Narrow-linewidth Q-switched random distributed feedback fiber laser.
Xu, Jiangming; Ye, Jun; Xiao, Hu; Leng, Jinyong; Wu, Jian; Zhang, Hanwei; Zhou, Pu
2016-08-22
A narrow-linewidth Q-switched random fiber laser (RFL) based on a half-opened cavity, which is realized by narrow-linewidth fiber Bragg grating (FBG) and a section of 3 km passive fiber, has been proposed and experimentally investigated. The narrow-linewidth lasing is generated by the spectral filtering of three FBGs with linewidth of 1.21 nm, 0.56 nm, and 0.12 nm, respectively. The Q switching of the distributed cavity is achieved by placing an acousto-optical modulator (AOM) between the FBG and the passive fiber. The maximal output powers of the narrow-linewidth RFLs with the three different FBGs are 0.54 W, 0.27 W, and 0.08 W, respectively. Furthermore, the repetition rates of the output pulses are 500 kHz, and the pulse durations are about 500 ns. The corresponding pulse energies are about 1.08 μJ, 0.54 μJ, and 0.16 μJ, accordingly. The linewidth of FBG can influence the output characteristics in full scale. The narrower the FBG, the higher the pump threshold; the lower the output power at the same pump level, the more serious the linewidth broadening; and thus the higher the proportion of the CW-ground exists in the output pulse trains. Thanks to the assistance of the band-pass filter (BPF), the proportion of the CW-ground of narrow-linewidth Q-switched RFL under the relative high-pump-low-output condition can be reduced effectively. The experimental results indicate that it is challenging to demonstrate a narrow-linewidth Q-switched RFL with high quality output. But further power scaling and linewidth narrowing is possible in the case of operating parameters, optimization efforts, and a more powerful pump source. To the best of our knowledge, this is the first demonstration of narrow-linewidth generation in a Q-switched RFL.
Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope
NASA Astrophysics Data System (ADS)
Huang, Shihong; Zhu, Tao; Liu, Min; Huang, Wei
2017-02-01
Laser linewidth narrowing down to kHz or even Hz is an important topic in areas like clock synchronization technology, laser radars, quantum optics, and high-precision detection. Conventional decoherence measurement methods like delayed self-heterodyne/homodyne interferometry cannot measure such narrow linewidths accurately. This is because a broadening of the Gaussian spectrum, which hides the laser’s intrinsic Lorentzian linewidth, cannot be avoided. Here, we introduce a new method using the strong coherent envelope to characterize the laser’s intrinsic linewidth through self-coherent detection. This method can eliminate the effect of the broadened Gaussian spectrum induced by the 1/f frequency noise. We analyze, in detail, the relationship between intrinsic laser linewidth, contrast difference with the second peak and the second trough (CDSPST) of the strong coherent envelope, and the length of the delaying fiber. The correct length for the delaying fiber can be chosen by combining the estimated laser linewidth (Δfest) with a specific CDSPST (ΔS) to obtain the accurate laser linewidth (Δf). Our results indicate that this method can be used as an accurate detection tool for measurements of narrow or super-narrow linewidths.
Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Lu, Z. G.; Poole, P. J.; Wang, C.; Grillot, F.
2018-03-01
This paper reports on the spectral linewidth of InAs/InP quantum dot distributed feedback lasers. Owing to a low inversion factor and a low linewidth enhancement factor, a narrow spectral linewidth of 160 kHz (80 kHz intrinsic linewidth) with a low sensitivity to temperature is demonstrated. When using anti-reflection coatings on both facets, narrow linewidth operation is extended to high powers, believed to be due to a reduction in the longitudinal spatial hole burning. These results confirm the high potential of quantum dot lasers for increasing transmission capacity in future coherent communication systems.
Dye laser traveling wave amplifier
NASA Technical Reports Server (NTRS)
Davidson, F.; Hohman, J.
1985-01-01
Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.
NASA Astrophysics Data System (ADS)
Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin
2017-05-01
By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.
Jing, Mingyong; Yu, Bo; Hu, Jianyong; Hou, Huifang; Zhang, Guofeng; Xiao, Liantuan; Jia, Suotang
2017-05-15
In this paper, we present a novel ultra-narrow linewidth fiber resonator formed by a tunable polarization maintaining (PM) π-phase-shifted fiber Bragg grating and a PM uniform fiber Bragg grating with a certain length of PM single mode fiber patch cable between them. Theoretical prediction shows that this resonator has ultra-narrow linewidth resonant peaks and is easy to realize impedance matching. We experimentally obtain 3 MHz narrow linewidth impedance matched resonant peak in a 7.3 m ultra-long passive fiber cavity. The impedance self-matching characteristic of this resonator also makes itself particularly suitable for use in ultra-sensitive sensors, ultra-narrow band rejection optical filters and fiber lasers applications.
Narrow-band generation in random distributed feedback fiber laser.
Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V
2013-07-15
Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.
Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang
2013-01-01
Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xuenan; Zhang Yundong; Tian He
We propose to employ the storage of light in a dynamically tuned add-drop resonator to realize an optical gyroscope of ultrahigh sensitivity and compact size. Taking the impact of the linewidth of incident light on the sensitivity into account, we investigate the effect of rotation on the propagation of a partially coherent light field in this dynamically tuned slow-light structure. It is demonstrated that the fundamental trade-off between the rotation-detection sensitivity and the linewidth will be overcome and the sensitivity-linewidth product will be enhanced by two orders of magnitude in comparison to that of the corresponding static slow-light structure. Furthermore,more » the optical gyroscope employing the storage of light in the dynamically tuned add-drop resonator can acquire ultrahigh sensitivity by extremely short fiber length without a high-performance laser source of narrow linewidth and a complex laser frequency stabilization system. Thus the proposal in this paper provides a promising and feasible scheme to realize highly sensitive and compact integrated optical gyroscopes by slow-light structures.« less
Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source
NASA Astrophysics Data System (ADS)
Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico
2012-06-01
We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
NASA Astrophysics Data System (ADS)
Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.
2018-02-01
This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of < 40 kHz have been achieved. These developments offer a portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.
Ultra-narrow-linewidth Brillouin/erbium fiber laser
NASA Astrophysics Data System (ADS)
Chen, Mo; Wang, Chenyu; Wang, Jianfei; Luo, Hong; Meng, Zhou
2018-02-01
Ultra-narrow-linewidth lasers are of great interest in many applications, such as precise spectroscopy, optical communications, and sensors. Stimulated Brillouin scattering (SBS), as one of the main nonlinear effects in fibers, is capable of generating narrow-linewidth light emission. We establish a compact Brillouin/erbium fiber laser (BEFL) utilizing 4-m erbium-doped fiber as both the Brillouin gain and linear media. A 360-kHz-linewidth laser diode is injected into the cavity as the Brillouin pump (BP) light and generates Brillouin Stokes lasing light. Both of the phase noise of the BP and BEFL output are measured by a high-accuracy unbalanced Michelson interferometer. It is demonstrated that 53- dB phase noise reduction is achieved after the BP is transferred into Brillouin Stokes emission. The linewidth of the BEFL is indicated at Hz-range by both calculation and experiment.
Switchable narrow linewidth fiber laser with LP11 transverse mode output
NASA Astrophysics Data System (ADS)
Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng
2018-01-01
We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.
NASA Astrophysics Data System (ADS)
Pham, Tuan M.; Čížek, Martin; Hucl, Václav; Lazar, Josef; Hrabina, Jan; Řeřucha, Šimon; Lešundák, Adam; Obšil, Petr; Filip, Radim; Slodička, Lukáš; Číp, Ondřej
2016-12-01
We report on the frequency noise investigation of a linewidth-suppressed Extended Cavity Diode Laser (ECDL), working at 729 nm. Since the ECDL is intended as an excitation laser for the forbidden transition in a trapped and laser cooled 40Ca+ ion, an Hz-level linewidth is required. We present the experimental design that comprises a two-stage linewidth narrowing and a facility for frequency and noise analysis. The linewidth is first narrowed with a phase lock loop of the ECDL onto a selected component of an optical frequency comb where the frequency noise was suppressed with a fast electronic servo-loop controller that drives the laser injection current with a high bandwidth. The second stage comprises locking the laser onto a selected mode of a high-finesse passive optical cavity. The frequency analysis used an unbalanced Mach-Zehnder interferometer with a fiber spool inserted in the reference arm in order to give a general insight into the signal properties by mixing two separated beams, one of them delayed by the spool, and processing it with a spectral analyzer. Such a frequency noise analysis reveals what are the most significant noises contributions to the laser linewidth, which is a crucial information in field of ion trapping and cooling. The presented experimental results show the effect of the linewidth narrowing with the first stage, where the linewidth of ECDL was narrowed down to a kHz level.
Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia
2017-11-10
A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318 MHz (∼2.57 pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33 pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
Direct link of a mid-infrared QCL to a frequency comb by optical injection.
Borri, S; Galli, I; Cappelli, F; Bismuto, A; Bartalini, S; Cancio, P; Giusfredi, G; Mazzotti, D; Faist, J; De Natale, P
2012-03-15
A narrow-linewidth comb-linked nonlinear source is used as master radiation to injection lock a room-temperature mid-infrared quantum cascade laser (QCL). This process leads to a direct lock of the QCL to the optical frequency comb, providing the unique features of narrow linewidth, absolute frequency, higher output power, and wide mode-hop-free tunability. The QCL reproduces the injected radiation within more than 94%, with a reduction of the frequency-noise spectral density by 3 to 4 orders of magnitude up to about 100 kHz, and a linewidth narrowing from a few MHz to 20 kHz.
Temporal intensity interferometry for characterization of very narrow spectral lines
NASA Astrophysics Data System (ADS)
Tan, P. K.; Kurtsiefer, C.
2017-08-01
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bo; Tong, Xin; Jiang, Chenyang
2015-06-05
In this study, we developed a stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. An optimized external cavity equipped with an off-the-shelf volume holographic grating narrowed the spectral line-width of a 100 W high-power diode laser and stabilized the laser spectrum. The laser spectrum showed a high side mode suppression ratio of >30 dB and good long-term stability (center wavelength drifting within ±0.002 nm during 220 h of operation). Finally, our laser is delivered by a multimode fiber with power ~70 W, center wavelength of 794.77 nm, and spectral bandwidth of ~0.12 nm.
Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng
2014-09-22
A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.
Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters
NASA Astrophysics Data System (ADS)
Tran, Toan Trong; Kianinia, Mehran; Bray, Kerem; Kim, Sejeong; Xu, Zai-Quan; Gentle, Angus; Sontheimer, Bernd; Bradac, Carlo; Aharonovich, Igor
2017-11-01
Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ˜780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.
Modeling of the spectral evolution in a narrow-linewidth fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-03-01
Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.
Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.
Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T
2013-12-01
We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).
Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers
NASA Astrophysics Data System (ADS)
Goodno, Gregory D.; Book, Lewis D.; Rothenberg, Joshua E.; Weber, Mark E.; Benjamin Weiss, S.
2011-11-01
Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.
NASA Astrophysics Data System (ADS)
Hirayama, Toru; Kozawa, Yuichi; Nakamura, Takahiro; Sato, Shunichi
2006-12-01
We demonstrated a generation of cylindrically symmetric, polarized laser beams with narrow linewidth and fine tunability. Since an LP11 mode beam in an optical fiber is a superposition of an HE21 (hybrid) mode beam and a TE01 or TM01 mode beam, firstly, a higher order transverse (TEM01 or TEM10) mode laser beam with narrow linewidth and fine tunability was generated from an external cavity diode laser (ECDL) in conjunction with a phase adjustment plate. Then the beam generated was passed in a two mode optical fiber. A doughnut shaped laser beam with the cylindrically symmetric polarization (a radially or azimuthally polarized beam) was obtained by properly adding stress-induced birefringence in the optical fiber.
Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.
Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi
2017-07-10
Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.
Optically trapped atomic resonant devices for narrow linewidth spectral imaging
NASA Astrophysics Data System (ADS)
Qian, Lipeng
This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.
Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.
Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei
2012-08-27
A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.
Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei
2015-04-20
A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.
NASA Astrophysics Data System (ADS)
Ye, Bo; Dingel, Benjamin B.; Cui, Weili
2013-01-01
We present a minimalist design but high functionality micro-ring resonator based optical filter with narrow linewidth and low group delay using a novel design we called LOBOUR for LOoped-Back Over- and Under- Coupled Resonator (LOBOUR). The characteristics of both narrow linewidth and low group delay (low chromatic dispersion) generally do not come together especially when using a single ring resonator. The Cascaded Over- and Under-Coupled Resonator (COUR) design was able to achieve this goal but introduced many practical fabrication issues. Here, we present an alternative design to COUR which uses only one ring resonator and without fabrication and manufacturing issues. It can achieve 50 dB extinction ratio and tens of ps performance. We also present important parameter selection mapping for LOBOUR.
Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals
Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; ...
2016-05-13
Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sammore » ple heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm -1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres.« less
NASA Astrophysics Data System (ADS)
Fu, Pan; Feng, Xiao-qiang; Lu, Baole; Qi, Xin-yuan; Chen, Haowei; Sun, Bo; Jiang, Man; Wang, Kaile; Bai, Jintao
2018-01-01
We demonstrate a stable switchable dual-wavelength single longitudinal mode (SLM) narrow linewidth ytterbium-doped fiber (YDF) laser using a nonlinear amplifying fiber loop mirror (NALM) at 1064 nm. The NALM of intensity-dependent transmission acts as a saturable absorber filter and an amplitude equalizer to suppress mode competition and the fiber Bragg grating (FBG) pair is used as one wavelength selection component. By properly adjusting the polarization controllers (PCs), the switchable dual-wavelength SLM fiber laser can be operated steadily at room temperature. The optical signal-to-noise ratio (OSNR) is better than 50 dB for both lasing wavelengths. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 17.07 kHz and 18.64 kHz with a 20 dB linewidth, which means the laser linewidth is approximate 853 Hz and 932 Hz FWHM. Correspondingly, the measured relative intensity noise (RIN) is less than -120 dB/Hz at frequencies over 5.0 MHz.
Narrow and Deep Fano Resonances in a Rod and Concentric Square Ring-Disk Nanostructures
Huo, Yanyan; Jia, Tianqing; Zhang, Yi; Zhao, Hua; Zhang, Shian; Feng, Donghai; Sun, Zhenrong
2013-01-01
Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15. PMID:24064596
Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu
2018-03-05
We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.
NASA Astrophysics Data System (ADS)
Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.
2018-06-01
We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.
1-kW monolithic narrow linewidth linear-polarized fiber laser at 1030 nm
NASA Astrophysics Data System (ADS)
Xu, Yang; Fang, Qiang; Cui, Xuelong; Hou, Bowen; Fu, Shijie; Xie, Zhaoxin; Shi, Wei
2018-02-01
We demonstrate an all-fiberized, linear-polarized, narrow spectral linewidth laser system with kilowatts-level output power at 1030 nm in master oscillator-power amplifier (MOPA) configuration. The laser system consists of a linear-polarized, narrow linewidth ( 28 GHz) fiber laser oscillator and two stages of linear-polarized fiber amplifiers. A 925 W linear-polarized fiber laser with a polarization extinction ratio (PER) of 15.2 dB and a spectral width of 60 GHz at the central wavelength of 1030.1 nm is achieved. Owing to the setting of the appropriate parameters for the laser, no indication of Stimulate Brillouin Scattering (SBS) is observed in the system. Moreover, thanks to the excellent quantum efficiency of the laser and the thightly coiling of the active fiber in the main amplifier, the mode instability (MI) is successfully avoided. As a result, the near diffraction-limited beam quality (M2<1.3) is achieved.
NASA Astrophysics Data System (ADS)
Posada-Ramírez, B.; Durán-Sánchez, M.; Álvarez-Tamayo, R. I.; Ibarra-Escamilla, B.; Hernández-Arriaga, M. V.; Sánchez-de-la-Llave, D.; Kuzin, E. A.
2017-08-01
We propose an all-fiber Tm-doped fiber laser with a tunable and narrow laser line generated in a wavelength region of 2 µm. A single laser line with a linewidth below 0.05 nm, tunable in a wavelength range of 44.25 nm, is obtained. The laser linewidth and the discrete wavelength tuning range depend on the characteristics of the two fiber optical loop mirrors with high birefringence in the loop that forms the cavity. Dual-wavelength laser operation is also observed at tuning range limits with a wavelength separation of 47 nm. Alternate wavelength switching is also observed.
Single-Frequency Narrow Linewidth 2 Micron Fiber Laser
NASA Technical Reports Server (NTRS)
Jiang, Shibin (Inventor); Spiegelberg, Christine (Inventor); Luo, Tao (Inventor)
2006-01-01
A compact single frequency, single-mode 2 .mu.m fiber laser with narrow linewidth, <100 kHz and preferably <100 kHz, is formed with a low phonon energy glass doped with triply ionized rare-earth thulium and/or holmium oxide and fiber gratings formed in sections of passive silica fiber and fused thereto. Formation of the gratings in passive silica fiber both facilitates splicing to other optical components and reduces noise thus improving linewidth. An increased doping concentration of 0.5 to 15 wt. % for thulium, holmium or mixtures thereof produces adequate gain, hence output power levels for fiber lengths less than 5 cm and preferably less than 3 cm to enable single-frequency operation.
Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.
Zhang, Qi; Ianno, Natale J; Han, Ming
2013-07-10
We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.
Population Pulsation Resonances of Excitons in Monolayer MoSe 2 with Sub-1 μeV Linewidths
Schaibley, John R.; Karin, Todd; Yu, Hongyi; ...
2015-04-01
Monolayer transition metal dichalcogenides, a new class of atomically thin semiconductors, possess optically coupled 2D valley excitons. The nature of exciton relaxation in these systems is currently poorly understood. In this paper, we investigate exciton relaxation in monolayer MoSe 2 using polarization-resolved coherent nonlinear optical spectroscopy with high spectral resolution. We report strikingly narrow population pulsation resonances with two different characteristic linewidths of 1 and <0.2 μeV at low temperature. These linewidths are more than 3 orders of magnitude narrower than the photoluminescence and absorption linewidth, and indicate that a component of the exciton relaxation dynamics occurs on time scalesmore » longer than 1 ns. Finally, the ultranarrow resonance (<0.2 μeV) emerges with increasing excitation intensity, and implies the existence of a long-lived state whose lifetime exceeds 6 ns.« less
NASA Technical Reports Server (NTRS)
Ashizawa, Hiroaki; Ohara, Shinobu; Yamaguchi, Shigeru; Takahashi, Masao; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo; Tittel, Frank K.
2003-01-01
A high-power, narrow-linewidth Yb fiber laser with a fiber Bragg grating (FBG) pumped difference frequency generation (DFG) in a periodically poled lithium niobate (PPLN) crystal was investigated in detail. A mid-IR power of approximately 2.3 microW at 3.3 micrometers with a slope efficiency of 0.85 mW/W2 was achieved. A Doppler-broadened absorption spectrum of CH4 at 3038.497 cm-1 (3.2911 micrometers) was obtained with a 0.1-m long-gas cell at a pressure of 133 Pa. The linewidth of the DFG source was evaluated to be less than 96 MHz from the observed spectral linewidth. Real-time monitoring of CH4 (approximately 1.78 ppm) in ambient air in a multipass cell which has an optical path length of 10 m was also demonstrated.
NASA Astrophysics Data System (ADS)
Schoth, Mario; Richter, Marten; Knorr, Andreas; Renger, Thomas
2012-04-01
The homogeneous linewidth of dye aggregates like photosynthetic light-harvesting complexes contains important information about energy transfer and relaxation times that is, however, masked by inhomogeneous broadening caused by static disorder. Whereas there exist line narrowing techniques for the study of low-energy exciton states, the homogeneous linewidth of the high-energy states is not so easy to decipher. Here we present a microscopic theory for nonlinear polarization spectroscopy in the frequency domain that contains a dynamic aggregate selection revealing the homogeneous linewidth of these states. The theory is applied to the water-soluble chlorophyll-binding protein for which the high-energy exciton state was predicted to exhibit a sub-100-fs lifetime.
1986-06-01
beams of coherent radiation whose short wavelengths would permit greater penetration of matter than is possible with current laser sources. With that...nuclear linewidth. It is claimed that the time required for any narrowing is at least as long as the inverse of the linewidth achieved, no matter what...with the re- quired narrow line can be prepared is a different matter . The point is that the previous uncertainty principle does not forbid the
High efficiency quantum cascade laser frequency comb.
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-03-06
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm -1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.
High efficiency quantum cascade laser frequency comb
Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh
2017-01-01
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834
Ultranarrow-bandwidth filter based on a thermal EIT medium.
Wang, Gang; Wang, Yu-Sheng; Huang, Emily Kay; Hung, Weilun; Chao, Kai-Lin; Wu, Ping-Yeh; Chen, Yi-Hsin; Yu, Ite A
2018-05-21
We present high-contrast electromagnetically-induced-transparency (EIT) spectra in a heated vapor cell of single isotope 87 Rb atoms. The EIT spectrum has both high resonant transmission up to 67% and narrow linewidth of 1.1 MHz. We get rid of the possible amplification resulted from the effects of amplification without population inversion and four-wave mixing. Therefore, this high transmitted light is not artificial. The theoretical prediction of the probe transmission agrees well with the data and the experimental parameters can be derived reasonably from the model. Such narrow and high-contrast spectral profile can be employed as a high precision bandpass filter, which provides a significant advantage in terms of stability and tunability. The central frequency tuning range of the filter is larger than 100 MHz with out-of-band blocking ≥15 dB. This bandpass filter can effectively produce light fields with subnatural linewidth. Nonlinearity associating with the narrow-linewidth and high-contrast EIT profile can be very useful in the applications utilizing the EIT effect.
Single-mode surface plasmon distributed feedback lasers.
Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre
2018-03-29
Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.
Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin
2017-12-10
A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.
Monolithic narrow-linewidth InGaAsP semiconductor laser for coherent optical communications
NASA Technical Reports Server (NTRS)
Palfrey, S. L.; Enstrom, R. E.; Longeway, P. A.
1989-01-01
A design for a monolithic narrow-linewidth InGaAsP diode laser has been developed using a multiple-quantum-well (MQW) extended-passive-cavity distributed-Bragg-reflector (DBR) laser design. Theoretical results indicate that this structure has the potential for a linewidth of 100 kHz or less. To realize this device, a number of the fabrication techniques required to integrate low-loss passive waveguides with active regions have been developed using a DBR laser structure. In addition, the MOCVD growth of InGaAs MQW laser structures has been developed, and threshold current densities as low as 1.6 kA/sq cm have been obtained from broad-stripe InGaAs/InGaAsP separate-confinement-heterostructure MQW lasers.
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Zhao, Pengfei; Li, Chengyu; Wang, Bopeng; Lin, Honghuan; Guo, Chao; Liu, Yu; Jing, Feng; Tang, Chuanxiang
2018-03-01
A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality
11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium
NASA Astrophysics Data System (ADS)
Sané, S. S.; Bennetts, S.; Debs, J. E.; Kuhn, C. C. N.; McDonald, G. D.; Altin, P. A.; Close, J. D.; Robins, N. P.
2012-04-01
We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinsasser, Ed E., E-mail: edklein@uw.edu; Stanfield, Matthew M.; Banks, Jannel K. Q.
2016-05-16
We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.
Semiconductor technology program: Progress briefs
NASA Technical Reports Server (NTRS)
Galloway, K. F.; Scace, R. I.; Walters, E. J.
1981-01-01
Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.
Hauser, Christoph; Richter, Tim; Homonnay, Nico; Eisenschmidt, Christian; Qaid, Mohammad; Deniz, Hakan; Hesse, Dietrich; Sawicki, Maciej; Ebbinghaus, Stefan G.; Schmidt, Georg
2016-01-01
We have investigated recrystallization of amorphous Yttrium Iron Garnet (YIG) by annealing in oxygen atmosphere. Our findings show that well below the melting temperature the material transforms into a fully epitaxial layer with exceptional quality, both structural and magnetic. In ferromagnetic resonance (FMR) ultra low damping and extremely narrow linewidth can be observed. For a 56 nm thick layer a damping constant of α = (6.15 ± 1.50) · 10−5 is found and the linewidth at 9.6 GHz is as small as 1.30 ± 0.05 Oe which are the lowest values for PLD grown thin films reported so far. Even for a 20 nm thick layer a damping constant of α = (7.35 ± 1.40) · 10−5 is found which is the lowest value for ultrathin films published so far. The FMR linewidth in this case is 3.49 ± 0.10 Oe at 9.6 GHz. Our results not only present a method of depositing thin film YIG of unprecedented quality but also open up new options for the fabrication of thin film complex oxides or even other crystalline materials. PMID:26860816
Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating
Zhang, Qi; Ianno, Natale J.; Han, Ming
2013-01-01
We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the π phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ∼9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ∼1,550 nm, corresponding to a Q-factor of 7.4 × 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings. PMID:23845932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui; School of Physics, University of Chinese Academy of Sciences, Beijing 100049; Yin, Mojuan
2015-10-12
In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be appliedmore » over a broad spectral band to build narrow linewidth lasers for various applications.« less
Ultra-narrow-linewidth erbium-doped lasers on a silicon photonics platform
NASA Astrophysics Data System (ADS)
Li, Nanxi; Purnawirman, Purnawirman; Magden, E. Salih; Singh, Gurpreet; Singh, Neetesh; Baldycheva, Anna; Hosseini, Ehsan S.; Sun, Jie; Moresco, Michele; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Bradley, Jonathan D. B.; Watts, Michael R.
2018-02-01
We report ultra-narrow-linewidth erbium-doped aluminum oxide (Al2O3:Er3+) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiNx) segments buried under silicon dioxide (SiO2) with a layer Al2O3:Er3+ deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infrared wavelengths (950-2000 nm). We compare the performance of DFB lasers in discrete quarter phase shifted (QPS) cavity and distributed phase shifted (DPS) cavity. Using QPS-DFB configuration, we obtain maximum output powers of 0.41 mW, 0.76 mW, and 0.47 mW at widely spaced wavelengths within both the C and L bands of the erbium gain spectrum (1536 nm, 1566 nm, and 1596 nm). In a DPS cavity, we achieve an order of magnitude improvement in maximum output power (5.43 mW) and a side mode suppression ratio (SMSR) of > 59.4 dB at an emission wavelength of 1565 nm. We observe an ultra-narrow linewidth of ΔνDPS = 5.3 +/- 0.3 kHz for the DPS-DFB laser, as compared to ΔγQPS = 30.4 +/- 1.1 kHz for the QPS-DFB laser, measured by a recirculating self-heterodyne delayed interferometer (RSHDI). Even narrower linewidth can be achieved by mechanical stabilization of the setup, increasing the pump absorption efficiency, increasing the output power, or enhancing the cavity Q.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark
2016-03-01
A cladding-pumped, LMA ErYb fiber-based, amplifier is presented for use in a LIDAR transmitter for remote sensing of atmospheric CO2 from space. The amplifier is optimized for high peak power, high efficiency, and narrow linewidth operation at 1572.3nm. Using highly reliable COTS components, the amplifier achieves 0.5kW peak power (440uJ pulse energy), 3.3W average power with transform limited (TL) linewidth and M2<1.3. The power amplifier supports a 30% increase in pulse energy when linewidth is increased to 100MHz. A preliminary conductively cooled laser optical module (LOM) concept has size 9x10x1.25 in (113 in3) and estimated weight of 7.2lb (3.2 kg). Energy scaling with pulse width up to 645uJ, 1.5usec is demonstrated. A novel doubleclad ErYb LMA fiber (30/250um) with high pump absorption (6 dB/m at 915nm) was designed, fabricated, and characterized for power scaling. The upgraded power amplifier achieves 0.8kW peak power (720uJ pulse energy) 5.4W average power with TL linewidth and M2<1.5.
Inter-comb synchronization by mode-to-mode locking
NASA Astrophysics Data System (ADS)
Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo
2016-08-01
Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52 × 10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.
NASA Astrophysics Data System (ADS)
Jiang, Xiaona; Wang, Wei; Yu, Zhong; Sun, Ke; Lan, Zhongwen; Zhang, Xinran; Harris, Vincent G.
2017-05-01
Bi-doped LiZn ferrites with different iron deficiencies were fabricated by a conventional ceramic method. Anisotropy constant (K1) was calculated and ferromagnetic resonance (FMR) linewidth (ΔH) was investigated. Crystalline anisotropy broadening linewidth (ΔHa) and porosity broadening linewidth (ΔHp) were derived by an approximate calculation based on dipolar narrowing theory, which play a significant role in contributions to FMR linewidth and occupy more than 90 % of ΔH. Physical and static magnetic properties of LiZn ferrite with iron deficiency are presented, which supports a decline in linewidths with increasing iron deficiency. Iron deficiency makes K1, ΔHa and ΔHp reduce. The results also show that ΔHp is the majority of contributions to ΔH in Bi-doped LiZn ferrite and densification is an effective method to decrease ΔH.
Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Nakajima, Yoshiaki; Iwakuni, Kana; Akamatsu, Daisuke; Okubo, Sho; Kohno, Takuya; Onae, Atsushi; Hong, Feng-Lei
2013-04-08
We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.
Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin
2011-09-01
Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth:more » (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.« less
Studies on 405nm blue-violet diode laser with external grating cavity
NASA Astrophysics Data System (ADS)
Li, Bin; Gao, Jun; Zhao, Jun; Yu, Anlan; Luo, Shiwen; Xiong, Dongsheng; Wang, Xinbing; Zuo, Duluo
2016-03-01
Spectroscopy applications of free-running laser diodes (LD) are greatly restricted as its broad band spectral emission. And the power of a single blue-violet LD is around several hundred milliwatts by far, it is of great importance to obtain stable and narrow line-width laser diodes with high efficiency. In this paper, a high efficiency external cavity diode laser (ECDL) with high output power and narrow band emission at 405 nm is presented. The ECDL is based on a commercially available LD with nominal output power of 110 mW at an injection current of 100 mA. The spectral width of the free-running LD is about 1 nm (FWHM). A reflective holographic grating which is installed on a home-made compact adjustable stage is utilized for optical feedback in Littrow configuration. In this configuration, narrow line-width operation is realized and the effects of grating groove density as well as the groove direction related to the beam polarization on the performances of the ECDL are experimentally investigated. In the case of grating with groove density of 3600 g/mm, the threshold is reduced from 21 mA to 18.3 mA or 15.6 mA and the tuning range is 3.95 nm or 6.01 nm respectively when the grating is orientated in TE or TM polarization. In addition, an output beam with a line-width of 30 pm and output power of 92.7 mW is achieved in TE polarization. With these narrow line-width and high efficiency, the ECDL is capable to serve as a light source for spectroscopy application such as Raman scattering and laser induced fluorescence.
Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking.
Lu, Z G; Liu, J R; Poole, P J; Song, C Y; Chang, S D
2018-04-30
We have used an external cavity self-injection feedback locking (SIFL) system to simultaneously reduce the optical linewidth of over 39 individual wavelength channels of an InAs/InP quantum dot (QD) coherent comb laser (CCL). Linewidth reduction from a few MHz to less than 200 kHz is observed. Measured phase noise spectra clearly indicate a significant decrease in phase noise in the frequency range above 2 kHz. The RF beating signal between two adjacent channels also shows a substantial reduction in 3-dB linewidth from 10 kHz to 300 Hz with the SIFL system, and a corresponding drop in baseline level (-27 dB to -50 dB).
Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS.
Nordström, Emil; Hosseinnia, Ali; Brackmann, Christian; Bood, Joakim; Bengtsson, Per-Erik
2015-12-15
We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.
Progress on Raman laser for sodium resonance fluorescence lidar
NASA Astrophysics Data System (ADS)
Li, Steven X.; Yu, Anthony W.; Krainak, Michael A.; Bai, Yingxin; Konoplev, Oleg; Fahey, Molly E.; Numata, Kenji
2018-02-01
We are developing a Q-switched narrow linewidth intra-cavity Raman laser for a space based sodium lidar application. A novel Raman laser injection seeding scheme is proposed and is experimentally verified. A Q-switched, diode pumped, c-cut Nd:YVO4 laser has been designed to emit a fundamental wavelength at 1066.6 nm. This fundamental wavelength is used as the pump in an intra-cavity Raman conversion in a Gd0.2Y0.8VO4 composite material. By tuning the temperature of the crystal, we tuned the Raman shifting to the desired sodium absorption line. A diode end pumped, T-shaped laser cavity has been built for experimental investigation. The fundamental pump laser cavity is a twisted mode cavity to eliminate the spatial hole burning for effective injection seeding. The Raman laser cavity is a linear standing wave cavity because Raman gain medium does not suffer spatial hole burning as traditional laser gain medium. The linewidth and temporal profile of the Raman laser is experimentally investigated with narrow and broadband fundamental pump emission. We have, for the first time, demonstrated an injection seeded, high peak power, narrow linewidth intra-cavity Raman laser for potential use in a sodium resonance fluorescence lidar.
NASA Astrophysics Data System (ADS)
Wang, Xinjun; Chen, Yunpeng; Chen, Huaihao; Gao, Yuan; He, Yifan; Li, Menghui; Lin, Hwaider; Sun, Neville; Sun, Nian
2018-05-01
Recently, large magnetoelectric coupling of a spinel/piezoelectric heterostructure has been reported. However, the linewidth of the spinel is very large due to lattice mismatch when ferrite is directly deposited on piezoelectric substrates. This indicates a large magnetic loss, which impedes the spinel/piezoelectric heterostructure from useful device applications. Mica is a well-known 2D material, which can be split manually layer by layer without the substrate clamping effect. In this report, NiZn ferrite was deposited on a mica substrate by a spin-spray deposition technique. Spin-spray deposition is a wet chemical synthesis technique involving several chemical reactions for generating high-quality crystalline spinel ferrite films with various compositions directly from an aqueous solution. The thickness of ferrite is 2 μm, and the linewidth of the ferromagnetic resonance (FMR) is 115 Oe which is suitable for RF/microwave devices. The large FMR field tuning of 605 Oe was observed in NiZn ferrite/mica/PMN-PT heterostructures with minimal substrate clamping effect by reducing the thickness of the mica substrate. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for flexible RF magnetic devices.
Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.
Cai, He; Gao, Chunqing; Liu, Xiaoxu; Wang, Shunyan; Yu, Hang; Rong, Kepeng; An, Guofei; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You
2018-04-02
Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.
Generalized sub-Schawlow-Townes laser linewidths via material dispersion
NASA Astrophysics Data System (ADS)
Pillay, Jason Cornelius; Natsume, Yuki; Stone, A. Douglas; Chong, Y. D.
2014-03-01
A recent S-matrix-based theory of the quantum-limited linewidth, which is applicable to general lasers, including spatially nonuniform laser cavities operating above threshold, is analyzed in various limits. For broadband gain, a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric relations between the zeros and poles of the S matrix. When there is substantial dispersion, on the frequency scale of the cavity lifetime, the theory yields a generalization of the bad-cavity factor, which was previously derived for spatially uniform one-dimensional lasers. This effect can lead to sub-Schawlow-Townes linewidths in lasers with very narrow gain widths. We derive a formula for the linewidth in terms of the lasing mode functions, which has accuracy comparable to the previous formula involving the residue of the lasing pole. These results for the quantum-limited linewidth are valid even in the regime of strong line pulling and spatial hole burning, where the linewidth cannot be factorized into independent Petermann and bad-cavity factors.
Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop
Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio
2015-01-01
Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs. PMID:26658880
Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design
NASA Astrophysics Data System (ADS)
Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen
2016-11-01
852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.
Spectral linewidth of spin-current nano-oscillators driven by nonlocal spin injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidov, V. E., E-mail: demidov@uni-muenster.de; Divinskiy, B.; Urazhdin, S.
2015-11-16
We study experimentally the auto-oscillation characteristics of magnetic nano-oscillators driven by pure spin currents generated by nonlocal spin injection. By combining micro-focus Brillouin light scattering spectroscopy with electronic microwave spectroscopy, we are able to simultaneously perform both the spatial and the high-resolution spectral analyses of auto-oscillations induced by spin current. We find that the devices exhibit a highly coherent dynamics with the spectral linewidth of a few megahertz at room temperature. This narrow linewidth can be achieved over a wide range of operational frequencies, demonstrating a significant potential of nonlocal oscillators for applications.
Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.
Huang, Chunning; Deibele, Craig; Liu, Yun
2013-04-08
We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).
Active Faraday optical frequency standard.
Zhuang, Wei; Chen, Jingbiao
2014-11-01
We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.
NASA Astrophysics Data System (ADS)
Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.
2018-06-01
A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.
Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.
Chen, Y L; Chen, W W; Du, C E; Chang, W K; Wang, J L; Chung, T Y; Chen, Y H
2009-12-07
We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO(4) laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as approximately 15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/degrees C.
Investigations of a Dual Seeded 1178 nm Raman Laser System
2016-01-14
20 W. Because of the linewidth broadening, a co- pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application... pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth. Keywords: Raman...optical efficiency of 52% when pumped with a linearly polarized 1120 nm fiber laser10,11. Because of the all-polarization maintaining configuration, a
Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers
2017-03-20
the linewidth in two ways: (1) increasing the photon lifetime due to effective cavity length enhancement, and (2) providing negative optical...structures. Some devices are also labeled. Figure 1. Microscope image of the photonic microwave generator comprising of two tunable lasers, a coupler...Integrated Photodiodes on Silicon,” IEEE JQE, vol.51, no.11, pp.1-6, Nov. 2015 Figure 9. (left) Optical spectra of two lasers comprising a photonic
NASA Astrophysics Data System (ADS)
Hughes, Ifan G.
2018-03-01
There is extensive use of monochromatic lasers to select atoms with a narrow range of velocities in many atomic physics experiments. For the commonplace situation of the inhomogeneous Doppler-broadened (Gaussian) linewidth exceeding the homogeneous (Lorentzian) natural linewidth by typically two orders of magnitude, a substantial narrowing of the velocity class of atoms interacting with the light can be achieved. However, this is not always the case, and here we show that for a certain parameter regime there is essentially no selection - all of the atoms interact with the light in accordance with the velocity probability density. An explanation of this effect is provided, emphasizing the importance of the long tail of the constituent Lorentzian distribution in a Voigt profile.
Absolute frequency of cesium 6S-8S 822 nm two-photon transition by a high-resolution scheme.
Wu, Chien-Ming; Liu, Tze-Wei; Wu, Ming-Hsuan; Lee, Ray-Kuang; Cheng, Wang-Yau
2013-08-15
We present an alternative scheme for determining the frequencies of cesium (Cs) atom 6S-8S Doppler-free transitions. With the use of a single electro-optical crystal, we simultaneously narrow the laser linewidth, lock the laser frequency, and resolve a narrow spectrum point by point. The error budget for this scheme is presented, and we prove that the transition frequency obtained from the Cs cell at room temperature and with one-layer μ-metal shielding is already very near that for the condition of zero collision and zero magnetic field. We point out that a sophisticated linewidth measurement could be a good guidance for choosing a suitable Cs cell for better frequency accuracy.
Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing
NASA Astrophysics Data System (ADS)
Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi
2017-03-01
We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.
Moody, Galan; Kavir Dass, Chandriker; Hao, Kai; Chen, Chang-Hsiao; Li, Lain-Jong; Singh, Akshay; Tran, Kha; Clark, Genevieve; Xu, Xiaodong; Berghäuser, Gunnar; Malic, Ermin; Knorr, Andreas; Li, Xiaoqin
2015-01-01
The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. PMID:26382305
NASA Astrophysics Data System (ADS)
Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.
2012-10-01
Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K1, determined by fitting the temperature-dependent linewidths, was ˜50 kJ/m3, which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures.
Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S
2010-12-06
An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.
2013-08-29
similar layer thicknesses. This offset indicates that the electric field profile of our Schottky diode is different than for unpatterned samples, implying...sacrificing uniformity by further optimizing the substrate Figure 3. (a) Schematic of the Schottky diode heterostructure, indicating the patterned substrate...and negative (X−) trions are indicated . (c) Distribution of linewidths for 80 PL lines from dots grown in high density arrays such as those in Figure 2b
Guan, Hang; Novack, Ari; Galfsky, Tal; Ma, Yangjin; Fathololoumi, Saeed; Horth, Alexandre; Huynh, Tam N; Roman, Jose; Shi, Ruizhi; Caverley, Michael; Liu, Yang; Baehr-Jones, Thomas; Bergman, Keren; Hochberg, Michael
2018-04-02
We demonstrate a III-V/silicon hybrid external cavity laser with a tuning range larger than 60 nm at the C-band on a silicon-on-insulator platform. A III-V semiconductor gain chip is hybridized into the silicon chip by edge-coupling the silicon chip through a Si 3 N 4 spot size converter. The demonstrated packaging method requires only passive alignment and is thus suitable for high-volume production. The laser has a largest output power of 11 mW with a maximum wall-plug efficiency of 4.2%, tunability of 60 nm (more than covering the C-band), and a side-mode suppression ratio of 55 dB (>46 dB across the C-band). The lowest measured linewidth is 37 kHz (<80 kHz across the C-band), which is the narrowest linewidth using a silicon-based external cavity. In addition, we successfully demonstrate all silicon-photonics-based transmission of 34 Gbaud (272 Gb/s) dual-polarization 16-QAM using our integrated laser and silicon photonic coherent transceiver. The results show no additional penalty compared to commercially available narrow linewidth tunable lasers. To the best of our knowledge, this is the first experimental demonstration of a complete silicon photonic based coherent link. This is also the first experimental demonstration of >250 Gb/s coherent optical transmission using a silicon micro-ring-based tunable laser.
Narrow line width dual wavelength semiconductor optical amplifier based random fiber laser
NASA Astrophysics Data System (ADS)
Shawki, Heba A.; Kotb, Hussein E.; Khalil, Diaa
2018-02-01
A novel narrow line-width Single longitudinal mode (SLM) dual wavelength random fiber laser of 20 nm separation between wavelengths of 1530 and 1550 nm is presented. The laser is based on Rayleigh backscattering in a standard single mode fiber of 2 Km length as distributed mirrors, and a semiconductor optical amplifier (SOA) as the optical amplification medium. Two optical bandpass filters are used for the two wavelengths selectivity, and two Faraday Rotator mirrors are used to stabilize the two lasing wavelengths against fiber random birefringence. The optical signal to noise ratio (OSNR) was measured to be 38 dB. The line-width of the laser was measured to be 13.3 and 14 KHz at 1530 and 1550 nm respectively, at SOA pump current of 370 mA.
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers
Ajayi, Obafunso A.; Ardelean, Jenny V.; Shepard, Gabriella D.; ...
2017-07-24
Excitonic states in monolayer transition metal dichalcogenides (TMDCs) have been the subject of extensive recent interest. Their intrinsic properties can, however, be obscured due to the influence of inhomogeneity in the external environment. Here we report methods for fabricating high quality TMDC monolayers with narrow photoluminescence (PL) linewidth approaching the intrinsic limit. We find that encapsulation in hexagonal boron nitride (h-BN) sharply reduces the PL linewidth, and that passivation of the oxide substrate by an alkyl monolayer further decreases the linewidth and also minimizes the charged exciton (trion) peak. The combination of these sample preparation methods results in much reducedmore » spatial variation in the PL emission, with a full-width-at-half-maximum as low as 1.7 meV. Furthermore, analysis of the PL line shape yields a homogeneous width of 1.43 ± 0.08 meV and inhomogeneous broadening of 1.1 ± 0.3 meV.« less
Wang, Xing-Guang; Grillot, Frédéric; Wang, Cheng
2018-02-05
This work theoretically investigates the frequency noise (FN) characteristics of quantum cascade lasers (QCLs) through a three-level rate equation model, which takes into account both the carrier noise and the spontaneous emission noise through the Langevin approach. It is found that the power spectral density of the FN exhibits a broad peak due to the carrier noise induced carrier variation in the upper laser level, which is enhanced by the stimulated emission process. The peak amplitude is strongly dependent on the gain stage number and the linewidth broadening factor. In addition, an analytical formula of the intrinsic spectral linewidth of QCLs is derived based on the FN analysis. It is demonstrated that the laser linewidth can be narrowed by reducing the gain coefficient and/or accelerating the carrier scattering rates of the upper and the lower laser levels.
NASA Technical Reports Server (NTRS)
Brown, Elliott R.; Parker, Christopher D.; Molvar, Karen M.; Stephan, Karl D.
1992-01-01
A semiconfocal open-cavity resonator has been used to stabilize a resonant-tunneling-diode waveguide oscillator at frequencies near 100 GHz. The high quality factor of the open cavity resulted in a linewidth of approximately 10 kHz at 10 dB below the peak, which is about 100 times narrower than the linewidth of an unstabilized waveguide oscillator. This technique is well suited for resonant-tunneling-diode oscillators in the submillimeter-wave region.
Diode-Pumped Narrow Linewidth Multi-kW Metalized Yb Fiber Amplifier
2016-10-01
multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 µm, 0.2 NA multi-mode fiber. Gold -coated...multi-mode instability, with 90% O-O efficiency 12 GHz Linewidth and M2 < 1.15. OCIS codes: (140.3510) Lasers , fiber; (140.3615) Lasers , ytterbium...060.2430) Fibers, single-mode. 1. INTRODUCTION Yb-doped fiber laser has experienced exponential growth over the past decade. The output power
Spontaneous emission near the edge of a photonic band gap
NASA Astrophysics Data System (ADS)
John, Sajeev; Quang, Tran
1994-08-01
The spectral and dynamical features of spontaneous emission from two and three-level atoms in which one transition frequency lay near the edge of a photonic band gap (PBG) were derived. These features included temporal oscillations, fractionalized steady-state atomic population on the excited state, spectral splitting and subnatural bandwidth. The effect of N-1 unexcited atoms were also taken into account. The direct consequences of photon localization as embodied in the photon-atom bound state were observed. One feasible experimental accomplishment of these effects may ensue from laser-cooled atoms in the void regions of a PBG medium. Another option is the application of an organic impurity molecule such as pentacene. Such molecules were known to show extremely narrow linewidths when placed in fitting solid hosts.
Spectral line narrowing in PPLN OPO devices for 1-μm wavelength doubling
NASA Astrophysics Data System (ADS)
Perrett, Brian J.; Terry, Jonathan A. C.; Mason, Paul D.; Orchard, David A.
2004-12-01
One route to generating mid-infrared (mid-IR) radiation is through a two-stage non-linear conversion process from the near-IR, exploiting powerful neodymium lasers operating at wavelengths close to 1 μm. In the first stage of this process non-linear conversion within a degenerate optical parametric oscillator (OPO) is used to double the wavelength of the 1 μm laser. The resultant 2 μm radiation is then used to pump a second OPO, based on a material such as ZGP, for conversion into the 3 to 5 μm mid-IR waveband. Periodically poled lithium niobate (PPLN) is a useful material for conversion from 1 to 2 μm due to its high non-linear coefficient (deff ~ 16 pm/V) and the long crystal lengths available (up to 50 mm). Slope efficiencies in excess of 40% have readily been achieved using a simple plane-plane resonator when pumped at 10 kHz with 3.5 mJ pulses from a 1.047 μm Nd:YLF laser. However, the OPO output was spectrally broad at degeneracy with a measured full-width-half-maximum (FWHM) linewidth of approximately 65 nm. This output linewidth is significantly broader than the spectral acceptance bandwidth of ZGP for conversion into the mid-IR. In this paper techniques for spectral narrowing the output from a degenerate PPLN OPO are investigated using two passive elements, a diffraction grating and an air spaced etalon. Slope efficiencies approaching 20% have been obtained using the grating in a dog-leg cavity configuration producing spectrally narrow 2 μm output with linewidths as low as 2 nm. A grating-narrowed degenerate PPLN OPO has been successfully used to pump a ZGP OPO.
Narrow linewidth operation of a spectral beam combined diode laser bar.
Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang
2016-04-20
Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4 (in horizontal direction)×11.6 (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.
On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets
NASA Astrophysics Data System (ADS)
Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.
2018-05-01
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
Single steady frequency and narrow-linewidth external-cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Jiang, Pengfei; Xie, Fuzeng
2003-11-01
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10-3°C by temperature control system. The experiments have been carried out and the results obtained - the spectral line width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.
Thermo-optic locking of a semiconductor laser to a microcavity resonance.
McRae, T G; Lee, Kwan H; McGovern, M; Gwyther, D; Bowen, W P
2009-11-23
We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining constructive interference between the cavity and the laser. Furthermore, the optical feedback acts to narrow the laser linewidth, with ultra high quality microtoroid resonances offering the potential for ultralow linewidth on-chip lasers.
Self-pulsing in a 2 km single-mode fiber with the seed source broadened via WNS phase modulation
NASA Astrophysics Data System (ADS)
Zha, Congwen; Sun, Yinhong; Wang, Yanshan; Li, Tenglong; Peng, Wanjing; Ma, Yi; Zhang, Kai
2018-03-01
The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.
Moody, Galan; Dass, Chandriker Kavir; Hao, Kai; ...
2015-09-18
In this paper, the band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe 2). The homogeneous linewidthmore » is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.« less
Hansen, Michael G; Magoulakis, Evangelos; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan
2015-05-15
We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of 1×10(-13). The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability <1×10(-13) and inaccuracy 5×10(-13), using a frequency comb phase stabilized to an independent ultra-stable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth.
NASA Astrophysics Data System (ADS)
Li, Mengyue; Yuan, Jie; Kinev, Nickolay; Li, Jun; Gross, Boris; Guénon, Stefan; Ishii, Akira; Hirata, Kazuto; Hatano, Takeshi; Koelle, Dieter; Kleiner, Reinhold; Koshelets, Valery P.; Wang, Huabing; Wu, Peiheng
2012-08-01
We report on measurements of the linewidth Δf of terahertz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution-limited measurements indicated that Δf may be below 1 GHz—much smaller than expected from a purely cavity-induced synchronization. While at low bias we found Δf to be not smaller than ˜500 MHz, at high bias, where a hot spot coexists with regions which are still superconducting, Δf turned out to be as narrow as 23 MHz. We attribute this to the hot spot acting as a synchronizing element. Δf decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or electron spin resonance (ESR), but hard to explain in standard electrodynamic models of Josephson junctions.
Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor
NASA Astrophysics Data System (ADS)
Schmitt, Simon; Gefen, Tuvia; Stürner, Felix M.; Unden, Thomas; Wolff, Gerhard; Müller, Christoph; Scheuer, Jochen; Naydenov, Boris; Markham, Matthew; Pezzagna, Sebastien; Meijer, Jan; Schwarz, Ilai; Plenio, Martin; Retzker, Alex; McGuinness, Liam P.; Jelezko, Fedor
2017-05-01
Precise timekeeping is critical to metrology, forming the basis by which standards of time, length, and fundamental constants are determined. Stable clocks are particularly valuable in spectroscopy because they define the ultimate frequency precision that can be reached. In quantum metrology, the qubit coherence time defines the clock stability, from which the spectral linewidth and frequency precision are determined. We demonstrate a quantum sensing protocol in which the spectral precision goes beyond the sensor coherence time and is limited by the stability of a classical clock. Using this technique, we observed a precision in frequency estimation scaling in time T as T-3/2 for classical oscillating fields. The narrow linewidth magnetometer based on single spins in diamond is used to sense nanoscale magnetic fields with an intrinsic frequency resolution of 607 microhertz, which is eight orders of magnitude narrower than the qubit coherence time.
NASA Astrophysics Data System (ADS)
Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan
2018-02-01
We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-02-17
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.
Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths
NASA Astrophysics Data System (ADS)
Jantzen, Uwe; Kurz, Andrea B.; Rudnicki, Daniel S.; Schäfermeier, Clemens; Jahnke, Kay D.; Andersen, Ulrik L.; Davydov, Valery A.; Agafonov, Viatcheslav N.; Kubanek, Alexander; Rogers, Lachlan J.; Jelezko, Fedor
2016-07-01
Colour centres in nanodiamonds are an important resource for applications in quantum sensing, biological imaging, and quantum optics. Here we report unprecedented narrow optical transitions for individual colour centres in nanodiamonds smaller than 200 nm. This demonstration has been achieved using the negatively charged silicon vacancy centre, which has recently received considerable attention due to its superb optical properties in bulk diamond. We have measured an ensemble of silicon-vacancy centres across numerous nanodiamonds to have an inhomogeneous distribution of 1.05 nm at 5 K. Individual spectral lines as narrower than 360 MHz were measured in photoluminescence excitation, and correcting for apparent spectral diffusion yielded an homogeneous linewidth of about 200 MHz which is close to the lifetime limit. These results indicate the high crystalline quality achieved in these nanodiamond samples, and advance the applicability of nanodiamond-hosted colour centres for quantum optics applications.
Programmable and reversible plasmon mode engineering.
Yang, Ankun; Hryn, Alexander J; Bourgeois, Marc R; Lee, Won-Kyu; Hu, Jingtian; Schatz, George C; Odom, Teri W
2016-12-13
Plasmonic nanostructures with enhanced localized optical fields as well as narrow linewidths have driven advances in numerous applications. However, the active engineering of ultranarrow resonances across the visible regime-and within a single system-has not yet been demonstrated. This paper describes how aluminum nanoparticle arrays embedded in an elastomeric slab may exhibit high-quality resonances with linewidths as narrow as 3 nm at wavelengths not accessible by conventional plasmonic materials. We exploited stretching to improve and tune simultaneously the optical response of as-fabricated nanoparticle arrays by shifting the diffraction mode relative to single-particle dipolar or quadrupolar resonances. This dynamic modulation of particle-particle spacing enabled either dipolar or quadrupolar lattice modes to be selectively accessed and individually optimized. Programmable plasmon modes offer a robust way to achieve real-time tunable materials for plasmon-enhanced molecular sensing and plasmonic nanolasers and opens new possibilities for integrating with flexible electronics.
Titanium-doped sapphire laser research and design study
NASA Technical Reports Server (NTRS)
Moulton, Peter F.
1987-01-01
Three main topics were considered in this study: the fundamental laser parameters of titanium-doped sapphire, characterization of commercially grown material, and design of a tunable, narrow-linewidth laser. Fundamental parameters investigated included the gain cross section, upper-state lifetime as a function of temperature and the surface-damage threshold. Commercial material was found to vary widely in the level of absorption of the laser wavelength with the highest absorption in Czochralski-grown crystals. Several Yi:sapphire lasers were constructed, including a multimode laser with greater than 50mJ of output energy and a single-transverse-mode ring laser, whose spectral and temporal characteristics were completely characterized. A design for a narrow-linewidth (single-frequency) Ti:sapphire laser was developed, based on the results of the experimental work. The design involves the use of a single-frequency, quasi-cw master oscillator, employed as an injection source for a pulsed ring laser.
Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo
2016-01-01
The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199
A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser
NASA Astrophysics Data System (ADS)
Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.
2018-05-01
A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.
Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy.
Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P; Bicanic, Kristopher T; Adachi, Michael M; McBride, James R; Reid, Kemar R; Park, Young-Shin; Li, Xiyan; Jain, Ankit; Quintero-Bermudez, Rafael; Saravanapavanantham, Mayuran; Liu, Min; Korkusinski, Marek; Hawrylak, Pawel; Klimov, Victor I; Rosenthal, Sandra J; Hoogland, Sjoerd; Sargent, Edward H
2017-04-06
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
NASA Astrophysics Data System (ADS)
Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.
2017-02-01
We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.
NASA Astrophysics Data System (ADS)
Sternkopf, Christian; Manske, Eberhard
2018-06-01
We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.
0.26-Hz-linewidth ultrastable lasers at 1557 nm
Wu, Lifei; Jiang, Yanyi; Ma, Chaoqun; Qi, Wen; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng
2016-01-01
Narrow-linewidth ultrastable lasers at 1.5 μm are essential in many applications such as coherent transfer of light through fiber and precision spectroscopy. Those applications all rely on the ultimate performance of the lasers. Here we demonstrate two ultrastable lasers at 1557 nm with a most probable linewidth of 0.26 Hz by independently frequency-stabilizing to the resonance of 10-cm-long ultrastable Fabry-Pérot cavities at room temperature. The fractional frequency instability of each laser system is nearly 8 × 10−16 at 1–30 s averaging time, approaching the thermal noise limit of the reference cavities. A remarkable frequency instability of 1 × 10−15 is achieved on the long time scale of 100–4000 s. PMID:27117356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurai, Satoshi, E-mail: kurai@yamaguchi-u.ac.jp; Yamada, Yoichi; Miyake, Hideto
2016-01-14
Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractionsmore » of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.« less
Spectral Engineering of Slow Light, Cavity Line Narrowing, and Pulse Compression
NASA Astrophysics Data System (ADS)
Sabooni, Mahmood; Li, Qian; Rippe, Lars; Mohan, R. Krishna; Kröll, Stefan
2013-11-01
More than 4 orders of magnitude of cavity-linewidth narrowing in a rare-earth-ion-doped crystal cavity, emanating from strong intracavity dispersion caused by off-resonant interaction with dopant ions, is demonstrated. The dispersion profiles are engineered using optical pumping techniques creating significant semipermanent but reprogrammable changes of the rare-earth absorption profiles. Several cavity modes are shown within the spectral transmission window. Several possible applications of this phenomenon are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder
2015-05-14
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and amore » microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.« less
Tunable high-power blue external cavity semiconductor laser
NASA Astrophysics Data System (ADS)
Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun
2017-09-01
A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
NASA Astrophysics Data System (ADS)
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Enhanced Lamb dip for absolute laser frequency stabilization
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Byer, R. L.; Wang, S. C.
1972-01-01
Enhanced Lamb dip width is 5 MHz and total depth is 10 percent of peak power. Present configuration is useful as frequency standard in near infrared. Technique extends to other lasers, for which low pressure narrow linewidth gain tubes can be constructed.
Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles
2013-09-23
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.
NASA Astrophysics Data System (ADS)
Tibuleac, Sorin
In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.
NASA Astrophysics Data System (ADS)
Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.
2017-12-01
We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.
Injection Locking of a Semiconductor Double Quantum Dot Micromaser
Liu, Y.-Y.; Stehlik, J.; Gullans, M. J.; Taylor, J. M.; Petta, J. R.
2016-01-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models. PMID:28127226
Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
Liu, Y-Y; Stehlik, J; Gullans, M J; Taylor, J M; Petta, J R
2015-11-01
Emission linewidth is an important figure of merit for masers and lasers. We recently demonstrated a semiconductor double quantum dot (DQD) micromaser where photons are generated through single electron tunneling events. Charge noise directly couples to the DQD energy levels, resulting in a maser linewidth that is more than 100 times larger than the Schawlow-Townes prediction. Here we demonstrate a linewidth narrowing of more than a factor 10 by locking the DQD emission to a coherent tone that is injected to the input port of the cavity. We measure the injection locking range as a function of cavity input power and show that it is in agreement with the Adler equation. The position and amplitude of distortion sidebands that appear outside of the injection locking range are quantitatively examined. Our results show that this unconventional maser, which is impacted by strong charge noise and electron-phonon coupling, is well described by standard laser models.
Cross correlation in the two-mode laser
NASA Astrophysics Data System (ADS)
Kennedy, T. A. B.; Swain, S.
1984-11-01
Thomas et al. proposed the generation of cross correlation between two laser fields interacting with a three-level system as a means of reducing noise and subsequently exploited this property in the observation of very narrow Ramsey fringes. Cross correlation has been discussed theoretically by Dalton and Knight and shown to have interesting effects in population trapping. For such effects to be important, the cross correlation coefficient must be as large as possible. The degree of correlation between the two modes of a two-mode laser is discussed using the approach of Scully and Lamb, and it is shown that it can be large. The linewidths of the two laser modes are evaluated. It is found that if the laser parameters for the two modes are equal, the two-mode linewidth is one half the value of the linewidth of the corresponding single-mode laser, well above threshold.
NASA Technical Reports Server (NTRS)
McAndrew, Brendan; McCorkel, Joel; Shuman, Timothy; Zukowski, Barbara; Traore, Aboubakar; Rodriguez, Michael; Brown, Steven; Woodward, John
2018-01-01
A description of the Goddard Laser for Absolute Calibration of Radiance, a tunable, narrow linewidth spectroradiometric calibration tool, and results from calibration of an earth science satellite instrument from ultraviolet to short wave infrared wavelengths.
Sub-kilohertz excitation lasers for quantum information processing with Rydberg atoms
NASA Astrophysics Data System (ADS)
Legaie, Remy; Picken, Craig J.; Pritchard, Jonathan D.
2018-04-01
Quantum information processing using atomic qubits requires narrow linewidth lasers with long-term stability for high fidelity coherent manipulation of Rydberg states. In this paper, we report on the construction and characterization of three continuous-wave (CW) narrow linewidth lasers stabilized simultaneously to an ultra-high finesse Fabry-Perot cavity made of ultra-low expansion (ULE) glass, with a tunable offset-lock frequency. One laser operates at 852~nm while the two locked lasers at 1018~nm are frequency doubled to 509~nm for excitation of $^{133}$Cs atoms to Rydberg states. The optical beatnote at 509~nm is measured to be 260(5)~Hz. We present measurements of the offset between the atomic and cavity resonant frequencies using electromagnetically induced transparency (EIT) for high-resolution spectroscopy on a cold atom cloud. The long-term stability is determined from repeated spectra over a period of 20 days yielding a linear frequency drift of $\\sim1$~Hz/s.
NASA Astrophysics Data System (ADS)
Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming
2018-04-01
This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.
Airborne water vapor DIAL system and measurements of water and aerosol profiles
NASA Technical Reports Server (NTRS)
Higdon, Noah S.; Browell, Edward V.
1991-01-01
The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.
Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm
NASA Astrophysics Data System (ADS)
Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad
2016-03-01
Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 < 1.2) with no sign of modal instability. To the best of our knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.
Narrow polarized components in the OH 1612-MHz maser emission from supergiant OH-IR sources
NASA Technical Reports Server (NTRS)
Cohen, R. J.; Downs, G.; Emerson, R.; Grimm, M.; Gulkis, S.; Stevens, G.
1987-01-01
High-resolution (300 Hz) OH 1612-MHz spectra of the supergiant OH-IR sources VY CMa, VX Sgr, IRC 10420, and NML Cyg are presented. Linewidths as small as 550 Hz (0.1 km/s) are found for narrow components in the spectra. The present results are consistent with current models for maser line-narrowing and for the physical properties in the OH maser regions. A significant degree of circular polarization is noted in many of the narrow components. The circular polarization suggests the presence of magnetic fields of about 1 mG in the circumstellar envelopes which would be strong enough to influence the outflow from the stars, and which may explain asymmetries found in the circumstellar envelopes.
LD-cladding-pumped 50 pm linewidth Tm 3+ -doped silica fiber laser.
Yunjun, Zhang; Baoquan, Yao; Youlun, Ju; Hui, Zhou; Yuezhu, Wang
2008-05-26
We report on a Tm(3+)-doped fiber laser source operating at 1936.4 nm with a very narrow linewidth (50 pm) laser output. Up to 2.4 W cw laser power was obtained from an 82 cm long Tm(3+)-doped multimode-core fiber cladding pumped by a 792 nm laser diode (LD). The fiber laser cavity included a high-reflective dichroic and a low-reflective FBG output coupler. The multimode fiber Bragg grating (FBG) transmission spectrum and output laser spectrum were measured. By adjusting the distance between the dichroic and the Tm(3+)-doped fiber end, the multipeak laser spectrum changed to a single-peak laser spectrum.
NASA Astrophysics Data System (ADS)
Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.
2017-03-01
This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.
NASA Astrophysics Data System (ADS)
Shi, Tiantian; Pan, Duo; Chang, Pengyuan; Shang, Haosen; Chen, Jingbiao
2018-04-01
Without exploiting any frequency selective elements, we have realized a highly integrated, single-mode, narrow-linewidth Nd:YAG 1064 nm laser, which is end-pumped by the 808.6 nm diode laser in an integrated invar cavity. It turns out that each 1064 nm laser achieves a most probable linewidth of 8.5 kHz by beating between two identical laser systems. The output power of the 1064 nm laser increases steadily as the 808.6 nm pump power is raised, which can be up to 350 mW. Moreover, the resonant wavelength of cavity grows continuously in a certain crystal temperature range. Such a 1064 nm laser will be frequency stabilized to an ultrastable cavity by using the Pound-Drever-Hall technique and used as the good cavity laser to lock the main cavity length of 1064/1470 nm good-bad cavity dual-wavelength active optical clock.
Experimental Study of SBS Suppression via White Noise Phase Modulation
2014-02-10
fiber optical parametric amplifiers,” Opt. Communications 283, 2607-2610 (2010). [8] Coles, J. B., Kuo, B. P.-P., Alie , N., Moro, S., Bres, C.-S...V., Farley, K., Leveille, R., Galipeau, J., Majid , I., Christensen, S., Samson, B., Tankala, K. “kW level narrow linewidth Yb fiber amplifiers for
Narrow-line laser cooling by adiabatic transfer
NASA Astrophysics Data System (ADS)
Norcia, Matthew A.; Cline, Julia R. K.; Bartolotta, John P.; Holland, Murray J.; Thompson, James K.
2018-02-01
We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle’s motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5 kHz linewidth 1S0 to 3P1 transition in 88Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.
Improved color metrics in solid-state lighting via utilization of on-chip quantum dots
NASA Astrophysics Data System (ADS)
Mangum, Benjamin D.; Landes, Tiemo S.; Theobald, Brian R.; Kurtin, Juanita N.
2017-02-01
While Quantum Dots (QDs) have found commercial success in display applications, there are currently no widely available solid state lighting products making use of QD nanotechnology. In order to have real-world success in today's lighting market, QDs must be capable of being placed in on-chip configurations, as remote phosphor configurations are typically much more expensive. Here we demonstrate solid-state lighting devices made with on-chip QDs. These devices show robust reliability under both dry and wet high stress conditions. High color quality lighting metrics can easily be achieved using these narrow, tunable QD downconverters: CRI values of Ra > 90 as well as R9 values > 80 are readily available when combining QDs with green phosphors. Furthermore, we show that QDs afford a 15% increase in overall efficiency compared to traditional phosphor downconverted SSL devices. The fundamental limit of QD linewidth is examined through single particle QD emission studies. Using standard Cd-based QD synthesis, it is found that single particle linewidths of 20 nm FWHM represent a lower limit to the narrowness of QD emission in the near term.
40nm tunable multi-wavelength fiber laser
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin
2014-12-01
A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.
Group-III nitride VCSEL structures grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ng, HockMin; Moustakas, Theodore D.
2000-07-01
III-nitride VCSEL structures designed for electron-beam pumping have been grown by molecular beam epitaxy (MBE). The structures consist of a sapphire substrate on which an AlN/GaN distributed Bragg reflector (DBR) with peak reflectance >99% at 402 nm is deposited. The active region consists of a 2-(lambda) cavity with 25 In0.1Ga0.9N/GaN multiquantum wells (MQWs) whose emission coincides with the high reflectance region of the DBR. The thicknesses of the InGaN wells and the GaN barriers are 35 angstrom and 75 angstrom respectively. The top reflector consists of a silver metallic mirror which prevents charging effects during electron-beam pumping. The structure was pumped from the top- side with a cw electron-beam using a modified cathodoluminescence (CL) system mounted on a scanning electron microscope chamber. Light output was collected from the polished sapphire substrate side. Measurements performed at 100 K showed intense emission at 407 nm with narrowing of the linewidth with increasing beam current. A narrow emission linewidth of 0.7 nm was observed indicating the onset of stimulated emission.
Narrow-band double-pass superluminescent diodes emitting at 1060 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobintsov, A A; Perevozchikov, M V; Shramenko, M V
2009-09-30
Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)
Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong
2009-09-14
A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.
Quantum Logic with Cavity Photons From Single Atoms.
Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F
2016-07-08
We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.
ALMA Observations of the Galactic Center: SiO Outflows and High Mass Star Formation Near Sgr A
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, F.; Royster, M.; Wardle, M.; Arendt, R.; Bushouse, H.; Gillessen, S.; Lis, D.; Pound, M. W.; Roberts, D. A.; Whitney, B.;
2013-01-01
Using ALMA observations of the Galactic center with a spatial resolution of 2.61" x 0.97 ", we detected 11 SiO (5-4) clumps of molecular gas in the within 0.6pc (15") of Sgr A*, interior of the 2-pc circumnuclear molecular ring. Three SiO (5-4) clumps closest to Sgr A* show the largest central velocities of approximately 150 kilometers per second and broadest asymmetric linewidths with total linewidths FWZI approximately 110-147 kilometers per second. Other clumps are distributed mainly to the NE of the ionized minispiral with narrow linewidths of FWHM approximately 11-27 kilometers per second. Using CARMA data, LVG modeling of the broad velocity clumps, the SiO (5-4) and (2-1) line ratios constrain the column density N(SiO) approximately 10(exp 14) per square centimeter, and the H2 gas density n(sub H2) = (3-9) x 10(exp 5) per cubic centimeter for an assumed kinetic temperature 100-200K. The SiO (5-4) clumps with broad and narrow linewidths are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104 years. Additional support for the presence of YSO outflows is that the luminosities and velocity widths lie in the range detected from protostellar outflows in star forming regions in the Galaxy. Furthermore, SED modeling of stellar sources along the N arm show two YSO candidates near SiO clumps supporting in-situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhance the gas density, before the gas cloud become gravitationally unstable near Sgr A*.
Volume Bragg grating narrowed high-power and highly efficient cladding-pumped Raman fiber laser.
Liu, Jun; Yao, Weichao; Zhao, Chujun; Shen, Deyuan; Fan, Dianyuan
2014-12-10
High-power and highly efficient operation of a single-mode cladding-pumped Raman fiber laser with narrow lasing bandwidth is demonstrated. The spectral narrowing was realized by an external cavity containing a volume Bragg grating with a center wavelength of 1658 nm. A maximum output power of 10.4 W at 1658.3 nm with a spectral linewidth (FWHM) of ∼0.1 nm was obtained for the launched pump power of 18.4 W, corresponding to a slope efficiency of 109% with respect to the launched pump power. Lasing characteristics of free-running operation are also evaluated and discussed.
Detecting single viruses and nanoparticles using whispering gallery microlasers.
He, Lina; Ozdemir, Sahin Kaya; Zhu, Jiangang; Kim, Woosung; Yang, Lan
2011-06-26
There is a strong demand for portable systems that can detect and characterize individual pathogens and other nanoscale objects without the use of labels, for applications in human health, homeland security, environmental monitoring and diagnostics. However, most nanoscale objects of interest have low polarizabilities due to their small size and low refractive index contrast with the surrounding medium. This leads to weak light-matter interactions, and thus makes the label-free detection of single nanoparticles very difficult. Micro- and nano-photonic devices have emerged as highly sensitive platforms for such applications, because the combination of high quality factor Q and small mode volume V leads to significantly enhanced light-matter interactions. For example, whispering gallery mode microresonators have been used to detect and characterize single influenza virions and polystyrene nanoparticles with a radius of 30 nm (ref. 12) by measuring in the transmission spectrum either the resonance shift or mode splitting induced by the nanoscale objects. Increasing Q leads to a narrower resonance linewidth, which makes it possible to resolve smaller changes in the transmission spectrum, and thus leads to improved performance. Here, we report a whispering gallery mode microlaser-based real-time and label-free detection method that can detect individual 15-nm-radius polystyrene nanoparticles, 10-nm gold nanoparticles and influenza A virions in air, and 30 nm polystyrene nanoparticles in water. Our approach relies on measuring changes in the beat note that is produced when an ultra-narrow emission line from a whispering gallery mode microlaser is split into two modes by a nanoscale object, and these two modes then interfere. The ultimate detection limit is set by the laser linewidth, which can be made much narrower than the resonance linewidth of any passive resonator. This means that microlaser sensors have the potential to detect objects that are too small to be detected by passive resonator sensors.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Driving-induced population trapping and linewidth narrowing via the quantum Zeno effect
NASA Astrophysics Data System (ADS)
Christensen, Charles N.; Iles-Smith, Jake; Petersen, Torkil S.; Mørk, Jesper; McCutcheon, Dara P. S.
2018-06-01
We investigate the suppression of spontaneous emission from a driven three-level system embedded in an optical cavity via a manifestation of the quantum Zeno effect. Strong resonant coupling of the lower two levels to an external optical field results in a decrease of the decay rate of the third upper level. We show that this effect has observable consequences in the form of emission spectra with subnatural linewidths, which should be measurable using, for example, quantum dot-cavity systems in currently obtainable parameter regimes, and may find use in applications requiring the control of single-photon arrival times and wave-packet extent. These results suggest an underappreciated link between the Zeno effect, dressed states, and Purcell enhancement.
1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao
2015-02-01
A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.
Chen, Qun-Feng; Troshyn, Andrei; Ernsting, Ingo; Kayser, Steffen; Vasilyev, Sergey; Nevsky, Alexander; Schiller, Stephan
2011-11-25
Using an ultrastable continuous-wave laser at 580 nm we performed spectral hole burning of Eu(3+):Y(2)SiO(5) at a very high spectral resolution. The essential parameters determining the usefulness as a macroscopic frequency reference, linewidth, temperature sensitivity, and long-term stability, were characterized using a H-maser stabilized frequency comb. Spectral holes with a linewidth as low as 6 kHz were observed and the upper limit of the drift of the hole frequency was determined to be 5±3 mHz/s. We discuss the necessary requirements for achieving ultrahigh stability in laser frequency stabilization to these spectral holes.
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
Dynamic properties of quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Su, Hui
Semiconductor quantum dots (QDs) are nano-structures with three-dimensional spatial confinement of electrons and holes, representing the ultimate case of the application of the size quantization concept to semiconductor hetero-structures. The knowledge about the dynamic properties of QD semiconductor diode lasers is essential to improve the device performance and understand the physics of the QDs. In this dissertation, the dynamic properties of QD distributed feedback lasers (DFBs) are studied. The response function of QD DFBs under external modulation is characterized and the gain compression with photon density is identified to be the limiting factor of the modulation bandwidth. The enhancement of the gain compression by the gain saturation with the carrier density in QDs is analyzed for the first time with suggestions to improve the high speed performance of the devices by increasing the maximum gain of the QD medium. The linewidth of the QD DFBs are found to be more than one order of magnitude narrower than that of conventional quantum well (QW) DFBs at comparable output powers. The figure of merit for the narrow linewidth is identified by the comparison between different semiconductor materials, including bulk, QWs and QDs. Linewidth rebroadening and the effects of gain offset are also investigated. The effects of external feedback on the QD DFBs are compared to QW DFBs. Higher external feedback resistance is found in QD DFBs with an 8-dB improvement in terms of the coherence collapse of the devices and 20-dB improvement in terms of the degradation of the signal-to-noise ratio under 2.5 Gbps modulation. This result enables the isolator-free operation of the QD DFBs in real communication systems based on the IEEE 802.3ae Ethernet standard. Finally, the chirp of QD DFBs is studied by time-resolved-chirp measurements. The wavelength chirping of the QD DFBs under 2.5 Gbps modulation is characterized. The above-threshold behavior of the linewidth enhancement factor in QDs is studied, in contrast to the below-threshold ones in most of the published data to-date. The strong dependence of the linewidth enhancement factor on the photon density is explained by the enhancement of gain compression by the gain saturation with the carrier density, which is related to the inhomogeneous broadening and spectral hole burning in QDs.
Broadband midinfrared frequency comb with tooth scanning
NASA Astrophysics Data System (ADS)
Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.
2015-03-01
Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.
Optical filter finesses enhancement based on nested coupled cavities and active medium
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2016-04-01
Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.
High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu
2016-03-01
We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.
Si-H bond dynamics in hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Scharff, R. Jason; McGrane, Shawn D.
2007-08-01
The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.
High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N
NASA Astrophysics Data System (ADS)
Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.
2011-12-01
The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.
Lu, Xiaoyuan; Zhang, Tongyi; Wan, Rengang; Xu, Yongtao; Zhao, Changhong; Guo, Sheng
2018-04-16
Metasurfaces are investigated intensively for biophotonics applications due to their resonant wavelength flexibly tuned in the near infrared region specially matching biological tissues. Here, we present numerically a metasurface structure combining dielectric resonance with surface plasmon mode of a metal plane, which is a perfect absorber with a narrow linewidth 10 nm wide and quality factor 120 in the near infrared regime. As a sensor, its bulk sensitivity and bulk figure of merit reach respectively 840 nm/RIU and 84/RIU, while its surface sensitivity and surface figure of merit are respectively 1 and 0.1/nm. For different types of adsorbate layers with the same thickness of 8 nm, its surface sensitivity and figure of merit are respectively 32.3 and 3.2/RIU. The enhanced electric field is concentrated on top of dielectric patch ends and in the patch ends simultaneously. Results show that the presented structure has high surface (and bulk) sensing capability in sensing applications due to its narrow linewidth and deep modulation depth. This could pave a new route toward dielectric-metal metasurface in biosensing applications, such as early disease detections and designs of neural stem cell sensing platforms.
NASA Astrophysics Data System (ADS)
Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun
2017-08-01
We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-12-01
We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.
Single Frequency, Pulsed Laser Diode Transmitter for Dial Water Vapor Measurements at 935nm
NASA Technical Reports Server (NTRS)
Switzer, Gregg W.; Cornwell, Donald M., Jr.; Krainak, Michael A.; Abshire, James B.; Rall, Johnathan A. R.
1998-01-01
We report a tunable, single frequency, narrow linewidth, pulsed laser diode transmitter at 935.68nm for remote sensing of atmospheric water vapor. The transmitter consists of a CW, tunable, external cavity diode laser whose output is amplified 2OdB using a tapered diode amplifier. The output is pulsed for range resolved DIAL lidar by pulsing the drive current to the diode amplifier at 4kHz with a .5% duty cycle. The output from the transmitter is 36OnJ/pulse and is single spatial mode. It maintains a linewidth of less than 25MHz as its wavelength is tuned across the water vapor absorption line at 935.68nm. The transmitter design and its use in a water vapor measurement will be discussed.
Temperature dependence of the chromium(III) R1 linewidth in emerald
NASA Astrophysics Data System (ADS)
Carceller-Pastor, Ivana; Hutchison, Wayne D.; Riesen, Hans
2013-03-01
The temperature dependent contribution to the R1 (2E ← 4A2) linewidth in emerald, Be3Al2Si6O18:Cr3, has been measured by employing spectral hole-burning, fluorescence line narrowing and conventional luminescence experiments. The contribution varies from 0.6 MHz at 6.5 K to ˜420 GHz at 240 K and the line red-shifts by ˜570 GHz. Above 60 K, the dependence is well described by a non-perturbative formalism for two-phonon Raman scattering. Below this temperature the direct one-phonon process between the levels of the split 2E excited state dominates. However, it appears that a localized low-energy phonon leads to a deviation from the standard pattern at lowest temperatures.
NO plume mapping by laser-radar techniques.
Edner, H; Sunesson, A; Svanberg, S
1988-09-01
Mapping of NO plumes by using laser-radar techniques has been demonstrated with a mobile differential absorption lidar system. The system was equipped with a narrow-linewidth Nd:YAG-pumped dye laser that, with doubling and mixing, generated pulse energies of 3-5 mJ at 226 nm, with a linewidth of 1pm. This permitted range-resolved measurements of NO, with a range of about 500 m. The detection limit was estimated to 3 microg/m(3), with an integration interval of 350 m. Spectroscopic studies on the gamma(0, 0) bandhead near 226.8 nm were performed with 1-pm resolution, and the differential absorption cross section was determined to be (6.6 +/- 0.6) x 10(-22) m(2), with a wavelength difference of 12 pm.
Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber
NASA Astrophysics Data System (ADS)
Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng
2016-11-01
We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
2000-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.
NASA Technical Reports Server (NTRS)
Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)
1998-01-01
The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.
NASA Astrophysics Data System (ADS)
Stahl, Charlotte S. D.; Tozburun, Serhat; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Keller, Matthew D.; Fried, Nathaniel M.
2013-03-01
Optical nerve stimulation (ONS) is being explored for identification and preservation of the cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. This study compares three pulsed infrared lasers to determine whether differences in spectral linewidth and/or temporal pulse profile influence successful ONS of CN. Infrared laser radiation from the Capella diode laser (1873 nm, 5 ms, 10 Hz), Thulium fiber laser (TFL) (1873 nm, 5 ms, 10 Hz), and solid-state Holmium:YAG laser (2120 nm, 200 μs, 5 Hz) were transmitted through 400-μm-corediameter optical fibers, producing a 1-mm-diameter-spot on the nerve surface. Successful ONS was judged by an intracavernous pressure (ICP) response in the penis (n =10 rats) during a total stimulation time of 30 s. The narrow linewidth TFL (Δλ 0.5 nm) and broad linewidth Capella laser (Δλ 12 nm) performed similarly, producing ICP responses with a threshold radiant exposure of 0.45 J/cm2, and ICP response times of 12-17 s, while the Holmium laser stimulated at 0.59 J/cm2, and ICP response times of about 14-28 s. All three lasers demonstrated successful ONS of CN. ICP response time was dependent on the rate of energy deposition into the CN, rather than linewidth or temporal pulse profile.
NASA Astrophysics Data System (ADS)
Schneider, Thomas
2015-03-01
High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.
Light effects in the atomic-motion-induced Ramsey narrowing of dark resonances in wall-coated cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breschi, E.; Schori, C.; Di Domenico, G.
2010-12-15
We report on light shift and broadening in the atomic-motion-induced Ramsey narrowing of dark resonances prepared in alkali-metal vapors contained in wall-coated cells without buffer gas. The atomic-motion-induced Ramsey narrowing is due to the free motion of the polarized atomic spins in and out of the optical interaction region before spin relaxation. As a consequence of this effect, we observe a narrowing of the dark resonance linewidth as well as a reduction of the ground states' light shift when the volume of the interaction region decreases at constant optical intensity. The results can be intuitively interpreted as a dilution ofmore » the intensity effect similar to a pulsed interrogation due to the atomic motion. Finally the influence of this effect on the performance of compact atomic clocks is discussed.« less
NASA Astrophysics Data System (ADS)
Schilt, S.; Dolgovskiy, V.; Bucalovic, N.; Schori, C.; Stumpf, M. C.; Di Domenico, G.; Pekarek, S.; Oehler, A. E. H.; Südmeyer, T.; Keller, U.; Thomann, P.
2012-11-01
We present a detailed investigation of the noise properties of an optical frequency comb generated from a femtosecond diode-pumped solid-state laser operating in the 1.5-μm spectral region. The stabilization of the passively mode-locked Er:Yb:glass laser oscillator, referred to as ERGO, is achieved using pump power modulation for the control of the carrier envelope offset (CEO) frequency and by adjusting the laser cavity length for the control of the repetition rate. The stability and the noise of the ERGO comb are characterized in free-running and in phase-locked operation by measuring the noise properties of the CEO, of the repetition rate, and of a comb line at 1558 nm. The comb line is analyzed from the heterodyne beat signal with a cavity-stabilized ultra-narrow-linewidth laser using a frequency discriminator. Two different schemes to stabilize the comb to a radio-frequency (RF) reference are compared. The comb properties (phase noise, frequency stability) are limited in both cases by the RF oscillator used to stabilize the repetition rate, while the contribution of the CEO is negligible at all Fourier frequencies, as a consequence of the low-noise characteristics of the CEO-beat. A linewidth of ≈150 kHz and a fractional frequency instability of 4.2×10-13 at 1 s are obtained for an optical comb line at 1558 nm. Improved performance is obtained by stabilizing the comb to an optical reference, which is a cavity-stabilized ultra-narrow linewidth laser at 1558 nm. The fractional frequency stability of 8×10-14 at 1 s, measured in preliminary experiments, is limited by the reference oscillator used in the frequency comparison.
Optimizing Ti:Sapphire laser for quantitative biomedical imaging
NASA Astrophysics Data System (ADS)
James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.
2018-02-01
Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.
Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field
2008-03-01
ENY/08-M22 Abstract Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser -based flow characterization technique that consists of a narrow...linewidth laser , a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have...different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is
Hybrid optical and electronic laser locking using slow light due to spectral holes
NASA Astrophysics Data System (ADS)
Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.
2013-06-01
We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.
Investigation of narrow-band thermal emission from intersubband transitions in quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Zoysa, M.; Hakubi Center, Kyoto University, Yoshida, Kyoto 606-8501; Asano, T.
2015-09-14
We investigate thermal emission from n-doped GaAs/AlGaAs quantum wells (QWs). Emission peaks with Lorentzian shapes (linewidth 11∼19 meV) that reflect transitions between the first and second conduction subbands are observed in the mid-infrared range. It is demonstrated that the emission characteristics can be tuned by modifying the QW parameters. The peak emissivity is increased from 0.3 to 0.9 by modifying the doping density, and the peak wavelength is tuned from 6 to 10 μm by changing the well width. The obtained results are useful for the design of narrow-band thermal emitters.
Tunable resonator-based devices for producing variable delays and narrow spectral linewidths
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor); Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor)
2006-01-01
Devices with two or more coupled resonators to produce narrow spectral responses due to interference of signals that transmit through the resonators and techniques for operating such devices to achieve certain operating characteristics are described. The devices may be optical devices where optical resonators such as whispering gallery mode resonators may be used. In one implementation, at least one of the coupled optical resonators is a tunable resonator and is tuned to change its resonance frequency to tune the spectral response of the device. The described devices and techniques may be applied in optical filters, optical delays, optical waveform generators, and other applications.
Eigenpolarization theory of monolithic nonplanar ring oscillators
NASA Technical Reports Server (NTRS)
Nilsson, Alan C.; Gustafson, Eric K.; Byer, Robert L.
1989-01-01
Diode-laser-pumped monolithic nonplanar ring oscillators (NPROs) in an applied magnetic field can operate as unidirectional traveling-wave lasers. The diode laser pumping, monolithic construction, and unidirectional oscillation lead to narrow linewidth radiation. Here, a comprehensive theory of the eigenpolarizations of a monolithic NPRO is presented. It is shown how the properties of the integral optical diode that forces unidirectional operation depend on the choice of the gain medium, the applied magnetic field, the output coupler, and the geometry of the nonplanar ring light path. Using optical equivalence theorems to gain insight into the polarization characteristics of the NPRO, a strategy for designing NPROs with low thresholds and large loss nonreciprocities is given. An analysis of the eigenpolarizations for one such NPRO is presented, alternative optimization approaches are considered, and the prospects for further reducing the linewidths of these lasers are briefly discussed.
Three-dimensional laser cooling at the Doppler limit
NASA Astrophysics Data System (ADS)
Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.
2014-12-01
Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jian; Yang, Yanfu, E-mail: yangyanfu@hotmail.com; Zhang, Jianyu
We have proposed and demonstrated a novel switchable single-longitudinal-mode (SLM), dual-wavelength erbium-doped fiber laser (DWEDFL) assisted by Rayleigh backscattering (RBS) in a tapered fiber in a ring laser configuration. The RBS feedback in a tapered fiber is a key mechanism as linewidth narrowing for laser output. A compound laser cavity ensured that the EDFL operated in the SLM state and a saturable absorber (SA) is employed to form a gain grating for both filtering and improving wavelength stability. The fiber laser can output dual wavelengths simultaneously or operate at single wavelength in a switchable manner. Experiment results show that withmore » the proper SA, the peak power drift was improved from 1–2 dB to 0.31 dB and the optical signal to noise ratio was higher than 60 dB. Under the assistance of RBS feedback, the laser linewidths are compressed by around three times and the Lorentzian 3 dB linewidths of 445 Hz and 425 Hz are obtained at 1550 nm and 1554 nm, respectively.« less
Quantum synchronization and the no-photon laser
NASA Astrophysics Data System (ADS)
Holland, Murray
2014-03-01
This talk will present a new approach to lasers that is based on the quantum synchronization of many atoms. Such lasers are predicted to produce light of unprecedented spectral purity and coherence, some two orders of magnitude better than any system available today. The idea is based on superradiant emission, where an ensemble of atoms with an extremely narrow atomic transition can phase-lock and form a macroscopic dipole that radiates light collectively. This is quite unlike a typical laser where atoms essentially act independently. The resulting light source is expected to have a spectral linewidth of just a few millihertz and could lead to more accurate and stable atomic clocks. Atomic clocks based on optical transitions have improved tremendously in recent years, giving clocks that tick 1015 times per second, and can have a fractional stability exceeding one part in 1016. This new sharper light source aims to push the frontier even further, so that fundamental tests of physics, such as the time variation of constants and tests of gravity, might even be possible. We acknowledge support from NSF and the DARPA QuASAR program.
Magnetic polarons in antiferromagnetic CaMnO3-x (x<0.01) probed by O17 NMR
NASA Astrophysics Data System (ADS)
Trokiner, A.; Verkhovskii, S.; Yakubovskii, A.; Gerashenko, A.; Monod, P.; Kumagai, K.; Mikhalev, K.; Buzlukov, A.; Litvinova, Z.; Gorbenko, O.; Kaul, A.; Kartavtzeva, M.
2009-06-01
We study with O17 NMR and bulk magnetization a lightly electron doped CaMnO3-x (x<0.01) polycrystalline sample in the G -type antiferromagnetic state. The O17 NMR spectra show two lines with very different intensities corresponding to oxygen sites with very different local magnetic environments. The more intense unshifted line is due to the antiferromagnetic (AF) matrix. The thermal dependence of the magnetic moment of the AF sublattice deduced from the O17 linewidth is typical of insulating three-dimensional Heisenberg antiferromagnets. The less intense, strongly shifted line directly evidences the existence of ferromagnetic (FM) domains embedded in the AF spin lattice. The extremely narrow line in zero magnetic field indicates a nearly perfect alignment of the manganese spins in the FM domains which also display an unusually weak temperature dependence of their magnetic moment. We show that these FM entities start to move above 40 K in a slow-diffusion regime. These static and dynamic properties bear a strong similarity with those of a small size self-trapped magnetic polaron.
Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity
NASA Technical Reports Server (NTRS)
Miles, Richard B.; Lempert, Walter R.
1995-01-01
The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zohar, S.; Sterbinsky, G. E.
Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.
2005-06-21
266-nm, l-,W, 500-ps laser pulse from a frequency-quadrupled Nd:YAG microchip laser operating at 10 kHz. Fluorescence and elastic scattering from the...on Solid State Research xv Organization xxiii QUANTUM ELECTRONICS 1.1 Fluorescence-Cued Laser -Induced Breakdown Spectroscopy Detection of Bioaerosols...2. ELECTRO-OfI’ICAL MATERIALS AND DEVICES 2.1 Narrow-Linewidth, High-Power 1556-nm Slab-Coupled Optical Waveguide External-Cavity Laser 7 3
Evolution of synchrotron-radiation-based Mössbauer absorption spectroscopy for various isotopes
NASA Astrophysics Data System (ADS)
Seto, Makoto; Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Hosokawa, Shuuich; Ishibashi, Hiroki; Mitsui, Takaya; Yoda, Yoshitaka; Mibu, Ko
2017-11-01
Synchrotron-radiation-based Mössbauer spectroscopy that yields absorption type Mössbauer spectra has been applied to various isotopes. This method enables the advanced measurement by using the excellent features of synchrotron radiation, such as Mössbauer spectroscopic measurement under high-pressures. Furthermore, energy selectivity of synchrotron radiation allows us to measure 40K Mössbauer spectra, of which observation is impossible by using ordinary radioactive sources because the first excited state of 40K is not populated by any radioactive parent nuclides. Moreover, this method has flexibility of the experimental setup that the measured sample can be used as a transmitter or a scatterer, depending on the sample conditions. To enhance the measurement efficiency of the spectroscopy, we developed a detection system in which a windowless avalanche photodiode (APD) detector is combined with a vacuum cryostat to detect internal conversion electrons adding to X-rays accompanied by nuclear de-excitation. In particular, by selecting the emission from the scatterer sample, depth selective synchrotron-radiation-based Mössbauer spectroscopy is possible. Furthermore, limitation of the time window in the delayed components enables us to obtain narrow linewidth in Mössbauer spectra. Measurement system that records velocity dependent time spectra and energy information simultaneously realizes the depth selective and narrow linewidth measurement.
Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.
2017-01-01
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.
Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...
2017-01-15
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less
Thermal tuning On narrow linewidth fiber laser
NASA Astrophysics Data System (ADS)
Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei
2010-10-01
At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.
NASA Technical Reports Server (NTRS)
Matsuoka, N.; Yamaguchi, S.; Nanri, K.; Fujioka, T.; Richter, D.; Tittel, F. K.
2001-01-01
A Yb fiber laser pumped cw narrow-linewidth tunable mid-IR source based on a difference frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal for trace gas detection was demonstrated. A high power Yb fiber laser and a distributed feedback (DFB) laser diode were used as DFG pump sources. This source generated mid-IR at 3 microns with a powers of 2.5 microW and a spectral linewidth of less than 30 MHz. A frequency tuning range of 300 GHz (10 cm-1) was obtained by varying the current and temperature of the DFB laser diode. A high-resolution NH3 absorption Doppler-broadened spectrum at 3295.4 cm-1 (3.0345 microns) was obtained at a cell pressure of 27 Pa from which a detection sensitivity of 24 ppm m was estimated.
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
NASA Astrophysics Data System (ADS)
Yasui, Takeshi
2017-08-01
Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.
Highly localized distributed Brillouin scattering response in a photonic integrated circuit
NASA Astrophysics Data System (ADS)
Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.
2018-03-01
The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.
NASA Astrophysics Data System (ADS)
Gu, Bo; Chen, Yubin; Wang, Zefeng
2016-11-01
We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.
Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation
NASA Astrophysics Data System (ADS)
Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko
2018-01-01
We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.
Non-linear wave phenomena in Josephson elements for superconducting electronics
NASA Astrophysics Data System (ADS)
Christiansen, P. L.; Parmentier, R. D.; Skovgaard, O.
1985-07-01
The long and intermediate length Josephson tunnel junction oscillator with overlap geometry of linear and circular configuration, is investigated by computational solution of the perturbed sine-Gordon equation model and by experimental measurements. The model predicts the experimental results very well. Line oscillators as well as ring oscillators are treated. For long junctions soliton perturbation methods are developed and turn out to be efficient prediction tools, also providing physical understanding of the dynamics of the oscillator. For intermediate length junctions expansions in terms of linear cavity modes reduce computational costs. The narrow linewidth of the electromagnetic radiation (typically 1 kHz of a line at 10 GHz) is demonstrated experimentally. Corresponding computer simulations requiring a relative accuracy of less than 10 to the -7th power are performed on supercomputer CRAY-1-S. The broadening of linewidth due to external microradiation and internal thermal noise is determined.
NASA Astrophysics Data System (ADS)
Pan, Guan-Zhong; Guan, Bao-Lu; Xu, Chen; Li, Peng-Tao; Yang, Jia-Wei; Liu, Zhen-Yang
2018-01-01
Not Available Project supported by the Foundation of Based Technology of China (Grant No. YXBGD20151JL01), the National Natural Science Foundation of China (Grant Nos. 61376049, 61604007, 11674016, 61378058, 61575008, and 61574011), the Natural Science Foundation of Beijing City, China (Grant Nos. 4172009 and 4152003), and the Beijing Municipal Commission of Education of China (Grant Nos. PXM2017_014204_500034 and PXM2016_014204_500018).
Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system
NASA Astrophysics Data System (ADS)
Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae
2015-05-01
Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.
Eluri, Swathi; Runge, Thomas M; Cotton, Cary C; Burk, Caitlin M; Wolf, W Asher; Woosley, John T; Shaheen, Nicholas J; Dellon, Evan S
2016-06-01
Some patients with eosinophilic esophagitis (EoE) have an extremely narrow esophagus, but the characteristics of this group have not been extensively described. We aimed to characterize the narrow-caliber phenotype of EoE, determine associated risk factors, and identify differences in treatment response in this subgroup of patients. This retrospective cohort study from 2001 to 2014 included subjects with a new diagnosis of EoE per consensus guidelines. Demographic, endoscopic, histologic, and treatment response data were extracted from medical records. An extremely narrow-caliber esophagus was defined when a neonatal endoscope was required to traverse the esophagus due to the inability to pass an adult endoscope. Patients with and without an extremely narrow-caliber esophagus were compared. Multivariable logistical regression was performed to assess treatment outcomes. Of 513 patients with EoE, 46 (9%) had an extremely narrow-caliber esophagus. These patients were older (33 vs 22 years; P < .01), had longer symptom duration (11 vs 3 years; P < .01), more dysphagia (98% vs 66%; P < .01), and food impactions (53% vs 31%; P < .01). Dilation was more common with extreme narrowing (69% vs 17%; P < .01). Patients with a narrow-caliber esophagus were more refractory to steroid treatment, with lower symptom (56% vs 85%), endoscopic (52% vs 76%), and histologic (33% vs 63%) responses (P < .01 for all), and these differences persisted after multivariate analysis. The extremely narrow-caliber esophagus is a more treatment-resistant subphenotype of EoE and is characterized by longer symptom duration and the need for multiple dilations. Recognition of an extremely narrow-caliber esophagus at diagnosis of EoE can provide important prognostic information. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors.
Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng
2016-07-01
InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.
InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors
Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng
2016-01-01
InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface. PMID:27363290
A Novel Flame Thermometer Based on the Doppler Width of Ro-Vibrational Transitions
1993-05-01
flame thermometric technique based on the infrared spectroscopy of flame species is reported. It involves the use of a narrow linewidth (ɘ.001 cm-1...study. Output radiation from the laser diode is incident onto a parabolic aluminum mirror which collimates the beam and directs it into a monochromator...infrared beam. 5. SUMMARY AND CONCLUSIONS A novel flame thermometric technique has been developed which is based on the infrared spectroscopy of flame
2010-12-01
1946. [21 Y. Li and P. Herczfe1d, "Coherent PM Optical Link Employing ACP-PPLL," 1. Light\\\\"{l\\’e TechI /O!., vol. 27 . pp. 1086-1094, 2009. [31 C...Lightli"rn·e TechI /O!. , vol. 22, pp. 57- 62.2004. [4] G. A. finll, C. E. Holton, G. Hull-Allen, ::md W. W. l\\·lorey. mW 1.5 )1111 si ngle
Chakravarty, Usha; Mukhopadhyay, P K; Kuruvilla, A; Upadhyaya, B N; Bindra, K S
2017-05-01
A narrow-linewidth broadly tunable Yb-doped Q-switched fiber laser using an acousto-optic modulator and multimode interference filter (MMIF) in the linear bulk cavity resonator and an all-fiber ring cavity resonator has been demonstrated. Insertion of an MMIF in the linear cavity resonator using bulk components decreased the spectral bandwidth of the Q-switched signal by two orders of magnitude from 11 to less than 0.1 nm. Spectral tunability of more than 16 nm in the range from 1057 to 1073 nm has also been achieved by the combination of MMIF and a standard polarization controller (SPC). A decrease in the pulse duration with a decrease in the spectral bandwidth of the output signal has also been recorded. The pulse duration of the Q-switched signal was reduced from ∼305 to ∼240 ns by the introduction of the MMIF in the resonator at the same value of the input pump power. In the case of the all-fiber Q-switched ring cavity resonator, the spectral bandwidth of the Q-switched signal was reduced by two orders of magnitude from ∼17 to less than 0.1 nm due to the introduction of the MMIF in the resonator. The spectral tunability of more than 12 nm in the range from 1038 to 1050 nm was achieved by an MMIF and an SPC.
Ultrabright narrow-band telecom two-photon source for long-distance quantum communication
NASA Astrophysics Data System (ADS)
Niizeki, Kazuya; Ikeda, Kohei; Zheng, Mingyang; Xie, Xiuping; Okamura, Kotaro; Takei, Nobuyuki; Namekata, Naoto; Inoue, Shuichiro; Kosaka, Hideo; Horikiri, Tomoyuki
2018-04-01
We demonstrate an ultrabright narrow-band two-photon source at the 1.5 µm telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06 × 104. Our measurement of the second-order correlation function G (2)(τ) reveals that the linewidth of 2.4 MHz has been hitherto unachieved in the 1.5 µm telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94 × 105 pairs/(s·MHz·mW) is also the highest reported over all wavelengths.
Distributed fiber sensing system with wide frequency response and accurate location
NASA Astrophysics Data System (ADS)
Shi, Yi; Feng, Hao; Zeng, Zhoumo
2016-02-01
A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.
Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li, E-mail: lil@cust.edu.cn, E-mail: wangz@cust.edu.cn, E-mail: kq-peng@bnu.edu.cn; Zhang, Ziang; Yu, Miao
2015-09-28
Although the nanoscale world can already be observed at a diffraction-unlimited resolution using far-field optical microscopy, to make the step from microscopy to lithography still requires a suitable photoresist material system. In this letter, we consider the threshold to be a region with a width characterized by the extreme feature size obtained using a Gaussian beam spot. By narrowing such a region through improvement of the threshold sensitization to intensity in a high-threshold material system, the minimal feature size becomes smaller. By using platinum as the negative photoresist, we demonstrate that high-threshold lithography can be used to fabricate nanowire arraysmore » with a scalable resolution along the axial direction of the linewidth from the micro- to the nanoscale using a nanosecond-pulsed laser source with a wavelength λ{sub 0} = 1064 nm. The minimal feature size is only several nanometers (sub λ{sub 0}/100). Compared with conventional polymer resist lithography, the advantages of high-threshold lithography are sharper pinpoints of laser intensity triggering the threshold response and also higher robustness allowing for large area exposure by a less-expensive nanosecond-pulsed laser.« less
Coherent interaction of single molecules and plasmonic nanowires
NASA Astrophysics Data System (ADS)
Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg
2017-09-01
Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.
Flows of X-ray gas reveal the disruption of a star by a massive black hole.
Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial
2015-10-22
Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1980-01-01
A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.
NASA Astrophysics Data System (ADS)
Kastner, S. O.; Bhatia, A. K.
1980-08-01
A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V.
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold–silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron–surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron–surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron–surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances—approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron–surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping. PMID:18846243
Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E
2015-04-01
We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state (13)C polarization levels for these samples were determined. (13)C polarization levels close to 50 % were achieved for [1-(13)C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10-20 % (13)C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. At this field strength free radicals with smaller ESR linewidths are still superior for DNP of (13)C as opposed to those with linewidths that exceed that of the (1)H Larmor frequency.
Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V
2008-01-01
This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold-silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron-surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron-surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron-surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances-approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron-surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping.
2016-06-06
the widely used lead zirconate titanate ceramics which have a typical piezoelectric coefficient d31 of ~- 200pC/N, PMN-PT single crystals used in...substrate clamping effect, therefore, a relatively giant tunability can be obtained. However, the normally large roughness of piezoelectric layer...is the saturation magnetostriction constant, Y the Young’s modulus of the magnetic film, deff the effective piezoelectric coefficient, E
2010-02-01
Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008). 20. M. T. Tanner, C. M. Natarajan, V. K... wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single...cavity resonance wavelength and Q-factor for the PC cavity are shown in Figure 3. The data are taken both at low (0.050 mW) pump power and high (30 mW
A proposed method for electronic feedback compensation of damping in ferromagnetic resonance
Zohar, S.; Sterbinsky, G. E.
2017-07-10
Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.
A proposed method for electronic feedback compensation of damping in ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Zohar, S.; Sterbinsky, G. E.
2017-12-01
We propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π / 2 , amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.
2013-10-01
cancer for improving the overall specificity. Our recent work has focused on testing retrospective Maximum Entropy and Compressed Sensing of the 4D...terparts and increases the entropy or sparsity of the reconstructed spectrum by narrowing the peak linewidths and de -noising smaller features. This, in...tightened’ beyond the standard de - viation of the noise in an effort to reduce the RMSE and reconstruc- tion non-linearity, but this prevents the
Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films.
Emori, Satoru; Yi, Di; Crossley, Sam; Wisser, Jacob J; Balakrishnan, Purnima P; Khodadadi, Behrouz; Shafer, Padraic; Klewe, Christoph; N'Diaye, Alpha T; Urwin, Brittany T; Mahalingam, Krishnamurthy; Howe, Brandon M; Hwang, Harold Y; Arenholz, Elke; Suzuki, Yuri
2018-06-08
Pure spin currents, unaccompanied by dissipative charge flow, are essential for realizing energy-efficient nanomagnetic information and communications devices. Thin-film magnetic insulators have been identified as promising materials for spin-current technology because they are thought to exhibit lower damping compared with their metallic counterparts. However, insulating behavior is not a sufficient requirement for low damping, as evidenced by the very limited options for low-damping insulators. Here, we demonstrate a new class of nanometer-thick ultralow-damping insulating thin films based on design criteria that minimize orbital angular momentum and structural disorder. Specifically, we show ultralow damping in <20 nm thick spinel-structure magnesium aluminum ferrite (MAFO), in which magnetization arises from Fe 3+ ions with zero orbital angular momentum. These epitaxial MAFO thin films exhibit a Gilbert damping parameter of ∼0.0015 and negligible inhomogeneous linewidth broadening, resulting in narrow half width at half-maximum linewidths of ∼0.6 mT around 10 GHz. Our findings offer an attractive thin-film platform for enabling integrated insulating spintronics.
Raman gas self-organizing into deep nano-trap lattice
Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.
2016-01-01
Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb–Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing. PMID:27677451
Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs
Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi
2014-01-01
Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10−7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy. PMID:24448604
Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui
2015-02-23
A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.
Frequency comb transferred by surface plasmon resonance
Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul
2016-01-01
Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10−19 in absolute position, 2.92 × 10−19 in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits. PMID:26898307
NASA Astrophysics Data System (ADS)
Ogino, Kota; Suzuki, Safumi; Asada, Masahiro
2017-12-01
Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.
A clock transition in a solid-state system
NASA Astrophysics Data System (ADS)
Edge, G. J. A.; Potnis, S.; Vutha, A. C.
2017-04-01
With the impending redefinition of the SI second based on optical frequency standards, new secondary frequency standards are needed in order to form clock ensembles. Ideally such secondary standards will offer enhanced robustness, portability and high signal-to-noise ratios (SNR), to enable rapid and precise comparisons to be made against primary standards. A clock based on a narrow optical transition, in atoms that are doped into a solid-state host, offers the experimental simplicity and large SNR to satisfy these requirements. The intra-configuration 7F0 ->5D0 transition, in Sm2+ ions doped into a host crystal, is an attractive candidate for such secondary standards due to its low susceptibility to perturbations from the crystal environment. We present results from the interrogation of this clock transition with a narrow linewidth laser.
NASA Astrophysics Data System (ADS)
Dharmadhikari, Aditya K.; Bhowmik, Achintya K.; Ahyi, Ayayi C.; Thakur, Mrinal
2001-11-01
Highly efficient spectrally narrowed emission (SNE) was observed in the solution of strylpyridinium cyanine dye (SPCD) pumped by fundamental and second harmonic of a picosecond Nd:YAG laser in two separate arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of the SNE was measured by background free SHG intensity autocorrelation technique. The measured duration of the pulses was 40 ps. These pulses, having a spectral linewidth of 10 nm (full width at half maximum), were used as a probe to measure the transient changes in the transmission in SPCD solution using a pump-probe setup. The transient optical transmission indicated a gain at the overlap and no gain was observed beyond a delay of 40 ps.
Spectroscopy and Chemistry of Cold Molecules
NASA Astrophysics Data System (ADS)
Momose, Takamasa
2012-06-01
Molecules at low temperatures are expected to behave quite differently from those at high temperatures because pronounced quantum effects emerge from thermal averages. Even at 10 K, a significant enhancement of reaction cross section is expected due to tunneling and resonance effects. Chemistry at this temperature is very important in order to understand chemical reactions in interstellar molecular clouds. At temperatures lower than 1 K, collisions and intermolecular interactions become qualitatively different from those at high temperatures because of the large thermal de Broglie wavelength of molecules. Collisions at these temperatures must be treated as the interference of molecular matter waves, but not as hard sphere collisions. A Bose-Einstein condensate is a significant state of matter as a result of coherent matter wave interaction. Especially, dense para-H_2 molecules are predicted to become a condensate even around 1 K. A convenient method to investigate molecules around 1 K is to dope molecules in cold matrices. Among various matrices, quantum hosts such as solid para-H_2 and superfluid He nano-droplets have been proven to be an excellent host for high-resolution spectroscopy. Rovibrational motion of molecules in these quantum hosts is well quantized on account of the weak interactions and the softness of quantum environment. The linewidths of infrared spectra of molecules in the quantum hosts are extremely narrow compared with those in other matrices. The sharp linewidths allow us to resolve fine spectral structures originated in subtle interactions between guest and host molecules. In this talk, I will describe how the splitting and lineshape of high-resolution spectra of molecules in quantum hosts give us new information on the static and dynamical interactions of molecules in quantum medium. The topics include dynamical response of superfluid environment upon rotational excitation, and possible superfluid phase of para-H_2 clusters. I will also describe our current efforts to make free cold molecules for the study of cold chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreinberg, Sören; Chow, Weng W.; Wolters, Janik
Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less
Kreinberg, Sören; Chow, Weng W.; Wolters, Janik; ...
2017-02-28
Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less
NASA Astrophysics Data System (ADS)
Cao Van, Phuoc; Surabhi, Srivathsava; Dongquoc, Viet; Kuchi, Rambabu; Yoon, Soon-Gil; Jeong, Jong-Ryul
2018-03-01
We report high-quality yttrium-iron-garnet (YIG; Y3Fe5O12) ultrathin films grown on {111} gadolinium-gallium-garnet (GGG; Gd3Ga5O12) substrates using RF sputtering deposition on an off-stoichiometric target and optimized thermal treatments. We measured a narrow peak-to-peak ferromagnetic resonance linewidth (ΔH) whose minimum value was 1.9 Oe at 9.43 GHz for a 60-nm-thick YIG film. This value is comparable to the most recently published value for a YIG thin film grown by pulsed laser deposition. The temperature dependence of the ΔH was investigated systematically, the optimal annealing condition for our growing condition was 875 °C. Structural analysis revealed that surface roughness and crystallinity played an important role in the observed ΔH broadening. Furthermore, the thickness dependence of the ΔH, which indicated that 60 nm thickness was optimal to obtain narrow ΔH YIG films, was also investigated. The thickness dependence of ΔH was understood on the basis of contributions of surface-associated magnon scattering and magnetic inhomogeneities to the ΔH broadening. Other techniques such as transmission electron microscopy, scanning electron microscopy, and X-ray diffraction were used to study the crystalline structure of the YIG films. The high quality of the films in terms of their magnetic properties was expressed through a very low coercivity and high saturation magnetization measured using a vibration sample magnetometer.
The density matrix method in photonic bandgap and antiferromagnetic materials
NASA Astrophysics Data System (ADS)
Barrie, Scott B.
In this thesis, a theory for dispersive polaritonic bandgap (DPBG) and photonic bandgap (PBG) materials is developed. An ensemble of multi-level nanoparticles, such as non-interacting two-, three- and four-level atoms doped in DPBG and PBG materials is considered. The optical properties of these materials such as spontaneous emission, line broadening, fluorescence and narrowing of the natural linewidth have been studied using the density matrix method. Numerical simulations for these properties have been performed for the DPBG materials SiC and InAs, and for a PBG material with a 20 percent gap-to-midgap ratio. When a three-level nanoparticle is doped into a DPBG material, it is predicted that one or two bound states exist when one or both resonance energies, respectively, lie in the bandgap. It is shown when a resonance energy lies below the bandgap, its spectral density peak weakens and broadens as the resonance energy increases to the lower band edge. For the first time it is predicted that when a nanoparticle's resonance energy lies above the bandgap, its spectral density peak weakens and broadens as the resonance energy increases. A relation is also found between spectral structure and gap-to-midgap ratios. The dressed states of a two-level atom doped into a DPBG material under the influence of an intense monochromatic laser field are examined. The splitting of the dressed state energies is calculated, and it is predicted that the splitting depends on the polariton density of states and the Rabi frequency of laser field. The fluoresence is also examined, and for the first time two distinct control processes are found for the transition from one peak to three peaks. It was previously known that the Rabi frequency controlled the Stark effect, but this thesis predicts that the local of the peak with respect to the optical bandgap can cause a transition from one to three peaks even with a weak Rabi frequency. The transient linewidth narrowing of PBG crystal emission peaks doped with four-level atoms is studied. It is found that linewidth narrowing is only dependent upon time delay when the resonance energy is not near a band edge. This is a new discovery. The density matrix method is employed to find the critical magnetic field at which spin flopping occurs in antiferromagnetic high temperature superconductors. It is found that this magnetic field depends upon the temperature, the anisotropy parameter and the doping concentration. Results are calculated for 1-2-3 HTSCs. Keywords. Quantum Optics, Density Matrix, Photonic Bandgap Materials, Dispersive Polaritonic Bandgap Materials, Antiferromagnets.
Effects of perturbation relative phase on transverse mode instability gain
NASA Astrophysics Data System (ADS)
Zervas, Michalis N.
2018-02-01
We have shown that the relative phase between the fundamental fiber mode and the transverse perturbation affects significantly the local transverse modal instability (TMI) gain. The gain variation is more pronounced as the core diameter increases. This finding can be used in conjunction with other proposed approaches to develop efficient strategies for mitigating TMI in high power fiber amplifiers and lasers. It also provides some physical insight on the physical origin of the observed large differences in the TMI threshold dependence on core diameter for narrow and broad linewidth operation.
NASA Technical Reports Server (NTRS)
Freed, C.; Bielinski, J. W.; Lo, W.
1983-01-01
Quantum phase noise limited Lorentzian power spectral densities were achieved with tunable lead-salt diode lasers. Linewidths as narrow as 22 kHz were observed. A truly programmable infrared synthesizer was produced by frequency-offset-locking the tunable diode lasers to the combination of a stable CO2 (or CO) reference laser and a programmable microwave frequency synthesizer. Absolute frequency accuracy and reproducibility of about + or - 30 kHz (0.000001 kaysers) relative to the primary Cs frequency standard may now be obtained with this technique.
Laser cooling by adiabatic transfer
NASA Astrophysics Data System (ADS)
Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James
2017-04-01
We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.
Frequency stability measurement of pulsed superradiance from strontium
NASA Astrophysics Data System (ADS)
Norcia, Matthew; Cline, Julia; Robinson, John; Ye, Jun; Thompson, James
2017-04-01
Superradiant laser light from an ultra-narrow optical transition holds promise as a next-generation of active frequency references. We have recently demonstrated pulsed lasing on the milliHertz linewidth clock transition in strontium. Here, we present the first frequency comparisons between such a superradiant source and a state of the art stable laser system. We characterize the stability of the superradiant system, and demonstrate a reduction in sensitivity to cavity frequency fluctuations of nearly five orders of magnitude compared to a conventional laser. DARPA QUASAR, NIST, NSF PFC.
Opto-electronic oscillators having optical resonators
NASA Technical Reports Server (NTRS)
Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)
2003-01-01
Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.
Tunneling induced absorption with competing Nonlinearities.
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-12-13
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
2015-01-01
Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.
Narrowband random lasing in a Bismuth-doped active fiber
Lobach, Ivan A.; Kablukov, Sergey I.; Skvortsov, Mikhail I.; Podivilov, Evgeniy V.; Melkumov, Mikhail A.; Babin, Sergey A.; Dianov, Evgeny M.
2016-01-01
Random fiber lasers operating via the Rayleigh scattering (RS) feedback attract now a great deal of attention as they generate a high-quality unidirectional laser beam with the efficiency and performance comparable and even exceeding those of fiber lasers with conventional cavities. Similar to other random lasers, both amplification and random scattering are distributed here along the laser medium being usually represented by a kilometers-long passive fiber with Raman gain. However, it is hardly possible to utilize normal gain in conventional active fibers as they are usually short and RS is negligible. Here we report on the first demonstration of the RS-based random lasing in an active fiber. This became possible due to the implementation of a new Bi-doped fiber with an increased amplification length and RS coefficient. The realized Bi-fiber random laser generates in a specific spectral region (1.42 μm) exhibiting unique features, in particular, a much narrower linewidth than that in conventional cavity of the same length, in agreement with the developed theory. Lasers of this type have a great potential for applications as Bi-doped fibers with different host compositions enable laser operation in an extremely broad range of wavelengths, 1.15–1.78 μm. PMID:27435232
Tapered Glass-Fiber Microspike: High-Q Flexural Wave Resonator and Optically Driven Knudsen Pump.
Pennetta, Riccardo; Xie, Shangran; Russell, Philip St J
2016-12-30
Appropriately designed optomechanical devices are ideal for making ultra-sensitive measurements. Here we report a fused-silica microspike that supports a flexural resonance with a quality factor greater than 100 000 at room temperature in vacuum. Fashioned by tapering single-mode fiber (SMF), it is designed so that the core-guided optical mode in the SMF evolves adiabatically into the fundamental mode of the air-glass waveguide at the tip. The very narrow mechanical linewidth (20 mHz) makes it possible to measure extremely small changes in resonant frequency. In a vacuum chamber at low pressure, the weak optical absorption of the glass is sufficient to create a temperature gradient along the microspike, which causes it to act as a microscopic Knudsen pump, driving a flow of gas molecules towards the tip where the temperature is highest. The result is a circulating molecular flow within the chamber. Momentum exchange between the vibrating microspike and the flowing molecules causes an additional restoring force that can be measured as a tiny shift in the resonant frequency. The effect is strongest when the mean free path of the gas molecules is comparable with the dimensions of the vacuum chamber. The system offers a novel means of monitoring the behavior of weakly absorbing optomechanical sensors operating in vacuum.
Stable isotope laser spectrometer for exploration of Mars.
Sauke, T B; Becker, J F
1998-01-01
On Earth, measurements of the ratios of stable carbon isotopes have provided much information about geological and biological processes. For example, fractionation of carbon occurs in biotic processes and the retention of a distinctive 2-4% contrast in 13C/12C between organic carbon and carbonates in rocks as old as 3.8 billion years constitutes some of the firmest evidence for the antiquity of life on the Earth. We have developed a prototype tunable diode Laser spectrometer which demonstrates the feasibility of making accurate in situ isotopic ratio measurements on Mars. This miniaturized instrument, with an optical path length of 10 cm, should be capable of making accurate 13C/12C and 15N/14N measurements. Gas samples for measurement are to be produced by pyrolysis using soil samples as small as 50 mg. Measurements of 13C/12C, 18O/16O and 15N/14N have been made to a precision of better than 0.1% and various other isotopes are feasible. This laser technique, which relies on the extremely narrow emission linewidth of tunable diode lasers (<0.001 cm(-1)) has favorable features in comparison to mass spectrometry, the standard method of accurate isotopic ratio measurement. The miniature instrument could be ready to deploy on the 2003 or other Mars lander missions.
Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator
Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.
2017-01-01
Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962
NASA Astrophysics Data System (ADS)
Kwon, Woosung; Kim, Young-Hoon; Kim, Ji-Hee; Lee, Taehyung; Do, Sungan; Park, Yoonsang; Jeong, Mun Seok; Lee, Tae-Woo; Rhee, Shi-Woo
2016-04-01
Chemically derived graphene quantum dots (GQDs) to date have showed very broad emission linewidth due to many kinds of chemical bondings with different energy levels, which significantly degrades the color purity and color tunability. Here, we show that use of aniline derivatives to chemically functionalize GQDs generates new extrinsic energy levels that lead to photoluminescence of very narrow linewidths. We use transient absorption and time-resolved photoluminescence spectroscopies to study the electronic structures and related electronic transitions of our GQDs, which reveals that their underlying carrier dynamics is strongly related to the chemical properties of aniline derivatives. Using these functionalized GQDs as lumophores, we fabricate light-emitting didoes (LEDs) that exhibit green, orange, and red electroluminescence that has high color purity. The maximum current efficiency of 3.47 cd A-1 and external quantum efficiency of 1.28% are recorded with our LEDs; these are the highest values ever reported for LEDs based on carbon-nanoparticle phosphors. This functionalization of GQDs with aniline derivatives represents a new method to fabricate LEDs that produce natural color.
A semiconductor nanowire Josephson junction microwave laser
NASA Astrophysics Data System (ADS)
Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo
We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to < 10 kHz and real time analysis of the emission statistics shows above threshold lasing with a power conversion efficiency > 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.
Lumata, Lloyd L.; Martin, Richard; Jindal, Ashish K.; Kovacs, Zoltan; Conradi, Mark S.
2014-01-01
Objective We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of 13C polarization levels using free radicals that span a range of ESR linewidths. Materials and methods A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate 13C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m3/h roots blower. A hyperpolarized 13C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdipheny-lene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state 13C polarization levels for these samples were determined. Results 13C polarization levels close to 50 % were achieved for [1-13C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10–20 % 13C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. Conclusion At this field strength free radicals with smaller ESR linewidths are still superior for DNP of 13C as opposed to those with linewidths that exceed that of the 1H Larmor frequency. PMID:25120071
NASA Astrophysics Data System (ADS)
Smirnov, A. I.; Norby, S. W.; Walczak, T.; Liu, K. J.; Swartz, H. M.
The use of crystals of lithium phthalocyanine (LiPc) to measure the concentration of oxygen in vivo and in vitro by electron paramagnetic resonance leads to experimental constraints due to the very narrow EPR lines that may occur (as narrow as 11-13 mG in the absence of O 2), distortions induced by the automatic frequency control system, anisotropy in the spectra (orientation-dependent linewidth is 11-17 mG in the absence of O 2), microwave power saturation, and the effect of physiological motion. These constraints can be overcome if recognized. This article highlights the experimental and theoretical basis of these properties of the EPR signal of LiPc and suggests some technical solutions. It is most important to recognize that paramagnetic species such as LiPc present problems that are not commonly encountered in EPR spectroscopy.
NASA Astrophysics Data System (ADS)
Zulkifli, A. Z.; Latiff, A. A.; Paul, M. C.; Yasin, M.; Ahmad, H.; Harun, S. W.
2016-12-01
In this paper, a dual-wavelength fiber laser (DWFL) using nano-engineered Thulium-doped fiber as a gain medium with a bent singlemode-multimode-singlemode fiber structure (SMS) is demonstrated. The SMS structure is packaged systematically using Cr-39 polymer plates to provide linear bending via applied load. Experimental results have proved that the bent SMS is capable to provide highly effective wavelength filter and wavelengths stabilizer by balancing the net cavity gain between the two wavelengths. The DWFL provides very narrow spacing of 0.9 nm, narrow 3 dB spectral linewidth of ∼0.07 nm and SNR of ∼42 dB. Based on stability test, very small mode hopping is observed at the two wavelengths having deviations of ±0 nm and ±0.04 nm respectively. In conjunction, the DWFL provides very stable relative wavelength spacing with a deviation of ±0.04 nm.
Design of sub-Angstrom compact free-electron laser source
NASA Astrophysics Data System (ADS)
Bonifacio, Rodolfo; Fares, Hesham; Ferrario, Massimo; McNeil, Brian W. J.; Robb, Gordon R. M.
2017-01-01
In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated.
Optical coherence of 166Er:7LiYF4 crystal below 1 K
NASA Astrophysics Data System (ADS)
Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.
2018-02-01
We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.
The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Burda, K.; Strzałka, K.; Stanek, J.
1993-12-01
Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.
Phase noise cancellation in polarisation-maintaining fibre links
NASA Astrophysics Data System (ADS)
Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.
2018-03-01
The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.
Tunneling induced absorption with competing Nonlinearities
Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi
2016-01-01
We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303
Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momeen, M. Ummal; Rangarajan, G.; Natarajan, Vasant
2010-01-15
We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about '300 muG' (2pix420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.
Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser
NASA Astrophysics Data System (ADS)
Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang
2018-03-01
In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.
High-speed photodiodes for InP-based photonic integrated circuits.
Rouvalis, E; Chtioui, M; Tran, M; Lelarge, F; van Dijk, F; Fice, M J; Renaud, C C; Carpintero, G; Seeds, A J
2012-04-09
We demonstrate the feasibility of monolithic integration of evanescently coupled Uni-Traveling Carrier Photodiodes (UTC-PDs) having a bandwidth exceeding 100 GHz with Multimode Interference (MMI) couplers. This platform is suitable for active-passive, butt-joint monolithic integration with various Multiple Quantum Well (MQW) devices for narrow linewidth millimeter-wave photomixing sources. The fabricated devices achieved a high 3-dB bandwidth of up to 110 GHz and a generated output power of more than 0 dBm (1 mW) at 120 GHz with a flat frequency response over the microwave F-band (90-140 GHz).
Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications
NASA Astrophysics Data System (ADS)
Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira
2017-03-01
This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.
NASA Technical Reports Server (NTRS)
Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.
1994-01-01
A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.
NASA Astrophysics Data System (ADS)
Dugan, Mark Allen
1990-08-01
The theoretical basis for new signal transients and spectral features generated in field correlated four wave mixing (4WM) spectroscopies is developed. Special attention is given to those signal responses that are sensitive to phase/amplitude correlation among the input driving fields and not simply their intensity correlation. Thus, the cases of incoherent broadband excitation and of coherent short pulsed excitation will be discussed and compared. Applications to the coherent Raman spectroscopies, both electronically nonresonant and fully resonant, are analyzed. Novel interferometric oscillatory behavior is exposed in terms of field-matter detuning beats and matter-matter bi-level and tri-level quantum beats. In addition new detuning resonances are found that have sub-material linewidths and lock onto the mode frequency of the driven chromophore. These spectral features are a member of a class of bichromophore resonant lineshapes arising from nonlinear mixing with correlated driving fields. The origin of such bichromophore resonances can be based on a coupling between two field-matter superposition states driven by correlated fields on separate chromophores. Analytic results are presented and modelled to anticipate the experimental results presented in a following chapter. The onset of resolvable homogeneous electronic memory is reported in room temperature solutions of dye molecules. A narrowing of the homogeneous linewidths with increasing concentration of these dye solutions is observed in sub-picosecond photon echo experiments. This effect is attributed to aggregation which results in a delocalization of the electronic states over several molecules. Ultra -fast spectral diffusion in these dye aggregates is observed in stimulated photon echo measurements. Aggregate bands, seen in the linear absorption spectrum only at high concentrations, can be probed in more dilute solutions with nonlinear four wave mixing.
Series production of next-generation guide-star lasers at TOPTICA and MPBC
NASA Astrophysics Data System (ADS)
Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Rehme, Paul; Wei, Daoping; Karpov, Vladimir; Ernstberger, Bernhard; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.
2014-07-01
Large telescopes equipped with adaptive optics require high power 589-nm continuous-wave sources with emission linewidths of ~5 MHz. These guide-star lasers should be highly reliable and simple to operate and maintain for many years at the top of a mountain facility. After delivery of the first 20-W systems to our lead customer ESO, TOPTICA and MPBC have begun series production of next-generation sodium guide-star lasers. The chosen approach is based on ESO's patented narrow-band Raman fiber amplifier (RFA) technology [1]. A master oscillator signal from a TOPTICA 50-mW, 1178-nm diode laser, with stabilized emission frequency and linewidth of ~ 1 MHz, is amplified in an MPBC polarization-maintaining (PM) RFA pumped by a high-power 1120-nm PM fiber laser. With efficient stimulated Brillouin scattering suppression, an unprecedented 40 W of narrow-band RFA output has been obtained. This is spatially mode-matched into a patented resonant-cavity frequency doubler providing also the repumper light [2]. With a diffraction-limited output beam and doubling efficiencies < 80%, all ESO design goals have been easily fulfilled. Together with a wall-plug efficiency of < 3%, including all system controls, and a cooling liquid flow of only 5 l/min, the modular, turn-key, maintenance-free and compact system design allows a direct integration with a launch telescope. With these fiber-based guide star lasers, TOPTICA for the first time offers a fully engineered, off-the-shelf guide star laser system for ground-based optical telescopes. Here we present a comparison of test results of the first batch of laser systems, demonstrating the reproducibility of excellent optical characteristics.
Narrow-linewidth tunable laser working at 633 nm suitable for industrial interferometry
NASA Astrophysics Data System (ADS)
Minh, Tuan Pham; Hucl, Václav; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Řeřucha, Šimon; Číp, Ondřej; Lazar, Josef
2015-05-01
Semiconductor lasers found a foothold in many fields of human activities, mainly thanks to its small size, low cost and high energy efficiency. Recent methods for accurate distance measurement in industrial practice use principles of laser interferometry, which are based on lasers operating in the visible spectrum. When the laser beam is visible the alignment of the industrial interferometer makes the measuring process easier. Traditional lasers for these purposes for many decades - HeNe gas laser - have superb coherence properties but small tunable range. On the other hand laser diodes are very useful lasers but only if the active layer of the semiconductor equips with a passive selective element that will increase the quality of their own resonator and also prevents the structure of its higher longitudinal modes. The main aim of the work is a design of the laser source based on a new commercial available laser diode with Distributed Bragg Reflector structure, butterfly package and fibre coupled output. The ultra-low noise injection current source, stable temperature controller and supply electronic equipment were developed with us and experimentally tested with this laser for the best performances required of the industrial interferometry field. The work also performs a setup for frequency noise properties investigation with an unbalanced fibre based Mach-Zehnder interferometer and 10 m long fibre spool inserted in the reference arm. The work presents the way to developing the narrow-linewidth operation the DBR laser with the wide tunable range up to more than 1 nm of the operation wavelength at the same time. Both capabilities predetermine this complex setup for the industrial interferometry application as they are the long distance surveying or absolute scale interferometry.
Dinesan, H; Fasci, E; D'Addio, A; Castrillo, A; Gianfrani, L
2015-01-26
Frequency fluctuations of an optical frequency standard at 1.39 µm have been measured by means of a highly-sensitive optical frequency discriminator based on the fringe-side transmission of a high finesse optical resonator. Built on a Zerodur spacer, the optical resonator exhibits a finesse of 5500 and a cavity-mode width of about 120 kHz. The optical frequency standard consists of an extended-cavity diode laser that is tightly stabilized against the center of a sub-Doppler H(2) (18)O line, this latter being detected by means of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. The emission linewidth has been carefully determined from the frequency-noise power spectral density by using a rather simple approximation, known as β-line approach, as well as the exact method based on the autocorrelation function of the laser light field. It turns out that the linewidth of the optical frequency standard amounts to about 7 kHz (full width at half maximum) for an observation time of 1 ms. Compared to the free-running laser, the measured width corresponds to a line narrowing by a factor of ~220.
Frequency stability of a dual wavelength quantum cascade laser.
Sergachev, Ilia; Maulini, Richard; Gresch, Tobias; Blaser, Stéphane; Bismuto, Alfredo; Müller, Antoine; Bidaux, Yves; Südmeyer, Thomas; Schilt, Stéphane
2017-05-15
We characterized the dual wavelength operation of a distributed Bragg reflector (DBR) quantum cascade laser (QCL) operating at 4.5 μm using two independent optical frequency discriminators. The QCL emits up to 150 mW fairly evenly distributed between two adjacent Fabry-Perot modes separated by ≈11.6 GHz. We show a strong correlation between the instantaneous optical frequencies of the two lasing modes, characterized by a Pearson correlation coefficient of 0.96. As a result, we stabilized one laser mode of the QCL to a N 2 O transition using a side-of-fringe locking technique, reducing its linewidth by a factor 6.2, from 406 kHz in free-running operation down to 65 kHz (at 1-ms observation time), and observed a simultaneous reduction of the frequency fluctuations of the second mode by a similar amount, resulting in a linewidth narrowing by a factor 5.4, from 380 kHz to 70 kHz. This proof-of-principle demonstration was performed with a standard DBR QCL that was not deliberately designed for dual-mode operation. These promising results open the door to the fabrication of more flexible dual-mode QCLs with the use of specifically designed gratings in the future.
Reduction of phase noise in nanowire spin orbit torque oscillators
Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.
2015-01-01
Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432
Micropatterning of TiO2 thin films by MOCVD and study of their growth tendency.
Hwang, Ki-Hwan; Kang, Byung-Chang; Jung, Duk Young; Kim, Youn Jea; Boo, Jin-Hyo
2015-03-23
In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited area was obtained as a function of f(x) = a[1 - e((-bx))]c. To find the tendency of the deposition rate of the TiO2 thin films onto the various linewidth areas, the relationship between the thickness of the TiO2 thin film and deposited linewidth was also studied. The thickness of the deposited TiO2 films was measured from the alpha-step profile analyses and cross-sectional SEM images. At the same time, a computer simulation was carried out to reveal the relationship between the TiO2 film thickness and deposited line width. The theoretical results suggest that the mass (velocity) flux in flow direction is directly affected to the film thickness.
A Highly Sensitive Biocompatible Spin Probe for Imaging of Oxygen Concentration in Tissues
Bratasz, Anna; Kulkarni, Aditi C.; Kuppusamy, Periannan
2007-01-01
The development of an injectable probe formulation, consisting of perchlorotriphenylmethyl triester radical dissolved in hexafluorobenzene, for in vivo oximetry and imaging of oxygen concentration in tissues using electron paramagnetic resonance (EPR) imaging is reported. The probe was evaluated for its oxygen sensitivity, biostability, and distribution in a radiation-induced fibrosarcoma tumor transplanted into C3H mice. Some of the favorable features of the probe are: a single narrow EPR peak (anoxic linewidth, 41 μT), high solubility in hexafluorobenzene (>12 mM), large linewidth sensitivity to molecular oxygen (∼1.8 μT/mmHg), good stability in tumor tissue (half-life: 3.3 h), absence of spin-spin broadening (up to 12 mM), and lack of power saturation effects (up to 200 mW). Three-dimensional spatial and spectral-spatial (spectroscopic) EPR imaging measurements were used to visualize the distribution of the probe, as well as to obtain spatially resolved pO2 information in the mice tumor subjected to normoxic and hyperoxic treatments. The new probe should enable unique opportunities for measurement of the oxygen concentration in tumors using EPR methods. PMID:17259268
Tunable single frequency fiber laser based on FP-LD injection locking.
Zhang, Aiqin; Feng, Xinhuan; Wan, Minggui; Li, Zhaohui; Guan, Bai-ou
2013-05-20
We propose and demonstrate a tunable single frequency fiber laser based on Fabry Pérot laser diode (FP-LD) injection locking. The single frequency operation principle is based on the fact that the output from a FP-LD injection locked by a multi-longitudinal-mode (MLM) light can have fewer longitudinal-modes number and narrower linewidth. By inserting a FP-LD in a fiber ring laser cavity, single frequency operation can be possibly achieved when stable laser oscillation established after many roundtrips through the FP-LD. Wavelength switchable single frequency lasing can be achieved by adjusting the tunable optical filter (TOF) in the cavity to coincide with different mode of the FP-LD. By adjustment of the drive current of the FP-LD, the lasing modes would shift and wavelength tunable operation can be obtained. In experiment, a wavelength tunable range of 32.4 nm has been obtained by adjustment of the drive current of the FP-LD and a tunable filter in the ring cavity. Each wavelength has a side-mode suppression ratio (SMSR) of at least 41 dB and a linewidth of about 13 kHz.
Breaking Quantum and Thermal Limits on Precision Measurements
NASA Astrophysics Data System (ADS)
Thompson, James K.
2016-05-01
I will give an overview of our efforts to use correlations and entanglement between many atoms to overcome quantum and thermal limits on precision measurements. In the first portion of my talk, I will present a path toward a 10000 times reduced sensitivity to the thermal mirror motion that limits the linewidth of today's best lasers. By utilizing narrow atomic transitions, the laser's phase information is primarily stored in the atomic gain medium rather than in the vibration-sensitive cavity field. To this end, I will present the first observation of lasing based on the mHz linewidth optical-clock transition in a laser-cooled ensemble of strontium atoms. In the second portion of my talk, I will describe how we use collective measurements to surpass the standard quantum limit on phase estimation 1 /√{ N} for N unentangled atoms. We achieve a directly observed reduction in phase variance relative to the standard quantum limit of as much as 17.7(6) dB. Supported by DARPA QuASAR, NIST, ARO, and NSF PFC. This material is based upon work supported by the National Science Foundation under Grant Number 1125844 Physics Frontier Center.
High-power lasers for directed-energy applications.
Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard
2015-11-01
In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.
Linewidth narrowing for 31Phosphorus MRI of cell membranes
NASA Astrophysics Data System (ADS)
Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael
2011-03-01
Most 31 P Magnetic Resonance Spectroscopy studies of tissues try to avoid contamination by a relatively large, but broad, spectral feature attributed to cell membrane phospholipids. MRI using this broad 31 P membrane spectrum is not even attempted, since the spatial resolution and signal-to-noise would be poor, relative to conventional MRI using the narrow 1 H water spectrum. This long-standing barrier has been overcome by a novel pulse sequence, recently discovered in fundamental quantum computation research, which narrows the broad 31 P spectrum by ~ 1000 × . Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, 3D 31 P MRI of the soft solid components of cells and tissues. So far, intact and sectioned samples of ex vivo fixed mouse organs have been imaged, with (sub-mm)3 voxels. Extending the reach of MRI to broad spectra in natural and artificial tissues opens a new window into cells, enabling progress in biomedical research. W.J. Thoma et al., J. MR 61, 141 (1985); E.J. Murphy et al., MR Med 12, 282 (1989); R. McNamara et al., NMR Biomed 7, 237 (1994).
A Digital Phase Lock Loop for an External Cavity Diode Laser
NASA Astrophysics Data System (ADS)
Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang
2011-08-01
A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.
Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M
2012-11-19
We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.
Parametric infrared tunable laser system
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.; Sutter, J. R.
1980-01-01
A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.
High-power and brightness laser diode modules using new DBR chips
NASA Astrophysics Data System (ADS)
Yu, Hao; Riva, Martina; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido
2018-02-01
The paper reports on the design, manufacturing and preliminary characterization of a new family of compact and high beam quality multi-emitter laser diode modules capable of delivering up to over 400W in a 135/0.15 fiber. The layout exploits a proprietary architecture and is based on innovative narrow linewidth high-power DBR chips, properly combined through spatial, polarization and wavelength multiplexing. The intrinsic wavelength-stabilization of these DBR chips allows the use of the developed modules not only for direct-diode material processing but also in pump sources for ytterbium-doped fiber lasers without the need of external stabilization devices.
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
NASA Astrophysics Data System (ADS)
Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.
2018-05-01
Powders of synthetic hydroxyapatite doped with Mn2+ ions in concentrations from 0.05 till 5 wt. % were investigated by conventional electron paramagnetic resonance (EPR). The parameters of the spin-Hamiltonian are derived. Partially resolved hyperfine structure in the magnetic fields corresponding to g ≈ 4.3 and g ≈ 9.4 is observed. The narrowing of the central peak with concentration is reported. A possibility to use the linewidth and intensity of the central peak for concentration measurements are discussed. The results could be used for the identification and qualification of Mn2+ in oil, mining and ore formations.
Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.
Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi
2005-09-05
Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.
Applications of absorption spectroscopy using quantum cascade lasers.
Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli
2014-01-01
Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.
Jelger, P; Wang, P; Sahu, J K; Laurell, F; Clarkson, W A
2008-06-23
In this work a volume Bragg grating is used as a wavelength selective element in a high-power cladding-pumped Yb-doped silica fiber laser. The laser produced 138 W of linearly-polarized single-spatial-mode output at 1066 nm with a relatively narrow linewidth of 0.2 nm for approximately 202 W of launched pump power at 976 nm. The beam propagation factor (M(2)) for the output beam was determined to be 1.07. Thermal limitations of volume Bragg gratings are discussed in the context of power scaling for fiber lasers.
NASA Astrophysics Data System (ADS)
Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.
2018-01-01
Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on a silicon PhC chip design.
NASA Astrophysics Data System (ADS)
Engin, Doruk; Chuang, Ti; Litvinovitch, Slava; Storm, Mark
2017-08-01
Fibertek has developed and demonstrated an ideal high-power; low-risk; low-size, weight, and power (SWaP) 2051 nm laser design meeting the lidar requirements for satellite-based global measurement of carbon dioxide (CO2). The laser design provides a path to space for either a coherent lidar approach being developed by NASA Jet Propulsion Laboratory (JPL)1,2 or an Integrated Path Differential Lidar (IPDA) approach developed by Harris Corp using radio frequency (RF) modulation and being flown as part of a NASA Earth Venture Suborbital Mission—NASA's Atmospheric Carbon and Transport - America.3,4 The thulium (Tm) fiber laser amplifies a <500 kHz linewidth distributed feedback (DFB) laser up to 25 W average power in a polarization maintaining (PM) fiber. The design manages and suppresses all deleterious non-linear effects that can cause linewidth broadening or amplified spontaneous emission (ASE) and meets all lidar requirements. We believe the core laser components, architecture, and design margins can support a coherent or IPDA lidar 10-year space mission. With follow-on funding Fibertek can adapt an existing space-based Technology Readiness Level 6 (TRL-6), 20 W erbium fiber laser package for this Tm design and enable a near-term space mission with an electrical-to-optical (e-o) efficiency of <20%. A cladding-pumped PM Tm fiber-based amplifier optimized for high efficiency and high-power operation at 2051 nm is presented. The two-stage amplifier has been demonstrated to achieve 25 W average power and <16 dB polarization extinction ratio (PER) out of a single-mode PM fiber using a <500 kHz linewidth JPL DFB laser5-7 and 43 dB gain. The power amplifier's optical conversion efficiency is 53%. An internal efficiency of 58% is calculated after correcting for passive losses. The two-stage amplifier sustains its highly efficient operation for a temperature range of 5-40°C. The absence of stimulated Brillouin scattering (SBS) for the narrow linewidth amplification shows promise for further power scaling.
Shayan, Kamran; He, Xiaowei; Luo, Yue; Rabut, Claire; Li, Xiangzhi; Hartmann, Nicolai F; Blackburn, Jeffrey L; Doorn, Stephen K; Htoon, Han; Strauf, Stefan
2018-06-26
Covalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising route to enhance the quantum yield of exciton emission and can lead to single-photon emission at room temperature. However, the spectral linewidth of the defect-related E11* emission remains rather broad. Here, we systematically investigate the low-temperature exciton emission of individual SWCNTs that have been dispersed with sodium-deoxycholate (DOC) and polyfluorene (PFO-BPy), are grown by laser vaporization (LV) or by CoMoCat techniques and are functionalized with oxygen as well as 3,5-dichlorobenzene groups. The E11 excitons in oxygen-functionalized SWCNTs remain rather broad with up to 10 meV linewidth while exciton emission from 3,5-dichlorobenzene functionalized SWCNTs is found to be about one order of magnitude narrower. In all cases, wrapping with PFO-BPy provides significantly better protection against pump induced dephasing compared to DOC. To further study the influence of exciton localization on pump-induced dephasing, we have embedded the functionalized SWCNTs into metallo-dielectric antenna cavities to maximize light collection. We show that 0D excitons attributed to the E11* emission of 3,5-dichlorobenzene quantum defects of LV-grown SWCNTs can display near resolution-limited linewidths down to 35 μeV. Interestingly, these 0D excitons give rise to a 3-fold suppressed pump-induced exciton dephasing compared to the E11 excitons in the same SWCNT. These findings provide a foundation to build a unified description of the emergence of novel optical behavior from the interplay of covalently introduced defects, dispersants, and exciton confinement in SWCNTs and might further lead to the realization of indistinguishable photons from carbon nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanishi, Masamichi, E-mail: masamiya@crl.hpk.co.jp; Hirohata, Tooru; Hayashi, Syohei
2014-11-14
Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the presentmore » model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.« less
NASA Astrophysics Data System (ADS)
Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing
2018-06-01
This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.
Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond
NASA Astrophysics Data System (ADS)
Higbie, J. M.; Perreault, J. D.; Acosta, V. M.; Belthangady, C.; Lebel, P.; Kim, M. H.; Nguyen, K.; Demas, V.; Bajaj, V.; Santori, C.
2017-05-01
Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We measure the two-photon fluorescence cross section of a negatively charged silicon vacancy (Si -V- ) in ion-implanted bulk diamond to be 0.74 (19 )×10-50 cm4 s /photon at an excitation wavelength of 1040 nm. Compared to the diamond nitrogen-vacancy center, the expected detection threshold of a two-photon excited Si -V center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and we discuss the physical interpretation of the spectra in the context of existing models of the Si -V energy-level structure.
Triple tailored nonlinear dispersion of dressed four- and six-wave mixing
NASA Astrophysics Data System (ADS)
Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng
2018-06-01
We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.
NASA Astrophysics Data System (ADS)
Dharmadhikari, Aditya; Bhowmik, Achintya; Ahyi, Ayayi; Thakur, Mrinal
2000-03-01
We have recently reported observation of spectral narrowing and high-conversion laser-like emission in a solution of styrylpyridinium cynanine dye (SPCD) at a low threshold energy, pumped with the second-harmonic of a picosecond Nd:YAG laser. Fundamental and second-harmonic pulses from a Nd:YAG laser of 80 ps duration at 10 Hz repetition rate were used to pump 0.1 mol/l concentration of SPCD in methanol in two separate pumping arrangements. A highly directional emission was observed in both the pumping arrangements without incorporating any mirrors. The pulse duration of spectrally narrowed emission in both cases was measured by background-free SHG intensity autocorrelation technique. A BBO crystal was used for the autocorrelation measurement. The measured duration of the pulses was 40 ps. These pulses having a spectral linewidth of 10 nm (FWHM) were used as a probe to measure the gain in SPCD solution in a pump-probe set up. The results will be discussed.
Ferromagnetic resonance in the ethmoid bones of salmon and silver carp
NASA Astrophysics Data System (ADS)
Gorobets, Svitlana; Gorobets, Oksana; Golub, Volodymyr; Gromnadska, Marina
2017-10-01
The detection of biogenic magnetic nanoparticles (BMN) with different magnetic properties in biological material was done using magnetic resonance (MR) spectroscopy. MR spectra of biological material of ethmoid bone of salmon (containing ferritin and BMN), bacteria E. coli K13 (containing ferritin and without BMN), yeast S. cerevisiae (without ferritin or BMN) and ethmoid bone of silver carp (containing ferritin and not investigated for the presence of BMN) were investigated. The analysis of MR spectra shows that S. cerevisiae cells produce much lower signal MR than samples of ethmoid bones of salmon and silver carp which is confirming conclusions about the presence of BMN and ferritin in the ethmoid bones of fishes. The narrow MR linewidth indicates that the magnetic particles in the ethmoid bones of salmon and silver carp are in monodisperse state. The presence of a broad line and the absence of a narrow peak in MR spectrum of E. coli K13 cells are typical for ferritin.
Quantum synchronization of many coupled atoms for an ultranarrow linewidth laser
NASA Astrophysics Data System (ADS)
He, Peiru; Xu, Minghui; Tieri, David; Zhu, Bihui; Rey, Ana Maria; Hazzard, Kaden; Holland, Murray
2014-05-01
We theoretically investigate the effect of quantum synchronization on many coupled two-level atoms acting as high quality oscillators. We show that quantum synchronization - the spontaneous alignment of the phase (of the two-level superposition) between different atoms - provides a potential approach to produce robust atomic coherences and coherent light with ultranarrow linewidth and extreme phase stability. The atoms may be coupled either through their direct dipole-dipole interactions or, as in a superradiant laser, through an optical cavity. We develop a variety of analytic and computational approaches for this problem, including exact open quantum system methods for small systems, semiclassical theories, and approaches that make use of the permutation symmetry of identically coupled ensembles. We investigate the first and second order coherence properties of both the optical and atomic degrees of freedom. We study synchronization in both the steady-state, as well as during the dynamically applied pulse sequences of Rabi and Ramsey interferometry. This work was supported by the DARPA QuASAR program, the NSF, and NIST.
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok
2011-07-01
The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.
Lidar Measurements of the Stratosphere and Mesosphere at the Biejing Observatory
NASA Astrophysics Data System (ADS)
Du, Lifang; Yang, Guotao; Cheng, Xuewu; Wang, Jihong
With the high precision and high spatial and temporal resolution, the lidar has become a powerful weapon of near space environment monitoring. This paper describes the development of the solid-state 532nm and 589nm laser radar, which were used to detect the wind field of Beijing stratosphere and mesopause field. The injection seeding technique and atomic absorption saturation bubble frequency stabilization method was used to obtain narrow linewidth of 532nm lidar, Wherein the laser pulse energy of 800mJ, repetition rate of 30Hz. The 589nm yellow laser achieved by extra-cavity sum-frequency mixing 1064nm and 1319nm pulse laser with KTP crystal. The base frequency of 1064nm and 1319nm laser adopted injection seeding technique and YAG laser amplification for high energy pulse laser. Ultimately, the laser pulse of 150mJ and the linewidth of 130MHz of 589nm laser was obtain. And after AOM crystal frequency shift, Doppler frequency discriminator free methods achieved of the measuring of high-altitude wind. Both of 532nm and 589nm lidar system for engineering design of solid-state lidar provides a basis, and also provide a solid foundation for the development of all-solid-state wind lidar.
Raman spectroscopy of KxCo2-ySe2 single crystals near the ferromagnet-paramagnet transition
Opacic, M.; Lazarevic, N.; Radonjic, M. M.; ...
2016-10-05
Polarized Raman scattering spectra of the K xCo 2-ySe 2 (x = :::; y = :::) single crystals reveal the presence of two phonon modes, assigned as of the A1g and B1g symmetry. Absence of additional modes excludes the possibility of vacancy ordering, unlike in K xCo 2-ySe 2 . The ferromagnetic (FM) phase transition at Tc 74 K leaves a clear fingerprint on the temperature dependence of the Raman mode energy and linewidth. For T > Tc the temperature dependence looks conventional, driven by the thermal expansion and anharmonicity. The Raman modes are rather broad due to the electron-phononmore » coupling increased by the disorder and spin fluctuation e ects. In the FM phase the phonon frequency of both modes increases, while an opposite trend is seen in their linewidth: the A1g mode narrows in the FM phase, whereas the B 1g mode broadens. We argue that the large asymmetry and anomalous frequency shift of the B 1g mode is due to the coupling of spin fluctuations and vibration. Our density functional theory (DFT) calculations for the phonon frequencies agree rather well with the Raman measurements, with some discrepancy being expected since the DFT calculations neglect the spin fluctuations.« less
Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V
2013-09-01
This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.
Coherent anti-Stokes Raman spectroscopic modeling for combustion diagnostics
NASA Technical Reports Server (NTRS)
Hall, R. J.
1983-01-01
The status of modelling the coherent anti-Stokes Raman spectroscopy (CARS) spectra of molecules important in combustion, such as N2, H2O, and CO2, is reviewed. It is shown that accurate modelling generally requires highly precise knowledge of line positions and reasonable estimates of Raman linewidths, and the sources of these data are discussed. CARS technique and theory is reviewed, and the status of modelling the phenomenon of collisional narrowing at pressures well above atmospheric for N2, H2O, and CO2 is described. It is shown that good agreement with experiment can be achieved using either the Gordon rotational diffusion model or phenomenological models for inelastic energy transfer rates.
Compact diode laser module at 1116 nm with an integrated optical isolation and a PM-SMF output
NASA Astrophysics Data System (ADS)
Jedrzejczyk, Daniel; Hofmann, Julian; Werner, Nils; Sahm, Alexander; Paschke, Katrin
2017-02-01
In this work, a fiber-coupled diode laser module emitting around 1116 nm with an output power P < 60 mW is realized. As a laser light source a distributed Bragg reflector (DBR) ridge waveguide diode laser is applied. The module comprises temperature stabilizing components, a micro-lens system as well as an optical micro-isolator. At the output, a polarization-maintaining single-mode fiber (PM-SMF) with a core diameter of 5.5 μm and a standard FC/APC connector are utilized. The generated diffraction limited beam is characterized by a narrow linewidth ( δν < 10 MHz) and a high polarization extinction ratio (PER > 25 dB).
Far-infrared heterodyne spectrometer
NASA Technical Reports Server (NTRS)
Boreiko, Rita T.; Betz, Al L.
1995-01-01
A far-infrared heterodyne spectrometer was designed and built by our group for observations of atomic and molecular lines from interstellar clouds. Linewidths as narrow as 1 km/s can be expected from such regions, and so the spectrometer is designed with sub-km/s resolution so that observed line profiles will be resolved. Since its debut on the Kuiper Airborne Observatory (KAO) in 1985, the instrument has been used in regular annual flight programs from both Moffett Field, CA and Christchurch, NZ. The basic plan of the spectrometer remains unchanged from the original design presented at the previous airborne science symposium. Numerous improvements and updates to the technical capability have of course been included over the many years of operational service.
Inhomogeneous and homogeneous linewidths in Er 3+-doped chalcogenide glasses
NASA Astrophysics Data System (ADS)
Bigot, L.; Jurdyc, A.-M.; Jacquier, B.; Adam, J.-L.
2003-10-01
The erbium 4I 13/2- 4I 15/2 transition around 1.5 μm is of prim interest for telecommunications and depends on the erbium ions surrounding. In glasses, the broadening of a transition comes from two contributions: inhomogeneous (due to the disorder) and homogeneous (due to the electron phonon interaction) broadening. Resonant Fluorescence Line Narrowing (RFLN) is a useful tool to separate this two parameters. We will show in this paper that the 4I 13/2- 4I 15/2 transition in chalcogenide glass (GeGaSSb) presents a strong homogeneous character and a smaller inhomogeneous contribution compared to aluminosilicate and fluoride glasses. Consequences on gain saturation will also be discussed.
Wideband laser locking to an atomic reference with modulation transfer spectroscopy.
Negnevitsky, V; Turner, L D
2013-02-11
We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.
Observation of interlayer excitons in MoSe2 single crystals
NASA Astrophysics Data System (ADS)
Horng, Jason; Stroucken, Tineke; Zhang, Long; Paik, Eunice Y.; Deng, Hui; Koch, Stephan W.
2018-06-01
Interlayer excitons with direct optical transitions are observed coexisting with intralayer excitons in the same K valleys in bilayer, few-layer, and bulk MoSe2 single crystals by confocal reflection contrast spectroscopy. Quantitative analysis using the Dirac-Bloch equations provides unambiguous state assignment of all the measured resonances. The interlayer excitons in bilayer MoSe2 have a large binding energy of 153 meV and a narrow linewidth of 20 meV. Their spectral weight is comparable to the commonly studied higher-order intralayer excitons. At the same time, the interlayer excitons are characterized by distinct transition energies and permanent dipole moments, providing a promising high temperature and optically accessible platform for dipolar exciton physics.
Rajadhyaksha, Milind
2012-01-01
Abstract. Coherent speckle influences the resulting image when narrow spectral line-width and single spatial mode illumination are used, though these are the same light-source properties that provide the best radiance-to-cost ratio. However, a suitable size of the detection pinhole can be chosen to maintain adequate optical sectioning while making the probability density of the speckle noise more normal and reducing its effect. The result is a qualitatively better image with improved contrast, which is easier to read. With theoretical statistics and experimental results, we show that the detection pinhole size is a fundamental parameter for designing imaging systems for use in turbid media. PMID:23224184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khromova, Irina; Kužel, Petr; Brener, Igal
Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less
NASA Astrophysics Data System (ADS)
Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.
2016-12-01
We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.
Nanowire lasers as intracellular probes.
Wu, Xiaoqin; Chen, Qiushu; Xu, Peizhen; Chen, Yu-Cheng; Wu, Biming; Coleman, Rhima M; Tong, Limin; Fan, Xudong
2018-05-24
We investigate a cadmium sulfide (CdS) nanowire (NW) laser that is spontaneously internalized into a single cell to serve as a stand-alone intracellular probe. By pumping with nano-joule light pulses, green laser emission (500-520 nm) can be observed inside cells with a peak linewidth as narrow as 0.5 nm. Due to the sub-micron diameter (∼200 nm), the NW has an appreciable fraction of the evanescent field outside, facilitating a sensitive detection of cellular environmental changes. By monitoring the lasing peak wavelength shift in response to the intracellular refractive index change, our NW laser probe shows a sensitivity of 55 nm per RIU (refractive index units) and a figure of merit of approximately 98.
High-Q resonant cavities for terahertz quantum cascade lasers.
Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P
2015-02-09
We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.
Absolute frequency atlas from 915 nm to 985 nm based on laser absorption spectroscopy of iodine
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Raab, Christoph; Neuhaus, Rudolf; Falke, Stephan
2018-04-01
This article reports on laser absorption spectroscopy of iodine gas between 915 nm and 985 nm. This wavelength range is scanned utilizing a narrow linewidth and mode-hop-free tunable diode-laser whose frequency is actively controlled using a calibrated wavelength meter. This allows us to provide an iodine atlas that contains almost 10,000 experimentally observed reference lines with an uncertainty of 50 MHz. For common lines, good agreement is found with a publication by Gerstenkorn and Luc (1978). The new rich dataset allows existing models of the iodine molecule to be refined and can serve as a reference for laser frequency calibration and stabilization.
NASA Astrophysics Data System (ADS)
Liu, Shaoying; Fang, Xiaohui; Wang, Yimeng; Zhang, Xinping
2018-07-01
CsPbBr3 nanocrystals have attracted great interest owing to their high fluorescence quantum efficiency, adjustable photoluminescence wavelength, and good stability. We report a device that consists of disordered gold nanorods underneath a film of CsPbBr3 nanocrystals. Two-photon pumping using femtosecond laser pulses at 800 nm enables amplified spontaneous emission (ASE) at about 523 nm. In this work, a narrow peak with linewidth of 5 nm is observed when the pump fluence reaches a low threshold of 0.65 mJ/cm2. The results show that plasmonic resonance of gold nanorods improves the emission transition rate and enables low threshold ASE.
Surin, A A; Borisenko, T E; Larin, S V
2016-06-01
We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.
NASA Astrophysics Data System (ADS)
Campbell, Kaleb; Jackson, Richard; van Vleet, Matthew; Kuhnash, Kodi; Worth, Bradley; Day, Amanda; Bali, Samir
2014-05-01
We investigate electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) in rubidium vapor using a single laser beam and a scanning magnetic field co-aligned with the laser propagation direction. We show that polarization impurity, stray magnetic fields and imperfect optical alignments cause broadening of the EIT/EIA signal and other spurious effects. We describe a systematic approach to minimizing these undesired effects, which produces EIT/EIA signals nearly two orders of magnitude narrower than the natural linewidth. We gratefully acknowledge funding from the American Chemical Society Petroleum Research Fund and Miami University. We also acknowledge the Miami University Instrumentation Laboratory for their invaluable contributions.
Precision Measurements with a Molecular Clock
NASA Astrophysics Data System (ADS)
Grier, Andrew; McDonald, Mickey; McGuyer, Bart; Iwata, Geoffrey; Apfelbeck, Florian; Tarallo, Marco; Zelevinsky, Tanya
2015-05-01
We report on recent results obtained with photoassociated Sr2 molecules confined in a lattice. Sr2 has a range of electronically excited bound states which are readily accessible with optical wavelengths using the narrow 1S0->3P1 intercombination line. As in Nat. Phys. 11, 32, we measure the lifetimes of the narrow, deeply-bound subradiant states in the 1g (1S0+3P1 dissociative limit) potential, allowing for coherent control of molecules and a comparison with theoretical predictions of the lifetimes and transition strengths of these states. Next, we study ultracold photodissociation of Sr2 molecules through abortion of one and two photons near the atomic intercombination line. This allows us to observe the vector character of transition elements through the angular dissociation pattern and to directly measure barrier heights in the excited state potentials. Finally, as shown in PRL 114, 023001, we demonstrate that in a non-magic lattice, a narrow transition can be used to measure the trapped gas temperature through the linewidth of the spectral feature corresponding to the carrier transitions. We use this technique to measure the temperature of Sr2 molecules to 10x higher precision than with standard techniques. We discuss future prospects with this molecular lattice clock. Funding from NIST, ARO, and NSF IGERT.
Multi-photon transitions and Rabi resonance in continuous wave EPR.
Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A
2015-10-01
The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.
Monitoring the refinement of crystal structures with {sup 15}N solid-state NMR shift tensor data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalakewich, Keyton; Eloranta, Harriet; Harper, James K.
The {sup 15}N chemical shift tensor is shown to be extremely sensitive to lattice structure and a powerful metric for monitoring density functional theory refinements of crystal structures. These refinements include lattice effects and are applied here to five crystal structures. All structures improve based on a better agreement between experimental and calculated {sup 15}N tensors, with an average improvement of 47.0 ppm. Structural improvement is further indicated by a decrease in forces on the atoms by 2–3 orders of magnitude and a greater similarity in atom positions to neutron diffraction structures. These refinements change bond lengths by more thanmore » the diffraction errors including adjustments to X–Y and X–H bonds (X, Y = C, N, and O) of 0.028 ± 0.002 Å and 0.144 ± 0.036 Å, respectively. The acquisition of {sup 15}N tensors at natural abundance is challenging and this limitation is overcome by improved {sup 1}H decoupling in the FIREMAT method. This decoupling dramatically narrows linewidths, improves signal-to-noise by up to 317%, and significantly improves the accuracy of measured tensors. A total of 39 tensors are measured with shifts distributed over a range of more than 400 ppm. Overall, experimental {sup 15}N tensors are at least 5 times more sensitive to crystal structure than {sup 13}C tensors due to nitrogen’s greater polarizability and larger range of chemical shifts.« less
NASA Astrophysics Data System (ADS)
Legg, Thomas; Farries, Mark
2017-02-01
Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation
NASA Technical Reports Server (NTRS)
Woo, D. S.
1982-01-01
The procedure used to generate MEBES masks and produce test wafers from the 10X Mann 1600 Pattern Generator Tape using existing CAD utility programs and the MEBES machine in the RCA Solid State Technology Center are described. The test vehicle used is the MSFC-designed SC102 Solar House Timing Circuit. When transforming the Mann 1600 tapes into MEBES tapes, extreme care is required in order to obtain accurate minimum linewidths when working with two different coding systems because the minimum grid sizes may be different for the two systems. The minimum grid sizes are 0.025 mil for MSFC Mann 1600 and 0.02 mil for MEBES. Some snapping to the next grid is therefore inevitable, and the results of this snapping effect are significant when submicron lines are present. However, no problem was noticed in the SC102 circuit because its minimum linewidth is 0.3 mil (7.6 microns). MEBES masks were fabricated and wafers were processed using the silicon-gate CMOS/SOS and aluminum-gate COS/MOS processing.
NASA Astrophysics Data System (ADS)
Hwang, T. Y.; Schoenberger, R. J.; Torgeson, D. R.; Barnes, R. G.
1983-01-01
We report the results of a proton-magnetic-resonance investigation of hydrogen location and motion in the hemihydrides ZrXH0.5 of the metallic layer-structured monohalides ZrX of zirconium (X=Br,Cl). Wide-line and pulsed NMR methods were employed to measure the temperature dependence of the linewidth and second moment and of the spin-lattice relaxation time in the laboratory and rotating frames. The results indicate that hydrogen forms an ordered structure on the tetrahedral (T) interstitial sublattice within the Zr metal bilayers, with some (small) random occupancy of octahedral (O) sites. Two stages of motional narrowing observed in the wide-line measurements and double minima found in the relaxation times are consistent with the occurrence of essentially independent hydrogen motional processes on the T and O interstitial sublattices. Hydrogen site occupancy probabilities, jump frequencies, activation energies for hydrogen diffusion, and conduction-electron contributions to the proton spin-lattice relaxation rate are deduced from the measurements.
NASA Astrophysics Data System (ADS)
Gopman, D. B.; Dennis, C. L.; McMichael, R. D.; Hao, X.; Wang, Z.; Wang, X.; Gan, H.; Zhou, Y.; Zhang, J.; Huai, Y.
2017-05-01
We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells.
Shi, Peng; Zhou, Guangya; Deng, Jie; Tian, Feng; Chau, Fook Siong
2015-09-29
We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 10(5).
NASA Astrophysics Data System (ADS)
Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun
2013-02-01
For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.
Iwakuni, Kana; Inaba, Hajime; Nakajima, Yoshiaki; Kobayashi, Takumi; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei
2012-06-18
We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.
Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier
NASA Astrophysics Data System (ADS)
Liu, Bin; Lin, Jie; Liu, Huan; Ma, Yuan; Yan, Lei; Jin, Peng
2017-01-01
A diaphragm based long cavity Fabry-Perot interferometric fiber acoustic sensor is proposed. The Fabry-Perot cavity is formed by a flat fiber facet and an ultra-thin silver diaphragm with a 6-meter long fiber inserted in the cavity. A narrow-linewidth ring-cavity erbium-doped fiber laser is applied to demodulate the sensing signal in the phase generated carrier algorithm. Experimental results have demonstrated that the phase sensitivity is about -140 dB re 1 rad/μPa at 2 kHz. The noise equivalent acoustic signal level is 60.6 μPa/Hz1/2 and the dynamic range is 65.1 dB-SPL at 2 kHz. The sensor is suitable for sensing of weak acoustic signals.
The characteristic of gap FBG and its application
NASA Astrophysics Data System (ADS)
Yang, Yuanhong; Hu, Jun; Liu, Xuejing; Jin, Wei
2015-07-01
A gap fiber Bragg grating (g-FBG) is fabricated by cutting a uniform FBG in the middle to introduce a small air gap between the two sections. Numerical and experimental investigations show that the g-FBG has the characteristics of both a phase shifted FBG and a Fizeau interferometer. The influence of the air-gap shift longitudinally or transversely with respect to the fiber central axis and temperature to g-FBG's spectrums are investigated with numerical simulation and experiments, and the mathematic models are made. Based on g-FBG's different sensitivity to gap width and temperature, a micro-gap and temperature simultaneous measurement sensor was demonstrated. And a g-FBG based tunable fiber ring laser with a narrow line-width is demonstrated.
Low-density InP-based quantum dots emitting around the 1.5 μm telecom wavelength range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yacob, M.; Reithmaier, J. P.; Benyoucef, M., E-mail: m.benyoucef@physik.uni-kassel.de
The authors report on low-density InAs quantum dots (QDs) grown on AlGaInAs surfaces lattice matched to InP using post-growth annealing by solid-source molecular beam epitaxy. Clearly spatially separated QDs with a dot density of about 5 × 10{sup 8} cm{sup −2} are obtained by using a special capping technique after the dot formation process. High-resolution micro-photoluminescence performed on optimized QD structures grown on distributed Bragg reflector exhibits single QD emissions around 1.5 μm with narrow excitonic linewidth below 50 μeV, which can be used as single photon source in the telecom wavelength range.
Robust lanthanide emitters in polyelectrolyte thin films for photonic applications
NASA Astrophysics Data System (ADS)
Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.
2018-02-01
Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.
NASA Astrophysics Data System (ADS)
Otterstrom, Nils T.; Behunin, Ryan O.; Kittlaus, Eric A.; Wang, Zheng; Rakich, Peter T.
2018-06-01
Brillouin laser oscillators offer powerful and flexible dynamics as the basis for mode-locked lasers, microwave oscillators, and optical gyroscopes in a variety of optical systems. However, Brillouin interactions are markedly weak in conventional silicon photonic waveguides, stifling progress toward silicon-based Brillouin lasers. The recent advent of hybrid photonic-phononic waveguides has revealed Brillouin interactions to be one of the strongest and most tailorable nonlinearities in silicon. In this study, we have harnessed these engineered nonlinearities to demonstrate Brillouin lasing in silicon. Moreover, we show that this silicon-based Brillouin laser enters a regime of dynamics in which optical self-oscillation produces phonon linewidth narrowing. Our results provide a platform to develop a range of applications for monolithic integration within silicon photonic circuits.
Konarev, Dmitri V; Kuzmin, Alexey V; Faraonov, Maxim A; Ishikawa, Manabu; Khasanov, Salavat S; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N
2015-01-12
Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical injection phase-lock loops
NASA Astrophysics Data System (ADS)
Bordonalli, Aldario Chrestani
Locking techniques have been widely applied for frequency synchronisation of semiconductor lasers used in coherent communication and microwave signal generation systems. Two main locking techniques, the optical phase-lock loop (OPLL) and optical injection locking (OIL) are analysed in this thesis. The principal limitations on OPLL performance result from the loop propagation delay, which makes difficult the implementation of high gain and wide bandwidth loops, leading to poor phase noise suppression performance and requiring the linewidths of the semiconductor laser sources to be less than a few megahertz for practical values of loop delay. The OIL phase noise suppression is controlled by the injected power. The principal limitations of the OIL implementation are the finite phase error under locked conditions and the narrow stable locking range the system provides at injected power levels required to reduce the phase noise output of semiconductor lasers significantly. This thesis demonstrates theoretically and experimentally that it is possible to overcome the limitations of OPLL and OIL systems by combining them, to form an optical injection phase-lock loop (OIPLL). The modelling of an OIPLL system is presented and compared with the equivalent OPLL and OIL results. Optical and electrical design of an homodyne OIPLL is detailed. Experimental results are given which verify the theoretical prediction that the OIPLL would keep the phase noise suppression as high as that of the OIL system over a much wider stable locking range, even with wide linewidth lasers and long loop delays. The experimental results for lasers with summed linewidth of 36 MHz and a loop delay of 15 ns showed measured phase error variances as low as 0.006 rad2 (500 MHz bandwidth) for locking bandwidths greater than 26 GHz, compared with the equivalent OPLL phase error variance of around 1 rad2 (500 MHz bandwidth) and the equivalent OIL locking bandwidth of less than 1.2 GHz.
NASA Astrophysics Data System (ADS)
Unuma, Takeya; Matsuda, Aleph
2018-04-01
We investigate temperature-dependent spectral linewidths of Bloch oscillations in biased semiconductor superlattices experimentally and theoretically. The spectral linewidth in a GaAs-based superlattice determined by terahertz emission spectroscopy becomes larger gradually as temperature increases from 80 to 320 K. This behavior can be quantitatively reproduced by a microscopic theory of the spectral linewidth that has been extended to treat the phonon scattering and interface roughness scattering of electrons on a Wannier-Stark ladder. A detailed comparison between the terahertz measurements and theoretical simulations reveals that the LO phonon absorption process governs the increase in the spectral linewidth with increasing temperature.
Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1999-01-01
Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 <= tau(sub 0) <= 10, which can provide estimates of the true linewidth and optical thickness.
A Faraday laser lasing on Rb 1529 nm transition.
Chang, Pengyuan; Peng, Huanfa; Zhang, Shengnan; Chen, Zhangyuan; Luo, Bin; Chen, Jingbiao; Guo, Hong
2017-08-21
We present the design and performance characterization of a Faraday laser directly lasing on the Rb 1529 nm transition (Rb, 5P 3/2 - 4D 5/2 ) with high stability, narrow spectral linewidth and low cost. This system does not need an additional frequency-stabilized pump laser as a prerequisite to preparing Rb atom from 5S to 5P excited state. Just by using a performance-improved electrodeless discharge lamp-based excited-state Faraday anomalous dispersion optical filter (LESFADOF), we realized a heterogeneously Faraday laser with the frequency corresponding to atomic transition, working stably over a range of laser diode (LD) current from 85 mA to 171 mA and the LD temperature from 11 °C to 32 °C, as well as the 24-hour long-term frequency fluctuation range of no more than 600 MHz. Both the laser linewidth and relative intensity noisy (RIN) are measured. The Faraday laser lasing on Rb 1529 nm transition (telecom C-band) can be applied to further research on metrology, microwave photonics and optical communication systems. Besides, since the transitions correspongding to the populated excited-states of alkali atoms within lamp are extraordinarily rich, this scheme can increase the flexibility for choosing proper wavelengths for Faraday laser and greatly expand the coverage of wavelength corresponding to atomic transmission for laser frequency stabilization.
Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.
2017-03-01
Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.
Yamanishi, Masamichi
2012-12-17
Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.
Maló, Paulo S; de Araújo Nobre, Miguel A; Lopes, Armando V; Ferro, Ana S
2017-01-01
We investigated the short-term clinical outcomes of narrow-diameter short-length implants for the fixed-prosthetic partial rehabilitation of extremely resorbed jaws. Twenty-three patients requiring partial rehabilitations with narrow-platform short-length implants in any jaw were included in this study. In total, 30 implants 3.3 mm in diameter and 7 (n = 15 implants) or 8.5 (n = 15 implants) mm in length were inserted. The primary outcome measure was implant cumulative survival rate (CSR); the secondary outcome measures were marginal bone resorption at 1 and 3 years and the incidence of biologic and mechanical complications. Five patients (21.7%) with six implants (20%) were lost to follow-up. Two implants failed in two patients, yielding a CSR at 3 years of follow-up of 93.4%. The average (standard deviation) marginal bone resorption was 1.34 mm (0.95 mm) after the first year and 1.38 mm (0.78 mm) after the third year. Biologic complications occurred in three patients; mechanical complications occurred in three patients. Despite the limitations of the study, our findings show that the use of new narrow-diameter short-length implants for the rehabilitation of extremely atrophic regions is viable in the short-term, and can be considered a treatment alternative in extremely resorbed jaws.
Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques
NASA Technical Reports Server (NTRS)
Reid, J.; Cassidy, D. T.; Menzies, R. T.
1982-01-01
Measurements of the linewidths of Pb-salt diode lasers operating in the 8- and 9-micron region are reported. The linewidths of the 9-micron lasers were determined by conventional heterodyne techniques, while for the 8-micron lasers a new technique based on a Fabry-Perot etalon was used. The new technique avoids the complexity and limited wavelength range of the heterodyne measurements and can be used for any tunable laser. The linewidths observed varied from 0.6 to more than 500-MHz FWHM. The linewidth was found to vary dramatically from device to device, to depend strongly on junction temperature and injection current, and to be correlated with vibrations caused by operation of a closed-cycle refrigerator.
High-power lightweight external-cavity quantum cascade lasers
NASA Astrophysics Data System (ADS)
Day, Timothy; Takeuchi, Eric B.; Weida, Miles; Arnone, David; Pushkarsky, Michael; Boyden, David; Caffey, David
2009-05-01
Commercially available quantum cascade gain media has been integrated with advanced coating and die attach technologies, mid-IR micro-optics and telecom-style assembly and packaging to yield cutting edge performance. When combined into Daylight's external-cavity quantum cascade laser (ECqcL) platform, multi-Watt output power has been obtained. Daylight will describe their most recent results obtained from this platform, including high cw power from compact hermetically sealed packages and narrow spectral linewidth devices. Fiber-coupling and direct amplitude modulation from such multi-Watt lasers will also be described. In addition, Daylight will present the most recent results from their compact, portable, battery-operated "thermal laser pointers" that are being used for illumination and aiming applications. When combined with thermal imaging technology, such devices provide significant benefits in contrast and identification.
Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias
2017-03-15
We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35 dB) and narrow linewidth (<150 pm) over a tuning range of 25 nm.
Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther
2014-11-15
We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.
Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.
Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F
2010-04-15
We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.
Wavelength metrology with a color sensor integrated chip
NASA Astrophysics Data System (ADS)
Jackson, Jarom; Jones, Tyler; Otterstrom, Nils; Archibald, James; Durfee, Dallin
2016-03-01
We have developed a method of wavelength sensing using the TCS3414 from AMS, a color sensor developed for use in cell phones and consumer electronics. The sensor datasheet specifies 16 bits of precision and 200ppm/C° temperature dependence, which preliminary calculations showed might be sufficient for picometer level wavelength discrimination of narrow linewidth sources. We have successfully shown that this is possible by using internal etalon effects in addition to the filters' wavelength responses, and recently published our findings in OpticsExpress. Our device demonstrates sub picometer precision over short time periods, with about 10pm drift over a one month period. This method requires no moving or delicate optics, and has the potential to produce inexpensive and mechanically robust devices. Funded by Brigham Young University and NSF Grant Number PHY-1205736.
A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong
2013-10-01
A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.
NASA Astrophysics Data System (ADS)
Shramenko, Mikhail V.; Chamorovskiy, Alexander; Lyu, Hong-Chou; Lobintsov, Andrei A.; Karnowski, Karol; Yakubovich, Sergei D.; Wojtkowski, Maciej
2015-03-01
Tunable semiconductor laser for 1025-1095 nm spectral range is developed based on the InGaAs semiconductor optical amplifier and a narrow band-pass acousto-optic tunable filter in a fiber ring cavity. Mode-hop-free sweeping with tuning speeds of up to 104 nm/s was demonstrated. Instantaneous linewidth is in the range of 0.06-0.15 nm, side-mode suppression is up to 50 dB and polarization extinction ratio exceeds 18 dB. Optical power in output single mode fiber reaches 20 mW. The laser was used in OCT system for imaging a contact lens immersed in a 0.5% intra-lipid solution. The cross-section image provided the imaging depth of more than 5mm.
Fully digital programmable optical frequency comb generation and application.
Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José
2018-01-15
We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.
Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman
2016-04-15
Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.
Patterned growth of crystalline Y3Fe5O12 nanostructures with engineered magnetic shape anisotropy
NASA Astrophysics Data System (ADS)
Zhu, Na; Chang, Houchen; Franson, Andrew; Liu, Tao; Zhang, Xufeng; Johnston-Halperin, E.; Wu, Mingzhong; Tang, Hong X.
2017-06-01
We demonstrate patterned growth of epitaxial yttrium iron garnet (YIG) thin films using lithographically defined templates on gadolinium gallium garnet substrates. The fabricated YIG nanostructures yield the desired crystallographic orientation, excellent surface morphology, and narrow ferromagnetic resonance (FMR) linewidth (˜4 Oe). Shape-induced magnetic anisotropy is clearly observed in a patterned array of nanobars engineered to exhibit the larger coercivity (40 Oe) compared with that of continuous films. Both hysteresis loop and angle-dependent FMR spectra measurements indicate that the easy axis aligns along the longitudinal direction of the nanobars, with an effective anisotropy field of 195 Oe. Our work overcomes difficulties in patterning YIG thin films and provides an effective means to control their magnetic properties and magnetic bias conditions.
NASA Astrophysics Data System (ADS)
Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.
2007-03-01
The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.
[Infrared spectroscopy based on quantum cascade lasers].
Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing
2013-04-01
Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.
High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.
2015-02-02
We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
Sub-kHz Linewidth GaSb Semiconductor Diode Lasers Operating Near 2 Micrometers
NASA Technical Reports Server (NTRS)
Bagheri, Mahmood; Briggs, Ryan M.; Frez, Clifford; Ksendzov, Alexander; Forouhar, Siamak
2012-01-01
We report on the phase noise properties of DFB lasers operating near 2.0 microns. Measured noise spectra indicate intrinsic laser linewidths below 1 kHz. An effective linewidth of less than 200 kHz for 5 ms measurement times is estimated.
Nanoparticle photoresist studies for EUV lithography
NASA Astrophysics Data System (ADS)
Kasahara, Kazuki; Xu, Hong; Kosma, Vasiliki; Odent, Jeremy; Giannelis, Emmanuel P.; Ober, Christopher K.
2017-03-01
EUV (extreme ultraviolet) lithography is one of the most promising candidates for next generation lithography. The main challenge for EUV resists is to simultaneously satisfy resolution, LWR (line-width roughness) and sensitivity requirements according to the ITRS roadmap. Though polymer type CAR (chemically amplified resist) is the currently standard photoresist, entirely new resist platforms are required due to the performance targets of smaller process nodes. In this paper, recent progress in nanoparticle photoresists which Cornell University has intensely studied is discussed. Lithography performance, especially scum elimination, improvement studies with the dissolution rate acceleration concept and new metal core applications are described.
Coherence transfer of subhertz-linewidth laser light via an 82-km fiber link
NASA Astrophysics Data System (ADS)
Ma, Chaoqun; Wu, Lifei; Jiang, Yanyi; Yu, Hongfu; Bi, Zhiyi; Ma, Longsheng
2015-12-01
We demonstrate optical coherence transfer of subhertz-linewidth laser light through fiber links by actively compensating random fiber phase noise induced by environmental perturbations. The relative linewidth of laser light after transferring through a 32-km urban fiber link is suppressed within 1 mHz (resolution bandwidth limited), and the absolute linewidth of the transferred laser light is less than 0.36 Hz. For an 82-km fiber link, a repeater station is constructed between a 32-km urban fiber and a 50-km spooled fiber to recover the spectral purity. A relative linewidth of 1 mHz is also demonstrated for light transferring through the 82-km cascaded fiber. Such an optical signal distribution network based on repeater stations allows optical coherence and synchronization available over spatially separated places.
Distributed seeding for narrow-line width hard x-ray free-electron lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dinh Cong; Anisimov, Petr Mikhaylovich; Buechler, Cynthia Eileen
2015-09-09
We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the MaRIE hard X-ray freeelectron laser. DS differs from self-seeding in three important aspects. First, DS relies on spectral filtering of the radiation at multiple locations along the undulator, with a monochromator located every few power gain lengths. Second, DS performs filtering early in the exponential gain region before SASE spikes start to appear in the radiation longitudinal profile. Third, DS provides the option to select a wavelength longer than the peak of the SASE gain curve, whichmore » leads to improved spectral contrast of the seeded FEL over the SASE background. Timedependent Genesis simulations show the power-vs-z growth curves for DS exhibit behaviors of a seeded FEL amplifier, such as exponential growth region immediately after the filters. Of the seeding approaches considered, the two-stage DS spectra produce the highest contrast of seeded FEL over the SASE background and that the three-stage DS provides the narrowest linewidth with a relative spectral FWHM of 8 X 10 -5 .« less
NASA Astrophysics Data System (ADS)
Brown, Justin; Woolf, David; Hensley, Joel
2016-05-01
Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.
Wideband optical sensing using pulse interferometry.
Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis
2012-08-13
Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.
Characteristics research on self-amplified distributed feedback fiber laser
NASA Astrophysics Data System (ADS)
Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding
2014-09-01
A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.
1310 nm quantum dot DFB lasers with high dot density and ultra-low linewidth-power product
NASA Technical Reports Server (NTRS)
Qiu, Y.; Lester, L. F.; Gray, A. L.; Newell, T. C.; Hains, C.; Gogna, P.; Muller, R.; Maker, P.; Su, H.; Stintz, A.
2002-01-01
Laterally coupled distributed feedback lasers using high-density InAs quantum dots-in-a-well (DWELL) active region demonstrate a nominal wavelength of 1310 nm, a linewidth as small as 68 kHz, and a linewidth-power product of 100 kHz-mW.
NASA Astrophysics Data System (ADS)
Friedenauer, Axel; Karpov, Vladimir; Wei, Daoping; Hager, Manfred; Ernstberger, Bernhard; Clements, Wallace R. L.; Kaenders, Wilhelm G.
2012-07-01
Large telescopes equipped with adaptive optics require 20-25W CW 589-nm sources with emission linewidths of ~5 MHz. These Guide Star (GS) lasers should also be highly reliable and simple to operate and maintain for many years at the top of a mountain facility. Under contract from ESO, industrial partners TOPTICA and MPBC are nearing completion of the development of GS lasers for the ESO VLT, with delivery of the first of four units scheduled for December 2012. We report on the design and performance of the fully-engineered Pre-Production Unit (PPU), including system reliability/availability analysis, the successfully-concluded qualification testing, long-term component and system level tests and long-term maintenance and support planning. The chosen approach is based on ESO's patented narrow-band Raman Fiber Amplifier (EFRA) technology. A master oscillator signal from a linearly-polarized TOPTICA 20-mW, 1178-nm CW diode laser, with stabilized emission frequency and controllable linewidth up to a few MHz, is amplified in an MPBC polarization-maintaining (PM) RFA pumped by a high-power 1120-nm PM fiber laser. With efficient stimulated Brillouin scattering suppression, an unprecedented 40W of narrow-band RFA output has been obtained. This is then mode-matched into a resonant-cavity doubler with a free-spectral-range matching the sodium D2a to D2b separation, allowing simultaneous generation of an additional frequency component (D2b line) to re-pump the sodium atom electronic population. With this technique, the return flux can be increased without having to resort to electro-optical modulators and without the risk of introducing optical wave front distortions. The demonstrated output powers with doubling efficiencies >80% at 589 nm easily exceed the 20W design goal and require less than 700 W of electrical power. In summary, the fiber-based guide star lasers provide excellent beam quality and are modular, turn-key, maintenance-free, reliable, efficient, and ruggedized devices whose compactness allows installation directly onto the launch telescope structure.
NASA Astrophysics Data System (ADS)
Dobler, J. T.; Nagel, J.; Temyanko, V.; Zaccheo, S.; Browell, E. V.; Kooi, S. A.
2011-12-01
Starting in February 2009 ITT, along with our partners at TIPD, AER and NASA LaRC, has been working to develop a fiber Raman amplifier at a wavelength near 1.26 microns, and evaluate its performance for measuring atmospheric O2 remotely. Two prototype amplifiers have been built and integrated into an existing continuous wave (CW) intensity modulated (IM) engineering development unit (EDU), developed at ITT for the measurement of CO2, in order to demonstrate the CW-IM measurement of atmospheric O2. The CO2 and O2 measurements are being evaluated for application to the active sensing of CO2 emissions over nights days and seasons (ASCENDS) mission described in the 2007 National Research Council's Decadal Survey. The O2 measurement takes advantage of the fact that O2 is a well mixed gas to allow the determination of the CO2 dry air mixing ratio, which is the required product for the ASCENDS mission. The Raman amplifier development has been focused on optimizing fiber designs to limit stimulated Brillouin scattering (SBS), which is a nonlinear process typically limiting this type of amplifier from generating high power narrow linewidth outputs. This work has centered around two approaches, varying the fiber core diameter to broaden the Brillouin gain curve and designing transverse fiber doping profiles which serve to separate the acoustic and optical wave overlap responsible for SBS. The most recent amplifier is producing 1.5 Watts of average power while maintaining the narrow linewidth of the seed laser (~3 MHz). The latest amplifier has been integrated with the CO2 EDU and initial ground testing was performed at the ITT ground test facility in New Haven, Indiana. The transmitter has subsequently been integrated into a NASA DC-8 rack and is currently being flown on the NASA DC-8. We discuss results from these ground and flight measurements in addition to the discussion of the amplifier design and our plans for scaling the design to space. This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumpertz, L., E-mail: louise.jumpertz@telecom-paristech.fr; MirSense, 8 avenue de la Vauve, F-91120 Palaiseau; Michel, F.
2016-01-15
Precise knowledge of the linewidth enhancement factor of a semiconductor laser under actual operating conditions is of prime importance since this parameter dictates various phenomena such as linewidth broadening or optical nonlinearities enhancement. The above-threshold linewidth enhancement factor of a mid-infrared quantum cascade laser structure operated at 10{sup ∘}C is determined experimentally using two different methods based on optical feedback. Both Fabry-Perot and distributed feedback quantum cascade lasers based on the same active area design are studied, the former by following the wavelength shift as a function of the feedback strength and the latter by self-mixing interferometry. The results aremore » consistent and unveil a clear pump current dependence of the linewidth enhancement factor, with values ranging from 0.8 to about 3.« less
NASA Astrophysics Data System (ADS)
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm-1 for the spectral range between 6890 and 6170 cm-1 is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm-1 is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm-1, a minimum detectable absorption coefficient of approximately 1×10-8 cm-1 is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10-10 cm-1 Hz-1/2. Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Bian, Qi; Bo, Yong; Zuo, Junwei; Li, Min; Dong, Ruoxi; Deng, Keran; Zhang, Dingwen; He, Liping; Zong, Qingshuang; Cui, Dafu; Peng, Qinjun; Chen, Hongbin; Xu, Zuyan
2018-06-15
The brightness of the artificial beacon is one critical performance parameter for adaptive optics. Here, a 40-watt level narrow-linewidth microsecond pulsed yellow laser is produced at 589 nm with a high repetition frequency of 600 Hz and a pulse duration of 120 μs. An experiment to project the pulse beam up to the sky and measure the fluorescence photon returns of the Na atoms has been held on the 1.8-meter telescope in Lijiang observatory. During the sky test, a laser guide star (LGS) spot is firstly observed with Rayleigh scattering elimination by means of a gateable pulse format. And, the central wavelength of the laser could be accurately locked to be 589.1584 nm with a linewidth of ~0.34 GHz to match that of sodium-D 2a line. Optical pumping with circularly polarized light has also been used to increase the brightness of sodium LGS. In order to maximize the return flux, sodium D 2b repumping option is done by an electro-optic modulator with the optimum D 2a -D 2b frequency offset. As a result, a bright sodium LGS with the return flux of 1610 photons/cm 2 /s is achieved, corresponding to ~47 photons/cm 2 /s/W of emitted laser power, which represents a significant improvement in terms of brightness reported ever.
Bayrakli, Ismail; Akman, Hatice
2015-03-01
A robust biomedical sensor for ultrasensitive detection of biomarkers in breath based on a tunable external cavity laser (ECL) and an off-axis cavity-enhanced absorption spectroscopy (OA-CEAS) using an amplitude stabilizer is developed. A single-mode, narrow-linewidth, tunable ECL is demonstrated. A broadly coarse wavelength tuning range of 720 cm⁻¹ for the spectral range between 6890 and 6170 cm⁻¹ is achieved by rotating the diffraction grating forming a Littrow-type external-cavity configuration. A mode-hop-free tuning range of 1.85 cm⁻¹ is obtained. The linewidths below 140 kHz are recorded. The ECL is combined with an OA-CEAS to perform laser chemical sensing. Our system is able to detect any molecule in breath at concentrations to the ppbv range that have absorption lines in the spectral range between 1450 and 1620 nm. Ammonia is selected as target molecule to evaluate the performance of the sensor. Using the absorption line of ammonia at 6528.76 cm⁻¹, a minimum detectable absorption coefficient of approximately 1×10⁻⁸ cm⁻¹ is demonstrated for 256 averages. This is achieved for a 1.4-km absorption path length and a 2-s data-acquisition time. These results yield a detection sensitivity of approximately 8.6×10⁻¹⁰ cm⁻¹ Hz(-1/2). Ammonia in exhaled breath is analyzed and found in a concentration of 870 ppb for our example.
Prototype laser-diode-pumped solid state laser transmitters
NASA Technical Reports Server (NTRS)
Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.
1989-01-01
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.
Uncovering the hidden iceberg structure of the Galactic halo
NASA Astrophysics Data System (ADS)
Moss, Vanessa A.; Di Teodoro, Enrico M.; McClure-Griffiths, Naomi M.; Lockman, Felix; Pisano, D. J.; Price, Daniel; Rees, Glen
2018-01-01
How the Milky Way gets its gas and keeps its measured star formation rate going are both long-standing mysteries in Galactic studies, with important implications for galaxy evolution across the Universe. I will present our recent discovery of two populations of neutral hydrogen (HI) in the halo of the Milky Way: 1) a narrow line-width dense population typical of the majority of bright high velocity cloud (HVC) components, and 2) a fainter, broad line-width diffuse population that aligns well with the population found in very sensitive pointings such as in Lockman et al. (2002). From our existing data, we concluded that the diffuse population likely outweighs the dense HI by a factor of 3. This discovery of diffuse HI, which appears to be prevalent throughout the halo, takes us closer to solving the Galactic mystery of accretion and reveals a gaseous neutral halo hidden from the view of most large-scale surveys. We are currently carrying out deep Parkes observations to investigate these results further, in order to truly uncover the nature of the diffuse HI and determine whether our 3:1 ratio (based on the limited existing data) is consistent with what is seen when Parkes and the 140 ft Green Bank telescope are employed at comparable sensitivity. With these data, through a combination of both known and new sightline measurements, we aim to reveal the structure of the Galactic halo in more detail than ever before.
NASA Astrophysics Data System (ADS)
Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng
2018-01-01
Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.
Trade-off between linewidth and slip rate in a mode-locked laser model.
Moore, Richard O
2014-05-15
We demonstrate a trade-off between linewidth and loss-of-lock rate in a mode-locked laser employing active feedback to control the carrier-envelope offset phase difference. In frequency metrology applications, the linewidth translates directly to uncertainty in the measured frequency, whereas the impact of lock loss and recovery on the measured frequency is less well understood. We reduce the dynamics to stochastic differential equations, specifically diffusion processes, and compare the linearized linewidth to the rate of lock loss determined by the mean time to exit, as calculated from large deviation theory.
Karpf, Andreas; Qiao, Yuhao; Rao, Gottipaty N
2016-06-01
We present a simplified cavity ringdown (CRD) trace gas detection technique that is insensitive to vibration, and capable of extremely sensitive, real-time absorption measurements. A high-power, multimode Fabry-Perot (FP) diode laser with a broad wavelength range (Δλlaser∼0.6 nm) is used to excite a large number of cavity modes, thereby reducing the detector's susceptibility to vibration and making it well suited for field deployment. When detecting molecular species with broad absorption features (Δλabsorption≫Δλlaser), the laser's broad linewidth removes the need for precision wavelength stabilization. The laser's power and broad linewidth allow the use of on-axis cavity alignment, improving the signal-to-noise ratio while maintaining its vibration insensitivity. The use of an FP diode laser has the added advantages of being inexpensive, compact, and insensitive to vibration. The technique was demonstrated using a 1.1 W (λ=400 nm) diode laser to measure low concentrations of nitrogen dioxide (NO2) in zero air. A sensitivity of 38 parts in 1012 (ppt) was achieved using an integration time of 128 ms; for single-shot detection, 530 ppt sensitivity was demonstrated with a measurement time of 60 μs, which opens the door to sensitive measurements with extremely high temporal resolution; to the best of our knowledge, these are the highest speed measurements of NO2 concentration using CRD spectroscopy. The reduced susceptibility to vibration was demonstrated by introducing small vibrations into the apparatus and observing that there was no measurable effect on the sensitivity of detection.
Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N
2015-05-13
We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.
QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.
2013-06-01
With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.
Measuring THz QCL feedback using an integrated monolithic transceiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanke, Michael Clement
2010-08-01
THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detectormore » components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be pulled significantly as a function of the external path length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, Fabian, E-mail: fabian.langer@physik.uni-wuerzburg.de; Plischke, David; Kamp, Martin
2014-08-25
In this work, we report the fabrication of a charge-tunable GaAs/Al{sub 0.25}Ga{sub 0.75}As quantum dot (QD) device containing QDs deposited by modified droplet epitaxy producing almost strain and composition gradient free QDs. We obtained a QD density in the low 10{sup 9 }cm{sup −2} range that enables us to perform spectroscopy on single droplet QDs showing linewidths as narrow as 40 μeV. The integration of the QDs into a Schottky diode allows us to controllably charge a single QD with up to four electrons, while non-classical photoluminescence is proven by photon auto-correlation measurements showing photon-antibunching (g{sup (2)}(0) = 0.05).
Khromova, Irina; Kužel, Petr; Brener, Igal; ...
2016-06-27
Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less
ICESat-2 laser technology development
NASA Astrophysics Data System (ADS)
Edwards, Ryan; Sawruk, Nick W.; Hovis, Floyd E.; Burns, Patrick; Wysocki, Theodore; Rudd, Joe; Walters, Brooke; Fakhoury, Elias; Prisciandaro, Vincent
2013-09-01
A number of ICESat-2 system requirements drove the technology evolution and the system architecture for the laser transmitter Fibertek has developed for the mission.. These requirements include the laser wall plug efficiency, laser reliability, high PRF (10kHz), short-pulse (<1.5ns), relatively narrow spectral line-width, and wave length tunability. In response to these requirements Fibertek developed a frequency-doubled, master oscillator/power amplifier (MOPA) laser that incorporates direct pumped diode pumped Nd:YVO4 as the gain media, Another guiding force in the system design has been extensive hardware life testing that Fibertek has completed. This ongoing hardware testing and development evolved the system from the original baseline brass board design to the more robust flight laser system. The final design meets or exceeds all NASA requirements and is scalable to support future mission requirements.
Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements
Park, Nam Su; Chun, Soo Kyung; Han, Ga-Hee; Kim, Chang-Seok
2017-01-01
We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF) and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL) can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k) linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain. PMID:28362318
Current-controlled light scattering and asymmetric plasmon propagation in graphene
NASA Astrophysics Data System (ADS)
Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe
2018-02-01
We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.
NASA Technical Reports Server (NTRS)
Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.
1999-01-01
We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).
Research on a novel composite structure Er³⁺-doped DBR fiber laser with a π-phase shifted FBG.
Zhao, Yanjie; Chang, Jun; Wang, Qingpu; Ni, Jiasheng; Song, Zhiqiang; Qi, Haifeng; Wang, Chang; Wang, Pengpeng; Gao, Liang; Sun, Zhihui; Lv, Guangping; Liu, Tongyu; Peng, Gangding
2013-09-23
A simple composite cavity structure Er³⁺-doped fiber laser was proposed and demonstrated experimentally. The resonant cavity consists of a pair of uniform fiber Bragg gratings (FBGs) and a π-phase shifted FBG. By introducing the π-phase shifted FBG into the cavity as the selective wavelength component, it can increase the effective length of the laser cavity and suppress the multi-longitudinal modes simultaneously. The narrow linewidth of 900 Hz and low RIN of -95 dB/Hz were obtained. And the lasing wavelength was rather stable with the pump power changing. The SMRS was more than 67 dB. The results show that the proposed fiber laser has a good performance and considerable potential application for fiber sensor and optical communication.
Velocity visualization in gaseous flows
NASA Technical Reports Server (NTRS)
Hanson, R. K.
1985-01-01
Techniques are established for visualizing velocity in gaseous flows. Two approaches are considered, both of which are capable of yielding velocity simultaneously at a large number of flowfield locations, thereby providing images of velocity. The first technique employs a laser to mark specific fluid elements and a camera to track their subsequent motion. Marking is done by laser-induced phosphorescence of biacetyl, added as a tracer species in a flow of N2, or by laser-induced formation of sulfur particulates in SF6-H2-N2 mixtures. The second technique is based on the Doppler effect, and uses an intensified photodiode array camera and a planar form of laser-induced fluorescence to detect 2-d velocities of I2 (in I2-N2 mixtures) via Doppler-shifted absorption of narrow-linewidth laser radiation at 514.5 nm.
Zheng, Jie; Ge, Chun; Wagner, Clark J; Lu, Meng; Cunningham, Brian T; Hewitt, J Darby; Eden, J Gary
2012-06-18
Continuous tuning over a 1.6 THz region in the near-infrared (842.5-848.6 nm) has been achieved with a hybrid ring/external cavity laser having a single, optically-driven grating reflector and gain provided by an injection-seeded semiconductor amplifier. Driven at 532 nm and incorporating a photonic crystal with an azobenzene overlayer, the reflector has a peak reflectivity of ~80% and tunes at the rate of 0.024 nm per mW of incident green power. In a departure from conventional ring or external cavity lasers, the frequency selectivity for this system is provided by the passband of the tunable photonic crystal reflector and line narrowing in a high gain amplifier. Sub - 0.1 nm linewidths and amplifier extraction efficiencies above 97% are observed with the reflector tuned to 842.5 nm.
New Diamond Color Center for Quantum Communication
NASA Astrophysics Data System (ADS)
Huang, Ding; Rose, Brendon; Tyryshkin, Alexei; Sangtawesin, Sorawis; Srinivasan, Srikanth; Twitchen, Daniel; Markham, Matthew; Edmonds, Andrew; Gali, Adam; Stacey, Alastair; Wang, Wuyi; D'Haenens-Johansson, Ulrika; Zaitsev, Alexandre; Lyon, Stephen; de Leon, Nathalie
2017-04-01
Color centers in diamond are attractive for quantum communication applications because of their long electron spin coherence times and efficient optical transitions. Previous demonstrations of color centers as solid-state spin qubits were primarily focused on centers that exhibit either long coherence times or highly efficient optical interfaces. Recently, we developed a method to stabilize the neutral charge state of silicon-vacancy center in diamond (SiV0) with high conversion efficiency. We observe spin relaxation times exceeding 1 minute and spin coherence times of 1 ms for SiV0 centers. Additionally, the SiV0 center also has > 90 % of its emission into its zero-phonon line and a narrow inhomogeneous optical linewidth. The combination of a long spin coherence time and efficient optical interface make the SiV0 center a promising candidate for applications in long distance quantum communication.
Kumar, S Chaitanya; Samanta, G K; Ebrahim-Zadeh, M
2009-08-03
Characteristics of high-power, narrow-linewidth, continuous-wave (cw) green radiation obtained by simple single-pass second-harmonic-generation (SHG) of a cw ytterbium fiber laser at 1064 nm in the nonlinear crystals of PPKTP and MgO:sPPLT are studied and compared. Temperature tuning and SHG power scaling up to nearly 10 W for input fundamental power levels up to 30 W are performed. Various contributions to thermal effects in both crystals, limiting the SHG conversion efficiency, are studied. Optimal focusing conditions and thermal management schemes are investigated to maximize SHG performance in MgO:sPPLT. Stable green output power and high spatial beam quality with M(2)<1.33 and M(2)<1.34 is achieved in MgO:sPPLT and PPKTP, respectively.
Depth profiling of hydrogen passivation of boron in Si(100)
NASA Astrophysics Data System (ADS)
Huang, L. J.; Lau, W. M.; Simpson, P. J.; Schultz, P. J.
1992-08-01
The properties of SiO2/p-Si were studied using variable-energy positron-annihilation spectroscopy and Raman spectroscopy. The oxide film was formed by ozone oxidation in the presence of ultraviolet radiation at room temperature. Both the positron-annihilation and Raman analyses show that chemical cleaning of boron-doped p-type Si(100) using concentrated hydrofluoric acid prior to the oxide formation leads to hydrogen incorporation in the semiconductor. The incorporated hydrogen passivates the boron dopant by forming a B-H complex, the presence of which increases the broadening of the line shape in the positron-annihilation analysis, and narrows the linewidth of the Raman peak. Annealing of the SiO2/Si sample at a moderate temperature of 220 °C in vacuum was found sufficient to dissociate the complex and reactivate the boron dopant.
Revising the magnetic structure and dynamics of Yttrium Iron Garnet
NASA Astrophysics Data System (ADS)
Princep, Andrew; Boothroyd, Andrew; Ewings, Russell; Ward, Simon; Dubs, Carsten
Yttrium iron garnet (YIG) is the `miracle material' of microwave magnetics. Since its synthesis by Geller and Gilleo in 1957, it is widely acknowledged to have contributed more to the understanding of electronic spin-wave and magnon dynamics than any other substance. Its astonishingly narrow excitation linewidth allows magnon propagation to be observed over centimetre distances, making it both a superior model system for the experimental study of fundamental aspects of microwave magnetic dynamics and an ideal platform for the development of microwave magnetic technologies. Our experiments on a large, pristine single crystal at the ISIS facility using both diffraction and time-of-flight spectroscopy have provided new results on both the magnetic structure and the excitation spectrum, which revise nearly 60 years of scientific research and will be essential insights for the fledgling scientific field of Magnonics. EPSRC, UK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daehwan; Song, Yuncheng; Larry Lee, Minjoo
We report 2.8 {mu}m emission from compressively strained type-I quantum wells (QWs) grown on InP-based metamorphic InAs{sub x}P{sub 1-x} step-graded buffers. High quality metamorphic graded buffers showed smooth surface morphology and low threading dislocation densities of approximately 2.5 Multiplication-Sign 10{sup 6} cm{sup -2}. High-resolution x-ray diffraction scans showed strong satellites from multiple quantum wells grown on metamorphic buffers, and cross-sectional transmission electron microscopy revealed smooth and coherent quantum well interfaces. Room-temperature photoluminescence emission at 2.8 {mu}m with a narrow linewidth ({approx}50 meV) shows the promise of metamorphic growth for mid-infrared laser diodes on InP.
A study of nitrogen incorporation in pyramidal site-controlled quantum dots
2011-01-01
We present the results of a study of nitrogen incorporation in metalorganic-vapour-phase epitaxy-grown site-controlled quantum dots (QDs). We report for the first time on a significant incorporation (approximately 0.3%), producing a noteworthy red shift (at least 50 meV) in some of our samples. Depending on the level of nitrogen incorporation/exposure, strong modifications of the optical features are found (variable distribution of the emission homogeneity, fine-structure splitting, few-particle effects). We discuss our results, especially in relation to a specific reproducible sample which has noticeable features: the usual pattern of the excitonic transitions is altered and the fine-structure splitting is suppressed to vanishing values. Distinctively, nitrogen incorporation can be achieved without detriment to the optical quality, as confirmed by narrow linewidths and photon correlation spectroscopy. PMID:22029752
NASA Technical Reports Server (NTRS)
Chiu, S. S.-L.; Cheung, A. S.-C.; Yoshino, K.; Esmond, J. R.; Freeman, D. E.
1990-01-01
The Yoshino et al. (1988) measurements of absolute cross sections and those of Cheung et al. (1988) for spectroscopic constants are presently used to derive the predissociation linewidths of the (3,0)-(11,0) Schumman-Runge bands of (O-18)2 and O-16O-18, in the 180-196 nm wavelength region. Linewidths are determined as parameters in the nonlinear, least-squares fitting of calculated cross-sections to measured ones. The predissociation linewidths obtained are noted to often be greater than previously obtained experimental values for both isotopic molecules.
Nakamura, Moriya; Kamio, Yukiyoshi; Miyazaki, Tetsuya
2010-01-01
We experimentally demonstrate linewidth-tolerant real-time 40-Gbit/s(10-Gsymbol/s) 16-quadrature amplitude modulation. We achieved bit-error rates of <10(-9) using an external-cavity laser diode with a linewidth of 200 kHz and <10(-7) using a distributed-feedback laser diode with a linewidth of 30 MHz, thanks to the phase-noise canceling capability provided by self-homodyne detection using a pilot carrier. Pre-equalization based on digital signal processing was employed to suppress intersymbol interference caused by the limited-frequency bandwidth of electrical components.
Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng
2013-07-01
Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.
Rønsted, Nina
2016-01-01
This article presents and describes Plantago humboldtiana, an extremely narrow endemic rheophytic new species from a waterfall in Corupá, Santa Catarina state, southern Brazil. The new species is unique in presenting a combination of type-G antrorse trichomes on scapes, pendulous inflorescences and 1-seeded pyxidia. Only one population is known to exist, despite intensive search efforts in nearby, similar environments. Its conservation status is assessed as critically endangered (CR) as the only known population is restricted to a dramatically small area, and is subject to extreme fluctuation due to occasional floods, and also to intense visitation by tourists, which can disturb its fragile habitat. We also present an updated identification key to the species of Plantago that occur in Santa Catarina. The recent description of three narrow endemic, threatened new species of Plantago in Santa Catarina, which is the Brazilian state with its flora best studied, highlights the need for more taxonomic research, especially in the neotropics. PMID:27231665
Time-resolved atomic inner-shell spectroscopy
NASA Astrophysics Data System (ADS)
Drescher, M.; Hentschel, M.; Kienberger, R.; Uiberacker, M.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, Th.; Kleineberg, U.; Heinzmann, U.; Krausz, F.
2002-10-01
The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9
Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers
NASA Astrophysics Data System (ADS)
Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei
2012-11-01
We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.
Impact of materials engineering on edge placement error (Conference Presentation)
NASA Astrophysics Data System (ADS)
Freed, Regina; Mitra, Uday; Zhang, Ying
2017-04-01
Transistor scaling has transitioned from wavelength scaling to multi-patterning techniques, due to the resolution limits of immersion of immersion lithography. Deposition and etch have enabled scaling in the by means of SADP and SAQP. Spacer based patterning enables extremely small linewidths, sufficient for several future generations of transistors. However, aligning layers in Z-direction, as well as aligning cut and via patterning layers, is becoming a road-block due to global and local feature variation and fidelity. This presentation will highlight the impact of deposition and etch on this feature alignment (EPE) and illustrate potential paths toward lowering EPE using material engineering.
Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hangauer, Andreas, E-mail: hangauer@princeton.edu; Nikodem, Michal; Wysocki, Gerard, E-mail: gwysocki@princeton.edu
2013-11-04
Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators.
Granular giant magnetoresistive materials and their ferromagnetic resonances
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-11-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of (Cu(50 A)/Fe(10 A)) x 50. We interpret the linewidth of these materials in as simple a manner as possible, as a 'powder pattern' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 C for 15 min is 3.8 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe with the magnetic field in the plane of the film.
Ferromagnetic-resonance studies of granular giant-magnetoresistive materials
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-07-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of [Cu(50 Å)/Fe(10 Å)]×50. We interpret the linewidth of these materials in as simple a manner as possible, as a ``powder pattern'' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 °C for 15 min is 4.5 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe when the applied magnetic field is in the plane of the film.
NASA Astrophysics Data System (ADS)
Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae
2016-05-01
We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.
Phosphorus-31 MRI of bones using quadratic echo line-narrowing
NASA Astrophysics Data System (ADS)
Frey, Merideth; Barrett, Sean; Insogna, Karl; Vanhouten, Joshua
2012-02-01
There is a great need to probe the internal composition of bone on the sub-0.1 mm length scale, both to study normal features and to look for signs of disease. Despite the obvious importance of the mineral fraction to the biomechanical properties of skeletal tissue, few non-destructive techniques are available to evaluate changes in its chemical structure and functional microarchitecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density and wider linewidths of its solid components. Recent fundamental research in quantum computing gave rise to a new NMR pulse sequence - the quadratic echo - that can be used to narrow the broad NMR spectrum of solids. This offers a new route to do high spatial resolution, 3D ^31P MRI of bone that complements conventional MRI and x-ray based techniques to study bone physiology and structure. We have used our pulse sequence to do 3D ^31P MRI of ex vivo bones with a spatial resolution of (sub-450 μm)^3, limited only by the specifications of a conventional 4 Tesla liquid-state MRI system. We will describe our plans to push this technique towards the factor of 1000 increase in spatial resolution imposed by fundamental limits.
A narrow open tubular column for high efficiency liquid chromatographic separation
Chen, Huang; Yang, Yu; Qiao, Zhenzhen; ...
2018-01-01
We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.
A narrow open tubular column for high efficiency liquid chromatographic separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huang; Yang, Yu; Qiao, Zhenzhen
We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.
Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.
2014-01-01
Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251
Control of pulse format in high energy per pulse all-fiber erbium/ytterbium laser systems
NASA Astrophysics Data System (ADS)
Klopfer, Michael; Block, Matthew K.; Deffenbaugh, James; Fitzpatrick, Zak G.; Urioste, Michael T.; Henry, Leanne J.; Jain, Ravinder
2017-02-01
A multi-stage linearly polarized (PM) (15 dB) pulsed fiber laser system at 1550 nm capable of operating at repetition rates between 3 and 20 kHz was investigated. A narrow linewidth seed source was linewidth broadened to approximately 20 GHz and pulses were created and shaped via an electro-optic modulator (EOM) in conjunction with a home built arbitrary waveform generator. As expected, a high repetition rate pulse train with a near diffraction limited beam quality (M2 1.12) was achieved. However, the ability to store energy was limited by the number of active ions within the erbium/ytterbium doped gain fiber within the various stages. As a result, the maximum energy per pulse achievable from the system was approximately 0.3 and 0.38 mJ for 300 ns and 1 μs pulses, respectively, at 3 kHz. Because the system was operated at high inversion, the erbium/ytterbium doped optical fiber preferred to lase at 1535 nm versus 1550 nm resulting in amplified spontaneous emission (ASE) both intra- and inter-pulse. For the lower power stages, the ASE was controllable via a EOM whose function was to block the energy between pulses as well as ASE filters whose purpose was to block spectral components outside of the 1550 nm passband. For the higher power stages, the pump diodes were pulsed to enable strategic placement of an inversion resulting in higher intrapulse energies as well as an improved spectrum of the signal. When optimized, this system will be used to seed higher power solid state amplifier stages.
NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations
NASA Astrophysics Data System (ADS)
Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion
2017-12-01
Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se,125Te, and 209Bi in Bi2Se3 and Bi2Te3 . In conducting samples with current densities of ≃106A/cm 2 , the splitting for Bi can reach 100 kHz , which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi2Se3 , this requires narrow wires of radius ≲1 μ m . We also discuss other potentially more promising candidate materials, such as SrRuO3 and BaIr2Ge2 , whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.
NASA Astrophysics Data System (ADS)
Ding, Yaqian; Zhang, Xiang; Li, Dong; Wang, Dapeng; Zhang, Renzhong; Song, Chengying; Che, Haozhao; Wang, Rui; Guo, Baoling; Chen, Guanghui
2015-10-01
In this paper, a practical single-frequency high-repetition linearly-polarized eye-safe all-fiber laser with constant peak power is demonstrated. It is based on master-oscillator power amplifier (MOPA) system. A distributed feedback laser diode simulating at 1550nm with narrow linewidth of 2.3 kHz is employed as the seed source. It is modulated to a pulse laser with high repetition of 20 kHz and peak power of 10mW by an acousto-optic modulator (AOM). The pulse width is tunable between 100ns to 400ns. Two-stage cascade amplifier is established, which consists of a pre-amplifier and a power-amplifier. Amplified spontaneous emission (ASE) and stimulated billion scattering are well suppressed by special management. The output peak power of 30W is obtained, which has nearly diffraction-limited beam quality. It operates in linewidth of 1.2MHz, polarization-extinction ratio (PER) of 25dB and signal-to-noise ratio (SNR) of more than 40dB. Gain of the whole amplifier achieves nearly 35dB. Furthermore, an embedded control system (ECS) based on the WinCE operating system (OS) and the chip of S3C2440 is proposed. This control system based on closed-loop feedback technology makes the peak power keeping constant even the pulse width tunable, which is convenient for the end user of the radar. This robust portable laser is remarkable and fulfills the desire of coherent detection excellently.
Linewidth and tuning characteristics of terahertz quantum cascade lasers.
Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A
2004-03-15
We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.
Theory of the fundamental laser linewidth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, P.; Milonni, P.W.; Sundaram, B.
1991-08-01
The theory of the laser linewidth is formulated to account for arbitrarily large output couplings and spatial hole burning. We show explicitly that the linewidth can be interpreted in terms of either spontaneous-emission noise or the amplification of vacuum field modes leaking into the cavity, depending on the ordering of operators in the correlation function determining the laser spectrum. This allows us to derive the Petermann {ital K} factor associated with excess spontaneous-emission noise'' in a physically transparent and mathematically simple way, without the need to introduce adjoint modes of the resonator. It also allows us to straightforwardly include spatial-hole-burningmore » effects, which are found to increase the {ital K} factor and the linewidth in high-gain systems appreciably.« less
Two Interrogated FBG Spectral Linewidth for Strain Sensing through Correlation.
Hsu, Shih-Hsiang; Chuang, Kuo-Wei; Chen, Ci-Syu; Lin, Ching-Yu; Chang, Che-Chang
2017-12-07
The spectral linewidth from two cross-correlated fiber Bragg gratings (FBGs) are interrogated and characterized using a delayed self-homodyne method for fiber strain sensing. This approach employs a common higher frequency resolution instead of wavelength. A sensitivity and resolution of 166 MHz/με and 50 nε were demonstrated from 4 GHz spectral linewidth characterization on the electric spectrum analyzer. A 10 nε higher resolution can be expected through random noise analyses when the spectral linewidth from two FBG correlations is reduced to 1 GHz. Moreover, the FBG spectrum is broadened during strain and experimentally shows a 0.44 pm/με sensitivity, which is mainly caused by the photo elastic effect from the fiber grating period stretch.
CARRIER-LATTICE RELAXATION FOR BROADENING EPR LINEWIDTH IN Nd0.55Sr0.45MnO3
NASA Astrophysics Data System (ADS)
Fan, Jiyu; Zhang, Xiyuan; Tong, Wei; Zhang, Lei; Zhang, Weichun; Zhu, Yan; Shi, Yangguang; Hu, Dazhi; Hong, Bo; Ying, Yao; Ling, Langsheng; Pi, Li; Zhang, Yuheng
2013-12-01
In this paper, we report the electron paramagnetic resonance (EPR) study of perovskite manganite Nd0.55Sr0.45MnO3. Experimental data reveal that the EPR linewidth broadens with a quasilinear manner up to 480 K. The broadening of the EPR linewidth can be understood in terms of the shortening of carrier-lattice relaxation time due to the occurrence of strong carrier-phonon interactions. Two same activation energies obtained respectively from the temperature dependence of EPR intensity and resistivity indicate that the linewidth variation is correlated to the small polaron hopping. Therefore, the carrier-lattice coupling play a major role for deciding its magnetism in the present system.
Nanophotonics for Lab-on-Chip Applications
NASA Astrophysics Data System (ADS)
Seitz, Peter
Optical methods are the preferred measurement techniques for biosensors and lab-on-chip applications. Their key properties are sensitivity, selectivity and robustness. To simplify the systems and their operation, it is desirable to employ label-free optical methods, requiring the functionalization of interfaces. Evanescent electromagnetic waves are probing the optical proper ties near the interfaces, a few 100 nm deep into the sample fluid. The sensitivity of these measurements can be improved with optical micro-resonators, in particular whispering gallery mode devices. Q factors as high as 2x108 have been achieved in practice. The resulting narrow-linewidth resonances and an unexpected thermo-optic effect make it possible to detect single biomolecules using a label-free biosensor principle. Future generations of biosensors and labs-on-chip for point-of-care and high-troughput screening applications will require large numbers of parallel measurement channels, necessitating optical micro-resonators in array format produced very cost-effectively.
NASA Technical Reports Server (NTRS)
Kessler, W. J.; Allen, M. G.; Davis, S. J.
1993-01-01
Measurements of the collisional broadening and line shift of the (1,0) band of the A2Sigma(+)-X2Pi system of OH are reported in atmospheric pressure hydrogen-air combustion gases. The measurements were made using a single-mode, narrow linewidth, frequency-doubled ring dye laser operating near 283 nm. The OH was generated in the combustion gases of a flat flame H2-air burner. Collisional broadening parameters for equilibrium mixtures of H2, O2, H2O, and N2 were obtained spanning a range of fuel/air equivalence ratios from 0.6 to 1.6 and temperatures from 1500 to 2050 K. Measurements were obtained spanning rotational quantum numbers from 4.5 to 16.5. The collision induced frequency shift was determined to be 0.1 that of the collisional broadening.
Graphene Nanoribbons Fabricated by Helium Ion microscope
NASA Astrophysics Data System (ADS)
Pickard, D.; Oezyilmaz, B.; Thong, J.; Loh, K. P.; Viswanathan, V.; Zhongkai, A.; Mathew, S.; Kundu, T.; Park, C.; Yi, Z.; Xu, X.; Zhang, K.; Tat, T. C.; Wang, H.; Venkatesan, T.; Botton, G.; Couillard, M.
2010-03-01
Graphene, a monolayer graphitic lattice of carbon atoms has tremendous promise for a variety of applications on account of the zero mass of electrons, high mobility and the sensitivity of transport to perturbations at the interface. Patterning graphene is an obvious challenge and mesoscopic devices based on graphene require high spatial resolution patterning that will induce as little damage as possible. We use a helium ion microscope with its 0.4nm spot size beam to directly write patterns on free standing graphene films. TEM images of the patterns reveal holes as small as 4 nm and ribbons with line widths as narrow as 3 nm. The images show recovery of the graphene lattice at a distance of about a nm from the patterned edge. The linewidths of the ribbon can be varied considerably in a controllable fashion over ribbon lengths of the order of microns. . .
Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.
Xiao, Feng; Alameh, Kamal; Lee, Yong Tak
2009-12-07
A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.
Surface-emitting stimulated emission in high-quality ZnO thin films
NASA Astrophysics Data System (ADS)
Zhang, X. Q.; Suemune, Ikuo; Kumano, H.; Wang, J.; Huang, S. H.
2004-10-01
High-quality ZnO thin films were grown by plasma-enhanced molecular-beam epitaxy on sapphire substrates. Three excitonic transitions associated with the valence bands A, B, and C were clearly revealed in the reflectance spectrum measured at 33K. This result indicates that the ZnO thin films have the wurtzite crystalline structure. The emission spectra were measured with backscattering geometry at room temperature. When the excitation exceeded a certain value, linewidth narrowing, nonlinear rise of emission intensity, and the shortening of the carrier lifetime were clearly observed and these demonstrate the onset of stimulated emission. Together with the ZnO thickness dependence, we conclude that the observation of a stimulated emission in a direction perpendicular to the film surface is predominantly due to scattering of the in-plane stimulated emission by slightly remaining surface undulations in the ZnO films.
Thermal design and test results for SUNLITE ultra-stable reference cavity
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1991-01-01
SUNLITE (Stanford University-NASA Laser In-Space Technology Experiment) is a space-based experiment which uses a reference cavity to provide a stable frequency reference for a terahertz laser oscillator. Thermal stability of the cavity is a key factor in attaining a stable narrow-linewidth laser beam. The mount which is used to support and align the cavity will provide thermal isolation from the environment. The baseline requirement for thermal stability of the cavity is 0.025 C/min, but the design is directed toward achieving stability well beyond this requirement to improve the science data gained. A prototype of the cavity mount was fabricated and tested to characterize the thermal performance. The thermal vacuum test involved stable high-resolution temperature measurements and stable baseplate temperature control over long durations. Based on test data, the cavity mount design satisfies the severe requirement for the cavity thermal stability.
Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping
2012-06-04
A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.
Control of coherent information via on-chip photonic-phononic emitter-receivers.
Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2015-03-05
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.
2016-09-01
In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.
Normal Auger spectra of iodine in gas phase alkali iodide molecules
NASA Astrophysics Data System (ADS)
Hu, Zhengfa; Caló, Antonio; Kukk, Edwin; Aksela, Helena; Aksela, Seppo
2005-06-01
Molecular normal Auger electron spectra following the iodine 4d ionization in gas-phase alkali iodides were investigated both experimentally and theoretically. The Auger electron spectra for LiI, NaI and KI were recorded using electron impact, and for RbI by using photo-excitation. These Auger spectra were analyzed in detail and compared to the referenced normal Auger spectra of HI [L. Karlsson, S. Svensson, P. Baltzer, M. Carlsson-Göthe, M.P. Keane, A. Naves de Brito, N. Correia, B. Wannberg, J. Phys. B 22 (1989) 3001]. An energy shift toward higher kinetic energy and a narrowing in linewidth are observed in the Auger spectra series revealing the effect of the changing environment from covalently bonded HI to ionic alkali iodide compounds. The experimental results are also compared with the theoretical ab initio calculations and with the Auger spectra of I -, computed with the multiconfiguration Hartree-Fock (MCHF) method.
Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal
2015-02-01
Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.
NASA Astrophysics Data System (ADS)
Haffouz, Sofiane; Zeuner, Katharina D.; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D.; Zwiller, Valery; Williams, Robin L.
2018-05-01
We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in count rate by nearly two orders of magnitude (0.4kcps to 35kcps) is obtained for quantum dots emitting in the telecom O-band. Using emission-wavelength-optimised waveguides, we demonstrate bright, narrow linewidth emission from single InAsP quantum dots with an unprecedented tuning range from 880nm to 1550nm. These results pave the way towards efficient single photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.
Suppression of thermal frequency noise in erbium-doped fiber random lasers.
Saxena, Bhavaye; Bao, Xiaoyi; Chen, Liang
2014-02-15
Frequency and intensity noise are characterized for erbium-doped fiber (EDF) random lasers based on Rayleigh distributed feedback mechanism. We propose a theoretical model for the frequency noise of such random lasers using the property of random phase modulations from multiple scattering points in ultralong fibers. We find that the Rayleigh feedback suppresses the noise at higher frequencies by introducing a Lorentzian envelope over the thermal frequency noise of a long fiber cavity. The theoretical model and measured frequency noise agree quantitatively with two fitting parameters. The random laser exhibits a noise level of 6 Hz²/Hz at 2 kHz, which is lower than what is found in conventional narrow-linewidth EDF fiber lasers and nonplanar ring laser oscillators (NPROs) by a factor of 166 and 2, respectively. The frequency noise has a minimum value for an optimum length of the Rayleigh scattering fiber.
Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping
NASA Astrophysics Data System (ADS)
Xiao, Xusheng; Guo, Haitao; Yan, Zhijun; Wang, Hushan; Xu, Yantao; Lu, Min; Wang, Yishan; Peng, Bo
2017-02-01
An ultra-short wavelength operation of Tm-doped all fiber laser based on fiber Bragg gratings (FBGs) was developed. A bi-directional pump configuration for the ultra-short wavelength operation was designed and investigated for the first time. the laser yielded 3.15W of continuous-wave output at 1706.75nm with a narrow-linewidth of 50pm and a maximum slope efficiency of 42.1%. The dependencies of the slope efficiencies and pump threshold of the laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail. An experimental comparative study between two Thulium-doped fiber lasers (TDFLs) with two different pumping configuration(forward unidirectional pumping and bidirectional pumping) was presented. It is indisputable that the development of 1.7μm silicate fiber lasers with Watt-level output power open up a number of heart-stirring and tempting application windows.
Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output
NASA Astrophysics Data System (ADS)
Lu, Q. Y.; Manna, S.; Slivken, S.; Wu, D. H.; Razeghi, M.
2017-04-01
Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device's dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.
High-resolution two-photon spectroscopy of a 5 p56 p ←5 p6 transition of xenon
NASA Astrophysics Data System (ADS)
Altiere, Emily; Miller, Eric R.; Hayamizu, Tomohiro; Jones, David J.; Madison, Kirk W.; Momose, Takamasa
2018-01-01
We report high-resolution Doppler-free two-photon excitation spectroscopy of Xe from the ground state to the 5 p5(
United time-frequency spectroscopy for dynamics and global structure.
Marian, Adela; Stowe, Matthew C; Lawall, John R; Felinto, Daniel; Ye, Jun
2004-12-17
Ultrashort laser pulses have thus far been used in two distinct modes. In the time domain, the pulses have allowed probing and manipulation of dynamics on a subpicosecond time scale. More recently, phase stabilization has produced optical frequency combs with absolute frequency reference across a broad bandwidth. Here we combine these two applications in a spectroscopic study of rubidium atoms. A wide-bandwidth, phase-stabilized femtosecond laser is used to monitor the real-time dynamic evolution of population transfer. Coherent pulse accumulation and quantum interference effects are observed and well modeled by theory. At the same time, the narrow linewidth of individual comb lines permits a precise and efficient determination of the global energy-level structure, providing a direct connection among the optical, terahertz, and radio-frequency domains. The mechanical action of the optical frequency comb on the atomic sample is explored and controlled, leading to precision spectroscopy with an appreciable reduction in systematic errors.
200-W single frequency laser based on short active double clad tapered fiber
NASA Astrophysics Data System (ADS)
Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril
2018-02-01
High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
NASA Astrophysics Data System (ADS)
Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
NASA Astrophysics Data System (ADS)
Budiman, A. S.; Nix, W. D.; Tamura, N.; Valek, B. C.; Gadre, K.; Maiz, J.; Spolenak, R.; Patel, J. R.
2006-06-01
Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration.
Laser Velocimeter for Studies of Microgravity Combustion Flowfields
NASA Technical Reports Server (NTRS)
Varghese, P. L.; Jagodzinski, J.
2001-01-01
We are currently developing a velocimeter based on modulated filtered Rayleigh scattering (MFRS), utilizing diode lasers to make measurements in an unseeded gas or flame. MFRS is a novel variation of filtered Rayleigh scattering, utilizing modulation absorption spectroscopy to detect a strong absorption of a weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption and semiconductor diode lasers generate the relatively weak Rayleigh scattered signal. Alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry; the compact, rugged construction of diode lasers makes them ideally suited for microgravity experimentation. Molecular Rayleigh scattering of laser light simplifies flow measurements as it obviates the complications of flow-seeding. The MFRS velocimeter should offer an attractive alternative to comparable systems, providing a relatively inexpensive means of measuring velocity in unseeded flows and flames.
Radioluminescence and photoluminescence of Th:CaF2 crystals
Stellmer, Simon; Schreitl, Matthias; Schumm, Thorsten
2015-01-01
We study thorium-doped CaF2 crystals as a possible platform for optical spectroscopy of the 229Th nuclear isomer transition. We anticipate two major sources of background signal that might cover the nuclear spectroscopy signal: VUV-photoluminescence, caused by the probe light, and radioluminescence, caused by the radioactive decay of 229Th and its daughters. We find a rich photoluminescence spectrum at wavelengths above 260 nm, and radioluminescence emission above 220 nm. This is very promising, as fluorescence originating from the isomer transition, predicted at a wavelength shorter than 200 nm, could be filtered spectrally from the crystal luminescence. Furthermore, we investigate the temperature-dependent decay time of the luminescence, as well as thermoluminescence properties. Our findings allow for an immediate optimization of spectroscopy protocols for both the initial search for the nuclear transition using synchrotron radiation, as well as future optical clock operation with narrow-linewidth lasers. PMID:26502749
Testing ultrafast mode-locking at microhertz relative optical linewidth.
Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun
2009-01-19
We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, S.O.; Bhatia, A.K.
A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284 --500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t/sub i/j, related to ''taboo'' probabilities of Markov chain theory. The t/sub i/j are here evaluated for a real atomic system, being therefore of potentialmore » interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.« less
Frequency stabilized diode laser with variable linewidth at a wavelength of 404.7 nm.
Rein, Benjamin; Walther, Thomas
2017-04-15
We report on a frequency stabilized laser system with a variable linewidth at a wavelength of 404.7 nm used as an incoherent repump on the 6P30↔7S31 transition in mercury. By directly modulating the laser diode current with Gaussian white noise, the laser linewidth can be broadened up to 68 MHz. A Doppler-free dichroic atomic vapor laser lock spectroscopy provides an error signal suitable for frequency stabilization even for the broadened laser. Without the need of an acousto-optic modulator for the linewidth tuning or lock-in technique for frequency stabilization, this laser system provides an inexpensive approach for an incoherent and highly efficient repumper in atomic experiments.
NASA Astrophysics Data System (ADS)
Bancroft, G. M.; Nesbitt, H. W.; Ho, R.; Shaw, D. M.; Tse, J. S.; Biesinger, M. C.
2009-08-01
High resolution X-ray Photoelectron Spectroscopy (XPS) core-level Si2p and O1s spectra of the nonconductors α-SiO2 (quartz) at 120 and 300 K and vitreous SiO2 at 300 K were obtained with a Kratos Axis Ultra XPS instrument (instrumental resolution of <0.4eV ) which incorporates a unique charge compensation system that minimizes differential charge broadening on nonconductors. The Si2p and O1s linewidths at 300 K ( ˜1.1 and ˜1.2eV , respectively) are similar for all silicates (and similar to previous thin film SiO2 spectra obtained previously), showing that differential charging does not contribute significantly to our spectra. At 120 K, there is a small decrease (0.04 eV) in the Si2p linewidth of α-SiO2 , but no measurable decrease in O1s linewidth. The O1s lines are generally and distinctly asymmetric. We consider all possible sources of line broadening and show that final state vibrational broadening (FSVB) and phonon broadening are the major causes of the broad and asymmetric lines. Previous high resolution gas phase XPS studies have identified large FSVB contributions to the Si2p spectra of SiCl4 , SiF4 , and Si(OCH3)4 molecules, and this vibrational structure leads total Si2p3/2 linewidths of up to ˜0.5eV , even with individual peak linewidths of <0.1eV . The Si atom of Si(OCH3)4 is an excellent analog for Si in crystalline SiO2 because the Si-O bond lengths and symmetric stretch frequencies are similar in both compounds. Similar vibrational contributions to the Si2p and O1s spectra of solid silicates are anticipated if the Si2p and O1s core-hole states produce similar changes to the Si-O bond length in both phases. To investigate the possibility, Car-Parrinello molecular dynamics calculations were performed and show that changes to Si-O bond lengths between ion and ground states (Δr) for both Si2p and O1s hole states are similar for both crystalline SiO2 and gaseous Si(OCH3)4 . Δr are -0.04Å for Si2p and ˜+0.05Å for O1s in both compounds. Indeed, the vibrational envelope from the Si2p spectrum of Si(OCH3)4 , broadened to our instrumental linewidth of 0.4 eV, accounts for the majority (˜0.8eV) of the Si2p3/2 linewidth for crystalline SiO2 (˜1.1eV) with phonon broadening accounting for the remainder. The results provide excellent support for the tenet that final state vibrational splitting, as seen in the gas phase molecules, similarly affects the solid-state spectra. The calculations also indicate that the O1s linewidths should be larger than the Si2p linewidths, as observed in our spectra. FSVB should also lead to small peak asymmetries, as seen in the O1s spectra. The contribution of phonon broadening to the linewidth is also evaluated and shown to be comparable to the FSVB contribution at 120 and 300 K but considerably smaller at very low temperatures.
Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.
Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan
2012-07-30
We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.
Rotational dependence of the predissociation linewidths of the Schumann-Runge bands of O2
NASA Technical Reports Server (NTRS)
Cheung, A. S.-C.; Mok, D. K.-W.; Jamieson, M. J.; Finch, M.; Yoshino, K.; Dalgarno, A.; Parkinson, W. H.
1993-01-01
The rotational coupling constant for the O2 molecule is estimated theoretically, and the predissociation linewidths of the Schumann-Runge bands of vibration levels v = 0-12 are calculated for (O-16)2, (O-16)(O-18), and (O-18)2 molecules in the B 3Sigma-u(-) state. Calculations accounted for both the spin-orbit and rotational couplings with rotational quantum number N up to 20. The theoretical linewidths are compared with experimental widths, showing satisfactory agreement.
New NIST Photomask Linewidth Standard
NASA Astrophysics Data System (ADS)
Potzick, James E.; Pedulla, J. Marc; Stocker, Michael T.
2002-12-01
NIST is preparing to issue the next generation in its line of binary photomask linewidth standards. Called SRM 2059, it was developed for calibrating microscopes used to measure linewidths on photomasks, and consists of antireflecting chrome line and space patterns on a 6 inch quartz substrate ( 6 × 6 × 0.25 inches, or 15.2 × 15.2 × 0.635 cm). Certified line- and space-widths range from nominal 0.250 μm to 32 μm, and pitches from 0.5 μm to 250 μm, and are traceable to the definition of the meter. NIST's reference value, the definition of the meter, is well defined and unconditionally stable. Any replacement or duplicate NIST linewidth standard will be traceable to this same reference, and thus traceable to any other NIST length standard. Such measurement traceability can be achieved only by evaluating the measurement uncertainty (not just the repeatability) of each length comparison in the metrology chain between the definition of the meter and the NIST linewidth standard. This process results in a confidence interval about the calibration result that has a 95% probability of containing the true value. While the meter (and the μm) are well-defined, the geometrical width of a chrome line with nonrectangular cross section is not, and so the "true value" linewidth must be carefully defined to best meet users' needs. The paper and presentation will describe how these mask features are measured at NIST and how their measurement traceability is accomplished.
Measurements of CO2, CH4, H2O, and HDO over a 2-km Outdoor Path with Dual-Comb Spectroscopy
NASA Astrophysics Data System (ADS)
Rieker, G. B.; Giorgetta, F. R.; Coddington, I.; Swann, W. C.; Sinclair, L. C.; Cromer, C.; Baumann, E.; Newbury, N. R.; Kofler, J.; Petron, G.; Sweeney, C.; Tans, P. P.
2013-12-01
We demonstrate simultaneous sensing of CO2, CH4, H2O, and HDO over a 2-km outdoor open air path using dual-frequency-comb absorption spectroscopy (DCS). Our implementation of the DCS technique simultaneously offers broad spectral coverage (>8 THz, 267 cm-1) and fine spectral point spacing (100 MHz, 0.0033 cm-1) with a coherent eye-safe beam. The spectrometer, which is adapted from [Zolot et al., 2012], consists of two mutually coherent Erbium-doped fiber frequency-comb lasers which create a broad spectrum of perfectly spaced narrow linewidth frequency elements (';comb teeth') near 1.6 μm. The comb light is transmitted by a telescope and active steering mirrors from the roof of the NIST Boulder laboratory to a 50-cm flat mirror located 1 km away. The return light is received by a second telescope and carried via multimode fiber to a detector. The greenhouse gas absorption attenuates the teeth from the two combs that are coincident with the relevant molecular resonant frequencies. We purposefully offset the frequencies between the two frequency combs in a Vernier-like fashion so that each pair of comb teeth from the two combs results in a unique rf heterodyne beat frequency on the photodiode. The spectral spacing between subsequent comb teeth pairs is 100 MHz, far lower than the ~4 GHz linewidths of small molecule absorption features in the atmosphere. Because of the narrow comb linewidth, there is an essentially negligible instrument lineshape. The measured absorption spectrum can thus resolve neighboring absorption features of different species, and can be compared directly with HITRAN and recent greenhouse gas absorption models developed for satellite- and ground-based carbon observatories to determine the path-integrated concentrations of the absorbing species. Measurements covering the complete 30013←00001 absorption band of CO2 and absorption features of CH4, H2O and HDO between 1.6-1.67 μm were performed under a variety of atmospheric conditions. During windy conditions when the atmosphere is well-mixed and species concentrations are stable, long-time-average data (240 min) are used to achieve high signal-to-noise ratio for careful comparisons of different spectral absorption models to the measured spectrum. Shorter five minute time resolution spectra are used to track fluctuations in atmospheric greenhouse gas concentrations over diurnal cycles and different weather conditions, and compared with simultaneous point-sampled measurements using a commercial cavity ringdown-based gas sensor. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury (2012), Direct-Comb Molecular Spectroscopy with Accurate, Resolved Comb Teeth over 43 THz, Opt. Lett., 37(4), 638-640. a) Transmitted intensity spectrum over the 2-km outdoor path showing the spectral intensity variations of the combs and fine structure from gas absorption. b) Background-corrected absorbance of CO2 (blue) fitted with a Hitran model (red). The CO2 concentration measured from the fit is 408 ppm.
Can we improve C IV-based single epoch black hole mass estimations?
NASA Astrophysics Data System (ADS)
Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.
2018-05-01
In large optical surveys at high redshifts (z > 2), the C IV broad emission line is the most practical alternative to estimate the mass (MBH) of active super-massive black holes (SMBHs). However, mass determinations obtained with this line are known to be highly uncertain. In this work we use the Sloan Digital Sky Survey Data Release 7 and 12 quasar catalogues to statistically test three alternative methods put forward in the literature to improve C IV-based MBH estimations. These methods are constructed from correlations between the ratio of the C IV line-width to the low ionization line-widths (Hα, Hβ and Mg II) and several other properties of rest-frame UV emission lines. Our analysis suggests that these correction methods are of limited applicability, mostly because all of them depend on correlations that are driven by the linewidth of the C IV profile itself and not by an interconnection between the linewidth of the C IV line with the linewidth of the low ionization lines. Our results show that optical C IV-based mass estimates at high redshift cannot be a proper replacement for estimates based on IR spectroscopy of low ionization lines like Hα, Hβ and Mg II.
NASA Astrophysics Data System (ADS)
Lai, Zhengxun; Li, Zirun; Liu, Xiang; Bai, Lihui; Tian, Yufeng; Mi, Wenbo
2018-06-01
The microstructure and high frequency properties of facing-target sputtered epitaxial γ‧-Fe4N films were investigated in detail. It was found that the eddy current in ultrathin γ‧-Fe4N films is too small to influence the ferromagnetic resonance (FMR) linewidth, where the linewidth is mostly determined by intrinsic damping and the two-magnon scattering (TMS) process. In relatively thick films, the TMS process can significantly affect the linewidth due to the roughness on the sample surface. However, the TMS process in a thin film is quite weak because of its smooth surface. The Gilbert damping constant of about 0.0135 in our γ‧-Fe4N films is smaller than the experimental value in the previous work. Moreover, substrates can also influence the FMR linewidth of the γ‧-Fe4N films by the TMS process. Besides, the resonance field of polycrystalline γ‧-Fe4N film is larger than the epitaxial ones because of the lack of a magnetic anisotropic field, but the linewidth of the polycrystalline γ‧-Fe4N film is smaller.
NASA Technical Reports Server (NTRS)
Byer, R. L.
1990-01-01
Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.
High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.
Baskakov, O I; Civis, S; Kawaguchi, K
2005-03-15
In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.
A quasioptical resonant-tunneling-diode oscillator operating above 200 GHz
NASA Technical Reports Server (NTRS)
Brown, E. R.; Parker, C. D.; Molvar, K. M.; Calawa, A. R.; Manfra, M. J.
1992-01-01
We have fabricated and characterized a quasioptically stabilized resonant-tunneling-diode (RTD) oscillator having attractive performance characteristics for application as a radiometric local oscillator. The fundamental frequency of the oscillator is tunable from about 200 to 215 GHz, the instantaneous linewidth is between 10 and 20 kHz, and the output power across the tuning band is about 50 micro-W. The narrow linewidth and fine tuning of the frequency are made possible by a scanning semiconfocal open cavity which acts as the high-Q resonator for the oscillator. The cavity is compact, portable, and insensitive to vibration and temperature variation. The total dc power consumption (RTD plus bias supply) is only 10 mW. The present oscillator provides the highest power obtained to date from an RTD above 200 GHz. We attribute this partly to the use of the quasioptical resonator, but primarily to the quality of the RTD. It is fabricated from the In(0.53)Ga(0.47)As/AlAs materials system, which historically has yielded the best overall resonant-tunneling characteristics of any material system. The RTD active area is 4 sq microns, and the room-temperature peak current density and peak-to-valley current ratio are 2.5x10(exp 5) A cm(exp -2) and 9, respectively. The RTD is mounted in a WR-3 standard-height rectangular waveguide and is contacted across the waveguide by a fine wire that protrudes through a via hole in a Si3N4 'honeycomb' overlayer. We estimate that the theoretical maximum frequency of oscillation of this RTD is approximately 1.1 THz, and that scaled-down versions of the same quasioptical oscillator design should operate in a fundamental mode up to frequencies of at least 500 GHz.
Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator
NASA Astrophysics Data System (ADS)
Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.
2014-02-01
We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.
Hakobyan, Sargis; Wittwer, Valentin J; Brochard, Pierre; Gürel, Kutan; Schilt, Stéphane; Mayer, Aline S; Keller, Ursula; Südmeyer, Thomas
2017-08-21
We demonstrate the first self-referenced full stabilization of a diode-pumped solid-state laser (DPSSL) frequency comb with a GHz repetition rate. The Yb:CALGO DPSSL delivers an average output power of up to 2.1 W with a typical pulse duration of 96 fs and a center wavelength of 1055 nm. A carrier-envelope offset (CEO) beat with a signal-to-noise ratio of 40 dB (in 10-kHz resolution bandwidth) is detected after supercontinuum generation and f-to-2f interferometry directly from the output of the oscillator, without any external amplification or pulse compression. The repetition rate is stabilized to a reference synthesizer with a residual integrated timing jitter of 249 fs [10 Hz - 1 MHz] and a relative frequency stability of 10 -12 /s. The CEO frequency is phase-locked to an external reference via pump current feedback using home-built modulation electronics. It achieves a loop bandwidth of ~150 kHz, which results in a tight CEO lock with a residual integrated phase noise of 680 mrad [1 Hz - 1 MHz]. We present a detailed characterization of the GHz frequency comb that combines a noise analysis of the repetition rate f rep , of the CEO frequency f CEO , and of an optical comb line at 1030 nm obtained from a virtual beat with a narrow-linewidth laser at 1557 nm using a transfer oscillator. An optical comb linewidth of about 800 kHz is assessed at 1-s observation time, for which the dominant noise sources of f rep and f CEO are identified.
NMR studies of non-Fermi-liquid behavior in disordered Kondo systems
NASA Astrophysics Data System (ADS)
Liu, Chia-Ying
A number of heavy-fermion alloys have been discovered to have non-Fermi-liquid (NFL) properties in contrast to the Fermi-liquid behavior expected for normal metals. Since nuclear magnetic resonance (NMR) studies in the heavy-fermion UCusb{5-x}Pdsb{x} by our group, the "Kondo disorder" model has been recognized as one of the possible origins of NFL behavior. This dissertation describes the use of NMR to study NFL behavior in the two heavy-fermion systems Ce(Rusb{1-x}Rhsb{x})sb2Sisb2 (x = 0.5) and Usb{1-x}Thsb{x}Pdsb2Alsb3\\ (x > 0.6). The cerium compound is disordered on non-f atoms (ligand disordered), whereas the uranium system is disordered on the f sublattice. Both exhibit complex phase diagrams and NFL behavior. sp{29}Si powder-pattern NMR spectra from a randomly-oriented powder sample of CeRhRuSisb2 show broad linewidths at low temperature, consistent with disorder-induced NFL behavior. The spectra from a field-aligned sample further confirm that these broad linewidths are due to distributions of local susceptibilities. The NMR widths are in good agreement with the distribution P(Tsb{K}) of Kondo temperatures Tsb{K} derived from the previous analysis of Graf et al., Phys. Rev. Lett. 78, 3769 (1997), including a "hole" in P(Tsb{K}) for small Tsb{K}\\ lbrack P(Tsb{K} = 0) = 0rbrack which describes the return to Fermi-liquid behavior below 1 K observed in the specific heat. The Kondo disorder model successfully explains the NMR linewidth and the NFL behavior in CeRhRuSisb2 either with or without consideration of RKKY interaction between Ce moments. In Usb{1-x}Thsb{x}Pdsb2Alsb3 (x = 0.7, 0.8, 0.9) the sp{27}Al NMR spectra in unaligned powders were initially thought to indicate a metallugical problem, namely, the existence of a second phase. After careful comparison of the behavior of Knight shifts in different concentrations, those extra lines were recognized as impurity satellites instead of coming from a second phase. These impurity satellites are due to specific U near-neighbor configurations to Al sites and appear clearly in the field-aligned spectra. The intensities of the impurity satellites are proportional to the probabilities of finding occupied U sites in specific near-neighbor shells around an Al site. Comparison of the calculated and observed satellite intensities allows us to reconstruct the spectra taken from field-aligned powders with the c axis both perpendicular and parallel to the external field. The narrow linewidths observed at low temperatures suggests that "Kondo disorder" is not the cause of NFL behavior in these alloys. Several theoretical models have been proposed to explain the source of the NFL behavior in Usb{1-x}Thsb{x}Pdsb2Alsb3.
Guided-mode resonant filters and reflectors: Principles, design, and fabrication
NASA Astrophysics Data System (ADS)
Niraula, Manoj
In this dissertation, we overview the operational principles of these resonant periodic structures, discuss the methods of their design and fabrication, and propose and demonstrate novel functionalities for spatial and spectral filtering, and unpolarized wideband reflection. Fashioned with materially sparse gratings, these optical devices are easy to fabricate and integration friendly compared to their traditional multi-layer counterparts making their research and development critical for practical applications. We study, theoretically, modal properties and parametric dependence of resonant periodic bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. We provide the first experimental demonstration of high-efficiency and narrow-linewidth resonant bandpass filter applying a single patterned silicon layer on a quartz substrate. Its performance corresponds to bandpass filters requiring 15 traditional Si/SiO2 thin-film layers. The feasibility of sparse narrowband, high-efficiency bandpass filters with extremely wide, flat, and low sidebands is thereby demonstrated. The proposed technology is integration-friendly and opens doors for further development in various disciplines and spectral regions where thin-film solutions are traditionally applied. We demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of resonant periodic devices. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both angular and spectral domains and realized with carefully crafted nanogratings operating in the non-subwavelength regime. We study the pathway and inter-modal interference effects inducing this intriguing reflection state. In a proof-of-concept experiment, we obtain angular and spectral bandwidths of 4 mrad and 1 nm, respectively. This filter concept can be used for focus-free spectral and spatial filtering in compact holographic and interferometric optical instruments. We report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with inverse numerical methods, our elemental gratings consist of a partially etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band possessing bandwidth exceeding those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500-nm-wide wavelength band in the near-infrared domain. Moreover, the resonant unpolarized broadband accommodates an ultra-high-reflection band spanning 85 nm and exceeding 99.9% in efficiency. The elemental polarization-sensitive reflectors based on one-dimensional resonant gratings have simple design, robust performance, and are straightforward to fabricate. Hence, this technology is a promising alternative to traditional multilayer thin-film reflectors especially at longer wavelengths of light where multilayer deposition may be infeasible or impractical. We demonstrate an interesting attribute of resonant bandpass filters which is high angular stability for fully conical light incidence. Fashioning an experimental bandpass filter with a subwavelength silicon grating on a quartz substrate, we show that fully conical incidence provides an angular full-width at half-maximum linewidth of 9.5° compared to a linewidth of 0.1° for classical incidence. Slow angular variation of the central wavelength with full conical incidence arises via a corresponding slow angular variation of the resonant second diffraction orders driving the pertinent leaky modes. Moreover, full conical incidence maintains a profile with a single passband as opposed to the formation of two passbands characteristic of resonant subwavelength gratings under classical incidence. Our experimental results demonstrate excellent stability in angle, spectral profile, linewidth, and efficiency. Finally, we propose a novel method of design and fabrication of photonic lattices that incorporates the best of both worlds: a polarized resonant grating can be designed and converted to its unpolarized lattice equivalent using the same design parameters to obtain a similar performance. We show this in context of a single-layer polarized bandpass filter operating at 1550 nm with 100% transmission efficiency. An unpolarized square-hole lattice with identical parameters operates as a bandpass filter at 1560 nm with 70% transmission efficiency. Moreover, conventional laser interference lithography technique for mask patterning is limited to circular-hole photoresist lattice. We propose a method to lay down a metal hard-mask by lifting-off patterned photoresist in two steps for a square-hole lattice. Our comprehensive study provides new principles for easy design and fabrication of square-hole photonic lattices for unpolarized guided-mode resonance applications. (Abstract shortened by ProQuest.).
The first CO+ image: I. Probing the HI/H2 layer around the ultracompact HII region Mon R2
Treviño-Morales, S. P.; Fuente, A.; Sánchez-Monge, Á.; Pilleri, P.; Goicoechea, J. R.; Ossenkopf-Okada, V.; Roueff, E.; Rizzo, J. R.; Gerin, M.; Berné, O.; Cernicharo, J.; Gónzalez-García, M.; Kramer, C.; García-Burillo, S.; Pety, J.
2016-01-01
The CO+ reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO+ rotational emission toward the Mon R2 star-forming region. The CO+ emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region. We compare the CO+ distribution with other species present in photon-dominated regions (PDR), such as [CII] 158 µm, H2 S(3) rotational line at 9.3 µm, polycyclic aromatic hydrocarbons (PAHs) and HCO+. We find that the CO+ emission is spatially coincident with the PAHs and [CII] emission. This confirms that the CO+ emission arises from a narrow dense layer of the HI/H2 interface. We have determined the CO+ fractional abundance, relative to C+ toward three positions. The abundances range from 0.1 to 1.9 ×10−10 and are in good agreement with previous chemical model, which predicts that the production of CO+ in PDRs only occurs in dense regions with high UV fields. The CO+ linewidth is larger than those found in molecular gas tracers, and their central velocity are blue-shifted with respect to the molecular gas velocity. We interpret this as a hint that the CO+ is probing photo-evaporating clump surfaces. PMID:27721515
General Linewidth Formula for Steady-State Multimode Lasing in Arbitrary Cavities
NASA Astrophysics Data System (ADS)
Chong, Y. D.; Stone, A. Douglas
2012-08-01
A formula for the laser linewidth of arbitrary cavities in the multimode nonlinear regime is derived from a scattering analysis of the solutions to semiclassical laser theory. The theory generalizes previous treatments of the effects of gain and openness described by the Petermann factor. The linewidth is expressed using quantities based on the nonlinear scattering matrix, which can be computed from steady-state ab initio laser theory; unlike previous treatments, no passive cavity or phenomenological parameters are involved. We find that low cavity quality factor, combined with significant dielectric dispersion, can cause substantial deviations from the Shawlow-Townes-Petermann theory.
Mechanism of asymmetric lineshape broadening in GaAs1-xNx Raman spectra
NASA Astrophysics Data System (ADS)
Mialitsin, Aleksej; Fluegel, Brian; Ptak, Aaron; Mascarenhas, Angelo
2012-07-01
Resonance Raman spectroscopy is used to probe the asymmetric broadening of the LO phonon linewidth in a dilute GaAs1-xNx alloy (x=0.41%). Electronic Raman scattering from a broad continuum is observed that gets enhanced concurrently with the LO phonon linewidth under resonance. The Fano interaction between the LO phonon and the electronic continuum is used to develop a model that satisfactorily explains the origin of the asymmetric LO phonon linewidth broadening in this abnormal alloy as arising due to coupling between the discrete and the continuum configurations.
NASA Astrophysics Data System (ADS)
Marchetti, Paul S.; Bhattacharyya, Lokesh; Ellis, Paul D.; Brewer, C. Fred
Solid-state 113Cd NMR spectroscopy of static powder samples of 113Cd-substituted metalloproteins, parvalbumin, concanavalin A, and pea and lentil lectins, was carried out. Cross polarization followed by application of a train of uniformly spaced π pulses was employed to investigate the origin of residual cadmium NMR linewidths observed previously in these proteins. Fourier transformation of the resulting spin-echo train yielded spectra consisting of uniformly spaced lines having linewidths of the order of 1-2 ppm. The observed linewidths were not influenced by temperature as low as -50°C or by extent of protein hydration. Since the echo-train pulse sequence is able to eliminate inhomogeneous but not homogeneous contributions to the linewidths, there is a predominant inhomogeneous contribution to cadmium linewidths in the protein CP/MAS spectra. However, significant changes in spectral intensities were observed with change in temperature and extent of protein hydration. These intensity changes are attributed for parvalbumin and concanavalin A to changes in cross-polarization efficiency with temperature and hydration. For pea and lentil lectins, this effect is attributed to the elimination of static disorder at the pea and lentil S2 metal-ion sites due to sugar binding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romera, M.; Monteblanco, E.; Garcia-Sanchez, F.
The influence of dynamic coupling in between magnetic layers of a standard spin torque nano-oscillator composed of a synthetic antiferromagnet (SyF) as a polarizer and an in-plane magnetized free layer has been investigated. Experiments on spin valve nanopillars reveal non-continuous features such as kinks in the frequency field dependence that cannot be explained without such interactions. Comparison of experiments to numerical macrospin simulations shows that this is due to non-linear interaction between the spin torque (STT) driven mode and a damped mode that is mediated via the third harmonics of the STT mode. It only occurs at large applied currentsmore » and thus at large excitation amplitudes of the STT mode. Under these conditions, a hybridized mode characterized by a strong reduction of the linewidth appears. The reduced linewidth can be explained by a reduction of the non-linear contribution to the linewidth via an enhanced effective damping. Interestingly, the effect depends also on the exchange interaction within the SyF. An enhancement of the current range of reduced linewidth by a factor of two and a reduction of the minimum linewidth by a factor of two are predicted from simulation when the exchange interaction strength is reduced by 30%. These results open directions to optimize the design and microwave performances of spin torque nano-oscillators taking advantage of the coupling mechanisms.« less
NASA Astrophysics Data System (ADS)
Hacar, A.; Alves, J.; Burkert, A.; Goldsmith, P.
2016-06-01
Context. Since their first detection in the interestellar medium, (sub-)millimeter line observations of different CO isotopic variants have routinely been employed to characterize the kinematic properties of the gas in molecular clouds. Many of these lines exhibit broad linewidths that greatly exceed the thermal broadening expected for the low temperatures found within these objects. These observed suprathermal CO linewidths are assumed to originate from unresolved supersonic motions inside clouds. Aims: The lowest rotational J transitions of some of the most abundant CO isotopologues, 12CO and 13CO, are found to present large optical depths. In addition to well-known line saturation effects, these large opacities present a non-negligible contribution to their observed linewidths. Typically overlooked in the literature, in this paper we aim to quantify the impact of these opacity broadening effects on the current interpretation of the CO suprathermal line profiles. Methods: Combining large-scale observations and LTE modeling of the ground J = 1-0 transitions of the main 12CO, 13CO, C18O isotopologues, we have investigated the correlation of the observed linewidths as a function of the line opacity in different regions of the Taurus molecular cloud. Results: Without any additional contributions to the gas velocity field, a large fraction of the apparently supersonic (ℳ ~ 2-3) linewidths measured in both 12CO and 13CO (J = 1-0) lines can be explained by the saturation of their corresponding sonic-like, optically thin C18O counterparts assuming standard isotopic fractionation. Combined with the presence of multiple components detected in some of our C18O spectra, these opacity effects also seem to be responsible for most of the highly supersonic linewidths (ℳ > 8-10) detected in some of the broadest 12CO and 13CO spectra in Taurus. Conclusions: Our results demonstrate that most of the suprathermal 12CO and 13CO linewidths reported in nearby clouds like Taurus could be primarily created by a combination of opacity broadening effects and multiple gas velocity components blended in these saturated emission lines. Once corrected by their corresponding optical depth, each of these gas components present transonic intrinsic linewidths consistently traced by the three isotopologues, 12CO, 13CO, and C18O, with differences within a factor of 2. Highly correlated and velocity-coherent at large scales, the largest and highly supersonic velocity differences inside clouds are generated by the relative motions between individual gas components. In contrast to the classical interpretation within the framework of microscopic turbulence, this highly discretized structure of the molecular gas traced in CO suggest that the gas dynamics inside molecular clouds could be better described by the properties of a fully resolved macroscopic turbulence.
Optical Rotation Curves and Linewidths for Tully-Fisher Applications
NASA Astrophysics Data System (ADS)
Courteau, Stephane
1997-12-01
We present optical long-slit rotation curves for 304 northern Sb-Sc UGC galaxies from a sample designed for Tully-Fisher (TF) applications. Matching r-band photometry exists for each galaxy. We describe the procedures of rotation curve (RC) extraction and construction of optical profiles analogous to 21 cm integrated linewidths. More than 20% of the galaxies were observed twice or more, allowing for a proper determination of systematic errors. Various measures of maximum rotational velocity to be used as input in the TF relation are tested on the basis of their repeatability, minimization of TF scatter, and match with 21 cm linewidths. The best measure of TF velocity, V2.2 is given at the location of peak rotational velocity of a pure exponential disk. An alternative measure to V2.2 which makes no assumption about the luminosity profile or shape of the rotation curve is Vhist, the 20% width of the velocity histogram, though the match with 21 cm linewidths is not as good. We show that optical TF calibrations yield internal scatter comparable to, if not smaller than, the best calibrations based on single-dish 21 cm radio linewidths. Even though resolved H I RCs are more extended than their optical counterpart, a tight match between optical and radio linewidths exists since the bulk of the H I surface density is enclosed within the optical radius. We model the 304 RCs presented here plus a sample of 958 curves from Mathewson et al. (1992, APJS, 81, 413) with various fitting functions. An arctan function provides an adequate simple fit (not accounting for non-circular motions and spiral arms). More elaborate, empirical models may yield a better match at the expense of strong covariances. We caution against physical or "universal" parametrizations for TF applications.
Self-injection locked blue laser
NASA Astrophysics Data System (ADS)
Donvalkar, Prathamesh S.; Savchenkov, Anatoliy; Matsko, Andrey
2018-04-01
We demonstrate a 446.5 nm GaN semiconductor laser with sub-MHz linewidth. The linewidth reduction is achieved by locking the laser to a magnesium fluoride whispering gallery mode resonator characterized with 109 quality factor. Self-injection locking ensures single longitudinal mode operation of the laser.
Jiang, Ting; Chen, Yu; Mao, Lu; Marshall, Alan G; Xu, Wei
2016-01-14
It is known that the ion collision cross section (CCS) may be calculated from the linewidth of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the energetic ion-neutral collision model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with ion mobility measurements, and the unfolding of protein ions (ubiquitin) at higher charge states is also observed.
NASA Technical Reports Server (NTRS)
Prakash, S. G.; Park, C.
1978-01-01
Emission spectroscopy of shock-heated atomic silicon was performed in the spectral range 180 to 300 nm, in an environment simulating the ablation layer expected around a Jovian entry probe with a silica heat shield. From the spectra obtained at temperatures from 6000 to 10,000 K and electron number densities from 1 quadrillion to 100 quadrillion per cu cm, the Lorentzian line-widths were determined. The results showed that silicon lines are broadened significantly by both electrons (Stark broadening) and hydrogen atoms (Van der Waals broadening), and the combined line-widths are much larger than previously assumed. From the data, the Stark and the Van der Waals line-widths were determined for 34 silicon lines. Radiative transport through a typical shock layer was computed using the new line-width data. The computations showed that silicon emission in the hot region is large, but it is mostly absorbed in the colder region adjacent to the wall.
NASA Astrophysics Data System (ADS)
Phuoc, Nguyen N.; Ong, C. K.
2016-10-01
We report our detailed investigation of the electrical tuning of the ferromagnetic resonance frequency and frequency linewidth in multiferroic heterostructures consisting of FeCo thin films grown onto [Pb(Mg1/3Nb2/3) O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates with NiFe underlayers. Our study shows that the electrical tuning range of both ferromagnetic resonance frequency and frequency linewidth in this FeCo/PMN-PT heterostructure can be very large. Specifically, the resonance frequency can be tuned from 1.8 GHz to 10.3 GHz, and the frequency linewidth can be changed from 1.6 GHz to 7.3 GHz. The electrical tuning of these microwave properties is discussed in conjunction with the result from the static magnetic characterization and is explained based on the strain-driven magnetoelectric heterostructured effect.
Serum N-propeptide of collagen IIA (PIIANP) as a marker of radiographic osteoarthritis burden.
Daghestani, Hikmat N; Jordan, Joanne M; Renner, Jordan B; Doherty, Michael; Wilson, A Gerry; Kraus, Virginia B
2017-01-01
Cartilage homeostasis relies on a balance of catabolism and anabolism of cartilage matrix. Our goal was to evaluate the burden of radiographic osteoarthritis and serum levels of type IIA procollagen amino terminal propeptide (sPIIANP), a biomarker representing type II collagen synthesis, in osteoarthritis. OA burden was quantified on the basis of radiographic features as total joint faces with an osteophyte, joint space narrowing, or in the spine, disc space narrowing. sPIIANP was measured in 1,235 participants from the Genetics of Generalized Osteoarthritis study using a competitive enzyme-linked immunosorbent assay. Separate multivariable linear regression models, adjusted for age, sex, and body mass index and additionally for ipsilateral osteophytes or joint/disc space narrowing, were used to assess the independent association of sPIIANP with osteophytes and with joint/disc space narrowing burden in knees, hips, hands and spine, individually and together. After full adjustment, sPIIANP was significantly associated with a lesser burden of hip joint space narrowing and knee osteophytes. sPIIANP was associated with a lesser burden of hand joint space narrowing but a greater burden of hand osteophytes; these results were only evident upon adjustment for osteoarthritic features in all other joints. There were no associations of sPIIANP and features of spine osteoarthritis. Higher cartilage collagen synthesis, as reflected in systemic PIIANP concentrations, was associated with lesser burden of osteoarthritic features in lower extremity joints (knees and hips), even accounting for osteoarthritis burden in hands and spine, age, sex and body mass index. These results suggest that pro-anabolic agents may be appropriate for early treatment to prevent severe lower extremity large joint osteoarthritis.
Miller, Joseph D; Slipchenko, Mikhail N; Meyer, Terrence R
2011-07-04
Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model.
Technology Development of Miniaturized Far-Infrared Sources for Biomolecular Spectroscopy
NASA Technical Reports Server (NTRS)
Kono, Junichiro
2003-01-01
The objective of this project was to develop a purely solid-state based, thus miniaturized, far-infrared (FIR) (also known as terahertz (THz)) wave source using III-V semiconductor nanostructures for biomolecular detection and sensing. Many biomolecules, such as DNA and proteins, have distinct spectroscopic features in the FIR wavelength range as a result of vibration-rotation-tunneling motions and various inter- and intra-molecule collective motions. Spectroscopic characterization of such molecules requires narrow linewidth, sufficiently high power, tunable (in wavelength), and coherent FIR sources. Unfortunately, the FIR frequency is one of the least technologically developed ranges in the electromagnetic spectrum. Currently available FIR sources based on non-solid state technology are bulky, inefficient, and very often incoherent. In this project we investigated antimonide based compound semiconductor (ABCS) nanostructures as the active medium to generate FIR radiation. The final goal of this project was to demonstrate a semiconductor THz source integrated with a pumping diode laser module to achieve a compact system for biomolecular applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yue; Ahmadi, Ehsaneh D.; Shayan, Kamran
Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic applications and devices but are also known to suffer from low optical quantum yields. Here we demonstrate SWCNT excitons coupled to plasmonic nanocavity arrays reaching deeply into the Purcell regime with Purcell factors (F P) up to F P = 180 (average F P = 57), Purcell-enhanced quantum yields of 62% (average 42%), and a photon emission rate of 15 MHz into the first lens. The cavity coupling is quasi-deterministic since the photophysical properties of every SWCNT are enhanced by at least one order of magnitude. Furthermore,more » the measured ultra-narrow exciton linewidth (18 ueV) reaches the radiative lifetime limit, which is promising towards generation of transform-limited single photons. Furthermore, to demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat at cryogenic temperatures in a unique interplay of excitons, phonons, and plasmons at the nanoscale.« less
Lin, Gong-Ru; Pan, Ci-Ling; Yu, Kun-Chieh
2007-10-01
By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulse-width broadening by 1 ps.
Control of coherent information via on-chip photonic–phononic emitter–receivers
Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...
2015-03-05
We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less
Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M
2017-06-23
We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.
Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF
NASA Astrophysics Data System (ADS)
Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.
Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.
Laser-based measurements of OH in high pressure CH4/air flames
NASA Technical Reports Server (NTRS)
Battles, B. E.; Hanson, R. K.
1991-01-01
Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.
NASA Astrophysics Data System (ADS)
Holá, Miroslava; Lazar, Josef; Čížek, Martin; Hucl, Václav; Řeřucha, Šimon; Číp, Ondřej
2016-11-01
We report on a design of an interferometric position measuring system for control of a sample stage in an e-beam writer with reproducibility of the position on nanometer level and resolution below nanometer. We introduced differential configuration of the interferometer where the position is measured with respect to a central reference point to eliminate deformations caused by thermal and pressure effects on the vacuum chamber. The reference is here the electron gun of the writer. The interferometer is designed to operate at infrared, telecommunication wavelength due to the risk of interference of stray light with sensitive photodetectors in the chamber. The laser source is here a narrow-linewidth DFB laser diode with electronics of our own design offering precision and stability of temperature and current, low-noise, protection from rf interference, and high-frequency modulation. Detection of the interferometric signal relies on a novel derivative technique utilizing hf frequency modulation and phase-sensitive detection.
Active tuning of surface phonon polariton resonances via carrier photoinjection
NASA Astrophysics Data System (ADS)
Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.
2018-01-01
Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (<50 ps) recovery of the resonance in 4H-SiC. This work demonstrates the potential for this method and opens a path towards actively tuned nanophotonic devices, such as modulators and beacons, in the infrared, and identifies important implications of coupling between electronic and phononic excitations.
Morales-Vidal, Marta; Boj, Pedro G.; Villalvilla, José M.; Quintana, José A.; Yan, Qifan; Lin, Nai-Ti; Zhu, Xiaozhang; Ruangsupapichat, Nopporn; Casado, Juan; Tsuji, Hayato; Nakamura, Eiichi; Díaz-García, María A.
2015-01-01
Thin film organic lasers represent a new generation of inexpensive, mechanically flexible devices for spectroscopy, optical communications and sensing. For this purpose, it is desired to develop highly efficient, stable, wavelength-tunable and solution-processable organic laser materials. Here we report that carbon-bridged oligo(p-phenylenevinylene)s serve as optimal materials combining all these properties simultaneously at the level required for applications by demonstrating amplified spontaneous emission and distributed feedback laser devices. A series of six compounds, with the repeating unit from 1 to 6, doped into polystyrene films undergo amplified spontaneous emission from 385 to 585 nm with remarkably low threshold and high net gain coefficients, as well as high photostability. The fabricated lasers show narrow linewidth (<0.13 nm) single mode emission at very low thresholds (0.7 kW cm−2), long operational lifetimes (>105 pump pulses for oligomers with three to six repeating units) and wavelength tunability across the visible spectrum (408–591 nm). PMID:26416643
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
High resolution strain sensor for earthquake precursor observation and earthquake monitoring
NASA Astrophysics Data System (ADS)
Zhang, Wentao; Huang, Wenzhu; Li, Li; Liu, Wenyi; Li, Fang
2016-05-01
We propose a high-resolution static-strain sensor based on a FBG Fabry-Perot interferometer (FBG-FP) and a wavelet domain cross-correlation algorithm. This sensor is used for crust deformation measurement, which plays an important role in earthquake precursor observation. The Pound-Drever-Hall (PDH) technique based on a narrow-linewidth tunable fiber laser is used to interrogate the FBG-FPs. A demodulation algorithm based on wavelet domain cross-correlation is used to calculate the wavelength difference. The FBG-FP sensor head is fixed on the two steel alloy rods which are installed in the bedrock. The reference FBG-FP is placed in a strain-free state closely to compensate the environment temperature fluctuation. A static-strain resolution of 1.6 n(epsilon) can be achieved. As a result, clear solid tide signals and seismic signals can be recorded, which suggests that the proposed strain sensor can be applied to earthquake precursor observation and earthquake monitoring.
Control of coherent information via on-chip photonic–phononic emitter–receivers
Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.
2015-01-01
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405
On the impact of indium distribution on the electronic properties in InGaN nanodisks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benaissa, M., E-mail: benaissa.um5@gmail.com, E-mail: benaissa@fsr.ac.ma; Sigle, W.; Aken, P. A. van
2015-03-09
We analyze an epitaxially grown heterostructure composed of InGaN nanodisks inserted in GaN nanowires in order to relate indium concentration to the electronic properties. This study was achieved with spatially resolved low-loss electron energy-loss spectroscopy using monochromated electrons to probe optical excitations—plasmons—at nanometer scale. Our findings show that each nanowire has its own indium fluctuation and therefore its own average composition. Due to this indium distribution, a scatter is obtained in plasmon energies, and therefore in the optical dielectric function, of the nanowire ensemble. We suppose that these inhomogeneous electronic properties significantly alter band-to-band transitions and consequently induce emission broadening.more » In addition, the observation of tailing indium composition into the GaN barrier suggests a graded well-barrier interface leading to further inhomogeneous broadening of the electro-optical properties. An improvement in the indium incorporation during growth is therefore needed to narrow the emission linewidth of the presently studied heterostructures.« less
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
External cavity tunable quantum cascade lasers and their applications to trace gas monitoring.
Rao, Gottipaty N; Karpf, Andreas
2011-02-01
Since the first quantum cascade laser (QCL) was demonstrated approximately 16 years ago, we have witnessed an explosion of interesting developments in QCL technology and QCL-based trace gas sensors. QCLs operate in the mid-IR region (3-24 μm) and can directly access the rotational vibrational bands of most molecular species and, therefore, are ideally suited for trace gas detection with high specificity and sensitivity. These sensors have applications in a wide range of fields, including environmental monitoring, atmospheric chemistry, medical diagnostics, homeland security, detection of explosive compounds, and industrial process control, to name a few. Tunable external cavity (EC)-QCLs in particular offer narrow linewidths, wide ranges of tunability, and stable power outputs, which open up new possibilities for sensor development. These features allow for the simultaneous detection of multiple species and the study of large molecules, free radicals, ions, and reaction kinetics. In this article, we review the current status of EC-QCLs and sensor developments based on them and speculate on possible future developments.
Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities
Luo, Yue; Ahmadi, Ehsaneh D.; Shayan, Kamran; ...
2017-11-10
Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic applications and devices but are also known to suffer from low optical quantum yields. Here we demonstrate SWCNT excitons coupled to plasmonic nanocavity arrays reaching deeply into the Purcell regime with Purcell factors (F P) up to F P = 180 (average F P = 57), Purcell-enhanced quantum yields of 62% (average 42%), and a photon emission rate of 15 MHz into the first lens. The cavity coupling is quasi-deterministic since the photophysical properties of every SWCNT are enhanced by at least one order of magnitude. Furthermore,more » the measured ultra-narrow exciton linewidth (18 ueV) reaches the radiative lifetime limit, which is promising towards generation of transform-limited single photons. Furthermore, to demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat at cryogenic temperatures in a unique interplay of excitons, phonons, and plasmons at the nanoscale.« less
Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator
Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca
2015-01-01
The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr; Ferrier, Alban
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase ofmore » up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W.
Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabricationmore » result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.« less
Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application
NASA Astrophysics Data System (ADS)
Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico
2006-09-01
Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.
Lin, Gong-Ru; Chiu, I-Hsiang; Wu, Ming-Chung
2005-02-07
Optically harmonic mode-locking of a semiconductor optical amplifier fiber laser (SOAFL) induced by backward injecting a dark-optical comb is demonstrated for the first time. The dark-optical comb with 60-ps pulsewidth is generated from a Mach-Zehnder modulator, which is driven by an electrical comb at a DC offset of 0.3Vn. Theoretical simulation indicates that the backward injection of dark-optical comb results in a narrow gain window of 60 ps within one modulating period, providing a cross-gainmodulation induced mode-locking in the SOAFL with a shortest pulsewidth of 15 ps at repetition frequency of 1 GHz. The mode-locked SOAFL pulsewidth can be slightly shortened to 10.8 ps with a 200m-long dispersion compensating fiber. After nonlinearly soliton compression in a 5km-long single mode fiber, the pulsewidth, linewidth and time-bandwidth product become 1.2 ps, 2.06 nm and 0.31, respectively.
Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing
NASA Astrophysics Data System (ADS)
Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò; Vavassori, Paolo; van Dijken, Sebastiaan
2018-05-01
We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au dimer nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barantsev, K. A., E-mail: kostmann@yandex.ru; Popov, E. N.; Litvinov, A. N., E-mail: andrey.litvinov@mail.ru
2015-11-15
The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.
NASA Astrophysics Data System (ADS)
Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun
2016-11-01
High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.
Temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers
NASA Astrophysics Data System (ADS)
Duan, J.; Huang, H.; Schires, K.; Poole, P. J.; Wang, C.; Grillot, F.
2018-02-01
In this paper, we investigate the temperature dependence of spectral linewidth of InAs/InP quantum dot distributed feedback lasers. In comparison with their quantum well counterparts, results show that quantum dot lasers have spectral linewidths rather insensitive to the temperature with minimum values below 200 kHz in the range of 283K to 303K. The experimental results are also well confirmed by numerical simulations. Overall, this work shows that quantum dot lasers are excellent candidates for various applications such as coherent communication systems, high-resolution spectroscopy, high purity photonic microwave generation and on-chip atomic clocks.
How Monochromatic Is Laser Light?
ERIC Educational Resources Information Center
Jacobs, Stephen F.
1979-01-01
Presents two derivations of the fundamental laser linewidth that have been used successfully in introductory physics courses. The cause of the finite linewidth is identified with phase fluctuations in the electric field due to spontaneous emissions. A factor of 2 discrepancy between the energy and field analysis is explained. (Author/GA)
Narrow-Line Seyfert 1 Galaxies
NASA Technical Reports Server (NTRS)
Leighly, Karen M.
2000-01-01
The primary work during this year has been the analysis and interpretation of our HST spectra from two extreme Narrow-line Seyfert 1 galaxies (NLS1s) Infrared Astronomy Satellite (IRAS) 13224-3809 and 1H 0707-495. This work has been presented as an invited talk at the workshop entitled "Observational and theoretical progress in the Study of Narrow-line Seyfert 1 Galaxies" held in Bad Honnef, Germany December 8-11, as a contributed talk at the January 2000 AAS meeting in Atlanta, Georgia, and as a contributed talk at the workshop "Probing the Physics of Active Galactic Nuclei by Multiwavelength Monitoring" held at Goddard Space Flight Center June 20-22, 2000.
Infrared line parameters at low temperatures relevant to planetary atmospheres
NASA Technical Reports Server (NTRS)
Varanasi, Prasad
1990-01-01
Employing the techniques that were described in several publications for measuring infrared lineshifts, linewidths and line intensities with a tunable diode laser, these parameters were measures for lines in the important infrared bands of several molecules of interest to the planetary astronomer at low temperatures that are relevant to planetary atmospheres using He, Ne, Ar, H2, N2, O2, and air as the perturbers. In addition to obtaining the many original data on the temperature dependence of the intensities and linewidths, it was also the first measurement of the same for the collision-induced lineshift of an infrared line and it showed that it was markedly different from that of the corresponding collision-broadened linewidth.
Application of Methods of Numerical Analysis to Physical and Engineering Data.
1980-10-15
directed algorithm would seem to be called for. However, 1(0) is itself a random process, making its gradient too unreliable for such a sensitive algorithm...radiation energy on the detector . Active laser systems, on the other hand, have created now the possibility for extremely narrow path band systems...emitted by the earth and its atmosphere. The broad spectral range was selected so that the field of view of the detector could be narrowed to obtain
Patterson, Brian D; Gao, Yi; Seeger, Thomas; Kliewer, Christopher J
2013-11-15
We introduce a multiplex technique for the single-laser-shot determination of S-branch Raman linewidths with high accuracy and precision by implementing hybrid femtosecond (fs)/picosecond (ps) rotational coherent anti-Stokes Raman spectroscopy (CARS) with multiple spatially and temporally separated probe beams derived from a single laser pulse. The probe beams scatter from the rotational coherence driven by the fs pump and Stokes pulses at four different probe pulse delay times spanning 360 ps, thereby mapping collisional coherence dephasing in time for the populated rotational levels. The probe beams scatter at different folded BOXCARS angles, yielding spatially separated CARS signals which are collected simultaneously on the charge coupled device camera. The technique yields a single-shot standard deviation (1σ) of less than 3.5% in the determination of Raman linewidths and the average linewidth values obtained for N(2) are within 1% of those previously reported. The presented technique opens the possibility for correcting CARS spectra for time-varying collisional environments in operando.
Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Scooter D., E-mail: scooter.johnson@nrl.navy.mil; Glaser, Evan R.; Cheng, Shu-Fan
Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques.more » We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.« less
Modelling linewidths of Kepler red giants in NGC 6819
NASA Astrophysics Data System (ADS)
Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen
2018-04-01
We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.
Modelling linewidths of Kepler red giants in NGC 6819
NASA Astrophysics Data System (ADS)
Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen
2018-07-01
We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler light curves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the non-local convection model.
Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric
2016-01-01
In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301
Ham, Sujin; Chung, Heejae; Kim, Tae-Woo; Kim, Jiwon; Kim, Dongho
2018-02-01
Lead halide perovskite nanoparticles (NPs) are attractive as they exhibit excellent color purity and have a tunable band gap, and can thus be applied in highly efficient photovoltaic and light-emitting diodes. Fundamental studies of emission linewidth broadening due to spectral shifts in perovskite NPs may suggest a way to improve their color purity. However, the carrier-induced Stark shift that causes spectral diffusion still requires investigation. In this study, we explore composition-related emission linewidth broadening by comparing CsPbBr3 and CH 3 NH 3 PbBr 3 (MAPbBr3) perovskite NPs. We find that the MAPbBr3 NPs are more sensitive to fluctuations in the local electric fields than the CsPbBr3 NPs due to an intrinsic difference in the dipole moment between the two A cations (Cs and MA), which shows a carrier-induced Stark shift. The results indicate that the compositions of perovskite NPs are closely associated with emission linewidth broadening and they also provide insights into the development of NP-based devices with high color purity.
Optical Parametric Technology for Methane Measurements
NASA Technical Reports Server (NTRS)
Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris
2015-01-01
Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).
The Cambridge-Cambridge x-ray serendipity survey. 2: Classification of x-ray luminous galaxies
NASA Technical Reports Server (NTRS)
Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, Martin
1994-01-01
We present the results of an intermediate-resolution (1.5 A) spectroscopic study of 17 x-ray luminous narrow emission-line galaxies previously identified in the Cambridge-Cambridge ROSAT Serendipity Survey and the Einstein Extended Medium Sensitivity Survey. Emission-line ratios reveal that the sample is composed of ten Seyfert and seven starburst galaxies. Measured linewidths for the narrow H alpha emission lines lie in the range 170 - 460 km s(exp -1). Five of the objects show clear evidence for asymmetry in the (OIII) lambda 5007 emission-line profile. Broad H alpha emission is detected in six of the Seyfert galaxies, which range in type from Seyfert 1.5 to 2. Broad H beta emission is only detected in one Seyfert galaxy. The mean full width at half maximum for the broad lines in the Seyfert galaxies is FWHM = 3900 +/- 1750 km s(exp -1). Broad (FWHM = 2200 +/- 600 km s(exp -1) H alpha emission is also detected in three of the starburst galaxies, which could originate from stellar winds or supernovae remnants. The mean Balmer decrement for the sample is H alpha / H beta = 3, consistent with little or no reddening for the bulk of the sample. There is no evidence for any trend with x-ray luminosity in the ratio of starburst galaxies to Seyfert galaxies. Based on our previous observations, it is therefore likely that both classes of object comprise approximately 10 percent of the 2 keV x-ray background.
NASA Astrophysics Data System (ADS)
Thapa, Rajesh
We have made significant accomplishments in the development of portable frequency standard inside hollow optical fibers. Such standards will improve portable optical frequency references available to the telecommunications industry. Our approach relies on the development of a stabilized Cr:forsterite laser to generate the frequency comb in the near-IR region. This laser is self referenced and locked to a CW laser which in turn is stabilized to a sub-Doppler feature of a molecular transition. The molecular transition is realized using a hollow core fiber filled with acetylene gas. We finally measured the absolute frequency of these molecular transitions to characterize the references. In this thesis, the major ideas, techniques and experimental results for the development and absolute frequency measurement of the portable frequency references are presented. A prism-based Cr:forsterite frequency comb is stabilized. We have effectively used the prism modulation along with power modulation inside the cavity in order to actively stabilize the frequency comb. We have also studied the carrier-envelope-offset frequency (f0) dynamics of the laser and its effect on laser stabilization. A reduction of f0 linewidth from ˜2 MHz to ˜20 kHz has also been observed. Both our in-loop and out-of-loop measurements of the comb stability showed that the comb is stable within a part in 1011 at 1-s gate time and is currently limited by our reference signal. In order to develop this portable frequency standard, saturated absorption spectroscopy is performed on the acetylene v1 + v3 band near 1532 nm inside different kinds of hollow optical fibers. The observed linewidths are a factor 2 narrower in the 20 mum fiber as compared to 10 mum fiber, and vary from 20-40 MHz depending on pressure and power. The 70 mum kagome fiber shows a further reduction in linewidth to less than 10 MHz. In order to seal the gas inside the hollow optical fiber, we have also developed a technique of splicing the hollow fiber to solid fiber in a standard commercial arc splicer, rather than the more expensive filament splicer, and achieved comparable splice loss. We locked a CW laser to the saturated absorption feature using a Frequency Modulation technique and then compared to an optical frequency comb. The stabilized frequency comb, providing a dense grid of reference frequencies in near-infrared region is used to characterize and measure the absolute frequency reference based on these hollow optical fibers.
Anomalously large ferromagnetic resonance linewidth in the Gd/Cr/Fe film plane
NASA Astrophysics Data System (ADS)
Sun, Li; Zhang, Wen; Wong, Ping Kwan Johnny; Yin, Yuli; Jiang, Sheng; Huang, Zhaocong; Zhai, Ya; Yao, Zhongyu; Du, Jun; Sui, Yunxia; Zhai, Hongru
2018-04-01
As an important parameter for characterizing the magnetization dynamics, Gilbert damping constant α in a thin film or a multilayer is generally extracted from the linear fitting of the frequency-dependence of the ferromagnetic resonance linewidth, sometimes accompanied with a tiny deviation of the linewidth to a smaller value at the low-frequency or high-frequency region due to the two-magnon scattering with an in-plane-field configuration, in which an in-plane magnetic field H perpendicular to a microwave field h was applied in film plane during measurement. In contrast, here we report, in ultrathin Gd/Cr/Fe multilayers, an anomalously large linewidth in the film plane at the low-frequency region. For the first time, we have successfully extracted the Gilbert damping constant from perfect theoretical fitting to the experimental data, by considering the effective direction of the magnetization around in precession staying out of the film plane when the in-pane H at which the precession starts is below the saturation field. This magnetization deviation from the film plane is found to have an obvious contribution to the enhanced linewidth caused by two magnon scattering, while slightly reduce the intrinsic linewidth. Under the same resonance frequency, the deviation angle reaches the maximum values at tCr = 1.0 nm while decreases when tCr increases to 1.5 nm, which coincides with the trend of the surface perpendicular anisotropy constant K⊥. A reduced intrinsic damping constant α is obtained as the introduction of Gd layer and Cr layer as a result of the competition between the spin pumping effect and the interfacial effects at the Fe/Gd and Fe/Cr interfaces. While the decreasing α for film with Cr layer thickness increasing to 1.5 nm might means the contribution of the electron density of states at the Fermi energy n(EF). This study offers an effective way to accurately obtain the intrinsic damping constant of spintronic materials/devices, which is essential for broad applications in spintronics.
NASA Astrophysics Data System (ADS)
Johri, Manoj; Johri, Gajendra K.; Rishishwar, Rajendra P.
1990-12-01
The study of spectral lineshape is important to understand intermolecular forces1-5. We have calculated the linewidth and the lineshift for different rotation-vibration transitions of linear molecules (CO and HCl) perturbed by argon using generalized interaction potential4. The Murphy Boggs6 (MB), Mehrotra Boggs7 and perturbation theories have been used for the linewidth calculation. The lineshift parameters have been calculated using the MEB theory7 including the phase shift effect and ignoring Ji=Ji and Jf=Jf transitions. In these calculation the variation of the rotational constant with the vibrational quantum number has been taken into account. The calculated lineshift parameters decrease with an increase in the initial rotation quamtum numbers (Ji). It remains positive for the lower values of Ji and becomes negative for the higher values of Ji where as the measured8 values are negative for all the transitions. The calculated linewidth parameters using the MEB theory7 are lower by about 15% than the measured values for CO-A collisions. The vibrational dependence in CO-A collisions show significant change in the lineshift. For H Cl-A collisions the discrepancy between the calculated lienwidth parameters using the Mehrotra Boggs theory and the measured9 values is about 46% for J=0-1 transitions and decreases to 22% for J=8-9 transition. The results of the perturbation theory do not show regular variation of the linewidth parameters with the rotational state. The linewidth parameters using the Murphy Boggs theory are lower than the measured9 values by about 50% for all the transitions considered. It is found that the contribution of the diabetic collisions is important as included in the perturbtive and the Mehrotra Boggs approaches. Further, if the pressure broadening method is used to probe anisotropy of the intermolecular forces, there is need of modifying the existing theoretical models and the experimental techniques.
Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang
2012-03-12
The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.
NASA Astrophysics Data System (ADS)
Youssef, Jamal Ben; Brosseau, Christian
2006-12-01
The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface anisotropy contribution to the anisotropy of Fe2O3 nanoparticles. From these measurements, the characteristic intrinsic damping dependent on the selected material and the damping due to surface/interface effects and interparticle interaction were estimated. The inhomogeneous linewidth (damping) due to surface/interface effects decreases with diminishing particle size, whereas the homogeneous linewidth (damping) due to interactions increases with increasing volume fraction of magnetic particles (i.e., reducing the separation between neighboring magnetic phases) in the composite.