Sample records for extremely low-dose ionizing

  1. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  2. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOEpatents

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  3. Reducing ionizing radiation doses during cardiac interventions in pregnant women.

    PubMed

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-09-01

    There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48-13.7), the median radiation dose was 66 (8.9-1501) Gy/cm(2). The median radiation dose to uterus was 1.92 (0.59-5.47) μGy, and the patient estimated dose was 0.24 (0.095-0.80) mSv. Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  4. Identifying the health risks from very low-dose sparsely ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, N.A.; Friedlander, E.

    1982-01-01

    The health risks from low-dose sparsely ionizing (low-LET) radiation have been the subject of continued debate. At present, quantitative estimates of risk are extremely uncertain due to the controversy surrounding both the dosimetry for A-bomb survivor data and the choice of mathematical models for extrapolating risk from high to low doses. Nevertheless, much can be learned about the nature of the health risks by reviewing the epidemiologic literature. We present a summary of diseases which have been associated with low-LET radiation (<1000 rad) in at least two independent studies, according to the mean cumulative organ dose at which the diseasemore » was observed. At organ doses of less than or equal to50 rad, the only diseases that have been reported consistently are thyroid cancer, salivary gland tumors, and leukemia. The first two diseases were observed in association with x-ray epilation of the scalp for tinea capitis, a therapy which is no longer employed. On the other hand, leukemia has been observed repeatedly to occur at cumulative doses of greater than or equal to30 rad low-LET radiation.« less

  5. Identifying the health risks from very low-dose sparsely ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreyer, N.A.; Friedlander, E.

    1982-06-01

    The health risks from low-dose sparsely ionizing (low-LET) radiation have been the subject of continued debate. At present, quantitative estimates of risk are extremely uncertain due to the controversy surrounding both the dosimetry for A-bomb survivor data and the choice of mathematical models for extrapolating risk from high to low doses. Nevertheless, much can be learned about the nature of the health risks by reviewing the epidemiologic literature. We present a summary of diseases which have been associated with low-LET radiation (less than 1000 rad) in at least two independent studies, according to the mean cumulative organ dose at whichmore » the disease was observed. At organ doses of less than or equal to 50 rad, the only diseases that have been reported consistently are thyroid cancer, salivary gland tumors, and leukemia. The first two diseases were observed in association with x-ray epilation of the scalp for tinea capitis, a therapy which is no longer employed. On the other hand, leukemia has been observed repeatedly to occur at cumulative doses of greater than or equal to 30 rad low-LET radiation.« less

  6. Tolerance of anhydrobiotic eggs of the Tardigrade Ramazzottius varieornatus to extreme environments.

    PubMed

    Horikawa, Daiki D; Yamaguchi, Ayami; Sakashita, Tetsuya; Tanaka, Daisuke; Hamada, Nobuyuki; Yukuhiro, Fumiko; Kuwahara, Hirokazu; Kunieda, Takekazu; Watanabe, Masahiko; Nakahara, Yuichi; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Higashi, Seigo; Yokobori, Shin-Ichi; Kuwabara, Mikinori; Rothschild, Lynn J; Okuda, Takashi; Hashimoto, Hirofumi; Kobayashi, Yasuhiko

    2012-04-01

    Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.

  7. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    EPA Science Inventory

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?

    Abstract
    High doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  8. Low-dose ionizing radiation limitations to seed germination: Results from a model linking physiological characteristics and developmental-dynamics simulation strategy.

    PubMed

    Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong

    2017-08-01

    There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Morphological and transcriptional response of an anhydrobiotic insect to ionizing radiation and desiccation: steps forward in understanding molecular background of extreme radioresistance in higher eukaryotes

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro; Sakashita, Tetsuya; Mukae, Kyosuke

    2012-07-01

    Life in extreme or drastically changing environments in many cases leads to evolutionary evolvement of mechanisms of cross-resistance to different abiotic stresses, often never actually faced by the organism in its natural habitat. Larvae of the sleeping chironomidPolypedilum vanderplanki (Diptera) are able to resist complete desiccation and in the dry form survive under excess of various abiotic stresses, including exposure to space environment. One of the most intriguing features of the anhydrobiotic larvae is resistance to extremely high doses of different types of ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We find that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated after anhydrobiosis larvae were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He+). In comparison, low-LET radiation (gamma rays) of the same dose causes less initial damage to the larvae, and recovery of DNA repair is complete within 24 h. Genome-wide analysis of mRNA expression in the larvae revealed that a large group of genes (including antioxidants, anhydrobiosis-specific biomolecules and protein-reparation enzymes) showed a similar patterns of activity in response to both desiccation and ionizing radiation. We conclude that t one of the factors explaining the relationship between the resistance to ionizing radiation and the ability to undergo anhydrobiosis in the sleeping chironomid would be an adaptation to desiccation-inflicted proteins and nuclear DNA damage.

  10. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimatemore » human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.« less

  11. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    PubMed Central

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  12. Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation.

    PubMed

    Zhou, D D; Hao, J L; Guo, K M; Lu, C W; Liu, X D

    2016-03-22

    Long-term radiation exposure affects human health. Ionizing radiation has long been known to raise the risk of cancer. In addition to high doses of radiation, low-dose ionizing radiation might increase the risk of cardiovascular disease, lens opacity, and some other non-cancerous diseases. Low- and high-dose exposures to ionizing radiation elicit different signaling events at the molecular level, and may involve different response mechanisms. The health risks arising from exposure to low doses of ionizing radiation should be re-evaluated. Health workers exposed to ionizing radiation experience low-dose radiation and have an increased risk of hematological malignancies. Reproductive function is sensitive to changes in the physical environment, including ionizing radiation. However, data is scarce regarding the association between occupational radiation exposure and risk to human fertility. Sperm DNA integrity is a functional parameter of male fertility evaluation. Hence, we aimed to report sperm quality and DNA damage in men from Jilin Province, China, who were occupationally exposed to ionizing radiation. Sperm motility and normal morphology were significantly lower in the exposed compared with the non-exposed men. There was no statistically significant difference in sperm concentration between exposed and non-exposed men. The sperm DNA fragmentation index was significantly higher in the exposed than the non-exposed men. Chronic long-term exposure to low doses of ionizing radiation could affect sperm motility, normal morphology, and the sperm DNA fragmentation index in the Chinese population. Sperm quality and DNA integrity are functional parameters that could be used to evaluate occupational exposure to ionizing radiation.

  13. The Effect of High-Dose Ionizing Radiation on the Isolated Photobiont of the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    Meeßen, Joachim; Backhaus, Theresa; Brandt, Annette; Raguse, Marina; Böttger, Ute; de Vera, Jean-Pierre; de la Torre, Rosa

    2017-02-01

    Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations of terrestrial life. In a series of ground-based irradiation experiments, the STARLIFE campaign investigated the resistance of astrobiological model organisms to galactic cosmic radiation, which is one of the lethal stressors of extraterrestrial environments. Since previous studies have identified that the alga is the more sensitive lichen symbiont, we chose the isolated photobiont Trebouxia sp. of the astrobiological model Circinaria gyrosa as a subject in the campaign. Therein, γ radiation was used to exemplify the deleterious effects of low linear energy transfer (LET) ionizing radiation at extremely high doses up to 113 kGy in the context of astrobiology. The effects were analyzed by chlorophyll a fluorescence of photosystem II (PSII), cultivation assays, live/dead staining and confocal laser scanning microscopy (CLSM), and Raman laser spectroscopy (RLS). The results demonstrate dose-dependent impairment of photosynthesis, the cessation of cell proliferation, cellular damage, a decrease in metabolic activity, and degradation of photosynthetic pigments. While previous investigations on other extraterrestrial stressors have demonstrated a high potential of resistance, results of this study reveal the limits of photobiont resistance to ionizing radiation and characterize γ radiation-induced damages. This study also supports parallel STARLIFE studies on the lichens Circinaria gyrosa and Xanthoria elegans, both of which harbor a Trebouxia sp. photobiont.

  14. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  15. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  16. Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.

    PubMed

    Madas, Balázs G

    2016-07-01

    Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.

  17. Dose measurement using Al2O3 dosimeter in comparison to LiF:Mg,Ti dosimeter and ionization chamber at low and high energy x-ray

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Yahya, Muhammad Hadzmi; Rosnan, Muhammad Syazwan; Abdullah, Reduan; Kadir, Ahmad Bazlie Abdul

    2017-01-01

    The dose measurement using Al2O3 OSL dosimeter (OSLD) was carried out at low and high energy x-ray. The dose at low energy x-ray was measured at 40, 71 and 125 kVp x-ray energies. The dose ar high energy x-ray was measured at 6 and 10 MV x-ray energies measured at the depth of maximum dose (Zmax). The results were compared to that in ionization chamber and LiF: Mg,Ti thermoluminescent dosimeters (TLD100). The results showed that the dose of OSLD were less in agreement to ionization chamber compared to that in TLD100. The dose of OSLD however was in good agreement to that in ionization chamber at high energy x-ray. The dose measured using OSLD were found to be more consistence at high energy x-ray shown by the standard deviation of the readings. The measurement of x2 showed that the readings of OSLD were close to that in ionization chamber with values of 2.21 and 4.63 for 6 and 10 MV respectively. The results indicated that OSLD is more suitable for dose measurement at high energy x-ray.

  18. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  19. Commentary: Ethical Issues of Current Health-Protection Policies on Low-Dose Ionizing Radiation

    PubMed Central

    Socol, Yehoshua; Dobrzyński, Ludwik; Doss, Mohan; Feinendegen, Ludwig E.; Janiak, Marek K.; Miller, Mark L.; Sanders, Charles L.; Scott, Bobby R.; Ulsh, Brant; Vaiserman, Alexander

    2014-01-01

    The linear no-threshold (LNT) model of ionizing-radiation-induced cancer is based on the assumption that every radiation dose increment constitutes increased cancer risk for humans. The risk is hypothesized to increase linearly as the total dose increases. While this model is the basis for radiation safety regulations, its scientific validity has been questioned and debated for many decades. The recent memorandum of the International Commission on Radiological Protection admits that the LNT-model predictions at low doses are “speculative, unproven, undetectable and ‘phantom’.” Moreover, numerous experimental, ecological, and epidemiological studies show that low doses of sparsely-ionizing or sparsely-ionizing plus highly-ionizing radiation may be beneficial to human health (hormesis/adaptive response). The present LNT-model-based regulations impose excessive costs on the society. For example, the median-cost medical program is 5000 times more cost-efficient in saving lives than controlling radiation emissions. There are also lives lost: e.g., following Fukushima accident, more than 1000 disaster-related yet non-radiogenic premature deaths were officially registered among the population evacuated due to radiation concerns. Additional negative impacts of LNT-model-inspired radiophobia include: refusal of some patients to undergo potentially life-saving medical imaging; discouragement of the study of low-dose radiation therapies; motivation for radiological terrorism and promotion of nuclear proliferation. PMID:24910586

  20. The operation of 0.35 μm partially depleted SOI CMOS technology in extreme environments

    NASA Astrophysics Data System (ADS)

    Li, Ying; Niu, Guofu; Cressler, John D.; Patel, Jagdish; Liu, S. T.; Reed, Robert A.; Mojarradi, Mohammad M.; Blalock, Benjamin J.

    2003-06-01

    We evaluate the usefulness of partially depleted SOI CMOS devices fabricated in a 0.35 μm technology on UNIBOND material for electronics applications requiring robust operation under extreme environment conditions consisting of low and/or high temperature, and under substantial radiation exposure. The threshold voltage, effective mobility, and the impact ionization parameters were determined across temperature for both the nFETs and the pFETs. The radiation response was characterized using threshold voltage shifts of both the front-gate and back-gate transistors. These results suggest that this 0.35 μm partially depleted SOI CMOS technology is suitable for operation across a wide range of extreme environment conditions consisting of: cryogenic temperatures down to 86 K, elevated temperatures up to 573 K, and under radiation exposure to 1.3 Mrad(Si) total dose.

  1. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael J.; Gaidamakova, E; Matrosova, V

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  2. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James

    2017-01-01

    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  3. Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and Interactions with DMBA

    PubMed Central

    Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850

  4. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells

    PubMed Central

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young

    2017-01-01

    Abstract Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid–binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation. PMID:28122968

  5. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  6. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.

    PubMed

    Yang, Feng; Waters, Katrina M; Miller, John H; Gritsenko, Marina A; Zhao, Rui; Du, Xiuxia; Livesay, Eric A; Purvine, Samuel O; Monroe, Matthew E; Wang, Yingchun; Camp, David G; Smith, Richard D; Stenoien, David L

    2010-11-30

    High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health.

  7. Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation

    PubMed Central

    Yang, Feng; Waters, Katrina M.; Miller, John H.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Wang, Yingchun; Camp, David G.; Smith, Richard D.; Stenoien, David L.

    2010-01-01

    Background High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. PMID:21152398

  8. Total Ionizing Dose Test of Microsemi's Silicon Switching Transistors JANTXV2N2222AUB and 2N2907AUB

    NASA Technical Reports Server (NTRS)

    Campola, M.; Freeman, B.; Yau, K.

    2017-01-01

    Microsemi's silicon switching transistors, JANTXV2N2222AUB and 2N2907AUB, were tested for total ionizing dose (TID) response beginning on July 11, 2016. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) could be determined.

  9. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    NASA Astrophysics Data System (ADS)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  10. Gene expression changes in medical workers exposed to radiation.

    PubMed

    Morandi, Elena; Severini, Cinzia; Quercioli, Daniele; Perdichizzi, Stefania; Mascolo, Maria Grazia; Horn, Wolfango; Vaccari, Monica; Nucci, Maria Concetta; Lodi, Vittorio; Violante, Francesco Saverio; Bolognesi, Claudia; Grilli, Sandro; Silingardi, Paola; Colacci, Annamaria

    2009-10-01

    The use of nuclear resources for medical purposes causes considerable concern about occupational exposure. Nevertheless, little information is available regarding the effects of low-dose irradiations protracted over time. We used oligomicroarrays to identify the genes that are transcriptionally regulated by persistent exposure to extremely low doses of ionizing radiation in 28 exposed professionals (mean cumulative effective dose +/- SD, 19 +/- 38 mSv) compared with a matched sample of nonexposed subjects. We identified 256 modulated genes from peripheral blood mononuclear cells profiles, and the main biological processes we found were DNA packaging and mitochondrial electron transport NADH to ubiquinone. Next we investigated whether a different pattern existed when only 22 exposed subjects with accumulated doses >2.5 mSv, a threshold corresponding to the natural background radiation in Italy per year, and mean equal to 25 +/- 41 mSv were used. In addition to DNA packaging and NADH dehydrogenase function, the analysis of the higher-exposed subgroup revealed a significant modulation of ion homeostasis and programmed cell death as well. The changes in gene expression that we found suggest different mechanisms from those involved in high-dose studies that may help to define new biomarkers of radiation exposure for accumulated doses below 25 mSv.

  11. Total Ionizing Dose Effects in Bipolar and BiCMOS Devices

    NASA Technical Reports Server (NTRS)

    Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.

    2005-01-01

    This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.

  12. Single Low-Dose Ionizing Radiation Induces Genotoxicity in Adult Zebrafish and its Non-Irradiated Progeny.

    PubMed

    Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P

    2017-02-01

    This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.

  13. Evaluation of low-dose irradiation on microbiological quality of white carrots and string beans

    NASA Astrophysics Data System (ADS)

    Koike, Amanda C. R.; Santillo, Amanda G.; Rodrigues, Flávio T.; Duarte, Renato C.; Villavicencio, Anna Lucia C. H.

    2012-08-01

    The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.

  14. Persistent DNA Damage in Spermatogonial Stem Cells After Fractionated Low-Dose Irradiation of Testicular Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewenig, Angelika; Schuler, Nadine; Rübe, Claudia E., E-mail: claudia.ruebe@uks.eu

    Purpose: Testicular spermatogenesis is extremely sensitive to radiation-induced damage, and even low scattered doses to testis from radiation therapy may pose reproductive risks with potential treatment-related infertility. Radiation-induced DNA double-strand breaks (DSBs) represent the greatest threat to the genomic integrity of spermatogonial stem cells (SSCs), which are essential to maintain spermatogenesis and prevent reproduction failure. Methods and Materials: During daily low-dose radiation with 100 mGy or 10 mGy, radiation-induced DSBs were monitored in mouse testis by quantifying 53 binding protein 1 (53BP-1) foci in SSCs within their stem cell niche. The accumulation of DSBs was correlated with proliferation, differentiation, and apoptosis ofmore » testicular germ cell populations. Results: Even very low doses of ionizing radiation arrested spermatogenesis, primarily by inducing apoptosis in spermatogonia. Eventual recovery of spermatogenesis depended on the survival of SSCs and their functional ability to proliferate and differentiate to provide adequate numbers of differentiating spermatogonia. Importantly, apoptosis-resistant SSCs resulted in increased 53BP-1 foci levels during, and even several months after, fractionated low-dose radiation, suggesting that surviving SSCs have accumulated an increased load of DNA damage. Conclusions: SSCs revealed elevated levels of DSBs for weeks after radiation, and if these DSBs persist through differentiation to spermatozoa, this may have severe consequences for the genomic integrity of the fertilizing sperm.« less

  15. The effects of low doses of ionizing radiation - A question of ethics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschaeche, A.N.

    1996-12-31

    Three ethical questions are asked and answered about the current state of affairs concerning how those in power manipulate public understanding of the effects of low doses of ionizing radiation. The questions are as follows: (1) Is it ethical to frighten people when you do not know that there is anything to be frightened of? (2) Is it ethical to be so conservative that resources are spent to solve a problem that may not exist? (3) Is it ethical not to tell the whole truth about the effects of low levels of ionizing radiation?

  16. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotz, M; Karsch, L; Pawelke, J

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fitmore » of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future investigations. This project was funded by the German ministry of research and education (BMBF) under grant number: 03Z1N511 and by the state of Saxony under grant number: B 209.« less

  17. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation

    PubMed Central

    Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.

    2014-01-01

    Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372

  18. The biobehavioral and neuroimmune impact of low-dose ionizing radiation.

    PubMed

    York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G

    2012-02-01

    In the clinical setting, repeated exposures (10-30) to low-doses of ionizing radiation (≤200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The biobehavioral and neuroimmune impact of low-dose ionizing radiation

    PubMed Central

    York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G

    2011-01-01

    In the clinical setting, repeated exposures (10–30) to low-doses of ionizing radiation (≤ 200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 h and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. PMID:21958477

  20. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.

    PubMed

    Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis

    2013-12-13

    This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.

  1. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Waters, Katrina M.; Miller, John H.

    2010-11-30

    Background: High doses of ionizing radiation result in biological damage, however the precise relationships between long term health effects, including cancer, and low dose exposures remain poorly understood and are currently extrapolated using high dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose dependent responses to radiation. Principle Findings: We have identified 6845 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts one hour post-exposure. Dual statistical analyses based on spectral counts and peakmore » intensities identified 287 phosphopeptides (from 231 proteins) and 244 phosphopeptides (from 182 proteins) that varied significantly following exposure to 2 and 50 cGy respectively. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatics analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role of MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conlcusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provides a basis for the systems level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low dose radiation exposure on human health.« less

  2. Non-targeted effects of ionizing radiation–implications for low dose risk

    PubMed Central

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.

    2014-01-01

    Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375

  3. Comparison of CREME (cosmic-ray effects on microelectronics) model LET (linear energy transfer) spaceflight dosimetry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letaw, J.R.; Adams, J.H.

    The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements ofmore » HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.« less

  4. Nuclear magnetic resonance spectroscopy reveals metabolic changes in living cardiomyocytes after low doses of ionizing radiation.

    PubMed

    Gramatyka, Michalina; Skorupa, Agnieszka; Sokół, Maria

    2018-01-01

    Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.

  5. Resistance to Extreme Stresses in the Tardigrada: Experiments on Earth and in Space and Astrobiological Perspectives

    NASA Astrophysics Data System (ADS)

    Rebecchi, L.; Altiero, T.; Guidetti, R.; Cesari, M.; Rizzo, A. M.; Bertolani, R.

    2010-04-01

    The ability of tardigrades to enter cryptobiosis al-lows them to resist to extreme stresses: very low or high temperatures, chemicals, high pressure, ionizing and UV radiations This has lead to propose tardigrades as suitable model in space research.

  6. A Window on the Earliest Star Formation: Extreme Photoionization Conditions of a High-ionization, Low-metallicity Lensed Galaxy at z ∼ 2*

    NASA Astrophysics Data System (ADS)

    Berg, Danielle A.; Erb, Dawn K.; Auger, Matthew W.; Pettini, Max; Brammer, Gabriel B.

    2018-06-01

    We report new observations of SL2S J021737–051329, a lens system consisting of a bright arc at z = 1.84435, magnified ∼17× by a massive galaxy at z = 0.65. SL2S0217 is a low-mass (M < 109 M ⊙), low-metallicity (Z ∼ 1/20 Z ⊙) galaxy, with extreme star-forming conditions that produce strong nebular UV emission lines in the absence of any apparent outflows. Here we present several notable features from rest-frame UV Keck/LRIS spectroscopy: (1) Very strong narrow emission lines are measured for C IV λλ1548, 1550, He II λ1640, O III] λλ1661, 1666, Si III] λλ1883, 1892, and C III] λλ1907, 1909. (2) Double-peaked Lyα emission is observed with a dominant blue peak and centered near the systemic velocity. (3) The low- and high-ionization absorption features indicate very little or no outflowing gas along the sight line to the lensed galaxy. The relative emission-line strengths can be reproduced with a very high ionization, low-metallicity starburst with binaries, with the exception of He II, which indicates that an additional ionization source is needed. We rule out large contributions from active galactic nuclei and shocks to the photoionization budget, suggesting that the emission features requiring the hardest radiation field likely result from extreme stellar populations that are beyond the capabilities of current models. Therefore, SL2S0217 serves as a template for the extreme conditions that are important for reionization and thought to be more common in the early universe.

  7. The susceptibility of TaO x-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGES

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; ...

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaO x) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×10 7 rad(Si)/s to 4.7 ×10 8 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×10 8 rad(Si)/s. This is the first dose rate study on any type ofmore » memristive memory technology. In addition to assessing the tolerance of TaO x memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  8. Radiation exposure and lung disease in today's nuclear world.

    PubMed

    Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew

    2017-03-01

    Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D.R.

    The benefit for the child from the judicious use of diagnostic dental radiography is improved dental health. The risk to the child from dental diagnostic radiation exposure appears to be extremely low. Despite the low risk, the dentist must minimize the child's exposure to ionizing radiation by using sound clinical judgment to determine what radiographs are necessary and to provide children with optimal protection from ionizing radiation.

  10. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).

  11. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    PubMed

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  12. Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model.

    PubMed

    Bladen, Catherine L; Kozlowski, David J; Dynan, William S

    2012-11-01

    Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as by-products of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0-1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms.

  13. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.

  14. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less

  15. Low-dose ionizing irradiation triggers a 53BP1 response to DNA double strand breaks in mouse spermatogonial stem cells.

    PubMed

    Le, Wei; Qi, Lixin; Li, Jiaxuan; Wu, DengIong; Xu, Jun; Zhang, Jinfu

    2016-01-01

    The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.

  16. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 06: Investigation of an absorbed dose to water formalism for a miniature low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter; Seuntjens, Jan

    Purpose: We present a formalism for calculating the absorbed dose to water from a miniature x-ray source (The INTRABEAM system, Carl Zeiss), using a parallel-plate ionization chamber calibrated in terms of air-kerma. Monte Carlo calculations were performed to derive a chamber conversion factor (C{sub Q}) from reference air-kerma to dose to water for the INTRABEAM. C{sub Q} was investigated as a function of depth in water, and compared with the manufacturer’s reported value. The effect of chamber air cavity dimension tolerance was also investigated. Methods: Air-kerma (A{sub k}) from a reference beam was calculated using the EGSnrc user code cavity.more » Using egs-chamber, a model of a PTW 34013 parallel-plate ionization chamber was created according to manufacturer specifications. The dose to the chamber air cavity (D{sub gas}) was simulated both in-air (with reference beam) and in-water (with INTRABEAM source). Dose to a small water voxel (D{sub w}) was also calculated. C{sub Q} was derived from these quantities. Results: C{sub Q} was found to vary by up to 15% (1.30 vs 1.11) between chamber dimension extremes. The agreement between chamber C{sub Q} was found to improve with increasing depth in water. However, in all cases investigated, C{sub Q} was larger than the manufacturer reported value of 1.054. Conclusions: Our results show that cavity dimension tolerance has a significant effect on C{sub Q}, with differences as large as 15%. In all cases considered, C{sub Q} was found to be larger than the reported value of 1.054. This suggests that the recommended calculation underestimates the dose to water.« less

  17. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    PubMed

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  18. Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases.

    PubMed

    Frey, Benjamin; Hehlgans, Stephanie; Rödel, Franz; Gaipl, Udo S

    2015-11-28

    Inflammation is a homeostatic mechanism aiming to maintain tissue integrity. The underlying immunological mechanisms and the interrelationship between ionizing radiation and inflammation are complex and multifactorial on cellular and chemical levels. On the one hand, radiation with single doses exceeding 1 Gy might initiate inflammatory reactions and thereby impact on tumor development. On the other hand, radiation is capable of attenuating an established inflammatory process, which is clinically used for the treatment of inflammatory and degenerative diseases with low-dose radiotherapy (single dose <1 Gy). At higher doses, ionizing radiation, especially in combination with additional immune stimulation, fosters the induction of immunogenic forms of tumor cell death and shifts the tumor microenvironment as well as the infiltration of immune cells from an anti- to a pro-inflammatory state. Distinct tumor infiltrating immune cells predict the response to radiochemotherapy in a multitude of tumor entities. While a high tumor infiltration of these adaptive immune cells mostly predicts a favorable disease outcome, a high infiltration of tumor-associated macrophages predicts an unfavorable response. Pro-inflammatory events should dominate over anti-inflammatory ones in this scenario. This review focuses on how ionizing radiation modulates inflammatory events in benign inflammatory and in malign diseases. A special focus is set on the role of tumor infiltrating lymphocytes and macrophages as biomarkers to predict treatment response and anti-tumor immunity and on mechanisms implicated in the anti-inflammatory effects of low-dose radiation therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of Low-Dose Ionizing Radiation and Menadione, an Inducer of Oxidative Stress, Alone and in Combination in a Vertebrate Embryo Model

    PubMed Central

    Bladen, Catherine L.; Kozlowski, David J.; Dynan, William S.

    2014-01-01

    Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as byproducts of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0–1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms. PMID:23092554

  20. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    PubMed Central

    Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng

    2012-01-01

    Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation. PMID:23139812

  1. Sparsely Ionizing Diagnostic and Natural Background Radiations are Likely Preventing Cancer and Other Genomic-Instability-Associated Diseases

    PubMed Central

    Scott, Bobby R.; Di Palma, Jennifer

    2007-01-01

    Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apopto-sis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis). PMID:18648608

  2. Peas in a Pod: Environment and Ionization in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael

    2016-01-01

    The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.

  3. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors

    PubMed Central

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to 239Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation–environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  4. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    PubMed

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.

  5. Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA

    NASA Technical Reports Server (NTRS)

    Johnston, A.; Barnes, C.

    1995-01-01

    Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.

  6. Estimation of extremely small field radiation dose for brain stereotactic radiotherapy using the Vero4DRT system.

    PubMed

    Nakayama, Shinichi; Monzen, Hajime; Onishi, Yuichi; Kaneshige, Soichiro; Kanno, Ikuo

    2018-06-01

    The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 using ionization chambers of 0.01 or 0.04 cm 3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm 2 ) for five brain SRT cases irradiated with dynamic conformal arcs. The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm 2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 were +0.48%, +0.56%, -0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were -0.35% (range, -0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively. The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm 2 . Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less

  9. Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Sidorkina, O.; Laval, J.; Lowenstein, D. I. (Principal Investigator)

    2000-01-01

    Clustered DNA damages-two or more closely spaced damages (strand breaks, abasic sites, or oxidized bases) on opposing strands-are suspects as critical lesions producing lethal and mutagenic effects of ionizing radiation. However, as a result of the lack of methods for measuring damage clusters induced by ionizing radiation in genomic DNA, neither the frequencies of their production by physiological doses of radiation, nor their repairability, nor their biological effects are known. On the basis of methods that we developed for quantitating damages in large DNAs, we have devised and validated a way of measuring ionizing radiation-induced clustered lesions in genomic DNA, including DNA from human cells. DNA is treated with an endonuclease that induces a single-strand cleavage at an oxidized base or abasic site. If there are two closely spaced damages on opposing strands, such cleavage will reduce the size of the DNA on a nondenaturing gel. We show that ionizing radiation does induce clustered DNA damages containing abasic sites, oxidized purines, or oxidized pyrimidines. Further, the frequency of each of these cluster classes is comparable to that of frank double-strand breaks; among all complex damages induced by ionizing radiation, double-strand breaks are only about 20%, with other clustered damage constituting some 80%. We also show that even low doses (0.1-1 Gy) of high linear energy transfer ionizing radiation induce clustered damages in human cells.

  10. Final report for project "Effects of Low-Dose Irradiation on NFkB Signaling Networks and Mitochondria"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, Gayle E; Grdina, David; Li, Jian-Jian

    Low dose ionizing radiation effects are difficult to study in human population because of the numerous confounding factors such as genetic and lifestyle differences. Research in mammalian model systems and in vitro is generally used in order to overcome this difficulty. In this program project three projects have joined together to investigate effects of low doses of ionizing radiation. These are doses at and below 10 cGy of low linear energy transfer ionizing radiation such as X-ray and gamma rays. This project was focused on cellular signaling associated with nuclear factor kappa B (NFkB) and mitochondria - subcellular organelles criticalmore » for cell aging and aging-like changes induced by ionizing radiation. In addition to cells in culture this project utilized animal tissues accumulated in a radiation biology tissue archive housed at Northwestern University (http://janus.northwestern.edu/janus2/index.php). Major trust of Project 1 was to gather all of the DoE sponsored irradiated animal (mouse, rat and dog) data and tissues under one roof and investigate mitochondrial DNA changes and micro RNA changes in these samples. Through comparison of different samples we were trying to delineate mitochondrial DNA quantity alterations and micro RNA expression differences associated with different doses and dose rates of radiation. Historic animal irradiation experiments sponsored by DoE were done in several national laboratories and universities between 1950’s and 1990’s; while these experiments were closed data and tissues were released to Project 1. Project 2 used cells in culture to investigate effects that low doses or radiation have on NFκB and its target genes manganese superoxide dismutase (MnSOD) and genes involved in cell cycle: Cyclins (B1 and D1) and cyclin dependent kinases (CDKs). Project 3 used cells in culture such as “normal” human cells (breast epithelial cell line MCF10A cells and skin keratinocyte cells HK18) and mouse embryo fibroblast (mef) cells to focus on role of NFkB protein and several other proteins such as survivin (BIRC5) in radiation dependent regulation of tumor necrosis factor alpha (TNFα) and its downstream signaling.« less

  11. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers

    PubMed Central

    Giardi, Maria Teresa; Touloupakis, Eleftherios; Bertolotto, Delfina; Mascetti, Gabriele

    2013-01-01

    Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure. PMID:23965979

  12. Coccomyxa actinabiotis sp. nov. (Trebouxiophyceae, Chlorophyta), a new green microalga living in the spent fuel cooling pool of a nuclear reactor.

    PubMed

    Rivasseau, Corinne; Farhi, Emmanuel; Compagnon, Estelle; de Gouvion Saint Cyr, Diane; van Lis, Robert; Falconet, Denis; Kuntz, Marcel; Atteia, Ariane; Couté, Alain

    2016-10-01

    Life can thrive in extreme environments where inhospitable conditions prevail. Organisms which resist, for example, acidity, pressure, low or high temperature, have been found in harsh environments. Most of them are bacteria and archaea. The bacterium Deinococcus radiodurans is considered to be a champion among all living organisms, surviving extreme ionizing radiation levels. We have discovered a new extremophile eukaryotic organism that possesses a resistance to ionizing radiations similar to that of D. radiodurans. This microorganism, an autotrophic freshwater green microalga, lives in a peculiar environment, namely the cooling pool of a nuclear reactor containing spent nuclear fuels, where it is continuously submitted to nutritive, metallic, and radiative stress. We investigated its morphology and its ultrastructure by light, fluorescence and electron microscopy as well as its biochemical properties. Its resistance to UV and gamma radiation was assessed. When submitted to different dose rates of the order of some tens of mGy · h -1 to several thousands of Gy · h -1 , the microalga revealed to be able to survive intense gamma-rays irradiation, up to 2,000 times the dose lethal to human. The nuclear genome region spanning the genes for small subunit ribosomal RNA-Internal Transcribed Spacer (ITS) 1-5.8S rRNA-ITS2-28S rRNA (beginning) was sequenced (4,065 bp). The phylogenetic position of the microalga was inferred from the 18S rRNA gene. All the revealed characteristics make the alga a new species of the genus Coccomyxa in the class Trebouxiophyceae, which we name Coccomyxa actinabiotis sp. nov. © 2016 Phycological Society of America.

  13. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE PAGES

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; ...

    2012-01-01

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident atmore » longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  14. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident atmore » longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  15. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease.

    PubMed

    Tharmalingam, Sujeenthar; Sreetharan, Shayenthiran; Kulesza, Adomas V; Boreham, Douglas R; Tai, T C

    2017-10-01

    Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.

  16. Low-dose radiation: a cause of breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, C.E.

    1980-08-15

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporalmore » patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.« less

  17. Space radiation effects on plant and mammalian cells

    NASA Astrophysics Data System (ADS)

    Arena, C.; De Micco, V.; Macaeva, E.; Quintens, R.

    2014-11-01

    The study of the effects of ionizing radiation on organisms is related to different research aims. The current review emphasizes the studies on the effects of different doses of sparsely and densely ionizing radiation on living organisms, with the final purpose of highlighting specific and common effects of space radiation in mammals and plants. This topic is extremely relevant in the context of radiation protection from space environment. The response of different organisms to ionizing radiation depends on the radiation quality/dose and/or the intrinsic characteristics of the living system. Macromolecules, in particular DNA, are the critical targets of radiation, even if there is a strong difference between damages encountered by plant and mammalian cells. The differences in structure and metabolism between the two cell types are responsible for the higher resistance of the plant cell compared with its animal counterpart. In this review, we report some recent findings from studies performed in Space or on Earth, simulating space-like levels of radiation with ground-based facilities, to understand the effect of ionizing radiation on mammalian and plant cells. In particular, our attention is focused on genetic alterations and repair mechanisms in mammalian cells and on structures and mechanisms conferring radioresistance to plant cells.

  18. Pretreatment of low dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells.

    PubMed

    Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y

    1997-06-01

    Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.

  19. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  20. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocke, David

    2016-08-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  1. Ion-recombination correction for different ionization chambers in high dose rate flattening-filter-free photon beams

    NASA Astrophysics Data System (ADS)

    Lang, Stephanie; Hrbacek, Jan; Leong, Aidan; Klöck, Stephan

    2012-05-01

    Recently, there has been an increased interest in flattening-filter-free (FFF) linear accelerators. Removal of the filter results in available dose rates up to 24 Gy min-1 (for nominal energy 10 MV in depth of maximum dose, a source-surface distance of 100 cm and a field size of 10×10 cm2). To guarantee accurate relative and reference dosimetry for the FFF beams, we investigated the charge collection efficiency of multiple air-vented and one liquid ionization chamber for dose rates up to 31.9 Gy min-1. For flattened beams, the ion-collection efficiency of all air-vented ionization chambers (except for the PinPoint chamber) was above 0.995. By removing the flattening filter, we found a reduction in collection efficiency of approximately 0.5-0.9% for a 10 MV beam. For FFF beams, the Markus chamber showed the largest collection efficiency of 0.994. The observed collection efficiencies were dependent on dose per pulse, but independent of the pulse repetition frequency. Using the liquid ionization chamber, the ion-collection efficiency for flattened beams was above 0.990 for all dose rates. However, this chamber showed a low collection efficiency of 0.940 for the FFF 10 MV beam at a dose rate of 31.9 Gy min-1. All investigated air-vented ionization chambers can be reliably used for relative dosimetry of FFF beams. The order of correction for reference dosimetry is given in the manuscript. Due to their increased saturation in high dose rate FFF beams, liquid ionization chambers appear to be unsuitable for dosimetry within these contexts.

  2. Effects of Ionizing Radiation on the Heart

    PubMed Central

    Boerma, Marjan; Sridharan, Vijayalakshmi; Mao, Xiao-Wen; Nelson, Gregory A.; Cheema, Amrita K.; Koturbash, Igor; Singh, Sharda P.; Tackett, Alan J.; Hauer-Jensen, Martin

    2016-01-01

    This article provides an overview of studies addressing effects of ionizing radiation on the heart. Clinical studies have identified early and late manifestations of radiation-induced heart disease, a side effect of radiation therapy to tumors in the chest when all or part of the heart is situated in the radiation field. Studies in preclinical animal models have contributed to our understanding of the mechanisms by which radiation may injure the heart. More recent observations in human subjects suggest that ionizing radiation may have cardiovascular effects at lower doses than was previously thought. This has led to examinations of low-dose photons and low-dose charged particle irradiation in animal models. Lastly, studies have started to identify noninvasive methods for detection of cardiac radiation injury and interventions that may prevent or mitigate these adverse effects. Altogether, this ongoing research should increase our knowledge of biological mechanisms of cardiovascular radiation injury, identify non-invasive biomarkers for early detection, and potential interventions that may prevent or mitigate these adverse effects. PMID:27919338

  3. Site-Specific Phosphorylation of Ikaros Induced by Low-Dose Ionizing Radiation Regulates Cell Cycle Progression of B Lymphoblast Through CK2 and AKT Activation.

    PubMed

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young; Lee, Jung Eun; Kim, Sung Jin; Nam, Seon Young; Kim, Ji Young; Kim, Hee Sun; Pyo, Suhkneung; Yang, Kwang Hee

    2016-04-01

    To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. LM193 Dual Differential Comparator Total Ionizing Dose Test Report

    NASA Technical Reports Server (NTRS)

    Topper, Alyson; Forney, James; Campola, Michael

    2017-01-01

    The purpose of this test was to characterize the flight lot of Texas Instruments' LM193 (flight part number is 5962-9452601Q2A) for total dose response. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) was determined.

  5. Assessment of dose and DNA damages in individuals exposed to low dose and low dose rate ionizing radiations during computed tomography imaging.

    PubMed

    Kanagaraj, Karthik; Abdul Syed Basheerudeen, Safa; Tamizh Selvan, G; Jose, M T; Ozhimuthu, Annalakshmi; Panneer Selvam, S; Pattan, Sudha; Perumal, Venkatachalam

    2015-08-01

    Computed tomography (CT) is a frequently used imaging modality that contributes to a tenfold increase in radiation exposure to the public when compared to other medical imaging modalities. The use of radiation for therapeutic need is always rationalized on the basis of risk versus benefit thereby increasing concerns on the dose received by patients undergoing CT imaging. Therefore, it was of interest to us to investigate the effects of low dose and low dose-rate X-irradiation in patients who underwent CT imaging by recording the doses received by the eye, forehead and thyroid, and to study the levels of damages in the lymphocytes in vivo. Lithium manganese borate doped with terbium (LMB:Tb) thermo luminescence dosimeters (TLD) were used to record the doses in the patient's (n = 27) eye, forehead, and thyroid and compared with the dose length product (DLP) values. The in vivo DNA damages measured were compared before and after CT imaging using chromosomal aberration (CA) and micronucleus (MN) assays. The overall measured organ dose ranged between 2 ± 0.29 and 520 ± 41.63 mGy for the eye, 0.84 ± 0.29 and 210 ± 20.50 mGy for the forehead, and 1.79 ± 0.43 and 185 ± 0.70 mGy for the thyroid. The in vivo damages measured from the blood lymphocytes of the subjects showed an extremely significant (p < 0.0001) increase in CA frequency and significant (p < 0.001) increase in MN frequency after exposure, compared to before exposure. The results suggest that CT imaging delivers a considerable amount of radiation dose to the eye, forehead, and thyroid, and the observed increase in the CA and MN frequencies show low dose radiation effects calling for protective regulatory measures to increase patient's safety. This study is the first attempt to indicate the trend of doses received by the patient's eye, forehead and thyroid and measured directly in contrast to earlier values obtained by extrapolation from phantoms, and to assess the in vivo low dose effects in an Indian patient population undergoing CT procedures. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Health effects in women exposed to low levels of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1982-06-01

    There are three delayed health effects of radiation which appear at the present time to have importance to women in radiation protection. These are: (1) the probability of cancer-induction at low doses and low-dose rates; (2) the consideration of those cancers in women, notably the breast and the thyroid, attributable to radiation exposure; and (3) the probability of induction of developmental abnormalities in the newborn following low-dose exposure in utero. The bases for the concern over these effects are discussed. (ACR)

  7. Potential Treatment of Inflammatory and Proliferative Diseases by Ultra-Low Doses of Ionizing Radiations

    PubMed Central

    Sanders, Charles L.

    2012-01-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  8. Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S; Vannier, Pauline; Marteinsson, Viggo T; Monaghan, Euan P; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2018-01-01

    Abstract Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes. PMID:29474542

  9. Differential response of two cell lines sequentially irradiated with low X-ray doses.

    PubMed

    Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I

    2005-05-01

    An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.

  10. James V. Neel and Yuri E. Dubrova: Cold War debates and the genetic effects of low-dose radiation.

    PubMed

    Goldstein, Donna M; Stawkowski, Magdalena E

    2015-01-01

    This article traces disagreements about the genetic effects of low-dose radiation exposure as waged by James Neel (1915-2000), a central figure in radiation studies of Japanese populations after World War II, and Yuri Dubrova (1955-), who analyzed the 1986 Chernobyl nuclear power plant accident. In a 1996 article in Nature, Dubrova reported a statistically significant increase in the minisatellite (junk) DNA mutation rate in the children of parents who received a high dose of radiation from the Chernobyl accident, contradicting studies that found no significant inherited genetic effects among offspring of Japanese A-bomb survivors. Neel's subsequent defense of his large-scale longitudinal studies of the genetic effects of ionizing radiation consolidated current scientific understandings of low-dose ionizing radiation. The article seeks to explain how the Hiroshima/Nagasaki data remain hegemonic in radiation studies, contextualizing the debate with attention to the perceived inferiority of Soviet genetic science during the Cold War.

  11. ADVISORY ON UPDATED METHODOLOGY FOR ...

    EPA Pesticide Factsheets

    The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factored in changes resulting from the updated analysis of dosimetry for the Japanese atomic bomb survivors. To the extent practical, the Committee also considered relevant radiobiological data, including that from the Department of Energy's low dose effects research program. Based on the review of this information, the Committee proposed a set of models for estimating risks from low-dose ionizing radiation. ORIA then prepared a white paper revising the Agency's methodology for estimating cancer risks from exposure to ionizing radiation in light of this report and other relevant information. This is the first product to be developed as a result of the BEIR VII report. We requested that the SAB conduct an advisory during the development of this methodology. The second product to be prepared will be a revised version of the document,

  12. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  13. Kinematics and Optical Depth in the Green Peas: Suppressed Superwinds in Candidate LyC Emitters

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne E.; Oey, M. S.; Scarlata, Claudia; Dowd, Tara

    2017-12-01

    By clearing neutral gas away from a young starburst, superwinds may regulate the escape of Lyman continuum (LyC) photons from star-forming galaxies. However, models predict that superwinds may not launch in the most extreme, compact starbursts. We explore the role of outflows in generating low optical depths in the Green Peas (GPs), the only known star-forming population with several confirmed and candidate LyC-leaking galaxies. With Hubble Space Telescope UV spectra of 25 low-redshift GPs, including new observations of 13 of the most highly ionized GPs, we compare the kinematics of UV absorption lines with indirect H I optical depth diagnostics: Lyα escape fraction, Lyα peak separation, or low-ionization absorption line equivalent width. The data suggest that high-ionization kinematics tracing superwind activity may correlate with low optical depth in some objects. However, the most extreme GPs, including many of the best candidate LyC emitters with weak low-ionization absorption and strong, narrow Lyα profiles, show the lowest velocities. These results are consistent with models for suppressed superwinds, which suggests that outflows may not be the only cause of LyC escape from galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555. These observations are associated with programs GO-14080, GO-13293, and GO-12928.

  14. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    NASA Astrophysics Data System (ADS)

    Toufarová, M.; Hájková, V.; Chalupský, J.; Burian, T.; Vacík, J.; Vorlíček, V.; Vyšín, L.; Gaudin, J.; Medvedev, N.; Ziaja, B.; Nagasono, M.; Yabashi, M.; Sobierajski, R.; Krzywinski, J.; Sinn, H.; Störmer, M.; Koláček, K.; Tiedtke, K.; Toleikis, S.; Juha, L.

    2017-12-01

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. Responses of a-C and C60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation are investigated by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular (C60) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation of a fullerene crystal (estimated to be around 0.15 eV/atom for C60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.

  15. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    DOE PAGES

    Toufarová, M.; Hájková, V.; Chalupský, J.; ...

    2017-12-04

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C 60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. We investigate responses of a-C and C 60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular ( C 60 ) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation ofmore » a fullerene crystal (estimated to be around 0.15 eV/atom for C 60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C 60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.« less

  16. Contrasting behavior of covalent and molecular carbon allotropes exposed to extreme ultraviolet and soft x-ray free-electron laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toufarová, M.; Hájková, V.; Chalupský, J.

    All carbon materials, e.g., amorphous carbon (a-C) coatings and C 60 fullerene thin films, play an important role in short-wavelength free-electron laser (FEL) research motivated by FEL optics development and prospective nanotechnology applications. We investigate responses of a-C and C 60 layers to the extreme ultraviolet (SPring-8 Compact SASE Source in Japan) and soft x-ray (free-electron laser in Hamburg) free-electron laser radiation by Raman spectroscopy, differential interference contrast, and atomic force microscopy. A remarkable difference in the behavior of covalent (a-C) and molecular ( C 60 ) carbonaceous solids is demonstrated under these irradiation conditions. Low thresholds for ablation ofmore » a fullerene crystal (estimated to be around 0.15 eV/atom for C 60 vs 0.9 eV/atom for a-C in terms of the absorbed dose) are caused by a low cohesive energy of fullerene crystals. An efficient mechanism of the removal of intact C 60 molecules from the irradiated crystal due to Coulomb repulsion of fullerene-cage cation radicals formed by the ionizing radiation is revealed by a detailed modeling.« less

  17. Radiation-Related Risk Analysis for Atmospheric Flight Civil Aviation Flight Personnel

    NASA Technical Reports Server (NTRS)

    DeAngelis, G.; Wilson, J. W.

    2003-01-01

    Human data on low dose rate radiation exposure and consequent effects are not readily available, and this fact generates groundtruth concerns for all risk assessment techniques for possible health effects induced by the space radiation environment, especially for long term missions like those foreseen now and in the near future. A large amount of such data may be obtained through civil aviation flight personnel cohorts, in the form of epidemiological studies on delayed health effects induced by the cosmic-ray generated atmospheric radiation environment, a high- LET low dose and low dose rate ionizing radiation with its typical neutron component, to which flight personnel are exposed all throughout their work activity. In the perspective of worldwide studies on radiation exposure of the civil aviation flight personnel, all the available results from previous studies on flight personnel radiation exposure have been examined in various ways (i.e. literature review, meta-analysis) to evaluate possible significant associations between atmospheric ionizing radiation environment and health risks, and to assess directions for future investigations. The physical characteristics of the atmospheric ionizing radiation environment make the results obtained for atmospheric flight personnel relevant for space exploration.

  18. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE PAGES

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; ...

    2015-12-09

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less

  19. The increase in animal mortality risk following exposure to sparsely ionizing radiation is not linear quadratic with dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.

    The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less

  20. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Zhang, Y.; Zhou, H.; Osman, M.; Cha, D.; Kavet, R.; Cuccinotta, F.; Dicello, J. F.; Dillehay, L. E.

    1999-01-01

    The radiation space environment includes particles such as protons and multiple species of heavy ions, with much of the exposure to these radiations occurring at extremely low average dose-rates. Limitations in databases needed to predict cancer hazards in human beings from such radiations are significant and currently do not provide confidence that such predictions are acceptably precise or accurate. In this article, we outline the need for animal carcinogenesis data based on a more sophisticated understanding of the dose-response relationship for induction of cancer and correlative cellular endpoints by representative space radiations. We stress the need for a model that can interrelate human and animal carcinogenesis data with cellular mechanisms. Using a broad model for dose-response patterns which we term the "subalpha-alpha-omega (SAO) model", we explore examples in the literature for radiation-induced cancer and for radiation-induced cellular events to illustrate the need for data that define the dose-response patterns more precisely over specific dose ranges, with special attention to low dose, low dose-rate exposure. We present data for multiple endpoints in cells, which vary in their radiosensitivity, that also support the proposed model. We have measured induction of complex chromosome aberrations in multiple cell types by two space radiations, Fe-ions and protons, and compared these to photons delivered at high dose-rate or low dose-rate. Our data demonstrate that at least three factors modulate the relative efficacy of Fe-ions compared to photons: (i) intrinsic radiosensitivity of irradiated cells; (ii) dose-rate; and (iii) another unspecified effect perhaps related to reparability of DNA lesions. These factors can produce respectively up to at least 7-, 6- and 3-fold variability. These data demonstrate the need to understand better the role of intrinsic radiosensitivity and dose-rate effects in mammalian cell response to ionizing radiation. Such understanding is critical in extrapolating databases between cellular response, animal carcinogenesis and human carcinogenesis, and we suggest that the SAO model is a useful tool for such extrapolation.

  1. The validation of tomotherapy dose calculations in low-density lung media

    NASA Astrophysics Data System (ADS)

    Chaudhari, Summer R.; Pechenaya, Olga L.; Goddu, S. Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D.; Low, Daniel

    2009-04-01

    The dose-calculation accuracy of the tomotherapy Hi-Art II® (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values <=1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  2. The validation of tomotherapy dose calculations in low-density lung media.

    PubMed

    Chaudhari, Summer R; Pechenaya, Olga L; Goddu, S Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D; Low, Daniel

    2009-04-21

    The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  3. The Effects of Low Dose-Rate Ionizing Radiation on the Shapes of Transients in the LM124 Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Roche, Nicholas; Dusseau, Laurent; Pease, Ron L.

    2008-01-01

    Shapes of single event transients (SETs) in a linear bipolar circuit (LM124) change with exposure to total ionizing dose (TID) radiation. SETs shape changes are a direct consequence of TID-induced degradation of bipolar transistor gain. A reduction in transistor gain causes a reduction in the drive current of the current sources in the circuit, and it is the lower drive current that most affects the shapes of large amplitude SETs.

  4. Radiation effects in interventional radiology using biological and physical dosimetry methods: a case-control study.

    PubMed

    Ramos, Miguel; Montoro, Alegria; Almonacid, Miguel; Ferrer, Silvia; Barquinero, Joan Francesc; Tortosa, Ricardo; Verdú, Gumersindo; Rodríguez, Pilar; Barrios, Lleonard; Villaescusa, Juan Ignacio

    2008-01-01

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the irradiation of skin tissues and peripheral blood, in deterministic effects (radiodermitis, aged skin, hands depilation) or stochastic ones (skin and non-solid cancers incidence). Epidemiological studies of population exposed to ionizing radiation provide information of radio-induced effects. The radiation risk or radiological detriment has been estimated from a group of six exposed interventionist radiologists of the Hospital La Fe (Valencia, Spain). Dosimetry has been periodically registered from TLDs and wrist dosimeters (physical methods) and estimated through translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The probability of non-melanoma skin cancer and leukaemia (acute myelogenous, acute lymphocytic and chronic myelogenous leukaemia) incidence has been estimated through the software RADRISK. This software is based on a transport model from epidemiological studies of population exposed to external low-LET ionizing radiation [1]. Other non-solid carcinomas have not been considered due to their low statistical power, such as myeloid and non-Hodgkin lymphomas. The discrepancies observed between the physically recorded doses and biological estimated doses could indicate that exposed workers did not always wear their dosimeters or these dosimeters were not always exposed to the radiation field.

  5. Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications.

    PubMed

    Hickling, Susannah; Xiang, Liangzhong; Jones, Kevin C; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam

    2018-04-21

    Acoustic waves are induced via the thermoacoustic effect in objects exposed to a pulsed beam of ionizing radiation. This phenomenon has interesting potential applications in both radiotherapy dosimetry and treatment guidance as well as low dose radiological imaging. After initial work in the field in the 1980s and early 1990s, little research was done until 2013 when interest was rejuvenated, spurred on by technological advances in ultrasound transducers and the increasing complexity of radiotherapy delivery systems. Since then, many studies have been conducted and published applying ionizing radiation-induced acoustic principles into three primary research areas: Linear accelerator photon beam dosimetry, proton therapy range verification, and radiological imaging. This review article introduces the theoretical background behind ionizing radiation-induced acoustic waves, summarizes recent advances in the field, and provides an outlook on how the detection of ionizing radiation-induced acoustic waves can be used for relative and in vivo dosimetry in photon therapy, localization of the Bragg peak in proton therapy, and as a low-dose medical imaging modality. Future prospects and challenges for clinical implementation of these techniques are discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. ALMA Reveals Weak [N II] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6

    NASA Astrophysics Data System (ADS)

    Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa

    2016-12-01

    We report interferometric measurements of [N II] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C II] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N II] emission compared to [C II] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N II] dominantly traces a diffuse ionized medium rather than star-forming H II regions in this type of galaxy. This highest redshift sample of [N II] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.

  7. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa

    NASA Astrophysics Data System (ADS)

    de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim

    2017-02-01

    The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.

  8. Differential miRNA expression profiling reveals miR-205-3p to be a potential radiosensitizer for low- dose ionizing radiation in DLD-1 cells.

    PubMed

    Andaur, Rodrigo; Tapia, Julio C; Moreno, José; Soto, Leopoldo; Armisen, Ricardo; Marcelain, Katherine

    2018-05-29

    Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.

  9. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    PubMed Central

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  10. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    PubMed

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  11. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.

  12. Assessment of the Technologies for Molecular Biodosimetry for Human Low-Dose Radiation Exposure Symposium: Agenda and Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Matthew A.; Ramakrishnan, Narayani

    In the event of a radiological accident, the rapid evaluation of the individual absorbed dose is paramount to discriminate those individuals who must receive medical attention. New research with genomic- and proteomic-wide tools is showing that within minutes to hours after exposure to ionizing radiation the cellular machinery is modified. For example: large-scale changes occur in the gene expression profiles involving a broad variety of cellular pathways after a wide range of both low dose (<10 cGy) and high dose (>10 cGy) ionizing radiation exposures. Symposium 12 was organized to address a wide range of biological effects using the latestmore » technologies. To address current models following ionizing radiation exposure, methods in biodosimetry and dose effects the symposia featured a general overview titled “Model Systems and Current Approaches in Biodosimetry” by Matthew A. Coleman, from Lawrence Livermore National Laboratory and a talk entitled “Brief Overview of Biodosimetry Projects in the NIH Rad/Nuc Program” by Dr. Narayani Ramakrishnan, National Institute of Allergy and Infectious Diseases. These two talk set the tone for issues in data and model integration as well as addressing the national need for robust technologies for biological dosimetry. The report continues with more description of the presentations, along with the agenda and abstracts of the papers presented.« less

  13. Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight.

    PubMed

    Saffary, Roya; Nandakumar, Renu; Spencer, Dennis; Robb, Frank T; Davila, Joseph M; Swartz, Marvin; Ofman, Leon; Thomas, Roger J; DiRuggiero, Jocelyne

    2002-09-24

    We have recovered new isolates from hot springs, in Yellowstone National Park and the Kamchatka Peninsula, after gamma-irradiation and exposure to high vacuum (10(-6) Pa) of the water and sediment samples. The resistance to desiccation and ionizing radiation of one of the isolates, Bacillus sp. strain PS3D, was compared to that of the mesophilic bacterium, Deinococcus radiodurans, a species well known for its extraordinary resistance to desiccation and high doses of ionizing radiation. Survival of these two microorganisms was determined in real and simulated space conditions, including exposure to extreme UV radiation (10-100 nm) during a rocket flight. We found that up to 15 days of desiccation alone had little effect on the viability of either bacterium. In contrast, exposure to space vacuum ( approximately 10(-6) Pa) decreased cell survival by two and four orders of magnitude for Bacillus sp. strain PS3D and D. radiodurans, respectively. Simultaneous exposure to space vacuum and extreme UV radiation further decreased the survival of both organisms, compared to unirradiated controls. This is the first report on the isolated effect of extreme UV at 30 nm on cell survival. Extreme UV can only be transmitted through high vacuum, therefore its penetration into the cells may only be superficial, suggesting that in contrast to near UV, membrane proteins rather than DNA were damaged by the radiation.

  14. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams.

    PubMed

    Poppinga, D; Halbur, J; Lemmer, S; Delfs, B; Harder, D; Looe, H K; Poppe, B

    2017-09-05

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm -3 ) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  15. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  16. Urgent Change Needed to Radiation Protection Policy.

    PubMed

    Cuttler, Jerry M

    2016-03-01

    Although almost 120 y of medical experience and data exist on human exposure to ionizing radiation, advisory bodies and regulators claim there are still significant uncertainties about radiation health risks that require extreme precautions be taken. Decades of evidence led to recommendations in the 1920s for protecting radiologists by limiting their daily exposure. These were shown in later studies to decrease both their overall mortality and cancer mortality below those of unexposed groups. In the 1950s, without scientific evidence, the National Academy of Sciences Biological Effects of Atomic Radiation (BEAR) Committee and the NCRP recommended that the linear no-threshold (LNT) model be used to assess the risk of radiation-induced mutations in germ cells and the risk of cancer in somatic cells. This policy change was accepted by the regulators of every country without a thorough review of its basis. Because use of the LNT model has created extreme public fear of radiation, which impairs vital medical applications of low-dose radiation in diagnostics and therapy and blocks nuclear energy projects, it is time to change radiation protection policy back into line with the data.

  17. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGES

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; ...

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad ( Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments didmore » not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  18. Quantifying Cancer Risk from Radiation.

    PubMed

    Keil, Alexander P; Richardson, David B

    2017-12-06

    Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.

  19. Update on the biological effects of ionizing radiation, relative dose factors and radiation hygiene.

    PubMed

    White, Stuart C; Mallya, S M

    2012-03-01

    Diagnostic imaging is an indispensable part of contemporary medical and dental practice. Over the last few decades there has been a dramatic increase in the use of ionizing radiation for diagnostic imaging. The carcinogenic effects of high-dose exposure are well known. Does diagnostic radiation rarely cause cancer? We don't know but we should act as if it does. Accordingly, dentists should select patients wisely - only make radiographs when there is patient-specific reason to believe there is a reasonable expectation the radiograph will offer unique information influencing diagnosis or treatment. Low-dose examinations should be made: intraoral imaging - use fast film or digital sensors, thyroid collars, rectangular collimation; panoramic and lateral cephalometric imaging - use digital systems or rare-earth film screen combinations; and cone beam computed tomography - use low-dose machines, restrict field size to region of interest, reduce mA and length of exposure arc as appropriate. © 2012 Australian Dental Association.

  20. Evaluation of GaAs low noise and power MMIC technologies to neutron, ionizing dose and dose rate effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derewonko, H.; Bosella, A.; Pataut, G.

    1996-06-01

    An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less

  1. Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase.

    PubMed

    Scarlatti, Francesca; Sala, Giusy; Ricci, Clara; Maioli, Claudio; Milani, Franco; Minella, Marco; Botturi, Marco; Ghidoni, Riccardo

    2007-08-08

    Radiotherapy is an established therapeutic modality for prostate cancer. Since it is well known that radiotherapy is limited due to its severe toxicity towards normal cells at high dose and minimal effect at low dose, the search for biological compounds that increase the sensitivity of tumors cells to radiation may improve the efficacy of therapy. Resveratrol, a natural antioxidant, was shown to inhibit carcinogenesis in animal models, and to block the process of tumor initiation and progression. The purpose of this study was to examine whether or not resveratrol can sensitize DU145, an androgen-independent human prostate cancer cell line, to ionizing radiation. We report here that DU145 cells are resistant to ionizing radiation-induced cell death, but pretreatment with resveratrol significantly enhances cell death. Resveratrol acts synergistically with ionizing radiation to inhibit cell survival in vitro. Resveratrol also potentiates ionizing radiation-induced ceramide accumulation, by promoting its de novo biosynthesis. This confirms ceramide as an effective mediator of the anticancer potential induced by resveratrol.

  2. Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model

    PubMed Central

    Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo

    2009-01-01

    We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245

  3. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    PubMed Central

    2012-01-01

    Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409

  4. Airport full-body screening: what is the risk?

    PubMed

    Mehta, Pratik; Smith-Bindman, Rebecca

    2011-06-27

    In the past year, the Transportation Security Administration has deployed full-body scanners in airports across the United States in response to heightened security needs. Several groups have opposed the scans, citing privacy concerns and fear of the radiation emitted by the backscatter x-ray scanners, 1 of the 2 types of machines in use. The radiation doses emitted by the scans are extremely small; the scans deliver an amount of radiation equivalent to 3 to 9 minutes of the radiation received through normal daily living. Furthermore, since flying itself increases exposure to ionizing radiation, the scan will contribute less than 1% of the dose a flyer will receive from exposure to cosmic rays at elevated altitudes. The estimation of cancer risks associated with these scans is difficult, but using the only available models, the risk would be extremely small, even among frequent flyers. We conclude that there is no significant threat of radiation from the scans.

  5. Low Dose Ionizing Radiation Modulates Immune Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gregory A.

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokinemore » secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the dose range of 5 to 50 cGy.« less

  6. Quantitative modeling of total ionizing dose reliability effects in device silicon dioxide layers

    NASA Astrophysics Data System (ADS)

    Rowsey, Nicole L.

    The electrical breakdown of oxides and oxide/semiconductor interfaces is one of the main reasons for device failure in integrated circuits, especially devices under high-stress conditions. One high-stress environment of interest is the space environment. All electronics are vulnerable to ionizing radiation; any high-energy particle that passes through an insulating layer will deposit unwanted charge there, causing shifts in device characteristics. Designing electronics for use in space can be a challenge, because much more energetic radiation exits in space than on Earth, as there is no atmosphere in space to collide with, and thereby reduce the energy of, energetic particles. Although oxide charging due to ionizing radiation creates well-known changes in device characteristics, or total ionizing dose effects, it is still poorly-understood exactly how these changes come about. There are many theories that draw upon a large body of both experimental work and, more recently, quantum-mechanical first principles calculations at the molecular level. This work uses FLOODS, a 3D object-oriented device simulator with multi-physics capability, to investigate these theories, by simulating oxide degradation in realistic device geometries, and comparing the subsequent degradation in device characteristics to experimental measurements. The charge trapping and defect-modulated transport models developed and implemented here have resulted in the first quantitative account of the enhanced low-dose-rate sensitivity effect, and are applicable in a comprehensive range of hydrogen environments. Measurements show that devices exposed to ionizing radiation at high dose rates exhibit less degradation that those exposed at low dose rates. Furthermore, the observed trend differs depending on the amount of hydrogen available before, during, and after irradiation. It is therefore important to understand and take into account the effects of dose rate and hydrogen when developing accelerated testing procedures for devices which have been exposed to various levels of hydrogen during processing and packaging, and which must be deployed in the low-dose-rate space environment. Thus, this work represents a substantial increase in the state-of-the-art, since a quantitative model has not previously been available. The success of the model is due in great part to the use of first-principles calculations of defect and hydrogen bond energies. Vanderbilt collaborators provided the results of these calculations as input to the FLOODS simulations. Using these physical insights, a sensitivity analysis in FLOODS yielded insights into key controlling parameters.

  7. Low-dose ionizing radiation increases the mortality risk of solid cancers in nuclear industry workers: A meta-analysis.

    PubMed

    Qu, Shu-Gen; Gao, Jin; Tang, Bo; Yu, Bo; Shen, Yue-Ping; Tu, Yu

    2018-05-01

    Low-dose ionizing radiation (LDIR) may increase the mortality of solid cancers in nuclear industry workers, but only few individual cohort studies exist, and the available reports have low statistical power. The aim of the present study was to focus on solid cancer mortality risk from LDIR in the nuclear industry using standard mortality ratios (SMRs) and 95% confidence intervals. A systematic literature search through the PubMed and Embase databases identified 27 studies relevant to this meta-analysis. There was statistical significance for total, solid and lung cancers, with meta-SMR values of 0.88, 0.80, and 0.89, respectively. There was evidence of stochastic effects by IR, but more definitive conclusions require additional analyses using standardized protocols to determine whether LDIR increases the risk of solid cancer-related mortality.

  8. Identifying and managing the risks of medical ionizing radiation in endourology.

    PubMed

    Yecies, Todd; Averch, Timothy D; Semins, Michelle J

    2018-02-01

    The risks of exposure to medical ionizing radiation is of increasing concern both among medical professionals and the general public. Patients with nephrolithiasis are exposed to high levels of ionizing radiation through both diagnostic and therapeutic modalities. Endourologists who perform a high-volume of fluoroscopy guided procedures are also exposed to significant quantities of ionizing radiation. The combination of judicious use of radiation-based imaging modalities, application of new imaging techniques such as ultra-low dose computed tomography (CT) scan, and modifying use of current technology such as increasing ultrasound and pulsed fluoroscopy utilization offers the possibility of significantly reducing radiation exposure. We present a review of the literature regarding the risks of medical ionizing radiation to patients and surgeons as it pertains to the field of endourology and interventions that can be performed to limit this exposure. A review of the current state of the literature was performed using MEDLINE and PubMed. Interventions designed to limit patient and surgeon radiation exposure were identified and analyzed. Summaries of the data were compiled and synthesized in the body of the text. While no level 1 evidence exists demonstrating the risk of secondary malignancy with radiation exposure, the preponderance of evidence suggests a dose and age dependent increase in malignancy risk from ionizing radiation. Patients with nephrolithiasis were exposed to an average effective dose of 37mSv over a 2 year period. Multiple evidence-based interventions to limit patient and surgeon radiation exposure and associated risk were identified. Current evidence suggest an age and dose dependent risk of secondary malignancy from ionizing radiation. Urologists must act in accordance with ALARA principles to safely manage nephrolithiasis while minimizing radiation exposure.

  9. Eye Lens Opacities Among Physicians Occupationally Exposed to Ionizing Radiation.

    PubMed

    Auvinen, Anssi; Kivelä, Tero; Heinävaara, Sirpa; Mrena, Samy

    2015-08-01

    We compared the frequency of lens opacities among physicians with and without occupational exposure to ionizing radiation, and estimated dose-response between cumulative dose and opacities. We conducted ophthalmologic examinations of 21 physicians with occupational exposure to radiation and 16 unexposed physicians. Information on cumulative radiation doses (mean 111 mSv) was based on dosimeter readings recorded in a national database on occupational exposures. Lens changes were evaluated using the Lens Opacities Classification System II, with an emphasis on posterior subcapsular (PSC) and cortical changes. Among the exposed physicians, the prevalences of cortical and PSC changes were both 11% (3/21), and the corresponding frequencies in the unexposed group were 44% (n = 7) and 6% (n = 1). For dose-response analysis, the data were pooled with 29 exposed physicians from our previous study. No association of either type of lens changes with cumulative recorded dose was observed. Our findings do not indicate an increased frequency of lens opacities in physicians with occupational exposure to ionizing radiation. However, the subjects in this study have received relatively low doses and therefore the results do not exclude small increases in lens opacities or contradict the studies reporting increases among interventional cardiologists with materially higher cumulative doses. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. A dual bacterial culture augments Kalanchoe spp. photosynthesis under extreme conditions

    NASA Astrophysics Data System (ADS)

    Burlak, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; Zaetz, Iryna; Lorek, Andreas; Koncz, Alexander; de Vera, Jean-Pierre; Foing, Bernard H.; Kozyrovska, Natalia

    In consistence with conception of using microbial technology for plant growing/protosoil for-mation for Lunar/Martian greenhouses (Kozyrovska et al., 2004-2010), we anticipate microbes to alleviate impact of the environmental stressors on plant development. Bacteria can augment physiological processes in plants, for example, photosynthesis, by regulating a hormone level and decreasing glucose sensing in planta (Zhang et al., 2008). The study aimed to examine impact of consortium of well-defined bacteria Klebsiella oxytoca IMBG26 and Paenibacillus sp. IMBG150 on the CAM-plantlets Kalanhoe diagramontiana and Kalanhoe tubiflora pho-tosynthetic activity after acute action of gamma radiation (60Co), Near Martian ultraviolet radiation, low pressure (100 mbar), and high concentrations of CO2 (95Plantlets of K. tubi-flora were exposed to harmful doses of Near Martian UV radiation for 3 hours (26.53 J/cm2). A week before experiment kalanchoe plantlets were subjected to acute effects of ionizing radiation at doses of 30 and 70 Gy. In noninoculated plantlets after 30 Gy the photosynthetic activity fell to 71

  11. Identification of Differential Gene Expression Patterns after Acute Exposure to High and Low Doses of Low-LET Ionizing Radiation in a Reconstituted Human Skin Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Susan C.; Markillie, Lye Meng; Hays, Spencer

    Our goal here was to identify dose and temporal dependent radiation responses in a complex tissue, reconstituted human skin. Direct sequencing of RNA (RNA-seq) was used to quantify altered transcripts following exposure to 0.1, 2 and 10 Gy of ionizing radiation at 3 and 8 hours. These doses include a low dose in the range of some medical diagnostic procedures (0.1 Gy), a dose typically received during radiotherapy (2.0 Gy) and a lethal dose (10 Gy). These doses could be received after an intentional or accidental radiation exposure and biomarkers are needed to rapidly and accurately triage exposed individuals. Amore » total of 1701 genes were deemed to be significantly affected by high dose radiation exposure with the majority of genes affected at 10 Gy. A group of 29 genes including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA, and AEN were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at multiple time points. A much larger group of up regulated genes, including those involved in inflammatory responses, was significantly altered only after a 10 Gy exposure. At high doses, down regulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a handful of genes were significantly affected by 0.1 Gy exposure using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to the high dose exposures. Differential regulation of PLK1 signaling at low and high doses was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of radiation in this model system.« less

  12. Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.

    2018-06-01

    In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.

  13. Bacterial and archaeal resistance to ionizing radiation

    NASA Astrophysics Data System (ADS)

    Confalonieri, F.; Sommer, S.

    2011-01-01

    Organisms living in extreme environments must cope with large fluctuations of temperature, high levels of radiation and/or desiccation, conditions that can induce DNA damage ranging from base modifications to DNA double-strand breaks. The bacterium Deinococcus radiodurans is known for its resistance to extremely high doses of ionizing radiation and for its ability to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Recently, extreme ionizing radiation resistance was also generated by directed evolution of an apparently radiation-sensitive bacterial species, Escherichia coli. Radioresistant organisms are not only found among the Eubacteria but also among the Archaea that represent the third kingdom of life. They present a set of particular features that differentiate them from the Eubacteria and eukaryotes. Moreover, Archaea are often isolated from extreme environments where they live under severe conditions of temperature, pressure, pH, salts or toxic compounds that are lethal for the large majority of living organisms. Thus, Archaea offer the opportunity to understand how cells are able to cope with such harsh conditions. Among them, the halophilic archaeon Halobacterium sp and several Pyrococcus or Thermococcus species, such as Thermococcus gammatolerans, were also shown to display high level of radiation resistance. The dispersion, in the phylogenetic tree, of radioresistant prokaryotes suggests that they have independently acquired radioresistance. Different strategies were selected during evolution including several mechanisms of radiation byproduct detoxification and subtle cellular metabolism modifications to help cells recover from radiation-induced injuries, protection of proteins against oxidation, an efficient DNA repair tool box, an original pathway of DNA double-strand break repair, a condensed nucleoid that may prevent the dispersion of the DNA fragments and specific radiation-induced proteins involved in radioresistance. Here, we compare mechanisms and discuss hypotheses suggested to contribute to radioresistance in several Archaea and Eubacteria.

  14. Analysis of genomic instability in the offspring of fathers exposed to low doses of ionizing radiation.

    PubMed

    Aghajanyan, Anna; Kuzmina, Nina; Sipyagyna, Alla; Baleva, Larisa; Suskov, Igor

    2011-08-01

    Transgenerational genomic instability was studied in nonirradiated children born from fathers who were irradiated with low doses of ionizing radiation while working as clean-up workers at the Chernobyl Nuclear Power Plant (liquidators) and nonirradiated mothers from nuclear families. Aberrant cell frequencies (ACFs), chromosomal type aberration frequencies, and chromatid break frequencies (CBFs) in the lymphocytes of fathers-liquidators, and their children were significantly higher when compared with the control group (P < 0.05). Individual ACFs, aberration frequencies, and CBFs were independent of the time between irradiation of the father and conception of the child (1 month to 18 years). Chromosomes were categorized into seven groups (A through G). Analysis of aberrant chromosomes within these groups showed no differences in the average frequency of aberrant chromosomes between children and fathers-liquidators. However, significant differences were observed in the average frequency of aberrant chromosomes in groups A, B, and C between children and mothers in the families of liquidators. These results suggest that low doses of radiation induce genomic instability in fathers. Moreover, low radiation doses might be responsible for individual peculiarities in transgenerational genomic instability in children (as a consequence of response to primary DNA damage). Thus, genomic instability may contribute to increased morbidity over the lifetime of these children. Copyright © 2011 Wiley-Liss, Inc.

  15. A sub-sampled approach to extremely low-dose STEM

    DOE PAGES

    Stevens, A.; Luzi, L.; Yang, H.; ...

    2018-01-22

    The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e -/Å 2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observationsmore » by experimentally imaging the node distribution in a metal-organic framework.« less

  16. A sub-sampled approach to extremely low-dose STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.; Luzi, L.; Yang, H.

    The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e -/Å 2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observationsmore » by experimentally imaging the node distribution in a metal-organic framework.« less

  17. Low-dose or low-dose-rate ionizing radiation–induced bioeffects in animal models

    PubMed Central

    Loke, Weng Keong; Khoo, Boo Cheong

    2017-01-01

    Abstract Animal experimental studies indicate that acute or chronic low-dose ionizing radiation (LDIR) (≤100 mSv) or low-dose-rate ionizing radiation (LDRIR) (<6 mSv/h) exposures may be harmful. It induces genetic and epigenetic changes and is associated with a range of physiological disturbances that includes altered immune system, abnormal brain development with resultant cognitive impairment, cataractogenesis, abnormal embryonic development, circulatory diseases, weight gain, premature menopause in female animals, tumorigenesis and shortened lifespan. Paternal or prenatal LDIR/LDRIR exposure is associated with reduced fertility and number of live fetuses, and transgenerational genomic aberrations. On the other hand, in some experimental studies, LDIR/LDRIR exposure has also been reported to bring about beneficial effects such as reduction in tumorigenesis, prolonged lifespan and enhanced fertility. The differences in reported effects of LDIR/LDRIR exposure are dependent on animal genetic background (susceptibility), age (prenatal or postnatal days), sex, nature of radiation exposure (i.e. acute, fractionated or chronic radiation exposure), type of radiation, combination of radiation with other toxic agents (such as smoking, pesticides or other chemical toxins) or animal experimental designs. In this review paper, we aimed to update radiation researchers and radiologists on the current progress achieved in understanding the LDIR/LDRIR-induced bionegative and biopositive effects reported in the various animal models. The roles played by a variety of molecules that are implicated in LDIR/LDRIR-induced health effects will be elaborated. The review will help in future investigations of LDIR/LDRIR-induced health effects by providing clues for designing improved animal research models in order to clarify the current controversial/contradictory findings from existing studies. PMID:28077626

  18. Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells

    PubMed Central

    Neumaier, Teresa; Swenson, Joel; Pham, Christopher; Polyzos, Aris; Lo, Alvin T.; Yang, PoAn; Dyball, Jane; Asaithamby, Aroumougame; Chen, David J.; Bissell, Mina J.; Thalhammer, Stefan; Costes, Sylvain V.

    2012-01-01

    The concept of DNA “repair centers” and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 μm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation. PMID:22184222

  19. The cancer epidemiology of radiation.

    PubMed

    Wakeford, Richard

    2004-08-23

    Ionizing radiation has been the subject of intense epidemiological investigation. Studies have demonstrated that exposure to moderate-to-high levels can cause most forms of cancer, leukaemia and cancers of the breast, lung and thyroid being particularly sensitive to induction by radiation, especially at young ages at exposure. Predominant among these studies is the Life Span Study of the cohort of survivors of the atomic bombings of Japan in 1945, but substantial evidence is derived from groups exposed for medical reasons, occupationally or environmentally. Notable among these other groups are underground hard rock miners who inhaled radioactive radon gas and its decay products, large numbers of patients irradiated therapeutically and workers who received high doses in the nuclear weapons programme of the former USSR. The degree of carcinogenic risk arising from low levels of exposure is more contentious, but the available evidence points to an increased risk that is approximately proportional to the dose received. Epidemiological investigations of nonionizing radiation have established ultraviolet radiation as a cause of skin cancer. However, the evidence for a carcinogenic effect of other forms of nonionizing radiation, such as those associated with mobile telephones or electricity transmission lines, is not convincing, although the possibility of a link between childhood leukaemia and extremely low-frequency electromagnetic fields cannot be dismissed entirely.

  20. The Competing Influences of the Radiation Belts on the Charging of Extremely Resistive Spacecraft Materials

    NASA Astrophysics Data System (ADS)

    Lemon, C.; Roeder, J. L.; Looper, M. D.; O'Brien, T. P., III; Fennell, J. F.; Mazur, J. E.

    2016-12-01

    Spacecraft suffer from various types of anomalies caused by space weather. One important source of spacecraft anomalies is internal electrostatic discharge (IESD), which occurs when penetrating electrons deposit charge inside dielectrics faster than that charge can dissipate via conduction currents. This causes the electric field to build up to a breakdown threshold. The most electrically resistive materials, such as Teflon, are of greatest concern for IESD. Laboratory measurements of the conductivity of Teflon and other highly resistive polymers show that their conventional conductivity is negligible in comparison to their radiation-induced conductivity (RIC), an alternate source of conduction that is linearly proportional to the ionizing dose rate received by the material. The space radiation environment therefore plays contradictory roles in extremely resistive polymers, both depositing charge and dissipating it. The spectral shape, rather than the total electron flux, becomes the primary consideration for IESD because it determines the relative deposition of charge and ionizing dose in materials. A counterintuitive result is that soft spectra may be a greater risk for IESD, because relative to hard spectra they deposit more charge than dose in materials. This differs from the standard practice of defining the worst-possible environment for charging and IESD as the spectrum in which the electron flux is highest at all energies that could reach the material. We present analyses of CRRES MEA and HEEF measurements, and simulate the charging of material samples from the CRRES Internal Discharge Monitor. We briefly demonstrate the unexpected results described here, and quantify the effect of different energetic electron spectra observed by CRRES on the buildup of charge in Teflon samples from the Internal Discharge Monitor. Finally, we will comment on the perceived deficiency of "worst case" charging environments for predicting IESD, and how we can better quantify IESD risk in extremely resistive materials.

  1. Hemopoietic Response to Low Dose-Rates of Ionizing Radiation Shows Stem Cell Tolerance and Adaptation

    PubMed Central

    Fliedner, Theodor M.; Graessle, Dieter H.; Meineke, Viktor; Feinendegen, Ludwig E.

    2012-01-01

    Chronic exposure of mammals to low dose-rates of ionizing radiation affects proliferating cell systems as a function of both dose-rate and the total dose accumulated. The lower the dose-rate the higher needs to be the total dose for a deterministic effect, i.e., tissue reaction to appear. Stem cells provide for proliferating, maturing and functional cells. Stem cells usually are particularly radiosensitive and damage to them may propagate to cause failure of functional cells. The paper revisits 1) medical histories with emphasis on the hemopoietic system of the victims of ten accidental chronic radiation exposures, 2) published hematological findings of long-term chronically gamma-irradiated rodents, and 3) such findings in dogs chronically exposed in large life-span studies. The data are consistent with the hypothesis that hemopoietic stem and early progenitor cells have the capacity to tolerate and adapt to being repetitively hit by energy deposition events. The data are compatible with the “injured stem cell hypothesis”, stating that radiation–injured stem cells, depending on dose-rate, may continue to deliver clones of functional cells that maintain homeostasis of hemopoiesis throughout life. Further studies perhaps on separated hemopoietic stem cells may unravel the molecular-biology mechanisms causing radiation tolerance and adaptation. PMID:23304110

  2. Environmental standards for ionizing radiation: theoretical basis for dose-response curves.

    PubMed Central

    Upton, A C

    1983-01-01

    The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell. PMID:6653536

  3. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products

    NASA Astrophysics Data System (ADS)

    Tegze, Anna; Sági, Gyuri; Kovács, Krisztina; Homlok, Renáta; Tóth, Tünde; Mohácsi-Farkas, Csilla; Wojnárovits, László; Takács, Erzsébet

    2018-06-01

    This work aimed at investigating the ionizing radiation induced degradation of two fluoroquinolone antibiotics: norfloxacin and ciprofloxacin. At 0.1 mmol dm-3 concentration a low dose, 2 kGy was sufficient to degrade the initial molecules. However, despite of the high removal efficiency the degrees of both the mineralization and the oxidation were low, ∼10% and ∼25%, respectively. (The difference between the results obtained in norfloxacin and ciprofloxacin solutions was not statistically significant.) Broth microdilution tests carried out on Staphylococcus aureus evidenced removal of antibacterial activity in samples irradiated with 2 kGy. Acute toxicity determined on Vibrio fischeri bacteria showed increased toxicity at low doses indicating that the early degradation products were more toxic than the initial molecules. The results of biodegradation experiments performed in activated sludge have shown that the degradation products have become available to the metabolic processes of the microorganisms.

  4. Low-dose ionizing radiation increases the mortality risk of solid cancers in nuclear industry workers: A meta-analysis

    PubMed Central

    Qu, Shu-Gen; Gao, Jin; Tang, Bo; Yu, Bo; Shen, Yue-Ping; Tu, Yu

    2018-01-01

    Low-dose ionizing radiation (LDIR) may increase the mortality of solid cancers in nuclear industry workers, but only few individual cohort studies exist, and the available reports have low statistical power. The aim of the present study was to focus on solid cancer mortality risk from LDIR in the nuclear industry using standard mortality ratios (SMRs) and 95% confidence intervals. A systematic literature search through the PubMed and Embase databases identified 27 studies relevant to this meta-analysis. There was statistical significance for total, solid and lung cancers, with meta-SMR values of 0.88, 0.80, and 0.89, respectively. There was evidence of stochastic effects by IR, but more definitive conclusions require additional analyses using standardized protocols to determine whether LDIR increases the risk of solid cancer-related mortality. PMID:29725540

  5. Heavy Metal Pad Shielding during Fluoroscopic Interventions

    PubMed Central

    Dromi, Sergio; Wood, Bradford J.; Oberoi, Jay; Neeman, Ziv

    2008-01-01

    Significant direct and scatter radiation doses to patient and physician may result from routine interventional radiology practice. A lead-free disposable tungsten antimony shielding pad was tested in phantom patients during simulated diagnostic angiography procedures. Although the exact risk of low doses of ionizing radiation is unknown, dramatic dose reductions can be seen with routine use of this simple, sterile pad made from lightweighttungsten antimony material. PMID:16868175

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheva, Genoveva; Oey, M. S.; Jaskot, Anne E.

    We present the remarkable discovery that the dwarf irregular galaxy NGC 2366 is an excellent analog of the Green Pea (GP) galaxies, which are characterized by extremely high ionization parameters. The similarities are driven predominantly by the giant H ii region Markarian 71 (Mrk 71). We compare the system with GPs in terms of morphology, excitation properties, specific star-formation rate, kinematics, absorption of low-ionization species, reddening, and chemical abundance, and find consistencies throughout. Since extreme GPs are associated with both candidate and confirmed Lyman continuum (LyC) emitters, Mrk 71/NGC 2366 is thus also a good candidate for LyC escape. Themore » spatially resolved data for this object show a superbubble blowout generated by mechanical feedback from one of its two super star clusters (SSCs), Knot B, while the extreme ionization properties are driven by the ≲1 Myr-old, enshrouded SSC Knot A, which has ∼10 times higher ionizing luminosity. Very massive stars (>100 M {sub ⊙}) may be present in this remarkable object. Ionization-parameter mapping indicates that the blowout region is optically thin in the LyC, and the general properties also suggest LyC escape in the line of sight. Mrk 71/NGC 2366 does differ from GPs in that it is one to two orders of magnitude less luminous. The presence of this faint GP analog and candidate LyC emitter (LCE) so close to us suggests that LCEs may be numerous and commonplace, and therefore could significantly contribute to the cosmic ionizing budget. Mrk 71/NGC 2366 offers an unprecedentedly detailed look at the viscera of a candidate LCE, and could clarify the mechanisms of LyC escape.« less

  7. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    PubMed

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  8. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushberg, J; Boreham, D; Ulsh, B

    2014-06-15

    At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased belowmore » background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.« less

  9. Effects of crystallization interfaces on irradiated ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Brewer, S. J.; Williams, S. C.; Cress, C. D.; Bassiri-Gharb, N.

    2017-11-01

    This work investigates the role of crystallization interfaces and chemical heterogeneity in the radiation tolerance of chemical solution-deposited lead zirconate titanate (PZT) thin films. Two sets of PZT thin films were fabricated with crystallization performed at (i) every deposited layer or (ii) every three layers. The films were exposed to a range of 60Co gamma radiation doses, between 0.2 and 20 Mrad, and their functional response was compared before and after irradiation. The observed trends indicate enhancements of dielectric, ferroelectric, and piezoelectric responses at low radiation doses and degradation of the same at higher doses. Response enhancements are expected to result from low-dose (≤2 Mrad), ionizing radiation-induced charging of internal interfaces—an effect that results in neutralization of pre-existing internal bias in the samples. At higher radiation doses (>2 Mrad), accumulation and self-ordering of radiation-modified, mobile, oxygen vacancy-related defects contribute to degradation of dielectric, ferroelectric, and piezoelectric properties, exacerbated in the samples with more crystallization layers, potentially due to increased defect accumulation at these internal interfaces. These results suggest that the interaction between radiation and crystallization interfaces is multifaceted—the effects of ionization, domain wall motion, point defect mobility, and microstructure are considered.

  10. Professional exposure to ionizing radiations in health workers and white blood cells.

    PubMed

    Caciari, T; Capozzella, A; Tomei, F; Nieto, H A; Gioffrè, P A; Valentini, V; Scala, B; Andreozzi, G; De Sio, S; Chighine, A; Tomei, G; Ciarrocca, M

    2012-01-01

    The aim of this study is to estimate if low dose of occupational exposure to ionizing radiations can cause alterations of plasma concentrations of total white blood cells, lymphocytes, monocytes and granulocytes (eosinophils, basophils, neutrophils), in the health workers of a big hospital. 266 non smokers subjects of both sexes (133 health workers and 133 controls) were included in this study, compared on the basis of sex, age and working seniority. The complete blood count (CBC) was performed in all included workers. The differences between the mean values were compared using Student T-test for unpaired data. The frequencies of the single variables were compared using Chi (2) test with Yates correction. The differences were considered significant when the P values were < 0.05. The mean values and the distribution of the mean values of total white blood cell were significantly decreased in health workers of both sexes compared to controls. The average values of granulocytes neutrophils were significantly low in female health workers compared to female controls. The obtained results suggest that low dose of occupational exposure to ionizing radiations is able to influence some lines of the hematopoietic system in exposed workers.

  11. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  12. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  13. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  14. Air kerma calibration factors and chamber correction values for PTW soft x-ray, NACP and Roos ionization chambers at very low x-ray energies.

    PubMed

    Ipe, N E; Rosser, K E; Moretti, C J; Manning, J W; Palmer, M J

    2001-08-01

    This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water using very low-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB 1996 code of practice for the UK secondary standard ionization chambers (PTW type M23342 and PTW type M23344), the Roos (PTW type 34001) and NACP electron chambers are derived. The responses in air of the small and large soft x-ray chambers (PTW type M23342 and PTW type M23344) and the NACP and Roos electron ionization chambers were compared. Besides the soft x-ray chambers, the NACP and Roos chambers can be used for very low-energy x-ray dosimetry provided that they are used in the restricted energy range for which their response does not change by more than 5%. The chamber correction factor was found by comparing the absorbed dose to water determined using the dosimetry protocol recommended for low-energy x-rays with that for very low-energy x-rays. The overlap energy range was extended using data from Grosswendt and Knight. Chamber correction factors given in this paper are chamber dependent, varying from 1.037 to 1.066 for a PTW type M23344 chamber, which is very different from a value of unity given in the IPEMB code. However, the values of k(ch) determined in this paper agree with those given in the DIN standard within experimental uncertainty. The authors recommend that the very low-energy section of the IPEMB code is amended to include the most up-to-date values of k(ch).

  15. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation.

    PubMed

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-09

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  16. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta

    2018-01-01

    Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3  ×  3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.

  17. Radiation Dose-Response Relationships and Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is alsomore » the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented. The chapter ends with conclusions and recommendations.« less

  18. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ) radiation.

    PubMed

    Kumarathasan, Prem; Vincent, Renaud; Blais, Erica; Saravanamuthu, Anu; Gupta, Pallavi; Wyatt, Heather; Mitchel, Ronald; Hannan, Mohammed; Trivedi, Akilesh; Whitman, Stewart

    2013-01-01

    There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment. Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  19. Biologically based multistage modeling of radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistagemore » carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage carcinogenesis models that incorporate the ''initiation, promotion, and malignant conversion'' paradigm of carcinogenesis are indicating that promotion of initiated cells is the most important cellular mechanism driving the shape of the age specific hazard for many types of cancer. Second, we have realized that many of the genes that are modified in early stages of the carcinogenic process contribute to one or more of four general cellular pathways that confer a promotional advantage to cells when these pathways are disrupted.« less

  20. Simultaneous effects of photo- and radio- darkening in ytterbium-doped aluminosilicate fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchez, Jean-Bernard, E-mail: jbduchez@unice.fr; Mady, Franck, E-mail: jbduchez@unice.fr; Mebrouk, Yasmine, E-mail: jbduchez@unice.fr

    2014-10-21

    We present original characterizations of photo-radio-darkening in ytterbium-doped silica optical fibers submitted to the simultaneous action of the pump and of an ionizing radiation. We present the interplay between both radiations, showing e.g. that the pump is able to darken or bleach the fiber depending on the ionizing dose. The photo-resistance of the fiber is shown to play a crucial role on its radio-resistance, and that photo-resistant fibers should be also radio-resistant in low dose rate conditions. All the results are thoroughly explained by a physical model presented in a separate article by Mady et al. (this conference proceeding)

  1. Radioprotection of 1,2-dimethylhydrazine-initiated colon cancer in rats using low-dose γ rays by modulating multidrug resistance-1, cytokeratin 20, and β-catenin expression.

    PubMed

    Nabil, H M; Hassan, B N; Tohamy, A A; Waaer, H F; Abdel Moneim, A E

    2016-03-01

    Ionizing radiation is a widely used therapy for solid tumors. However, high-dose ionizing radiation causes apoptosis, transforms normal cells into tumor cells, and impairs immune functions, leading to the defects in the removal of damaged or tumor cells. In contrast, low-dose radiation has been reported to exert various beneficial effects in cells. This experimental study investigated the effect of γ rays at low dose on the development of colorectal tumor in a 1,2-dimethylhydrazine (DMH)-induced colon cancer. Colorectal tumor model was induced in Wistar rats by subcutaneous injection of DMH (20 mg/kg) once a week for 15 weeks. Starting from zero day of DMH injection, a single low dose of whole-body γ irradiation of 0.5 Gy/week was applied to the rats. A significant reduction in lipid peroxidation, nitric oxide, and elevation in the glutathione content and antioxidant enzyme activity (superoxide dismutase and catalase) were observed after γ irradiation comparing with DMH group. Moreover, γ ray reduced the expressions of multidrug resistance 1 (MDR1), β-catenin, and cytokeratin 20 (CK20) those increased in DMH-treated rats. However, survivin did not change with γ ray treatment. A histopathological examination of the DMH-injected rats revealed ulcerative colitis, dysplasia, anaplasia, and hyperchromasia. An improvement in the histopathological picture was seen in the colon of rats exposed to γ rays. In conclusion, the present results showed that low-dose γ ray significantly inhibited DMH-induced colon carcinogenesis in rats by modulating CK20, MDR1, and β-catenin expression but not survivin expression. © The Author(s) 2015.

  2. Risk of occupational radiation-induced cataract in medical workers.

    PubMed

    Milacic, Snezana

    2009-01-01

    ionizing radiation on the lens of the eye can produce a progressive cataract. Small cumulative doses, over a long time period, can produce adverse effects on the professional capabilities of health workers in the ionizing radiation zone. The aim of this study was to ascertain whether occupational exposure to low levels of ionizing radiation can cause an increase in prevalence of cataract. We compared a group with occupational cataract, consisting of 115 health workers in the ionizing radiation zone, and two control groups: a group of 100 health-care workers in the ionizing radiation zone, with a higher incidence of chromosomal aberrations, but without cataract; and another control group of 26 health-care workers with cataract, outside the zone; all risk factors for the development of cataract were considered: age, sex, diference in profession, duration of occupational exposure, years of service, level of blood sugar, blood pressure, arrhythmias, etc. A more significant incidence of cataract was found in workers in the ionizing radiation zone, where the relative risk was 4.6; p < 0.01. Radiology technicians showed the highest prevalence (63.5%), while physicians-radiologists and pneumologists were second (15.7%) and third (10.3%) respectively; nurses showed a 3.5% incidence and nuclear medicine department workers showed an incidence of only 1.7%. Other risk factors had an effect on the development of cataract (p < 0.05). Occupational exposure to low doses of ionizing radiation, together with other risk factors, is a significant cofactor in the occurrence of cataract as an occupational disease among x-ray exposed health care workers. The categories most at risk are radiology technicians,followed by radiologists.

  3. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.

  4. CONSULTATION ON UPDATED METHODOLOGY FOR ...

    EPA Pesticide Factsheets

    The National Academy of Sciences (NAS) expects to publish the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in calendar year 2005. The committee is expected to have analyzed the most recent epidemiology from the important exposed cohorts and to have factored in any changes resulting from the updated analysis of dosimetry for the Japanese atomic bomb survivors. To the extent practical, the Committee will also consider any relevant radiobiological data, including those from the Department of Energy's low dose effects research program. Based on their evaluation of relevant information, the Committee is then expected to propose a set of models for estimating risks from low-dose ionizing radiation. ORIA will review the BEIR VII report and consider revisions to the Agency's methodology for estimating cancer risks from exposure to ionizing radiation in light of this report and other relevant information. This will be the subject of the Consultation. This project supports a major risk management initiative to improve the basis on which radiation risk decisions are made. This project, funded by several Federal Agencies, reflects an attempt to characterize risks where there are substantial uncertainties. The outcome will improve our ability to assess risks well into the future and will strengthen EPAs overall capability for assessing and managing radiation risks. the BEIR VII report is funde

  5. LiF TLD-100 as a Dosimeter in High Energy Proton Beam Therapy-Can It Yield Accurate Results?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zullo, John R.; Kudchadker, Rajat J.; Zhu, X. Ronald

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly inmore » the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within {+-}5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within {+-} 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy.« less

  6. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete sigmodial dose-response data for neoplastic transformations can be fit using the repair-dependent functions with all parameters determined only from transformation frequency data.

  7. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in themore » low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.« less

  8. Total Ionizing Dose Test Report BFR92A NPN 5 GHz Wide Band Transistor from NXP

    NASA Technical Reports Server (NTRS)

    Phan, Anthony M.; Oldham, Timothy R.

    2011-01-01

    The purpose of this test was to characterize the Philips/NXP BFR92A NPN 5 gigahertz wide band silicon transistor for total dose response. This test shall serves as the radiation lot acceptance test (RLAT) for the lot date code (LDC) 1027. The BFR92A is packaged in a 3-pin plastic SOT23 package. Low dose rate (LDR/ELDRS) irradiations was performed.

  9. Performance parameters of a liquid filled ionization chamber array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluatedmore » using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 ± 0.25) mm at 6 MV and (0.74 ± 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup −1}, respectively. For the inner 5 × 5 cm{sup 2} region and the outer 11 × 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup −1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.« less

  10. Risk of Low Dose/Low Dose Rate Ionizing Radiation to Humans Symposium Annual Meeting of the Environmental Mutagen Society: Agenda and Abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veigl, Martina L.; Morgan, William F.; Schwartz, Jeffrey L.

    The low dose symposium thoughtfully addressed controversy of risk from low dose radiation exposure, hormesis and radon therapy. The stem cell symposium cogently considered the role of DNA damage and repair in hematopoietic stem cells underlying aging and malignancy and provocatively presented evidence that stem cells may have distinct morphologies and replicative properties, as well as special roles in cancer initiation. In the epigenetics symposium, studies illustrated the long range interaction of epigenetic mechanisms, the roles of CTCF and BORIS in region/specific regulation of epigenetic processes, the impact of DNA damage on epigenetic processes as well as links between epigeneticmore » mechanisms and early nutrition and bystander effects. This report shows the agenda and abstracts for this symposium.« less

  11. [Fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth].

    PubMed

    Tang, Hui; Yang, Chuan-Zhong; Li, Huan; Wen, Wei; Huang, Fang-Fang; Huang, Zhi-Feng; Shi, Yu-Ping; Yu, Yan-Liang; Chen, Li-Lian; Yuan, Rui-Qin; Zhu, Xiao-Yu

    2017-06-01

    To investigate the fat emulsion tolerance in preterm infants of different gestational ages in the early stage after birth. A total of 98 preterm infants were enrolled and divided into extremely preterm infant group (n=17), early preterm infant group (n=48), and moderate-to-late preterm infant group (n=33). According to the dose of fat emulsion, they were further divided into low- and high-dose subgroups. The umbilical cord blood and dried blood filter papers within 3 days after birth were collected. Tandem mass spectrometry was used to measure the content of short-, medium-, and long-chain acylcarnitines. The extremely preterm infant and early preterm infant groups had a significantly lower content of long-chain acylcarnitines in the umbilical cord blood and dried blood filter papers within 3 days after birth than the moderate-to-late preterm infant group (P<0.05), and the content was positively correlated with gestational age (P<0.01). On the second day after birth, the low-dose fat emulsion subgroup had a significantly higher content of short-, medium-, and long-chain acylcarnitines than the high-dose fat emulsion subgroup among the extremely preterm infants (P<0.05). In the early preterm infant and moderate-to-late preterm infant groups, there were no significant differences in the content of short-, medium-, and long-chain acylcarnitines between the low- and high-dose fat emulsion subgroups within 3 days after birth. Compared with moderate-to-late preterm infants, extremely preterm infants and early preterm infants have a lower capacity to metabolize long-chain fatty acids within 3 days after birth. Early preterm infants and moderate-to-late preterm infants may tolerate high-dose fat emulsion in the early stage after birth, but extremely preterm infants may have an insufficient capacity to metabolize high-dose fat emulsion.

  12. Occupational exposures to antineoplastic drugs and ionizing radiation in Canadian veterinary settings: findings from a national surveillance project.

    PubMed

    Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E

    2013-11-01

    Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.

  13. Low dose ionizing radiation detection using conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, E.A.B.; Borin, J.F.; Nicolucci, P.

    2005-03-28

    In this work, the effect of gamma radiation on the optical properties of poly[2-methoxy-5-(2{sup '}-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) is studied. The samples were irradiated at room temperature with different doses from 0 Gy to 152 Gy using a {sup 60}Co gamma ray source. For thin films, significant changes in the UV-visible spectra were only observed at high doses (>1 kGy). In solution, shifts in absorption peaks are observed at low doses (<10 Gy), linearly dependent on dose. The shifts are explained by conjugation reduction, and possible causes are discussed. Our results indicate that MEH-PPV solution can be used as a dosimeter adequatemore » for medical applications.« less

  14. Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment

    PubMed Central

    Vaiserman, Alexander M.

    2010-01-01

    Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444

  15. LTC1877 High Efficiency Regulator Total Ionizing Dose Test Report

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy; Pellish, Jonathan; Boutte, Alvin

    2012-01-01

    This report presents total ionizing dose evaluation data for the Linear Technology Corporation LTC1877 high efficiency monolithic synchronous step-down regulator. Data sheet parameters were tracked as a function of ionizing dose up to a total of 20 krad(SiO2). Control devices were also used.

  16. Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.

    PubMed

    Wilson, R E; Hoey, B; Margison, G P

    1993-04-01

    The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.

  17. A Commentary on: "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008".

    PubMed

    Brooks, Antone L

    2015-04-01

    This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.

  18. Tutorial: Radiation Effects in Electronic Systems

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2017-01-01

    This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.

  19. Breast cancer risk from low-dose exposures to ionizing radiation: results of parallel analysis of three exposed populations of women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, C.E.; Boice, J.D. Jr.; Shore, R.E.

    1980-08-01

    Breast cancer incidence data were analyzed from three populations of women exposed to ionizing radiation: survivors of the Hiroshima and Nagasaki atomic bombs, patients in Massachusetts tuberculosis sanitoria who were exposed to multiple chest fluoroscopies, and patients treated by X-rays for acute postpartum mastitis in Rochester, New York. Parallel analyses by radiation dose, age at exposure, and time after exposure suggested that risk of radiation-induced cancer increased approximately linearly with increasing dose and was heavily dependent on age at exposure; however, the risk was otherwise remarkably similar among the three populations, at least for ages 10 to 40 years atmore » exposure, and followed the same temporal pattern of occurrence as did breast cancer incidence in nonexposed women of similar ages.« less

  20. Detection of irradiated chicken by ESR spectroscopy of bone

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Villavicencio, A. L. C. H.; Del Mastro, N. L.; Wiendl, F. M.

    1995-02-01

    Ionizing radiation has been used to treat poultry to remove harmful microorganisms, mainly Salmonella, which contaminates chicken, goose and other fresh and frozen poultry. This microorganism is sensitive to low dose radiation. Thus, irradiating these foods with doses between 1 to 7 kGy results in a large reduction of bacteria. Since it is necessary to determine whether irradiation has occurred and to what extend, this work studied the signal produced by ionizing radiation within the hard crystalline matrix of chicken's bone to establish a control method. Chicken's drumsticks were irradiated and bones separated from flesh were lyophilized and milled. ESR spectrum was then obtained. The ESR signal increased linearly with dose over the range 0.25 to 8.0 kGy. Free radicals evaluated during 30 days after irradiation showed stable in this period.

  1. NOTE: Calibration of low-energy electron beams from a mobile linear accelerator with plane-parallel chambers using both TG-51 and TG-21 protocols

    NASA Astrophysics Data System (ADS)

    Beddar, A. S.; Tailor, R. C.

    2004-04-01

    A new approach to intraoperative radiation therapy led to the development of mobile linear electron accelerators that provide lower electron energy beams than the usual conventional accelerators commonly encountered in radiotherapy. Such mobile electron accelerators produce electron beams that have nominal energies of 4, 6, 9 and 12 MeV. This work compares the absorbed dose output calibrations using both the AAPM TG-51 and TG-21 dose calibration protocols for two types of ion chambers: a plane-parallel (PP) ionization chamber and a cylindrical ionization chamber. Our results indicate that the use of a 'Markus' PP chamber causes 2 3% overestimation in dose output determination if accredited dosimetry-calibration laboratory based chamber factors \\big(N_{{\\rm D},{\\rm w}}^{{}^{60}{\\rm Co}}, N_x\\big) are used. However, if the ionization chamber factors are derived using a cross-comparison at a high-energy electron beam, then a good agreement is obtained (within 1%) with a calibrated cylindrical chamber over the entire energy range down to 4 MeV. Furthermore, even though the TG-51 does not recommend using cylindrical chambers at the low energies, our results show that the cylindrical chamber has a good agreement with the PP chamber not only at 6 MeV but also down to 4 MeV electron beams.

  2. Blue Book: EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population

    EPA Pesticide Factsheets

    This document presents EPA estimates of cancer incidence and mortality risk coefficients pertaining to low dose exposures to ionizing radiation for the U.S. population, as well as their scientific basis.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated networkmore » (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.« less

  4. Simulation of major space particles toward selected materials in a near-equatorial low earth orbit

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Zulkeple, Siti Katrina

    2017-05-01

    A low earth orbit near the equator (LEO-NEqO) is exposed to the highest energies from galactic cosmic rays (GCR) and from trapped protons with a wide range of energies. Moreover, GCR fluxes were seen to be the highest in 2009 to 2010 when communication belonging to the RazakSAT-1 satellite was believed to have been lost. Hence, this study aimed to determine the influence of the space environment toward the operation of LEO-NEqO satellites by investigating the behavior of major space particles toward satellite materials. The space environment was referred to GCR protons and trapped protons. Their fluxes were obtained from the Space Environment Information System (SPENVIS) and their tracks were simulated through three materials using a simulation program called Geometry and Tracking (Geant4). The materials included aluminum (Al), gallium arsenide (GaAs) and silicon (Si). Then the total ionizing dose (TID) and non-ionizing dose (NIEL) were calculated for a three-year period. Simulations showed that GCR traveled at longer tracks and produced more secondary radiation than trapped protons. Al turned out to receive the lowest total dose, while GaAs showed to be susceptible toward GCR than Si. However, trapped protons contributed the most in spacecraft doses where Si received the highest doses. Finally, the comparison between two Geant4 programs revealed the estimated doses differed at <18%.

  5. A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons

    NASA Astrophysics Data System (ADS)

    Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh

    2015-01-01

    Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies.

  6. Increases in 1H-NMR mobile lipids are not always associated with overt apoptosis: evidence from MG-63 human osteosarcoma three-dimensional spheroids exposed to a low dose (2 Gy) of ionizing radiation.

    PubMed

    Santini, Maria Teresa; Romano, Rocco; Rainaldi, Gabriella; Ferrante, Antonella; Motta, Andrea; Indovina, Pietro Luigi

    2006-02-01

    The metabolic changes that occur in MG-63 osteosarcoma three-dimensional tumor spheroids exposed to 2 Gy of ionizing radiation, a dose that is comparable to radiation therapy, were studied using high-resolution proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. Specifically, the (1)H-NMR spectra of control and exposed MG-63 spheroids were compared. Small spheroids (about 50-80 microm in diameter) with no hypoxic center were used. The spectra of whole MG-63 spheroids as well as the perchloric acid extracts of these systems were evaluated. Cell damage was also examined by lactate dehydrogenase release and changes in cell growth. No cell damage was observed, but numerous metabolic changes took place in spheroids after exposure to ionizing radiation. In particular, significant increases in both CH(2) and CH(3) mobile lipids, considered by many authors as markers of apoptosis and also present in MG-63 spheroids undergoing overt apoptosis, were observed in spheroids irradiated with 2 Gy. However, the chromatin dye Hoechst 33258 and DNA fragmentation assays showed no overt apoptosis up to 7 days after irradiation with this low dose. Thus it is evident that increases in mobile lipids do not always indicate actual cell death. A detailed analysis of the other metabolic changes observed appears to suggest that the cell death program was initiated but not completed. In fact, the completely different behavior of two important cellular defense mechanisms, reduced glutathione and taurine, in spheroids irradiated with 2 Gy and in those undergoing overt apoptosis seems to indicate that these systems are protecting spheroids from actual cell death. In addition, these data also suggest that (1)H-NMR can be used to examine the effects of low doses of ionizing radiation in spheroids, a cell model of great complexity that closely resembles tumors in vivo. The importance of this possibility in relation to reaching the ultimate goal of a better evaluation of the outcome of radiotherapy protocols should not be ignored.

  7. Does adding low doses of oral naltrexone to morphine alter the subsequent opioid requirements and side effects in trauma patients?

    PubMed

    Farahmand, Shervin; Ahmadi, Omid; Dehpour, Ahmadreza; Khashayar, Patricia

    2012-01-01

    The present study aims to assess the influence of ultra-low doses of opioid antagonists on the analgesic properties of opioids and their side effects. In the present randomized, double-blind controlled trial, the influence of the combination of ultra-low-dose naltrexone and morphine on the total opioid requirement and the frequency of the subsequent side effects was compared with that of morphine alone (added with placebo) in patients with trauma in the upper or lower extremities. Although the morphine and naltrexone group required 0.04 mg more opioids during the study period, there was no significant difference between the opioid requirements of the 2 groups. Nausea was less frequently reported in patients receiving morphine and naltrexone. The combination of ultra-low-dose naltrexone and morphine in extremity trauma does not affect the opioid requirements; it, however, lowers the risk of nausea. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE PAGES

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    2017-03-17

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  9. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  10. SEM analysis of ionizing radiation effects in an analog to digital converter /AD571/

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Perret, J.; Evans, K. C.

    1981-01-01

    The considered investigation is concerned with the study of the total-dose degradation mechanisms in an IIL analog to digital (A/D) converter. The A/D converter is a 10 digit device having nine separate functional units on the chip which encompass several hundred transistors and circuit elements. It was the objective of the described research to find the radiation sensitive elements by a systematic search of the devices on the LSI chip. The employed technique using a scanning electron microscope to determine the functional blocks of an integrated circuit which are sensitive to ionizing radiation and then progressively zeroing in on the soft components within those blocks, proved extremely successful on the AD571. Four functional blocks were found to be sensitive to radiation, including the Voltage Reference, DAC, IIL Clock, and IIL SAR.

  11. Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.

    PubMed

    Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam

    2017-08-01

    A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.

  12. Micron MT29F128G08AJAAA 128GB Asynchronous Flash Memory Total Ionizing Dose Characterization Test Report

    NASA Technical Reports Server (NTRS)

    Campola, Michael; Wyrwas, Edward

    2017-01-01

    The purpose of this test was to characterize the Micron MT29F128G08AJAAAs parameter degradation for total dose response and to evaluate and compare lot date codes for sensitivity. In the test, the device was exposed to both low dose and high dose rate (HDR) irradiations using gamma radiation. Device parameters such as leakage currents, quantity of upset bits and overall chip and die health were investigated to determine which lot is more robust.

  13. SU-E-T-145: Beam Characteristics of Flattening Filter Free Beams Including Low Dose Rate Setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, K; Ogata, T; Nakayama, M

    2015-06-15

    Purpose: In commissioning of volumetric modulated arc therapy (VMAT), it is necessary to evaluate the beam characteristics of various dose rate settings with potential to use. The aim of this study is to evaluate the beam characteristics of flattened and flattening filter free (FFF) including low dose rate setting. Methods: We used a Varian TrueBeam with Millennium 120 MLC. Both 6 and 10 MV beams with or without flattening filter were used for this study. To evaluate low-dose rate FFF beams, specially-designed leaf sequence files control out-of-field MLC leaf pair at constant dose rate ranging from 80 to 400 MU/min.more » For dose rate from 80 MU/min to the maximum usable value of all energies, beam output were measured using ionization chamber (CC04, IBA). The ionization chamber was inserted into water equivalent phantom (RT3000-New, R-tech), and the phantom was set with SAD of 100cm. The beam profiles were performed using the 2D diode array (Profiler2, Sun Nuclear). The SSD was set to 90cm and a combined 30cmx30cmx9cm phantom which consisted of solid water slabs was put on the device. All measurement were made using 100MU irradiation for 10cmx10cm jaw-defined field size with a gantry angle of 0°. Results: In all energies, the dose rate dependences with beam output and variation coefficient were within 0.2% and 0.07%, respectively. The flatness and symmetry exhibited small variations (flatness ≤0.1 point and symmetry≤0.3 point at absolute difference). Conclusion: We had studied the characteristics of flattened and FFF beam over the 80 MU/min. Our results indicated that the beam output and profiles of FFF of TrueBeam linac were highly stable at low dose rate setting.« less

  14. A Case Report of a Patient Carrying CYP2C9*3/4 Genotype with Extremely Low Warfarin Dose Requirement

    PubMed Central

    Lee, Soo-Youn; Nam, Myung-Hyun; Kim, June Soo

    2007-01-01

    We report a case of intolerance to warfarin dosing due to impaired drug metabolism in a patient with CYP2C9*3/*4. A 73-yr-old woman with atrial fibrilation was taking warfarin. She attained a high prothrombin time international normalized ratio (INR) at the standard doses during the induction of anticoagulation and extremely low dose of warfarin (6.5 mg/week) was finally chosen to reach the target INR. Genotyping for CYP2C9 revealed that this patient had a genotype CYP2C9*3/*4. This is the first Korean compound heterozygote for CYP2C9*3 and *4. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of warfarin. PMID:17596671

  15. A case report of a patient carrying CYP2C9*3/4 genotype with extremely low warfarin dose requirement.

    PubMed

    Lee, Soo Youn; Nam, Myung Hyun; Kim, June Soo; Kim, Jong Won

    2007-06-01

    We report a case of intolerance to warfarin dosing due to impaired drug metabolism in a patient with CYP2C9*3/*4. A 73-yr-old woman with atrial fibrilation was taking warfarin. She attained a high prothrombin time international normalized ratio (INR) at the standard doses during the induction of anticoagulation and extremely low dose of warfarin (6.5 mg/week) was finally chosen to reach the target INR. Genotyping for CYP2C9 revealed that this patient had a genotype CYP2C9*3/*4. This is the first Korean compound heterozygote for CYP2C9*3 and *4. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of warfarin.

  16. A Review of Non-Cancer Effects, Especially Circulatory and Ocular Diseases1

    PubMed Central

    Little, Mark P.

    2014-01-01

    There is a well-established association between high doses (> 5 Gy) of ionizing radiation exposure and damage to the heart and coronary arteries, although only recently have studies with high quality individual dosimetry been conducted that would enable quantification of this risk adjusting for concomitant chemotherapy. The association between lower dose exposures and late occurring circulatory disease has only recently begun to emerge in the Japanese atomic bomb survivors and in various occupationally-exposed cohorts, and is still controversial. Excess relative risks per unit dose in moderate and low dose epidemiological studies are somewhat variable, possibly a result of confounding and effect modification by well known (but unobserved) risk factors. Radiation doses of 1 Gy or more are associated with increased risk of posterior subcapsular cataract. Accumulating evidence from the Japanese atomic bomb survivors, Chernobyl liquidators, US astronauts and various other exposed groups suggest that cortical cataracts may also be associated with ionizing radiation, although there is little evidence that nuclear cataracts are radiogenic. The dose response appears to be linear, although modest thresholds (of no more than about 0.6 Gy) cannot be ruled out. A variety of other non-malignant effects have been observed after moderate/low dose exposure in various groups, in particular respiratory and digestive disease and central nervous system (and in particular neuro-cognitive) damage. However, because these are generally only observed in isolated groups, or because the evidence is excessively heterogeneous, these associations must be treated with caution. PMID:23903347

  17. Leukemia risk associated with chronic external exposure to ionizing radiation in a French cohort of nuclear workers.

    PubMed

    Metz-Flamant, C; Samson, E; Caër-Lorho, S; Acker, A; Laurier, D

    2012-11-01

    Leukemia is one of the earliest cancer effects observed after acute exposure to relatively high doses of ionizing radiation. Leukemia mortality after external exposure at low doses and low-dose rates has been investigated at the French Atomic Energy Commission (CEA) and Nuclear Fuel Company (AREVA NC) after an additional follow-up of 10 years. The cohort included radiation-monitored workers employed for at least one year during 1950-1994 at CEA or AREVA NC and followed during 1968-2004. Association between external exposure and leukemia mortality was estimated with excess relative risk (ERR) models and time-dependent modifying factors were investigated with time windows. The cohort included 36,769 workers, followed for an average of 28 years, among whom 73 leukemia deaths occurred. Among the workers with a positive recorded dose, the mean cumulative external dose was 21.7 mSv. Results under a 2-year lag assumption suggested that the risk of leukemia (except chronic lymphatic leukemia) increased significantly by 8% per 10 mSv. The magnitude of the association for myeloid leukemia was larger. The higher ERR/Sv for doses received 2-14 years earlier suggest that time since exposure modifies the effect. The ERR/Sv also appeared higher for doses received at exposure rates ≥20 mSv per year. These results are consistent with those found in other studies of nuclear workers. However, confidence intervals are still wide. Further analyses should be conducted in pooled cohorts of nuclear workers.

  18. The New Radiobiology: Returning to Our Roots

    PubMed Central

    Ulsh, Brant A.

    2012-01-01

    In 2005, two expert advisory bodies examined the evidence on the effects of low doses of ionizing radiation. The U.S. National Research Council concluded that current scientific evidence is consistent with the linear no-threshold dose-response relationship (NRCNA 2005) while the French National Academies of Science and Medicine concluded the opposite (Aurengo et al. 2005). These contradictory conclusions may stem in part from an emphasis on epidemiological data (a “top down” approach) versus an emphasis on biological mechanisms (a “bottom up” approach). In this paper, the strengths and limitations of the top down and bottom up approaches are discussed, and proposals for strengthening and reconciling them are suggested. The past seven years since these two reports were published have yielded increasing evidence of nonlinear responses of biological systems to low radiation doses delivered at low dose-rates. This growing body of evidence is casting ever more doubt on the extrapolation of risks observed at high doses and dose-rates to estimate risks associated with typical environmental and occupational exposures. This paper compares current evidence on low dose, low dose-rate effects against objective criteria of causation. Finally, some questions for a post-LNT world are posed. PMID:23304107

  19. Circulating Cytokine/Chemokine Concentrations Respond to Ionizing Radiation Doses but not Radiation Dose Rates: Granulocyte-Colony Stimulating Factor and Interleukin-18.

    PubMed

    Kiang, Juliann G; Smith, Joan T; Hegge, Sara R; Ossetrova, Natalia I

    2018-06-01

    Exposure to ionizing radiation is a crucial life-threatening factor in nuclear and radiological incidents. It is known that ionizing radiation affects cytokine/chemokine concentrations in the blood of B6D2F1 mice. It is not clear whether radiation dose rates would vary the physiological response. Therefore, in this study we utilized data from two experiments using B6D2F1 female mice exposed to six different dose rates ranging from low to high rates. In one experiment, mice received a total dose of 8 Gy (LD 0/30 ) of 60 Co gamma radiation at four dose rates: 0.04, 0.15, 0.30 and 0.47 Gy/min. Blood samples from mice were collected at 24 and 48 h postirradiation for cytokine/chemokine measurements, including interleukin (IL)-1β, IL-6, IL-10, keratinocyte cytokine (KC), IL-12p70, IL-15, IL-17A, IL-18, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, macrophage (M)-CSF, monokine induced by gamma interferon (MIG), tumor necrosis factor (TNF)-α, fibroblast growth factor (FGF)-basic, vascular endothelial growth factor (VEGF) and platelet-derived growth factor basic (PDGF-bb). At 24 h after ionizing irradiation at dose rate of 0.04 Gy/min, significant increases were observed only in G-CSF and M-CSF ( P < 0.05). At 0.15 Gy/min, IL-10, IL-17A, G-CSF and GM-CSF concentrations were increased. At 0.3 Gy/min, IL-15, IL-18, G-CSF, GM-CSF, M-CSF, MCP-1, MIP-2, MIG, FGF-basic, VEGF and PDGF-bb were significantly elevated ( P < 0.05). At 0.47 Gy/min, IL-6, KC, IL-10, MCP-1, G-CSF, GM-CSF and M-CSF were significantly increased. At 48 h postirradiation, all cytokines/chemokines except MCP-1 returned to or were below their baselines, suggesting these increases are transient at LD 0/30 irradiation. Of note, there is a limitation on day 2 because cytokines/chemokines are either at or below their baselines. Other parameters such as fms-like tyrosine kinase receptor-3 ligand (Flt-3 ligand) concentrations and lymphocyte counts, which have proven to be unaffected by radiation dose rates, can be used instead for assessing the radiation dose. However, in a separate radiation dose and time-course experiment, increases in IL-18 and G-CSF depended on the radiation doses but showed no significant differences between 0.58 and 1.94 Gy/min ( P > 0.05) at 3 and 6 Gy but not 12 Gy. G-CSF continued to increase up to day 7, whereas IL-18 increased on day 4 and remained above baseline level on day 7. Therefore, time after irradiation at different doses should be taken into consideration. To our knowledge, these results are the first to suggest that ionizing radiation, even at a very low-dose-rate (0.04 Gy/min), induces circulating G-CSF increases but not others for selected time points; radiation-induced increases in IL-18 at radiation dose rates between 0.15 and 1.94 Gy/min are also not in a radiation dose-rate-dependent manner. C-CSF, lymphocyte counts and circulating Flt-3 ligand should be explored further as possible biomarkers of radiation exposure at early time points. IL-18 is also worthy of further study as a potential biomarker at later time points.

  20. Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Kocher, Manan; Landi, Enrico; Lepri, Susan. T.

    2018-06-01

    In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.

  1. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    PubMed

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  2. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    PubMed Central

    Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306

  3. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  4. Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions.

    PubMed

    Moshammer, R; Perumal, A; Schulz, M; Rodríguez, V D; Kollmus, H; Mann, R; Hagmann, S; Ullrich, J

    2001-11-26

    The three-body Coulomb problem has been explored in kinematically complete experiments on single ionization of helium by 100 MeV/u C(6+) and 3.6 MeV/u Au(53+) impact. Low-energy electron emission ( E(e)<150 eV) as a function of the projectile deflection theta(p) (momentum transfer), i.e., the Bethe surface [15], has been mapped with Delta theta(p)+/-25 nanoradian resolution at extremely large perturbations ( 3.6 MeV/u Au(53+)) where single ionization occurs at impact parameters of typically 10 times the He K-shell radius. The experimental data are not in agreement with state-of-the-art continuum distorted wave-eikonal initial state theory.

  5. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart.

    PubMed

    Seawright, John W; Samman, Yusra; Sridharan, Vijayalakshmi; Mao, Xiao Wen; Cao, Maohua; Singh, Preeti; Melnyk, Stepan; Koturbash, Igor; Nelson, Gregory A; Hauer-Jensen, Martin; Boerma, Marjan

    2017-01-01

    Space travel is associated with an exposure to low-dose rate ionizing radiation and the microgravity environment, both of which may lead to impairments in cardiac function. We used a mouse model to determine short- and long-term cardiac effects to simulated microgravity (hindlimb unloading; HU), continuous low-dose rate γ-irradiation, or a combination of HU and low-dose rate γ-irradiation. Cardiac tissue was obtained from female, C57BL/6J mice 7 days, 1 month, 4 months, and 9 months following the completion of a 21 day exposure to HU or a 21 day exposure to low-dose rate γ-irradiation (average dose rate of 0.01 cGy/h to a total of 0.04 Gy), or a 21 day simultaneous exposure to HU and low-dose rate γ-irradiation. Immunoblot analysis, rt-PCR, high-performance liquid chromatography, and histology were used to assess inflammatory cell infiltration, cardiac remodeling, oxidative stress, and the methylation potential of cardiac tissue in 3 to 6 animals per group. The combination of HU and γ-irradiation demonstrated the strongest increase in reduced to oxidized glutathione ratios 7 days and 1 month after treatment, but a difference was no longer apparent after 9 months. On the other hand, no significant changes in 4-hydroxynonenal adducts was seen in any of the groups, at the measured endpoints. While manganese superoxide dismutase protein levels decreased 9 months after low-dose γ-radiation, no changes were observed in expression of catalase or Nrf2, a transcription factor that determines the expression of several antioxidant enzymes, at the measured endpoints. Inflammatory marker, CD-2 protein content was significantly decreased in all groups 4 months after treatment. No significant differences were observed in α-smooth muscle cell actin protein content, collagen type III protein content or % total collagen. This study has provided the first and relatively broad analysis of small molecule and protein markers of oxidative stress, T-lymphocyte infiltration, and cardiac remodeling in response to HU with simultaneous exposure to low-dose rate γ-radiation. Results from the late observation time points suggest that the hearts had mostly recovered from these two experimental conditions. However, further research is needed with larger numbers of animals for a more robust statistical power to fully characterize the early and late effects of simulated microgravity combined with exposure to low-dose rate ionizing radiation on the heart.

  6. Effects of low-dose rate γ-irradiation combined with simulated microgravity on markers of oxidative stress, DNA methylation potential, and remodeling in the mouse heart

    PubMed Central

    Samman, Yusra; Sridharan, Vijayalakshmi; Mao, Xiao Wen; Cao, Maohua; Singh, Preeti; Melnyk, Stepan; Koturbash, Igor; Nelson, Gregory A.; Hauer-Jensen, Martin; Boerma, Marjan

    2017-01-01

    Purpose Space travel is associated with an exposure to low-dose rate ionizing radiation and the microgravity environment, both of which may lead to impairments in cardiac function. We used a mouse model to determine short- and long-term cardiac effects to simulated microgravity (hindlimb unloading; HU), continuous low-dose rate γ-irradiation, or a combination of HU and low-dose rate γ-irradiation. Methods Cardiac tissue was obtained from female, C57BL/6J mice 7 days, 1 month, 4 months, and 9 months following the completion of a 21 day exposure to HU or a 21 day exposure to low-dose rate γ-irradiation (average dose rate of 0.01 cGy/h to a total of 0.04 Gy), or a 21 day simultaneous exposure to HU and low-dose rate γ-irradiation. Immunoblot analysis, rt-PCR, high-performance liquid chromatography, and histology were used to assess inflammatory cell infiltration, cardiac remodeling, oxidative stress, and the methylation potential of cardiac tissue in 3 to 6 animals per group. Results The combination of HU and γ-irradiation demonstrated the strongest increase in reduced to oxidized glutathione ratios 7 days and 1 month after treatment, but a difference was no longer apparent after 9 months. On the other hand, no significant changes in 4-hydroxynonenal adducts was seen in any of the groups, at the measured endpoints. While manganese superoxide dismutase protein levels decreased 9 months after low-dose γ-radiation, no changes were observed in expression of catalase or Nrf2, a transcription factor that determines the expression of several antioxidant enzymes, at the measured endpoints. Inflammatory marker, CD-2 protein content was significantly decreased in all groups 4 months after treatment. No significant differences were observed in α-smooth muscle cell actin protein content, collagen type III protein content or % total collagen. Conclusions This study has provided the first and relatively broad analysis of small molecule and protein markers of oxidative stress, T-lymphocyte infiltration, and cardiac remodeling in response to HU with simultaneous exposure to low-dose rate γ-radiation. Results from the late observation time points suggest that the hearts had mostly recovered from these two experimental conditions. However, further research is needed with larger numbers of animals for a more robust statistical power to fully characterize the early and late effects of simulated microgravity combined with exposure to low-dose rate ionizing radiation on the heart. PMID:28678877

  7. Long-Term Effects of Exposure to Ionizing Irradiation on Periodontal Health Status – The Tinea capitis Cohort Study

    PubMed Central

    Sadetzki, Siegal; Chetrit, Angela; Sgan-Cohen, Harold D.; Mann, Jonathan; Amitai, Tova; Even-Nir, Hadas; Vered, Yuval

    2015-01-01

    Studies among long-term survivors of childhood cancer who had received high-dose irradiation therapy of 4–60 Gy, demonstrated acute and chronic dental effects, including periodontal diseases. However, the possible effects of low to moderate doses of radiation on dental health are sparse. The aim of this study is to investigate the association between childhood exposure to low–moderate doses of ionizing radiation and periodontal health following 50 years since exposure. The study population included 253 irradiated subjects (treated for Tinea capitis in the 1950s) and, 162 non-irradiated subjects. The estimated dose to the teeth was 0.2–0.4 Gy. Dental examination was performed according to the community periodontal index (CPI). Socioeconomic and health behavior variables were obtained through a personal questionnaire. Periodontal disease was operationally defined as “deep periodontal pockets.” A multivariate logistic regression model was used for the association of irradiation status and other independent variables with periodontal status. The results showed that among the irradiated subjects, 23%, (95% CI 18–28%) demonstrated complete edentulousness or insufficient teeth for CPI scoring as compared to 13% (95% CI 8–19%) among the non-irradiated subjects (p = 0.01). Periodontal disease was detected among 54% of the irradiated subjects as compared to 40% of the non-irradiated (p = 0.008). Controlling for education and smoking, the ORs for the association between radiation and periodontal disease were 1.61 (95% CI 1.01–2.57) and 1.95 (95% CI 1.1–3.5) for ever never and per 1 Gy absorbed in the salivary gland, respectively. In line with other studies, a protective effect for periodontal diseases among those with high education and an increased risk for ever smokers were observed. In conclusion, childhood exposure to low-moderate doses of ionizing radiation might be associated with later outcomes of dental health. The results add valuable data on the long-term health effects of exposure to ionizing radiation and support the implementation of the ALARA principle in childhood exposure to diagnostic procedure involving radiation. PMID:26539423

  8. Atomic bomb health benefits.

    PubMed

    Luckey, T D

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment.

  9. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications

    PubMed Central

    Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu

    2017-01-01

    The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809

  10. Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship.

    PubMed

    Geras'kin, Stanislav A; Oudalova, Alla A; Kim, Jin Kyu; Dikarev, Vladimir G; Dikareva, Nina S

    2007-03-01

    The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10-1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed.

  11. LiF TLD-100 as a dosimeter in high energy proton beam therapy--can it yield accurate results?

    PubMed

    Zullo, John R; Kudchadker, Rajat J; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T

    2010-01-01

    In the region of high-dose gradients at the end of the proton range, the stopping power ratio of the protons undergoes significant changes, allowing for a broad spectrum of proton energies to be deposited within a relatively small volume. Because of the potential linear energy transfer dependence of LiF TLD-100 (thermolumescent dosimeter), dose measurements made in the distal fall-off region of a proton beam may be less accurate than those made in regions of low-dose gradients. The purpose of this study is to determine the accuracy and precision of dose measured using TLD-100 for a pristine Bragg peak, particularly in the distal fall-off region. All measurements were made along the central axis of an unmodulated 200-MeV proton beam from a Probeat passive beam-scattering proton accelerator (Hitachi, Ltd., Tokyo, Japan) at varying depths along the Bragg peak. Measurements were made using TLD-100 powder flat packs, placed in a virtual water slab phantom. The measurements were repeated using a parallel plate ionization chamber. The dose measurements using TLD-100 in a proton beam were accurate to within +/-5.0% of the expected dose, previously seen in our past photon and electron measurements. The ionization chamber and the TLD relative dose measurements agreed well with each other. Absolute dose measurements using TLD agreed with ionization chamber measurements to within +/- 3.0 cGy, for an exposure of 100 cGy. In our study, the differences in the dose measured by the ionization chamber and those measured by TLD-100 were minimal, indicating that the accuracy and precision of measurements made in the distal fall-off region of a pristine Bragg peak is within the expected range. Thus, the rapid change in stopping power ratios at the end of the range should not affect such measurements, and TLD-100 may be used with confidence as an in vivo dosimeter for proton beam therapy. Copyright 2010 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  12. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  13. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.

  14. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    the defect types created for both ionizing and non-ionizing particles under exposure to high total ionization and displacement damage doses. Carbon...and displacement damage doses. Additionally, the radiation effects on CNT carrier transport parameters (mobility, lifetime, conductivity) have been...thermal oxidation. 2. Radiation Testing of SWCNTs 2.1 Displacement Damage Dose Effects as a Function of SWCNT Electronic-Type Displacement damage does

  15. Molecular Mechanisms of Nonlinearity in Response to Low Dose Ionizing Radiation

    DTIC Science & Technology

    2007-10-12

    nucleotide-binding protein 1 HSP27 heat shock protein 27 IR ionizing radiation LDH-A lactate dehydrogenase A PDI protein disulfide isomerase precursor 2...sc-9322, SCB, CA), E-FABP (sc-16060, SCB, CA), and LDH-A (sc-27230, SCB, CA), cytokeratin I (sc- 17091, SCB, CA), CaM (sc-1989, SCB, CA), HSP27 (sc...the 24 hour time point included: calmodulin (CaM), heat shock protein 27 ( HSP27 ), lactate dehydrogenase A (LDH-A) and protein disulfide isomerase

  16. The synergistic effects of traditional Chinese herbs and radiotherapy for cancer treatment

    PubMed Central

    JIA, LILI; MA, SHUMEI; HOU, XUE; WANG, XIN; QASED, ABU BAKER LAYTH; SUN, XUEFEI; LIANG, NAN; LI, HUICHENG; YI, HEQING; KONG, DEJUAN; LIU, XIAODONG; FAN, FEIYUE

    2013-01-01

    Traditional Chinese medicine (TCM) has been demonstrated to have potent cytotoxic activity against certain malignant tumors. Ionizing radiation (IR) is one of the most effective methods used in the clinical treatment of cancer. The drawback of a single formula is that it limits the treatment efficacy for cancer, while comprehensive strategies require additional theoretical support. However, a combination of different antitumor treatment modalities is advantageous in restricting the non-specific toxicity often observed with an extremely high dose of a single regimen. The induction of apoptotic cell death is a significant process in tumor cells following radiotherapy or chemotherapy, and resistance to these treatments has been linked to a low propensity for apoptosis. Autophagy is a response of cancer cells to IR or chemotherapy, and involves the prominent formation of autophagic vacuoles in the cytoplasm. In this review, the synergistic effects of TCM and radiotherapy are summarized and the underlying mechanisms are illustrated, providing new therapeutic strategies for cancer. PMID:23760551

  17. The [CII]/[NII] far-infrared line ratio at z>5: extreme conditions for “normal” galaxies

    NASA Astrophysics Data System (ADS)

    Pavesi, Riccardo; Riechers, Dominik; Capak, Peter L.; Carilli, Chris Luke; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas; Smolcic, Vernesa

    2017-01-01

    Thanks to the Atacama Large (sub-)Millimeter Array (ALMA), observations of atomic far-infrared fine structure lines are a very productive way of measuring physical properties of the interstellar medium (ISM) in galaxies at high redshift, because they provide an unobscured view into the physical conditions of star formation. While the bright [CII] line has become a routine probe of the dynamical properties of the gas, its intensity needs to be compared to other lines in order to establish the physical origin of the emission. [NII] selectively traces the emission coming from the ionized fraction of the [CII]-emitting gas, offering insight into the phase structure of the ISM. Here we present ALMA measurements of [NII] 205 μm fine structure line emission from a representative sample of galaxies at z=5-6 spanning two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized gas properties for galaxies in the first billion years of cosmic time, separated by their L[CII]/L[NII] ratio. First, we find extremely low [NII] emission compared to [CII] from a “typical” Lyman Break Galaxy (LBG-1), likely due to low dust content and reminiscent of local dwarfs. Second, the dusty Lyman Break Galaxy HZ10 and the extreme starburst AzTEC-3 show ionized gas fractions typical of local star-forming galaxies and show hints of spatial variations in their [CII]/[NII] line ratio. These observations of far-infrared lines in “normal” galaxies at z>5 yield some of the first constraints on ISM models for young galaxies in the first billion years of cosmic time and shed light on the observed evolution of the dust and gas properties.

  18. The response of Bacillus subtilis to simulated Martian conditions and to the space environment

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Rabbow, E.; Panitz, C.; Horneck, G.; Reitz, G.

    The early histories of Mars and Earth show similarities during the period when life emerged on Earth Thus a comparable early biological evolution might have taken place also on Mars Several ongoing international space missions are especially designed to search for past or present life on Mars In order to develop adequate instruments and methods for in situ life detection analysis and to avoid the contamination of Mars by terrestrial life forms introduced to it s surface unintentionally it is necessary to understand the potential and limits of life on Earth The determination of the survival of microorganisms under the physical and chemical extremes of Mars will provide detailed insights into the potential for contamination that will allow the development and improvement of planetary protection measures Our knowledge about the occurrence of life especially microbial life on Earth has increased enormously in the last decades Archaea bacteria and protista have been found living in many newly discovered extremely hostile habitats which were regarded up to now as too harsh to harbor life Whereas many newly discovered extremophile species are specialized to cope with one extreme environmental parameter like high or low temperature high or low pH high salt concentration desiccation high flux of ionizing or non-ionizing radiation there are also long-known dormant stages of certain bacteria such as the Bacillus endospores that are capable to withstand most of the environmental parameters on the surface of Mars like low

  19. The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk.

    PubMed

    Squillaro, Tiziana; Galano, Giovanni; De Rosa, Roberto; Peluso, Gianfranco; Galderisi, Umberto

    2018-04-17

    Exposure to high levels of ionizing radiation (IR) (>0.5Gy), negatively affect health. but, less is known about the effects of low dose IR (LDIR) but recent, evidence suggests that it may have profound effects on cellular functions. We are commonly exposed to LDIR over natural background levels from numerous sources: people may be exposed to low dose IR for medical diagnosis and therapy, air travel, illegal IR waste dumpsites or by occupational exposures in the nuclear and medical sectors. Stem cells reside for long periods of time in our bodies, and this increases the possibility that they may be accumulate genotoxic damage derived from extrinsic LDIR or intrinsic sources (such as DNA replication). In this review we provide an overview of LDIR effects on biology of stem cell compartments. The principal findings and issues reported in the scientific literature are discussed in order to present the current understanding of the LDIR exposure risk, and assess whether it may impact human health. We first consider the general biological consequences of LDIR exposure. Following this, we discuss the effects of LDIR on stem cells as discovered through in vitro and in vivo studies. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  20. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  1. Early brain response to low-dose radiation exposure involves molecular networks and pathways associated with cognitive functions, advanced aging and Alzheimer's disease.

    PubMed

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J

    2009-01-01

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.

  2. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film.

    PubMed

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  3. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    PubMed Central

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki

    2016-01-01

    Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120

  4. Characterization of Indoor Extremely Low Frequency and Low Frequency Electromagnetic Fields in the INMA-Granada Cohort

    PubMed Central

    Calvente, Irene; Dávila-Arias, Cristina; Ocón-Hernández, Olga; Pérez-Lobato, Rocío; Ramos, Rosa; Artacho-Cordón, Francisco; Olea, Nicolás; Núñez, María Isabel; Fernández, Mariana F.

    2014-01-01

    Objective To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-“INMA” population-based birth cohort. Methodology The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9–10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Results Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Conclusion Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure. PMID:25192253

  5. Characterization of indoor extremely low frequency and low frequency electromagnetic fields in the INMA-Granada cohort.

    PubMed

    Calvente, Irene; Dávila-Arias, Cristina; Ocón-Hernández, Olga; Pérez-Lobato, Rocío; Ramos, Rosa; Artacho-Cordón, Francisco; Olea, Nicolás; Núñez, María Isabel; Fernández, Mariana F

    2014-01-01

    To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-"INMA" population-based birth cohort. The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9-10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.

  6. A Randomized Controlled Trial Comparing Botulinum Toxin A Dosage in the Upper Extremity of Children with Spasticity

    ERIC Educational Resources Information Center

    Kawamura, Anne; Campbell, Kent; Lam-Damji, Sophie; Fehlings, Darcy

    2007-01-01

    This study compared the effects of low and high doses of botulinum toxin A (BTX-A) to improve upper extremity function. Thirty-nine children (22 males, 17 females) with a mean age of 6 years 2 months (SD 2y 9mo) diagnosed with spastic hemiplegia or triplegia were enrolled into this double-blind, randomized controlled trial. The high-dose group…

  7. Caries Experience among Adults Exposed to Low to Moderate Doses of Ionizing Radiation in Childhood - The Tinea Capitis Cohort.

    PubMed

    Vered, Yuval; Chetrit, Angela; Sgan-Cohen, Harold D; Amitai, Tova; Mann, Jonathan; Even-Nir, Hadas; Sadetzki, Siegal

    2016-01-01

    While the impact of therapeutic levels of ionizing radiation during childhood on dental defects has been documented, the possible effect of low doses on dental health is unknown. The study aim was to assess the association between childhood exposure to low-moderate doses of therapeutic radiation and caries experience among a cohort of adults 50 years following the exposure. The analysis was based on a sample of 253 irradiated (in the treatment of tinea capitis) and 162 non-irradiated subjects. The decayed, missing, and filled teeth (DMFT) index was assessed during a clinical dental examination and questions regarding dental care services utilization, oral hygiene behavior, current self-perceived mouth dryness, socio-demographic parameters, and health behavior variables were obtained through a face-to-face interview. An ordered multivariate logistic regression model was used to assess the association of the main independent variable (irradiation status) and other relevant independent variables on the increase in DMFT. Mean caries experience levels (DMFT) were 18.6 ± 7.5 for irradiated subjects compared to 16.4 ± 7.2 for the non-irradiated (p = 0.002). Controlling for gender, age, education, income, smoking, dental visit in the last year, and brushing teeth behavior, irradiation was associated with a 72% increased risk for higher DMFT level (95% CI: 1.19-2.50). A quantification of the risk by dose absorbed in the salivary gland and in the thyroid gland showed adjusted ORs of 2.21 per 1 Gy (95% CI: 1.40-3.50) and 1.05 per 1 cGy (95% CI: 1.01-1.09), respectively. Childhood exposure to ionizing radiation (0.2-0.4 Gy) might be associated with late outcomes of dental health. In line with the guidelines of the American Dental Association, these results call for caution when using dental radiographs.

  8. Method and apparatus for measuring low currents in capacitance devices

    DOEpatents

    Kopp, M.K.; Manning, F.W.; Guerrant, G.C.

    1986-06-04

    A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.

  9. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    NASA Astrophysics Data System (ADS)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  10. Linearity and reproducibility response of Fricke dosimetry for low energy X-Ray beam

    NASA Astrophysics Data System (ADS)

    Mantuano, A.; de Amorim, G. J.; David, M. G.; Rosado, P. H. G.; Salata, C.; Magalhães, L. A. G.; deAlmeida, C. E.

    2018-03-01

    The Fricke dosimeter is the most used, liquid chemical dosimeter. It has been shown to be a feasible option for the absorbed dose standard. The present work aims to determinate a dose-response curve of Fricke solution using different doses and reproducibility test comparing the calculated dose to Fricke solution and Ionizing Chamber. Tests were performed using an X-ray irradiator for biological research at Radiological Science Laboratory (LCR/UERJ). The results showed a linear response to different doses of type A uncertainties from 0.08 to 1.2%. Reproducibility test showed type A uncertainties of 0.16% to the dosimeter.

  11. A case control study of multiple myeloma at four nuclear facilities.

    PubMed

    Wing, S; Richardson, D; Wolf, S; Mihlan, G; Crawford-Brown, D; Wood, J

    2000-04-01

    Reported elevations of multiple myeloma among nuclear workers exposed to external penetrating ionizing radiation, based on small numbers of cases, prompted this multi-facility study of workers at US Department of Energy facilities. Ninety-eight multiple myeloma deaths and 391 age-matched controls were selected from the combined roster of 115,143 workers hired before 1979 at Hanford, Los Alamos National Laboratory, Oak Ridge National Laboratory, and the Savannah River site. These workers were followed for vital status through 1990 (1986 for Hanford). Demographic, work history, and occupational exposure data were derived from personnel, occupational medicine, industrial hygiene, and health physics records. Exposure-disease associations were evaluated using conditional logistic regression. Cases were disproportionately African American, male, and hired prior to 1948. Lifetime cumulative whole body ionizing radiation dose was not associated with multiple myeloma, however, there was a significant effect of age at exposure, with positive associations between multiple myeloma and doses received at older ages. Dose response associations increased in magnitude with exposure age (from 40 to 50) and lag assumption (from 5 to 15 years), while a likelihood ratio goodness of fit test reached the highest value for cumulative doses received at ages above 45 with a 5-year lag (X2=5.43,1 df; relative risk = 6.9% per 10 mSv). Dose response associations persisted with adjustment for potential confounders. Multiple myeloma was associated with low level whole body penetrating ionizing radiation doses at older ages. The exposure age effect is at odds with interpretations of A-bomb survivor studies but in agreement with several studies of cancer among nuclear workers.

  12. Atomic Bomb Health Benefits

    PubMed Central

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment. PMID:19088902

  13. Radiation measurements aboard Spacelab 1

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Almasi, J.; Cassou, R.; Frank, A.; Henke, R. P.; Rowe, V.; Parnell, T. A.; Schopper, E.

    1984-01-01

    The radiation environment inside Spacelab 1 was measured by a set of passive radiation detectors distributed throughout the volume inside the module, in the access tunnel, and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the thermoluminescence detectors ranged from 102 to 190 millirads, yielding an average low LET dose rate of 11.2 millirads/day inside the module, about twice the low LET dose rate measured on previous flights of the Space Shuttle. Because of the higher inclination of the orbit (57 versus 28.5 deg for previous Shuttle flights), substantial fluxes of highly ionizing high charge and energy galactic cosmic ray particles were observed, yielding an overall average mission dose-equivalent of about 150 millirems, more than three times higher than that measured on previous Shuttle missions.

  14. Epigenomic Adaptation to Low Dose Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted tomore » live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’« less

  15. Extremely Low Frequency (ELF) Communications Program Non-Ionizing Electromagnetic Radiation Literature Evaluation and Assessment; 1977-1986 Literature Review.

    DTIC Science & Technology

    1986-11-01

    Napoli, Italy, who tested the possible chromosomal abnormalities caused by a 50-Hz electric field. Bovine lymphocytes from peripheral blood were cultured...production, ’. mastitis , etc. The problem can be mitigated by improved grounding practices on farmsteads, and it is not directly relevant to ELFCSs. The

  16. Feasibility of using glass-bead thermoluminescent dosimeters for radiotherapy treatment plan verification.

    PubMed

    Jafari, Shakardokht M; Jordan, Tom J; Distefano, Gail; Bradley, David A; Spyrou, Nicholas M; Nisbet, Andrew; Clark, Catharine H

    2015-01-01

    To investigate the feasibility of using glass beads as novel thermoluminescent dosemeters (TLDs) for radiotherapy treatment plan verification. Commercially available glass beads with a size of 1-mm thickness and 2-mm diameter were characterized as TLDs. Five clinical treatment plans including a conventional larynx, a conformal prostate, an intensity-modulated radiotherapy (IMRT) prostate and two stereotactic body radiation therapy (SBRT) lung plans were transferred onto a CT scan of a water-equivalent phantom (Solid Water(®), Gammex, Middleton, WI) and the dose distribution recalculated. The number of monitor units was maintained from the clinical plan and delivered accordingly. The doses determined by the glass beads were compared with those measured by a graphite-walled ionization chamber, and the respective expected doses were determined by the treatment-planning system (TPS) calculation. The mean percentage difference between measured dose with the glass beads and TPS was found to be 0.3%, -0.1%, 0.4%, 1.8% and 1.7% for the conventional larynx, conformal prostate, IMRT prostate and each of the SBRT delivery techniques, respectively. The percentage difference between measured dose with the ionization chamber and glass bead was found to be -1.2%, -1.4%, -0.1%, -0.9% and 2.4% for the above-mentioned plans, respectively. The results of measured doses with the glass beads and ionization chamber in comparison with expected doses from the TPS were analysed using a two-sided paired t-test, and there was no significant difference at p < 0.05. It is feasible to use glass-bead TLDs as dosemeters in a range of clinical plan verifications. Commercial glass beads are utilized as low-cost novel TLDs for treatment-plan verification.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seong-Jun; Kang, Hana; Kim, Min Young

    Purpose: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. Methods and Materials: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a {sup 137}Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. Results: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylationmore » level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. Conclusion: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.« less

  18. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution.

    PubMed

    Zhao, Lei; Mi, Dong; Sun, Yeqing

    2017-05-07

    The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Risk of deterministic effects after exposure to low doses of ionizing radiation: retrospective study among health workers in view of a new publication of International Commission on Radiological Protection].

    PubMed

    Negrone, Mario; Di Lascio, Doriana

    2016-01-01

    The new recommended equivalent (publication n. 118 of International Commission on Radiological Protection) dose limit for occupational exposure of the lens of the eye is based on prevention of radiogenic cataracts, with the underlying assumption of a nominal threshold which has been adjusted from 2,5 Gy to 0.5 Gy for acute or protracted exposure. The study aim was to determine the prevalence of ocular lens opacity among healthcare workers (radiologic technologists, physicians, physician assistants) with respect to occupational exposures to ionizing radiations. Therefore, we conducted another retrospective study to explore the relationship between occupational exposure to radiation and opacity lens increase. Healthcare data (current occupational dosimetry, occupational history) are used to investigate risk of increase of opacity lens of eye. The sample of this study consisted of 148 health-workers (64 M and 84 W) aged from 28 to 66 years coming from different hospitals of the ASL of Potenza (clinic, hospital and institute with scientific feature). On the basis of the evaluation of the dosimetric history of the workers (global and effective dose) we agreed to ascribe the group of exposed subjects in cat A (equivalent dose > 2 mSV) and the group of non exposed subjects in cat B (workers with annual absorbed level of dose near 0 mSv). The analisys was conducted using SPSS 15.0 (Statistical Package for Social Science). A trend of increased ocular lens opacity was found with increasing number for workers in highest category of exposure (cat. A, Yates' chi-squared test = 13,7 p = 0,0002); variable significantly related to opacity lens results job: nurse (Χ(2)Y = 14,3 p = 0,0002) physician (Χ(2)Y = 2.2 p = 0,1360) and radiologic technologists (Χ(2)Y = 0,1 p = 0,6691). In conclusion our provides evidence that exposure to relatively low doses of ionizing radiation may be harmful to the lens of the eye and may increase a long-term risk of cataract formation; similary necessary to monitor the "equivalent dose" for the lens for the workers in highest category of exposure.

  20. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiman, Norman Jay

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.« less

  1. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp; Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, wemore » calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).« less

  2. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response.

  3. CERTAIN PHYSICO-CHEMICAL AND CHEMICAL INDICES OF THE BLOOD IN CHRONIC ACTION OF LOW DOSES OF IONIZING RADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorn, L.E.

    1960-06-01

    Results are reported from a study on 45 persons subjected during work to the protracted action of rontgen and gamma rays in doses exceeding the maximal permissible ones. It was found that the creatine, aromatic amino acids, and non- hemoglobin iron, as well as the redox potential of the serum, do not differ from the respective values in healthy subjects. (auth)

  4. Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation.

    PubMed

    Ponce-Cusi, Richard; Calaf, Gloria M

    2016-02-01

    Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.

  5. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, William F.; Sowa, Marianne B.

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculationmore » on how these observations might lead to and impact long-term human health outcomes.« less

  6. Radiation exposure in gastroenterology: improving patient and staff protection.

    PubMed

    Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  7. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE PAGES

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.; ...

    2015-02-04

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  8. Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model

    PubMed Central

    Hengel, Shawna M.; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-01-01

    To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues. PMID:28250387

  9. Genetic background modulates lncRNA-coordinated tissue response to low dose ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jonathan; Huang, Yurong; Nguyen, David H.

    Long noncoding RNAs (lncRNAs) are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR) exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy) induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed aftermore » LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.« less

  10. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    DOE PAGES

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter

    2015-09-09

    The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less

  11. First direct comparison of high and low ionization line kinematics in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D.; Calvani, M.; Moles, M.

    1995-01-01

    We present first results of a comparison of emission line shift properties for the high (HILs) and low (LILs) ionization lines in 43 low-reshift quasars. We identify a core sample of C IV lambda 1549 and hydrogen beta profiles with a wide distribution of red- and blueshifts (less than or equal to +/- 1000 km/sec). We also identify two tails in this distribution: one with large hydrogen beta redshifts (greater than or equal to 2000 km/sec) and another with large C IV blueshifts (greater than or equal to 1500 km/sec). The tails are mutually exclusive. All objects with extreme hydrogen beta redshift are radio loud, and all objects with extreme C IV blueshift are radio quiet. The core samples of smaller shifts can be most simply divided into: (1) hydrogen beta - a redshifted radio-loud population (related to the tail) and a radio-quiet population with mean shift near zero, and (2) C IV - a blueshifted radio-quiet population (related to the tail) and a radio-loud population with mean shift near zero. The results suggest fundamentally different kinematics for the HILs and LILs. They also suggest very different kinematics for radio-loud and radio-quiet active galactic nuclei. They also favor a predominance of radial motion in a large fraction of the sample.

  12. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Vijande, J.; García-Martínez, T.

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate ofmore » the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW chambers, differ by less than 1.1% for any applicator size when compared to the output factors that were measured with the A20 chamber. Conclusions: Measurements using both dosimetric protocols are consistent, once the overall uncertainties are considered. There is also consistency between measurements performed with both chambers calibrated in air. Both the T34013 and A20 chambers have negligible stem effect. Any x-ray surface brachytherapy system, including Esteya, can be characterized using either one of these calibration protocols and ionization chambers. Having less correction factors, lower uncertainty, and based on measurements, performed in closer to clinical conditions, the TRS-398 protocol seems to be the preferred option.« less

  13. LAURISTON S. TAYLOR LECTURE ON RADIATION PROTECTION AND MEASURMENTS: WHAT MAKES PARTICLE RADIATION SO EFFECTIVE?

    PubMed Central

    Blakely, Eleanor A.

    2012-01-01

    The scientific basis for the physical and biological effectiveness of particle radiations has emerged from many decades of meticulous basic research. A diverse array of biologically relevant consequences at the molecular, cellular, tissue, and organism level have been reported, but what are the key processes and mechanisms that make particle radiation so effective, and what competing processes define dose dependences? Recent studies have shown that individual genotypes control radiation-regulated genes and pathways in response to radiations of varying ionization density. The fact that densely ionizing radiations can affect different gene families than sparsely ionizing radiations, and that the effects are dose- and time-dependent has opened up new areas of future research. The complex microenvironment of the stroma, and the significant contributions of the immune response have added to our understanding of tissue-specific differences across the linear energy transfer (LET) spectrum. The importance of targeted vs. nontargeted effects remain a thorny, but elusive and important contributor to chronic low dose radiation effects of variable LET that still needs further research. The induction of cancer is also LET-dependent, suggesting different mechanisms of action across the gradient of ionization density. The focus of this 35th Lauriston S. Taylor Lecture is to chronicle the step-by-step acquisition of experimental clues that have refined our understanding of what makes particle radiation so effective, with emphasis on the example of radiation effects on the crystalline lens of the human eye. PMID:23032880

  14. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sági, Gyuri; Kovács, Krisztina; Bezsenyi, Anikó; Csay, Tamás; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Changes of biodegradability and toxicity were followed up on aqueous solutions of sulfamethoxazole (SMX), during ionizing radiation treatment. The biodegradability of SMX (0.1 mmol dm-3) was specified by five-day biological oxygen demand (BOD5), using municipal activated sludge, and the results showed an improvement with applying only 0.4 kGy dose. BOD5 further increased with prolonged irradiation, indicating a conversion of SMX, a non-biodegradable compound, to biologically treatable substances. At 2.5 kGy dose, the BOD5/COD ratio increased from 0 to 0.16. The total organic carbon (TOC) content showed a decrease of only 15% at this point, thus high degree of mineralization is not necessary to make SMX digestible for the low concentrations of microorganisms used during BOD5 measurements. Increment in respiration inhibition of municipal activated sludge was observed with increasing the dose. The EC50 values showed a decrease of one order of magnitude when changing the dose from 0.4 kGy to 2.5 kGy. The increase of inhibition and formation of H2O2 showed a strong correlation.

  15. Effects of radiation type and delivery mode on a radioresistant eukaryote Cryptococcus neoformans

    PubMed Central

    Shuryak, Igor; Bryan, Ruth A.; Broitman, Jack; Marino, Stephen A.; Morgenstern, Alfred; Apostolidis, Christos; Dadachova, Ekaterina

    2015-01-01

    Introduction Most research on radioresistant fungi, particularly on human pathogens such as Cryptococcus neoformans, involves sparsely-ionizing radiation. Consequently, fungal responses to densely-ionizing radiation, which can be harnessed to treat life-threatening fungal infections, remain incompletely understood. Methods We addressed this issue by quantifying and comparing the effects of densely-ionizing α-particles (delivered either by external beam or by 213Bi-labeled monoclonal antibodies), and sparsely-ionizing 137Cs γ-rays, on Cryptococus neoformans. Results The best-fit linear-quadratic parameters for clonogenic survival were the following: α=0.24×10−2 Gy−1 for γ-rays and 1.07×10−2 Gy−1 for external-beam α-particles, and β=1.44×10−5 Gy−2 for both radiation types. Fungal cell killing by radiolabeled antibodies was consistent with predictions based on the α-particle dose to the cell nucleus and the linear-quadratic parameters for external-beam α-particles. The estimated RBE (for α-particles vs γ-rays) at low doses was 4.47 for the initial portion of the α-particle track, and 7.66 for the Bragg peak. Non-radiological antibody effects accounted for up to 23% of cell death. Conclusions These results quantify the degree of C. neoformans resistance to densely-ionizing radiations, and show how this resistance can be overcome with fungus-specific radiolabeled antibodies. PMID:25800676

  16. Perspectives of decision-making and estimation of risk in populations exposed to low levels of ionizing radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1979-01-01

    The setting of any permissible radiation level or guide remains essentially an arbitrary procedure. Based on the radiation risk estimates derived, any lack of precision does not minimize either the need for setting public health policies nor the conclusion that such risks are extremely small when compared with those avialable of alternative options, and those normally accepted by society as the hazards of everyday life. When compared with the benefits that society has established as goals derived from the necessary activities of medical care and energy production, it is apparent that society must establish appropriate standards and seek appropriate controllingmore » procedures which continue to assure that its needs are being met with the lowest possible risks. This implies continuing decision-making processes in which risk-benefit and cost-effectiveness assessments must be taken into account. Much of the practical information necessary for determination of radiation protection standards for public health policy is still lacking. It is now assumed that any exposure to radiaion at low levels of dose carries some risk of deleterious effects. However, how low this level may be, or the probability, or magnitude of the risk, still are not known. Radiation and the public health becomes a societal and political problem and not solely a scientific one. Our best scientific knowledge and our best scientific advice are essential for the protection of the public health, for the effective application of new technologies in medicine, and for guidance in the production of energy in industry. Unless man wishes to dispense with those activities which inevitably involve exposure to low levels of ionizing radiations, he must recognize that some degree of risk, however small, exists. In the evaluation of such risks from radiation, it is necessary to limit the radiation exposure to a level at which the risk is acceptable both to the individual and to society.« less

  17. Acute onset polyarthritis in older people: Is it RS3PE syndrome?

    PubMed

    Salam, Abdul; Henry, Rafik; Sheeran, Tom

    2008-08-29

    Remitting Seronegative Symmetrical Synovitis with Pitting oedema syndrome, a rare inflammatory arthritis, commonly affects people in the older age group. It can present as an acute onset polyarthritis with associated pitting oedema of the extremities. Patients show excellent response to low dose steroids with complete and sustained remissions. It can also be a paraneoplastic manifestation of an underlying occult malignancy, hence thorough clinical evaluation is warranted.We discuss a case of Remitting Seronegative Symmetrical Synovitis with pitting oedema syndrome where the patient presented with acute onset polyarthritis and pitting oedema of the extremities without an underlying systemic cause. Patient showed dramatic response to low dose steroids.

  18. Spitzer Infrared Spectrograph Observations of the Galactic Center: Quantifying the Extreme Ultraviolet/Soft X-ray Fluxes

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    2018-04-01

    It has long been shown that the extreme ultraviolet spectrum of the ionizing stars of H II regions can be estimated by comparing the observed line emission to detailed models. In the Galactic Center (GC), however, previous observations have shown that the ionizing spectral energy distribution (SED) of the local photon field is strange, producing both very low excitation ionized gas (indicative of ionization by late O stars) and also widespread diffuse emission from atoms too highly ionized to be found in normal H II regions. This paper describes the analysis of all GC spectra taken by Spitzer's Infrared Spectrograph and downloaded from the Spitzer Heritage Archive. In it, H II region densities and abundances are described, and serendipitously discovered candidate planetary nebulae, compact shocks, and candidate young stellar objects are tabulated. Models were computed with Cloudy, using SEDs from Starburst99 plus additional X-rays, and compared to the observed mid-infrared forbidden and recombination lines. The ages inferred from the model fits do not agree with recent proposed star formation sequences (star formation in the GC occurring along streams of gas with density enhancements caused by close encounters with the black hole, Sgr A*), with Sgr B1, Sgr C, and the Arches Cluster being all about the same age, around 4.5 Myr old, with similar X-ray requirements. The fits for the Quintuplet Cluster appear to give a younger age, but that could be caused by higher-energy photons from shocks from stellar winds or from a supernova.

  19. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome.

    PubMed

    Huang, Lin; Wickramasekara, Samanthi I; Akinyeke, Tunde; Stewart, Blair S; Jiang, Yuan; Raber, Jacob; Maier, Claudia S

    2016-05-17

    Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of cytogenetic effects in bone marrow of mice after the flight on the biosatellite "BION-M1" and the ground-based radiobiological experiment

    NASA Astrophysics Data System (ADS)

    Dorozhkina, Olga; Vorozhtsova, Svetlana; Ivanov, Alexander

    2016-07-01

    During space flight, the astronauts are exposed to radiation exposure at low doses with low dose rates, so one of the actual areas of Radiobiology is research of action of ionizing radiation in low and ultra-low doses. Violation of the chromosome apparatus of living biosystems, ranging from viruses and bacteria to humans, is the most reliable evidence of exposure to ionizing radiation. In this regard, the study of cytogenetic damage in the cells of humans and animals is central to space radiobiology (Fedorenko B.S., 2006). In experiment "BION - M1" by anaphase method was determined level of chromosomal aberrations in bone marrow cells of tibia of mice. Flight duration biosatellite "BION - M1" (Sychev V.N. et al., 2014) was 30 days in Earth orbit. Euthanasia of experimental animals was carried out after 12 hours from the moment of landing satellite by method of cervical dislocation. The level of chromosomal aberrations in vivarium-housed control mice was 1,75 ± 0,6% and 1,8 ± 0,45%, while the mitotic index 1,46 ± 0,09% and 1,53 ± 0,05%. The content of animals in the experiment with onboard equipment led to some increase in aberrant mitosis (2,3 ± 0,4%) and reduction of the mitotic index (1,37 ± 0,02%). In the flight experiment "BION-M1" was a statistically significant increase in level of chromosome aberrations (29,7 ± 4,18%) and a decrease in the mitotic index (0,74 ± 0,07%). According to VA Shurshakova (2014), the radiation dose to mice ranged from 32 to 72 mGy and relate to a range of small doses (ICRP, 2012). In this connection we conducted a series of experiments in the ground conditions, the aim of which was the study of earliest effects of ionizing radiation in vivo in mice irradiated with low doses of γ-irradiation of 10 to 200 mGy in the first 24 hours after exposure, i.e. within the first post-radiation exposure cell cycle. Studies were carried out on adult female mice outbred ICR (CD-1) - SPF category at the age of 4-4.5 months with an average body mass of 31 g. Experimental animals were totally irradiated from one side by gamma rays ^{60}Co on the device Rokus-M MTC JINR at doses of 10, 25, 50, 75, 100, 200 mGy with a dose rate of 6.916 mGy/min. Animals were euthanized by cervical dislocation in 21-22 hours after irradiation. Irradiation animals 75 mg caused a statistically significant increase in level aberrant mitosis to 22.1 ± 3.8% compared to vivarium-housed control group (1 ± 0,4%). The number of nucleated cells in the femur bone marrow progressively decreased upon irradiation at doses from 10 to 50 cGy, but at a dose of 75 cGy of radiation was a slight increase in index. Thus, these data indicate that radiation can be a major cause of changes in the bone marrow of mice exposed to biosatellite.

  1. Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress

    PubMed Central

    Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina

    2014-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666

  2. Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Richard, Johan; Siana, Brian; Charlot, Stéphane; Freeman, William R.; Gutkin, Julia; Wofford, Aida; Robertson, Brant; Amanullah, Rahman; Watson, Darach; Milvang-Jensen, Bo

    2014-12-01

    We present deep spectroscopy of 17 very low mass (M⋆ ≃ 2.0 × 106-1.4 × 109 M⊙) and low luminosity (MUV ≃ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z ≃ 1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous emission lines (N IV], O III], C IV, Si III], C III]) which are rarely seen in individual spectra of more massive star-forming galaxies. C III] is detected in 16 of 17 low-mass star-forming systems with rest-frame equivalent widths as large as 13.5 Å. Nebular C IV emission is present in the most extreme C III] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal-poor gas and stars (0.04-0.13 Z⊙), young stellar populations (6-50 Myr), and large ionization parameters (log U = -2.16 to -1.84). The young ages implied by the emission lines and continuum spectral energy distributions (SEDs) indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colours, and large specific star formation rates of our sample are similar to those of typical z ≳ 6 galaxies. Given the strong attenuation of Lyα in z ≳ 6 galaxies, we suggest that C III] is likely to provide our best probe of early star-forming galaxies with ground-based spectrographs and one off the most efficient means of confirming z ≳ 10 galaxies with the James Webb Space Telescope.

  3. How does ionizing radiation escape from galaxies?

    NASA Astrophysics Data System (ADS)

    Orlitova, Ivana

    2016-10-01

    Search for sources that reionized the Universe from z 15 to z 6 is one of the main drivers of present-day astronomy. Low-mass star-forming galaxies are the most favoured sources of ionizing photons, but the searches of escaping Lyman continuum (LyC) have not been extremely successful. Our team has recently detected prominent LyC escape from five Green Pea galaxies at redshift 0.3, using the HST/COS spectrograph, which represents a significant breakthrough. We propose here to study the LyC escape of the strongest among these leakers, J1152, with spatial resolution. From the comparison of the ionizing and non-ionizing radiation maps, and surface brightness profiles, we will infer the major mode in which LyC is escaping: from the strongest starburst, from the galaxy edge, through a hole along our line-of-sight, through clumpy medium, or directly from all the production sites due to highly ionized medium in the entire galaxy. In parallel, we will test the predictive power of two highly debated indirect indicators of LyC leakage: the [OIII]5007/[OII]3727 ratio, and Lyman-alpha. We predict that their spatial distribution should closely follow that of the ionizing continuum if column densities of the neutral gas are low. This combined study, which relies on the HST unique capabilities, will bring crucial information on the structure of the leaking galaxies, provide constraints for hydrodynamic simulations, and will lead to efficient future searches for LyC leakers across a large range of redshifts.

  4. Demonstration of self-truncated ionization injection for GeV electron beams

    PubMed Central

    Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136

  5. THE INFLUENCE OF LOW DOSES OF IONIZING RADIATION ON THE COURSE OF DYSENTERIC INFECTION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhikidze, E.K.; Aksenova, A.S.

    1959-04-01

    Studies of the influence of chronic action of low doses of x rays on the course of latent dysenteric infection are presented. Monkeys, carriers of dysenteric bacteria for a long period of time, were subjected to x irradiation in the dose of 5 to 7 r daily (until their death). The animals died in 7 to 14 months, the total dose being 785 to 2060 r. The cause of the animals' death was due to infectious complications: activization of latent dysentery in macaco, and pneumonia and laryngitis in baboons. Marked r species exhibit specific differences in the sensitivity to dysentericmore » infection. Macaco monkeys perished from dysentery, which developed on the ground of radiation sickness; in baboons no clinical or pathomorphological manitestations of dysentery were observed. (auth)« less

  6. [Biological effects of non-ionizing electromagnetic radiation].

    PubMed

    Fedorowski, A; Steciwko, A

    1998-01-01

    Since the mid 1970's, when Adey discovered that extremely-low-frequency electromagnetic field (ELF EMF) may affect the calcium ions efflux from various cells, bioeffects of non-ionizing radiation (NIR) have become the subject of growing interest and numerous research projects. At present, the fact that NIR exerts both stimulatory and inhibitory effects on different physiological cellular parameters is rather unquestionable. At the same time, some epidemiological studies suggest that exposure to EMF is potentially harmful even if its intensity is very low. It has been proved that thermal factors are not responsible for these effects, therefore nowadays, they are called 'non-thermal effects'. Our paper deals with three different aspects of biological effects of non-ionizing radiation, bioelectromagnetism, electromagnetobiology and electromagnetic bioinformation. Firstly, we describe how EMF and photons can be produced within a living cell, how biological cycles are controlled, and what are the features of endogenous electromagnetic radiation. Secondly, we discuss various facets of external EMF interactions with living matter, focusing on extremely-low-frequencies, radio- and microwaves. Possible mechanisms of these interactions are also mentioned. Finally, we present a short overview of current theories which explain how electromagnetic couplings may control an open and dissipative structure, namely the living organism. The theory of electromagnetic bioinformation seems to explain how different physiological processes are triggered and controlled, as well as how long-range interactions may possibly occur within the complex biological system. The review points out that the presented research data must be assessed very carefully since its evaluation is crucial to set the proper limits of EMF exposure, both occupational and environmental. The study of biological effects of non-ioinizing radiation may also contribute to the development of new diagnostic and therapeutic methods.

  7. Nustar Reveals the Extreme Properties of the Super-Eddington Accreting Supermassive Black Hole in PG 1247+267

    NASA Technical Reports Server (NTRS)

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; hide

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z approximately 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (gamma = 2.3 +/- 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of approximately 100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  8. Is the Linear No-Threshold Dose-Response Paradigm Still Necessary for the Assessment of Health Effects of Low Dose Radiation?

    PubMed Central

    2016-01-01

    Inevitable human exposure to ionizing radiation from man-made sources has been increased with the proceeding of human civilization and consequently public concerns focus on the possible risk to human health. Moreover, Fukushima nuclear power plant accidents after the 2011 East-Japan earthquake and tsunami has brought the great fear and anxiety for the exposure of radiation at low levels, even much lower levels similar to natural background. Health effects of low dose radiation less than 100 mSv have been debated whether they are beneficial or detrimental because sample sizes were not large enough to allow epidemiological detection of excess effects and there was lack of consistency among the available experimental data. We have reviewed an extensive literature on the low dose radiation effects in both radiation biology and epidemiology, and highlighted some of the controversies therein. This article could provide a reasonable view of utilizing radiation for human life and responding to the public questions about radiation risk. In addition, it suggests the necessity of integrated studies of radiobiology and epidemiology at the national level in order to collect more systematic and profound information about health effects of low dose radiation. PMID:26908982

  9. SU-F-T-125: Radial Dose Distributions From Carbon Ions of Therapeutic Energies Calculated with Geant4-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassiliev, O

    Purpose: Radial dose distribution D(r) is the dose as a function of lateral distance from the path of a heavy charged particle. Its main application is in modelling of biological effects of heavy ions, including applications to hadron therapy. It is the main physical parameter of a broad group of radiobiological models known as the amorphous track models. Our purpose was to calculate D(r) with Monte Carlo for carbon ions of therapeutic energies, find a simple formula for D(r) and fit it to the Monte Carlo data. Methods: All calculations were performed with Geant4-DNA code, for carbon ion energies frommore » 10 to 400 MeV/u (ranges in water: ∼ 0.4 mm to 27 cm). The spatial resolution of dose distribution in the lateral direction was 1 nm. Electron tracking cut off energy was 11 eV (ionization threshold). The maximum lateral distance considered was 10 µm. Over this distance, D(r) decreases with distance by eight orders of magnitude. Results: All calculated radial dose distributions had a similar shape dominated by the well-known inverse square dependence on the distance. Deviations from the inverse square law were observed close to the beam path (r<10 nm) and at large distances (r >1 µm). At small and large distances D(r) decreased, respectively, slower and faster than the inverse square of distance. A formula for D(r) consistent with this behavior was found and fitted to the Monte Carlo data. The accuracy of the fit was better than 10% for all distances considered. Conclusion: We have generated a set of radial dose distributions for carbon ions that covers the entire range of therapeutic energies, for distances from the ion path of up to 10 µm. The latter distance is sufficient for most applications because dose beyond 10 µm is extremely low.« less

  10. Intercomparison of standards of absorbed dose between the USSR and the UK

    NASA Astrophysics Data System (ADS)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  11. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  12. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  13. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells.

    PubMed

    Manda, Katrin; Glasow, Annegret; Paape, Daniel; Hildebrandt, Guido

    2012-01-01

    Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.

  14. Extreme ionization of Xe clusters driven by ultraintense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length control mechanism of extreme ionization products.« less

  15. Ionization chamber-based reference dosimetry of intensity modulated radiation beams.

    PubMed

    Bouchard, Hugo; Seuntjens, Jan

    2004-09-01

    The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.

  16. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electronmore » track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell lineages will include the role of cytokines which have been shown to be in the initiation of instability. These studies also aim to uncover the possible mechanism of the initiation, perpetuation and delayed pathways of the instability response using relevant biological endpoints i.e. chromosomal instability, apoptosis induction, cytokine and gene array analysis. Integral to these studies will be an assessment of the role of genetic susceptibility in these responses, using CBA/CaH and C57BL/6J mice. The overall results suggest that low dose low LET X-irradiation induced delayed GI in both CBA/CaH and C57BL/6J haemopoeitic tissue. Using several biological approaches, some key strain and dose-specific differences have been identified in radiation-induced signalling in the initiation and perpetuation of the instability process. Furthermore, the induction of non-targeted radiation effects and genetic dependency may be linked to the use of alternative signalling pathways and mechanisms which have potential implications on evaluation of non-targeted effects in radiation risk assessment.« less

  17. SU-G-IeP2-11: Measurement of Equilibrium Doses in Computed Tomography: Comparative Study of Ionization and Solid-State Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, K; Kobayashi, A; Koshida, K

    Purpose: This study aimed to compare equilibrium doses in computed tomography (CT) obtained from ionization and solid-state dosimeters based on the approach presented in the American Association of Physicists in Medicine Report No. 111. The equilibrium doses were also compared with the CT dose index (CTDI) using a 10-cm pencil-type ionization chamber. Methods: A 0.6-cm{sup 3} ionization chamber (10X6-0.6CT) and a solid-state detector (CT Dose Profiler [CTDP]) were calibrated using 80–130 kVp X-ray beams (44.5–55.8 keV of effective energy) from a radiography X-ray machine against a reference ionization dosimeter. Three 16- or 32-cm diameter polymethyl methacrylate (PMMA) phantoms were assembledmore » consecutively on the CT table to obtain equilibrium doses. The 10X6-0.6CT and CTDP were each placed at the center and peripheral holes (12, 3, 6, and 9 o’clock) of the z-center. Central and mean peripheral equilibrium doses were obtained by scanning with longitudinal translation for a length less than the entire phantom length. CTDIs were also obtained with a 10-cm pencil-type ionization chamber (10X6-0.6CT) by scanning a 16- or 32-cm diameter PMMA phantom with one rotation of the X-ray tube. Results: The difference of calibration coefficients between 80 and 130 kVp was 21.1% for the CTDP and 0.7% for the 10X6-0.6CT. The equilibrium doses were higher than the CTDI. Especially at the peripheral positions and 80 kVp, the 10X6-0.6CT showed higher equilibrium doses than CTDP. However, the relation between the equilibrium dose for the 10X6-0.6CT and the CTDP differed depending on the phantom size, scanner type, measurement position, and selected acquisition parameters. Conclusion: The use of a 10-cm pencil-type ionization chamber causes underestimation of the equilibrium dose. The CTDP has a higher energy dependency than the 10X6-0.6CT. The obtained equilibrium doses are different between the 10X6-0.6CT and the CTDP depending on various conditions. This study was supported by JSPS KAKENHI Grant Number 15K09887.« less

  18. Effects of ionizing radiations on a pharmaceutical compound, chloramphenicol

    NASA Astrophysics Data System (ADS)

    Varshney, L.; Patel, K. M.

    1994-05-01

    Chloramphenicol, a broad spectrum antibiotic, has been irradiated using Cobalt-60 γ radiation and electron beam at graded radiation doses upto 100 kGy. Several degradation products and free radicals are formed on irradiation. Purity, degradation products, free radicals, discolouration, crystallinity, solubility and entropy of radiation processing have been investigated. Aqueous solutions undergo extensive radiolysis even at low doses. Physico-chemical, microbiological and toxicological tests do not show significant degradation at sterilization dose. High performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), UV-spectrophotometry, diffuse reflectance spectroscopy (DRS) and electron spin resonance spectroscopy (ESR) techniques were employed for the investigations.

  19. Uncovering the proteome response of murine neuroblastoma cells against low-dose exposure to saxitoxin.

    PubMed

    Chen, Xiao; Sun, Ye; Huang, Haiyan; Liu, Wei; Hu, Panpan; Huang, Xinfeng; Zou, Fei; Liu, Jianjun

    2018-06-01

    The potent neurotoxin saxitoxin produced by both marine and freshwater phytoplankton causes paralytic shellfish poisoning syndrome. The toxicity and mode of action of the acute exposure of high-dose saxitoxin have been intensively studied for decades; however, the potential risk of exposure of low-dose saxitoxin remained to be uncovered. Here we present a proteomics study of murine neuroblastoma N2A cell with low-dose saxitoxin exposure (1 nM and 10 nM, 24-h intoxication). Differential proteins were profiled by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). A total of 9 proteins, including 14-3-3 beta (1433B), alpha enolase (ENO1) and cofilin 2 (CFL2), were altered by the low-dose saxitoxin exposure. We further validated the expressions of 1433B, ENO1 and CFL2 by Western blot analysis and the enzyme-linked immunosorbent assay. These 9 proteins involve cell apoptotic pathways, cell skeleton maintenance, membrane potentials and mitochondrial functions. Modulation of these 9 proteins by low-dose saxitoxin exposure could correlate to the reports on genotoxicity and neurotoxicity induced by saxitoxin. This study also suggested other potential risks of saxitoxin.

  20. Dielectric Study of the Physical State of Electrolytes and Water Within Bacillus cereus Spores

    PubMed Central

    Carstensen, Edwin L.; Marquis, Robert E.; Gerhardt, Philipp

    1971-01-01

    Dielectric measurements revealed that dormant spores of Bacillus cereus have extremely low conductivities at high frequencies (50 MHz) and so must contain remarkably low concentrations of mobile ions both within the core and in the surrounding integuments. Activation, germination, and outgrowth were all accompanied by increases in conductivity of the cells and their suspending medium, and this result indicated that intracellular electrolytes had become ionized and leaked from the spores. High-frequency dielectric constants of spores were consistent with normal states for cell water. These values increased during successive stages of development from dormant spore to vegetative bacillus, and they could be directly related to increases in cell water content. In all, the results refuted a model of the dormant spore involving freely mobile, ionized electrolytes and supported a model involving electrostatically bound electrolytes. PMID:4998245

  1. Intra-arterial Ultra-low-Dose CT Angiography of Lower Extremity in Diabetic Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özgen, Ali, E-mail: draliozgen@hotmail.com; Sanioğlu, Soner; Bingöl, Uğur Anıl

    2016-08-15

    PurposeTo image lower extremity arteries by CT angiography using a very low-dose intra-arterial contrast medium in patients with high risk of developing contrast-induced nephropathy (CIN).Materials and MethodsThree cases with long-standing diabetes mellitus and signs of lower extremity atherosclerotic disease were evaluated by CT angiography using 0.1 ml/kg of the body weight of contrast medium given via 10-cm-long 4F introducer by puncturing the CFA. Images were evaluated by an interventional radiologist and a cardiovascular surgeon. Density values of the lower extremity arteries were also calculated. Findings in two cases were compared with digital subtraction angiography images performed for percutaneous revascularization. Blood creatininemore » levels were followed for possible CIN.ResultsIntra-arterial CT angiography images were considered diagnostic in all patients and optimal in one patient. No patient developed CIN after intra-arterial CT angiography, while one patient developed CIN after percutaneous intervention.ConclusionIntra-arterial CT angiography of lower extremity might be performed in selected patients with high risk of developing CIN. Our limited experience suggests that as low as of 0.1 ml/kg of the body weight of contrast medium may result in adequate diagnostic imaging.« less

  2. Radioprotection and contrast agent use in pediatrics: what, how, and when.

    PubMed

    Lancharro Zapata, Á M; Rodríguez, C Marín

    2016-05-01

    It is essential to minimize exposure to ionizing radiation in children for various reasons. The risk of developing a tumor from exposure to a given dose of radiation is greater in childhood. Various strategies can be used to reduce exposure to ionizing radiation. It is fundamental to avoid unnecessary tests and tests that are not indicated, to choose an alternative test that does not use ionizing radiation, and/or to take a series of measures that minimize the dose of radiation that the patient receives, such as avoiding having to repeat tests, using the appropriate projections, using shields, adjusting the protocol (mAs, Kv, or pitch) to the patient's body volume, etc… When contrast agents are necessary, intracavitary ultrasound agents can be used, although the use of ultrasound agents is also being extended to include intravenous administration. In fluoroscopy, contrast agents with low osmolarity must be used, as in CT where we must adjust the dose and speed of injection to the patient's weight and to the caliber of the peripheral line, respectively. In MRI, only three types of contrast agents have been approved for pediatric use. It is sometimes necessary to use double doses or organ-specific contrast agents in certain clinical situations; the safety of contrast agents for these indications has not been proven, so they must be used off label. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  3. Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction: clinical article.

    PubMed

    Morton, Ryan P; Reynolds, Renee M; Ramakrishna, Rohan; Levitt, Michael R; Hopper, Richard A; Lee, Amy; Browd, Samuel R

    2013-10-01

    In this study, the authors describe their experience with a low-dose head CT protocol for a preselected neurosurgical population at a dedicated pediatric hospital (Seattle Children's Hospital), the largest number of patients with this protocol reported to date. All low-dose head CT scans between October 2011 and November 2012 were reviewed. Two different low-dose radiation dosages were used, at one-half or one-quarter the dose of a standard head CT scan, based on patient characteristics agreed upon by the neurosurgery and radiology departments. Patient information was also recorded, including diagnosis and indication for CT scan. Six hundred twenty-four low-dose head CT procedures were performed within the 12-month study period. Although indications for the CT scans varied, the most common reason was to evaluate the ventricles and catheter placement in hydrocephalic patients with shunts (70%), followed by postoperative craniosynostosis imaging (12%). These scans provided adequate diagnostic imaging, and no patient required a follow-up full-dose CT scan as a result of poor image quality on a low-dose CT scan. Overall physician comfort and satisfaction with interpretation of the images was high. An additional 2150 full-dose head CT scans were performed during the same 12-month time period, making the total number of CT scans 2774. This value compares to 3730 full-dose head CT scans obtained during the year prior to the study when low-dose CT and rapid-sequence MRI was not a reliable option at Seattle Children's Hospital. Thus, over a 1-year period, 22% of the total CT scans were able to be converted to low-dose scans, and full-dose CT scans were able to be reduced by 42%. The implementation of a low-dose head CT protocol substantially reduced the amount of ionizing radiation exposure in a preselected population of pediatric neurosurgical patients. Image quality and diagnostic utility were not significantly compromised.

  4. Extrapolation of the dna fragment-size distribution after high-dose irradiation to predict effects at low doses

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Cucinotta, F. A.; Sachs, R. K.; Brenner, D. J.; Peterson, L. E.

    2001-01-01

    The patterns of DSBs induced in the genome are different for sparsely and densely ionizing radiations: In the former case, the patterns are well described by a random-breakage model; in the latter, a more sophisticated tool is needed. We used a Monte Carlo algorithm with a random-walk geometry of chromatin, and a track structure defined by the radial distribution of energy deposition from an incident ion, to fit the PFGE data for fragment-size distribution after high-dose irradiation. These fits determined the unknown parameters of the model, enabling the extrapolation of data for high-dose irradiation to the low doses that are relevant for NASA space radiation research. The randomly-located-clusters formalism was used to speed the simulations. It was shown that only one adjustable parameter, Q, the track efficiency parameter, was necessary to predict DNA fragment sizes for wide ranges of doses. This parameter was determined for a variety of radiations and LETs and was used to predict the DSB patterns at the HPRT locus of the human X chromosome after low-dose irradiation. It was found that high-LET radiation would be more likely than low-LET radiation to induce additional DSBs within the HPRT gene if this gene already contained one DSB.

  5. Proteomic and Epigenetic Analysis of Rice after Seed Spaceflight and Ground-Base Ion Radiations

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Peng, Yuming; Zhao, Qian; Wen, Bin; Yang, Jun

    Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to plant seeds. In previous work, we compared the proteomic profiles of rice plants growing after seed spaceflights to ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) with mass spectrometry and found that the protein expression profiles were changed and differentially expressed proteins participated in most of the biological processes of rice. To further evaluate the dosage effects of space radiation and compare between low- and high-dose ion effects, we carried out three independent ground-base ionizing radiation experiments with different cumulative doses (low-dose range: 2~1000mGy, high-dose range: 2000~20000mGy) to rice seeds and performed proteomic analysis of seedlings. We found that protein expression profiles showed obvious boundaries between low- and high-dose radiation groups. Rates of differentially expressed proteins presented a dose-dependent effect, it reached the highest value at 2000mGy dosage point in all three radiation experiments coincidently; while proteins responded to low-dose radiations preferred to change their expressions at the minimum dosage (2mGy). Proteins participating in rice biological processes also responded differently between low- and high-dose radiations: proteins involved in energy metabolism and photosynthesis tended to be regulated after low-dose radiations while stress responding, protein folding and cell redox homeostasis related proteins preferred to change their expressions after high-dose radiations. By comparing the proteomic profiles between ground-base radiations and spaceflights, it was worth noting that ground-base low-dose ion radiation effects shared similar biological effects as space environment. In addition, we discovered that protein nucleoside diphosphate kinase 1 (NDPK1) showed obvious increased regulation after spaceflights and ion radiations. NDPK1 catalyzes nucleotide metabolism and is reported to be involved in DNA repair process. Its expression sensitivity and specificity were confirmed by RT-PCR and western blot analysis, indicating its potential to be used as space radiation biomarker. Space radiations might induce epigenetic effects on rice plants, especially changes of DNA methylation. Early results suggested that there were correlations between DNA methylation polymorphic and genomic mutation rates. In addition, the 5-methylcytosine located in coding gene’s promoter and exon regions could regulate gene expressions thus influence protein expressions. So whether there is correlation between genome DNA methylation changes and protein expression profile alterations caused by space radiation is worth for further investigation. Therefore we used the same rice samples treated by carbon ion radiation with different doses (0, 10, 20,100, 200, 1000, 2000, 5000, 20000mGy) and applied methylation sensitive amplification polymorphism (MSAP) for scanning genome DNA methylation changes. Interestingly, DNA methylation polymorphism rates also presented a dose-dependent effect and showed the same changing trend as rates of differentially expressed proteins. Whether there are correlations between epigenetic and proteomic effects of space radiation is worth for further investigation.

  6. Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.; hide

    2012-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.

  7. beta- and gamma-Comparative dose estimates on Enewetak Atoll.

    PubMed

    Crase, K W; Gudiksen, P H; Robison, W L

    1982-05-01

    Enewetak Atoll is one of the Pacific atolls used for atmospheric testing of U.S. nuclear weapons. Beta dose and gamma-ray exposure measurements were made on two islands of the Enewetak Atoll during July-August 1976 to determine the beta and low energy gamma-contribution to the total external radiation doses to the returning Marshallese. Measurements were made at numerous locations with thermoluminescent dosimeters (TLD), pressurized ionization chambers, portable NaI detectors, and thin-window pancake GM probes. Results of the TLD measurements with and without a beta-attenuator indicate that approx. 29% of the total dose rate at 1 m in air is due to beta- or low energy gamma-contribution. The contribution at any particular site, however, is somewhat dependent on ground cover, since a minimal amount of vegetation will reduce it significantly from that over bare soil, but thick stands of vegetation have little effect on any further reductions. Integral 30-yr external shallow dose estimates for future inhabitants were made and compared with external dose estimates of a previous large scale radiological survey (En73). Integral 30-yr shallow external dose estimates are 25-50% higher than whole body estimates. Due to the low penetrating ability of the beta's or low energy gamma's, however, several remedial actions can be taken to reduce the shallow dose contribution to the total external dose.

  8. Radiation Damage and Single Event Effect Results for Candidate Spacecraft Electronics

    NASA Technical Reports Server (NTRS)

    OBryan, Martha V.; LaBel, Kenneth A.; Reed, Robert A.; Howard, James W., Jr.; Ladbury, Ray L.; Barth, Janet L.; Kniffin, Scott D.; Seidleck, Christina M.; Marshall, Paul W.; Marshall, Cheryl J.; hide

    2000-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy-ion induced single-event effects and proton-induced damage. We also present data on the susceptibility of parts to functional degradation resulting from total ionizing dose at low dose rates (0.003-0.33 Rads(Si)/s). Devices tested include optoelectronics, digital, analog, linear bipolar, hybrid devices, Analog to Digital Converters (ADCs), Digital to Analog Converters (DACs), and DC-DC converters, among others.

  9. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina - a pilot study.

    PubMed

    Gosiewski, Tomasz; Mróz, Tomasz; Ochońska, Dorota; Pabian, Wojciech; Bulanda, Malgorzata; Brzychczy-Wloch, Monika

    2016-05-31

    Ionizing radiation is used as a therapeutic option in the treatment of certain neoplastic lesions located, among others, in the pelvic region. The therapeutic doses of radiation employed often result in adverse effects manifesting themselves primarily in the form of genital tract infections in patients or diarrhea. The data available in the literature indicate disorders in the microbial ecosystem caused by ionizing radiation, which leads to the problems mentioned above. In the present study, we examined the influence of ionizing radiation on 52 selected strains of bacteria: Lactobacillus crispatus, L. fermentum, L. plantarum, L. reuteri, L. acidophilus L. amylovorus, L. casei, L. helveticus, L. paracasei, L. rhamnosus, L. salivarius and L. gasseri. This collection of Lactobacillus bacteria isolates of various species, obtained from the genital tract and gastrointestinal tract of healthy women, was tested for resistance to therapeutic doses of ionizing radiation. The species studied, were isolated from the genital tract (n = 30) and from the anus (n = 22) of healthy pregnant women. Three doses of 3 Gy (fractionated dose) and 50 Gy (total dose of the whole radiotherapy cycle) were applied. The greatest differences in survival of the tested strains in comparison to the control group (not subjected to radiation) were observed at the dose of 50 Gy. However, the results were not statistically significant. Survival decrease to zero was not demonstrated for any of the tested strains. Therapeutic doses of radiation do not affect the Lactobacillus bacteria significantly.

  10. Mechanisms and biological importance of photon-induced bystander responses: do they have an impact on low-dose radiation responses

    PubMed Central

    Tomita, Masanori; Maeda, Munetoshi

    2015-01-01

    Abstract Elucidating the biological effect of low linear energy transfer (LET), low-dose and/or low-dose-rate ionizing radiation is essential in ensuring radiation safety. Over the past two decades, non-targeted effects, which are not only a direct consequence of radiation-induced initial lesions produced in cellular DNA but also of intra- and inter-cellular communications involving both targeted and non-targeted cells, have been reported and are currently defining a new paradigm in radiation biology. These effects include radiation-induced adaptive response, low-dose hypersensitivity, genomic instability, and radiation-induced bystander response (RIBR). RIBR is generally defined as a cellular response that is induced in non-irradiated cells that receive bystander signals from directly irradiated cells. RIBR could thus play an important biological role in low-dose irradiation conditions. However, this suggestion was mainly based on findings obtained using high-LET charged-particle radiations. The human population (especially the Japanese, who are exposed to lower doses of radon than the world average) is more frequently exposed to low-LET photons (X-rays or γ-rays) than to high-LET charged-particle radiation on a daily basis. There are currently a growing number of reports describing a distinguishing feature between photon-induced bystander response and high-LET RIBR. In particular, photon-induced bystander response is strongly influenced by irradiation dose, the irradiated region of the targeted cells, and p53 status. The present review focuses on the photon-induced bystander response, and discusses its impact on the low-dose radiation effect. PMID:25361549

  11. Acute onset polyarthritis in older people: Is it RS3PE syndrome?

    PubMed Central

    Salam, Abdul; Henry, Rafik; Sheeran, Tom

    2008-01-01

    Remitting Seronegative Symmetrical Synovitis with Pitting oedema syndrome, a rare inflammatory arthritis, commonly affects people in the older age group. It can present as an acute onset polyarthritis with associated pitting oedema of the extremities. Patients show excellent response to low dose steroids with complete and sustained remissions. It can also be a paraneoplastic manifestation of an underlying occult malignancy, hence thorough clinical evaluation is warranted. We discuss a case of Remitting Seronegative Symmetrical Synovitis with pitting oedema syndrome where the patient presented with acute onset polyarthritis and pitting oedema of the extremities without an underlying systemic cause. Patient showed dramatic response to low dose steroids. PMID:18759976

  12. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    PubMed

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-06-01

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  13. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  14. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    PubMed

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical model of the ion recombination in the chamber was found by fitting a logistic function to the data. The ion collection efficiency of the Advanced Markus ionization chamber decreases for measurements in electron beams with increasingly higher dose-per-pulse. However, this chamber is still functional for dose measurements in beams with dose-per-pulse values up toward and above 10 Gy, if the ion recombination is taken into account. Our results show that existing models give a less-than-accurate description of the observed ion recombination. This motivates the use of the presented empirical model for measurements with the Advanced Markus chamber in high dose-per-pulse electron beams, as it enables accurate absorbed dose measurements (uncertainty estimation: 2.8-4.0%, k = 1). The model depends on the dose-per-pulse in the beam, and it is also influenced by the polarizing chamber voltage, with increasing ion recombination with a lowering of the voltage. © 2017 American Association of Physicists in Medicine.

  15. State of agrocoenoses in case of large scale radioactive contamination of lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipas, A.S.; Taranenko, V.V.; Ulyanenko, L.N.

    1993-12-31

    As a result of the Chernobyl accident low doses of ionizing radiation have possibly caused mutations in arthropods which infect crops. The decision was made to investigate ways to protect plants from these injurious organisms. Monitoring plants is an important element in assessing the ecological situation in the Chernobyl accident zone.

  16. Regulation Of Nf=kb And Mnsod In Low Dose Radiation Induced Adaptive Protection Of Mouse And Human Skin Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Li

    2012-11-07

    A sampling of publications resulting from this grant is provided. One is on the subject of NF-κB-Mediated HER2 Overexpression in Radiation-Adaptive Resistance. Another is on NF-κB-mediated adaptive resistance to ionizing radiation.

  17. Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.; hide

    2010-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  18. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  19. Solid state neutron dosimeter for space applications

    NASA Technical Reports Server (NTRS)

    Entine, Gerald; Nagargar, Vivek; Sharif, Daud

    1990-01-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.

  20. Characterization of the role of Fhit in maintenance of genomic integrity following low dose radiation, in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya Wang

    2010-05-31

    The major goal of this study is to determine the effects of the Fhit pathway on low dose ({le} 0.1 Gy) ionizing radiation (IR)-induced genetic instability. Reduction of Fhit protein expression is observed in most solid tumors particularly in those tumors resulting from exposure to environmental carcinogens. Therefore, characterization of the role of the Fhit-dependent pathway in preventing low dose IR-induced genetic instability will provide useful parameters for evaluating the low dose IR-induced risk of mutagenesis and carcinogenesis. We pursued 3 specific aims to study our hypothesis that the Fhit-dependent pathways maintain genomic integrity through adjusting checkpoint response and repairmore » genes expression following low dose IR. Aim 1: Determine whether Fhit interaction with RPA is necessary for Fhit to affect the cellular response to low dose IR. We combined the approaches of in vitro (GST pull-down and site-directed mutagenesis) and in vivo (observing the co-localization and immunoprecipitation of Fhit and RPA in Fhit knock out mouse cells transfected with mutant Fhit which has lost ability to interact with RPA in vitro). Aim 2: Determine the role of genes whose expression is affected by Fhit in low dose irradiated cells. We analyzed the distinct signature of gene expression in low dose irradiated Fhit-/- cells compared with Fhit+/+ cells by combining microarray, gene transfection and siRNA approaches. Aim 3: Determine the role of Fhit in genetic susceptibility to low dose IR in vivo. We compared the gene mutation frequency and the fragile site stability in the cells isolated from the Fhit+/+ and Fhit-/- mice at 1.5 years following low dose IR. These results determine the role of the Fhit-dependent pathway in maintaining genomic integrity in vitro and in vivo, which provide a basis for choosing surrogate markers in the Fhit-dependent pathway to evaluate low dose IR-induced risk of mutagenesis and carcinogenesis.« less

  1. Application of Advanced Materials Protecting from Influence of Free Space Environment

    NASA Astrophysics Data System (ADS)

    Dotsenko, Oleg; Shovkoplyas, Yuriy

    2016-07-01

    High cost and low availability of the components certified for use in the space environment forces satellite designers to using industrial and even commercial items. Risks associated with insufficient knowledge about behavior of these components in radiation environment are parried, mainly, by careful radiating designing of a satellite where application of special protective materials with improved space radiation shielding characteristics is one of the most widely used practices. Another advantage of protective materials application appears when a satellite designer needs using equipment in more severe space environment conditions then it has been provided at the equipment development. In such cases only expensive repeated qualification of the equipment hardness can be alternative to protective materials application. But mostly this way is unacceptable for satellite developers, being within strong financial and temporal restrictions. To apply protective materials effectively, the developer should have possibility to answer the question: "Where inside a satellite shall I place these materials and what shall be their shape to meet the requirements on space radiation hardness with minimal mass and volume expenses?" At that, the minimum set of requirements on space radiation hardness include: ionizing dose, nonionizing dose, single events, and internal charging. The standard calculative models and experimental techniques, now in use for space radiation hardness assurance of a satellite are unsuitable for the problem solving in such formulation. The sector analysis methodology, widely used in satellite radiating designing, is applicable only for aluminium shielding and doesn't allow taking into account advantages of protective materials. The programs simulating transport of space radiations through a substance with the use of Monte-Carlo technique, such as GEANT4, FLUKA, HZETRN and others, are fully applicable in view of their capabilities; but time required for calculations with use of these tools makes their utilization extremely problematic in the engineering practice. The calculative and experimental technique developed by the authors allows estimation of ionizing dose, nonionizing dose, single events, and internal charging of solar and trapped electron and proton radiations at the requested points inside a satellite when the special protective materials have been applied. The results of developed technique application are in satisfactory agreement with the results achieved with the help of the standard calculative models.

  2. Mortality among Canadian military personnel exposed to low-dose radiation.

    PubMed

    Raman, S; Dulberg, C S; Spasoff, R A; Scott, T

    1987-05-15

    We carried out a cohort study of mortality among 954 Canadian military personnel exposed to low-dose ionizing radiation during nuclear reactor clean-up operations at Chalk River Nuclear Laboratories, Chalk River, Ont., and during observation of atomic test blasts in the United States and Australia in the 1950s. Two controls matched for age, service, rank and trade were selected for each exposed subject. Mortality among the exposed and control groups was ascertained by means of record linkage with the Canadian Mortality Data Base. Survival analysis with life-table techniques did not reveal any difference in overall mortality between the exposed and control groups. Analysis of cause-specific mortality showed similar mortality patterns in the two groups; there was no elevation in the exposed group in the frequency of death from leukemia or thyroid cancer, the causes of death most often associated with radiation exposure. Analysis of survival by recorded gamma radiation dose also did not show any effect of radiation dose on mortality. The findings are in agreement with the current scientific literature on the risk of death from exposure to low-dose radiation.

  3. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Griffith

    In this project we provide an example of how to develop multi-tiered models to go across levels of biological organization to provide a framework for relating results of studies of low doses of ionizing radiation. This framework allows us to better understand how to extrapolate laboratory results to policy decisions, and to identify future studies that will increase confidence in policy decisions. In our application of the conceptual Model we were able to move across multiple levels of biological assessment for rodents going from molecular to organism level for in vitro and in vivo endpoints and to relate these tomore » human in vivo organism level effects. We used the rich literature on the effects of ionizing radiation on the developing brain in our models. The focus of this report is on disrupted neuronal migration due to radiation exposure and the structural and functional implications of these early biological effects. The cellular mechanisms resulting in pathogenesis are most likely due to a combination of the three mechanisms mentioned. For the purposes of a computational model, quantitative studies of low dose radiation effects on migration of neuronal progenitor cells in the cerebral mantle of experimental animals were used. In this project we were able to show now results from studies of low doses of radiation can be used in a multidimensional framework to construct linked models of neurodevelopment using molecular, cellular, tissue, and organ level studies conducted both in vitro and in vivo in rodents. These models could also be linked to behavioral endpoints in rodents which can be compared to available results in humans. The available data supported modeling to 10 cGy with limited data available at 5 cGy. We observed gradual but non-linear changes as the doses decreased. For neurodevelopment it appears that the slope of the dose response decreases from 25 cGy to 10 cGy. Future studies of neurodevelopment should be able to better define the dose response in this range.« less

  4. Polyextremotolerant black fungi: oligotrophism, adaptive potential, and a link to lichen symbioses

    PubMed Central

    Gostinčar, Cene; Muggia, Lucia; Grube, Martin

    2012-01-01

    Black meristematic fungi can survive high doses of radiation and are resistant to desiccation. These adaptations help them to colonize harsh oligotrophic habitats, e.g., on the surface and subsurface of rocks. One of their most characteristic stress-resistance mechanisms is the accumulation of melanin in the cell walls. This, production of other protective molecules and a plastic morphology further contribute to ecological flexibility of black fungi. Increased growth rates of some species after exposure to ionizing radiation even suggest yet unknown mechanisms of energy production. Other unusual metabolic strategies may include harvesting UV or visible light or gaining energy by forming facultative lichen-like associations with algae or cyanobacteria. The latter is not entirely surprising, since certain black fungal lineages are phylogenetically related to clades of lichen-forming fungi. Similar to black fungi, lichen-forming fungi are adapted to growth on exposed surfaces with low availability of nutrients. They also efficiently use protective molecules to tolerate frequent periods of extreme stress. Traits shared by both groups of fungi may have been important in facilitating the evolution and radiation of lichen-symbioses. PMID:23162543

  5. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    PubMed

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  6. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  7. Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors

    PubMed Central

    Schweitzer, Andrew D.; Howell, Robertha C.; Jiang, Zewei; Bryan, Ruth A.; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean

    2009-01-01

    Background Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. Methodology/Principal Findings We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14·1018, 7.09·1018, and 9.05·1017 spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy (137Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. Conclusions/Significance We propose that due to melanin's numerous aromatic oligomers containing multiple π-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species. PMID:19789711

  8. Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors.

    PubMed

    Schweitzer, Andrew D; Howell, Robertha C; Jiang, Zewei; Bryan, Ruth A; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean; Casadevall, Arturo; Dadachova, Ekaterina

    2009-09-30

    Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14.10(18), 7.09.10(18), and 9.05.10(17) spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy ((137)Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. We propose that due to melanin's numerous aromatic oligomers containing multiple pi-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species.

  9. Dynamics of Cellular Responses to Radiation

    PubMed Central

    Wodarz, Dominik; Sorace, Ron; Komarova, Natalia L.

    2014-01-01

    Understanding the consequences of exposure to low dose ionizing radiation is an important public health concern. While the risk of low dose radiation has been estimated by extrapolation from data at higher doses according to the linear non-threshold model, it has become clear that cellular responses can be very different at low compared to high radiation doses. Important phenomena in this respect include radioadaptive responses as well as low-dose hyper-radiosensitivity (HRS) and increased radioresistance (IRR). With radioadaptive responses, low dose exposure can protect against subsequent challenges, and two mechanisms have been suggested: an intracellular mechanism, inducing cellular changes as a result of the priming radiation, and induction of a protected state by inter-cellular communication. We use mathematical models to examine the effect of these mechanisms on cellular responses to low dose radiation. We find that the intracellular mechanism can account for the occurrence of radioadaptive responses. Interestingly, the same mechanism can also explain the existence of the HRS and IRR phenomena, and successfully describe experimentally observed dose-response relationships for a variety of cell types. This indicates that different, seemingly unrelated, low dose phenomena might be connected and driven by common core processes. With respect to the inter-cellular communication mechanism, we find that it can also account for the occurrence of radioadaptive responses, indicating redundancy in this respect. The model, however, also suggests that the communication mechanism can be vital for the long term survival of cell populations that are continuously exposed to relatively low levels of radiation, which cannot be achieved with the intracellular mechanism in our model. Experimental tests to address our model predictions are proposed. PMID:24722167

  10. Hemodialysis Dose and Adequacy

    MedlinePlus

    ... a patient's Kt/V is extremely low, the measurement should be repeated, unless a reason for the low Kt/V is obvious. Obvious reasons include treatment interruption, problems with blood or solution flow, and a problem in sampling either the pre- ...

  11. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    PubMed

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  13. Ionosphere of Venus - First observations of day-night variations of the ion composition

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Cloutier, P. A.; Daniell, R. E., Jr.; Donahue, T. M.

    1979-01-01

    Preliminary observations of day-night variations in the ion composition of the ionosphere of Venus, obtained by the Pioneer Venus Orbiter ion mass spectrometer experiment, are reported. A remarkable abundance and extent of ionization in the deep regions of the nightside ionosphere was observed, in spite of the long Venus night. A comparison of dayside and nightside ion distributions reveals a nightside composition similar in several respects to that of the dayside, with the ions O(+) and O2(+) forming the nightside F 2 and F 1 regions, respectively, as in the dayside. Important differences include a greater abundance of low-latitude ionization in the nightside, a significant increase of H(+) and NO(+) ions with increasing solar zenith angle, and extreme dynamic variability of the nightside region above 160 km. Ion composition data support the view that the nightside ionosphere can be maintained by the transport of ionization from the dayside.

  14. Caries Experience among Adults Exposed to Low to Moderate Doses of Ionizing Radiation in Childhood – The Tinea Capitis Cohort

    PubMed Central

    Vered, Yuval; Chetrit, Angela; Sgan-Cohen, Harold D.; Amitai, Tova; Mann, Jonathan; Even-Nir, Hadas; Sadetzki, Siegal

    2016-01-01

    While the impact of therapeutic levels of ionizing radiation during childhood on dental defects has been documented, the possible effect of low doses on dental health is unknown. The study aim was to assess the association between childhood exposure to low–moderate doses of therapeutic radiation and caries experience among a cohort of adults 50 years following the exposure. The analysis was based on a sample of 253 irradiated (in the treatment of tinea capitis) and 162 non-irradiated subjects. The decayed, missing, and filled teeth (DMFT) index was assessed during a clinical dental examination and questions regarding dental care services utilization, oral hygiene behavior, current self-perceived mouth dryness, socio-demographic parameters, and health behavior variables were obtained through a face-to-face interview. An ordered multivariate logistic regression model was used to assess the association of the main independent variable (irradiation status) and other relevant independent variables on the increase in DMFT. Mean caries experience levels (DMFT) were 18.6 ± 7.5 for irradiated subjects compared to 16.4 ± 7.2 for the non-irradiated (p = 0.002). Controlling for gender, age, education, income, smoking, dental visit in the last year, and brushing teeth behavior, irradiation was associated with a 72% increased risk for higher DMFT level (95% CI: 1.19–2.50). A quantification of the risk by dose absorbed in the salivary gland and in the thyroid gland showed adjusted ORs of 2.21 per 1 Gy (95% CI: 1.40–3.50) and 1.05 per 1 cGy (95% CI: 1.01–1.09), respectively. Childhood exposure to ionizing radiation (0.2–0.4 Gy) might be associated with late outcomes of dental health. In line with the guidelines of the American Dental Association, these results call for caution when using dental radiographs. PMID:26942172

  15. Recent Total Ionizing Dose and Displacement Damage Compendium of Candidate Electronics for NASA Space Systems

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.; hide

    2011-01-01

    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  16. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and themore » impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)« less

  17. Dose equivalent near the bone-soft tissue interface from nuclear fragments produced by high-energy protons

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Poston, J. W.; Cucinotta, F. A.; Wilson, J. W.

    1996-01-01

    During manned space missions, high-energy nucleons of cosmic and solar origin collide with atomic nuclei of the human body and produce a broad linear energy transfer spectrum of secondary particles, called target fragments. These nuclear fragments are often more biologically harmful than the direct ionization of the incident nucleon. That these secondary particles increase tissue absorbed dose in regions adjacent to the bone-soft tissue interface was demonstrated in a previous publication. To assess radiological risks to tissue near the bone-soft tissue interface, a computer transport model for nuclear fragments produced by high energy nucleons was used in this study to calculate integral linear energy transfer spectra and dose equivalents resulting from nuclear collisions of 1-GeV protons transversing bone and red bone marrow. In terms of dose equivalent averaged over trabecular bone marrow, target fragments emitted from interactions in both tissues are predicted to be at least as important as the direct ionization of the primary protons-twice as important, if recently recommended radiation weighting factors and "worst-case" geometry are used. The use of conventional dosimetry (absorbed dose weighted by aa linear energy transfer-dependent quality factor) as an appropriate framework for predicting risk from low fluences of high-linear energy transfer target fragments is discussed.

  18. Effects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and Its Definite Dose Reduction Factor

    PubMed Central

    Nadi, Saba; Monfared, Ali Shabestani; Mozdarani, Hossein; Mahmodzade, Aziz; Pouramir, Mahdi

    2016-01-01

    Background: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation. In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to calculate the ratio of polychromatic erythrocyte to polychromatic erythrocyte plus normochromatic erythrocyte (PCE/PCE+NCE) in order to show cell proliferation activity. Methods: Arbutin (50, 100, and 200 mg/kg) was intraperitoneally (ip)administered to NMRI mice two hours before gamma radiation at 2 and 4 gray (Gy). The frequency of micronuclei in 1000 PCEs (MnPCEs) and the ratio of PCE/PCE+NCE were calculated for each sample. Data were statistically evaluated using one-way ANOVA, Tukey HSD test, and t-test. Results: The findings indicated that gamma radiation at 2 and 4 Gy extremely increased the frequencies of MnPCE (P<0.001) while reducing PCE/PCE+NCE (P<0.001) compared to the control group. All three doses of arbutin before irradiation significantly reduced the frequencies of MnPCEs and increased the ratio of PCE/PCE+NCE in mice bone marrow compared to the non-drug-treated irradiated control (P<0.001). All three doses of arbutin had no toxicity effect on bone marrow cells. The calculated dose reduction factor (DRF) showed DRF=1.93 for 2Gy and DRF=2.22 for 4 Gy. Conclusion: Our results demonstrated that arbutin gives significant protection to rat bone against the clastogenic and cytotoxic effects of gamma irradiation. PMID:27217601

  19. Effects of low doses and low dose rates of external ionizing radiation: Cancer mortality among nuclear industry workers in three countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardis, E.; Kato, I.; Lave, C.

    Studies of the mortality among nuclear industry workforces have been carried out, and nationally combined analyses performed, in the U.S., the UK and Canada. This paper presents the results of internationally combined analyses of mortality data on 95,673 workers (85.4% men) monitored for external exposure to ionizing radiation and employed for 6 months or longer in the nuclear industry of one of the three countries. These analyses were undertaken to obtain a more precise direct assessment of the carcinogenic effects of protracted low-level exposure to external, predominantly {gamma}, radiation. The combination of the data from the various studies increases themore » power to study associations between radiation dose and mortality from all causes or from all cancers. Mortality from leukemia, excluding chronic lymphocytic leukemia (CLL)-the cause of death most strongly and consistently related to radiation dose in studies of atomic bomb survivors and other populations exposed at high dose rates-was significantly associated with cumulative external radiation dose (one-sided P value = 0.046; 119 deaths). Among the 31 other specific types of cancer studied, a significant association was observed only for multiple myeloma (one-sided P value = 0.037; 44 deaths), and this was attributable primarily to the associations reported previously between this disease and radiation dose in the Hanford (U.S.) and Sellafield (UK) cohorts. The excess relative risk (ERR) estimates for all cancers excluding leukemia, and leukemia excluding CLL, the two main groupings of causes of death for which risk estimates have been derived from studies of atomic bomb survivors, were -0.07 per Sv [90% confidence interval (CI):-0.4,0.3] and 2.18 per Sv (90% CI:0.1,5.7), respectively. These values correspond to a relative risk of 0.99 for all cancers excluding leukemia and 1.22 for leukemia excluding CLL for a cumulative protracted dose of 100 mSv compared to O mSv. 53 refs., 1 fig., 8 tabs.« less

  20. Radiation protection and dosimetry issues in the medical applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Vaz, Pedro

    2014-11-01

    The technological advances that occurred during the last few decades paved the way to the dissemination of CT-based procedures in radiology, to an increasing number of procedures in interventional radiology and cardiology as well as to new techniques and hybrid modalities in nuclear medicine and in radiotherapy. These technological advances encompass the exposure of patients and medical staff to unprecedentedly high dose values that are a cause for concern due to the potential detrimental effects of ionizing radiation to the human health. As a consequence, new issues and challenges in radiological protection and dosimetry in the medical applications of ionizing radiation have emerged. The scientific knowledge of the radiosensitivity of individuals as a function of age, gender and other factors has also contributed to raising the awareness of scientists, medical staff, regulators, decision makers and other stakeholders (including the patients and the public) for the need to correctly and accurately assess the radiation induced long-term health effects after medical exposure. Pediatric exposures and their late effects became a cause of great concern. The scientific communities of experts involved in the study of the biological effects of ionizing radiation have made a strong case about the need to undertake low dose radiation research and the International System of Radiological Protection is being challenged to address and incorporate issues such as the individual sensitivities, the shape of dose-response relationship and tissue sensitivity for cancer and non-cancer effects. Some of the answers to the radiation protection and dosimetry issues and challenges in the medical applications of ionizing radiation lie in computational studies using Monte Carlo or hybrid methods to model and simulate particle transport in the organs and tissues of the human body. The development of sophisticated Monte Carlo computer programs and voxel phantoms paves the way to an accurate dosimetric assessment of the medical applications of ionizing radiation. In this paper, the aforementioned topics will be reviewed. The current status and the future trends in the implementation of the justification and optimization principles, pillars of the International System of Radiological Protection, in the medical applications of ionizing radiation will be discussed. Prospective views will be provided on the future of the system of radiological protection and on dosimetry issues in the medical applications of ionizing radiation.

  1. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer.more » Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for combined exposure to low- and high-LET radiations when based on the LNT or other models that exclude RR < 1. Our results for high-LET radiation are consistent with the LNT hypothesis but only where there is no additional low-LET contribution (e.g., gamma rays) to the total dose. For high-LET neutron sources, gamma rays arise (especially in vivo) for large mammals such as humans from neutron interactions with tissue. The gamma rays might provide some protection from low-dose-related stochastic effects via inducing the protective bystander apoptosis effect that is considered to contribute to tissue cleansing via removal of problematic cells.« less

  2. A Double-Blind Placebo-Controlled Crossover Trial of Intravenous Magnesium Sulfate for Foscarnet-Induced Ionized Hypocalcemia and Hypomagnesemia in Patients with AIDS and Cytomegalovirus Infection

    PubMed Central

    Huycke, Mark M.; Naguib, M. Tarek; Stroemmel, Mathias M.; Blick, Kenneth; Monti, Katherine; Martin-Munley, Sarah; Kaufman, Chris

    2000-01-01

    Foscarnet (trisodium phosphonoformate hexahydrate) is an antiviral agent used to treat cytomegalovirus disease in immunocompromised patients. One common side effect is acute ionized hypocalcemia and hypomagnesemia following intravenous administration. Foscarnet-induced ionized hypomagnesemia might contribute to ionized hypocalcemia by impairing excretion of preformed parathyroid hormone (PTH) or by producing target organ resistance. Prevention of ionized hypomagnesemia following foscarnet administration could blunt the development of ionized hypocalcemia. To determine whether intravenous magnesium ameliorates the decline in ionized calcium and/or magnesium following foscarnet infusions, MgSO4 at doses of 1, 2, and 3 g was administered in a double-blind, placebo-controlled, randomized, crossover trial to 12 patients with AIDS and cytomegalovirus disease. Overall, increasing doses of MgSO4 reduced or eliminated foscarnet-induced acute ionized hypomagnesemia. Supplementation, however, had no discernible effect on foscarnet-induced ionized hypocalcemia despite significant increases in serum PTH levels. No dose-related, clinically significant adverse events were found, suggesting that intravenous supplementation with up to 3 g of MgSO4 was safe in this chronically ill population. Since parenteral MgSO4 did not alter foscarnet-induced ionized hypocalcemia or symptoms associated with foscarnet, routine intravenous supplementation for patients with normal serum magnesium levels is not recommended during treatment with foscarnet. PMID:10898688

  3. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart.

    PubMed

    Sasi, Sharath P; Yan, Xinhua; Zuriaga-Herrero, Marian; Gee, Hannah; Lee, Juyong; Mehrzad, Raman; Song, Jin; Onufrak, Jillian; Morgan, James; Enderling, Heiko; Walsh, Kenneth; Kishore, Raj; Goukassian, David A

    2017-08-01

    Deep-space travel presents risks of exposure to ionizing radiation composed of a spectrum of low-fluence protons ( 1 H) and high-charge and energy (HZE) iron nuclei (e.g., 56 Fe). When exposed to galactic cosmic rays, each cell in the body may be traversed by 1 H every 3-4 days and HZE nuclei every 3-4 months. The effects of low-dose sequential fractionated 1 H or HZE on the heart are unknown. In this animal model of simulated ionizing radiation, middle-aged (8-9 months old) male C57BL/6NT mice were exposed to radiation as follows: group 1, nonirradiated controls; group 2, three fractionated doses of 17 cGy 1 H every other day ( 1 H × 3); group 3, three fractionated doses of 17 cGy 1 H every other day followed by a single low dose of 15 cGy 56 Fe two days after the final 1 H dose ( 1 H × 3 + 56 Fe); and group 4, a single low dose of 15 cGy 56 Fe followed (after 2 days) by three fractionated doses of 17 cGy 1 H every other day ( 56 Fe + 1 H × 3). A subgroup of mice from each group underwent myocardial infarction (MI) surgery at 28 days postirradiation. Cardiac structure and function were assessed in all animals at days 7, 14 and 28 after MI surgery was performed. Compared to the control animals, the treatments that groups 2 and 3 received did not induce negative effects on cardiac function or structure. However, compared to all other groups, the animals in group 4, showed depressed left ventricular (LV) functions at 1 month with concomitant enhancement in cardiac fibrosis and induction of cardiac hypertrophy signaling at 3 months. In the irradiated and MI surgery groups compared to the control group, the treatments received by groups 2 and 4 did not induce negative effects at 1 month postirradiation and MI surgery. However, in group 3 after MI surgery, there was a 24% increase in mortality, significant decreases in LV function and a 35% increase in post-infarction size. These changes were associated with significant decreases in the angiogenic and cell survival signaling pathways. These data suggest that fractionated doses of radiation induces cellular and molecular changes that result in depressed heart functions both under basal conditions and particularly after myocardial infarction.

  4. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events atmore » the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.« less

  5. Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware

    NASA Technical Reports Server (NTRS)

    Kniffin, Scott

    2016-01-01

    X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the level of exposure to ionizing radiation is total ionizing dose (TID). The unit of TID is the rad, which is defined as 100 ergs absorbed per gram of material. Dose can be expressed in other units, for example grays (gy), where 1 gy = 100 rads. The actual fluence of radiation needed to deliver a rad depends on the absorbing material, so units of dose are usually stated in reference to the material of interest. That is, for microelectronic devices, the unit of dose is generally rad (Si) or rad (SiO2). However, the definition of absorbed dose in this fashion has the advantage that the type of radiation causing the ionization can be normalized so that a realistic and adequate comparison can be made. The sensitivity of microelectronic parts to TID varies over many orders of magnitude. (Note: Doses to humans are typically expressed in rems-or roentgen-equivalent-man-which measures tissue damage, and depends on the type of radiation, as well as the dose in rads.) Thus far, the "softest" parts tested at NASA showed damage at 500 rads (Si), while parts that are radiation-hardened by design can remain functional to doses on the order of 107 rads (Si). This broad range of sensitivity highlights one of the most important considerations when considering the effects of radiation on electronic parts: In order to determine whether a radiation exposure is a concern for a particular part, one must understand the technologies used in the part and their vulnerabilities to TID damage. A NASA radiation expert should be consulted to obtain such information.

  6. Total ionizing dose effect in an input/output device for flash memory

    NASA Astrophysics Data System (ADS)

    Liu, Zhang-Li; Hu, Zhi-Yuan; Zhang, Zheng-Xuan; Shao, Hua; Chen, Ming; Bi, Da-Wei; Ning, Bing-Xu; Zou, Shi-Chang

    2011-12-01

    Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.

  7. Effectiveness of irradiation treatments in inactivating Listeria monocytogenes on fresh vegetables at refrigeration temperature.

    PubMed

    Bari, M L; Nakauma, M; Todoriki, S; Juneja, Vijay K; Isshiki, K; Kawamoto, S

    2005-02-01

    Ionizing radiation can be effective in controlling the growth of food spoilage and foodborne pathogenic bacteria. This study reports on an investigation of the effectiveness of irradiation treatment to eliminate Listeria monocytogenes on laboratory-inoculated broccoli, cabbage, tomatoes, and mung bean sprouts. Irradiation of broccoli and mung bean sprouts at 1.0 kGy resulted in reductions of approximately 4.88 and 4.57 log CFU/g, respectively, of a five-strain cocktail of L. monocytogenes. Reductions of approximately 5.25 and 4.14 log CFU/g were found with cabbage and tomato, respectively, at a similar dose. The appearance, color, texture, taste, and overall acceptability did not undergo significant changes after 7 days of postirradiation storage at 4 degrees C, in comparison with control samples. Therefore, low-dose ionizing radiation treatment could be an effective method for eliminating L. monocytogenes on fresh and fresh-cut produce.

  8. Selective effect of irradiation on responses to thymus-independent antigen.

    PubMed

    Lee, S K; Woodland, R T

    1985-02-01

    Low doses of ionizing radiation have a selective immunosuppressive effect on in vivo B cell responses to thymus-independent (TI) antigens. The B cell response, assayed as direct anti-trinitrophenyl (TNP)-specific plaque-forming cells (PFC), induced by type 2, TI antigens (TNP-Ficoll or TNP-Dextran), was reduced, on the average, by 10-fold in animals exposed to 200 rad of ionizing radiation 24 hr before antigen challenge. In contrast, PFC responses to type 1, TI antigens (TNP-lipopolysaccharide or TNP-Brucella abortus) are unaffected in mice exposed to the same dose of radiation. Adoptive transfers showed that this selective immunosuppression is a result of the specific inactivation of the B cell subpopulation responding to type 2, TI antigens. These experiments suggest that physiologic differences exist in the B cell subpopulations of normal mice which respond to type 1, or type 2, TI antigens.

  9. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape.

    PubMed

    Markiewicz, Ewa; Barnard, Stephen; Haines, Jackie; Coster, Margaret; van Geel, Orry; Wu, Weiju; Richards, Shane; Ainsbury, Elizabeth; Rothkamm, Kai; Bouffler, Simon; Quinlan, Roy A

    2015-04-01

    Elevated cataract risk after radiation exposure was established soon after the discovery of X-rays in 1895. Today, increased cataract incidence among medical imaging practitioners and after nuclear incidents has highlighted how little is still understood about the biological responses of the lens to low-dose ionizing radiation (IR). Here, we show for the first time that in mice, lens epithelial cells (LECs) in the peripheral region repair DNA double strand breaks (DSB) after exposure to 20 and 100 mGy more slowly compared with circulating blood lymphocytes, as demonstrated by counts of γH2AX foci in cell nuclei. LECs in the central region repaired DSBs faster than either LECs in the lens periphery or lymphocytes. Although DSB markers (γH2AX, 53BP1 and RAD51) in both lens regions showed linear dose responses at the 1 h timepoint, nonlinear responses were observed in lenses for EdU (5-ethynyl-2'-deoxy-uridine) incorporation, cyclin D1 staining and cell density after 24 h at 100 and 250 mGy. After 10 months, the lens aspect ratio was also altered, an indicator of the consequences of the altered cell proliferation and cell density changes. A best-fit model demonstrated a dose-response peak at 500 mGy. These data identify specific nonlinear biological responses to low (less than 1000 mGy) dose IR-induced DNA damage in the lens epithelium.

  10. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape

    PubMed Central

    Markiewicz, Ewa; Barnard, Stephen; Haines, Jackie; Coster, Margaret; van Geel, Orry; Wu, Weiju; Richards, Shane; Ainsbury, Elizabeth; Rothkamm, Kai; Bouffler, Simon; Quinlan, Roy A.

    2015-01-01

    Elevated cataract risk after radiation exposure was established soon after the discovery of X-rays in 1895. Today, increased cataract incidence among medical imaging practitioners and after nuclear incidents has highlighted how little is still understood about the biological responses of the lens to low-dose ionizing radiation (IR). Here, we show for the first time that in mice, lens epithelial cells (LECs) in the peripheral region repair DNA double strand breaks (DSB) after exposure to 20 and 100 mGy more slowly compared with circulating blood lymphocytes, as demonstrated by counts of γH2AX foci in cell nuclei. LECs in the central region repaired DSBs faster than either LECs in the lens periphery or lymphocytes. Although DSB markers (γH2AX, 53BP1 and RAD51) in both lens regions showed linear dose responses at the 1 h timepoint, nonlinear responses were observed in lenses for EdU (5-ethynyl-2′-deoxy-uridine) incorporation, cyclin D1 staining and cell density after 24 h at 100 and 250 mGy. After 10 months, the lens aspect ratio was also altered, an indicator of the consequences of the altered cell proliferation and cell density changes. A best-fit model demonstrated a dose-response peak at 500 mGy. These data identify specific nonlinear biological responses to low (less than 1000 mGy) dose IR-induced DNA damage in the lens epithelium. PMID:25924630

  11. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    PubMed Central

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.

    2015-01-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  12. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  13. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, weremore » significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.« less

  14. Variations in the radiation sensitivity of foodborne pathogens associated with complex ready-to-eat food products

    NASA Astrophysics Data System (ADS)

    Sommers, Christopher H.; Boyd, Glenn

    2006-07-01

    Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other "heat and eat" multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a "frankfurter on a roll", a "beef cheeseburger on a bun" and a "vegetarian cheeseburger on a bun" was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log 10 of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat" sandwich products.

  15. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  16. Compendium of Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.

    2007-01-01

    Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  17. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  18. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice.

    PubMed

    Bellés, Montserrat; Gonzalo, Sergio; Serra, Noemí; Esplugas, Roser; Arenas, Meritxell; Domingo, José Luis; Linares, Victoria

    2017-07-01

    Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium ( 137 Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137 Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation ( 137 Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137 Cs). Further investigations are required to clarify the mechanisms involved in the internal IR-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch.

    PubMed

    Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin

    2016-07-01

    Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.

  20. Characterizing the Catalytic Potential of Deinococcus, Arthrobacter and other Robust Bacteria in Contaminated Subsurface Environments of the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael J.

    2006-05-01

    Ionizing Radiation (IR) Resistance in Bacteria. Until recently, there have been no clear physiologic predictors of a cell's ability to recover from ionizing radiation (IR) and other DOE-relevant oxidative stress conditions. In general, the most resistant bacteria have been Gram-positive (e.g., Deinococcus, Arthrobacter, Lactobacillus & Enterococcus spp.) and the most sensitive have been Gram-negative (e.g., Pseudomonas, Shewanella & Neisseria spp.). However, there are several reported exceptions to this paradigm, the Gram-negative cyanobacterium Chroococcidiopsis is extremely resistant to IR, whereas the Gram-positive Micrococcus luteus is sensitive. We have identified biomolecular signatures for radiation sensitivity and resistance which are independent of phylogeny,more » where very high and very low intracellular Mn/Fe concentration ratios correlated with very high and very low resistances, respectively; and restricting Mn(II) in the famously resistant Deinococcus radiodurans sensitized this eubacterium to IR.« less

  1. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    PubMed

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven

    2006-01-01

    A conservative design approach was adopted by the International Space Station Program for specifying total ionizing radiation dose requirements for use in selecting and qualifying materials for construction of the International Space Station. The total ionizing dose design environment included in SSP 30512 Space Station Ionizing Radiation Design Environment is based on trapped proton and electron fluence derived from the solar maximum versions of the AE-8 and AP-8 models, respectively, specified for a circular orbit at 500 km altitude and 51.7 degree inclination. Since launch, the range of altitudes utilized for Space Station operations vary from a minimum of approximately 330 km to a maximum of approximately 405 km with a mean operational altitude less than 400 km. The design environment, therefore, overestimates the radiation environment because the particle flux in the South Atlantic Anomaly is the primary contributor to radiation dose in low Earth orbit and flux within the Anomaly is altitude dependent. In addition, a 2X multiplier is often applied to the design environment to cover effects from the contributions of galactic cosmic rays, solar energetic particle events, geomagnetic storms, and uncertainties in the trapped radiation models which are not explicitly included in the design environment. Application of this environment may give radiation dose overestimates on the order of 1OX to 30X for materials exposed to the space environment, suggesting that materials originally qualified for ten year exposures on orbit may be used for longer periods without replacement. In this paper we evaluate the "as flown" radiation environments derived from historical records of the ISS flight trajectory since launch and compare the results with the SSP 30512 design environment to document the magnitude of the radiation dose overestimate provided by the design environment. "As flown" environments are obtained from application of the AE-8/AP-8 trapped particle models along the ISS flight trajectory including variations in altitude due to decay of the vehicle orbit and periodic reboosts to higher altitudes. In addition, an estimate of the AE-8 model to predict low Earth orbit electron flux (because the radiation dose for thin materials is dominated by the electron component of the radiation environment) is presented based on comparisons of the AE-8 model to measurements of electron integral flux at approximately 850 km from the Medium Energy Proton and Electron Detector on board the NOAA Polar Operational Environmental Satellite.

  3. Occupational exposure to ionizing radiation and electromagnetic fields in relation to the risk of thyroid cancer in Sweden.

    PubMed

    Lope, Virginia; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Gustavsson, Per; Floderus, Birgitta; Dosemeci, Mustafa; Silva, Agustín; Pollán, Marina

    2006-08-01

    This study sought to ascertain the risk of thyroid cancer in relation to occupational exposure to ionizing radiation and extremely low-frequency magnetic fields (ELFMF) in a cohort representative of Sweden's gainfully employed population. A historical cohort of 2 992 166 gainfully employed Swedish male and female workers was followed up from 1971 through 1989. Exposure to ELFMF and ionizing radiation was assessed using three job exposure matrices based on industrial branch or occupational codes. Relative risks (RR) for male and female workers, adjusted for age and geographic area, were computed using log-linear Poisson models. Occupational ELFMF exposure showed no effect on the risk of thyroid cancer in the study. However, female workers exposed to high intensities of ionizing radiation registered a marked excess risk (RR 1.85, 95% confidence interval (95% CI) 1.02-3.35]. This trend was not in evidence among the men. While the study confirms the etiologic role of ionizing radiation, with a higher incidence of thyroid cancer being recorded for the most-exposed female workers, our results do not support the possibility of occupational exposure to ELFMF being a risk factor for the development of thyroid cancer.

  4. SR-TXRF analysis of trace elements in whole blood and heart of rats: effects of irradiation with low and high doses

    NASA Astrophysics Data System (ADS)

    Mota, C. L.; Pickler, A.; Braz, D.; Barroso, R. C.; Mantuano, A.; Salata, C.; Ferreira-Machado, S. C.; Lau, C. C.; de Almeida, C. E.

    2018-04-01

    In the last decades, studies showed that the exposure to low doses of ionizing radiation of the body could sense and activate the cell signaling pathways needed to respond to any induced cellular damage. This procedure reduces cell killing compared with a single dose of high radiation dose. Damage to the vasculature can affect the function of most body organs by restricting blood flow and oxygen to tissues; however, the heart and brain are of main concern. The precise relationship between long-term health effects and low-dose exposures remain poorly understood. Biological markers are powerful tools that can be used to determine dose- response relationships and to estimate risk, especially when dealing with, the effects of low dose exposures in humans. These markers should be specific, sensitive, as well as easy and fast to quantify. Various types of biologic specimens are potential candidates for identifying biomarkers but blood has the advantage of being minimally invasive to obtain. In this study, we propose to apply total reflection X-ray fluorescence to quantify possible chemical elemental concentration (sulfer, iron, zinc, potassium and calcium) changes in blood and heart tissues of Wistar rats after total body irradiation with low (0.1 Gy) and high (2.5 Gy) doses. The fluorescence measurements were carried out at the X-ray Fluorescence beamline in the Brazilian Synchrotron Light Laboratory. The results showed that the irradiated animals with low doses have significant alterations in blood and cardiac tissue when compared with animals that received high doses of radiation. Taken together the analysis of all the elements, we can observe that the radiation induced oxidative stress may be the leading cause for alteration of the elemental level in the studied samples.

  5. Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: a prospective randomized clinical trial.

    PubMed

    Pireau, Nathalie; Cordemans, Virginie; Banse, Xavier; Irda, Nadia; Lichtherte, Sébastien; Kaminski, Ludovic

    2017-11-01

    Spine surgery still remains a challenge for every spine surgeon, aware of the potential serious outcomes of misplaced instrumentation. Though many studies have highlighted that using intraoperative cone beam CT imaging and navigation systems provides higher accuracy than conventional freehand methods for placement of pedicle screws in spine surgery, few studies are concerned about how to reduce radiation exposure for patients with the use of such technology. One of the main focuses of this study is based on the ALARA principle (as low as reasonably achievable). A prospective randomized trial was conducted in the hybrid operating room between December 2015 and December 2016, including 50 patients operated on for posterior instrumented thoracic and/or lumbar spinal fusion. Patients were randomized to intraoperative 3D acquisition high-dose (standard dose) or low-dose protocol, and a total of 216 pedicle screws were analyzed in terms of screw position. Two different methods were used to measure ionizing radiation: the total skin dose (derived from the dose-area product) and the radiation dose evaluated by thermoluminescent dosimeters on the surgical field. According to Gertzbein and Heary classifications, low-dose protocol provided a significant higher accuracy of pedicle screw placement than the high-dose protocol (96.1 versus 92%, respectively). Seven screws (3.2%), all implanted with the high-dose protocol, needed to be revised intraoperatively. The use of low-dose acquisition protocols reduced patient exposure by a factor of five. This study emphasizes the paramount importance of using low-dose protocols for intraoperative cone beam CT imaging coupled with the navigation system, as it at least does not affect the accuracy of pedicle screw placement and irradiates drastically less.

  6. Radiation model predictions and validation using LDEF satellite data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

  7. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  8. Formation and modification of farm crops resistance in agrocoenoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyanenko, L.N.; Filipas, A.S.

    1993-12-31

    Experiments were conducted to determine the effects of chronic exposure to low doses of ionizing radiation to barley plants. The possible use of growth regulators for decreasing accumulation of major radionuclides was investigated. It was determined that treating the seeds with growth regulators before sowing decreased the radiocesium content in barley two to three fold.

  9. Influence of Total Ionizing Dose Irradiation on Low-Frequency Noise Responses in Partially Depleted SOI nMOSFETs

    NASA Astrophysics Data System (ADS)

    Peng, Chao; En, Yun-Fei; Lei, Zhi-Feng; Chen, Yi-Qiang; Liu, Yuan; Li, Bin

    2017-11-01

    Not Available Supported by the National Postdoctoral Program for Innovative Talents under Grant No BX201600037, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090901048 and 2015B090912002, and the Distinguished Young Scientist Program of Guangdong Province under Grant No 2015A030306002.

  10. Protracted Low-Dose Ionizing Radiation Effects upon Primate Performance

    DTIC Science & Technology

    1977-12-01

    61 G. Dosimetry ................................ ............. 74 NTiS Whife Sectle ) U A N O U C E D JUSTIFICATION...AECL facility. Standard dosimetry techniques were utilized during radiation expo- sur.. In addition, extensive preexposure calibration was conducted...During each of the epochs, the five basic variables were deter- mined. These calculations were accomplished on an analog computer, Electronics Associates

  11. Cataract production in mice by heavy charged particles

    NASA Technical Reports Server (NTRS)

    Ainsworth, E. J.; Jose, U.; Yang, V. V.; Barker, M. E.

    1981-01-01

    The cataractogenic effects of heavy charged particles are evaluated in mice in relation to dose and ionization density. The relative biological effectiveness in relation to linear energy transfer for various particles is considered. Results indicated that low single doses (5 to 20 rad) of Fe 56 or Ar 40 particles are cataractogenic at 11 to 18 months after irradiation; onset and density of the opacification are dose related and cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial linear energy transfer dependence. The severity of cataracts is reduced significantly when 417 rad of Co 60 gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of C12 doses over 24 weeks.

  12. A Study of Gamma-Ray Exposure of Cu-SiO2 Programmable Metallization Cells

    NASA Astrophysics Data System (ADS)

    Chen, W.; Barnaby, H. J.; Kozicki, M. N.; Edwards, A. H.; Gonzalez-Velo, Y.; Fang, R.; Holbert, K. E.; Yu, S.; Yu, W.

    2015-12-01

    The Cu-SiO2 based programmable metallization cell (PMC) is a promising alternative to the Ag-chalcogenide glass PMC because of its low power consumption and CMOS-compatibility. Understanding its total ionizing dose (TID) response helps in assessing the reliability of this technology in ionizing radiation environments and benefits its expansion in the space electronics market. In this paper, the impacts of TID on the switching characteristics of Cu-SiO2 PMC are investigated for the first time. The devices were step irradiated with 60Co gamma-rays to a maximum dose of 7.1 Mrad ( SiO2). The results show that gamma-ray irradiation has a negligible impact on the virgin-state and on-state resistance of Cu-SiO2 PMCs. The off-state resistance slightly decreases after the first 1.5 Mrad( SiO2) of exposure, but this reduction saturates after higher levels of TID. Other switching characteristics such as the set voltage, multilevel switching capability and endurance were also studied, all of which did not show observable changes after gamma-ray radiation. The immunity to ionizing radiation is attributed to the suppression of the photo-doping process.

  13. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.

  14. Cellular and molecular research to reduce uncertainties in estimates of health effects from low-level radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkind, M.M.; Bedford, J.; Benjamin, S.A.

    1990-10-01

    A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, themore » study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.« less

  15. Comparison of Data on Mutation Frequencies of Mice Caused by Radiation with Low Dose Model

    NASA Astrophysics Data System (ADS)

    Manabe, Yuichiro; Bando, Masako

    2013-09-01

    We propose low dose (LD) model, the extension of LDM model which was proposed in the previous paper [Y. Manabe et al.: J. Phys. Soc. Jpn. 81 (2012) 104004] to estimate biological damage caused by irradiation. LD model takes account of cell death effect in addition to the proliferation, apoptosis, repair which were included in LDM model. As a typical example of estimation, we apply LD model to the experiment of mutation frequency on the responses induced by the exposure to low levels of ionizing radiation. The most famous and extensive experiments are those summarized by Russell and Kelly [Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 539], which are known as ``mega-mouse project''. This provides us with important information of the frequencies of transmitted specific-locus mutations induced in mouse spermatogonia stem-cells. It is found that the numerical results of the mutation frequency of mice are in reasonable agreement with the experimental data: the LD model reproduces the total dose and dose rate dependence of data reasonably. In order to see such dose-rate dependence more explicitly, we introduce the dose-rate effectiveness factor (DREF). This represents a sort of dose rate dependent effect, which are to be competitive with proliferation effect of broken cells induced by irradiation.

  16. Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.

    2014-01-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.

  17. Technical Operations Support (TOPS) II. Delivery Order 0011: Summary Status of MISSE-1 and MISSE-2 Experiments and Details of Estimated Environmental Exposures for MISSE-1 and MISSE-2

    DTIC Science & Technology

    2006-07-01

    distinct types of devices were used that respond to radiation differently, TLDs (thermoluminescent dosimeters ), Charge-Coupled Devices (CCDs) and...optocouplers. The TLDs respond to total ionizing dose, most of which is contributed to by the trapped electrons for locations with less than 100 mils of... electrons , slab config. Space Station Calc., 1 yr dose, protons + electrons 7th TLD on W2-15 gave anomalously low reading BREB =Boeing Radiation

  18. Properties of a commercial PTW-60019 synthetic diamond detector for the dosimetry of small radiotherapy beams.

    PubMed

    Lárraga-Gutiérrez, José Manuel; Ballesteros-Zebadúa, Paola; Rodríguez-Ponce, Miguel; García-Garduño, Olivia Amanda; de la Cruz, Olga Olinca Galván

    2015-01-21

    A CVD based radiation detector has recently become commercially available from the manufacturer PTW-Freiburg (Germany). This detector has a sensitive volume of 0.004 mm(3), a nominal sensitivity of 1 nC Gy(-1) and operates at 0 V. Unlike natural diamond based detectors, the CVD diamond detector reports a low dose rate dependence. The dosimetric properties investigated in this work were dose rate, angular dependence and detector sensitivity and linearity. Also, percentage depth dose, off-axis dose profiles and total scatter ratios were measured and compared against equivalent measurements performed with a stereotactic diode. A Monte Carlo simulation was carried out to estimate the CVD small beam correction factors for a 6 MV photon beam. The small beam correction factors were compared with those obtained from stereotactic diode and ionization chambers in the same irradiation conditions The experimental measurements were performed in 6 and 15 MV photon beams with the following square field sizes: 10 × 10, 5 × 5, 4 × 4, 3 × 3, 2 × 2, 1.5 × 1.5, 1 × 1 and 0.5 × 0.5 cm. The CVD detector showed an excellent signal stability (<0.2%) and linearity, negligible dose rate dependence (<0.2%) and lower response angular dependence. The percentage depth dose and off-axis dose profiles measurements were comparable (within 1%) to the measurements performed with ionization chamber and diode in both conventional and small radiotherapy beams. For the 0.5 × 0.5 cm, the measurements performed with the CVD detector showed a partial volume effect for all the dosimetric quantities measured. The Monte Carlo simulation showed that the small beam correction factors were close to unity (within 1.0%) for field sizes ≥1 cm. The synthetic diamond detector had high linearity, low angular and negligible dose rate dependence, and its response was energy independent within 1% for field sizes from 1.0 to 5.0 cm. This work provides new data showing the performance of the CVD detector compared against a high spatial resolution diode. It also presents a comparison of the CVD small beam correction factors with those of diode and ionization chamber for a 6 MV photon beam.

  19. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses.more » While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.« less

  20. Biological Consequences and Health Risks Of Low-Level Exposure to Ionizing Radiation: Commentary on the Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feinendegen, Ludwig E.; Brooks, Antone L.; Morgan, William F.

    2011-03-01

    This paper provides an integration and discussion of the information presented at the workshop held from May 2 to 5, 2010, in Richland, WA, adjacent to the Pacific Northwest National Laboratory (PNNL). Consequently, this is commentary and not necessarily a consensus document. This workshop was in honor of Dr. Victor P. Bond in celebration of his numerous contributions to the radiation sciences. Internationally recognized experts in biophysics, experimental radiation biology, epidemiology, and risk assessment were invited to discuss all issues of low-dose risk. This included the physics of track structure and its consequences to dosimetry, primary and secondary responses atmore » the molecular, cellular, and tissue biology levels, epidemiology, definitions of risk, and the practical and regulatory applications of these issues including their biomedical and social consequences. Of major concern was the present state of knowledge about cancer risk and other risks in humans following intentional or accidental exposures to low doses and low dose-rates of ionizing radiation (below about 100 mSv accumulated dose). This includes low dose exposures which occur during radiation therapy in tissues located outside of the irradiated volume. The interdisciplinary approach of this workshop featured discussions rather than formal presentations in ten separate consecutive sessions. Each session was led by chairpersons, listed in the opening of the workshop, which introduced topics, facts and posed relevant questions. The content of each session is given by a brief summary followed by the abstracts from the primary discussants in the session as has been presented in the previous section. This manuscript provides additional review and discussion of the sessions and tracks the topics and issues discussed as follows: • Energy deposition through particle tracks in tissues. • Energy deposition and primary effects in tissues. • Consequences of experimental advances in radiobiology • Non-targeted radiation effects. • System biological considerations. • Propagation of perturbations in the system. • Immediately operating protections. • Delayed stress response protections • Low-dose induced adaptive protections. • Integrated defenses against cancer. • Endogenous versus radiogenic cancer. • The epidemiological dilemma. • Dose-risk functions for different exposure modalities. • Implications for research. • Implications for regulation and protection. A brief summary of the discussions and results on each of these topics and issues is presented in this paper. Additional details of these discussions are provided in the workshop session summaries grouped into topics and followed by applicable abstracts/synopses submitted by the workshop participants.« less

  1. Extravasation of a therapeutic dose of 131I-metaiodobenzylguanidine: prevention, dosimetry, and mitigation.

    PubMed

    Bonta, Dacian V; Halkar, Raghuveer K; Alazraki, Naomi

    2011-09-01

    After the extravasation of a therapeutic dose of (131)I-metaiodobenzylguanidine that produced a radiation burn to a patient's forearm, we instituted a catheter placement verification protocol. Before therapy infusion, proper placement is verified by administering 37 MBq of (99m)Tc-pertechnetate through the catheter, and monitoring activity at the administration site and on the contralateral extremity. A dosimetric model describing both high-rate and low-rate dose components was developed and predicted that the basal epidermal layer received a radiation dose consistent with the observed moist desquamation radiation skin toxicity. No extravasation incidents have occurred since the verification procedure was instituted. To protect against radiation injury from extravasation of therapeutic radionuclides, test administration of a small (99m)Tc dose with probe monitoring of comparable sites in both upper extremities appears to be an effective preventive measure.

  2. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.

  3. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazififard, Mohammad, E-mail: nazifi@kashanu.ac.ir; Mahmoudieh, Afshin; Suh, Kune Y.

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty.more » Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.« less

  4. Effect of irradiation on the patulin content and chemical composition of apple juice concentrate.

    PubMed

    Zegota, H; Zegota, A; Bachman, S

    1988-09-01

    The influence of ionizing radiation on the patulin content of apple juice concentrate was investigated. The results indicated that patulin, at an initial concentration of about 2 mg/kg, disappeared after irradiation of the concentrate with doses as low as 2.5 kGy. For lower doses, the extent of patulin degradation was proportional to the absorbed dose. Irradiation of the concentrate with doses sufficient for patulin disappearance did not change the titratable acidity, the content of reducing sugars and carbonyl compounds or the amino acid composition. The content of ascorbic acid slightly decreased and the colour of the concentrate brightened. The intensity of the patulin absorption spectra after irradiation of mycotoxin in aqueous solutions decreased.

  5. The extreme ultraviolet spectrum of G191 - B2B and the ionization of the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Green, James; Jelinsky, Patrick; Bowyer, Stuart

    1990-01-01

    The measurement of the extreme ultraviolet spectrum of the nearby hot white dwarf G191 - B2B is reported. The results are used to derive interstellar neutral column densities of 1.6 + or - 0.2 x 10 to the 18th/sq cm and 9.8 + 2.8 or - 2.6 x 10 to the 16th/sq cm for H I and He I, respectively. This ratio of neutral hydrogen to neutral helium indicates that the ionization of hydrogen along the line of sight is less than about 30 percent unless significant helium ionization is present. The scenario in which the hydrogen is highly ionized and the helium is neutral is ruled out by this observation.

  6. Evaluation of Timing and Dosing of Caffeine Citrate in Preterm Neonates for the Prevention of Bronchopulmonary Dysplasia.

    PubMed

    Shenk, Eleni E; Bondi, Deborah S; Pellerite, Matthew M; Sriram, Sudhir

    2018-01-01

    The aim of this study was to evaluate the timing and dosing of caffeine therapy in relation to the development of bronchopulmonary dysplasia (BPD). This was a single-center, retrospective cohort study comparing early (days of life 0-2) to late (day of life 3 or greater) caffeine initiation in extremely low birth weight neonates, with a secondary analysis of large (10 mg/kg/day) to small dose (5 mg/kg/day) caffeine. There were 138 patients in the primary timing analysis. The early caffeine group had a lower incidence and reduced odds of the composite outcome of BPD or all-cause mortality, compared with the late caffeine group (64% vs. 88%, respectively; adjusted p < 0.05; adjusted OR 0.36 [95% CI 0.13-0.98]). No statistically significant difference was found between dosing groups (p = 0.29) in the primary outcome; however, there was a lower rate of patent ductus arteriosus requiring treatment (p = 0.05) and decreased likelihood of discharging home on oxygen (p = 0.02) in the large-dose group compared with the small-dose group. Early caffeine initiation significantly decreased the incidence of BPD or all-cause mortality in extremely low birth weight neonates. Patients receiving large-dose caffeine had improved secondary outcomes, although no difference in BPD was noted. Further studies are needed to determine the optimal dosing of caffeine.

  7. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.

    PubMed

    Hamada, Nobuyuki; Maeda, Munetoshi; Otsuka, Kensuke; Tomita, Masanori

    2011-06-01

    For nearly a century, ionizing radiation has been indispensable to medical diagnosis. Furthermore, various types of electromagnetic and particulate radiation have also been used in cancer therapy. However, the biological mechanism of radiation action remains incompletely understood. In this regard, a rapidly growing body of experimental evidence indicates that radiation exposure induces biological effects in cells whose nucleus has not been irradiated. This phenomenon termed the 'non-targeted effects' challenges the long-held tenet that radiation traversal through the cell nucleus is a prerequisite to elicit genetic damage and biological responses. The non-targeted effects include biological effects in cytoplasm-irradiated cells, bystander effects that arise in non-irradiated cells having received signals from irradiated cells, and genomic instability occurring in the progeny of irradiated cells. Such non-targeted responses are interrelated, and the bystander effect is further related with an adaptive response that manifests itself as the attenuated stressful biological effects of acute high-dose irradiation in cells that have been pre-exposed to low-dose or low-dose-rate radiation. This paper reviews the current body of knowledge about the bystander effect with emphasis on experimental approaches, in vitro and in vivo manifestations, radiation quality dependence, temporal and spatial dependence, proposed mechanisms, and clinical implications. Relations of bystander responses with the effects in cytoplasm-irradiated cells, genomic instability and adaptive response will also be briefly discussed.

  8. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.

    PubMed

    Ghergherehchi, Mitra; Afarideh, Hossein; Ghannadi, Mohammad; Mohammadzadeh, Ahmad; Aslani, Golam Reza; Boghrati, Behzad

    2010-01-01

    In this study, a comparison was made between a plastic scintillator (BC400), a Faraday Cup (FC) and an ionization chamber (IC) used for routine proton dosimetry. Thin scintillators can be applied to proton dosimetry and consequently to proton therapy as relative dosimeters because of their water-equivalent nature, high energy-light conversion efficiency, low dimensions and good proportionality to the absorbed dose at low stopping powers. To employ such scintillators as relative dosimeters in proton therapy, the corrective factors must be applied to correct the quenching luminescence at the Bragg peak. A fine linear proportionality between the luminescence light yield Y and the proton flux in a thin (0.5 mm) scintillator for the 20 and 30 MeV proton beams were observed. The experimental peak/plateau ratios of Bragg Curve for 2, 1 and 0.5 mm scintillators with an accuracy of 0.5% were obtained to be 1.87, 1.91 and 2.30, respectively. With combination of the Markus chamber and the CR-39 detector, the peak/plateau ratio was improved to 3.26. The obtained data of the luminescence yield as a function of the specific energy loss is in agreement with the Craun-Birk's theory. Results show that the FC and Markus ionization chamber are in agreement within 4%, while the FC gives a lower dose evaluation. For a defined beam, the data for the fluence measurements are reproducible within a good accuracy.

  9. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    NASA Technical Reports Server (NTRS)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  10. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  11. High-versus low-dose erythropoietin in extremely low birth weight infants. The European Multicenter rhEPO Study Group.

    PubMed

    Maier, R F; Obladen, M; Kattner, E; Natzschka, J; Messer, J; Regazzoni, B M; Speer, C P; Fellman, V; Grauel, E L; Groneck, P; Wagner, M; Moriette, G; Salle, B L; Verellen, G; Scigalla, P

    1998-05-01

    To investigate whether a weekly 1500 IU/kg dose of recombinant human erythropoietin (rhEPO) is more effective than a dose of 750 IU/kg/week in preventing anemia and reducing the transfusion need in infants with birth weights less than 1000 gm. In a randomized, double-blind, multicenter trial, 184 infants with birth weights between 500 and 999 gm were treated with either rhEPO 750 (low-dose group) or 1500 IU/kg/week (high-dose group) from day 3 of life until 37 weeks' corrected age. Thirty-two percent of the infants in each group did not receive any transfusion during the treatment period. The total volume of erythrocytes received was similar in each group. The success rate, defined as no transfusion needed and hematocrit value 0.30 L/L or greater, was 27.6% in the low-dose and 29.5% in the high-dose group (p = 0.96). Doubling the rhEPO dose of 750 IU/kg/week is not indicated in infants with birth weights less than 1000 gm.

  12. Current Status and Future Challenges in Risk-Based Radiation Engineering

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2017-01-01

    This presentation covers the basis and challenges for radiation effects in electronic systems. The three main types of radiation effects in electronics are: 1) total ionizing dose (TID), 2) total non-ionizing dose (TNID) / displacement damage dose (DDD), and 3) single-event effect (SEE). Some content on relevant examples of effects, current concerns, and possible environmental model-driven solutions are also included.

  13. Development of a center for light ion therapy and accurate tumor diagnostics at karolinska institutet and hospital

    NASA Astrophysics Data System (ADS)

    Brahme, Anders; Lind, Bengt K.

    2002-04-01

    Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy where alterations in the delivered dose can be corrected by subsequent treatments

  14. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    PubMed

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  15. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and (60)Co γ-rays.

    PubMed

    Vadrucci, M; Esposito, G; Ronsivalle, C; Cherubini, R; Marracino, F; Montereali, R M; Picardi, L; Piccinini, M; Pimpinella, M; Vincenti, M A; De Angelis, C

    2015-08-01

    To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range. Short- and long-term scanner stabilities were 0.5% and 1.5%, respectively; film uniformity and reproducibility were better than 0.5%. The main purpose of this study was to implement EBT3 dosimetry in the proton low-energy radiobiology line of the TOP-IMPLART accelerator, having a maximum energy of 7 MeV. Low-energy proton and (60)Co calibrated sources were used to investigate the behavior of film response vs to be written in italicum dose. The calibration in 5 MeV protons is currently used for dose assessment in the radiobiological experiments at the TOP-IMPLART accelerator carried out at that energy value.

  16. The Mobile Dosimetric Telescope - A Small Size Active Personal Dosimeter for Application at High Altitudes and Onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Marsalek, K.; Berger, T.; Burmeister, S.; Reitz, G.; Heber, B.

    2012-12-01

    The radiation environment at cruising altitudes, as well as in Low Earth Orbit - like on the International Space Station - differs significantly from the natural radiation environment on Earth. Especially in Low Earth Orbit it poses one of the main health risks for long duration human missions. Therefore, it is essential to monitor the properties of the radiation field in such environments. The Mobile Dosimetric Telescope MDT, is a small size battery driven personal dosimeter based on silicon detector technology that has been developed to observe absorbed dose and dose rate in real time. Two silicon diodes are arranged in a telescope configuration, which allows the measurement of the ionizing constituents of the radiation field and partially the neutral contribution to the dose. The absorbed dose is obtained by considering every particle in either of the detectors. Particles traversing both diodes are detected as coincidence events that enable to derive linear energy transfer (LET) spectra. From these the quality factor of the field is determined, which is necessary for the estimation of the dose equivalent. The detection range of the device covers energy depositions from minimal ionizing particles up to relativistic heavy ions. Calibrations of the detector system have been performed with various radioactive sources and with heavy ions at the Heavy Ion Medical Accelerator (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Chiba, Japan. Additionally, the MDT has been successfully tested onboard aircraft. The results of these measurements are in good agreement with those from other radiation detectors. The presentation will focus on data taken during long haul flights in the northern hemisphere.

  17. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    PubMed

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  18. Zeta potential response of human erythrocyte membranes to the modulators of Gardos channel activity under low rate β-radiation.

    PubMed

    Zhirnov, V V; Iakovenko, I N; Voitsitskiy, V M; Khyzhnyak, S V; Zubrikova-Chugainova, O G; Gorobetz, V A

    2015-12-01

    Study of human erythrocyte DP response under modification by activators and blockers of the functional state of Ca2+-dependent K+ channels under low rate β-radiation. Erythrocytes were isolated from the donor blood. The zeta potential was computed from the value of the cell electrophoretic mobility. The investigated drugs preliminary introduced in cellular suspensions, and then aliquote of 90Sr(NO3)2 solution to get the final activity concentration of 44,4kBq⋅l-1. The radioisotope radiation of 90Sr/90Y (RR, 15 μGy⋅h-1) increases an absolute value of erythrocyte membranes DP (DPab), and its action is reversible. It specifies the effect is mediated by non-ionizing part of the RR. Dibutyril-cAMP dose-independent increases DPab of erythrocyte membranes in the concentration range of 1-100 мкМ, but RR does not amplify this effect. Anaprilin increases dose-independent DPab in concentrations 10 and 100 μМ. The effect of maximal concentration of anaprilin (100 μМ) decreases by RR. Clotrimazol increases DPab of erythrocyte membranes in the concentration range of 0,1-10 μМ relatively control, while its maximal concentration - decreases, and the minimal level does not reliably influence on this index The action of сlotrimazol on DP in concentrations of 10-100 μМ is abolished by RR, and is not changed in the range of 0,1-1,0 μМ. Nitrendipine raises DPab of erythrocyte membranes in all of range of concentrations, and RR amplifies the effect of the drug. 1. There is a threshold of the biological action on cells for the ionizing component of radioisotope radiation determined by efficiency of operation their antioxidant system.2. At dose rates below a threshold, the action of ionizing radiation is mediated by its non-ionizing component, and is reversible, and therefore is determined only in the field of radiation. V. V. Zhirnov, I. N. Iakovenko, V.M. Voitsitskiy, S. V. Khyzhnyak, О. G. Zubrikova-Chugainova, V.A. Gorobetz.

  19. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level, ground simulation method could be utilized to simu-late the space radiation biological effects and such a comparative proteomic work might explain both energy and dose effects of space radiation environment.

  20. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells.

    PubMed

    Vávrová, Jirina; Mareková-Rezácová, Martina; Vokurková, Doris; Szkanderová, Sylva; Psutka, Jan

    2003-10-01

    Most cell lines that lack functional p53 protein are arrested in the G(2) phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G(2) phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G(2) phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D(0) value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G(2) phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D(0)=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5-7 post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.

  1. New approaches in clinical application of laser-driven ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hideghéty, Katalin; Szabó, Rita Emilia; Polanek, Róbert; Szabó, Zoltán.; Brunner, Szilvia; Tőkés, Tünde

    2017-05-01

    The planned laser-driven ionizing beams (photon, very high energy electron, proton, carbon ion) at laser facilities have the unique property of ultra-high dose rate (>Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, carry the potential to develop novel laser-driven methods towards compact hospital-based clinical application. The enhanced flexibility in particle and energy selection, the high spatial and time resolution and extreme dose rate could be highly beneficial in radiotherapy. These approaches may increase significantly the therapeutic index over the currently available advanced radiation oncology methods. We highlight two nuclear reactionbased binary modalities and the planned radiobiology research. Boron Neutron Capture Therapy is an advanced cell targeted modality requiring 10B enriched boron carrier and appropriate neutron beam. The development of laser-based thermal and epithermal neutron source with as high as 1010 fluence rate could enhance the research activity in this promising field. Boron-Proton Fusion reaction is as well as a binary approach, where 11B containing compounds are accumulated into the cells, and the tumour selectively irradiated with protons. Due to additional high linear energy transfer alpha particle release of the BPFR and the maximum point of the Bragg-peak is increased, which result in significant biological effect enhancement. Research at ELI-ALPS on detection of biological effect differences of modified or different quality radiation will be presented using recently developed zebrafish embryo and rodent models.

  2. Gene Profiling Characteristics of Radioadaptive Response in AG01522 Normal Human Fibroblasts

    PubMed Central

    Hou, Jue; Wang, Fan; Kong, Peizhong; Yu, Peter K. N.; Wang, Hongzhi; Han, Wei

    2015-01-01

    Radioadaptive response (RAR) in mammalian cells refers to the phenomenon where a low-dose ionizing irradiation alters the gene expression profiles, and protects the cells from the detrimental effects of a subsequent high dose exposure. Despite the completion of numerous experimental studies on RAR, the underlying mechanism has remained unclear. In this study, we aimed to have a comprehensive investigation on the RAR induced in the AG01522 human fibroblasts first exposed to 5 cGy (priming dose) and then followed by 2 Gy (challenge dose) of X-ray through comparisons to those cells that had only received a single 2 Gy dose. We studied how the priming dose affected the expression of gene transcripts, and to identify transcripts or pathways that were associated with the reduced chromosomal damages (in terms of the number of micronuclei) after application of the challenging dose. Through the mRNA and microRNA microarray analyses, the transcriptome alteration in AG01522 cells was examined, and the significantly altered genes were identified for different irradiation procedures using bioinformatics approaches. We observed that a low-dose X-ray exposure produced an alert, triggering and altering cellular responses to defend against subsequent high dose-induced damages, and accelerating the cell repair process. Moreover, the p53 signaling pathway was found to play critial roles in regulating DNA damage responses at the early stage after application of the challenging dose, particularly in the RAR group. Furthermore, microRNA analyses also revealed that cell communication and intercellular signaling transduction played important roles after low-dose irradiation. We conclude that RAR benefits from the alarm mechanisms triggered by a low-dose priming radation dose. PMID:25886619

  3. Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.

    2017-08-01

    Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.

  4. Extremely Low Frequency (ELF) Communications Program: Non-Ionizing Electromagnetic Radiation Literature Evaluation and Assessment, 1986-1987 Literature Review.

    DTIC Science & Technology

    1987-11-01

    and Carsteen E L (1985). Growth Rate and Mitotic Index Analysis of Vicia Faba L. Roots Exposed to 60-Hz Electric Fields. Bioelectromagnetics, Vol. 6...the observed effects. The mitotic index was also influenced. 5) In monkeys, central nervous system excitability was influenced by applying fields...Literature Search and Retrieval ...................... 16 2.2 Literature Culling and Indexing ...................... 18 2.3 Foreign Literature

  5. Single-hit mechanism of tumour cell killing by radiation.

    PubMed

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells should be further investigated as a radiation-hypersensitive target that could be modulated for therapeutic advantage.

  6. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  7. Spectrum determination and modification of the AFRL Co-60 cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turinetti, J.R.; Kemp, W.T.; Chavez, J.R.

    The AFRL Co-60 cell at Phillips Research Site, Kirtland Air Force Base, is a 1500 ft{sup 2} concrete room with a 5200 Ci, as of 18 December 1996, J.L. Shepherd Co-60 source. The source provides high dose rate ionizing radiation up to 12000 rad(Si)/min. The Co-60 cell is used to characterize total-dose gamma effects of microelectronic and photonic devices, circuits, and subsystems. The spectrum of a Co-60 facility includes more than the two photopeaks of gamma ray emission. If there is a large low energy contribution from scattering, dose enhancement might be a problem. It is important to know themore » spectrum of a Co-60 facility and understand how experimental modifications can change that spectrum. The AFRL Co-60 cell spectrum is found to be a clean spectrum with small low energy contributions and dominant Co-60 photopeaks. Experimental modifications to reduce dose enhancement such as the use of a Pb/Al box and even better a Pb/Sn/Cu/Al box are found to decrease the low energy contributions. Experimental modifications to reduce dose rate such as using lead attenuators in front of the experiment and/or raising the source partially are found to significantly alter the spectrum, sometimes creating large low energy contributions.« less

  8. Comprehensive Biothreat Cluster Identification by PCR/Electrospray-Ionization Mass Spectrometry

    PubMed Central

    Sampath, Rangarajan; Mulholland, Niveen; Blyn, Lawrence B.; Massire, Christian; Whitehouse, Chris A.; Waybright, Nicole; Harter, Courtney; Bogan, Joseph; Miranda, Mary Sue; Smith, David; Baldwin, Carson; Wolcott, Mark; Norwood, David; Kreft, Rachael; Frinder, Mark; Lovari, Robert; Yasuda, Irene; Matthews, Heather; Toleno, Donna; Housley, Roberta; Duncan, David; Li, Feng; Warren, Robin; Eshoo, Mark W.; Hall, Thomas A.; Hofstadler, Steven A.; Ecker, David J.

    2012-01-01

    Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry. PMID:22768032

  9. GaAs MMIC: recovery from upset by x-ray pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armendariz, M.G.; Castle, J.G. Jr.

    1986-01-01

    Tolerance for fast neutrons and total ionizing dose is a feature of GaAs microwave monolithic integrated circuits (MMIC). However, upset during an ionizing pulse is expected to occur and delayed recovery due to backgating may be a problem. The purpose of this study of an experimental MMIC design is to observe the recovery of oscillator power output following upset by a short ionizing pulse as a function of applied bias, dose per pulse and case temperature.

  10. CARI NAIRAS: Calculating Flight Doses from NAIRAS Data using CARI

    DTIC Science & Technology

    2014-12-01

    Oklahoma City, Oklahoma 73125 Christopher Mertens Langley Research Center National Aeronautics and Space Administration Hampton, VA 23681 December...OK 73125 2National Aeronautics and Space Administration Langley Research Center Hampton, VA 23681 11. Contract or Grant No. 12...information the software provides is also used by research scientists to investigate health effects of chronic exposure to low levels of ionizing

  11. Low-dose ionizing radiation induces direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy.

    PubMed

    Yang, Guozi; Kong, Qingyu; Wang, Guanjun; Jin, Haofan; Zhou, Lei; Yu, Dehai; Niu, Chao; Han, Wei; Li, Wei; Cui, Jiuwei

    2014-12-01

    Recent evidence indicates that limited availability and cytotoxicity have restricted the development of natural killer (NK) cells in adoptive cellular immunotherapy (ACI). While it has been reported that low-dose ionizing radiation (LDIR) could enhance the immune response in animal studies, the influence of LDIR at the cellular level has been less well defined. In this study, the authors aim to investigate the direct effects of LDIR on NK cells and the potential mechanism, and explore the application of activation and expansion of NK cells by LDIR in ACI. The authors found that expansion and cytotoxicity of NK cells were markedly augmented by LDIR. The levels of IFN-γ and TNF-α in the supernatants of cultured NK cells were significantly increased after LDIR. Additionally, the effect of the P38 inhibitor (SB203580) significantly decreased the expanded NK cell cytotoxicity, cytokine levels, and expression levels of FasL and perforin. These findings indicate that LDIR induces a direct expansion and activation of NK cells through possibly the P38-MAPK pathway, which provides a potential mechanism for stimulation of NK cells by LDIR and a novel but simplified approach for ACI.

  12. First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kimihiko; Ouchi, Masami; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Lee, Janice C.

    2013-05-01

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Lyα emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect Hα emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q_{ion}=2.5^{+1.7}_{-0.8} \\times 10^8 cm s-1) and a low oxygen abundance (12+log (O/H)=7.84^{+0.24}_{-0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q_{ion}=8^{+10}_{-4} \\times 10^7 cm s-1) and a low oxygen abundance (12+log (O/H)=8.18^{+0.28}_{-0.28}). Both LAEs appear to fall below the mass-metallicity relation of z ~ 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/Hα index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only ~0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density ~100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q ion galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to cosmic reionization at z > 6. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. Application of dosimetry systems and cytogenetic status of the child population exposed to diagnostic X-rays by use of the cytokinesis-block micronucleus cytome assay.

    PubMed

    Gajski, Goran; Milković, Durđica; Ranogajec-Komor, Mária; Miljanić, Saveta; Garaj-Vrhovac, Vera

    2011-10-01

    Low-dose ionizing radiation used for medical purposes is one of the definite risk factors for cancer development, and children exposed to ionizing radiation are at a relatively greater cancer risk as they have more rapidly dividing cells than adults and have longer life expectancy. Since cytokinesis-block micronucleus cytome (CBMN Cyt) assay has become one of the standard endpoints for radiation biological dosimetry, we used that assay in the present work for the assessment of different types of chromosomal damage in children exposed to diagnostic X-ray procedures. Twenty children all with pulmonary diseases between the ages of 4 and 14 years (11.30 ± 2.74) were evaluated. Absorbed dose measurements were conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest and back. Doses were measured using thermoluminescence and radiophotoluminescent dosimetry systems. It was shown that, after diagnostic X-rays, the mean total number of CBMN Cyt assay parameters (micronucleus, nucleoplasmic bridges and nuclear buds) was significantly higher than prior to diagnostic procedure and that interindividual differences existed for each monitored child. For the nuclear division index counted prior and after examination, no significant differences were noted among mean group values. These data suggest that even low-dose diagnostic X-ray exposure may induce damaging effect in the somatic DNA of exposed children, indicating that immense care should be given in both minimizing and optimizing radiation exposure to diminish the radiation burden, especially in the youngest population. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best?

    PubMed

    Sedláček, Ondřej; Černoch, Peter; Kučka, Jan; Konefal, Rafał; Štěpánek, Petr; Vetrík, Miroslav; Lodge, Timothy P; Hrubý, Martin

    2016-06-21

    Thermoresponsive polymers showing cloud point temperatures (CPT) in aqueous solutions are very promising for the construction of various systems in biomedical field. In many of these applications these polymers get in contact with ionizing radiation, e.g., if they are used as carriers for radiopharmaceuticals or during radiation sterilization. Despite this fact, radiosensitivity of these polymers is largely overlooked to date. In this work, we describe the effect of electron beam ionizing radiation on the physicochemical and phase separation properties of selected thermoresponsive polymers with CPT between room and body temperature. Stability of the polymers to radiation (doses 0-20 kGy) in aqueous solutions increased in the order poly(N-vinylcaprolactam) (PVCL, the least stable) ≪ poly[N-(2,2-difluoroethyl)acrylamide] (DFP) < poly(N-isopropylacrylamide) (PNIPAM) ≪ poly(2-isopropyl-2-oxazoline-co-2-n-butyl-2-oxazoline) (POX). Even low doses of β radiation (1 kGy), which are highly relevant to the storage of polymer radiotherapeutics and sterilization of biomedical systems, cause significant increase in molecular weight due to cross-linking (except for POX, where this effect is weak). In the case of PVCL irradiated with low doses, the increase in molecular weight induced an increase in the CPT of the polymer. For PNIPAM and DFP, there is strong chain hydrophilization leading to an increase in CPT. From this perspective, POX is the most suitable polymer for the construction of delivery systems that experience exposure to radiation, while PVCL is the least suitable and PNIPAM and DFP are suitable only for low radiation demands.

  15. Response of the low-latitude D region ionosphere to extreme space weather event of 14-16 December 2006

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Kumar, Abhikesh; Menk, Frederick; Maurya, Ajeet K.; Singh, Rajesh; Veenadhari, B.

    2015-01-01

    response of the D region low-latitude ionosphere has been examined for extreme space weather event of 14-16 December 2006 associated with a X1.5 solar flare and an intense geomagnetic storm (Dst = -146 nT) using VLF signals from Northwest Cape, Australia (NWC) (19.8 kHz) and Lualualei, Hawaii (callsign NPM) (21.4 kHz) transmitters monitored at Suva (Geographic Coordinates, 18.10°S, 178.40°E), Fiji. Modeling of flare associated amplitude and phase enhancements of NWC (3.6 dB, 223°) and NPM (5 dB, 153°) using Long-Wave Propagation Capability code shows reduction in the D region reflection height (H') by 11.1 km and 9.4 km, and enhancement in ionization gradients described by increases in the exponential sharpness factor (β) by 0.122 and 0.126 km-1, for the NWC and NPM paths, respectively. During the storm the daytime signal strengths of the NWC and NPM signals were reduced by 3.2 dB on 15 and 16 December (for about 46 h) and recovered by 17 December. Modeling for the NWC path shows that storm time values of H' and β were reduced by 1.2 km and 0.06 km-1, respectively. Morlet wavelet analysis of signal amplitudes shows no clearly strong signatures of gravity wave propagation to low latitudes during the main and recovery phases. The reduction in VLF signal strength is due to increased signal attenuation and absorption by the Earth-ionosphere waveguide due to storm-induced D region ionization changes and hence changes in D region parameters. The long duration of the storm effect results from the slow diffusion of changed composition/ionization at D region altitudes compared with higher altitudes in the ionosphere.

  16. A metabolomics and mouse models approach to study inflammatory and immune responses to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornace, Albert J.; Li, Henghong

    2013-12-02

    The three-year project entitled "A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation" was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects ofmore » low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims.« less

  17. X-ray-induced apoptosis of BEL-7402 cell line enhanced by extremely low frequency electromagnetic field in vitro.

    PubMed

    Jian, Wen; Wei, Zhao; Zhiqiang, Cheng; Zheng, Fang

    2009-02-01

    This study was designed to test whether extremely low frequency electromagnetic field (ELF-EMF) could enhance the apoptosis-induction effect of X-ray radiotherapy on liver cancer cell line BEL-7402 in vitro. EMF exposure was performed inside an energized solenoid coil. X-ray irradiation was performed using a linear accelerator. Apoptosis rates of BEL-7402 cells were analyzed using Annexin V-Fit Apoptosis Detection kit. Apoptosis rates of EMF group and sham EMF group were compared when combined with X-ray irradiation. Our results suggested that the apoptosis rate of BEL-7402 cells exposed to low doses of X-ray irradiation could be significantly increased by EMF. More EMF exposures obtain significantly higher apoptosis rates than fewer EMF exposures when combined with 2 Gy X-ray irradiation. These findings suggested that ELF-EMF could augment the cell apoptosis effects of low doses of X-ray irradiation on BEL-7402 cells in a synergistic and cumulative way. Copyright 2008 Wiley-Liss, Inc.

  18. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    NASA Astrophysics Data System (ADS)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial body irradiation, 20 months earlier, from low mean doses of HZE particles. These effects were associated with disruption of mitochondrial function in the non-irradiated tissues and in modulation of immune cell populations. Collectively, our data support the concept that the response of the organism to high LET radiations involves irradiated and non-irradiated cells/tissues and is associated with changes in several physiological functions. Supported by the US National Aeronautics and Space Administration

  19. Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.; hide

    2017-01-01

    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.

  20. Current Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.

  1. Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.

    2003-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.

  2. Hematopoietic responses under protracted exposures to low daily dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Seed, T. M.; Fritz, T. E.; Tolle, D. V.; Jackson, W. E.

    In attempting to evaluate the possible health consequences of chronic ionizing radiation exposure during extended space travel (e.g., Mars Mission), ground-based experimental studies of the clinical and pathological responses of canines under low daily doses of 60Co gamma irradiation (0.3-26.3 cGy d -1) have been examined. Specific reference was given to responses of the blood forming system. Results suggest that the daily dose rate of 7.5 cGy d -1 represents a threshold below which the hematopoietic system can retain either partial or full trilineal cell-producing capacity (erythropoiesis, myelopoiesis, and megakaryopoiesis) for extended periods of exposure (> 1yr). Trilineal capacity was fully retained for several years of exposure at the lowest dose-rate tested (0.3 cGy d -1) but was completely lost within several hundred days at the highest dose-rate (26.3 cGy d -1). Retention of hematopoietic capacity under chronic exposure has been demonstrated to be mediated by hematopoietic progenitors with acquired radioresistance and repair functions, altered cytogenetics, and cell-cycle characteristics. Radiological, biological, and temporal parameters responsible for these vital acquisitions by hematopoietic progenitors have been partially characterized. These parameters, along with threshold responses, are described and discussed in relation to potential health risks of the space traveler under chronic stress of low-dose irradiation.

  3. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial.

    PubMed

    Baud, Olivier; Maury, Laure; Lebail, Florence; Ramful, Duksha; El Moussawi, Fatima; Nicaise, Claire; Zupan-Simunek, Véronique; Coursol, Anne; Beuchée, Alain; Bolot, Pascal; Andrini, Pierre; Mohamed, Damir; Alberti, Corinne

    2016-04-30

    Bronchopulmonary dysplasia, a major complication of extreme prematurity, has few treatment options. Postnatal steroid use is controversial, but low-dose hydrocortisone might prevent the harmful effects of inflammation on the developing lung. In this study, we aimed to assess whether low-dose hydrocortisone improved survival without bronchopulmonary dysplasia in extremely preterm infants. In this double-blind, placebo-controlled, randomised trial done at 21 French tertiary-care neonatal intensive care units (NICUs), we randomly assigned (1:1), via a secure study website, extremely preterm infants inborn (born in a maternity ward at the same site as the NICU) at less than 28 weeks of gestation to receive either intravenous low-dose hydrocortisone or placebo during the first 10 postnatal days. Infants randomly assigned to the hydrocortisone group received 1 mg/kg of hydrocortisone hemisuccinate per day divided into two doses per day for 7 days, followed by one dose of 0·5 mg/kg per day for 3 days. Randomisation was stratified by gestational age and all infants were enrolled by 24 h after birth. Study investigators, parents, and patients were masked to treatment allocation. The primary outcome was survival without bronchopulmonary dysplasia at 36 weeks of postmenstrual age. We used a sequential analytical design, based on intention to treat, to avoid prolonging the trial after either efficacy or futility had been established. This trial is registered with ClinicalTrial.gov, number NCT00623740. 1072 neonates were screened between May 25, 2008, and Jan 31, 2014, of which 523 were randomly assigned (256 hydrocortisone, 267 placebo). 255 infants on hydrocortisone and 266 on placebo were included in analyses after parents withdrew consent for one child in each group. Of the 255 infants assigned to hydrocortisone, 153 (60%) survived without bronchopulmonary dysplasia, compared with 136 (51%) of 266 infants assigned to placebo (odds ratio [OR] adjusted for gestational age group and interim analyses 1·48, 95% CI 1·02-2·16, p=0·04). The number of patients needed to treat to gain one bronchopulmonary dysplasia-free survival was 12 (95% CI 6-200). Sepsis rate was not significantly different in the study population as a whole, but subgroup analyses showed a higher rate only in infants born at 24-25 weeks gestational age who were treated with hydrocortisone (30 [40%] of 83 vs 21 [23%] of 90 infants; sub-hazard ratio 1·87, 95% CI 1·09-3·21, p=0·02). Other potential adverse events, including notably gastrointestinal perforation, did not differ significantly between groups. In extremely preterm infants, the rate of survival without bronchopulmonary dysplasia at 36 weeks of postmenstrual age was significantly increased by prophylactic low-dose hydrocortisone. This strategy, based on a physiological rationale, could lead to substantial improvements in the management of the most premature neonates. Assistance Publique-Hôpitaux de Paris. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Buccal mucosa micronuclei counts in relation to exposure to low dose-rate radiation from the Chornobyl nuclear accident and other medical and occupational radiation exposures.

    PubMed

    Bazyka, D; Finch, S C; Ilienko, I M; Lyaskivska, O; Dyagil, I; Trotsiuk, N; Gudzenko, N; Chumak, V V; Walsh, K M; Wiemels, J; Little, M P; Zablotska, L B

    2017-06-23

    Ionizing radiation is a well-known carcinogen. Chromosome aberrations, and in particular micronuclei represent an early biological predictor of cancer risk. There are well-documented associations of micronuclei with ionizing radiation dose in some radiation-exposed groups, although not all. That associations are not seen in all radiation-exposed groups may be because cells with micronuclei will not generally pass through mitosis, so that radiation-induced micronuclei decay, generally within a few years after exposure. Buccal samples from a group of 111 male workers in Ukraine exposed to ionizing radiation during the cleanup activities at the Chornobyl nuclear power plant were studied. Samples were taken between 12 and 18 years after their last radiation exposure from the Chornobyl cleanup. The frequency of binucleated micronuclei was analyzed in relation to estimated bone marrow dose from the cleanup activities along with a number of environmental/occupational risk factors using Poisson regression adjusted for overdispersion. Among the 105 persons without a previous cancer diagnosis, the mean Chornobyl-related dose was 59.5 mSv (range 0-748.4 mSv). There was a borderline significant increase in micronuclei frequency among those reporting work as an industrial radiographer compared with all others, with a relative risk of 6.19 (95% CI 0.90, 31.08, 2-sided p = 0.0729), although this was based on a single person. There was a borderline significant positive radiation dose response for micronuclei frequency with increase in micronuclei per 1000 scored cells per Gy of 3.03 (95% CI -0.78, 7.65, 2-sided p = 0.1170), and a borderline significant reduction of excess relative MN prevalence with increasing time since last exposure (p = 0.0949). There was a significant (p = 0.0388) reduction in MN prevalence associated with bone X-ray exposure, but no significant trend (p = 0.3845) of MN prevalence with numbers of bone X-ray procedures. There are indications of increasing trends of micronuclei prevalence with Chornobyl-cleanup-associated dose, and indications of reduction in radiation-associated excess prevalence of micronuclei with time after exposure. There are also indications of substantially increased micronuclei associated with work as an industrial radiographer. This analysis adds to the understanding of the long-term effects of low-dose radiation exposures on relevant cellular structures and methods appropriate for long-term radiation biodosimetry.

  5. A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry.

    PubMed

    Damodar, Joshita; Odgers, David; Pope, Dane; Hill, Robin

    2018-05-01

    Kilovoltage x-ray beams are widely used in treating skin cancers and in biological irradiators. In this work, we have evaluated four dosimeters (ionization chambers and solid state detectors) in their suitability for relative dosimetry of kilovoltage x-ray beams in the energy range of 50 - 280kVp. The solid state detectors, which have not been investigated with low energy x-rays, were the PTW 60019 microDiamond synthetic diamond detector and the PTW 60012 diode. The two ionization chambers used were the PTW Advanced Markus parallel plate chamber and the PTW PinPoint small volume chamber. For each of the dosimeters, percentage depth doses were measured in water over the full range of x-ray beams and for field sizes ranging from 2cm diameter to 12 × 12cm. In addition, depth doses were measured for a narrow aperture (7mm diameter) using the PTW microDiamond detector. For comparison, the measured data was compared with Monte Carlo calculated doses using the EGSnrc Monte Carlo package. The depth dose results indicate that the Advanced Markus parallel plate and PinPoint ionization chambers were suitable for depth dose measurements in the beam quality range with an uncertainty of less than 3%, including in the regions closer to the surface of the water as compared with Monte Carlo depth dose data for all six energy beams. The response of the PTW Diode E detector was accurate to within 4% for all field sizes in the energy range of 50-125kVp but showed larger variations for higher energies of up to 12% with the 12 × 12cm field size. In comparison, the microDiamond detector had good agreement over all energies for both smaller and larger field sizes generally within 1% as compared to the Advanced Markus chamber field and Monte Carlo calculations. The only exceptions were in measuring the dose at the surface of the water phantom where larger differences were found. For the 7mm diameter field, the agreement between the microDiamond detector and Monte Carlo calculations was good being better than 1% except at the surface. Based on these results, the PTW microDiamond detector has shown to be a suitable detector for relative dosimetry of low energy x-ray beams over a wide range of x-ray beam energies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles

    2013-12-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.

  7. Radiation mapping on Spacelab 1: Experiment no. INS006

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A.; Cassou, R.; Henke, R.; Rowe, V.

    1985-01-01

    The first attempt at mapping the radiation environment inside Spacelab is described. Measurements were made by a set of passive radiation detectors distributed throughout the volume inside the Spacelab 1 module, in the access tunnel and outside on the pallet. Measurements of the low linear energy transfer (LET) component obtained from the TLD thermoluminescent detectors (TLD) ranged from 92 to 134 mrad, yielding an average low LET dose rate of 10.0 mrads/day inside the module. Because of the higher inclination orbit, substantial fluxes of highly ionizing (HZE particles) high charge and energy galactic cosmic rays were observed for the first time on an STS flight, yielding an overall average mission dose-equivalent of 295 mrem, or 29.5 mrem/day, which is about three times higher than that measured on previous STS missions. Little correlation is found between measured average dose rates or HZE fluences and the estimates shielding throughout the volume of the module.

  8. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Theoretical models and simulation codes to investigate bystander effects and cellular communication at low doses

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Alloni, D.; Facoetti, A.; Mairani, A.; Nano, R.; Ottolenghi, A.

    Astronauts in space are continuously exposed to low doses of ionizing radiation from Galactic Cosmic Rays During the last ten years the effects of low radiation doses have been widely re-discussed following a large number of observations on the so-called non targeted effects in particular bystander effects The latter consist of induction of cytogenetic damage in cells not directly traversed by radiation most likely as a response to molecular messengers released by directly irradiated cells Bystander effects which are observed both for lethal endpoints e g clonogenic inactivation and apoptosis and for non-lethal ones e g mutations and neoplastic transformation tend to show non-linear dose responses This might have significant consequences in terms of low-dose risk which is generally calculated on the basis of the Linear No Threshold hypothesis Although the mechanisms underlying bystander effects are still largely unknown it is now clear that two types of cellular communication i e via gap junctions and or release of molecular messengers into the extracellular environment play a fundamental role Theoretical models and simulation codes can be of help in elucidating such mechanisms In the present paper we will review different available modelling approaches including one that is being developed at the University of Pavia The focus will be on the different assumptions adopted by the various authors and on the implications of such assumptions in terms of non-targeted radiobiological damage and more generally low-dose

  10. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    NASA Astrophysics Data System (ADS)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  11. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  12. Effects of Substerilization Doses of Co60 Gamma Radiation on the Cold-Storage Life Extension of Shucked Soft-Shelled Clams and Haddock Fillets

    PubMed Central

    Masurovsky, E. B.; Goldblith, S. A.; Nickerson, J. T. R.

    1963-01-01

    Total aerobic-facultative and anaerobic (clostridia) macrocolony count data are presented, with analysis and interpretation, for both haddock fillets and shucked soft-shelled clams which received doses of from 50,000 to 800,000 rad of Co60 gamma rays. These data indicated that haddock fillets may be maintained in good condition at refrigeration temperatures above freezing for about 1 week at 6 C, and approximately 2 weeks at 0 C, when treated with from 50,000 to 150,000 rad of ionizing radiation. In the dose range from 200,000 to 350,000 rad, the storage life may be extended up to some 2 weeks at 6 C, and 3 weeks at 0 C. Treatments in the dose range from 400,000 to 500,000 rad may defer spoilage for about 1 month, and doses of 550,000 to 650,000 rad afford protection against bacterial spoilage up to approximately 1.5 months. At the high substerilization doses of 700,000 to 800,000 rad, haddock fillets may be held for from 2 to 3 months in refrigerated storage before becoming unfit for marketing and consumption. Shucked soft-shelled clams can be held for about 2.5 weeks at 0 C and close to 12 days at 6 C, when given low substerilization doses of from 50,000 to 150,000 rad of ionizing radiation. At doses of from 200,000 to 350,000 rad, the clams may be preserved effectively for periods up to 3 weeks at 0 or 6 C, and some 6 weeks at these temperatures with doses of about 450,000 rad. With treatments of 500,000 to 600,000 rad, the storage life may be extended for some 2 months, and at doses of 650,000 to 800,000 rad the shucked clams remain in a good state of preservation for up to 3 months at temperatures of 0 to 6 C. Thus, it would appear that shucked soft-shelled clams may be maintained for significantly longer periods in refrigerated storage than haddock fillets when the same radiation treatments are applied to each product. Clostridia levels in both products were relatively low initially, and were reduced significantly by the gamma rays at the doses studied. Moreover, those clostridia that survived the radiation treatments were found to remain at safe, low levels during the various periods in refrigerated storage employed for these products, a very encouraging result from the public health, as well as commercial, standpoint. PMID:13933508

  13. Effective radiation exposure evaluation during a one year follow-up of urolithiasis patients after extracorporeal shock wave lithotripsy.

    PubMed

    Kaynar, Mehmet; Tekinarslan, Erdem; Keskin, Suat; Buldu, İbrahim; Sönmez, Mehmet Giray; Karatag, Tuna; Istanbulluoglu, Mustafa Okan

    2015-01-01

    To determine and evaluate the effective radiation exposure during a one year follow-up of urolithiasis patients following the SWL (extracorporeal shock wave lithotripsy) treatment. Total Effective Radiation Exposure (ERE) doses for each of the 129 patients: 44 kidney stone patients, 41 ureter stone patients, and 44 multiple stone location patients were calculated by adding up the radiation doses of each ionizing radiation session including images (IVU, KUB, CT) throughout a one year follow-up period following the SWL. Total mean ERE values for the kidney stone group was calculated as 15, 91 mSv (5.10-27.60), for the ureter group as 13.32 mSv (5.10-24.70), and in the multiple stone location group as 27.02 mSv (9.41-54.85). There was no statistically significant differences between the kidney and ureter groups in terms of the ERE dose values (p = 0.221) (p >0.05). In the comparison of the kidney and ureter stone groups with the multiple stone location group; however, there was a statistically significant difference (p = 0.000) (p <0.05). ERE doses should be a factor to be considered right at the initiation of any diagnostic and/or therapeutic procedure. Especially in the case of multiple stone locations, due to the high exposure to ionized radiation, different imaging modalities with low dose and/or totally without a dose should be employed in the diagnosis, treatment, and follow-up bearing the aim to optimize diagnosis while minimizing the radiation dose as much as possible.

  14. Radiation-stability of smectite.

    PubMed

    Sorieul, Stéphanie; Allard, Thierry; Wang, Lumin M; Grambin-Lapeyre, Caroline; Lian, Jie; Calas, Georges; Ewings, Rodney C

    2008-11-15

    The safety assessment of geological repositories for high-level nuclear waste and spent nuclear fuel requires an understanding of the response of materials to high temperatures and intense radiation fields. Clays, such as smectite, have been proposed as backfill material around waste packages, but their response to intense radiation from short-lived fission products and alpha decay of sorbed actinides remains poorly understood. Cumulative doses may amorphize clays and may alter their properties of sorption, swelling, or water retention. We describe the amorphization of smectites induced by electron and heavy ion irradiations to simulate ionizing radiation and alpha recoil nuclei, respectively. A new "bell-shaped" evolution of the amorphization dose with temperature has been determined. The maximum dose for amorphization occurs at about 300-400 degrees C, showing that temperature-induced dehydroxylation enhances amorphization. The exact shape of the bell-shaped curves depends on the interlayer cation. At ambient temperature, ionizing radiation and alpha-decay events do not show the same efficiency. The former results in amorphization at doses between 10(10)-10(11) Gy which are greater than the total radiation dose expected for radioactive waste over 10(6) years. In contrast, alpha-decay events amorphize clays at doses as low as 0.13-0.16 displacements per atom, i.e. doses consistent with nuclear waste accumulated over approximately 1000 yrs. However, the limited penetration of alpha particles and recoil nuclei, in the 100 nm - 20 microm range, will minimize damage. Clays will not be amorphized unless the waste package is breached and released actinides are heavily sorbed onto the clay overpack.

  15. Radiation and breast cancer: a review of current evidence

    PubMed Central

    Ronckers, Cécile M; Erdmann, Christine A; Land, Charles E

    2005-01-01

    This paper summarizes current knowledge on ionizing radiation-associated breast cancer in the context of established breast cancer risk factors, the radiation dose–response relationship, and modifiers of dose response, taking into account epidemiological studies and animal experiments. Available epidemiological data support a linear dose–response relationship down to doses as low as about 100 mSv. However, the magnitude of risk per unit dose depends strongly on when radiation exposure occurs: exposure before the age of 20 years carries the greatest risk. Other characteristics that may influence the magnitude of dose-specific risk include attained age (that is, age at observation for risk), age at first full-term birth, parity, and possibly a history of benign breast disease, exposure to radiation while pregnant, and genetic factors. PMID:15642178

  16. Electromagnetic energy and food processing.

    PubMed

    Mudgett, R

    1988-01-01

    The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.

  17. An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.

    2009-10-01

    This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.

  18. A Compendium of Recent Optocoupler Radiation Test Data

    NASA Technical Reports Server (NTRS)

    Label, K. A.; Kniffin, S. D.; Reed, R. A.; Kim, H. S.; Wert, J. L.; Oberg, D. L.; Normand, E.; Johnston, A. H.; Lum, G. K.; Koga, R.; hide

    2000-01-01

    We present a compendium of optocoupler radiation test data including neutron, proton and heavy ion Displacement Damage (DD), Single Event Transients (SET) and Total Ionizing Dose (TID). Proton data includes ionizing and non-ionizing damage mechanisms.

  19. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  20. [Seasonal changes in tumor necrosis factor production in hibernating animals in normal conditions and under the effects of electromagnetic and ionizing radiation].

    PubMed

    Ogaĭ, V B; Novoselova, E G; Makar, V R; Kolaeva, S G

    2002-01-01

    Production of tumor necrosis factor (TNF) has been investigated in peritoneal macrophages and splenic T cells of Arctic Yakutian ground squirrel (Citellus Undulatus Pallas) upon in vitro action of electromagnetic and ionizing radiation during annual cycle. The significant activation of TNF production in the cells of awaken ground squirrels in winter and increasing level of the lymphokine production at spring-summer period has been indicated. The level of TNF production in splenic T cells was not changed during whole year. The electromagnetic radiation (EMR) of low intensity (8.15-18 GHz, 1 microW/cm2) induced an augmentation of both secretory and proliferative activity in TNF-producing cells. Ionizing radiation suppressed T cell proliferation, but the doses 2 and 5 Gy resulted in a significant stimulation of TNF production in T cells and macrophages.

  1. Effects of ionizing radiation on charge-coupled imagers

    NASA Technical Reports Server (NTRS)

    Killiany, J. M.; Baker, W. D.; Saks, N. S.; Barbe, D. F.

    1975-01-01

    The effects of ionizing radiation on three different charge coupled imagers have been investigated. Device performance was evaluated as a function of total gamma ray dose. The principal failure mechanisms have been identified for each particular device structure. The clock and bias voltages required for high total dose operation of the devices are presented.

  2. Recent Total Ionizing Dose Results and Displacement Damage Results for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.

    2005-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T

  3. Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; O'Bryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.; hide

    2014-01-01

    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results.

  4. Investigation Into Radiation-Induced Compaction of Zerodur (trademark)

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Herren, K.; Hayden, M.; McDonald, K.; Sims, J. A.; Semmel, C. L.

    1996-01-01

    Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.

  5. Investigation Into Radiation-Induced Compaction of Zerodur (trademark)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.L.; Herren, K.; Hayden, M.

    1996-03-01

    Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.

  6. Insight into the radiotolerance of the life support bacterium Rhodospirillum rubrum S1H by means of phenotypic and transcriptomic methods

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie

    The MELiSSA life support system from the European Space Agency is targeting the produc-tion of oxygen, water and food by recycling organic waste. Among different types of pro-cesses, MELiSSA uses several interconnected bioreactors inhabited by microorganisms and higher plants (Hendrickx et al., 2006; Mergeay et al., 1988). Because this loop is foreseen to be functional in space where it will be exposed to higher doses and different spectra of ionizing radiation, it was decided to screen the radiotolerance of the organisms used. In this study, the radiotolerance (i.e. tolerance to ionizing radiation) of the photosynthetic bacterium Rho-dospirillum rubrum S1H was investigated. In this test, first the effect of low energy Cobalt-60 gamma rays, were tested. To assess the radiotolerance of bacterium S1H, the survival rate after increasing exposure was determined. R. rubrum S1H appeared relatively radiosensitive, as the radiation dose at which 90% of the population was killed (D10 value) was 4 times lower than the model bacterium Escherichia coli. It was demonstrate that the culture medium has an impact on radiation tolerance. This survival curve also permitted to select a number of sub-lethal ionizing radiation doses (¡ D10 ), that were used to analyze the gene expression response of R. rubrum S1H after gamma irradiation. The microarray transcriptome analysis results ob-tained from different doses and different culture medium showed a significant response of the bacterium to sublethal doses. Potential marker genes for ionizing radiation stress in R. rubrum S1H were identified. By quantitative PCR, it was shown that the expression of these marker genes increased with the recovery time after exposure to ionizing radiation. In other words, the radiation tolerance and the response of R. rubrum S1H to low energy Cobalt-60 gamma ionizing radiation was characterized. Therefore to ensure MELiSSA process robustness during extended space exploration mission, it is advised that this particular aspect of R. rubrum S1H metabolism should be carefully monitored and possibly countermeasure could be taken in order to avoid potential malfunctioning of the continuous culture bioreactor. Hendrickx L., De Wever H., Hermans V., Mastroleo F., Morin N., Wilmotte A., Janssen P. and Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Sup-port System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regenera-tion system for long-haul space exploration missions. Res Microbiol 2006;157:77-86. Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R.A. `MELiSSA'—A micro-organisms-based model for `CELSS' development. Proceedings at the 3rd European Symposium on Space Thermal Control Life Support Systems Noordwijk, The Netherlands (1988) pp 65-68. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.

  7. Damage pattern as a function of radiation quality and other factors.

    PubMed

    Burkart, W; Jung, T; Frasch, G

    1999-01-01

    An understanding of damage pattern in critical cellular structures such as DNA is an important prerequisite for a mechanistic assessment of primary radiation damage, its possible repair, and the propagation of residual changes in somatic and germ cells as potential contributors to disease or ageing. Important quantitative insights have been made recently on the distribution in time and space of critical lesions from direct and indirect action of ionizing radiation on mammalian cells. When compared to damage from chemicals or from spontaneous degradation, e.g. depurination or base deamination in DNA, the potential of even low-LET radiation to create local hot spots of damage from single particle tracks is of utmost importance. This has important repercussions on inferences from critical biological effects at high dose and dose rate exposure situations to health risks at chronic, low-level exposures as experienced in environmental and controlled occupational settings. About 10,000 DNA lesions per human cell nucleus and day from spontaneous degradation and chemical attack cause no apparent effect, but a dose of 4 Gy translating into a similar number of direct and indirect DNA breaks induces acute lethality. Therefore, single lesions cannot explain the high efficiency of ionizing radiation in the induction of mutation, transformation and loss of proliferative capacity. Clustered damage leading to poorly repairable double-strand breaks or even more complex local DNA degradation, correlates better with fixed damage and critical biological endpoints. A comparison with other physical, chemical and biological agents indicates that ionizing radiation is indeed set apart from these by its unique micro- and nano-dosimetric traits. Only a few other agents such as bleomycin have a similar potential to cause complex damage from single events. However, in view of the multi-stage mechanism of carcinogenesis, it is still an open question whether dose-effect linearity for complex primary DNA damage and resulting fixed critical cellular lesions translate into linearity for radiation-induced cancer. To solve this enigma, a quantitative assessment of all genotoxic and harmful non-genotoxic agents affecting the human body would be needed.

  8. Recombination in liquid-filled ionization chambers beyond the Boag limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla-González, L.; Roselló, J.

    Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work,more » the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag equation, the reason being that changing the polarization voltage also affects the charge collection time, thus changing the amount of overlapping. Conclusions: These results have important consequences for saturation correction methods for LICs. On one hand, the two-dose-rate method, which relies on the functional dependence of the collection efficiencies on dose-per-pulse, can also be used in the overlapping situation, provided that the two measurements needed to feed the method are performed at the same pulse repetition frequency (monitor unit rate). This result opens the door to computing collection efficiencies in LICs in many clinical setups where charge overlap in the LIC exists. On the other hand, correction methods based on the voltage-dependence of Boag equation like the three-voltage method or the modified two-voltage method will not work in the overlapping scenario due to the different functional dependence of collection efficiencies on the polarization voltage.« less

  9. Isolation of Radiation-Resistant Bacteria from Mars Analog Antarctic Dry Valleys by Preselection, and the Correlation between Radiation and Desiccation Resistance.

    PubMed

    Musilova, Michaela; Wright, Gary; Ward, John M; Dartnell, Lewis R

    2015-12-01

    Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.

  10. Radiation Response of Emerging FeRAM Technology

    NASA Technical Reports Server (NTRS)

    Nguyen, D. N.; Scheick, L. Z.

    2001-01-01

    The test results of measurements performed on two different sizes of ferroelectric random access memory (FeRAM) suggest the degradation is due to the low radiation tolerance of sense amplifiers and reference voltage generators which are based on commercial complementary metal oxide semiconductor (CMOS) technology. This paper presents total ionizing dose (TID) testing of 64Kb Ramtron FM1608 and 256Kb Ramtron FM1808.

  11. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  12. Evaluating analytical ionization quenching correction models for 3D liquid organic scintillator detector

    NASA Astrophysics Data System (ADS)

    Alsanea, F.; Beddar, S.

    2017-05-01

    Proton therapy offers dosimetric advantage over conventional photon therapy due to the finite range of the proton beam, which improves dose conformity. However, one of the main challenges of proton beam therapy is verification of the complex treatment plans delivered to a patient. Thus, 3D measurements are needed to verify the complex dose distribution. A 3D organic scintillator detector is capable of such measurements. However, organic scintillators exhibit a non-linear relation to the ionization density called ionization quenching. The ionization quenching phenomenon in organic scintillators must be accounted for to obtain accurate dose measurements. We investigated the energy deposition by secondary electrons (EDSE) model to explain ionization quenching in 3D liquid organic scintillator when exposed to proton beams. The EDSE model was applied to volumetric scintillation measurement of proton pencil beam with energies of 85.6, 100.9, 144.9 and 161.9 MeV. The quenching parameter in EDSE model ρq was determined by plotting the total light output vs the initial energy of the ion. The results were compared to the Birks semi-empirical formula of scintillation light emission.

  13. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    NASA Astrophysics Data System (ADS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-10-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.

  14. Measuring Ionization in Highly Compressed, Near-Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Collins, G. W.; Divol, L.; Kritcher, A.; Landen, O. L.; Pak, A.; Weber, C.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; Saunders, A.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, A.

    2016-10-01

    A precise knowledge of ionization at given temperature and density is required to accurately model compressibility and heat capacity of materials at extreme conditions. We use x-ray Thomson scattering to characterize the plasma conditions in plastic and beryllium capsules near stagnation in implosion experiments at the National Ignition Facility. We expect the capsules to be compressed to more than 20x and electron densities approaching 1025 cm-3, corresponding to a Fermi energy of 170 eV. Zinc Heα x-rays (9 keV) scattering at 120° off the plasma yields high sensitivity to K-shell ionization, while at the same time constraining density and temperature. We will discuss recent results in the context of ionization potential depression at these extreme conditions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Neurodevelopmental Outcomes of Extremely Preterm Infants Randomized to Stress Dose Hydrocortisone.

    PubMed

    Parikh, Nehal A; Kennedy, Kathleen A; Lasky, Robert E; Tyson, Jon E

    2015-01-01

    To compare the effects of stress dose hydrocortisone therapy with placebo on survival without neurodevelopmental impairments in high-risk preterm infants. We recruited 64 extremely low birth weight (birth weight ≤1000 g) infants between the ages of 10 and 21 postnatal days who were ventilator-dependent and at high-risk for bronchopulmonary dysplasia. Infants were randomized to a tapering 7-day course of stress dose hydrocortisone or saline placebo. The primary outcome at follow-up was a composite of death, cognitive or language delay, cerebral palsy, severe hearing loss, or bilateral blindness at a corrected age of 18-22 months. Secondary outcomes included continued use of respiratory therapies and somatic growth. Fifty-seven infants had adequate data for the primary outcome. Of the 28 infants randomized to hydrocortisone, 19 (68%) died or survived with impairment compared with 22 of the 29 infants (76%) assigned to placebo (relative risk: 0.83; 95% CI, 0.61 to 1.14). The rates of death for those in the hydrocortisone and placebo groups were 31% and 41%, respectively (P = 0.42). Randomization to hydrocortisone also did not significantly affect the frequency of supplemental oxygen use, positive airway pressure support, or need for respiratory medications. In high-risk extremely low birth weight infants, stress dose hydrocortisone therapy after 10 days of age had no statistically significant effect on the incidence of death or neurodevelopmental impairment at 18-22 months. These results may inform the design and conduct of future clinical trials. ClinicalTrials.gov NCT00167544.

  16. SU-F-T-263: Dosimetric Characteristics of the Cine Acquisition Mode of An A-Si EPID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bawazeer, O; Deb, P; Sarasanandarajah, S

    2016-06-15

    Purpose: To investigate the dosimetric characteristics of Varian a-Si-500 electronic portal imaging device (EPID) operated in cine mode particularly considering linearity with delivered dose, dose rate, field size, phantom thickness, MLC speed and common IMRT fields. Methods: The EPID that attached to a Varian Clinac 21iX linear accelerator, was irradiated with 6 and 18 MV using 600 MU/min. Image acquisition is controlled by the IAS3 software, Trigger delay was 6 ms, BeamOnDelay and FrameStartDelay were zero. Different frame rates were utilized. Cine mode response was calculated using MATLAB as summation of mean pixel values in a region of interest ofmore » the acquired images. The performance of cine mode was compared to integrated mode and dose measurements in water using CC13 ionization chamber. Results: Figure1 illustrates that cine mode has nonlinear response for small MU, when delivering 10 MU was about 0.5 and 0.64 for 6 and 18 MV respectively. This is because the missing acquired images that were calculated around four images missing in each delivery. With the increase MU the response became linear and comparable with integrated mode and ionization chamber within 2%. Figure 2 shows that cine mode has comparable response with integrated mode and ionization chamber within 2% with changing dose rate for 10 MU delivered. This indicates that the dose rate change has no effect on nonlinearity of cine mode response. Except nonlinearity, cine mode is well matched to integrated mode response within 2% for field size, phantom thickness, MLC speed dependences. Conclusion: Cine mode has similar dosimetric characteristics to integrated mode with open and IMRT fields, and the main limitation with cine mode is missing images. Therefore, the calibration of EPID images with this mode should be run with large MU, and when IMRT verification field has low MU, the correction for missing images are required.« less

  17. SU-F-T-174: Patient-Specific Point Dose Measurement Using Fiber Optic Radiation Sensor Using Cerenkov Radiation for Proton Therapeutic Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, J; National Cancer Center, Goyang-si; Kim, M

    Purpose: A fiber-optic radiation sensor using Cerenkov radiation (FOCR) has been widely studied for use as a dosimeter for proton therapeutic beam. We developed the FOCR, and it applied to patient-specific point dose measurement in order to evaluate the effectiveness of the FOCR system for proton therapy QA. Methods: Calibration of FOCR was performed with an ionization chamber whose absolute doses were determined according to the IAEA TRS-398 protocol. To determine the calibration curve, the FOCR was irradiated perpendicularly to the proton beam at the 13 dose levels steps. We selected five actual patient treatment plans performed at proton therapymore » center and compared the resulting FOCR measurements with the ionization chamber measurements. Results: The Cerenkov light yield of the FOCR increases linearly with as the dose measured using the ionization chamber increases from 0 cGy to 500 cGy. The results indicate that the fitting curve is linear, suggesting that dose measurement based on the light yield of the FOCR is possible. The results of proton radiation dose QA performed using the FOCR for 10 proton fields and five patients are good agreement with an ionization chamber. Conclusion: We carried out the patient QA using the FOCR for proton therapeutic beam and evaluated the effectiveness of the FOCR as a proton therapy QA tool. Our results indicate that the FOCR is suitable for use in patient QA of clinical proton beams.« less

  18. The Risk of Cataract among Survivors of Childhood and Adolescent Cancer: A Report from the Childhood Cancer Survivor Study

    PubMed Central

    Chodick, Gabriel; Sigurdson, Alice J.; Kleinerman, Ruth A.; Sklar, Charles A.; Leisenring, Wendy; Mertens, Ann C.; Stovall, Marilyn; Smith, Susan A.; Weathers, Rita E.; Veiga, Lene H. S.; Robison, Leslie L.; Inskip, Peter D.

    2016-01-01

    With therapeutic successes and improved survival after a cancer diagnosis in childhood, increasing numbers of cancer survivors are at risk of subsequent treatment-related morbidities, including cataracts. While it is well known that the lens of the eye is one of the most radiosensitive tissues in the human body, the risks associated with radiation doses less than 2 Gy are less understood, as are the long- and short-term cataract risks from exposure to ionizing radiation at a young age. In this study, we followed 13,902 five-year survivors of childhood cancer in the Childhood Cancer Survivor Study cohort an average of 21.4 years from the date of first cancer diagnosis. For patients receiving radiotherapy, lens dose (mean: 2.2 Gy; range: 0–66 Gy) was estimated based on radiotherapy records. We used unconditional multivariable logistic regression models to evaluate prevalence of self-reported cataract in relationship to cumulative radiation dose both at five years after the initial cancer diagnosis and at the end of follow-up. We modeled the radiation effect in terms of the excess odds ratio (EOR) per Gy. We also analyzed cataract incidence starting from five years after initial cancer diagnosis to the end of follow-up using Cox regression. A total of 483 (3.5%) cataract cases were identified, including 200 (1.4%) diagnosed during the first five years of follow-up. In a multivariable logistic regression model, cataract prevalence at the end of follow-up was positively associated with lens dose in a manner consistent with a linear dose-response relationship (EOR per Gy = 0.92; 95% CI: 0.65–1.20). The odds ratio for doses between 0.5 and 1.5 Gy was elevated significantly relative to doses <0.5 Gy (OR = 2.2; 95% CI: 1.3–3.7). The results from this study indicate a strong association between ocular exposure to ionizing radiation and long-term risk of pre-senile cataract. The risk of cataract increased with increasing exposure, beginning at lens doses as low as 0.5 Gy. Our findings are in agreement with a growing body of evidence of an elevated risk for lens opacities in populations exposed to doses of ionizing radiation below the previously suggested threshold level of 2 Gy. PMID:27023263

  19. Radiation and Plasma Environments for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.

    2006-01-01

    Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.

  20. Dose Limits for Man do not Adequately Protect the Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higley, Kathryn A.; Alexakhin, Rudolf M.; McDonald, Joseph C.

    2004-08-01

    It has been known for quite some time that different organisms display differing degrees of sensitivity to the effects of ionizing radiations. Some microorganisms such as the bacterium Micrococcus radiodurans, along with many species of invertebrates, are extremely radio-resistant. Humans might be categorized as being relatively sensitive to radiation, and are a bit more resistant than some pine trees. Therefore, it could be argued that maintaining the dose limits necessary to protect humans will also result in the protection of most other species of flora and fauna. This concept is usually referred to as the anthropocentric approach. In other words,more » if man is protected then the environment is also adequately protected. The ecocentric approach might be stated as; the health of humans is effectively protected only when the environment is not unduly exposed to radiation. The ICRP is working on new recommendations dealing with the protection of the environment, and this debate should help to highlight a number of relevant issues concerning that topic.« less

  1. The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers

    NASA Astrophysics Data System (ADS)

    Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.

    2017-06-01

    Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.

  2. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle bunches. This domain represents also a prerequisite for the control of in vitro and in vivo irradiation at ultrahigh dose-rates or the investigation of ultrafast dose-fractionating phenomena.

  3. When theory and observation collide: Can non-ionizing radiation cause cancer?

    PubMed

    Havas, Magda

    2017-02-01

    This paper attempts to resolve the debate about whether non-ionizing radiation (NIR) can cause cancer-a debate that has been ongoing for decades. The rationale, put forward mostly by physicists and accepted by many health agencies, is that, "since NIR does not have enough energy to dislodge electrons, it is unable to cause cancer." This argument is based on a flawed assumption and uses the model of ionizing radiation (IR) to explain NIR, which is inappropriate. Evidence of free-radical damage has been repeatedly documented among humans, animals, plants and microorganisms for both extremely low frequency (ELF) electromagnetic fields (EMF) and for radio frequency (RF) radiation, neither of which is ionizing. While IR directly damages DNA, NIR interferes with the oxidative repair mechanisms resulting in oxidative stress, damage to cellular components including DNA, and damage to cellular processes leading to cancer. Furthermore, free-radical damage explains the increased cancer risks associated with mobile phone use, occupational exposure to NIR (ELF EMF and RFR), and residential exposure to power lines and RF transmitters including mobile phones, cell phone base stations, broadcast antennas, and radar installations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A sub-sampled approach to extremely low-dose STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.; Luzi, L.; Yang, H.

    The inpainting of randomly sub-sampled images acquired by scanning transmission electron microscopy (STEM) is an attractive method for imaging under low-dose conditions (≤ 1 e -Å 2) without changing either the operation of the microscope or the physics of the imaging process. We show that 1) adaptive sub-sampling increases acquisition speed, resolution, and sensitivity; and 2) random (non-adaptive) sub-sampling is equivalent, but faster than, traditional low-dose techniques. Adaptive sub-sampling opens numerous possibilities for the analysis of beam sensitive materials and in-situ dynamic processes at the resolution limit of the aberration corrected microscope and is demonstrated here for the analysis ofmore » the node distribution in metal-organic frameworks (MOFs).« less

  5. Development and clinical evaluation of an ionization chamber array with 3.5 mm pixel pitch for quality assurance in advanced radiotherapy techniques.

    PubMed

    Togno, M; Wilkens, J J; Menichelli, D; Oechsner, M; Perez-Andujar, A; Morin, O

    2016-05-01

    To characterize a new air vented ionization chamber technology, suitable to build detector arrays with small pixel pitch and independence of sensitivity on dose per pulse. The prototype under test is a linear array of air vented ionization chambers, consisting of 80 pixels with 3.5 mm pixel pitch distance and a sensitive volume of about 4 mm(3). The detector has been characterized with (60)Co radiation and MV x rays from different linear accelerators (with flattened and unflattened beam qualities). Sensitivity dependence on dose per pulse has been evaluated under MV x rays by changing both the source to detector distance and the beam quality. Bias voltage has been varied in order to evaluate the charge collection efficiency in the most critical conditions. Relative dose profiles have been measured for both flattened and unflattened distributions with different field sizes. The reference detectors were a commercial array of ionization chambers and an amorphous silicon flat panel in direct conversion configuration. Profiles of dose distribution have been measured also with intensity modulated radiation therapy (IMRT), stereotactic radiosurgery (SRS), and volumetric modulated arc therapy (VMAT) patient plans. Comparison has been done with a commercial diode array and with Gafchromic EBT3 films. Repeatability and stability under continuous gamma irradiation are within 0.3%, in spite of low active volume and sensitivity (∼200 pC/Gy). Deviation from linearity is in the range [0.3%, -0.9%] for a dose of at least 20 cGy, while a worsening of linearity is observed below 10 cGy. Charge collection efficiency with 2.67 mGy/pulse is higher than 99%, leading to a ±0.9% sensitivity change in the range 0.09-2.67 mGy/pulse (covering all flattened and unflattened beam qualities). Tissue to phantom ratios show an agreement within 0.6% with the reference detector up to 34 cm depth. For field sizes in the range 2 × 2 to 15 × 15 cm(2), the output factors are in agreement with a thimble chamber within 2%, while with 25 × 25 cm(2) field size, an underestimation of 4.0% was found. Agreement of field and penumbra width measurements with the flat panel is of the order of 1 mm down to 1 × 1 cm(2) field size. Flatness and symmetry values measured with the 1D array and the reference detectors are comparable, and differences are always smaller than 1%. Angular dependence of the detector, when compared to measurements taken with a cylindrical chamber in the same phantom, is as large as 16%. This includes inhomogeneity and asymmetry of the design, which during plan verification are accounted for by the treatment planning system (TPS). The detector is capable to reproduce the dose distributions of IMRT and VMAT plans with a maximum deviation from TPS of 3.0% in the target region. In the case of VMAT and SRS plans, an average (maximum) deviation of the order of 1% (4%) from films has been measured. The investigated technology appears to be useful both for Linac QA and patient plan verification, especially in treatments with steep dose gradients and nonuniform dose rates such as VMAT and SRS. Major limitations of the present prototype are the linearity at low dose, which can be solved by optimizing the readout electronics, and the underestimation of output factors with large field sizes. The latter problem is presently not completely understood and will require further investigations.

  6. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  7. An Extreme Metallicity, Large-scale Outflow from a Star-forming Galaxy at z ~ 0.4

    NASA Astrophysics Data System (ADS)

    Muzahid, Sowgat; Kacprzak, Glenn G.; Churchill, Christopher W.; Charlton, Jane C.; Nielsen, Nikole M.; Mathes, Nigel L.; Trujillo-Gomez, Sebastian

    2015-10-01

    We present a detailed analysis of a large-scale galactic outflow in the circumgalactic medium of a massive ({M}{{h}}˜ {10}12.5 {M}⊙ ), star-forming (˜ 6.9 {M}⊙ yr-1), sub-L* (˜ 0.5{L}B*) galaxy at z = 0.39853 that exhibits a wealth of metal-line absorption in the spectra of the background quasar Q 0122-003 at an impact parameter of 163 kpc. The galaxy inclination angle (i=63^\\circ ) and the azimuthal angle ({{Φ }}=73^\\circ ) imply that the QSO sightline is passing through the projected minor-axis of the galaxy. The absorption system shows a multiphase, multicomponent structure with ultra-strong, wide velocity spread {{O}} {{VI}} ({log}N=15.16+/- 0.04, {{Δ }}{v}90 = 419 km s-1) and {{N}} {{V}} ({log}N=14.69+/- 0.07, {{Δ }}{v}90 = 285 km s-1) lines that are extremely rare in the literature. The highly ionized absorption components are well explained as arising in a low density (˜ {10}-4.2 cm-3), diffuse (˜10 kpc), cool (˜104 K) photoionized gas with a super-solar metallicity ([{{X}}/{{H}}]≳ 0.3). From the observed narrowness of the Lyβ profile, the non-detection of {{S}} {{IV}} absorption, and the presence of strong {{C}} {{IV}} absorption in the low-resolution FOS spectrum, we rule out equilibrium/non-equilibrium collisional ionization models. The low-ionization photoionized gas with a density of ˜ {10}-2.5 cm-3 and a metallicity of [{{X}}/{{H}}]≳ -1.4 is possibly tracing recycled halo gas. We estimate an outflow mass of ˜ 2× {10}10 {M}⊙ , a mass-flow rate of ˜ 54 {M}⊙ {{yr}}-1, a kinetic luminosity of ˜ 9× {10}41 erg s-1, and a mass loading factor of ˜8 for the outflowing high-ionization gas. These are consistent with the properties of “down-the-barrel” outflows from infrared-luminous starbursts as studied by Rupke et al. Such powerful, large-scale, metal-rich outflows are the primary means of sufficient mechanical and chemical feedback as invoked in theoretical models of galaxy formation and evolution.

  8. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  9. Low LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution

    NASA Astrophysics Data System (ADS)

    Greubel, Christoph; Ilicic, Katarina; Rösch, Thomas; Reindl, Judith; Siebenwirth, Christian; Moser, Marcus; Girst, Stefanie; Walsh, Dietrich W. M.; Schmid, Thomas E.; Dollinger, Günther

    2017-08-01

    High LET radiation, like heavy ions, are known to have a higher biological effectiveness (RBE) compared to low LET radiation, like X- or γ -rays. Theories and models attribute these higher effectiveness mostly to their extremely inhomogeneous dose deposition, which is concentrated in only a few micron sized spots. At the ion microprobe SNAKE, low LET 20 MeV protons (LET in water of 2.6 keV/μm) can be applied to cells either randomly distributed or focused to submicron spots, approximating heavy ion dose deposition. Thus, the transition between low and high LET energy deposition is experimentally accessible and the effect of different spatial dose distributions can be analysed. Here, we report on the technical setup to cultivate and irradiate 104 cells with submicron spots of low LET protons to measure cell survival in unstained cells. In addition we have taken special care to characterise the beam spot of the 20 MeV proton microbeam with fluorescent nuclear track detectors.

  10. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897; Kiyama, S.

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current densitymore » can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.« less

  11. Dose algorithm for EXTRAD 4100S extremity dosimeter for use at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles Augustus

    An updated algorithm for the EXTRAD 4100S extremity dosimeter has been derived. This algorithm optimizes the binning of dosimeter element ratios and uses a quadratic function to determine the response factors for low response ratios. This results in lower systematic bias across all test categories and eliminates the need for the 'red strap' algorithm that was used for high energy beta/gamma emitting radionuclides. The Radiation Protection Dosimetry Program (RPDP) at Sandia National Laboratories uses the Thermo Fisher EXTRAD 4100S extremity dosimeter, shown in Fig 1.1 to determine shallow dose to the extremities of potentially exposed individuals. This dosimeter consists ofmore » two LiF TLD elements or 'chipstrates', one of TLD-700 ({sup 7}Li) and one of TLD-100 (natural Li) separated by a tin filter. Following readout and background subtraction, the ratio of the responses of the two elements is determined defining the penetrability of the incident radiation. While this penetrability approximates the incident energy of the radiation, X-rays and beta particles exist in energy distributions that make determination of dose conversion factors less straightforward in their determination.« less

  12. Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration

    NASA Astrophysics Data System (ADS)

    Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.

    2012-08-01

    In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.

  13. Models of CNS radiation damage during space flight

    NASA Astrophysics Data System (ADS)

    Hopewell, J. W.

    1994-10-01

    The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.

  14. SU-E-T-184: Clinical VMAT QA Practice Using LINAC Delivery Log Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, H; Jacobson, T; Gu, X

    2015-06-15

    Purpose: To evaluate the accuracy of volumetric modulated arc therapy (VMAT) treatment delivery dose clouds by comparing linac log data to doses measured using an ionization chamber and film. Methods: A commercial IMRT quality assurance (QA) process utilizing a DICOM-RT framework was tested for clinical practice using 30 prostate and 30 head and neck VMAT plans. Delivered 3D VMAT dose distributions were independently checked using a PinPoint ionization chamber and radiographic film in a solid water phantom. DICOM RT coordinates were used to extract the corresponding point and planar doses from 3D log file dose distributions. Point doses were evaluatedmore » by computing the percent error between log file and chamber measured values. A planar dose evaluation was performed for each plan using a 2D gamma analysis with 3% global dose difference and 3 mm isodose point distance criteria. The same analysis was performed to compare treatment planning system (TPS) doses to measured values to establish a baseline assessment of agreement. Results: The mean percent error between log file and ionization chamber dose was 1.0%±2.1% for prostate VMAT plans and −0.2%±1.4% for head and neck plans. The corresponding TPS calculated and measured ionization chamber values agree within 1.7%±1.6%. The average 2D gamma passing rates for the log file comparison to film are 98.8%±1.0% and 96.2%±4.2% for the prostate and head and neck plans, respectively. The corresponding passing rates for the TPS comparison to film are 99.4%±0.5% and 93.9%±5.1%. Overall, the point dose and film data indicate that log file determined doses are in excellent agreement with measured values. Conclusion: Clinical VMAT QA practice using LINAC treatment log files is a fast and reliable method for patient-specific plan evaluation.« less

  15. Ionizing radiation fluxes and dose measurements during the Kosmos 1887 satellite flight.

    PubMed

    Charvat, J; Spurny, F; Kopecka, B; Votockova, I

    1990-01-01

    The results of dosimetric experiments performed during the flight of Kosmos 1887 biosatellite are presented. Two kinds of measurements were performed on the external surface of the satellite. First, the fluences and spectra of low energy charged particles were established. It was found that most of the particles registered by means of solid state nuclear track detectors are helium nuclei. Tracks of oxygen nuclei and some heavier charged particles were also observed. Thermoluminescent detectors were used to establish absorbed doses in open space on the satellite's surface and behind thin shielding. It was found that these doses were rather high; nevertheless, their decrease with shielding thickness is very rapid. Dosimetric and other consequences of the results obtained are analyzed and discussed.

  16. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, C.; Thomas, H.; Hoener, M.

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  17. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos.

    PubMed

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-02-11

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish ( Danio rerio ) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  18. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE PAGES

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; ...

    2014-10-22

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  19. Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah

    Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less

  20. Ionizing radiation: future etiologic research and preventive strategies.

    PubMed

    Darby, S C; Inskip, P D

    1995-11-01

    Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki, and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better the interactions between radiation and other host and environmental factors. Most population exposure to radiation occurs at very low dose rates. For low linear energy transfer (LET) radiations, it often has been assumed that cancer risks per unit dose are lower following protracted exposure than following acute exposure. Studies of nuclear workers chronically exposed over a working lifetime provide data that can be used to test this hypothesis, and preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure. However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment. Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found in most homes might be too low to be quantified accurately in epidemiological studies.

  1. Ionizing radiation: future etiologic research and preventive strategies.

    PubMed Central

    Darby, S C; Inskip, P D

    1995-01-01

    Estimates of cancer risks following exposure to ionizing radiation traditionally have been based on the experience of populations exposed to substantial (and known) doses delivered over short periods of time. Examples include survivors of the atomic bombings at Hiroshima and Nagasaki, and persons treated with radiation for benign or malignant disease. Continued follow-up of these populations is important to determine the long-term effects of exposure in childhood, to characterize temporal patterns of excess risk for different types of cancer, and to understand better the interactions between radiation and other host and environmental factors. Most population exposure to radiation occurs at very low dose rates. For low linear energy transfer (LET) radiations, it often has been assumed that cancer risks per unit dose are lower following protracted exposure than following acute exposure. Studies of nuclear workers chronically exposed over a working lifetime provide data that can be used to test this hypothesis, and preliminary indications are that the risks per unit dose for most cancers other than leukemia are similar to those for acute exposure. However, these results are subject to considerable uncertainty, and further information on this question is needed. Residential radon is the major source of population exposure to high-LET radiation. Current estimates of the risk of lung cancer due to residential exposure to radon and radon daughters are based on the experience of miners exposed to much higher concentrations. Data indicate that lung cancer risk among miners is inversely associated with exposure rate, and also is influenced by the presence of other lung carcinogens such as arsenic in the mine environment. Further study of populations of radon-exposed miners would be informative, particularly those exposed at below-average levels. More direct evidence on the effects of residential exposure to radon also is desirable but might be difficult to come by, as risks associated with radon levels found in most homes might be too low to be quantified accurately in epidemiological studies. PMID:8741792

  2. Direct determination of trace phthalate esters in alcoholic spirits by spray-inlet microwave plasma torch ionization tandem mass spectrometry.

    PubMed

    Miao, Meng; Zhao, Gaosheng; Xu, Li; Dong, Junguo; Cheng, Ping

    2018-03-01

    A direct analytical method based on spray-inlet microwave plasma torch tandem mass spectrometry was applied to simultaneously determine 4 phthalate esters (PAEs), namely, benzyl butyl phthalate, diethyl phthalate, dipentyl phthalate, and dodecyl phthalate with extremely high sensitivity in spirits without sample treatment. Among the 4 brands of spirit products, 3 kinds of PAE compounds were directly determined at very low concentrations from 1.30 to 114 ng·g -1 . Compared with other online and off-line methods, the spray-inlet microwave plasma torch tandem mass spectrometry technique is extremely simple, rapid, sensitive, and high efficient, providing an ideal screening tool for PAEs in spirits. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Xenon gamma-ray detector for ecological applications

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.

    2015-01-01

    A description of the xenon detector (XD) for ecological applications is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.

  4. Synthetic IRIS spectra of the solar transition region: Effect of high-energy tails

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Vocks, C.; Dudík, J.

    2017-06-01

    Aims: The solar transition region satisfies the conditions for presence of non-Maxwellian electron energy distributions with high-energy tails at energies corresponding to the ionization potentials of many ions emitting in the extreme-ultraviolet and ultraviolet portions of the spectrum. Methods: We calculate the synthetic Si iv, O iv, and S iv spectra in the far ultraviolet channel of the Interface Region Imaging Spectrograph (IRIS). Ionization, recombination, and excitation rates are obtained by integration of the cross-sections or their approximations over the model electron distributions considering particle propagation from the hotter corona. Results: The ionization rates are significantly affected by the presence of high-energy tails. This leads to the peaks of the relative abundance of individual ions to be broadened with pronounced low-temperature shoulders. As a result, the contribution functions of individual lines observable by IRIS also exhibit low-temperature shoulders, or their peaks are shifted to temperatures an order of magnitude lower than for the Maxwellian distribution. The integrated emergent spectra can show enhancements of Si iv compared to O iv by more than a factor of two. Conclusions: The high-energy particles can have significant impact on the emergent spectra and their presence needs to be considered even in situations without strong local acceleration.

  5. Changes in the specific migration characteristics of packaging-food simulant combinations caused by ionizing radiation: Effect of food simulant

    NASA Astrophysics Data System (ADS)

    Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.

    2011-08-01

    The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.

  6. Commercial Sensory Survey Radiation Testing Progress Report

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Dolphic, Michael D.; Thorbourn, Dennis O.; Alexander, James W.; Salomon, Phil M.

    2008-01-01

    The NASA Electronic Parts and Packaging (NEPP) Program Sensor Technology Commercial Sensor Survey task is geared toward benefiting future NASA space missions with low-cost, short-duty-cycle, visible imaging needs. Such applications could include imaging for educational outreach purposes or short surveys of spacecraft, planetary, or lunar surfaces. Under the task, inexpensive commercial grade CMOS sensors were surveyed in fiscal year 2007 (FY07) and three sensors were selected for total ionizing dose (TID) and displacement damage dose (DDD) tolerance testing. The selected sensors had to meet selection criteria chosen to support small, low-mass cameras that produce good resolution color images. These criteria are discussed in detail in [1]. This document discusses the progress of radiation testing on the Micron and OmniVision sensors selected in FY07 for radiation tolerance testing.

  7. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    NASA Astrophysics Data System (ADS)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor frequency and size was similar irrespective of energetic heavy ion radiation dose rate suggesting that carcinogenic potential of energetic heavy ions is independent of dose rate.

  8. Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells.

    PubMed

    Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna

    2011-02-01

    The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.

  9. Chromosome translocations in turtles: a biomarker in a sentinel animal for ecological dosimetry.

    PubMed

    Ulsh, B A; Mühlmann-Díaz, M C; Whicker, F W; Hinton, T G; Congdon, J D; Bedford, J S

    2000-06-01

    Nonhuman organisms are being exposed to ionizing radiations at radionuclide-contaminated sites around the world. Direct methods are seldom available for measuring biologically relevant doses received by these organisms. Here we extend biological dosimetry techniques, which are much better developed for humans and a few other mammalian species, to a nonmammalian species. Turtles were chosen because a long-lived animal would best serve the need for low-level, chronic exposure conditions. We chose the yellow-bellied slider turtle (Trachemys scripta), which is known to have a maximum life span of at least 22 years. As reported elsewhere, we first isolated an embryonic fibroblast cell line and constructed whole-chromosome-specific DNA libraries for chromosome 1 by microdissection and PCR. A FISH painting probe was prepared and used to establish a dose-response curve for ionizing radiation-induced chromosome interchange aberrations in turtle fibroblasts. This was compared to the dose response for human fibroblasts treated under similar conditions in our laboratory. With respect to induction of chromosome interchange aberrations, human fibroblasts were approximately 1.7 times more sensitive than the T. scripta fibroblasts. To the extent that symmetrical interchanges are persistent over long periods, this approach could eventually provide a measure of the integrated lifetime dose these organisms receive from radionuclides in their environment and give a measure of the extent of relevant genetic damage over that time.

  10. Hematopoietic responses under protracted exposures to low daily dose gamma irradiation.

    PubMed

    Seed, T M; Fritz, T E; Tolle, D V; Jackson, W E

    2002-01-01

    In attempting to evaluate the possible health consequences of chronic ionizing radiation exposure during extended space travel (e.g., Mars Mission), ground-based experimental studies of the clinical and pathological responses of canines under low daily doses of 60Co gamma irradiation (0.3-26.3 cGy d-1) have been examined. Specific reference was given to responses of the blood forming system. Results suggest that the daily dose rate of 7.5 cGy d-1 represents a threshold below which the hematopoietic system can retain either partial or full trilineal cell-producing capacity (erythropoiesis, myelopoiesis, and megakaryopoiesis) for extended periods of exposure (>1 yr). Trilineal capacity was fully retained for several years of exposure at the lowest dose-rate tested (0.3 cGy d-1) but was completely lost within several hundred days at the highest dose-rate (26.3 cGy d-1). Retention of hematopoietic capacity under chronic exposure has been demonstrated to be mediated by hematopoietic progenitors with acquired radioresistance and repair functions, altered cytogenetics, and cell-cycle characteristics. Radiological, biological, and temporal parameters responsible for these vital acquisitions by hematopoietic progenitors have been partially characterized. These parameters, along with threshold responses, are described and discussed in relation to potential health risks of the space traveler under chronic stress of low-dose irradiation. Published by Elsevier Science Ltd on behalf of COSPAR.

  11. Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper,more » we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.« less

  12. Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane; Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Feltre, Anna; Gutkin, Julia; Jones, Tucker; Mainali, Ramesh; Wofford, Aida

    2018-06-01

    Measurements of the galaxy UV luminosity function at z ≳ 6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z ˜ 6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, ξ _{ion}^\\star, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z ≳ 6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z ≳ 6. We use the new-generation BEAGLE tool to model the UV-to-optical photometry and UV/optical emission lines of these Local `analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, ξ _{ion}^\\star, based on the equivalent width of the bright [O III]49595007 line doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate ξ _{ion}^\\star from future direct measurements of the [O III]49595007 line using JWST/NIRSpec (out to z ˜ 9.5), and by exploiting the contamination by Hβ +[O III]{4959}{5007}} of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.

  13. Ultra-Low-Dropout Linear Regulator

    NASA Technical Reports Server (NTRS)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  14. THE FRACTIONAL IONIZATION OF THE WARM NEUTRAL INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Edward B., E-mail: ebj@astro.princeton.edu

    2013-02-10

    When the neutral interstellar medium is exposed to extreme-ultraviolet and soft X-ray radiation, the argon atoms in it are far more susceptible to being ionized than the hydrogen atoms. We make use of this fact to determine the level of ionization in the nearby warm neutral medium. By analyzing Far-Ultraviolet Spectroscopic Explorer observations of ultraviolet spectra of 44 hot subdwarf stars a few hundred parsecs away from the Sun, we can compare column densities of Ar I to those of O I, where the relative ionization of oxygen can be used as a proxy for that of hydrogen. The measuredmore » deficiency [Ar I/O I]=-0.427{+-}0.11 dex below the expectation for a fully neutral medium implies that the electron density n(e) Almost-Equal-To 0.04 cm{sup -3} if n(H) = 0.5 cm{sup -3}. This amount of ionization is considerably larger than what we expect from primary photoionizations resulting from cosmic rays, the diffuse X-ray background, and X-ray emitting sources within the medium, along with the additional ionizations caused by energetic secondary photoelectrons, Auger electrons, and photons from helium recombinations. We favor an explanation that bursts of radiation created by previous, nearby supernova remnants that have faded by now may have elevated the ionization, and the gas has not yet recombined to a quiescent level. A different alternative is that the low-energy portion of the soft X-ray background is poorly shielded by the H I because it is frothy and has internal pockets of very hot, X-ray emitting gases.« less

  15. Star-forming Galaxies as AGN Imposters? A Theoretical Investigation of the Mid-infrared Colors of AGNs and Extreme Starbursts

    NASA Astrophysics Data System (ADS)

    Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.

    2018-05-01

    We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.

  16. Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.

    PubMed

    Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D

    2016-05-01

    Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.

  17. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  18. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    PubMed

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p < 0.001). Exposure to magnetic fields used in the magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  19. Effective radiation exposure evaluation during a one year follow-up of urolithiasis patients after extracorporeal shock wave lithotripsy

    PubMed Central

    Tekinarslan, Erdem; Keskin, Suat; Buldu, İbrahim; Sönmez, Mehmet Giray; Karatag, Tuna; Istanbulluoglu, Mustafa Okan

    2015-01-01

    Introduction To determine and evaluate the effective radiation exposure during a one year follow-up of urolithiasis patients following the SWL (extracorporeal shock wave lithotripsy) treatment. Material and methods Total Effective Radiation Exposure (ERE) doses for each of the 129 patients: 44 kidney stone patients, 41 ureter stone patients, and 44 multiple stone location patients were calculated by adding up the radiation doses of each ionizing radiation session including images (IVU, KUB, CT) throughout a one year follow-up period following the SWL. Results Total mean ERE values for the kidney stone group was calculated as 15, 91 mSv (5.10-27.60), for the ureter group as 13.32 mSv (5.10-24.70), and in the multiple stone location group as 27.02 mSv (9.41-54.85). There was no statistically significant differences between the kidney and ureter groups in terms of the ERE dose values (p = 0.221) (p >0.05). In the comparison of the kidney and ureter stone groups with the multiple stone location group; however, there was a statistically significant difference (p = 0.000) (p <0.05). Conclusions ERE doses should be a factor to be considered right at the initiation of any diagnostic and/or therapeutic procedure. Especially in the case of multiple stone locations, due to the high exposure to ionized radiation, different imaging modalities with low dose and/or totally without a dose should be employed in the diagnosis, treatment, and follow-up bearing the aim to optimize diagnosis while minimizing the radiation dose as much as possible. PMID:26568880

  20. Background Ionizing Radiation and the Risk of Childhood Cancer: A Census-Based Nationwide Cohort Study

    PubMed Central

    Lupatsch, Judith E.; Zwahlen, Marcel; Röösli, Martin; Niggli, Felix; Grotzer, Michael A.; Rischewski, Johannes; Egger, Matthias; Kuehni, Claudia E.

    2015-01-01

    Background Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low-dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. Objectives In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. Methods Children < 16 years of age in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008, and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. Results Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each millisievert increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (95% CI: 1.00, 1.08) for leukemia, 1.01 (95% CI: 0.96, 1.05) for lymphoma, and 1.04 (95% CI: 1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. Conclusions Our study suggests that background radiation may contribute to the risk of cancer in children, including leukemia and CNS tumors. Citation Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, for the Swiss Pediatric Oncology Group and the Swiss National Cohort. 2015. Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628; http://dx.doi.org/10.1289/ehp.1408548 PMID:25707026

  1. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors.

    PubMed

    Karsch, L; Beyreuther, E; Burris-Mog, T; Kraft, S; Richter, C; Zeil, K; Pawelke, J

    2012-05-01

    The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10(11) Gy∕s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. The dosimeters are dose rate independent up to 4●10(9) Gy∕s within 2% (OSL and TLD) and up to 15●10(9) Gy∕s within 5% (EBT films). The diamond detectors show strong dose rate dependence. TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  2. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the numbermore » of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.« less

  3. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  4. Radiation Tests of the Extravehicular Mobility Unit Space Suit for the International Space Station Using Energetic Protons. Chapter 3

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Shavers, M.

    2003-01-01

    Measurements using silicon detectors to characterize the radiation transmitted through the EMU space suit and a human phantom have been performed using 155 and 250 MeV proton beams at LLUMC. The beams simulate radiation encountered in space, where trapped protons having kinetic energies on the order of 100 MeV are copious. Protons with 100 MeV kinetic energy and above can penetrate many centimeters of water or other light materials, so that astronauts exposed to such energetic particles will receive doses to their internal organs. This dose can be enhanced or reduced by shielding - either from the space suit or the self-shielding of the body - but minimization of the risk depends on details of the incident particle flux (in particular the energy spectrum) and on the dose responses of the various critical organs. Data were taken to characterize the beams and to calibrate the detectors using the beam in a treatment room at LLUPTF, in preparation for an experiment with the same beams incident on detectors placed in a human phantom within the EMU suit. Nuclear interactions of high-energy protons in various materials produce a small flux of highly ionizing, low-energy secondary radiation. Secondaries are of interest for their biological effects, since they cause doses and especially dose-equivalents to increase relative to the values expected simply from ionization energy loss along the Bragg curve. Because many secondaries have very short ranges, they are best measured in passive track detectors such as CR-39. The silicon detector data presented here are intended to supplement the CR-39 data in regions where silicon has greater sensitivity, in particular the portion of the LET spectrum below 5 keV/micron. The results obtained in this study suggest that optimizing the radiation shielding properties of space suits is a formidable task. The naive assumption that adding mass can reduce risk is not supported by the data, which show that reducing the dose delivered at or near the skin by low-energy particles may increase the dose delivered by energetic particles to points deeper in the body.

  5. A 0.18 micrometer CMOS Thermopile Readout ASIC Immune to 50 MRAD Total Ionizing Dose (SI) and Single Event Latchup to 174MeV-cm(exp 2)/mg

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard T.; Aslam, Shahid; Lakew, Brook; DuMonthier, Jeffery J.; Katz, Richard B.; Kleyner, Igor

    2014-01-01

    Radiation hardened by design (RHBD) techniques allow commercial CMOS circuits to operate in high total ionizing dose and particle fluence environments. Our radiation hard multi-channel digitizer (MCD) ASIC (Figure 1) is a versatile analog system on a chip (SoC) fabricated in 180nm CMOS. It provides 18 chopper stabilized amplifier channels, a 16- bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The MCD was evaluated at Goddard Space Flight Center and Texas A&M University's radiation effects facilities and found to be immune to single event latchup (SEL) and total ionizing dose (TID) at 174 MeV-cm(exp 2)/mg and 50 Mrad (Si) respectively.

  6. Epidemiologic Study of One Million American Workers and Military Veterans Exposed to Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boice, John D.

    2015-02-27

    A pilot study was completed demonstrating the feasibility of conducting an epidemiologic study assessing cancer and other disease mortality among nearly one million US veterans and workers exposed to ionizing radiation, a population 10 times larger than atomic bomb survivor study with high statistical power to evaluate low dose rate effects. Among the groups enumerated and/or studied were: (1) 194,000 Department of Energy Uranium Workers; (2) 6,700 Rocketdyne Radiation Workers; (3) 7,000 Mound Radiation Workers; (4) 156,000 DOE Plutonium Workers; (5) 212,000 Nuclear Power Plant Workers; (6) 130,000 Industrial Radiography Workers; (7) 1.7 million Medical Workers and (8) 135,000 Atomicmore » Veterans.« less

  7. Effect of ionizing radiation on physicochemical and mechanical properties of commercial multilayer coextruded flexible plastics packaging materials

    NASA Astrophysics Data System (ADS)

    Goulas, Antonios E.; Riganakos, Kyriakos A.; Kontominas, Michael G.

    2003-12-01

    The effect of gamma radiation (doses: 5, 10 and 30 kGy) on mechanical properties, gas and water vapour permeability and overall migration values into distilled water, 3% aqueous acetic acid and iso-octane was studied for a series of commercial multilayer flexible packaging materials based on coextruded polypropylene (PP), ethylene vinyl alcohol (EVOH), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyamide (PA) and Ionomer. The results showed that radiation doses of 5 and 10 kGy induced no statistically significant differences ( p>0.05) in all polymer properties examined. A dose of 30 kGy induced differences ( p<0.05) in the mechanical properties of PA/LDPE, LDPE/EVOH/LDPE and LDPE/PA/Ionomer films. In addition, the same dose induced differences ( p<0.05) in the overall migration from Ionomer/EVOH/LDPE and LDPE/PA/Ionomer films into 3% acetic acid and iso-octane and in the overall migration from PP/EVOH/LDPE-LLDPE into iso-octane. Differences recorded, are discussed in relation to food irradiation applications of respective packaging materials.

  8. THE EFFECT OF IONIZING RADIATIONS ON ONTOGENESIS IN BIRDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinu, M.

    1963-01-01

    The effect of strong doses of ionizing radiations on the ontogenetic development of birds and formation of mutations was studied. The data obtained show that ionizing radiations have a different effect on the biological substratum, depending on their nature and relationship to physiological limits. Gamma radiations have a negative action on the biochemical process altering ths substratum and upsetting the entity of heredity. It was found that x rays produce a temporary stimulating effect on metabolic processes influencing the vitality, ontogenetic development, resistance, the appearance of sexual instinct, and the fertility. Ionizing radiations affect functioning of endocrinic glands and consequentlymore » the ratio of sexes in the offspring. From the results obtained it cand be stated that strong doses of ionizing radiations may be used to obtain variation of mutations, and that in general they are a factor in the evolution of the living organism. (OTS)« less

  9. NMT - A new individual ion counting method: Comparison to a Faraday cup

    NASA Astrophysics Data System (ADS)

    Burton, Michael; Gorbunov, Boris

    2018-03-01

    Two sample detectors used to analyze the emission from Gas Chromatography (GC) columns are the Flame Ionization Detector (FID) and the Electron Capture Detector (ECD). Both of these detectors involve ionization of the sample molecules and then measuring electric current in the gas using a Faraday cup. In this paper a newly discovered method of ion counting, Nanotechnology Molecular Tagging (NMT) is tested as a replacement to the Faraday cup in GCs. In this method the effective physical volume of individual molecules is enlarged up to 1 billion times enabling them to be detected by an optical particle counter. It was found that the sensitivity of NMT was considerably greater than the Faraday cup. The background in the NMT was circa 200 ions per cm3, corresponding to an extremely low electric current ∼10-17 A.

  10. Effects of dose scaling on delivery quality assurance in tomotherapy

    PubMed Central

    Nalichowski, Adrian; Burmeister, Jay

    2012-01-01

    Delivery quality assurance (DQA) of tomotherapy plans is routinely performed with silver halide film which has a limited range due to the effects of saturation. DQA plans with dose values exceeding this limit require the dose of the entire plan to be scaled downward if film is used, to evaluate the dose distribution in two dimensions. The potential loss of fidelity between scaled and unscaled DQA plans as a function of dose scaling is investigated. Three treatment plans for 12 Gy fractions designed for SBRT of the lung were used to create DQA procedures that were scaled between 100% and 10%. The dose was measured with an ionization chamber array and compared to values from the tomotherapy treatment planning system. Film and cylindrical ion chamber measurements were also made for one patient for scaling factors of 50% to 10% to compare with the ionization chamber array measurements. The array results show the average gamma pass rate is ≥99% from 100% to 30% scaling. The average gamma pass rate falls to 93.6% and 51.1% at 20% and 10% scaling, respectively. Film analysis yields similar pass rates. Cylindrical ion chambers did not exhibit significant variation with dose scaling, but only represent points in the low gradient region of the dose distribution. Scaling the dose changes the mechanics of the radiation delivery, as well as the signal‐to‐noise ratio. Treatment plans which exhibit parameters that differ significantly from those common to DQA plans studied in this paper may exhibit different behavior. Dose scaling should be limited to the smallest degree possible. Planar information, such as that from film or a detector array, is required. The results show that it is not necessary to perform both a scaled and unscaled DQA plan for the treatment plans considered here. PACS numbers: 87.55.km, 87.55.Qr PMID:22231213

  11. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubovas, Kastytis; King, Andrew, E-mail: kastytis.zubovas@ftmc.lt

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to {approx}10-50 times this in BAL QSOs. For UFOs this implies black holemore » accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-{sigma} relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.« less

  12. BAL QSOs and Extreme UFOs: The Eddington Connection

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2013-05-01

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to ~10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-σ relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  13. Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae

    NASA Technical Reports Server (NTRS)

    Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.

    1996-01-01

    The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent absence of a substantial shift in the wind ionization mixture of gamma Ara, and the normal nature of its photospheric spectrum, suggests wind-compression as the likely dominant cause for the observed equatorial density enhancements.

  14. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  15. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Richardson, Richard B.

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.

  16. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    PubMed

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Is ionizing radiation regulated more stringently than chemical carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-04-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals andmore » ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens.« less

  18. Radioactivity Risk Assessment of Radon and Gamma Dose at One Uranium Tailings Pond in China

    NASA Astrophysics Data System (ADS)

    Lou, Yalong; Liu, Yong; Peng, Guowen; Zhao, Guodong; Zhang, Yan; Yang, Zhu

    2018-01-01

    A year-long monitoring of gamma radiation effective dose rate and radon concentration had been done in the reservoir area of one uranium tailings pond in Hunan province (The monitoring area included indoor and outdoor area of residential buildings and workshops, tailings dam slope). Afterwards, the annual effective radiation dose of the people in that radiation environment had been calculated based on the results of monitoring, as well as a radiation risk assessment. According to the assessment, gamma radiation effective dose rate and radon concentration in the monitoring area were low, and the annual effective radiation dose was far below the international standard (30mSv), which showed that the radiation would not put the people’s health at risk. However, the annual effective radiation dose of gamma was far above that of radon in the area of uranium tailings pond; therefore, it’s advisable to take quarantine measures in in the area of uranium tailings pond to keep the surrounding residents away from unnecessary ionizing radiation.

  19. Neurodevelopmental Outcomes of Extremely Preterm Infants Randomized to Stress Dose Hydrocortisone

    PubMed Central

    Parikh, Nehal A.; Kennedy, Kathleen A.; Tyson, Jon E.

    2015-01-01

    Objective To compare the effects of stress dose hydrocortisone therapy with placebo on survival without neurodevelopmental impairments in high-risk preterm infants. Study Design We recruited 64 extremely low birth weight (birth weight ≤1000g) infants between the ages of 10 and 21 postnatal days who were ventilator-dependent and at high-risk for bronchopulmonary dysplasia. Infants were randomized to a tapering 7-day course of stress dose hydrocortisone or saline placebo. The primary outcome at follow-up was a composite of death, cognitive or language delay, cerebral palsy, severe hearing loss, or bilateral blindness at a corrected age of 18–22 months. Secondary outcomes included continued use of respiratory therapies and somatic growth. Results Fifty-seven infants had adequate data for the primary outcome. Of the 28 infants randomized to hydrocortisone, 19 (68%) died or survived with impairment compared with 22 of the 29 infants (76%) assigned to placebo (relative risk: 0.83; 95% CI, 0.61 to 1.14). The rates of death for those in the hydrocortisone and placebo groups were 31% and 41%, respectively (P = 0.42). Randomization to hydrocortisone also did not significantly affect the frequency of supplemental oxygen use, positive airway pressure support, or need for respiratory medications. Conclusions In high-risk extremely low birth weight infants, stress dose hydrocortisone therapy after 10 days of age had no statistically significant effect on the incidence of death or neurodevelopmental impairment at 18–22 months. These results may inform the design and conduct of future clinical trials. Trial Registration ClinicalTrials.gov NCT00167544 PMID:26376074

  20. Effect of gamma and e-beam radiation on the essential oils of Thymus vulgaris thymoliferum, Eucalyptus radiata, and Lavandula angustifolia.

    PubMed

    Haddad, Mohamed; Herent, Marie-France; Tilquin, Bernard; Quetin-Leclercq, Joëlle

    2007-07-25

    The microbiological contamination of raw plant materials is common and may be adequately reduced by radiation processing. This study evaluated the effects of gamma- and e-beam ionizing radiations (25 kGy) on three plants used as food or as medicinal products (Thymus vulgaris L., Eucalyptus radiata D.C., and Lavandula angustifolia Mill.) as well as their effects on extracted or commercial essential oils and pure standard samples. Comparison between irradiated and nonirradiated samples was performed by GC/FID and GC/MS. At the studied doses, gamma and e-beam ionizing radiation did not induce any detectable qualitative or quantitative significant changes in the contents and yields of essential oils immediately after ionizing radiation of plants or commercial essential oils and standards. As the maximum dose tested (25 kGy) is a sterilizing dose (much higher than doses used for decontamination of vegetable drugs), it is likely that even decontamination with lower doses will not modify yields or composition of essential oils of these three plants.

Top