alone maintain a stable orbit.

  16. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  17. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  18. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.

    2003-05-01

    It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  19. Toroidal varied-line space (TVLS) gratings

    NASA Astrophysics Data System (ADS)

    Thomas, Roger J.

    2003-02-01

    It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bučík, Radoslav; Innes, Davina E.; Mason, Glenn M.

    Small, {sup 3}He-rich solar energetic particle (SEP) events have been commonly associated with extreme-ultraviolet (EUV) jets and narrow coronal mass ejections (CMEs) that are believed to be the signatures of magnetic reconnection, involving field lines open to interplanetary space. The elemental and isotopic fractionation in these events are thought to be caused by processes confined to the flare sites. In this study, we identify 32 {sup 3}He-rich SEP events observed by the Advanced Composition Explorer , near the Earth, during the solar minimum period 2007–2010, and we examine their solar sources with the high resolution Solar Terrestrial Relations Observatory (more » STEREO ) EUV images. Leading the Earth, STEREO -A has provided, for the first time, a direct view on {sup 3}He-rich flares, which are generally located on the Sun’s western hemisphere. Surprisingly, we find that about half of the {sup 3}He-rich SEP events in this survey are associated with large-scale EUV coronal waves. An examination of the wave front propagation, the source-flare distribution, and the coronal magnetic field connections suggests that the EUV waves may affect the injection of {sup 3}He-rich SEPs into interplanetary space.« less

  1. Image compression software for the SOHO LASCO and EIT experiments

    NASA Technical Reports Server (NTRS)

    Grunes, Mitchell R.; Howard, Russell A.; Hoppel, Karl; Mango, Stephen A.; Wang, Dennis

    1994-01-01

    This paper describes the lossless and lossy image compression algorithms to be used on board the Solar Heliospheric Observatory (SOHO) in conjunction with the Large Angle Spectrometric Coronograph and Extreme Ultraviolet Imaging Telescope experiments. It also shows preliminary results obtained using similar prior imagery and discusses the lossy compression artifacts which will result. This paper is in part intended for the use of SOHO investigators who need to understand the results of SOHO compression in order to better allocate the transmission bits which they have been allocated.

  2. KSC-08pd0783

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, the mechanism on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, solar arrays has been released. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  3. KSC-08pd0765

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, one of twin solar arrays is positioned on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  4. Research notes : solar powered markers not up to challenge.

    DOT National Transportation Integrated Search

    2008-06-01

    ODOT performed preliminary tests on eight different models of solar powered raised pavement markers. These included environmental tests (extreme temperatures, immersion), optical performance tests, and observation tests. Federal Highway Administratio...

  5. Fluorescence of molecular hydrogen excited by solar extreme-ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Fastie, W. G.

    1973-01-01

    During trans-earth coast, the Apollo 17 ultraviolet spectrometer was scheduled to make observations of the far ultraviolet background in selected regions of the sky. In the course of one of these observations, the spacecraft fuel cells were routinely purged of excess hydrogen and water vapor. The ultraviolet fluorescence spectrum of the purged molecular hydrogen excited by solar extreme ultraviolet radiation is interpreted by absorption of solar L-beta and L-gamma radiation in the nearly resonant (6, 0) and (11, 0) Lyman bands. The results are deemed significant for ultraviolet spectroscopic investigations of the atmospheres of the moon and planets since Lyman-band fluorescence provides an unambiguous means of identification of molecular hydrogen in upper atmospheres.

  6. Photonic crystal enhanced silicon cell based thermophotovoltaic systems

    DOE PAGES

    Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...

    2015-01-30

    We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less

  7. Analysis of Surface Charging for a Candidate Solar Sail Mission Using NASCAP-2K

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph L.; Davis, V. A.; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design tasks. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.9 AU LI solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k. the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  8. Analysis of Surface Charging for a Candidate Solar Sail Mission Using Nascap-2k

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.; Davis, Victoria; Mandell, Myron; Gardner, Barbara

    2005-01-01

    The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design task. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.0 AU L1 solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.

  9. The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude.

    PubMed

    Bütikofer, R; Flückiger, E O; Desorgher, L; Moser, M R

    2008-03-01

    In January 2005 toward the end of solar activity cycle 23 the Sun was very active. Between 15 and 20 January 2005, the solar active region NOAA AR 10720 produced five powerful solar flares. In association with this major solar activity several pronounced variations in the ground-level cosmic ray intensity were observed. The fifth of these flares (X7.1) produced energetic solar cosmic rays that caused a giant increase in the count rates of the ground-based cosmic ray detectors (neutron monitors). At southern polar neutron monitor stations the increase of the count rate reached several thousand percent. From the recordings of the worldwide network of neutron monitors, we determined the characteristics of the solar particle flux near Earth. In the initial phase of the event, the solar cosmic ray flux near Earth was extremely anisotropic. The energy spectrum of the solar cosmic rays was fairly soft during the main and the decay phase. We investigated also the flux of different secondary particle species in the atmosphere and the radiation dosage at flight altitude. Our analysis shows a maximum increment of the effective dose rate due to solar cosmic rays in the south polar region around 70 degrees S and 130 degrees E at flight altitude of almost three orders of magnitude.

  10. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  11. Diagnosing the Prominence-Cavity Connection in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.

    The energetic equilibrium of the corona is described by a balance of heating, thermal conduction, and radiative cooling. Prominences can be described by the thermal instability of coronal energy balance which leads to the formation of cool condensations. Observationally, the prominence is surrounded by a density depleted elliptical structure known as a cavity. In this dissertation, we use extreme ultraviolet remote sensing observations of the prominence-cavity system to diagnose the static and dynamic properties of these structures. The observations are compared with numerical models for the time-dependent coronal condensation process and the time-independent corona-prominence magnetic field. To diagnose the density of the cavity, we construct a three-dimensional structural model of the corona. This structural model allows us to synthesize extreme ultraviolet emission in the corona in a way that incorporates the projection effects which arise from the optically thin plasma. This forward model technique is used to constrain a radial density profile simultaneously in the cavity and the streamer. We use a χ2 minimization to find the density model which best matches a density sensitive line ratio (observed with Hinode/Extreme ultraviolet Imaging Spectrometer) and the white light scattered intensity (observed with Mauna Loa Solar Observatory MK4 coronagraph). We use extreme ultraviolet spectra and spectral images to diagnose the dynamics of the prominence and the surrounding corona. Based on the doppler shift of extreme ultraviolet coronal emission lines, we find that there are large regions of flowing plasma which appear to occur within cavities. These line of sight flows have speeds of 10 km/s-1 and projected spatial scales of 100 Mm. Using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) dataset, we observe dynamic emission from the prominence-cavity system. The SDO/AIA dataset observes multiple spectral bandpasses with different temperature sensitivities. Time-dependent changes in the observed emission in these bandpass images represent changes in the thermodynamic properties of the emitting plasma. We find that the coronal region surrounding the prominence exhibits larger intensity variations (over tens of hours of observations) as compared to the streamer region. This variability is particularly strong in the cool coronal emission of the 171Å bandpass. We identify the source of this variability as strong brightening events that resemble concave-up loop segments and extend from the cool prominence plasma. Magnetic field lines are the basic structural building block of the corona. Energy and pressure balance in the corona occur along magnetic field lines. The large-scale extreme ultraviolet emission we observe in the corona is a conglomerate of many coronal loops projected along a line of sight. In order to calculate the plasma properties at a particular point in the corona, we use one-dimensional models for energy and pressure balance along field lines. In order to predict the extreme ultraviolet emission along a particular line of sight, we project these one-dimensional models onto the three-dimensional magnetic configuration provided by a MHD model for the coronal magnetic field. These results have allowed us to the establish the first comprehensive picture on the magnetic and energetic interaction of the prominence and the cavity. While the originally hypothesis that the cavity supplies mass to the prominence proved inaccurate, we cannot simply say that these structures are not related. Rather our findings suggest that the prominence and the cavity are distinct magnetic substructures that are complementary regions of a larger whole, specifically a magnetic flux rope. (Abstract shortened by UMI.).

  12. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajfirouze, E.; Safari, H.

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponentmore » of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.« less

  13. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    NASA Astrophysics Data System (ADS)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  14. International Space Station Columbus Payload SoLACES Degradation Assessment

    NASA Technical Reports Server (NTRS)

    Hartman, William A.; Schmidl, William D.; Mikatarian, Ron; Soares, Carlos; Schmidtke, Gerhard; Erhardt, Christian

    2016-01-01

    SOLAR is a European Space Agency (ESA) payload deployed on the International Space Station (ISS) and located on the Columbus Laboratory. It is located on the Columbus External Payload Facility in a zenith location. The objective of the SOLAR payload is to study the Sun. The SOLAR payload consists of three instruments that allow for measurement of virtually the entire electromagnetic spectrum (17 nm to 2900 nm). The three payload instruments are SOVIM (SOlar Variable and Irradiance Monitor), SOLSPEC (SOLar SPECctral Irradiance measurements), and SolACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers).

  15. A Long-Term Dissipation of the EUV He ii (30.4 nm) Segmentation in Full-Disk Solar Images

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid

    2018-06-01

    Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010 - 2017 were used to continue our previous analyses reported by Didkovsky and Gurman ( Solar Phys. 289, 153, 2014a) and Didkovsky, Wieman, and Korogodina ( Solar Phys. 292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two "standard" solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a "typical" trend of instrumental degradation or a long-term activity profile from the He ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.

  16. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  17. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats

    PubMed Central

    Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee

    2016-01-01

    Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming. PMID:27540589

  18. A New Approach to Geoengineering: Manna From Heaven

    NASA Astrophysics Data System (ADS)

    Ellery, Alex

    2015-04-01

    Geo-engineering, although controversial, has become an emerging factor in coping with climate change. Although most are terrestrial-based technologies, I focus on a space-based approach implemented through a solar shield system. I present several new elements that essentially render the high-cost criticism moot. Of special relevance are two seemingly unrelated technologies - the Resource Prospector Mission (RPM) to the Moon in 2018 that shall implement a technology demonstration of simple material resource extraction from lunar regolith, and the emergence of multi-material 3D printing technology that promises unprecedented robotic manufacturing capabilities. My research group has begun theoretical and experimentation work in developing the concept of a 3D printed electric motor system from lunar-type resources. The electric motor underlies every universal mechanical machine. Together with 3D printed electronics, I submit that this would enable self-replicating machines to be realised. A detailed exposition on how this may be achieved will be outlined. Such self-replicating machines could construct the spacecraft required to implement a solar shield and solar power satellites in large numbers from lunar resources with the same underlying technologies at extremely low cost.

  19. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.

    PubMed

    Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A

    2015-12-08

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

  20. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

    PubMed Central

    Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.

    2015-01-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  1. Survey views of the Mir space station taken during rendezvous

    NASA Image and Video Library

    1997-01-16

    STS081-709-061 (12-22 Jan. 1997) --- As recorded while Space Shuttle Atlantis was docked with Russia's Mir Space Station, this 70mm camera's frame shows South Africa's wine growing country (immediately right of the solar panel) in a southwest-looking perspective. Most of the population in the Western Cape Province, as it is known, is clustered in the wet extreme south of the country identified here with denser cloud masses. This is the Mediterranean region of the country, experiencing summer drought when the photograph was taken. Cape Town lies immediately right of the solar panel and the Swartland wheat country to the left. The darker green areas are more heavily vegetated regions on the continental escarpment. The large bay in the region is the remote St. Helena Bay (Africa's southernmost point, Cape Agulhas, lies behind the solar panel). The cloud-free parts of the country in the foreground is the sparsely populated semidesert known as the Karroo, a quiet region to which people retire both for its rare dry climate and its beauty.

  2. EXPLAINING INVERTED-TEMPERATURE LOOPS IN THE QUIET SOLAR CORONA WITH MAGNETOHYDRODYNAMIC WAVE-MODE CONVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, Avery J.; Cranmer, Steven R.

    Coronal loops trace out bipolar, arch-like magnetic fields above the Sun’s surface. Recent measurements that combine rotational tomography, extreme-ultraviolet imaging, and potential-field extrapolation have shown the existence of large loops with inverted-temperature profiles, i.e., loops for which the apex temperature is a local minimum, not a maximum. These “down loops” appear to exist primarily in equatorial quiet regions near solar minimum. We simulate both these and the more prevalent large-scale “up loops” by modeling coronal heating as a time-steady superposition of (1) dissipation of incompressible Alfvén wave turbulence and (2) dissipation of compressive waves formed by mode conversion from themore » initial population of Alfvén waves. We found that when a large percentage (>99%) of the Alfvén waves undergo this conversion, heating is greatly concentrated at the footpoints and stable “down loops” are created. In some cases we found loops with three maxima that are also gravitationally stable. Models that agree with the tomographic temperature data exhibit higher gas pressures for “down loops” than for “up loops,” which is consistent with observations. These models also show a narrow range of Alfvén wave amplitudes: 3 to 6 km s{sup -1} at the coronal base. This is low in comparison to typical observed amplitudes of 20–30 km s{sup -1} in bright X-ray loops. However, the large-scale loops we model are believed to compose a weaker diffuse background that fills much of the volume of the corona. By constraining the physics of loops that underlie quiescent streamers, we hope to better understand the formation of the slow solar wind.« less

  3. Maximizing the Science Output of GOES-R SUVI during Operations

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Vasudevan, G.; Mathur, D. P.; Mansir, D.; Shing, L.; Edwards, C. G.; Seaton, D. B.; Darnel, J.; Nwachuku, C.

    2017-12-01

    Regular manual calibrations are an often-unavoidable demand on ground operations personnel during long-term missions. This paper describes a set of features built into the instrument control software and the techniques employed by the Solar Ultraviolet Imager (SUVI) team to automate a large fraction of regular on-board calibration activities, allowing SUVI to be operated with little manual commanding from the ground and little interruption to nominal sequencing. SUVI is a Generalized Cassegrain telescope with a large field of view that images the Sun in six extreme ultraviolet (EUV) narrow bandpasses centered at 9.4, 13.1, 17.1, 19.5, 28.4 and 30.4 nm. It is part of the payload of the Geostationary Operational Environmental Satellite (GOES-R) mission.

  4. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-02-01

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode. We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3-5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4-7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.

  5. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-02-10

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close tomore » sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.« less

  6. The Effect of "Rogue" Active Regions on the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  7. Mass loss in M67 giants - Evidence from isochrone fitting

    NASA Technical Reports Server (NTRS)

    Tripicco, Michael J.; Dorman, Ben; Bell, R. A.

    1993-01-01

    A comparison between the color-magnitude diagram of M67 and a new set of theoretical evolutionary models which include all phases from the unevolved main-sequence through core-helium burning and onto the AGB is presented. The present 5-Gyr solar abundance isochrone is found to yield an excellent fit to the whole of the M67 color-magnitude diagram. A differential technique that compares the gap in color between clump giants and normal red giants, on one hand, with the temperature gap between core He-burning tracks and first-ascent RGB tracks, on the other, strongly indicates that the clump giants in M67 have masses of 0.70 solar mass or less. The extremely large amount of mass loss that is deduced is well in excess of that found for globular cluster stars. Possible resolutions of this problem are that degree of mass loss increases with total stellar mass, or with metallicity.

  8. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    NASA Technical Reports Server (NTRS)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  9. Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry.

    PubMed

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatsu, Yuta; Endo, Masamori

    2017-09-01

    We demonstrate an extremely low-concentrated solar-pumped laser (SPL) using a fiber laser with transverse excitation geometry. A low concentration factor is highly desired in SPLs to eliminate the need for precise solar tracking and to considerably increase the practical applications of SPL technology. In this Letter, we have exploited the intrinsic low-loss property of silica fibers to compensate for the extremely low gain coefficient of the weakly pumped active medium. A 40 m long Nd 3+ -doped fiber coil is packed in a ring-shaped chamber filled with a sensitizer solution. We demonstrated a lasing threshold that is 15 times the concentration of natural sunlight and two orders of magnitude smaller than those of conventional SPLs.

  10. .beta.-silicon carbide protective coating and method for fabricating same

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.

    1994-01-01

    A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or .mu.c-SiC film on the surface and produce .beta.--SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface.

  11. Evidence of mass outflow in the low corona over a large sunspot

    NASA Astrophysics Data System (ADS)

    Neupert, W. M.; Brosius, J. W.; Thomas, R. J.; Thompson, W. T.

    1994-04-01

    An extreme ultraviolet (EUV) imaging spectrograph designed for sounding rocket flight has been used to search for velocity fields in the low solar corona. During a flight in May, 1989, we obtained emission line profile measurements along a chord through an active region on the Sun. Relative Doppler velocities were measured in emission lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2-3 km/s at 350 A. The only Doppler shift appreciably greater than this level was observed in the line of Mg IX at 368.1 A over the umbra of the large sunspot. The maximum shift measured at that location corresponded to a velocity toward the observer of 14 plus or minus 3 km/s relative to the mean of measurements in that emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10 deg of the line of sight at the location of maximum Doppler shift. Depending on the magnetic field geometry, this mass outflow could either re-appear as a downflow of material in distant footprints of closed coronal loops or, if along open field lines, could contribute to the solar wind. The site of the sunspot was near a major photospheric magnetic field boundary. Such boundaries have been associated with low-speed solar winds as observed in interplanetary plasmas.

  12. On the derivation of empirical limits on the helium abundance in coronal holes below 1.5 solar radius

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Esser, Ruth

    1994-01-01

    We present a simple technique describing how limits on the helium abundance, alpha, defined as the ratio of helium to proton number density, can be inferred from measurements of the electron density and temperature below 1.5 solar radius. As an illustration, we apply this technique to two different data sets: emission-line intensities in the extreme ultraviolet (EUV) and white-light observations, both measured in polar coronal holes. For the EUV data, the temperature gradient is derived from line intensity ratios, and the density gradient is replaced by the gradient of the line intensity. The lower limit on alpha derived from these data is 0.2-0.3 at 1 solar radius and drops very sharply to interplanetary values of a few percent below 1.06 solar radius. The white-light observations yield density gradients in the inner corona beyond 1.25 solar radius but do not have corresponding temperature gradients. In this case we consider an isothermal atmosphere, and derive an upper limit of 0.2 for alpha. These examples are used to illustrate how this technique could be applicable to the more extensive data to be obtained with the upcoming SOHO mission. Although only ranges on alpha can be derived, the application of the technique to data currently available merely points to the fact that alpha can be significantly large in the inner corona.

  13. Flux Cancelation: The Key to Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv

    2017-01-01

    Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA (Solar Dynamics Observatory / Atmospheric Imaging Assembly) and SDO/HIM (Solar Dynamics Observatory / Helioseismic and Magnetic Imager) data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV (Extreme Ultra-Violet) images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs (Coronal Mass Ejections). We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.

  14. Continental-Scale Temperature Reconstructions from the PAGES 2k Network

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.

    2012-12-01

    We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse gases. PC2 captures 18% of the variability and is correlated most strongly with the Southern Hemisphere regions of Australasia and South America. PC3 captures 15% of the variability in the temperature reconstructions with a predominant loading from Antarctica. The timing of extremely warm and cold decades (10th percentiles) in each region were analyzed and compared with climate forcings. Only 22% of the regionally coldest decades can be ascribed to extreme minima in solar forcing, and 17% to volcanic forcing. The association between extremely warm regional temperatures and solar maxima is weaker than for cold temperatures and their corresponding solar minima. Spatially, volcanic forcing moderately increased the frequency of extremely cold decades in the Northern Hemisphere reconstructions, but had no significant effect in the Southern Hemisphere. Solar and volcanic impacts do not induce globally consistent decadal temperature shifts, but they increase the probability of cooling or warming at the continental scale. The majority of cold and warm decades identified here cannot be explained by changes in the records of volcanic activity or solar forcing. This indicates that at this timescale, prior to the anthropogenic buildup of greenhouse gases, unforced internal variability in the coupled ocean/atmosphere system was the dominant control on temperature variation.

  15. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; DelCastillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  16. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  17. Global differences between moderate and large storms

    NASA Astrophysics Data System (ADS)

    Valek, P. W.; Buzulukova, N.; Fok, M. C. H.; Goldstein, J.; Keesee, A. M.; McComas, D. J.; Perez, J. D.

    2015-12-01

    The current solar maximum has been relatively quiet compared to previous solar cycles. Whereas numerous moderate storms (Dst < -50 nT) have occurred, there have been only a small number of large (Dst < - 100 nT) and extreme (Dst < -200 nT) storms. Throughout this sequence of storms, the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission has since 2008 observed the inner magnetosphere. TWINS consists of two ENA cameras flown aboard two separate spacecraft in Molniya orbits. TWINS images the ENA emissions from the inner magnetosphere across a broad range of energies (1 to 100 keV for H, 16 to 256 keV for O). This allows TWINS to observe the evolution in space and time of the trapped and precipitating particles most relevant for storm time dynamics on very high time scales (i.e., minutes). Here we will present the differences seen between moderate storms and the two large storms of 17 March 2015 (Dst < -223, St. Patrick's day storm) and 22 June 2015 (Dst < -195 nT). We will present composition-separated ENA observations of the inner magnetosphere covering the both the medium (1 to 30 keV) and high (30 to > 100 keV) energy ranges, and describe how the inner magnetosphere evolves during storm time.

  18. Manufacturing of super-polished large aspheric/freeform optics

    NASA Astrophysics Data System (ADS)

    Kim, Dae Wook; Oh, Chang-jin; Lowman, Andrew; Smith, Greg A.; Aftab, Maham; Burge, James H.

    2016-07-01

    Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.

  19. Geocentric solar electric propulsion vehicle design.

    NASA Technical Reports Server (NTRS)

    Harney, E. D.; Lapins, U. E.; Molitor, J. H.

    1972-01-01

    Mission applications have been studied that use solar electric propulsion (SEP) to inject payloads into geocentric orbits. Two specific applications feasible with current technology are described that approximate practical bounds for the next decade. In the lower extreme, SEP is used on a Thor-Delta launched satellite to maximize the weight injected into synchronous orbits. In the other extreme, SEP is used in a reusable interorbital tug together with an all-chemical shuttle/tug transportation system. Different trajectory profiles are required to most efficiently accomplish the overall mission objectives in the two cases.

  20. Surface atmospheric extremes (Launch and transportation areas)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The effects of extreme values of surface and low altitude atmospheric parameters on space vehicle design, tests, and operations are discussed. Atmospheric extremes from the surface to 150 meters for geographic locations of interest to NASA are given. Thermal parameters (temperature and solar radiation), humidity, pressure, and atmospheric electricity (lighting and static) are presented. Weather charts and tables are included.

  1. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.

    PubMed

    Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram

    2017-05-10

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  2. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  3. The Durham Adaptive Optics Simulation Platform (DASP): Current status

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Bharmal, N. A.; Jenkins, D.; Morris, T. J.; Osborn, J.; Peng, J.; Staykov, L.

    2018-01-01

    The Durham Adaptive Optics Simulation Platform (DASP) is a Monte-Carlo modelling tool used for the simulation of astronomical and solar adaptive optics systems. In recent years, this tool has been used to predict the expected performance of the forthcoming extremely large telescope adaptive optics systems, and has seen the addition of several modules with new features, including Fresnel optics propagation and extended object wavefront sensing. Here, we provide an overview of the features of DASP and the situations in which it can be used. Additionally, the user tools for configuration and control are described.

  4. Extensive Coronal Hole

    NASA Image and Video Library

    2017-09-02

    A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942

  5. CCD photometry of the Uranian satellites

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Gibson, James; Mosher, Joel A.

    1992-01-01

    Broadband V and R CCD observations of the Uranian satellite system have been obtained over the full range of solar phase angles observable from earth. These first visual observations of the phase curves of Miranda, Ariel, and Umbriel show that Ariel and Miranda exhibit the large opposition surges previously seen on the two outer Uranian Satellites. Umbriel, however, lacks an appreciable opposition surge; its surface is either extremely compact or consists of small particles which lack a backscattered component. The tenuous structure of the other satellites is most likely due to the effects of eons of meteoritic gardening.

  6. KSC-08pd0764

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians guide one of twin solar arrays toward NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  7. KSC-08pd0781

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism on the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  8. KSC-08pd0784

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, completes the test of the deployment mechanism on its solar arrays. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  9. KSC-08pd0762

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, a General Dynamics technician studies one of twin solar arrays that will be installed on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  10. KSC-08pd0761

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians prepare to install the twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  11. KSC-08pd0770

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians install the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  12. KSC-08pd0763

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians lift one of twin solar arrays that will be installed on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  13. KSC-08pd0782

    NASA Image and Video Library

    2008-03-21

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician prepares to test the deployment mechanism of the solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Jim Grossmann

  14. KSC-08pd0771

    NASA Image and Video Library

    2008-03-20

    CAPE CANAVERAL, Fla. --- In the Astrotech payload processing facility, a General Dynamics technician finishes the installation of the second of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  15. KSC-08pd0769

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians move the second of twin solar arrays toward NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  16. KSC-08pd0766

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians install one of twin solar arrays on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  17. Lightcurve Studies of Trans-Neptunian Objects from the Outer Solar System Origins Survey using the Hyper Suprime-Camera

    NASA Astrophysics Data System (ADS)

    Alexandersen, Mike; Benecchi, Susan D.; Chen, Ying-Tung; Schwamb, Megan Elizabeth; Wang, Shiang-Yu; Lehner, Matthew; Gladman, Brett; Kavelaars, JJ; Petit, Jean-Marc; Bannister, Michele T.; Gwyn, Stephen; Volk, Kathryn

    2016-10-01

    Lightcurves can reveal information about the gravitational processes that have acted on small bodies since their formation and/or their gravitational history.At the extremes, lightcurves can provide constraints on the material properties and interior structure of individual objects.In large sets, lightcurves can possibly shed light on the source of small body populations that did not form in place (such as the dynamically excited trans-Neptunian Objects (TNOs)).We have used the sparsely sampled photometry from the well characterized Outer Solar System Origins Survey (OSSOS) discovery and recovery observations to identify TNOs with potentially large amplitude lightcurves.Large lightcurve amplitudes would indicate that the objects are likely elongated or in potentially interesting spin states; however, this would need to be confirmed with further follow-up observations.We here present the results of a 6-hour pilot study of a subset of 17 OSSOS objects using Hyper Suprime-Cam (HSC) on the Subaru Telescope.Subaru's large aperture and HSC's large field of view allows us to obtain measurements on multiple objects with a range of magnitudes in each telescope pointing.Photometry was carefully measusured using an elongated aperture method to account for the motion of the objects, producing the short but precise lightcurves that we present here.The OSSOS objects span a large range of sizes, from as large as several hundred kilometres to as small as a few tens of kilometres in diameter.We are thus investigating smaller objects than previous light-curve projects have typically studied.

  18. Our Sun IV: The Standard Model and Helioseismology: Consequences of Uncertainties in Input Physics and in Observed Solar Parameters

    NASA Technical Reports Server (NTRS)

    Boothroyd, Arnold I.; Sackmann, I.-Juliana

    2001-01-01

    Helioseismic frequency observations provide an extremely accurate window into the solar interior; frequencies from the Michaelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO) spacecraft, enable the adiabatic sound speed and adiabatic index to be inferred with an accuracy of a few parts in 10(exp 4) and the density with an accuracy of a few parts in 10(exp 3). This has become a Serious challenge to theoretical models of the Sun. Therefore, we have undertaken a self-consistent, systematic study of the sources of uncertainties in the standard solar models. We found that the largest effect on the interior structure arises from the observational uncertainties in the photospheric abundances of the elements, which affect the sound speed profile at the level of 3 parts in 10(exp 3). The estimated 4% uncertainty in the OPAL opacities could lead to effects of 1 part in 10(exp 3); the approximately 5%, uncertainty in the basic pp nuclear reaction rate would have a similar effect, as would uncertainties of approximately 15% in the diffusion constants for the gravitational settling of helium. The approximately 50% uncertainties in diffusion constants for the heavier elements would have nearly as large an effect. Different observational methods for determining the solar radius yield results differing by as much as 7 parts in 10(exp 4); we found that this leads to uncertainties of a few parts in 10(exp 3) in the sound speed int the solar convective envelope, but has negligible effect on the interior. Our reference standard solar model yielded a convective envelope position of 0.7135 solar radius, in excellent agreement with the observed value of 0.713 +/- 0.001 solar radius and was significantly affected only by Z/X, the pp rate, and the uncertainties in helium diffusion constants. Our reference model also yielded envelope helium abundance of 0.2424, in good agreement with the approximate range of 0.24 to 0.25 inferred from helioseismic observations; only extreme Z/X values yielded envelope helium abundance outside this range. We found that other current uncertainties, namely, in the solar age and luminosity, in nuclear rates other than the pp reaction, in the low-temperature molecular opacities, and in the low-density equation of state, have no significant effect on the quantities that can be inferred from helioseismic observations. The predicted pre-main-sequence lithium depletion is uncertain by a factor of 2. The predicted neutrino capture rate is uncertain by approximately 30% for the Cl-27 experiment and by approximately 3% for Ga-71 experiments, while the B-8 neutrino flux is uncertain by approximately 30%.

  19. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  20. Ion Traps at the Sun: Implications for Elemental Fractionation

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay

    2018-04-01

    Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.

  1. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  2. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  3. Manifestations of Influence of Solar Activity and Cosmic Ray Intensity on the Wheat Price in the Medieval England (1259-1703 Years)

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev A.; Dorman, L. I.; Yom Din, G.

    2003-07-01

    The database of Professor Rogers, with wheat prices in England in the Middle Ages (1249-1703) was used to search for possible manifestations of solar activity and cosmic ray variations. The main object of the statistical analysis is investigation of bursts of prices. We present a conceptual model of possible modes for sensitivity of wheat prices to weather conditions, caused by solar cycle variations in cosmic rays, and compare the expected price fluctuations with wheat price variations recorded in the Medieval England. We compared statistical properties of the intervals between price bursts with statistical properties of the intervals between extremes (minimums) of solar cycles during the years 1700-2000. Statistical properties of these two samples are similar both in averaged/median values of intervals and in standard deviation of this values. We show that histogram of intervals distribution for price bursts and solar minimums are coincidence with high confidence level. We analyzed direct links between wheat prices and solar activity in the th 17 Century, for which wheat prices and solar activity data as well as cosmic ray intensity (from 10 Be isotop e) are available. We show that for all seven solar activity minimums the observed prices were higher than prices for the nine intervals of maximal solar activity proceed preceding to the minimums. This result, combined with the conclusion on similarity of statistical properties of the price bursts and solar activity extremes we consider as direct evidence of a causal connection between wheat prices bursts and solar activity.

  4. Significance of specific force models in two applications: Solar sails to sun-earth L4/L5 and grail data analysis suggesting lava tubes and buried craters on the moon

    NASA Astrophysics Data System (ADS)

    Sood, Rohan

    In the trajectory design process, gravitational interaction between the bodies of interest plays a key role in developing the over-arching force model. However, non-gravitational forces, such as solar radiation pressure (SRP), can significantly influence the motion of a spacecraft. Incorporating SRP within the dynamical model can assist in estimating the trajectory of a spacecraft with greater precision, in particular, for a spacecraft with a large area-to-mass ratio, i.e., solar sails. Subsequently, in the trajectory design process, solar radiation pressure can be leveraged to maneuver the sail-based spacecraft. First, to construct low energy transfers, the invariant manifolds are explored that form an important tool in the computation and design of complex trajectories. The focus is the investigation of trajectory design options, incorporating solar sail dynamics, from the Earth parking orbit to the vicinity of triangular Lagrange points. Thereafter, an optimization scheme assisted in investigating the ?V requirement to depart from the Earth parking orbit. Harnessing the solar radiation pressure, the spacecraft is delivered to the vicinity of the displaced Lagrange point and maintains a trajectory close to the artificial libration point with the help of the solar sail. However, these trajectories are converged in a model formulated as a three-body problem with additional acceleration from solar radiation pressure. Thus, the trajectories are transitioned to higher fidelity ephemeris model to account for additional perturbing accelerations that may dominate the sail-craft dynamics and improve upon the trajectory design process. Alternatively, precise knowledge of the motion of a spacecraft about a central body and the contribution of the SRP can assist in deriving a highly accurate gravity field model. The high resolution gravity data can potentially assist in exploring the surface and subsurface properties of a particular body. With the goal of expanding human presence beyond Earth, sub-surface empty lava tubes on other worlds form ideal candidates for creating a permanent habitation environment safe from cosmic radiation, micrometeorite impacts and temperature extremes. In addition, gravitational analysis has also revealed large buried craters under thick piles of mare basalt, shedding light on Moon's dynamic and hostile past. In this work, gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) are employed to detect the presence of potential empty lava tubes and large impact craters buried beneath the lunar maria.

  5. Semiempirical Two-Dimensional Magnetohydrodynamic Model of the Solar Corona and Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Guhathakurta, Madhulika

    1999-01-01

    We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the Skylub period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the Ulysses plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the Ulysses spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, effective temperature T(sub eff), and effective heat flux q(sub eff), which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term effective indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be approx. 12 - 15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind Once estimates of mass density rho, flow velocity V, effective temperature T(sub eff), effective heat flux q(sub eff), and magnetic field B are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfven speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as Slar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the SOHO Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, SOHO Extreme Ultraviolet Imaging Telescope data, and Ulysses plasma data.

  6. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  7. Joint observations of solar corona in space projects ARKA and KORTES

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Eugene A.; Bogachev, Sergey A.; Kirichenko, Alexey S.; Reva, Anton A.; Loboda, Ivan P.; Malyshev, Ilya V.; Ulyanov, Artem S.; Dyatkov, Sergey Yu.; Erkhova, Nataliya F.; Pertsov, Andrei A.; Kuzin, Sergey V.

    2017-05-01

    ARKA and KORTES are two upcoming solar space missions in extreme ultraviolet and X-ray wavebands. KORTES is a sun-oriented mission designed for the Russian segment of International Space Station. KORTES consists of several imaging and spectroscopic instruments that will observe the solar corona in a number of wavebands, covering EUV and X-ray ranges. The surveillance strategy of KORTES is to cover a wide range of observations including simultaneous imaging, spectroscopic and polarization measurements. ARKA is a small satellite solar mission intended to take highresolution images of the Sun at the extreme ultraviolet wavelengths. ARKA will be equipped with two high-resolution EUV telescopes designed to collect images of the Sun with approximately 150 km spatial resolution in the field of view of about 10'×10'. The scientific results of the mission may have a significant impact on the theory of coronal heating and may help to clarify the physics of small-scale solar structures and phenomena including oscillations of fine coronal structures and the physics of micro- and nanoflares.

  8. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as they age," says Paul Crowther. "Being a little over a million years old, the most extreme star R136a1 is already 'middle-aged' and has undergone an intense weight loss programme, shedding a fifth of its initial mass over that time, or more than fifty solar masses." If R136a1 replaced the Sun in our Solar System, it would outshine the Sun by as much as the Sun currently outshines the full Moon. "Its high mass would reduce the length of the Earth's year to three weeks, and it would bathe the Earth in incredibly intense ultraviolet radiation, rendering life on our planet impossible," says Raphael Hirschi from Keele University, who belongs to the team. These super heavyweight stars are extremely rare, forming solely within the densest star clusters. Distinguishing the individual stars - which has now been achieved for the first time - requires the exquisite resolving power of the VLT's infrared instruments [2]. The team also estimated the maximum possible mass for the stars within these clusters and the relative number of the most massive ones. "The smallest stars are limited to more than about eighty times more than Jupiter, below which they are 'failed stars' or brown dwarfs," says team member Olivier Schnurr from the Astrophysikalisches Institut Potsdam. "Our new finding supports the previous view that there is also an upper limit to how big stars can get, although it raises the limit by a factor of two, to about 300 solar masses." Within R136, only four stars weighed more than 150 solar masses at birth, yet they account for nearly half of the wind and radiation power of the entire cluster, comprising approximately 100 000 stars in total. R136a1 alone energises its surroundings by more than a factor of fifty compared to the Orion Nebula cluster, the closest region of massive star formation to Earth. Understanding how high mass stars form is puzzling enough, due to their very short lives and powerful winds, so that the identification of such extreme cases as R136a1 raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by P. Crowther et al.). The team is composed of Paul A. Crowther, Richard J. Parker, and Simon P. Goodwin (University of Sheffield, UK), Olivier Schnurr (University of Sheffield and Astrophysikalisches Institut Potsdam, Germany), Raphael Hirschi (Keele University, UK), and Norhasliza Yusof and Hasan Abu Kassim (University of Malaya, Malaysia). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  9. Performance of the IRI-2007 Model for Equatorial Topside Ion Density in the African Sector for Low and Extremely Low Solar Activity

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Simoes, F.; Ivanov, S.; Bilitza, D.; Heelis, R. A.; Rowland, D.

    2012-01-01

    The recent availability of new data sets during the recent extreme solar minimum provides an opportunity for testing the performance of the International Reference Ionosphere in historically under-sampled regions. This study will present averages and variability of topside ionospheric densities over Africa as a function of season, local time, altitude, and magnetic dip latitude as measured by the Coupled Ion-Neutral Dynamics Investigation (CINDI) Mission of Opportunity on the C/NOFS satellite. The results will be compared to the three topside model options available in IRI-2007. Overall, the NeQuick model is found to have the best performance, though during the deepest part of the solar minimum all three options significantly overestimate density.

  10. [beta]-silicon carbide protective coating and method for fabricating same

    DOEpatents

    Carey, P.G.; Thompson, J.B.

    1994-11-01

    A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating are disclosed. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or [mu]c-SiC film on the surface and produce [beta]-SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface. 3 figs.

  11. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    PubMed Central

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  12. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  13. Capabilities of a Global 3D MHD Model for Monitoring Extremely Fast CMEs

    NASA Astrophysics Data System (ADS)

    Wu, C. C.; Plunkett, S. P.; Liou, K.; Socker, D. G.; Wu, S. T.; Wang, Y. M.

    2015-12-01

    Since the start of the space era, spacecraft have recorded many extremely fast coronal mass ejections (CMEs) which have resulted in severe geomagnetic storms. Accurate and timely forecasting of the space weather effects of these events is important for protecting expensive space assets and astronauts and avoiding communications interruptions. Here, we will introduce a newly developed global, three-dimensional (3D) magnetohydrodynamic (MHD) model (G3DMHD). The model takes the solar magnetic field maps at 2.5 solar radii (Rs) and intepolates the solar wind plasma and field out to 18 Rs using the algorithm of Wang and Sheeley (1990, JGR). The output is used as the inner boundary condition for a 3D MHD model. The G3DMHD model is capable of simulating (i) extremely fast CME events with propagation speeds faster than 2500 km/s; and (ii) multiple CME events in sequence or simultaneously. We will demonstrate the simulation results (and comparison with in-situ observation) for the fastest CME in record on 23 July 2012, the shortest transit time in March 1976, and the well-known historic Carrington 1859 event.

  14. Mathematical aspects of assessing extreme events for the safety of nuclear plants

    NASA Astrophysics Data System (ADS)

    Potempski, Slawomir; Borysiewicz, Mieczyslaw

    2015-04-01

    In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.

  15. A Large Program to derive the shape, cratering history and density of the largest main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Marchis, Franck; Vernazza, Pierre; Marsset, Michael; Hanus, Josef; Carry, Benoit; Birlan, Mirel; Santana-Ros, Toni; Yang, Bin; and the Large Asteroid Survey with SPHERE (LASS)

    2017-10-01

    Asteroids in our solar system are metallic, rocky and/or icy objects, ranging in size from a few meters to a few hundreds of kilometers. Whereas we now possess constraints for the surface composition, albedo and rotation rate for all D≥100 km main-belt asteroids, the 3-D shape, the crater distribution, and the density have only been measured for a very limited number of these bodies (N≤10 for the first two). Characterizing these physical properties would allow us to address entirely new questions regarding the earliest stages of planetesimal formation and their subsequent collisional and dynamical evolution.ESO allocated to our program 152 hours of observations over 4 semesters to carry out disk-resolved observations of 38 large (D≥100 km) main-belt asteroids (sampling the four main compositional classes) at high angular-resolution with VLT/SPHERE throughout their rotation in order to derive their 3-D shape, the size distribution of the largest craters, and their density (PI: P. Vernazza). These measurements will allow investigating for the first time and for a modest amount of observing time the following fundamental questions: (A) Does the asteroid belt effectively hosts a large population of small bodies formed in the outer solar system? (B) Was the collisional environment in the inner solar system (at 2-3 AU) more intense than in the outer solar system (≥5AU)? (C) What was the shape of planetesimals at the end of the accretion process?We will present the goals and objectives of our program in the context of NASA 2014 Strategic Plan and the NSF decadal survey "Vision and Voyages" as well as the first observations and results collected with the SPHERE Extreme AO system. A detailed analysis of the shape modeling will be presented by Hanuš et al. in this session.

  16. 15N Fractionation in Star-Forming Regions and Solar System Objects

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  17. Slowly varying component of extreme ultraviolet solar radiation and its relation to solar radio radiation

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.; Neupert, W. M.

    1974-01-01

    A study of the correlations between solar EUV line fluxes and solar radio fluxes has been carried out. A calibration for the Goddard Space Flight Center EUV spectrum is suggested. The results are used to obtain an equation for the absolute EUV flux for several lines in the 150- to 400-A region and the total flux of 81 intense lines in the region, the 2800-MHz radio flux being used as independent variable.

  18. Cosmological structure formation from soft topological defects

    NASA Technical Reports Server (NTRS)

    Hill, Christopher T.; Schramm, David N.; Fry, J. N.

    1988-01-01

    Some models have extremely low-mass pseudo-Goldstone bosons that can lead to vacuum phase transitions at late times, after the decoupling of the microwave background.. This can generate structure formation at redshifts z greater than or approx 10 on mass scales as large as M approx 10 to the 18th solar masses. Such low energy transitions can lead to large but phenomenologically acceptable density inhomogeneities in soft topological defects (e.g., domain walls) with minimal variations in the microwave anisotropy, as small as delta Y/T less than or approx 10 to the minus 6 power. This mechanism is independent of the existence of hot, cold, or baryonic dark matter. It is a novel alternative to both cosmic string and to inflationary quantum fluctuations as the origin of structure in the Universe.

  19. Search for Life Beyond the Solar System. Exoplanets, Biosignatures & Instruments

    NASA Astrophysics Data System (ADS)

    Apai, Daniel; Gabor, Pavel

    2014-03-01

    Motivated by the rapidly increasing number of known Earth-sized planets, the increasing range of extreme conditions in which life on Earth can persist, and the progress toward a technology that will ultimately enable the search for life on exoplanets, the Vatican Observatory and the Steward Observatory announce a major conference entitled The Search for Life Beyond the Solar System: Exoplanets, Biosignatures & Instruments. The goal of the conference is to bring together the interdisciplinary community required to address this multi-faceted challenge: experts on exoplanet observations, early and extreme life on Earth, atmospheric biosignatures, and planet-finding telescopes.

  20. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less

  1. Giant Sunspot Erupts on October 24, 2014

    NASA Image and Video Library

    2017-12-08

    Active region AR 12192 on the sun erupted with a strong flare on Oct. 24, 2014, as seen in the bright light of this image captured by NASA's Solar Dynamics Observatory. This image shows extreme ultraviolet light that highlights the hot solar material in the sun's atmosphere. Credit: NASA/GSFC/SDO More info: The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X3.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  3. (Over-)Reaction of the Cometary Plasma to Extreme Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Goetz, C.; Tsurutani, B.; Henri, P.; Edberg, N. J. T.; Volwerk, M.; Nilsson, H.; Mokashi, P.; Heritier, K. L.; Behar, E.; Carr, C.; Eriksson, A.; Galand, M. F.; Odelstad, E.; Richter, I.; Rubin, M.; Simon Wedlund, C.; Wellbrock, A.; Glassmeier, K. H.

    2017-12-01

    The magnetometer onboard ESA's Rosetta orbiter detected its highest magnetic field magnitude of 250nT in July 2015, close to perihelion. This magnitude was an enhancement of a factor of five compared to normal values, which makes this the highest interplanetary magnetic field ever measured. We have examined the solar wind conditions at the time and found that a corotating interaction region (CIR), accompanied by a fast flow is the trigger for this unusual event. Because Rosetta does not have solar wind observations during the comet's active phase, we use ENLIL simulations as well as observations at Earth and Mars to constrain the solar wind parameters at the comet. Using a simple model for the magnetic field pile-up we can trace back the field in the coma to corresponding structures in the CIR. The large field is accompanied by a dramatic increase in electron and ion fluxes and energies. However, the electrons and ions in the field of view are not, as expected, increasing at the same time, instead the electrons follow the magnetic field, while the ion density increase is delayed. This is seen as evidence of the kinetic behaviour of the ions as opposed to a magnetized electron fluid. Combining the information on the plasma, we are able to identify at least three different regions in the plasma that have fundamentally different parameters. This allows us to separate the solar wind influence from the comet's effects on the plasma, a problem that is usually not solvable without a spacecraft monitoring the solar wind at the comet.

  4. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  5. STRUCTURE AND DYNAMICS OF THE 2012 NOVEMBER 13/14 ECLIPSE WHITE-LIGHT CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasachoff, J. M.; Rušin, V.; Saniga, M.

    2015-02-20

    Continuing our series of observations of coronal motion and dynamics over the solar-activity cycle, we observed from sites in Queensland, Australia, during the 2012 November 13 (UT)/14 (local time) total solar eclipse. The corona took the low-ellipticity shape typical of solar maximum (flattening index ε = 0.01), a change from the composite coronal images we observed and analyzed in this journal and elsewhere for the 2006 and 2008-2010 eclipses. After crossing the northeast Australian coast, the path of totality was over the ocean, so further totality was seen only by shipborne observers. Our results include velocities of a coronal massmore » ejection (CME; during the 36 minutes of passage from the Queensland coast to a ship north of New Zealand, we measured 413 km s{sup –1}) and we analyze its dynamics. We discuss the shapes and positions of several types of coronal features seen on our higher-resolution composite Queensland coronal images, including many helmet streamers, very faint bright and dark loops at the bases of helmet streamers, voids, and radially oriented thin streamers. We compare our eclipse observations with models of the magnetic field, confirming the validity of the predictions, and relate the eclipse phenomenology seen with the near-simultaneous images from NASA's Solar Dynamics Observatory (SDO/AIA), NASA's Extreme Ultraviolet Imager on Solar Terrestrial Relations Observatory, ESA/Royal Observatory of Belgium's Sun Watcher with Active Pixels and Image Processing (SWAP) on PROBA2, and Naval Research Laboratory's Large Angle and Spectrometric Coronagraph Experiment on ESA's Solar and Heliospheric Observatory. For example, the southeastern CME is related to the solar flare whose origin we trace with a SWAP series of images.« less

  6. Interplanetary Dust Observations by the Juno MAG Investigation

    NASA Astrophysics Data System (ADS)

    Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald

    2017-04-01

    The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.

  7. Solar wind and extreme ultraviolet modulation of the lunar ionosphere/exosphere

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.

    1976-01-01

    The ALSEP/SIDE detectors routinely monitor the dayside lunar ionosphere. Variations in the ionosphere are found to correlate with both the 2800 MHz radio index which can be related to solar EUV and with the solar wind proton flux. For the solar wind, the ionospheric variation is proportionately greater than that of the solar wind. This suggests an amplification effect on the lunar atmosphere due perhaps to sputtering of the surface or, less probably, an inordinate enhancement of noble gases in the solar wind. The surface neutral number density is calculated under the assumption of neon gas. During a quiet solar wind this number agrees with or is slightly above that expected for neon accreted from the solar wind. During an enhanced solar wind the neutral number density is much higher.

  8. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  9. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  10. To Create Space on Earth: The Space Environment Simulation Laboratory and Project Apollo

    NASA Technical Reports Server (NTRS)

    Walters, Lori C.

    2003-01-01

    Few undertakings in the history of humanity can compare to the great technological achievement known as Project Apollo. Among those who witnessed Armstrong#s flickering television image were thousands of people who had directly contributed to this historic moment. Amongst those in this vast anonymous cadre were the personnel of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center (MSC) in Houston, Texas. SESL houses two large thermal-vacuum chambers with solar simulation capabilities. At a time when NASA engineers had a limited understanding of the effects of extremes of space on hardware and crews, SESL was designed to literally create the conditions of space on Earth. With interior dimensions of 90 feet in height and a 55-foot diameter, Chamber A dwarfed the Apollo command/service module (CSM) it was constructed to test. The chamber#s vacuum pumping capacity of 1 x 10(exp -6) torr can simulate an altitude greater than 130 miles above the Earth. A "lunar plane" capable of rotating a 150,000-pound test vehicle 180 deg replicates the revolution of a craft in space. To reproduce the temperature extremes of space, interior chamber walls cool to -280F as two banks of carbon arc modules simulate the unfiltered solar light/heat of the Sun. With capabilities similar to that of Chamber A, early Chamber B tests included the Gemini modular maneuvering unit, Apollo EVA mobility unit and the lunar module. Since Gemini astronaut Charles Bassett first ventured into the chamber in 1966, Chamber B has assisted astronauts in testing hardware and preparing them for work in the harsh extremes of space.

  11. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  12. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2012-06-01

    battlefield casualty care. UVC Plasma-shells were fabricated and tested as optical emitter components in the solar blind 200-280 nm UVC region, and were... solar -blind (SB) UVC region (200–280 nm). IST’s proprietary UVC-emitting Plasma-shells are successfully demonstrated in a breadboard system. At this...enclosure and removable filter. Single-crystal solar blind filters provide exceptional rejection but are extremely expensive, ruling out the Ofil filters SB

  13. NASA’s Solar Dynamics Observatory Captured Trio of Solar Flares April 2-3

    NASA Image and Video Library

    2017-12-08

    The sun emitted a trio of mid-level solar flares on April 2-3, 2017. The first peaked at 4:02 a.m. EDT on April 2, the second peaked at 4:33 p.m. EDT on April 2, and the third peaked at 10:29 a.m. EDT on April 3. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the three events. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. Learn more: go.nasa.gov/2oQVFju Caption: NASA's Solar Dynamics Observatory captured this image of a solar flare peaking at 10:29 a.m. EDT on April 3, 2017, as seen in the bright flash near the sun’s upper right edge. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is typically colorized in teal. Credits: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Solar Golden Arches

    NASA Image and Video Library

    2017-12-08

    The magnetic field lines between a pair of active regions formed a beautiful set of swaying arches, seen in this footage captured by NASA’s Solar Dynamics Observatory on April 24-26, 2017. The arches are traced out by charged particles spinning along the magnetic field lines. These arches, which form a connection between regions of opposite magnetic polarity, are visible in exquisite detail in this wavelength of extreme ultraviolet light. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Concept Study Report: Extreme-Ultraviolet Imaging Spectrometer Solar-B

    NASA Technical Reports Server (NTRS)

    Doschek, George, A.; Brown, Charles M.; Davila, Joseph M.; Dere, Kenneth P.; Korendyke, Clarence M.; Mariska, John T.; Seely, John F.

    1999-01-01

    We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.

  16. Expanding CME-flare relations to other stellar systems

    NASA Astrophysics Data System (ADS)

    Moschou, Sofia P.; Drake, Jeremy J.; Cohen, Ofer

    2017-05-01

    Stellar activity is one of the main parameters in exoplanet habitability studies. While the effects of UV to X-ray emission from extreme flares on exoplanets are beginning to be investigated, the impact of coronal mass ejections is currently highly speculative because CMEs and their properties cannot yet be directly observed on other stars. An extreme superflare was observed in X-rays on the Algol binary system on August 30 1997, emitting a total of energy 1.4x 10^{37} erg and making it a great candidate for studying the upper energy limits of stellar superflares in solar-type (GK) stars. A simultaneous increase and subsequent decline in absorption during the flare was also observed and interpretted as being caused by a CME. Here we investigate the dynamic properties of a CME that could explain such time-dependent absorption and appeal to trends revealed from solar flare and CME statistics as a guide. Using the ice-cream cone model that is extensively used in solar physics to describe the three-dimensional CME structure, in combination with the temporal profile of the hydrogen column density evolution, we are able to characterize the CME and estimate its kinetic energy and mass. We examine the mass, kinetic and flare X-ray fluence in the context of solar relations to examine the extent to which such relations can be extrapolated to much more extreme stellar events.

  17. Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Thompson, Barbara J.; Hock, Rachel A.

    2014-01-01

    Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's (SoHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.

  18. Plasma Heating in Solar Microflares: Statistics and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirichenko, A. S.; Bogachev, S. A.

    2017-05-01

    In this paper we present the results of an analysis of 481 weak solar flares, from A0.01 class flares to the B GOES class, that were observed during the period of extremely low solar activity from 2009 April to July. For all flares we measured the temperature of the plasma in the isothermal and two-temperature approximations and tried to fit its relationship with the X-ray class using exponential and power-law functions. We found that the whole temperature distribution in the range from A0.01 to X-class cannot be fit by one exponential function. The fitting for weak flares below A1.0 ismore » significantly steeper than that for medium and large flares. The power-law approximation seems to be more reliable: the corresponding functions were found to be in good agreement with experimental data both for microflares and for normal flares. Our study predicts that evidence of plasma heating can be found in flares starting from the A0.0002 X-ray class. Weaker events presumably cannot heat the surrounding plasma. We also estimated emission measures for all flares studied and the thermal energy for 113 events.« less

  19. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia

    PubMed Central

    Ma, S.; Goldstein, M.; Pitman, A. J.; Haghdadi, N.; MacGill, I.

    2017-01-01

    Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes. PMID:28262843

  20. Ionospheric disturbances under low solar activity conditions

    NASA Astrophysics Data System (ADS)

    Buresova, D.; Lastovicka, J.; Hejda, P.; Bochnicek, J.

    2014-07-01

    The paper is focused on ionospheric response to occasional magnetic disturbances above selected ionospheric stations located at middle latitudes of the Northern and Southern Hemisphere under extremely low solar activity conditions of 2007-2009. We analyzed changes in the F2 layer critical frequency foF2 and the F2 layer peak height hmF2 against 27-days running mean obtained for different longitudinal sectors of both hemispheres for the initial, main and recovery phases of selected magnetic disturbances. Our analysis showed that the effects on the middle latitude ionosphere of weak-to-moderate CIR-related magnetic storms, which mostly occur around solar minimum period, could be comparable with the effects of strong magnetic storms. In general, both positive and negative deviations of foF2 and hmF2 have been observed independent on season and location. However positive effects on foF2 prevailed and were more significant. Observations of stormy ionosphere also showed large departures from the climatology within storm recovery phase, which are comparable with those usually observed during the storm main phase. The IRI STORM model gave no reliable corrections of foF2 for analyzed events.

  1. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia.

    PubMed

    Ma, S; Goldstein, M; Pitman, A J; Haghdadi, N; MacGill, I

    2017-03-06

    Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes.

  2. On the Absence of EUV Emission from Comet C/2012 S1 (ISON)

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, W. Dean

    2016-01-01

    When the sungrazing comet C2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun's surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This null result is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. By comparing these properties with those of sungrazing comet C2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C2012 S1 (ISON) was at least a factor of four less than that of C2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.

  3. An Observationally Constrained Model of a Flux Rope that Formed in the Solar Corona

    NASA Astrophysics Data System (ADS)

    James, Alexander W.; Valori, Gherardo; Green, Lucie M.; Liu, Yang; Cheung, Mark C. M.; Guo, Yang; van Driel-Gesztelyi, Lidia

    2018-03-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the coronae of stars. Understanding the plasma processes involved in CME initiation has applications for space weather forecasting and laboratory plasma experiments. James et al. used extreme-ultraviolet (EUV) observations to conclude that a magnetic flux rope formed in the solar corona above NOAA Active Region 11504 before it erupted on 2012 June 14 (SOL2012-06-14). In this work, we use data from the Solar Dynamics Observatory (SDO) to model the coronal magnetic field of the active region one hour prior to eruption using a nonlinear force-free field extrapolation, and find a flux rope reaching a maximum height of 150 Mm above the photosphere. Estimations of the average twist of the strongly asymmetric extrapolated flux rope are between 1.35 and 1.88 turns, depending on the choice of axis, although the erupting structure was not observed to kink. The decay index near the apex of the axis of the extrapolated flux rope is comparable to typical critical values required for the onset of the torus instability, so we suggest that the torus instability drove the eruption.

  4. Mechanisms and observations of coronal dimming for the 201 August 7 event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, James Paul; Woods, T. N.; Caspi, A.

    2014-07-01

    Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7.more » Data from the Solar Dynamics Observatory's Atmospheric Imaging Assembly and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's Large Angle and Spectrometric Coronagraph and the Solar Terrestrial Relations Observatory's COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.« less

  5. ON THE ABSENCE OF EUV EMISSION FROM COMET C/2012 S1 (ISON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryans, Paul; Pesnell, W. Dean

    2016-05-10

    When the sungrazing comet C/2012 S1 (ISON) made its perihelion passage within two solar radii of the Sun’s surface, it was expected to be a bright emitter at extreme ultraviolet (EUV) wavelengths. However, despite solar EUV telescopes repointing to track the orbit of the comet, no emission was detected. This “null result” is interesting in its own right, offering the possibility of placing limits on the size and composition of the nucleus. We explain the lack of detection by considering the properties of the comet and the solar atmosphere that determine the intensity of EUV emission from sungrazing comets. Bymore » comparing these properties with those of sungrazing comet C/2011 W3 (Lovejoy), which did emit in the EUV, we conclude that the primary factor resulting in non-detectable EUV emission from C/2012 S1 (ISON) was an insufficiently large nucleus. We conclude that the radius of C/2012 S1 (ISON) was at least a factor of four less than that of C/2011 W3 (Lovejoy). This is consistent with white-light observations in the days before perihelion that suggested the comet was dramatically reducing in size on approach.« less

  6. Oxygen Loss from Venus and the Influence of Extreme Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    McEnulty, Tess Rose

    2012-06-01

    The purpose of this dissertation is to expand our understanding of oxygen ion escape to space from Venus and its dependence on extreme solar wind conditions found during interplanetary coronal mass ejections (ICMEs). The solar wind dynamic pressure outside of the Venus bow shock did not exceed ˜12 nPa, during 2006-2009, while the solar wind dynamic pressure was higher than this for ˜10% of the time during the PVO mission. Oxygen ions escape Venus through multiple regions near the planet. One of these regions is the magnetosheath, where high energy pick-up ions are accelerated by the solar wind convection electric field. High energy (>1 keV) O+ pick-up ions within the Venus magnetosheath reached higher energy at lower altitude when the solar wind was disturbed by ICMEs compared to pick-up ions when the external solar wind was not disturbed, between 2006-2007. However, the count rate of O+ was not obviously affected by the ICMEs during this time period. In addition to high energy pick-up ions, VEX also detects low energy (˜10-100 eV) O+ within the ionosphere and wake of Venus. These low energy oxygen ions are difficult to interpret, because the spacecraft's relative velocity and potential can significantly affect the measured energy. If VEX ion data is not corrected for the spacecraft's relative velocity and potential, gravitationally bound O+ could be misinterpreted as escaping. These gravitationally bound oxygen ions can extend on the nightside to ˜-2 Venus radii and may even return to the planet after reaching high altitudes in the wake. Gravitationally bound ions will lower the total O+ escape estimated from Venus if total escape is calculated including these ions. However, if the return flux is low compared to the total escaping outflow, this effect is not significant. An ICME with a dynamic pressure of 17.6 nPa impacted Venus on November 11, 2011. During this ICME, the high energy pick-up O+ and the low energy O+ ions were affected. Oxygen ions in the magnetosheath, ionosphere, and tail had higher energies during the ICME, compared to O + energies when the external solar wind conditions were undisturbed. High energy ions were escaping within the dayside magnetosheath region when the ICME was passing as well as when the solar wind was undisturbed. However, during the ICME passage, these O+ ions had three orders of magnitude higher counts. The low energy O+ during the undisturbed days was gravitationally bound, while during the ICME a portion of the low energy ions were likely escaping. The most significant difference in O + during the ICME was high energy pickup ions measured in the wake on the outbound portion of the orbit. These ions had an escape flux of 2.5 X 108 O+cm-2sec-1, which is higher than the average escape flux in all regions of the wake. In addition, the interplanetary magnetic field (IMF) was in a configuration that may have rotated an even higher escape flux O+ away from the VEX orbit. This needs to be confirmed with sampling of other regions in the wake during large ICMEs. A lower bound on the total O+ escape during this event could be ˜2.8 X1026 to 6.5 X 1027 O +/sec, which is 2-3 orders of magnitude higher than the average escape flux measured by VEX. Hence, ICMEs could have played a major role in the total escape of O+ from Venus. The results presented in this dissertation can be used as a guide for future studies of O+ escape at Venus. As we move into solar maximum, Venus will likely be impacted by more large ICMEs. The ICME from the last study of this dissertation was the largest yet measured by VEX, but its 17.6 nPa dynamic pressure is lower than the largest ICMEs during the PVO time period (˜ 80 nPa). The work in this dissertation is also relevant to Mars, since Mars interacts with the solar wind in a similar manner and has analogous ion escape mechanisms. The upcoming MAVEN (Mars Atmosphere and Volatile Evolution) mission will launch at the end of 2013 to study the Martian atmosphere, escape processes, and history of volatiles. This mission will have an in-situ ion instrument and magnetometer similar to those used for the studies in this dissertation, so one could conduct similar studies of the oxygen ion escape from Mars during extreme solar wind conditions. (Abstract shortened by UMI.)

  7. A computer program for the determination of the solar risk in Argentina by dermatologists employing NASA TOMS satellite ozone data as a key geophysical variable

    NASA Astrophysics Data System (ADS)

    Piacentini, R.; Cede, A.; Luccini, E.; Stengel, F.

    The connection between skin cancer and solar ultraviolet radiation has been well documented (i.e., UNEP report "Environmental Effects of Ozone Depletion. 1998 Assessment"). In this work wepresent a computer software that can be used by dermatologists for determining the risk of persons that are exposed to solar UV radiation incident in Argentina, a country largely extended from low (tropical) to high southern hemisphere latitudes. In particular, its spectral distribution weighted by the CIE standard erythemal action spectrum and integrated in wavelength usually called "erythemal irradiance", is calculated including the following geophysical variables: ozone, solar elevation, Sun-Earth distance, altitude, aerosol and albedo. Other variables that have less influence in the final results are the vertical ozone, aerosol, pressure and temperature profiles, the extraterrestrial spectral solar UV irradiance and the ozone photoabsorption cross section. The ozone total column was obtained from the corresponding seasonal and latitudinal climatological NASA TOMS satellite data, including monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina. The program considers also the different skin types, in order to determine the skin risk without or with a sunscreen protection at each moment of the day and for different days of the year. We present the program output for typical examples of persons exposed in extreme conditions, like in the high altitude tropical Puna of Atacama desert in the North- West, or when the ozone hole event overpasses Ushuaia in the South, as well as in Buenos Aires, the largest populated city in the country and one of the megacities of the world. The availability of a large satellite ozone data set gives us the possibility to make a clear sky day solar risk forecast for all the year, that can be applied in all places of the country. This work was made possible through a collaboration between the Argentina Skin Cancer Foundation, the Institute of Physics Rosario (CONICET - National University of Rosario) and the Institute of Medical Physics of the University of Innsbruck, Austria. With this support and the work of physicians and physicists, now dermatologists as well as health authorities and educators can make a reliable (scientific) prediction of the risk due to solar exposure, in order to prevent health problems induced by solar UV radiation.

  8. Structure and sources of solar wind in the growing phase of 24th solar cycle

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  9. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  10. Sprawling Coronal Hole

    NASA Image and Video Library

    2017-10-16

    A large coronal hole stands out as the most obvious feature on the sun this week (Oct. 12-13, 2017). The dark structure, shaped kind of like the Pi symbol, spreads across much of the top of the sun. Though one cannot tell from this image and video clip in false-color extreme ultraviolet light, it is spewing high-speed solar wind particles into space and has been doing this all week. It is likely that these charged particles have been interacting with Earth's atmosphere and generating many aurora displays in regions near the poles the past several days. Animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22047

  11. KSC-08pd0767

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, General Dynamics technicians use a socket wrench equipped with a torque meter to tighten the bolts holding one of twin solar arrays to NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  12. KSC-08pd0768

    NASA Image and Video Library

    2008-03-20

    KENNEDY SPACE CENTER, FLA. - In the Astrotech payload processing facility, one of twin solar arrays awaits processing as General Dynamics technicians install the other of the pair on NASA's Gamma-Ray Large Area Space Telescope, or GLAST. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Chris Rhodes

  13. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    PubMed

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  14. Circumsolar Energetic Particle Distribution on 2011 November 3

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; Dresing, N.; Klassen, A.; Heber, B.; Lario, D.; Agueda, N.; Malandraki, O. E.; Blanco, J. J.; Rodríguez-Pacheco, J.; Banjac, S.

    2015-01-01

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  15. Extreme Mg-26 and O-17 enrichments in an Orgueil corundum: Identification of a presolar oxide grain

    NASA Technical Reports Server (NTRS)

    Hutcheon, I. D.; Huss, G. R.; Fahey, A. J.; Wasserburg, G. J.

    1994-01-01

    A corundum (Al2O3) grain from the Orgueil meteorite is greatly enriched in O-17 and (Mg-26)(sup *). The measured O-16/O-17 is 1028 +/- 11 compared to solar(O-16/O-17) = 2610. This is the largest O-17 excess so far observed in any meteoritic material. The Mg-26 excess ((Mg-26)(sup *)) is most plausibly due to in situ decay of Al-26. The inferred (Al-26/Al-27)(sub 0) ratio of 8.9 x 10(exp -4) is approximately 18 times larger than the 5 x 10(exp -5) value commonly observed in refractory inclusions formed in the solar system. The large O-17 excess and high (Mg-26)(sup *) Al-27 ratio unambiguously identify this corundum as a presolar oxide grain. Enrichments in O-17 and Al-26 are characteristic of H-burning and point to red giant or asymptotic giant branch (AGB) stars as likely sources.

  16. The orbit of the Cepheid AW Per

    NASA Technical Reports Server (NTRS)

    Evans, Nancy Remage; Welch, Douglas L.

    1988-01-01

    An orbit for the classical Cepheid AW Per was derived. Phase residuals from the light curve are consistent with the light-time effect from the orbit. The companion was studied using IUE spectra. The flux distribution from 1300 to 1700 A is unusual, probably an extreme PbSi star, comparable to a B7V or B8V star. The flux of the composite spectrum from 1200 A through V is well matched by F7Ib and B8V standard stars with Delta M(sub upsilon) = 3(m) multiplied by 1. The mass function from the orbit indicates that the mass of the Cepheid must be greater that 4.7 solar mass if it is the more massive component. A B7V to B8V companion is compatible with the 1 sigma lower limit (3.5 solar mass) from the mass function. This implies that the Cepheid has the same mass, but the large magnitude difference rules this out. It is likely that the companion is itself a binary.

  17. Can SOHO SWAN detect CMEs?

    NASA Technical Reports Server (NTRS)

    St.Cyr, O. C.; Malayeri, M. L.; Yashiro, S.; Quernerais, E.; Bertaux, Jean-Loup; Howard, Russ

    2003-01-01

    We have investigated the possibility that the Solar Wind Anisotropies (SWAN) remote sensing instrument on SOHO may be able to detect coronal mass ejections (CMEs) in neutral Hydrogen Lyman-? emission. We have identified CMEs near the Sun in observations by the SOHO LASCO white-light coronagraphs and in extreme ultraviolet emissions using SOHO E n . There are very few methods of tracking CMEs after they leave the coronagraph's field-of-view, so this is an important topic to study. The primary science goal of the SWAN investigation is the measurement of large-scale structures in the solar wind, and these are obtained by detecting intensity fluctuations in Lyman-?. SWAN consists of a pair of Sensors on opposite panels of SOHO. The instantaneous field-of-view of each sensor unit is a So x So square, divided into lo pixels. A gimbaled periscope system allows each sensor to map the intensity distribution of Lyman-?, and the entire sky can be scanned in less than one day. This is the typical mode of operation for this instrument.

  18. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    PubMed

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm 2 /(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  19. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  20. Can we colonize the solar system? Human biology and survival in the extreme space environment.

    PubMed

    Launius, Roger D

    2010-09-01

    Throughout the history of the space age the dominant vision for the future has been great spaceships plying the solar system, and perhaps beyond, moving living beings from one planet to another. Spacesuited astronauts would carry out exploration, colonization, and settlement as part of a relentlessly forward looking movement of humanity beyond Earth. As time has progressed this image has not changed appreciably even as the full magnitude of the challenges it represents have become more and more apparent. This essay explores the issues associated with the human movement beyond Earth and raises questions about whether humanity will ever be able to survive in the extreme environment of space and the other bodies of the solar system. This paper deals with important historical episodes as well as wider conceptual issues about life in space. Two models of expansion beyond Earth are discussed: (1) the movement of microbes and other types of life on Earth that can survive the space environment and (2) the modification of humans into cyborgs for greater capability to survive in the extreme environments encountered beyond this planet. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Extreme Space Weather Events: From Cradle to Grave

    NASA Astrophysics Data System (ADS)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  2. Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review.

    PubMed

    Ashwini, Ravi; Vijayanand, S; Hemapriya, J

    2017-08-01

    Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host's survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC's), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.

  3. Solar Extreme UV radiation and quark nugget dark matter model

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ωdark ~ Ωvisible when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of matter which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter ΛQCD. We also present arguments suggesting that the transient brightening-like "nanoflares" in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.

  4. Solar Arches

    NASA Image and Video Library

    2017-12-08

    The magnetic field lines between a pair of active regions formed a beautiful set of swaying arches, seen in this footage captured by NASA’s Solar Dynamics Observatory on April 24-26, 2017. The arches are traced out by charged particles spinning along the magnetic field lines. These arches, which form a connection between regions of opposite magnetic polarity, are visible in exquisite detail in this wavelength of extreme ultraviolet light. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold. Read more: go.nasa.gov/2pGgYZt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. The efficiency of convective energy transport in the sun

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1988-01-01

    Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.

  6. A Massive X-ray Outflow From The Quasar PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  7. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the total ion loss to space over Mars history, and thus enhance the science returned from the MAVEN mission.

  8. Solar Dynamics Observatory Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel; Uhl, Andrew; Secunda, Mark

    2010-01-01

    Mission is to study how solar activity is created and how space weather results from that activity. Atmospheric Imaging Assembly (AIA): High Resolution Images of 10 wavelengths every 10 seconds. Extreme Ultraviolet Variability Experiment (EVE): Measure Sun's brightness in EUV. Helioseismic and Magnetic Imager (HMI): Measures Doppler shift to study waves of the Sun. Launched February 11, 2010.

  9. Persistence Mapping Using EUV Solar Imager Data

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Young, C. A.

    2016-01-01

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call "Persistence Mapping," to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or "time-lapse" imaging uses the full sample (of size N ), Persistence Mapping rejects (N - 1)/N of the data set and identifies the most relevant 1/N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.

  10. Carbon monoxide in an extremely metal-poor galaxy.

    PubMed

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-12-09

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value.

  11. Carbon monoxide in an extremely metal-poor galaxy

    PubMed Central

    Shi, Yong; Wang, Junzhi; Zhang, Zhi-Yu; Gao, Yu; Hao, Cai-Na; Xia, Xiao-Yang; Gu, Qiusheng

    2016-01-01

    Extremely metal-poor galaxies with metallicity below 10% of the solar value in the local universe are the best analogues to investigating the interstellar medium at a quasi-primitive environment in the early universe. In spite of the ongoing formation of stars in these galaxies, the presence of molecular gas (which is known to provide the material reservoir for star formation in galaxies such as our Milky Way) remains unclear. Here we report the detection of carbon monoxide (CO), the primary tracer of molecular gas, in a galaxy with 7% solar metallicity, with additional detections in two galaxies at higher metallicities. Such detections offer direct evidence for the existence of molecular gas in these galaxies that contain few metals. Using archived infrared data, it is shown that the molecular gas mass per CO luminosity at extremely low metallicity is approximately one-thousand times the Milky Way value. PMID:27934880

  12. Lunar Surface Charging during Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Halekas, Jasper S.; Delory, G. T.; Mewaldt, R. A.; Lin, R. P.; Fillingim, M. O.; Brain, D. A.; Lee, C. O.; Stubbs, T. J.; Farrell, W. M.; Hudson, M. K.

    2006-09-01

    The surface of the Moon, not protected by any substantial atmosphere, is directly exposed to the impact of both solar UV and solar wind plasma and energetic particles. This creates a complex lunar electrostatic environment, with the surface typically charging slightly positive in sunlight, and negative in shadow. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging leads to dust electrification and transport, posing a potentially significant hazard for exploration. The most significant charging effects should occur when the Moon is exposed to high-temperature plasmas like those encountered in the terrestrial plasmasheet or in solar storms. We now present evidence for kilovolt-scale negative charging of the shadowed lunar surface during solar energetic particle (SEP) events, utilizing data from the Lunar Prospector Electron Reflectometer (LP ER). We find that SEP events are associated with the most extreme lunar surface charging observed during the LP mission - rivaled only by previously reported charging during traversals of the terrestrial plasmasheet. The largest charging event observed by LP is a 4 kV negative surface potential (as compared to typical values of V) during a SEP event in May 1998. We characterize lunar surface charging during several SEP events, and compare to energetic particle measurements from ACE, Wind, and SOHO in order to determine the relationship between SEP events and extreme lunar surface charging. Space weather events are already considered by NASA to be a significant hazard to lunar exploration, due to high-energy ionizing radiation. Our observations demonstrate that plasma interactions with the lunar surface during SEP events, causing extreme surface charging and potentially significant dust electrification and transport, represent an additional hazard associated with space weather.

  13. The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS)

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Technical Monitor); Rabin, D.; Davila, J.; Thomas, R. J.; Engler, C.; Irish, S.; Keski-Kuha, R.; Novello, J.; Nowak, M.; Payne, L.; hide

    2003-01-01

    EUNIS (Extreme Ultraviolet Normal Incidence Spectrograph) is a high-efficiency extreme ultraviolet spectrometer that is expected to fly for the first time in 2004 as a sounding rocket payload. Using two independent optical systems, EUNIS will probe the structure and dynamics of the inner solar corona high spectral resolution in two wavelength regions: 17-21 nm with 3.5 pm resolution and 30-37 nm with 7 pm resolution. The long wavelength channel includes He II 30.4 nm and strong lines from Fe XI-XVI; the short wavelength channel includes strong lines of Fe IX-XIII. Angular resolution of 2 arcsec is maintained along a slit covering a full solar radius. EUNIS will have 100 times the throughput of the highly successful SERTS payloads that have preceded it. There are only two reflections in each optical channel, from the superpolished, off-axis paraboloidal primary and the toroidal grating. Each optical element is coated with a high-efficiency multilayer coating optimized for its spectral bandpass. The detector in each channel is a microchannel plate image intensifier fiber- coupled to three 1K x 1K active pixel sensors. EUNIS will obtain spectra with a cadence as short as 1 sec, allowing unprecedented studies of the physical properties of evolving and transient structures. Diagnostics of wave heating and reconnection wil be studied at heights above 2 solar radii, in the wind acceleration region. The broad spectral coverage and high spectral resolution will provide superior temperature and density diagnostics and will enable underflight calibration of several orbital instruments, including SOHO/CDS and EIT, TRACE, Solar-B/EIS, and STEREO/EUVI. EUNIS is supported by NASA through the Low Cost Access to Space Program in Solar and Heliospheric Physics.

  14. Comparing and combining process-based crop models and statistical models with some implications for climate change

    NASA Astrophysics Data System (ADS)

    Roberts, Michael J.; Braun, Noah O.; Sinclair, Thomas R.; Lobell, David B.; Schlenker, Wolfram

    2017-09-01

    We compare predictions of a simple process-based crop model (Soltani and Sinclair 2012), a simple statistical model (Schlenker and Roberts 2009), and a combination of both models to actual maize yields on a large, representative sample of farmer-managed fields in the Corn Belt region of the United States. After statistical post-model calibration, the process model (Simple Simulation Model, or SSM) predicts actual outcomes slightly better than the statistical model, but the combined model performs significantly better than either model. The SSM, statistical model and combined model all show similar relationships with precipitation, while the SSM better accounts for temporal patterns of precipitation, vapor pressure deficit and solar radiation. The statistical and combined models show a more negative impact associated with extreme heat for which the process model does not account. Due to the extreme heat effect, predicted impacts under uniform climate change scenarios are considerably more severe for the statistical and combined models than for the process-based model.

  15. Wavelength Comparisons

    NASA Image and Video Library

    2018-04-02

    NASA's Solar Dynamics Observatory ran together three sequences of the sun taken in three different extreme ultraviolet wavelengths to better illustrate how different features that appear in one sequence are difficult if not impossible to see in the others (Mar. 20-21, 2018). In the red sequence (304 Angstroms), we can see very small spicules and some small prominences at the sun's edge, which are not easy to see in the other two sequences. In the second clip (193 Angstroms), we can readily observe the large and dark coronal hole, though it is difficult to make out in the others. In the third clip (171 wavelengths), we can see strands of plasma waving above the surface, especially above the one small, but bright, active region near the right edge. And these are just three of the 10 extreme ultraviolet wavelengths in which SDO images the sun every 12 seconds every day. That's a lot of data and a lot of science. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22360

  16. Extremely Low-Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Madsen, B.; Wedlund, C. Simon; Eriksson, A.; Goetz, C.; Karlsson, T.; Gunell, H.; Spicher, A.; Henri, P.; Vallières, X.; Miloch, W. J.

    2018-05-01

    The European Space Agency/Rosetta mission to comet 67P/Churyumov-Gerasimenko has provided several hundred observations of the cometary diamagnetic cavity induced by the interaction between outgassed cometary particles, cometary ions, and the solar wind magnetic field. Here we present the first electric field measurements of four preperihelion and postperihelion cavity crossings on 28 May 2015 and 17 February 2016, using the dual-probe electric field mode of the Langmuir probe (LAP) instrument of the Rosetta Plasma Consortium. We find that on large scales, variations in the electric field fluctuations capture the cavity and boundary regions observed in the already well-studied magnetic field, suggesting the electric field mode of the LAP instrument as a reliable tool to image cavity crossings. In addition, the LAP electric field mode unravels for the first time extremely low-frequency waves within two cavities. These low-frequency electrostatic waves are likely triggered by lower-hybrid waves observed in the surrounding magnetized plasma.

  17. Low-Latitude Solar Coronal Hole Formation

    NASA Astrophysics Data System (ADS)

    Haislmaier, Karl; Petrie, G.

    2013-01-01

    Little is known about the origin of low-latitude solar coronal holes (CHs) and their relation to the magnetic flux distribution of the underlying Solar Photosphere. Two recent reports (Karachik et al. 2010, Wang et al. 2010) suggest that CH formation might be correlated with the decay of active regions (ARs) in the photosphere. In order to explore the nature and extent of such correlations, we surveyed GONG (Global Oscillations Network Group) synoptic magnetograms and STEREO (Solar TErrestrial RElations Observatory) synoptic extreme ultraviolet images of Carrington rotations 2047-2112. From these two data sets, 41 AR-CH pairs were identified, accounting for ~34% of all ARs that appeared during the surveyed rotations. Each of these AR-CH pairs fell into one of two general classes: 1) those where the CHs were associated with the leading polarity fluxes of decaying ARs whose lagging fluxes largely decayed away, and 2) those where the CHs were associated with the lagging fluxes of surviving ARs. Perhaps surprisingly, the positive and negative fluxes of the ARs generally remained well balanced after their CHs developed. Extrapolated coronal potential-field source-surface (PFSS) models linked the CH creation and development to changes in magnetic connectivity with the surroundings as the AR flux became more diffuse over time. These considerations lead us to conclude that CHs are associated with low intensity, unipolar magnetic flux regions in the photosphere, which are most readily created by the turbulent diffusion and decay of AR flux. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  18. Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy

    NASA Astrophysics Data System (ADS)

    Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Pena-Garay, C.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.; Borexino Collaboration

    2014-06-01

    Borexino has been running since May 2007 at the Laboratori Nazionali del Gran Sasso laboratory in Italy with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During Phase-I (2007-2010), Borexino first detected and then precisely measured the flux of the Be7 solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of solar neutrinos produced in the CNO cycle (carbon, nitrogen, oxigen) where carbon, nitrogen, and oxygen serve as catalysts in the fusion process. In this paper we discuss the signal signature and provide a comprehensive description of the backgrounds, quantify their event rates, describe the methods for their identification, selection, or subtraction, and describe data analysis. Key features are an extensive in situ calibration program using radioactive sources, the detailed modeling of the detector response, the ability to define an innermost fiducial volume with extremely low background via software cuts, and the excellent pulse-shape discrimination capability of the scintillator that allows particle identification. We report a measurement of the annual modulation of the Be7 neutrino interaction rate. The period, the amplitude, and the phase of the observed modulation are consistent with the solar origin of these events, and the absence of their annual modulation is rejected with higher than 99% C.L. The physics implications of Phase-I results in the context of the neutrino oscillation physics and solar models are presented.

  19. Automated Identification of Coronal Holes from Synoptic EUV Maps

    NASA Astrophysics Data System (ADS)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  20. Point-Focus Concentration Compact Telescoping Array: Extreme Environments Solar Power Base Phase Final Report

    NASA Technical Reports Server (NTRS)

    McEachen, Michael E.; Murphy, Dave; Meinhold, Shen; Spink, Jim; Eskenazi, Mike; O'Neill, Mark

    2017-01-01

    Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management.

  1. Influence of Convective Effect of Solar Winds on the CME Transit Time

    NASA Astrophysics Data System (ADS)

    Sun, Lu-yuan

    2017-10-01

    Based on an empirical model for predicting the transit time of coronal mass ejections (CMEs) proposed by Gopalswamy, 52 CME events which are related to the geomagnetic storms of Dst < -50 nT, and 10 CME events which caused extremely strong geomagnetic storms (Dst < -200 nT) in 1996- 2007 are selected, and combined with the observational data of the interplanetary solar winds that collected by the ACE satellite at 1AU, to analyze the influence of convective effect of ambient solar winds on the prediction of the CME transit time when it arrives at a place of 1 AU. After taking the convective effect of ambient solar winds into account, the standard deviation of predictions is reduced from 16.5 to 11.4 hours for the 52 CME events, and the prediction error is less than 15 hours for 68% of these events; while the standard deviation of predictions is reduced from 10.6 to 6.5 hours for the 10 CME events that caused extremely strong geomagnetic storms, and the prediction error is less than 5 hours for 6 of the 10 events. These results show that taking the convective effect of ambient solar winds into account can reduce the standard deviation of the predicted CME transit time, hence the convective effect of solar winds plays an important role for predicting the transit times of CME events.

  2. Significant Stability Enhancement in High-Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light.

    PubMed

    Jeong, Jaehoon; Seo, Jooyeok; Nam, Sungho; Han, Hyemi; Kim, Hwajeong; Anthopoulos, Thomas D; Bradley, Donal D C; Kim, Youngkyoo

    2016-04-01

    Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC 71 BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC 71 BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC 71 BM solar cells is significantly enhanced when UCF is attached.

  3. Is magnetic topology important for heating the solar atmosphere?

    PubMed

    Parnell, Clare E; Stevenson, Julie E H; Threlfall, James; Edwards, Sarah J

    2015-05-28

    Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide enough area, to explain the energy losses throughout the solar atmosphere? Here, we consider this question for the three different solar regions: active regions, open-field regions and the quiet Sun. We find that the heating of active regions and open-field regions is highly unlikely to be due to reconnection or wave dissipation at topological features, but it is possible that these may play a role in the heating of the quiet Sun. In active regions, the absence of a complex topology may play an important role in allowing large energies to build up and then, subsequently, be explosively released in the form of a solar flare. Additionally, knowledge of the intricate boundaries of open-field regions (which the magnetic skeleton provides) could be very important in determining the main acceleration mechanism(s) of the solar wind. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. The 2015 Indonesian biomass-burning season with extensive peat fires: Remote sensing measurements of biomass burning aerosol optical properties from AERONET and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Giles, D. M.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Schafer, J.; Sorokin, M. G.; Reid, J. S.; Sayer, A. M.; Hsu, N. Y. C.; Levy, R. C.; Lyapustin, A.; Wang, Y.; Rahman, M. A.; Liew, S. C.; Salinas Cortijo, S. V.; Li, T.; Kalbermatter, D.; Keong, K. L.; Elifant, M.; Aditya, F.; Mohamad, M.; Mahmud, M.; Chong, T. K.; Lim, H. S.; Choon, Y. E.; Deranadyan, G.; Kusumaningtyas, S. D. A.

    2016-12-01

    The strong El Nino event in 2015 resulted in below normal rainfall throughout Indonesia, which in turn allowed for exceptionally large numbers of biomass burning fires (including much peat burning) from Aug though Oct 2015. Over the island of Borneo, three AERONET sites measured monthly mean fine mode aerosol optical depth (AOD) at 500 nm from the spectral deconvolution algorithm in Sep and Oct ranging from 1.6 to 3.7, with daily average AOD as high as 6.1. In fact, the AOD was sometimes too high to obtain significant signal at mid-visible, therefore a newly developed algorithm in the AERONET Version 3 database was invoked to retain the measurements in as many of the longer wavelengths as possible. The AOD at longer wavelengths were then utilized to provide estimates of AOD at 550 nm with maximum values of 9 to 11. Additionally, satellite retrievals of AOD at 550 nm from MODIS data and the Dark Target, Deep Blue, and MAIAC algorithms were analyzed and compared to AERONET measured AOD. The AOD was sometimes too high for the satellite algorithms to make retrievals in the densest smoke regions. Since the AOD was often extremely high there was often insufficient AERONET direct sun signal at 440 nm for the larger solar zenith angles (> 50 degrees) required for almucantar retrievals. However, new hybrid sky radiance scans can attain sufficient scattering angle range even at small solar zenith angles when 440 nm direct beam irradiance can be accurately measured, thereby allowing for more retrievals and at higher AOD levels. The retrieved volume median radius of the fine mode increased from 0.18 to 0.25 micron as AOD increased from 1 to 3 (at 440 nm). These are very large size particles for biomass burning aerosol and are similar in size to smoke particles measured in Alaska during the very dry years of 2004 and 2005 (Eck et al. 2009) when peat soil burning also contributed to the fuel burned. The average single scattering albedo over the wavelength range of 440 to 1020 nm was very high ranging from 0.96 to 0.98 (spectrally flat), indicative of dominant smoldering phase combustion which produces very little black carbon. Additionally, we have analyzed measured (pyranometer) and modeled total solar flux at ground level for these extremely high aerosol loadings that resulted in significant attenuation of downwelling solar energy.

  5. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    PubMed

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  6. Surface atmospheric extremes (launch and transportation areas)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria are provided on atmospheric extremes from the surface to 150 meters for geographical locations of interest to NASA. Thermal parameters (temperature and solar radiation), humidity, precipitation, pressure, and atmospheric electricity (lightning and static) are presented. Available data are also provided for the entire continental United States for use in future space programs.

  7. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    PubMed Central

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F.; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits—conceptually called “rock's habitable architecture.” Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation. PMID:26441871

  8. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert.

    PubMed

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.

  9. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    NASA Technical Reports Server (NTRS)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  10. Extreme Value Theory and the New Sunspot Number Series

    NASA Astrophysics Data System (ADS)

    Acero, F. J.; Carrasco, V. M. S.; Gallego, M. C.; García, J. A.; Vaquero, J. M.

    2017-04-01

    Extreme value theory was employed to study solar activity using the new sunspot number index. The block maxima approach was used at yearly (1700-2015), monthly (1749-2016), and daily (1818-2016) scales, selecting the maximum sunspot number value for each solar cycle, and the peaks-over-threshold (POT) technique was used after a declustering process only for the daily data. Both techniques led to negative values for the shape parameters. This implies that the extreme sunspot number value distribution has an upper bound. The return level (RL) values obtained from the POT approach were greater than when using the block maxima technique. Regarding the POT approach, the 110 year (550 and 1100 year) RLs were lower (higher) than the daily maximum observed sunspot number value of 528. Furthermore, according to the block maxima approach, the 10-cycle RL lay within the block maxima daily sunspot number range, as expected, but it was striking that the 50- and 100-cycle RLs were also within that range. Thus, it would seem that the RL is reaching a plateau, and, although one must be cautious, it would be difficult to attain sunspot number values greater than 550. The extreme value trends from the four series (yearly, monthly, and daily maxima per solar cycle, and POT after declustering the daily data) were analyzed with the Mann-Kendall test and Sen’s method. Only the negative trend of the daily data with the POT technique was statistically significant.

  11. Improved SOT (Hinode mission) high resolution solar imaging observations

    NASA Astrophysics Data System (ADS)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2015-08-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

  12. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-04

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

  13. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Ramsay, A. C.; Beard, E. D.; Boright, A. L.; Cade, W. B.; Hewins, I. M.; McFadden, R. H.; Denig, W. F.; Kilcommons, L. M.; Shea, M. A.; Smart, D. F.

    2016-09-01

    Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01 and 9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high-frequency communication in the polar cap. Subsequently, record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. An important and long-lasting outcome of this storm was more formal Department of Defense-support for current-day space weather forecasting. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the twentieth century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the twentieth century, despite the apparent lack of large geomagnetically induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.

  14. CAWSES November 7-8, 2004, Superstorm: Complex Solar and Interplanetary Features in the Post-Solar Maximum Phase

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Echer, Ezequiel; Guarnieri, Fernando L.; Kozyra, J. U.

    2008-01-01

    The complex interplanetary structures during 7 to 8 Nov 2004 are analyzed to identify their properties as well as resultant geomagnetic effects and the solar origins. Three fast forward shocks, three directional discontinuities and two reverse waves were detected and analyzed in detail. The three fast forward shocks 'pump' up the interplanetary magnetic field from a value of approx.4 nT to 44 nT. However, the fields after the shocks were northward, and magnetic storms did not result. The three ram pressure increases were associated with major sudden impulses (SI + s) at Earth. A magnetic cloud followed the third forward shock and the southward Bz associated with the latter was responsible for the superstorm. Two reverse waves were detected, one at the edge and one near the center of the magnetic cloud (MC). It is suspected that these 'waves' were once reverse shocks which were becoming evanescent when they propagated into the low plasma beta MC. The second reverse wave caused a decrease in the southward component of the IMF and initiated the storm recovery phase. It is determined that flares located at large longitudinal distances from the subsolar point were the most likely causes of the first two shocks without associated magnetic clouds. It is thus unlikely that the shocks were 'blast waves' or that magnetic reconnection eroded away the two associated MCs. This interplanetary/solar event is an example of the extremely complex magnetic storms which can occur in the post-solar maximum phase.

  15. Solar activity influences on atmospheric electricity and on some structures in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Reiter, Reinhold

    1989-01-01

    Only processes in the troposphere and the lower stratosphere are reviewed. General aspects of global atmospheric electricity are summarized in Chapter 3 of NCR (1986); Volland (1984) has outlined the overall problems of atmospheric electrodynamics; and Roble and Hays (1982) published a summary of solar effects on the global circuit. The solar variability and its atmospheric effects (overview by Donelly et al, 1987) and the solar-planetary relationships (survey by James et al. 1983) are so extremely complex that only particular results and selected papers of direct relevance or historical importance are compiled herein.

  16. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K.

    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field ofmore » the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.« less

  17. Solar energetic particle anisotropies and insights into particle transport

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  18. Hot spine loops and the nature of a late-phase solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xudong; Todd Hoeksema, J.; Liu, Yang

    2013-12-01

    The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such a feature has been rare. Here we report a unique event observed by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests that these loops are partly tracers of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing themore » loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the 'breakout' type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e., a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling—topological change in a sub-system may lead to explosions on a much larger scale.« less

  19. Observations of solar active regions and solar flares by OSO-7

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1977-01-01

    Contributions made to the physics of coronal active regions and flares by the extreme ultraviolet and soft X-ray spectroheliograph on OSO-7 were discussed. Coronal structures above active regions were discussed from the point of view of their morphology and physical properties, including their relationship to photospheric and coronal magnetic fields. OSO-7 also recorded flares with sufficient spatial and temporal resolution to record, in some instances for the first time, the extreme ultraviolet and soft X-ray emission associated with such chromospheric phenomena as filament activation and the emergence of satellite sunspots. Flare phenomena were reviewed in terms of the several stages of evolution typically associated with the event.

  20. SunShot Innovator in Residence Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koplow, Jeffrey P.

    This report describes the development of Radical-Ion Flow Battery (RIFB) technology for electrochemical grid storage, and solar thermochemical cycles for conversion of concentrated solar energy to stored chemical energy. The Radical-Ion Flow Battery stores energy via electrolysis of a molten salt electrolyte such as NaNO2 into an alkali metal and nitrogen dioxide, both of which can be stored as liquids in non-pressurized tanks. The use of extremely facile ion-radical single electron transfer reactions at both electrodes that entail no breaking of covalent bonds is directed towards minimizing thermodynamic irreversibility in the charge/discharge cycle, and eliminating the need for catalytically activemore » electrode materials. Both kinetics and mass transport are also facilitated by the absence of diluent species; the battery electrolyte and active chemical ingredient are one and the same. Our underlying strategy for low-cost scalability is the use of only earth abundant starting materials (NaCl, N2, O2, and steel). The underlying strategy for avoiding the problem of capacity fade over 10,000 charge/discharge cycles is the use of extremely simple chemistry. It is argued that operation at elevated temperature is highly advantageous for very large-scale batteries from the standpoint of battery heat-sinking, access to ultrahigh conductivity electrolytes, and increased electrochemical kinetic rate constants. Numerous practical considerations, such as seals, insulators, and electrical feedthroughs are examined in detail, as are questions related to low-cost mass production and battery techno-economic analysis.« less

  1. Coronal Hole Facing Earth

    NASA Image and Video Library

    2018-05-15

    An extensive equatorial coronal hole has rotated so that it is now facing Earth (May 2-4, 2018). The dark coronal hole extends about halfway across the solar disk. It was observed in a wavelength of extreme ultraviolet light. This magnetically open area is streaming solar wind (i.e., a stream of charged particles released from the sun) into space. When Earth enters a solar wind stream and the stream interacts with our magnetosphere, we often experience nice displays of aurora. https://photojournal.jpl.nasa.gov/catalog/PIA00577

  2. A proposed search on the solar neighborhood for substellar objects

    NASA Technical Reports Server (NTRS)

    Reynolds, R. T.; Walker, R. G.; Tarter, J. C.

    1980-01-01

    The Infrared Astronomical Satellite (IRAS) program will produce an extremely sensitive all-sky survey over the wavelength region 8 to 120 microns when the mission is flown in 1982. These data will provide a novel opportunity to detect planetary-sized objects having masses smaller than 0.08 solar masses in or near the solar system. The improved detection limit of the IRAS will greatly increase the volume of space searched for such objects, as compared with previous optical and infrared studies.

  3. Earth-Directed Coronal Hole

    NASA Image and Video Library

    2016-09-21

    A dark coronal hole that was facing towards Earth for several days spewed streams of solar wind in our direction (Sept. 18-21, 2016). A coronal hole is a magnetically open region. The magnetic fields have opened up allowing solar wind (comprised of charged particles) to stream into space. Gusts of solar wind can generate beautiful aurora when they reach Earth. The video clip shows the sun in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21067

  4. Churning Prominence

    NASA Image and Video Library

    2017-01-30

    On Jan. 23-24, 2017, NASA Solar Dynamics Observatory watched as a solar prominence rose up along the edge of the sun and twisted and churned for about two days before falling apart. The dynamic action was generated by competing magnetic forces. The images were taken in a wavelength extreme ultraviolet light that observes activity close to the solar surface, perfect for capturing prominences, which are notoriously unstable clouds of plasma suspended above the sun. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11237

  5. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry.

    PubMed

    Cambié, Dario; Zhao, Fang; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2017-01-19

    The use of solar light to promote chemical reactions holds significant potential with regard to sustainable energy solutions. While the number of visible light-induced transformations has increased significantly, the use of abundant solar light has been extremely limited. We report a leaf-inspired photomicroreactor that constitutes a merger between luminescent solar concentrators (LSCs) and flow photochemistry to enable green and efficient reactions powered by solar irradiation. This device based on fluorescent dye-doped polydimethylsiloxane collects sunlight, focuses the energy to a narrow wavelength region, and then transports that energy to embedded microchannels where the flowing reactants are converted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  7. What is a Sungrazing Comet? [hd video

    NASA Image and Video Library

    2013-11-27

    Sungrazing comets are a special class of comets that come very close to the sun at their nearest approach, a point called perihelion. To be considered a sungrazer, a comet needs to get within about 850,000 miles from the sun at perihelion. Many come even closer, even to within a few thousand miles. Being so close to the sun is very hard on comets for many reasons. They are subjected to a lot of solar radiation which boils off their water or other volatiles. The physical push of the radiation and the solar wind also helps form the tails. And as they get closer to the sun, the comets experience extremely strong tidal forces, or gravitational stress. In this hostile environment, many sungrazers do not survive their trip around the sun. Although they don't actually crash into the solar surface, the sun is able to destroy them anyway. Many sungrazing comets follow a similar orbit, called the Kreutz Path, and collectively belong to a population called the Kreutz Group. In fact, close to 85% of the sungrazers seen by the SOHO satellite are on this orbital highway. Scientists think one extremely large sungrazing comet broke up hundreds, or even thousands, of years ago, and the current comets on the Kreutz Path are the leftover fragments of it. As clumps of remnants make their way back around the sun, we experience a sharp increase in sungrazing comets, which appears to be going on now. Comet Lovejoy, which reached perihelion on December 15, 2011 is the best known recent Kreutz-group sungrazer. And so far, it is the only one that NASA's solar-observing fleet has seen survive its trip around the sun. Comet ISON, an upcoming sungrazer with a perihelion of 730,000 miles on November 28, 2013, is not on the Kreutz Path. In fact, ISON's orbit suggests that it may gain enough momentum to escape the solar system entirely, and never return. Before it does so, it will pass within about 40 million miles from Earth on December 26th. More information on this topic available at: www.nasa.gov/content/goddard/timeline-of-comet-ison-s-dan... Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Behavior Prediction Tools Strengthen Nanoelectronics

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Several years ago, NASA started making plans to send robots to explore the deep, dark craters on the Moon. As part of these plans, NASA needed modeling tools to help engineer unique electronics to withstand extremely cold temperatures. According to Jonathan Pellish, a flight systems test engineer at Goddard Space Flight Center, "An instrument sitting in a shadowed crater on one of the Moon s poles would hover around 43 K", that is, 43 kelvin, equivalent to -382 F. Such frigid temperatures are one of the main factors that make the extreme space environments encountered on the Moon and elsewhere so extreme. Radiation is another main concern. "Radiation is always present in the space environment," says Pellish. "Small to moderate solar energetic particle events happen regularly and extreme events happen less than a handful of times throughout the 7 active years of the 11-year solar cycle." Radiation can corrupt data, propagate to other systems, require component power cycling, and cause a host of other harmful effects. In order to explore places like the Moon, Jupiter, Saturn, Venus, and Mars, NASA must use electronic communication devices like transmitters and receivers and data collection devices like infrared cameras that can resist the effects of extreme temperature and radiation; otherwise, the electronics would not be reliable for the duration of the mission.

  9. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus; Viljanen, Ari

    2015-03-01

    Empirical models are developed to provide 10-30-min forecasts of the magnitude of the time derivative of local horizontal ground geomagnetic field (|dBh/dt|) over Europe. The models are driven by ACE solar wind data. A major part of the work has been devoted to the search and selection of datasets to support the model development. To simplify the problem, but at the same time capture sudden changes, 30-min maximum values of |dBh/dt| are forecast with a cadence of 1 min. Models are tested both with and without the use of ACE SWEPAM plasma data. It is shown that the models generally capture sudden increases in |dBh/dt| that are associated with sudden impulses (SI). The SI is the dominant disturbance source for geomagnetic latitudes below 50° N and with minor contribution from substorms. However, at occasions, large disturbances can be seen associated with geomagnetic pulsations. For higher latitudes longer lasting disturbances, associated with substorms, are generally also captured. It is also shown that the models using only solar wind magnetic field as input perform in most cases equally well as models with plasma data. The models have been verified using different approaches including the extremal dependence index which is suitable for rare events.

  10. How to Obtain a 100% Reliable Grid with Clean, Renewable Wind, Water, and Solar Providing 100% of all Raw Energy for All Purposes

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.; Delucchi, M. A.; Cameron, M. A.; Frew, B. A.

    2016-12-01

    The greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid is the high cost of avoiding load loss caused by WWS variability and uncertainty. This talk discusses the recent development of a new grid integration model to address this issue. The model finds low-cost, no-load-loss, non-unique solutions to this problem upon electrification of all U.S. energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time-series data from a 3-D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen); and using demand response. No natural gas, biofuels, or stationary batteries are needed. The resulting 2050-2055 U.S. electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, stable 100% WWS systems should work many places worldwide. The paper this talk is based on was published in PNAS, 112, 15,060-15,065, 2015, doi:10.1073/pnas.1510028112.

  11. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    NASA Astrophysics Data System (ADS)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  12. Searching for Rapid Orbital Decay of WASP-18b

    NASA Astrophysics Data System (ADS)

    Wilkins, Ashlee N.; Delrez, Laetitia; Barker, Adrian J.; Deming, Drake; Hamilton, Douglas; Gillon, Michael; Jehin, Emmanuel

    2017-02-01

    The WASP-18 system, with its massive and extremely close-in planet, WASP-18b (M p = 10.3M J , a = 0.02 au, P = 22.6 hr), is one of the best-known exoplanet laboratories to directly measure Q‧, the modified tidal quality factor and proxy for efficiency of tidal dissipation, of the host star. Previous analysis predicted a rapid orbital decay of the planet toward its host star that should be measurable on the timescale of a few years, if the star is as dissipative as is inferred from the circularization of close-in solar-type binary stars. We have compiled published transit and secondary eclipse timing (as observed by WASP, TRAPPIST, and Spitzer) with more recent unpublished light curves (as observed by TRAPPIST and Hubble Space Telescope) with coverage spanning nine years. We find no signature of a rapid decay. We conclude that the absence of rapid orbital decay most likely derives from Q‧ being larger than was inferred from solar-type stars and find that Q‧ ≥ 1 × 106, at 95% confidence; this supports previous work suggesting that F stars, with their convective cores and thin convective envelopes, are significantly less tidally dissipative than solar-type stars, with radiative cores and large convective envelopes.

  13. Searching for Rapid Orbital Decay of WASP-18b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, Ashlee N.; Deming, Drake; Hamilton, Douglas

    2017-02-20

    The WASP-18 system, with its massive and extremely close-in planet, WASP-18b ( M{sub p} = 10.3 M{sub J}, a = 0.02 au, P = 22.6 hr), is one of the best-known exoplanet laboratories to directly measure Q ′, the modified tidal quality factor and proxy for efficiency of tidal dissipation, of the host star. Previous analysis predicted a rapid orbital decay of the planet toward its host star that should be measurable on the timescale of a few years, if the star is as dissipative as is inferred from the circularization of close-in solar-type binary stars. We have compiled publishedmore » transit and secondary eclipse timing (as observed by WASP, TRAPPIST, and Spitzer ) with more recent unpublished light curves (as observed by TRAPPIST and Hubble Space Telescope ) with coverage spanning nine years. We find no signature of a rapid decay. We conclude that the absence of rapid orbital decay most likely derives from Q ′ being larger than was inferred from solar-type stars and find that Q ′ ≥ 1 × 10{sup 6}, at 95% confidence; this supports previous work suggesting that F stars, with their convective cores and thin convective envelopes, are significantly less tidally dissipative than solar-type stars, with radiative cores and large convective envelopes.« less

  14. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.

    PubMed

    In, Sungjun; Park, Namkyoo

    2016-02-23

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.

  15. New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.

    2003-01-01

    It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.

  16. Extrasolar Planets Observed with JWST and the ELTs

    NASA Technical Reports Server (NTRS)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  17. A model of a sunspot chromosphere based on OSO 8 observations

    NASA Technical Reports Server (NTRS)

    Lites, B. W.; Skumanich, A.

    1982-01-01

    OSO 8 spectrometer observations of the H I, Mg II, and Ca II resonance lines of a large quiet sunspot during November 16-17, 1975, along with a C IV line of that event obtained by a ground-based spectrometer, are analyzed together with near-simultaneous ground-based Stokes measurements to yield an umbral chromosphere and transition region model. Features of this model include a chromosphere that is effectively thin in the resonance lines of H I and Mg II, while being saturated in Ca II, and an upper chromospheric structure similar to that of quiet-sun models. The similarity of the upper chromosphere of the sunspot umbra to the quiet-sun chromosphere suggests that the intense magnetic field plays only a passive role in the chromospheric heating mechanism, and the observations cited indicate that solar-type stars with large areas of ordered magnetic flux would not necessarily exhibit extremely active chromosphere.

  18. Technical Progress of the New Worlds Observer Mission

    NASA Astrophysics Data System (ADS)

    Lo, Amy; Noecker, C.; Cash, W.; NWO Study Team

    2009-01-01

    We report on the technical progress of the New Worlds Observer (NWO) mission concept. NWO is a two spacecraft mission that is capable of detecting and characterizing extra-solar, terrestrial planets and planetary systems. NWO consists of an external starshade and an UV-optical space telescope, flying in tandem. The starshade is a petal-shaped, opaque screen that creates an extremely dark shadow large enough to shade the telescope aperture from the target star. The NWO team has been addressing the top technology challenges of the concept, and report here our progress. We will present the current mission configuration best suited to address Terrestrial Planet Finding requirements, and highlight the technological breakthroughs that we have achieved this year. In particular, we will report on progress made in precision deployables for the large starshade, and the trajectory & alignment control system for NWO. We will also briefly highlight advances in understanding the starshade optical performance.

  19. Metamorphic Epitaxy for Multijunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Ryan M.; Dimroth, Frank; Grassman, Tyler J.

    Multijunction solar cells have proven to be capable of extremely high efficiencies by combining multiple semiconductor materials with bandgaps tuned to the solar spectrum. Reaching the optimum set of semiconductors often requires combining high-quality materials with different lattice constants into a single device, a challenge particularly suited for metamorphic epitaxy. In this article, we describe different approaches to metamorphic multijunction solar cells, including traditional upright metamorphic, state-of-the-art inverted metamorphic, and forward-looking multijunction designs on silicon. We also describe the underlying materials science of graded buffers that enables metamorphic subcells with low dislocation densities. Following nearly two decades of research, recentmore » efforts have demonstrated high-quality lattice-mismatched multijunction solar cells with very little performance loss related to the mismatch, enabling solar-to-electric conversion efficiencies over 45%.« less

  20. Heliospheric and Local Interstellar Space Weathering Environments of Extreme Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sturner, S. J.

    2017-12-01

    Since the first direct detection of a Kuiper Belt Object (KBO), (15760) 1992 QB1, in 1992, observational evidence via direct detection has accumulated for thousands (and via inference for hundreds of thousands) of small to large icy bodies that populate the solar system from within the supersonic heliosphere out into the local interstellar medium (LISM). These objects have mainly been discovered when within the heliosphere but the orbits of the more extreme KBOs, fifteen percent of the total known KBO population, take them out into the heliosheath and about half of these continue further out into the LISM. Continuing observations will inevitably increase the known inventory of extreme KBOs, possibly including a few that may be accessible as near-encounter targets for a future interstellar probe mission directed beyond 200 AU into the upstream LISM. Here we review the known population of extreme KBOs and address the properties of the heliospheric and LISM environments that could potentially affect object visibility and surface composition. The twin Voyager spacecraft are our present source of in-situ measurements for the plasma and energetic particle environments, except that there are no plasma data from Voyager 1. Voyager 1 and 2 are now respectively in the LISM and the heliosheath after earlier passing through the outer regions of the supersonic heliosphere upstream of the solar wind termination shock. The Voyager data coverage is complemented by energetic neutral atom (ENA) measurements of the Interstellar Background Explorer (IBEX) and Cassini Orbiter spacecraft that can be used to infer proton flux spectra from models of ENA production in the outer heliosphere. High radiation background in the LISM has precluded sub-MeV energetic ion measurements by Voyager 1, so we use limits from Cummings et al. (ApJ, 2016) for molecular cloud ionization. This would be an important energy region to cover with interstellar probe measurements. These sources of plasma and energetic particle flux measurements are used to estimate values for space weathering parameters including surface energy flux and pressure, dosage vs. depth profiles for chemical processing of mixed ice surfaces, and ion sputtering rates. We further consider other space weathering processes including ultraviolet irradiation and meteoritic impact gardening.

  1. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  2. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  3. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  4. Stable Isotope Systematics of Martian Perchlorate

    NASA Astrophysics Data System (ADS)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate is the HCl source, as the residual perchlorate after reduction will be isotopically heavy. Therefore, conclusive determination of the origin of HCl released during EGA is vital to understanding the origin of this large δ37Cl anomaly.

  5. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.

    2011-04-10

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less

  6. Strong non-radial propagation of energetic electrons in solar corona

    NASA Astrophysics Data System (ADS)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others), which may explain the origin of widespread SEP events.

  7. Using solar-powered refrigeration for vaccine storage where other sources of reliable electricity are inadequate or costly.

    PubMed

    McCarney, Steve; Robertson, Joanie; Arnaud, Juliette; Lorenson, Kristina; Lloyd, John

    2013-12-09

    Large areas of many developing countries have no grid electricity. This is a serious challenge that threatens the continuity of the vaccine cold chain. The main alternatives to electrically powered refrigerators available for many years--kerosene- and gas-driven refrigerators--are plagued by problems with gas supply interruptions, low efficiency, poor temperature control, and frequent maintenance needs. There are currently no kerosene- or gas-driven refrigerators that qualify under the minimum standards established by the World Health Organization (WHO) Performance, Quality, and Safety (PQS) system. Solar refrigeration was a promising development in the early 1980s, providing an alternative to absorption technology to meet cold chain needs in remote areas. Devices generally had strong laboratory performance data; however, experience in the field over the years has been mixed. Traditional solar refrigerators relied on relatively expensive battery systems, which have demonstrated short lives compared to the refrigerator. There are now alternatives to the battery-based systems and a clear understanding that solar refrigerator systems need to be designed, installed, and maintained by technicians with the necessary knowledge and training. Thus, the technology is now poised to be the refrigeration method of choice for the cold chain in areas with no electricity or extremely unreliable electricity (less than 4h per average day) and sufficient sunlight. This paper highlights some lessons learned with solar-powered refrigeration, and discusses some critical factors for successful introduction of solar units into immunization programs in the future including: •Sustainable financing mechanisms and incentives for health workers and technicians are in place to support long-term maintenance, repair, and replacement parts. •System design is carried out by qualified solar refrigerator professionals taking into account the conditions at installation sites. •Installation and repair are conducted by well-trained technicians. •Temperature performance is continuously monitored and protocols are in place to act on data that indicate problems. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Solar Influence on Tropical Cyclone in Western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hee; Kim, Ki-Beom; Chang, Heon-Young

    2017-12-01

    Solar activity is known to be linked to changes in the Earth’s weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-Niño-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-Niño periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-Niña periods. TCs occurring in the El-Niño periods are found to last longer compared with the La-Niña periods. Furthermore, TCs occurring in the El-Niño periods have a lower central pressure at their maximum strength than those occurring in the La-Niña periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-Niño periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-Niño periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-Niño periods and in the La-Niña periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.

  9. No nitrate spikes detectable in several polar ice cores following the largest known solar events

    NASA Astrophysics Data System (ADS)

    Mekhaldi, Florian; McConnell, Joseph R.; Adolphi, Florian; Arienzo, Monica; Chellman, Nathan J.; Maselli, Olivia; Sigl, Michael; Muscheler, Raimund

    2017-04-01

    Solar energetic particle (SEP) events are a genuine and recognized threat to our modern society which is increasingly relying on satellites and technological infrastructures. However, knowledge on the frequency and on the upper limit of the intensity of major solar storms is largely limited by the relatively short direct observation period. In an effort to extend the observation period and because atmospheric ionization induced by solar particles can lead to the production of odd nitrogen, spikes in the nitrate content of ice cores have been tentatively used to reconstruct both the occurrence and intensity of past SEP events. Yet the reliability of its use as such a proxy has been long debated. This is partly due to differing chemistry-climate model outputs, equivocal detection of nitrate spikes in single ice cores for single events, and possible alternative sources to explain nitrate spikes in ice cores. Here we present nitrate measurements from several Antarctic and Greenland ice cores for time periods covering the largest known solar events. More specifically, we use new highly-resolved nitrate and biomass burning proxy species data (e.g. black carbon) from continuous flow analysis following the largest known solar events from the paleo record - the SEP events of 775 and 994 AD. We also consider the historical Carrington event of 1859 as well as contemporary events from the past 60 years which were observed by satellites. Doing so we show that i) there are no reproducible nitrate spikes in Greenland and Antarctic ice cores following any of these major events and that ii) most nitrate spikes found in ice cores are related to biomass burning plumes. Our analysis thus suggests that ice-core nitrate data is not a reliable proxy for atmospheric ionization by SEP events. In light of our results, we advocate that nitrate spikes so far identified from single ice cores should not be used to assess the intensity and occurrence rate of extreme solar events.

  10. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.

  11. Sun Emits a Mid-Level Flare on Dec. 4, 2014

    NASA Image and Video Library

    2017-12-08

    The sun emitted a solar flare on Dec. 4, 2014, seen as the flash of light in this image from NASA's Solar Dynamics Observatory. The image blends two wavelengths of extreme ultraviolet light – 131 and 171 Angstroms – which are typically colored in teal and gold, respectively. Read more: 1.usa.gov/121n7PP Image Credit: NASA/SDO

  12. On the backscatter of solar He II, 304 A radiation from interplanetary He/+/.

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Bowyer, S.

    1973-01-01

    Backscatter of solar He II, 304 A radiation by interplanetary positive helium ions is shown to be insufficient to account for recent observations of this airglow radiation in the night sky at rocket altitudes. In fact, for most viewing directions, the expected intensities probably fall well below the sensitivity threshold of existing extreme ultraviolet instrumentation.

  13. Design challenges and methodology for developing new integrated circuits for the robotics exploration of the solar system

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Johnson, R. Wayne

    2005-01-01

    Next generation space-based robotics systems will be constructed using distributed architectures where electronics capable of working in the extreme environments of the planets of the solar system are integrated with the sensors and actuators in plug-and-play modules and are connected through common multiple redundant data and power buses.

  14. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    NASA Astrophysics Data System (ADS)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  15. Sweeping Arches and Loops [video

    NASA Image and Video Library

    2014-07-10

    Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: NASA/Solar Dynamics Observatory Two active regions with their intense magnetic fields produced towering arches and spiraling coils of solar loops above them (June 29 - July 1, 2014) as they rotated into view. When viewed in extreme ultraviolet light, magnetic field lines are revealed by charged particles that travel along them. These active regions appear as dark sunspots when viewed in filtered light. Note the small blast in the upper of the two major active regions, followed by more coils of loops as the region reorganizes itself. The still was taken on June 30 at 10:33 UT. Credit: Solar Dynamics Observatory/NASA.

  16. Solar Extreme UV radiation and quark nugget dark matter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhitnitsky, Ariel, E-mail: arz@phas.ubc.ca

    2017-10-01

    We advocate the idea that the surprising emission of extreme ultra violet (EUV) radiation and soft x-rays from the Sun are powered externally by incident dark matter (DM) particles. The energy and the spectral shape of this otherwise unexpected solar irradiation is estimated within the quark nugget dark matter model. This model was originally invented as a natural explanation of the observed ratio Ω{sub dark} ∼ Ω{sub visible} when the DM and visible matter densities assume the same order of magnitude values. This generic consequence of the model is a result of the common origin of both types of mattermore » which are formed during the same QCD transition and both proportional to the same fundamental dimensional parameter Λ{sub QCD}. We also present arguments suggesting that the transient brightening-like 'nanoflares' in the Sun may be related to the annihilation events which inevitably occur in the solar atmosphere within this dark matter scenario.« less

  17. Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.

    1975-01-01

    The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.

  18. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Juho; Song, Kwangsun; Kim, Namyun

    2016-06-20

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric powermore » similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.« less

  19. Radiation Environments for Future Human Exploration Throughout the Solar System.

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Gorby, M.; Linker, J.; Riley, P.; Torok, T.; Downs, C.; Spence, H. E.; Desai, M. I.; Mikic, Z.; Joyce, C. J.; Kozarev, K. A.; Townsend, L. W.; Wimmer-Schweingruber, R. F.

    2016-12-01

    Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. The ability to predict when and where large events will occur is necessary in order to mitigate their hazards. The largest events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons accelerated very low in the corona by the passage of coronal mass ejection (CME)-driven compressions or shocks and from flares travel near the speed of light, arriving at Earth minutes after the eruptive event. Whether these particles actually reach Earth, the Moon, Mars (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock. Recent contemporaneous observations during the largest events in almost a decade show the unique longitudinal distributions of this ionizing radiation broadly distributed from sources near the Sun and yet highly isolated during the passage of CME shocks. Over the last decade, we have observed space weather events as the solar wind exhibits extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity during cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small particle radiation events. We have used observations from LRO/CRaTER to examine the implications of these highly unusual solar conditions for human space exploration throughout the inner solar system. While these conditions are not a show-stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits mission durations. If the heliospheric magnetic field continues to weaken over time, as is likely, then allowable mission durations will decrease correspondingly. Thus, we examine the rapidly changing radiation environment and its implications for human exploration destinations throughout the inner solar system.

  20. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.

  1. The Heating of the Solar Atmosphere: from the Bottom Up?

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy

    2014-01-01

    The heating of the solar atmosphere remains a mystery. Over the past several decades, scientists have examined the observational properties of structures in the solar atmosphere, notably their temperature, density, lifetime, and geometry, to determine the location, frequency, and duration of heating. In this talk, I will review these observational results, focusing on the wealth of information stored in the light curve of structures in different spectral lines or channels available in the Solar Dynamic Observatory's Atmospheric Imaging Assembly, Hinode's X-ray Telescope and Extreme-ultraviolet Imaging Spectrometer, and the Interface Region Imaging Spectrograph. I will discuss some recent results from combined data sets that support the heating of the solar atmosphere may be dominated by low, near-constant heating events.

  2. Electromagnetic plasma particle simulations on Solar Probe Plus spacecraft interaction with near-Sun plasma environment

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki

    It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci.}, textbf{41}, 3338-3348, 2013.

  3. Candidate Coatings and Dry Traction Drives for Planetary Vehicles

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert; Oswald, Fred B.

    2002-01-01

    Robert Fusaro and Fred Oswald of the Mechanical Components Branch discussed 'Candidate Coatings and Dry Traction Drives for Planetary Vehicles'. Vehicles to be designed for exploration of planets and moons of the solar system will require reliable mechanical drives to operate efficiently. Long-term operation of these drives will be challenging because of extreme operating conditions. These extreme conditions include: very high and/or very cold temperatures, wide temperature ranges, dust, vacuum or low-pressure atmospheres, and corrosive environments. Most drives used on Earth involve oil-lubricated gears. However, due to the extreme conditions on planetary surfaces, it may not be advisable or even possible to use oil lubrication. Unfortunately, solid lubricants do not work well when applied to gears because of the high contact stress conditions and large sliding motion between the teeth, which cause wear and limit life. We believe traction drives will provide an attractive alternative to gear drives. Traction drives are composed of rollers that provide geometry more conducive to solid lubrication. Minimal slip occurs in this contact geometry and thus there is very low wear to the solid lubricant. The challenge for these solid-lubricated drives is finding materials or coatings that provide the required long-life while also providing high traction. We seek materials that provide low wear with high friction.

  4. Diversity of virus-host systems in hypersaline Lake Retba, Senegal.

    PubMed

    Sime-Ngando, Télesphore; Lucas, Soizick; Robin, Agnès; Tucker, Kimberly Pause; Colombet, Jonathan; Bettarel, Yvan; Desmond, Elie; Gribaldo, Simonetta; Forterre, Patrick; Breitbart, Mya; Prangishvili, David

    2011-08-01

    Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimizationmore » algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.« less

  6. Phase Quantization Study of Spatial Light Modulator for Extreme High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing

    2016-11-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10-10. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10-10 in comparison to that by using a deformable mirror.

  7. Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.; hide

    1995-01-01

    We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.

  8. PERSISTENCE MAPPING USING EUV SOLAR IMAGER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, B. J.; Young, C. A., E-mail: barbara.j.thompson@nasa.gov

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call “Persistence Mapping,” to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or “time-lapse” imaging uses the full sample (of size N ), Persistence Mapping rejects ( N − 1)/ N of the data set and identifies the most relevant 1/ N values using themore » following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.« less

  9. Results of the AEROS satellite program: Summary

    NASA Technical Reports Server (NTRS)

    Lammerzahl, P.; Rawer, K.; Roemer, N.

    1980-01-01

    Published literature reporting aeronomic data collected on two AEROS missions is summarized. The extreme ultraviolet solar radiation and other significant parameters of the thermosphere/ionosphere were investigated. Kinetic pressure, the quantity of atomic nitrogen, and partial densities of helium, oxygen, nitrogen, argon, and atomic nitrogen were determined. The thermal electron population, superthermal energy distribution, plasma density, ion temperature, and composition according to ion types were measured. The chief energy supply in the thermosphere was calculated. Aeronomic calculations showing that variations in the parameters of the ionosphere cannot be correlated with fluctuations of extreme ultraviolet solar radiation were performed. The AEROS data were compared with data from S3-1, ISIS, and AE-C satellites. Models of the thermosphere and ionosphere were developed.

  10. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory.

    PubMed

    Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.

  11. Ultra Low Temperature Ultra Low Power Instrument Packages for Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Beaman, B.; Yeh, P. S.; Cooper, L.; Feng, S.; Young, E.

    2010-01-01

    Achievement of solar system exploration roadmap goals will involve robotic or human deployment and longterm operation of surface science packages remote from human presence, thus requiring autonomous, self-powered operation. The major challenge such packages face will be operating during long periods of darkness in extreme cold potentially without the Pu238 based power and thermal systems available to Apollo era packages (ALSEP). Development of such science payloads will thus require considerable optimization of instrument and subsystem design, packaging and integration for a variety of planetary surface environments in order to support solar system exploration fully. Our work supports this process through the incorporation of low temperature operational components and design strategies which radically minimize power, mass, and cost while maximizing the performance under extreme surface conditions that are in many cases more demanding than those routinely experienced by spacecraft in deep space. Chief instruments/instrument package candidates include those which could provide long-term monitoring of the surface and subsurface environments for fundamental science and human crew safety. The initial attempt to design a 10 instrument environmental monitoring package with a solar/battery based power system led to a package with a unacceptably large mass (500 kg) of which over half was battery mass. In phase 1, a factor of 5 reduction in mass was achieved, first through the introduction of high performance electronics capable of operating at far lower temperature and then through the use of innovative thermal balance strategies involving the use of multi-layer thin materials and gravity-assisted heat pipes. In phase 2, reported here, involves strategies such as universal incorporation of ULT/ULP digital and analog electronics, and distributed or non-conventionally packaged power systems. These strategies will be required to meet the far more challenging thermal requirements of operating through a normal 28 day diurnal cycle. The limited temperature range of efficient battery operation remains the largest obstacle.

  12. Recent solar extreme ultraviolet irradiance observations and modeling: A review

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    1993-01-01

    For more than 90 years, solar extreme ultraviolet (EUV) irradiance modeling has progressed from empirical blackbody radiation formulations, through fudge factors, to typically measured irradiances and reference spectra was well as time-dependent empirical models representing continua and line emissions. A summary of recent EUV measurements by five rockets and three satellites during the 1980s is presented along with the major modeling efforts. The most significant reference spectra are reviewed and threee independently derived empirical models are described. These include Hinteregger's 1981 SERF1, Nusinov's 1984 two-component, and Tobiska's 1990/1991/SERF2/EUV91 flux models. They each provide daily full-disk broad spectrum flux values from 2 to 105 nm at 1 AU. All the models depend to one degree or another on the long time series of the Atmosphere Explorer E (AE-E) EUV database. Each model uses ground- and/or space-based proxies to create emissions from solar atmospheric regions. Future challenges in EUV modeling are summarized including the basic requirements of models, the task of incorporating new observations and theory into the models, the task of comparing models with solar-terrestrial data sets, and long-term goals and modeling objectives. By the late 1990s, empirical models will potentially be improved through the use of proposed solar EUV irradiance measurements and images at selected wavelengths that will greatly enhance modeling and predictive capabilities.

  13. Coronal Hole Facing Earth

    NASA Image and Video Library

    2018-05-08

    An extensive equatorial coronal hole has rotated so that it is now facing Earth (May 2-4, 2018). The dark coronal hole extends about halfway across the solar disk. It was observed in a wavelength of extreme ultraviolet light. This magnetically open area is streaming solar wind (i.e., a stream of charged particles released from the sun) into space. When Earth enters a solar wind stream and the stream interacts with our magnetosphere, we often experience nice displays of aurora. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA00624

  14. The TESIS experiment on the CORONAS-PHOTON spacecraft

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  15. Dancing to the MUSSIC: Steps towards creating a Multisatellite Ultraviolet Solar Spectral Irradiance Composite

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Machol, J. L.; Richard, E. C.

    2016-12-01

    Solar spectral irradiance (SSI) has been measured since the beginning of the satellite era in 1978, but the observational record has many gaps in both wavelength and time. We describe our current effort in linking several such datasets ranging from the Extreme Ultraviolet to the Near Ultraviolet (0-400 nm). This wavelength range includes two important solar activity proxies, the Magnesium II core—to-wing ratio and the Lyman alpha irradiance, and special attention will be applied to these two wavelength intervals.

  16. Laboratory study supporting the interpretation of Solar Dynamics Observatory data

    DOE PAGES

    Trabert, E.; Beiersdorfer, P.

    2015-01-29

    High-resolution extreme ultraviolet spectra of ions in an electron beam ion trap are investigated as a laboratory complement of the moderate-resolution observation bands of the AIA experiment on board the Solar Dynamics Observatory (SDO) spacecraft. Here, the latter observations depend on dominant iron lines of various charge states which in combination yield temperature information on the solar plasma. Our measurements suggest additions to the spectral models that are used in the SDO data interpretation. In the process, we also note a fair number of inconsistencies among the wavelength reference data bases.

  17. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. II. SYSTEMATIC Q/M DEPENDENCE OF HEAVY ION SPECTRAL BREAKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.

    2016-09-10

    We fit ∼0.1–500 MeV nucleon{sup −1} H–Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ {sub a} and γ {sub b}, and break energy E {sub B}, and derive the low-energy spectral slope γ {sub 1}. We find that: (1) γ {sub a}, γ {sub 1}, and γ {sub b} are species-independent and the spectra steepen with increasing energy; (2) E {sub B} decreases systematically with decreasing Q/M scaling as (Q/M){sup α}; (3) α varies between ∼0.2–3 and is well correlated with themore » ∼0.16–0.23 MeV nucleon{sup −1} Fe/O; (4) in most events, α < 1.4, γ {sub b}– γ {sub a} > 3, and O E {sub B} increases with γ {sub b}– γ {sub a}; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and {sup 3}He/{sup 4}He ratios are enriched, α ≥ 1.4, γ {sub b}– γ {sub a} < 3, and E {sub B} decreases with γ {sub b}– γ {sub a}. The species-independence of γ {sub a}, γ {sub 1}, and γ {sub b} and the Q/M dependence of E {sub B} within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ {sub 1}, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E {sub B} is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.« less

  18. Feasibility Study of Space Based Solar Power to Tethered Aerostat Systems

    NASA Technical Reports Server (NTRS)

    Blank, Stephen J.; Leete, Stephen J.; Jaffe, Paul

    2013-01-01

    The feasibility of two-stage Space-Based Solar Power to Tethered Aerostat to Earth (SSP-TA) system architectures that offer significant advantages over conventional single stage space-to-earth architectures is being studied. There have been many proposals for the transmission of solar power collected in space to the surface of the earth so that solar energy could provide a major part of the electric power requirements on earth. There are, however, serious difficulties in implementing the single stage space-based solar power systems that have been previously studied. These difficulties arise due to: i) the cost of transporting the components needed for the extremely large microwave transmit beaming aperture into space orbit, ii) the even larger collection apertures required on earth, iii) the potential radiation hazard to personnel and equipment on earth, and iv) a lack of flexibility in location of the collection station on the earth. Two candidate system architectures are described here to overcome these difficulties. In both cases a two-stage space to tethered aerostat to earth transmission system (SSP-TA) is proposed. The use of high altitude tethered aerostats (or powered airships) avoids the effects of attenuation of EM energy propagating through the earth s lower atmosphere. This allows the use of beaming frequencies to be chosen from the range of high millimeter (THz) to near-infra-red (NIR) to the visible. This has the potential for: i) greatly reduced transportation costs to space, ii) much smaller receiver collection apertures and ground stations, iii) elimination of the potential radiation hazard to personnel and equipment on earth, and iv) ease in transportation and flexibility in location of the collection station on the earth. A preliminary comparison of system performance and efficiencies is presented.

  19. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    PubMed

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation, and hindered the spikelet degeneration.

  20. Evidence of Significant Energy Input in the Late Phase of a Solar Flare from NuSTAR X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ˜18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  1. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of newmore » post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.« less

  2. Evidence of Significant Energy Input in the Late Phase of A Solar Flare from NuSTAR X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kuhar, Matej; Krucker, Sam; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; hide

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/ AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at approximately 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  3. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  4. Adaptive response studies may help choose astronauts for long-term space travel.

    PubMed

    Mortazavi, S M; Cameron, J R; Niroomand-rad, A

    2003-01-01

    Long-term manned exploratory missions are planned for the future. Exposure to high-energy neutrons, protons and high charge and energy particles during a deep space mission, needs protection against the detrimental effects of space radiation. It has been suggested that exposure to unpredictable extremely large solar particle events would kill the astronauts without massive shielding. To reduce this risk to astronauts and to minimize the need for shielding, astronauts with highest significant adaptive responses should be chosen. It has been demonstrated that some humans living in very high natural radiation areas have acquired high adaptive responses to external radiation. Therefore, we suggest that for a deep space mission the adaptive response of all potential crew members be measured and only those with high adaptive response be chosen. We also proclaim that chronic exposure to elevated levels of radiation can considerably decrease radiation susceptibility and better protect astronauts against the unpredictable exposure to sudden and dramatic increase in flux due to solar flares and coronal mass ejections. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. The Physical Processes of CME/ICME Evolution

    NASA Astrophysics Data System (ADS)

    Manchester, Ward; Kilpua, Emilia K. J.; Liu, Ying D.; Lugaz, Noé; Riley, Pete; Török, Tibor; Vršnak, Bojan

    2017-11-01

    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.

  6. The asymmetrical features in electron density during extreme solar minimum

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Shen, Xuhui; Liu, Jing; Yao, Lu; Yuan, Guiping; Huang, Jianping

    2014-12-01

    The variations of plasma density in topside ionosphere during 23rd/24th solar cycle minimum attract more attentions in recently years. In this analysis, we use the data of electron density (Ne) from DEMETER (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions) satellite at the altitude of 660-710 km to investigate the solstitial and equinoctial asymmetry under geomagnetic coordinate system at LT (local time) 1030 and 2230 during 2005-2010, especially in solar minimum years of 2008-2009. The results reveal that ΔNe (December-June) is always positive over Southern Hemisphere and negative over northern part whatever at LT 1030 or 2230, only at 0-10°N the winter anomaly occurs with ΔNe (December-June) > 0, and its amplitude becomes smaller with the declining of solar flux from 2005 to 2009. The ΔNe between September and March is completely negative during 2005-2008, but in 2009, it turns to be positive at latitudes of 20°S-40°N at LT 1030 and 10°S-20°N at LT 2230. Furthermore, the solstitial and equinoctial asymmetry index (AI) are calculated and studied respectively, which all depends on local time, latitude and longitude. The notable differences occur at higher latitudes in solar minimum year of 2009 with those in 2005-2008. The equinoctial AI at LT 2230 is quite consistent with the variational trend of solar flux with the lowest absolute AI occurring in 2009, the extreme solar minimum, but the solstitial AI exhibits abnormal enhancement during 2008 and 2009 with bigger AI than those in 2005-2007. Compared with the neutral compositions at 500 km altitude, it illustrates that [O/N2] and [O] play some roles in daytime and nighttime asymmetry of Ne at topside ionosphere.

  7. PROBABILITY OF CME IMPACT ON EXOPLANETS ORBITING M DWARFS AND SOLAR-LIKE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, C.; Opher, M.; Kornbleuth, M., E-mail: ckay@bu.edu

    2016-08-01

    Solar coronal mass ejections (CMEs) produce adverse space weather effects at Earth. Planets in the close habitable zone of magnetically active M dwarfs may experience more extreme space weather than at Earth, including frequent CME impacts leading to atmospheric erosion and leaving the surface exposed to extreme flare activity. Similar erosion may occur for hot Jupiters with close orbits around solar-like stars. We have developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), which predicts a CME's deflection. We adapt ForeCAT to simulate CME deflections for the mid-type M dwarf V374 Peg and hot Jupiters with solar-type hosts. V374 Peg'smore » strong magnetic fields can trap CMEs at the M dwarfs's Astrospheric Current Sheet, that is, the location of the minimum in the background magnetic field. Solar-type CMEs behave similarly, but have much smaller deflections and do not become trapped at the Astrospheric Current Sheet. The probability of planetary impact decreases with increasing inclination of the planetary orbit with respect to the Astrospheric Current Sheet: 0.5–5 CME impacts per day for M dwarf exoplanets, 0.05–0.5 CME impacts per day for solar-type hot Jupiters. We determine the minimum planetary magnetic field necessary to shield a planet's atmosphere from CME impacts. M dwarf exoplanets require values between tens and hundreds of Gauss. Hot Jupiters around a solar-type star, however, require a more reasonable <30 G. These values exceed the magnitude required to shield a planet from the stellar wind, suggesting that CMEs may be the key driver of atmospheric losses.« less

  8. Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats

    NASA Technical Reports Server (NTRS)

    Vishniac, H. S.

    1985-01-01

    The high, dry valleys of the Ross Desert of Antarctic, characterized by extremely low temperatures, aridity and a depauperate biota, are used as an analog of the postulated extreme climates of other planetary bodies of the Solar System to test the hypothesis that if life could be supported by Ross, it might be possible where similar conditions prevail. The previously considered sterility of the Ross Desert soil ecosystem has yielded up an indigenous yeast, Cryptoccus vishniacci, which is able to resist the extremes of cold, wet and dry freezing, and long arid periods, while making minimal nutritional demands on the soil.

  9. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Beatty, Brenda; Hill, Graham

    2013-12-01

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimizemore » potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.« less

  10. Evidence of plasma heating in solar microflares during the minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Kirichenko, Alexey; Bogachev, Sergey

    We present a statistical study of 80 solar microflares observed during the deep minimum of solar activity between 23 and 24 solar cycles. Our analysis covers the following characteristics of the flares: thermal energy of flaring plasma, its temperature and its emission measure in soft X-rays. The data were obtained during the period from April to July of 2009, which was favorable for observations of weak events because of very low level of solar activity. The most important part of our analysis was an investigation of extremely weak microflares corresponding to X-ray class below A1.0. We found direct evidence of plasma heating in more than 90% of such events. Temperature of flaring plasma was determined under the isothermal approximation using the data of two solar instruments: imaging spectroheliometer MISH onboard Coronas-Photon spacecraft and X-ray spectrophotometer SphinX operating in energy range 0.8 - 15 keV. The main advantage of MISH is the ability to image high temperature plasma (T above 4 MK) without a low-temperature background. The SphinX data was selected due to its high sensitivity, which makes available the registration of X-ray emission from extremely weak microflares corresponding GOES A0.1 - A0.01 classes. The temperature we obtained lies in the range from 2.6 to 13.6 MK, emission measure, integrated over the range 1 - 8 Å - 2.7times10(43) - 4.9times10(47) cm (-3) , thermal energy of flaring region - 5times10(26) - 1.6times10(29) erg. We compared our results with the data obtained by Feldman et. al. 1996 and Ryan et. al. 2012 for solar flares with X-ray classes above A2.0 and conclude that the relation between X-ray class of solar flare and its temperature is strongly different for ordinary flares (above A2.0) and for weak microflares (A0.01 - A2.0). Our result supports the idea that weak solar events (microflares and nanoflares) may play significant a role in plasma heating in solar corona.

  11. The magnitude and effects of extreme solar particle events

    NASA Astrophysics Data System (ADS)

    Jiggens, Piers; Chavy-Macdonald, Marc-Andre; Santin, Giovanni; Menicucci, Alessandra; Evans, Hugh; Hilgers, Alain

    2014-06-01

    The solar energetic particle (SEP) radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE) on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm-2) as a function of particle energy (in MeV). This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads), non-ionising energy loss (MeV g-1), single event upsets (upsets/bit) and the dose in humans compared to established limits for stochastic (or cancer-causing) effects and tissue reactions (such as acute radiation sickness) in humans given in grey-equivalent and sieverts respectively.

  12. A NEW RAYTRACER FOR MODELING AU-SCALE IMAGING OF LINES FROM PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontoppidan, Klaus M.; Meijerink, Rowin; Blake, Geoffrey A.

    The material that formed the present-day solar system originated in feeding zones in the inner solar nebula located at distances within approx20 AU from the Sun, known as the planet-forming zone. Meteoritic and cometary material contain abundant evidence for the presence of a rich and active chemistry in the planet-forming zone during the gas-rich phase of solar system formation. It is a natural conjecture that analogs can be found among the zoo of protoplanetary disks around nearby young stars. The study of the chemistry and dynamics of planet formation requires: (1) tracers of dense gas at 100-1000 K and (2)more » imaging capabilities of such tracers with 5-100 mas (0.5-20 AU) resolution, corresponding to the planet-forming zone at the distance of the closest star-forming regions. Recognizing that the rich infrared (2-200 mum) molecular spectrum recently discovered to be common in protoplanetary disks represents such a tracer, we present a new general ray-tracing code, RADLite, that is optimized for producing infrared line spectra and images from axisymmetric structures. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. Such radiative transfer tools will be crucial for constraining both the structure and chemistry of planet-forming regions, including data from current infrared imaging spectrometers and extending to the Atacama Large Millimeter Array and the next generation of Extremely Large Telescopes, the James Webb Space Telescope and beyond.« less

  13. Magnetic storms and solar flares: can be analysed within similar mathematical framework with other extreme events?

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos

    2015-04-01

    The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.

  14. Extreme ultraviolet spectral irradiance measurements since 1946

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.

    2015-03-01

    In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar-terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial irradiance camera (STI-Cam) and also be used investigating real-time space weather effects and deriving more detailed correction procedures for the evaluation of Global Navigation Satellite System (GNSS) signals. Progress in physics goes with achieving higher accuracy in measurements. This review historically guides the reader on the ways of exploring the impact of the variable solar radiation in the extreme ultraviolet spectral region on our upper atmosphere in the altitude regime from 80 to 1000 km.

  15. Investigation of the 2006 Drought and 2007 Flood Extremes at the Southern Great Plains Through an Integrative Analysis of Observations

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Feng, Zhe; Entin, Jared K.; Houser, Paul R.; Schiffer, Robert A.; LEucyer, Tristan; Olson, William S.; Hsu, Kuo-lin; hide

    2010-01-01

    Hydrological years 2006 (HY06, 10/2005-09/2006) and 2007 (HY07, 10/2006-09/2007) provide a unique opportunity to examine hydrological extremes in the central US because there are no other examples of two such highly contrasting precipitation extremes occurring in consecutive years at the Southern Great Plains (SGP) in recorded history. The HY06 annual precipitation in the state of Oklahoma, as observed by the Oklahoma Mesonet, is around 61% of the normal (92.84 cm, based on the 1921-2008 climatology), which results in HY06 the second-driest year in the record. In particular, the total precipitation during the winter of 2005-06 is only 27% of the normal, and this winter ranks as the driest season. On the other hand, the HY07 annual precipitation amount is 121% of the normal and HY07 ranks as the seventh-wettest year for the entire state and the wettest year for the central region of the state. Summer 2007 is the second-wettest season for the state. Large-scale dynamics play a key role in these extreme events. During the extreme dry period (10/2005-02/2006), a dipole pattern in the 500-hPa GH anomaly existed where an anomalous high was over the southwestern U.S. region and an anomalous low was over the Great Lakes. This pattern is associated with inhibited moisture transport from the Gulf of Mexico and strong sinking motion over the SGP, both contributing to the extreme dryness. The precipitation deficit over the SGP during the extreme dry period is clearly linked to significantly suppressed cyclonic activity over the southwestern U.S., which shows robust relationship with the Western Pacific (WP) teleconnection pattern. The precipitation events during the extreme wet period (May-July 2007) were initially generated by active synoptic weather patterns, linked with moisture transport from the Gulf of Mexico by the northward low level jet, and enhanced by the mesoscale convective systems. Although the drought and pluvial conditions are dominated by large-scale dynamic patterns, we have demonstrated that the two positive feedback processes during the extreme dry and wet periods found in this study play a key role to maintain and reinforce the length and severity of existing drought and flood events. For example, during the extreme dry period, with less clouds, LWP, PWV, precipitation, and thinner Cu cloud thickness, more net radiation was absorbed and used to evaporate water from the ground. The evaporated moisture, however, was removed by low-level divergence. Thus, with less precipitation and removed atmospheric moisture, more absorbed incoming solar radiation was used to increase surface temperature and to make the ground drier.

  16. The large-scale modulation of cosmic rays in mid-1982: Its dependence on heliospheric longitude and radius

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Simpson, J. A.

    1985-01-01

    Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum.

  17. UV-Resistant Actinobacteria from High-Altitude Andean Lakes: Isolation, Characterization and Antagonistic Activities.

    PubMed

    Rasuk, María Cecilia; Ferrer, Gabriela Mónica; Kurth, Daniel; Portero, Luciano Raúl; Farías, María Eugenia; Albarracín, Virginia Helena

    2017-05-01

    Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products. © 2017 The American Society of Photobiology.

  18. Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.

    PubMed

    Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji

    2015-09-01

    During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.

  19. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  20. Robust, Thin Optical Films for Extreme Environments

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  1. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Compiler)

    1973-01-01

    The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.

  2. Reconstruction of Solar Extreme Ultraviolet Flux 1740 - 2015

    NASA Astrophysics Data System (ADS)

    Svalgaard, Leif

    2016-11-01

    Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the "Magnetic Crusade" of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F_{10.7} flux and the sunspot number, and we find that the reconstructed EUV flux reproduces the F_{10.7} flux with great accuracy. On the other hand, it appears that the Relative Sunspot Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and related indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every sunspot minimum (possibly including Grand Minima), representing an invariant "solar magnetic ground state".

  3. KSC-98pc1133

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is placed inside the payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  4. KSC-98pc1132

    NASA Image and Video Library

    1998-09-18

    KENNEDY SPACE CENTER, FLA. -- The Spartan solar-observing deployable spacecraft is suspended above the payload canister in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. The objective of the observations is to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  5. Extreme ultraviolet and X-ray spectroheliograph for OSO-H

    NASA Technical Reports Server (NTRS)

    Sterk, A. A.; Kieser, F.; Peck, S.; Knox, E.

    1972-01-01

    A complex scientific instrument was designed, fabricated, tested, and calibrated for launch onboard OSO-H. This instrument consisted of four spectroheliographs and an X-ray polarimeter. The instrument is designed to study solar radiation at selected wavelengths in the X-ray and the extreme ultraviolet ranges, make observations at the H-alpha wavelength, and measure the degree of polarization of X-ray emissions.

  6. Solar-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2002-01-01

    This Monthly Progress Report covers the reporting period August 2002 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  7. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period through June 2001, Phase C/D, Detailed Design and Development Through Launch Plus Thirty Days, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  8. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period July 2001 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme Ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  9. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  10. The Masdar Institute solar platform: A new research facility in the UAE for development of CSP components and thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Calvet, Nicolas; Martins, Mathieu; Grange, Benjamin; Perez, Victor G.; Belasri, Djawed; Ali, Muhammad T.; Armstrong, Peter R.

    2016-05-01

    Masdar Institute established a new solar platform dedicated to research and development of concentrated solar power (CSP), and thermal energy storage systems. The facility includes among others, state of the art solar resource assessment apparatuses, a 100 kW beam down CSP plant that has been adapted to research activity, one independent 100 kW hot-oil loop, and new thermal energy storage systems. The objective of this platform is to develop cost efficient CSP solutions, promote and test these technologies in extreme desert conditions, and finally develop local expertise. The purpose of this paper is not to present experimental results, but more to give a general overview of the different capabilities of the Masdar Institute Solar Platform.

  11. Particle acceleration and gamma rays in solar flares: Recent observations and new modeling

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Gan, W. Q.

    2012-09-01

    Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian-Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); (4) asymmetric magnetic geometry and new magnetic topology models of the near-limb flares; (5) modeling of self-consistent time scenario of the event.

  12. Isotopic Anomalies in Primitive Solar System Matter: Spin-State-Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milam, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula, Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest N=15 enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system N-15 and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  13. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  14. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less

  15. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  16. KSC-98pc1086

    NASA Image and Video Library

    1998-09-14

    KENNEDY SPACE CENTER, FLA. The International Extreme Ultraviolet Hitchhiker-3 (IEH-3), one of the payloads for the STS-95 mission, is prepared for launch in the Multi-Payload Processing Facility. IEH-3 is comprised of seven experiments, including one that will be deployed on Flight Day 3. It is the small, non-recoverable Petite Amateur Navy Satellite (PANSAT) which will store and transmit digital communications. Other IEH investigations are the Solar Constant Experiment (SOLCON), Solar Extreme Ultraviolet Hitchhiker (SEH), Spectrograph/Telescope for Astronomical Research (STAR-LITE), Ultraviolet Spectrograph Telescope for Astronomical Research (UVSTAR), Consortium for Materials Development in Space Complex Autonomous Payloads (CONCAP-IV) for growing thin films via physical vapor transport, and two Get-Away Special (GAS) canister experiments. The experiments will be mounted on a hitchhiker bridge in Discovery's payload bay

  17. A solar extreme ultraviolet telescope and spectrograph for space shuttle. Volume 1: Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1978-01-01

    A scientific investigation of heating and mass transport in the solar corona that is currently planned for a future Shuttle/Spacelab flight is outlined. The instrument to be used is a near-normal incidence grating spectrograph fed by a grazing incidence Wolter Type 2 telescope. A toroidal grating design provides stigmatic images of the corona up to 8 arc min in extent over the spectral region from 225 A to 370 A. Spatial resolution of at least 2 arc sec and spectral resolution of 0.050 A is achievable throughout the central 4 arc min field or view. Primary scientific data are recorded on Schumann-type film. An H-alpha slit jaw monitor and zero order extreme ultraviolet monitor are also planned to support instrument operation.

  18. Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.

    PubMed

    Tousey, R; Limansky, I

    1972-05-01

    A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.

  19. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  20. Atomic force microscopy characterization of Zerodur mirror substrates for the extreme ultraviolet telescopes aboard NASA's Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, Regina; Baker, Sherry L.; Windt, David L.

    2007-06-01

    The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less

  1. Extreme Wolf-Rayet Galaxies with HST/COS: Understanding CIII] Emission in the Reionization Era

    NASA Astrophysics Data System (ADS)

    Stark, Daniel

    2017-08-01

    The first deep spectra of reionization-era galaxies have revealed strong UV nebular emission in high-ionization lines. This is in striking contrast to massive galaxies at lower redshifts, where emission from CIII], OIII], HeII, and CIV is rarely seen. These lines will likely be the only probe available for the most distant galaxies JWST will detect; but we are still unprepared to interpret them. Modeling predicts that intense UV nebular emission can only be produced below a tenth solar metallicity. However, recent HST/COS observations of local galaxies suggest that extreme populations of Wolf-Rayet (WR) stars, the hot exposed cores of massive O stars, may be capable of powering CIII] at metallicities as high as a half-solar. If these moderately metal-poor extreme WR galaxies are indeed a viable source of strong CIII] emission, our interpretation of CIII] detections in the reionization era will be dramatically altered; but we presently have sufficient UV coverage for only three examples. Here, we propose HST/COS G160M and G185M observations of an additional seven extreme WR galaxies spanning 0.5 dex in metallicity around half-solar. These observations will constrain the maximum CIII] equivalent width these galaxies can power as a function of metallicity. The moderate resolution gratings will robustly characterize the massive O and WR star populations, allowing us to link the nebular emission directly to the massive stars responsible. These data will provide a stringent test for the population synthesis codes which will be applied to JWST observations. Without this empirical baseline, our understanding of the most distant galaxies JWST finds will be severely limited.

  2. Lithobiontic life: "Atacama rocks are well and alive".

    PubMed

    Gómez-Silva, Benito

    2018-02-01

    Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.

  3. Low Biotoxicity of Mars Analog Soils Suggests that the Surface of Mars May be Habitable for Terrestrial Microorganisms

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Ming, Douglas W.; Golden, D. C.

    2012-01-01

    Recent studies on the interactive effects of hypobaria, low temperatures, and CO2-enriched anoxic atmospheres on the growth of 37 species of mesophilic bacteria identified 14 potential biocidal agents that might affect microbial survival and growth on the martian surface. Biocidal or inhibitory factors include (not in priority): (1) solar UV irradiation, (2) low pressure, (3) extreme desiccating conditions, (4) extreme diurnal temperature fluctuations, (5) solar particle events, (6) galactic cosmic rays, (7) UV-glow discharge from blowing dust, (8) solar UV-induced volatile oxidants [e.g., O2(-), O(-), H2O2, O3], (9) globally distributed oxidizing soils, (10) extremely high salts levels [e.g., MgCl2, NaCl, FeSO4, and MgSO4] in surficial soils at some sites on Mars, (11) high concentrations of heavy metals in martian soils, (12) likely acidic conditions in martian fines, (13) high CO2 concentrations in the global atmosphere, and (14) perchlorate-rich soils. Despite these extreme conditions several studies have demonstrated that dormant spores or vegetative cells of terrestrial microorganisms can survive simulated martian conditions as long as they are protected from UV irradiation. What has not been explored in depth are the effects of potential biotoxic geochemical components of the martian regolith on the survival and growth of microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, salts, acidifying minerals, etc.; and (2) use the simulants to conduct biotoxicity assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the analog soils.

  4. Solar Probe Cup: Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.

    2017-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.

  5. A Summary of The 2000-2001 NASA Glenn Lear Jet AM0 Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Scheiman, David; Brinker, David; Snyder, David; Baraona, Cosmo; Jenkins, Phillip; Rieke, William J.; Blankenship, Kurt S.; Tom, Ellen M.

    2002-01-01

    Calibration of solar cells for space is extremely important for satellite power system design. Accurate prediction of solar cell performance is critical to solar array sizing, often required to be within 1%. The NASA Glenn Research Center solar cell calibration airplane facility has been in operation since 1963 with 531 flights to date. The calibration includes real data to Air Mass (AM) 0.2 and uses the Langley plot method plus an ozone correction factor to extrapolate to AM0. Comparison of the AM0 calibration data indicates that there is good correlation with Balloon and Shuttle flown solar cells. This paper will present a history of the airplane calibration procedure, flying considerations, and a brief summary of the previous flying season with some measurement results. This past flying season had a record 35 flights. It will also discuss efforts to more clearly define the ozone correction factor.

  6. Weak localization of electromagnetic waves and opposition phenomena exhibited by high-albedo atmosphereless solar system objects.

    PubMed

    Mishchenko, Michael I; Rosenbush, Vera K; Kiselev, Nikolai N

    2006-06-20

    The totality of new and previous optical observations of a class of high-albedo solar system objects at small phase angles reveals a unique combination of extremely narrow brightness and polarization features centered at exactly the opposition. The specific morphological parameters of these features provide an almost unequivocal evidence that they are caused by the renowned effect of coherent backscattering.

  7. The Sun in STEREO

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Parallax gives depth to life. Simultaneous viewing from slightly different vantage points makes binocular humans superior to monocular cyclopes, and fixes us in the third dimension of the Universe. We've been stunned by 3-d images of Venus and Mars (along with more familiar views of earth). Now astronomers plan to give us the best view of all, 3-d images of the dynamic Sun. That's one of the prime goals of NASA's Solar Terrestrial Relations Observatories, also known as STEREO. STEREO is a pair of spacecraft observatories, one placed in orbit in front of earth, and one to be placed in an earth-trailing orbit. Simultaneous observations of the Sun with the two STEREO spacecraft will provide extraordinary 3-d views of all types of solar activity, especially the dramatic events called coronal mass ejections which send high energy particles from the outer solar atmosphere hurtling towards earth. The image above the first image of the sun by the two STEREO spacecraft, an extreme ultraviolet shot of the Sun's million-degree corona, taken by the Extreme Ultraviolet Imager on the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument package. STEREO's first 3-d solar images should be available in April if all goes well. Put on your red and blue glasses!

  8. Extremely Cost‐Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper

    PubMed Central

    Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu

    2017-01-01

    Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low‐cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m2 h)−1. When scaled up to a 100 cm2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high‐efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity. PMID:28616256

  9. A Restrospective and Prospective Examination of NOAA Solar Imaging

    NASA Astrophysics Data System (ADS)

    Hill, S. M.

    2015-12-01

    NOAA has provided soft X-ray imaging of the lower corona since the early 2000's. It is currently building the spacecraft and instrumentation to observe the sun in the extreme ultraviolet (EUV) through 2036. After more than 6 million calibrated images, it is appropriate to examine NOAA data as providing retrospective context for scientific missions. In particular, this presentation examines the record of GOES Solar X-ray Imager (SXI) observations, including continuity, photometric stability and comparison to other contemporary x-ray imagers. The first GOES Solar X-ray Imager was launched in 2001 and entered operations in 2003. The current SXIs will remain in operations until approximately 2020, when a new series of Solar (extreme-)Ultraviolet Imagers (SUVIs) will replace them as the current satellites reach their end of life. In the sense that the SXIs are similar to Yokoh's SXT and Hinode's XRT, the SUVI instruments will be similar to SOHO's EIT and SDO's AIA. The move to narrowband EUV imagers will better support eventual operational estimation of plasma conditions. In particular, plans are to leverage advances in automated image processing and segmentation to assist forecasters. While NOAA's principal use of these observations is real-time space weather forecasting, they will continue to provide a consistent context measurement for researchers for decades to come.

  10. Extremely Cost-Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper.

    PubMed

    Liu, Zhejun; Song, Haomin; Ji, Dengxin; Li, Chenyu; Cheney, Alec; Liu, Youhai; Zhang, Nan; Zeng, Xie; Chen, Borui; Gao, Jun; Li, Yuesheng; Liu, Xiang; Aga, Diana; Jiang, Suhua; Yu, Zongfu; Gan, Qiaoqiang

    2017-02-27

    Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low-cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m 2 h) -1 . When scaled up to a 100 cm 2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high-efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.

  11. Model study of the effects of gravity wave dissipation on the thermosphere and ionosphere from deep convection worldwide

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon; Liu, Hanli

    In this paper, we discuss the methods and results of a global modeling study for the effect of deep convection on the thermosphere and ionosphere through the dissipation of atmospheric gravity waves (GWs). The selected time periods are 15-27 June 2009, during the recent extreme solar minimum, and 15-27 June 2000, during the recent solar maximum. The convective plumes which overshot the tropopause are identified from IR images obtained by 5 satellites covering the Earth during each period. We model the excitation of GWs from these plumes, and ray trace them into the thermosphere using our ray trace model which has been upgraded to span the Earth. We then calculate the forcings/heatings/coolings which result when and where these GWs dissipate in the thermosphere. We input these forcings/heatings/coolings into the global TIME-GCM, and re-run the model. In this paper, we discuss these methods and models in detail. We then discuss how the thermosphere and ionosphere responded to the dissipation of these convectively-generated GWs worldwide. We show that the responses propagate westward due to wind filtering by tides in the lower thermosphere. We also show that the neutral temperature and wind perturbations are larger during extreme solar minimum than during solar maximum.

  12. Computing the proton aurora at early Mars

    NASA Astrophysics Data System (ADS)

    Lovato, K.; Gronoff, G.; Curry, S.; Simon Wedlund, C.; Moore, W. B.

    2017-12-01

    In the early Solar System, ( 4 Gyr ago) our Sun was 70% less luminous than what is seen today but much more active. Indeed, for young stars, solar flares occurs more frequently and therefore so do coronal mass ejections and solar energetic particle events. With an increase in solar events, the flux of protons becomes extremely high, and affects planetary atmosphere in a more extreme way as today. Proton precipitation on planets has an impact on the energy balance of their upper atmospheres, can affect the photochemistry and create auroral emissions. Understanding the protons precipitation at the early Mars can help in understanding occurring chemical process as well as atmospheric evolution and escape. We concentrated our effort on the proton up to a MeV since they have the most important influence on the upper atmosphere. Using scaling laws, we estimated the proton flux for the Early Mars up to a MeV. A kinetic 1D code, validated for the current Mars, was used to compute the effects of the low energy protons precipitation on the Early Mars. This model solves the coupled H+/H multi-stream dissipative transport equation as well as the transport of the secondary electron. For the Early Mars, it allowed to compute the magnitude of the proton Aurora, as well as the corresponding upwards H flux.

  13. The Ionospheric Connection Explorer - A pioneering research mission for space physics and aeronomy.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Forbes, J. M.; England, S.; Maute, A. I.; Makela, J. J.; Crowley, G.; Stephan, A. W.; Huba, J. D.; Harlander, J. M.; Swenson, G. R.; Frey, H. U.; Bust, G. S.; Hysell, D. L.; Saito, A.; Yigit, E.

    2012-12-01

    Earth's ionosphere, the 'inner edge of space,' is a highly variable boundary that is influenced from below by internal atmospheric waves of various scales and from above by solar and geomagnetic activity. Recent observational findings and modeling studies have raised many questions about the effects and interaction of these drivers in our geospace environment, and how these vary between extremes in solar activity. ICON will address the most compelling science issues that deal with the coupling of the ionosphere to the neutral atmosphere below and space above: 1) The highly variable nature of the electric field in the ionosphere and its potential link to thermospheric wind, 2) the effect of forcing from below: how large-scale atmospheric waves penetrate into the thermosphere and ionosphere, and 3) the effect of forcing from above: how ion-neutral coupling changes during solar and geomagnetically active periods. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. If selected for development by NASA, ICON will launch in late 2016 into a low-inclination orbit that is particularly well suited to address the above-noted scientific problems and to make a number of coordinated measurements with ground based facilities at low and middle latitudes.The ICON observatory is depicted with solar arrays deployed. The scientific payload is on the nadir facing portion of the spacecraft.

  14. North-South Asymmetry in the Magnetic Deflection of Polar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Zimbardo, Gaetano; Bothmer, Volker; Patsourakos, Spiros

    Solar jets observed with the Extreme Ultra-Violet Imager (EUVI) and CORonagraphs (COR) instruments aboard the STEREO mission provide a tool to probe and understand the magnetic structure of the corona. Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure, the magnetic field controls the dynamics of plasma and, on average, jets during their propagation trace the magnetic field lines. We discuss the North-South asymmetry of the magnetic field of the Sun as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. We measured the position angle at 1 and at 2 solar radii for the 79 jets of the catalogue of Nisticò et al. (2009), based on the STEREO ultraviolet and visible observations, and we found that the propagation is not radial. The average jet deflection is studied both in the plane perpendicular to the line of sight, and, for a reduced number of jets in the three dimensional (3D) space. We find that the magnetic deflection of jets is larger in the North than in the South, with an asymmetry which is consistent with the N-S asymmetry of the heliospheric magnetic field inferred from the Ulysses in situ measurements, and gives clues to the study of the large scale solar magnetic field.

  15. Can Flare Loops Contribute to the White-light Emission of Stellar Superflares?

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Shibata, K.

    2018-06-01

    Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012‑1013 cm‑3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.

  16. A universal model for solar eruptions.

    PubMed

    Wyper, Peter F; Antiochos, Spiro K; DeVore, C Richard

    2017-04-26

    Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via 'magnetic breakout'-a positive-feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.

  17. Assemblage of Presolar Materials and Early Solar System Condensates in Chondritic Porous Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2015-01-01

    Anhydrous chondritic porous inter-planetary dust particles (CP IDPs) contain an assortment of highly primitive solar system components, molecular cloud matter, and presolar grains. These IDPs have largely escaped parent body processing that has affected meteorites, advocating cometary origins. Though the stardust abundance in CP IDPs is generally greater than in primitive meteorites, it can vary widely among individual CP IDPs. The average abundance of silicate stardust among isotopically primitive IDPs is approx. 375 ppm while some have extreme abundances up to approx. 1.5%. H and N isotopic anomalies are common in CP IDPs and the carrier of these anomalies has been traced to organic matter that has experienced chemical reactions in cold molecular clouds or the outer protosolar disk. Significant variations in these anomalies may reflect different degrees of nebular processing. Refractory inclusions are commonly observed in carbonaceous chondrites. These inclusions are among the first solar system condensates and display 16O-rich isotopic compositions. Refractory grains have also been observed in the comet 81P/Wild-2 samples re-turned from the Stardust Mission and in CP IDPs, but they occur with much less frequency. Here we conduct coordinated mineralogical and isotopic analyses of CP IDPs that were characterized for their bulk chemistry by to study the distribution of primitive components and the degree of nebular alteration incurred.

  18. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liheng; Zhang, Jun; Li, Ting

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Bliss, Mary; Farmer, Orville T.

    Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It ismore » only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.« less

  20. The Development of a New Model of Solar EUV Irradiance Variability

    NASA Technical Reports Server (NTRS)

    Warren, Harry; Wagner, William J. (Technical Monitor)

    2002-01-01

    The goal of this research project is the development of a new model of solar EUV (Extreme Ultraviolet) irradiance variability. The model is based on combining differential emission measure distributions derived from spatially and spectrally resolved observations of active regions, coronal holes, and the quiet Sun with full-disk solar images. An initial version of this model was developed with earlier funding from NASA. The new version of the model developed with this research grant will incorporate observations from SoHO as well as updated compilations of atomic data. These improvements will make the model calculations much more accurate.

  1. Major Solar Flare

    NASA Image and Video Library

    2017-09-18

    The Sun erupted with an X8 solar flare, one of the largest of the current solar cycle (Sept. 10, 2017). Its source was the same sunspot region that produced an X9 flare last week. This is shown in two wavelengths of extreme ultraviolet light at the same time and each reveals different features. Both are colorized to identify in which wavelength they were observed. The coils of loops after the flare are the magnetic field lines reorganizing themselves after the eruption. The video clip covers about six hours. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21958

  2. Basic Space Science; United Nations/European Space Agency Workshops for Developing Countries, 2nd, Bogota, Colombia, November 9-13, 1992

    NASA Technical Reports Server (NTRS)

    Haubold, Hans J. (Editor); Torres, Sergio (Editor)

    1994-01-01

    The conference primarily covered astrophysical and astronomical topics on stellar and solar modeling and processes, high magnetic field influence on stellar spectra, cosmological topics utilizing Cosmic Background Explorer (COBE) data and radioastronomic mapping as well as cosmic gravitational instability calculations, astrometry of open clusters amd solar gravitational focusing, extremely energetic gamma rays, interacting binaries, and balloon-borne instrumentation. Other papers proposed an active Search for Extraterrestrial Intelligence (SETI) communication scheme to neighboring solar-like systems and more direct involvement of and with the public in astronomy and space exploration projects.

  3. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab

    2017-10-01

    Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.

  4. Solar Flare Super-Events: When they Can Occur and the Energy Limits of their Realization

    NASA Astrophysics Data System (ADS)

    Ishkov, Vitaly N.

    2015-03-01

    For the successful development of terrestrial civilization it is necessary to estimate the space factors, including phenomena on Sun, which can ruin it or cause such catastrophic loss, that the restoration to the initial level can take unacceptably long time. Super-powerful solar flares are the only such phenomena. Therefore an attempt is undertaken to estimate the possibility of such super-event occurrence at this stage of our star evolution. Since solar flare events are the consequence of the newly emerging magnetic fluxes interacting with the already existing magnetic fields of active regions, are investigated the observed cases which lead to the realization of such super-events. From the observations of the maximal magnetic fluxes during the period of reliable solar observations, the conclusion is made that the super- extreme solar flares cannot significantly exceed the most powerful solar flares which have already been observed. On the statistics of the reliable solar cycles the sunspot groups, in which occurred the most powerful solar super-events (August- September 1859 - solar cycle 10; June 1991 - SC 22; October-November 2003 - SC 23) appeared in the periods of the solar magnetic field reorganization between the epochs of "increased" and "lowered" solar activity.

  5. DMSP Auroral Charging at Solar Cycle 24 Maximum

    NASA Technical Reports Server (NTRS)

    Chandler, M.; Parker, L. Neergaard; Minow, J. I.

    2013-01-01

    It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions. These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka. These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.

  6. Supercharging of the Lunar Surface by Solar Wind Halo Electrons

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Farrell, W. M.; Collier, M. R.; Halekas, J. S.; Delory, G. T.; Holland, M. P.; Vondrak, R. R.

    2007-12-01

    Lunar surface potentials can reach several kilovolts negative during Solar Energetic Particle (SEPs) events, as indicated by recent analysis of data from the Lunar Prospector Electron Reflectometer (LP/ER). The lunar surface- plasma interactions that result in such extreme surface potentials are poorly characterized and understood. Extreme lunar surface charging, and the associated electrostatic discharges and transport of charged dust, will likely present significant hazards to future human explorers. This is of particular concern near the terminator and polar regions, such as the South Pole/Aiken Basin site planned for NASA's manned outpost. It is the flux of electrons from the ambient plasma that charges the surface of the Moon to negative potentials. In the solar wind, the electron temperature is typically ~10 eV which tends to charge the lunar surface to ~100 V negative in shadow. However, during space weather events the solar wind electrons are often better described by the sum of two Maxwellian distributions, referred to as the "core" and "halo" components. The core electrons are relatively cool and dense (e.g., ~10 eV and ~10/cc), whereas the halo electrons are hot and tenuous (e.g., ~100 eV and ~0.1/cc). Despite, the tenuous nature of the halo electrons, our surface charging model - using core and halo electron data derived from the Solar Wind Experiment (SWE) aboard the Wind spacrcraft - predicts that they are capable of "supercharging" the lunar surface to kilovolt potentials during space weather events, which could explain the LP/ER observations.

  7. Solar-cell defect analyzer

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Miller, E. L.; Shumka, A.

    1980-01-01

    Laser-Scanning System pinpoints imperfections in solar cells. Entire solar panels containing large numbers of cells can be scanned. Although technique is similar to use of scanning electron microscope (SEM) to locate microscopic imperfections, it differs in that large areas may be examined, including entire solar panels, and it is not necessary to remove cover glass or encapsulants.

  8. Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.

    1994-01-01

    We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.

  9. Solar-pumped fiber laser with transverse-excitation geometry

    NASA Astrophysics Data System (ADS)

    Masuda, Taizo; Iyoda, Mitsuhiro; Yasumatu, Yuta; Yamashita, Tomohiro; Sasaki, Kiyoto; Endo, Masamori

    2018-02-01

    In this paper, we demonstrate an extremely low-concentrated solar-pumped laser (SPL) that uses a transversely excited fiber laser geometry. To eliminate the need for precise solar tracking with an aggressive cooling system and to considerably increase the number of laser applications, low-concentration factors in SPLs are highly desired. We investigate the intrinsic low-loss property of SiO2 optical fibers; this property can be used to compensate for the extremely low gain coefficient of the weakly-pumped active medium by sunlight. As part of the experimental setup, a 40-m long Nd3+-doped SiO2 fiber coil was packed in a ring-shaped chamber filled with a sensitizer solution; this solution functioned as a down-shifter. The dichroic top window of the chamber transmitted a wide range of sunlight and reflected the down-shifted photons, confining them to the highly-reflective chamber until they were absorbed by the Nd3+ ions in the active fiber. We demonstrated a lasing threshold that is 10 times the concentration of natural sunlight and two orders of magnitude smaller than that of conventional SPLs.

  10. A new observational approach to investigate the heliospheric interstellar wind interface - The study of extreme and far ultraviolet resonantly scattered solar radiation from neon, oxygen, carbon and nitrogen

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Fahr, Hans J.

    1990-01-01

    One of the outstanding uncertainties in the understanding of the heliosphere concerns the character of the interaction between the outflowing solar wind and the interstellar medium. A new possibility for obtaining information on this topic is suggested. The cosmically abundant elements neon, oxygen, carbon, and nitrogen will be affected differently at their interface passage depending upon the character of this region. Consequently, the distribution of these atoms and their ions will vary within the inner heliosphere. The study of resonantly scattered solar radiation from these species will then provide information on the nature of the interface. A preliminary evaluation of this approach has been carried out, and the results are encouraging. The relevant lines to be studied are in the extreme and far ulraviolet. The existing data in these bands are reviewed; unfortunately, past instrumentation has had insufficient resolution and sensitivity to provide useful information. The capabilities of future approved missions with capabilities in this area are evaluated.

  11. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  12. Geomagnetically Induced Currents: Principles

    NASA Astrophysics Data System (ADS)

    Oliveira, Denny M.; Ngwira, Chigomezyo M.

    2017-10-01

    The geospace, or the space environment near Earth, is constantly subjected to changes in the solar wind flow generated at the Sun. The study of this environment variability is called Space Weather. Examples of effects resulting from this variability are the occurrence of powerful solar disturbances, such as coronal mass ejections (CMEs). The impact of CMEs on the Earth's magnetosphere very often greatly perturbs the geomagnetic field causing the occurrence of geomagnetic storms. Such extremely variable geomagnetic fields trigger geomagnetic effects measurable not only in the geospace but also in the ionosphere, upper atmosphere, and on and in the ground. For example, during extreme cases, rapidly changing geomagnetic fields generate intense geomagnetically induced currents (GICs). Intense GICs can cause dramatic effects on man-made technological systems, such as damage to high-voltage power transmission transformers leading to interruption of power supply, and/or corrosion of oil and gas pipelines. These space weather effects can in turn lead to severe economic losses. In this paper, we supply the reader with theoretical concepts related to GICs as well as their general consequences. As an example, we discuss the GIC effects on a North American power grid located in mid-latitude regions during the 13-14 March 1989 extreme geomagnetic storm. That was the most extreme storm that occurred in the space era age.

  13. Weathering a Perfect Storm from Space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  14. Roof Overhangs for Solar Houses

    NASA Technical Reports Server (NTRS)

    Gracey, W.

    1985-01-01

    Convenient graphical method determines both width and vertical position of overhangs for standard wall section having "typical" window arrangement. Overhangs for this wall section determined for two extremes of latitude in United States.

  15. The HESP (High Energy Solar Physics) project

    NASA Technical Reports Server (NTRS)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  16. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE PAGES

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; ...

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, E g –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher thanmore » other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  17. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  18. Extreme Ultraviolet Explorer. Long look at the next window

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.

  19. Our Sun V: A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars

    NASA Technical Reports Server (NTRS)

    Sackmann, I.-Juliana; Boothroyd, Arnold I.

    2001-01-01

    The relatively warm temperatures required on early Earth and Mars have been difficult to account for with warming from greenhouse gases. A slightly more massive young Sun would be brighter than predicted by the standard solar model, simultaneously resolving this problem for both Earth and Mars. We computed high-precision solar models with seven initial masses, from Mi = 1.01 to 1.07 solar mass - the latter being the maximum permitted if the early Earth is not to lose its water via a moist greenhouse effect. The relatively modest early mass loss that is required remains consistent with observational limits on mass loss from young stars and with estimates of the past solar wind obtained from lunar rocks. We considered three types of mass loss rates: (1) a reasonable choice of a simple exponential decline, (2) an extreme step-function case that gives the maximum effect consistent with observations, and (3) the radical case of a linear decline which is inconsistent with the solar wind mass loss estimates from lunar rocks. Our computations demonstrated that mass loss leaves a fingerprint oil the Sun's internal structure large enough to be detectable with helioseismic observations. All of our mass-losing solar models were consistent with the helioseismic observations; in fact, our preferred mass-losing cases were in marginally better agreement with the helioseismology than the standard solar model was, although this difference was smaller than the effects of other uncertainties in the input physics and in the solar composition. Mass loss has only a relatively minor effect on the predicted lithium depletion; the major portion of the solar lithium depletion must still be due to rotational mixing. Thus the modest mass loss cases considered here cannot be ruled out by observed lithium depletions. For the three mass loss types considered, the preferred initial masses were 1.07 solar mass for the exponential case and 1.04 solar mass for the step-function and linear cases; all of these provided high enough solar fluxes at Mars 3.8 Gyr ago to be consistent with the existence of liquid water. For a more massive early Sun, the planets would have had to be closer to the young Sun in order to end up in their present orbits; the orbital radii of the planets would vary inversely with the solar mass. Both of these effects contribute to the fact that the early solar flux at the planets would have been considerably higher than that of the standard solar model at that time. In fact, the 1.07 solar mass exponential case has a flux at birth 5% higher than the present solar flux, while the radical 1.04 solar mass linear case has a nearly constant flux over the first 3 Gyr only about 10% lower than at present. The early solar evolution would be in the opposite direction in the H-R diagram to that of the standard Sun.

  20. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

Top